University of Exeter, Camborne School of Mines

Misfires Identification in Tunnel Blasts

Submitted by Solomon Ewusi, to the University of Exeter
as a thesis for the degree of
Doctor of Philosophy in Earth Resources
March 2013

This thesis is available for library use on the understanding that it is copyright
material and that no quotation from the thesis may be published without proper
acknowledgement.

I certify that all material in this thesis which is not my own work has been identified
and that no material has previously been submitted and approved for the award of
a degree by this or any other University.

Signature

...
Abstract

Due to economic gain the use of explosives for rock breaking has been the preferred choice in the mining industry for extracting minerals and the construction industries for driving tunnels and underground excavations. Although misfires are not an expected outcome in any form of blasting operations, however, due to the confined nature of underground blast the likelihood of blasthole misfires occurring is increased compared to that of a surface blast. Past research on the use of explosives for rock breaking have been concerned with issues about improving the effective use of explosive energy neglecting such effect as safety hazards and increased operational cost resulting from blasthole misfires.

This research project investigate misfires in tunnel blasts with the aim of developing method(s) of minimising it occurrence during the blast design and identify blasthole misfires should they occur. Through a series of test blasts carried out at the Holman’s Test Mine operated by the Camborne School of Mines, three identification techniques based on blast emission data were developed namely; Electro-Magnetic Pulse (EMP Signature), Light (Optical Signature) and seismic (Vibration Signature).

The study therefore concluded that whilst no one single method developed could effectively identify blasthole misfires in tunnel blasts, the vibration signature approach is the most pragmatic method for misfire identification in tunnel blasts as measurements are remotely undertaken. Moreover, blast vibration is well understood and part of almost all tunnel blasting operation. The blast vibration measurements and analyses undertaken during the course of this research resulted in the identification of potential blasthole misfires and aided in the safe retrieval of unexploded detonators and explosives cartridges. As a result of the research project several misfires were identified immediately after full face tunnel blasts at the Holmans’ Test Mine and appropriate measures taken to handle the misfires.
Table of Contents

1 CHAPTER ONE Introduction .. 16
 1.1 Problem Statement ... 16
 1.2 Aims and Objectives ... 18
 1.3 Methodology ... 19
 1.4 Study Site .. 21
 1.5 Outline of Thesis Contents .. 24

2 CHAPTER TWO Review of misfires and tunnel blast design 26
 2.1 Blast Misfires .. 26
 2.2 Misfires statistics .. 26
 2.3 Economic Implications of Misfires ... 27
 2.4 Misfire Causes ... 28
 2.5 Explosive Malfunction ... 29
 2.5.1 Pressure Transients ... 30
 2.5.2 Changes in Explosive Density .. 32
 2.5.3 Sympathetic Detonation ... 33
 2.5.4 Detonator Malfunction .. 34
 2.6 Ground Movement and Cutoffs ... 35
 2.7 Misfire Detection and Identification .. 36
 2.8 Explosive Detonation Process ... 38
 2.9 Tunnel Blast Design ... 42
 2.9.1 Cut Design Principles ... 45
 2.9.2 Charge Concentration in the Cut ... 49
 2.10 Effect of Delay Time on Blast Design ... 52
 2.11 Effect of Initiation Systems on Blast Performance 53
 2.11.1 Plain Detonator ... 54
 2.11.2 Non-Electric Initiation Systems and Detonators 54
 2.11.3 NONEL Bunch Connector Test .. 55
 2.12 Electronic Initiation System and Detonator 57
 2.12.1 HotShot Electronic Detonator Firing Test 60
 2.13 Effect of Geology on Blast Design ... 61
 2.14 Influence of Drill Deviation on Blast Performance 65
 2.15 Drill-Hole Deviation Test with HDS Method 70
 2.16 Conclusion ... 72

3 CHAPTER THREE Electromagnetic Pulse Signature 74
 3.1 Background ... 74
 3.2 Source and Generation Mechanism ... 75
 3.3 EMP Detection Sensors .. 77
 3.4 Measurement of EMP Signals .. 78
 3.5 Characteristic of EM pulse signals ... 81
3.6 Application of EMP and Misfire Identification 83
3.7 EMP Instrumentation and Experimental Program 86
 3.7.1 EMP Signal Propagation in Tunnel Blast 91
3.8 Conclusion .. 93

4 CHAPTER FOUR Vibration Signature .. 95
4.1 Background .. 95
4.2 Formation and Transmission of Seismic Waves 96
4.3 Blast Vibration Measurements ... 99
4.4 Vibration Prediction ... 101
4.5 Vibration Frequency .. 105
4.6 Blast Vibration Instrumentation .. 106
 4.6.1 White® Mini-Seis Seismograph .. 107
 4.6.2 Custom-Built Geophone System ... 108
 4.6.3 Accelerometer based near-field measurement 116
4.7 Misfires Identification from Blast Vibration Signature 118
 4.7.1 Four Section Cut Blast Design .. 120
 4.7.2 Variant Castle Cut Blasts Design ... 129
4.8 Determination of Number of Detonations from Vibration signature .. 136
4.9 Electronic Initiated Full Face Blast Design 137
4.10 NONEL Initiated Full Face Blast .. 141
4.11 PED Blast Results & Analysis ... 145
 4.11.1 Blast PED_1 Analysis ... 145
 4.11.2 Blast PED_2 Analysis ... 148
 4.11.3 Blast PED_3 Analysis ... 151
4.12 NONEL Initiated Full Face Blast Results & Analysis 156
 4.12.1 Blast NED_1 & NED_2 Results ... 156
4.13 Vibration Analysis of Full Face Blast Results 159
4.14 Conclusions .. 162

5 CHAPTER FIVE Optical Signature .. 163
5.1 Background ... 163
5.2 Fibre Optic Instrumentation and Measurement System 165
5.3 Single-Channel Fibre Optic (SCFO) Device 166
5.4 Testing and Commissioning of SCFO Unit 167
5.5 Multi-Channel Fibre Optic (MCFO) Unit 169
5.6 Testing and Commissioning of MCFO Unit 171
 5.6.1 Lab Scale Test .. 171
 5.6.2 Field Commissioning MCFO Unit .. 174
5.7 Optical Signature from NONEL and Electronic Detonation 175
5.8 Firing Time Scatter .. 177
5.9 Application of Fibre Optic Technique to Determine Detonation Time and the Number of Detonations in a Blast 179
 5.9.1 Non-Electric Detonator (NED) Test Blasts 179
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9.2</td>
<td>Programmable Electronic Detonator (PED) Test Blasts</td>
<td>183</td>
</tr>
<tr>
<td>5.10</td>
<td>Determination of Number of Blasthole Detonations from Blast Vibration and Optical Signature</td>
<td>185</td>
</tr>
<tr>
<td>5.10.1</td>
<td>NONEL Initiated Test Blast Design</td>
<td>185</td>
</tr>
<tr>
<td>5.10.2</td>
<td>Electronic Initiated Test Blast Design</td>
<td>190</td>
</tr>
<tr>
<td>5.11</td>
<td>Critical Diameter Test Blast with Fibre Optic Technique</td>
<td>191</td>
</tr>
<tr>
<td>5.12</td>
<td>Conclusion</td>
<td>196</td>
</tr>
<tr>
<td>6</td>
<td>CHAPTER SIX Conclusions and Recommendations</td>
<td>197</td>
</tr>
<tr>
<td>6.1</td>
<td>Thesis Conclusion</td>
<td>197</td>
</tr>
<tr>
<td>6.2</td>
<td>Outline of Contributions to Knowledge</td>
<td>200</td>
</tr>
<tr>
<td>6.3</td>
<td>Recommendations for Further Work</td>
<td>201</td>
</tr>
<tr>
<td>7</td>
<td>Appendices</td>
<td>203</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
<td>227</td>
</tr>
</tbody>
</table>