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ABSTRACT 1 

Short-term deterministic sea wave prediction (DSWP) can facilitate the safe implementation 2 

of a number of maritime operations. Wave profile radars, based on the conventional X-band 3 

radars, have recently been proven to provide a low-cost convenient source of two-dimensional 4 

wave measurement for DSWP. The Golden Arrow sea trial in the North Atlantic was dedicated 5 

to collecting wave and vessel motion data for DSWP purposes, particularly under the large sea 6 

conditions that are of practical interest in marine operations. The field data were collected using 7 

a wave profiling radar and other measurement technologies for validation. This paper reports 8 

on the successful application of a recently developed technique by Al-Ani et al. in DSWP to 9 

the dedicated sea trial. 10 

Keywords - Deterministic sea wave prediction (DSWP); quiescent period prediction (QPP); 11 

sea trial; wave profiling radar 12 

1.  Introduction 13 

Short-term deterministic sea wave prediction (DSWP) can potentially play a useful role in 14 

extending the sea states under which many critical maritime operations can be safely 15 

undertaken (Crossland et al., 2009; Giron-Sierra and Esteban, 2010; Ferrier et al., 2013). 16 

DSWP as a branch of marine science had its roots in the early 1990’s and has recently evolved 17 

into a rapidly growing discipline, an illustrative sample of the literature being Morris et al. 18 

(1992), Pourzanjani et al. (1992), Blondel et al. (2008), Belmont et al. (2014), Hilmer and 19 

Thrinhill (2014), and Connell et al. (2015). Unlike traditional statistical estimation of sea wave 20 

properties (Tucker and Pitt, 2001), the discipline of DSWP aims to predict (few tens of seconds 21 

in advance) the actual profile of the sea surface and its evolution. Typical prediction timescales 22 

are in the range of 60-120 s ahead. Two common elements make DSWP an attractive tool in 23 

safely operating many launch and recovery tasks including: the launch and recovery of fixed 24 
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and rotary wing aircraft; small, surface or submersible vehicles, such as RHIBs; and cargo, 1 

fuel, and personnel transfer systems between vessels, and vessels onto offshore structures.  2 

Firstly, while the overall execution of such tasks may take a significant amount of time, the 3 

key wave-height-critical sub-tasks that actually limit the sea state under which they can be 4 

carried out are short, typically less than one minute.  Secondly, a fundamental property of most  5 

sea conditions encountered that are of relevance to ships is that sets of large waves alternate 6 

with sets of smaller waves, the exception being highly multidirectional large wind-wave seas 7 

encountered within very strong storm systems when the wind conditions themselves typically 8 

prohibit most launch and recovery operations. The smaller waves present in otherwise large 9 

seas are, by definition, of lower height than the standard sea statistics for the prevailing 10 

conditions, and consequently the intervals in which these lower height waves occur are referred 11 

to as quiescent periods.  Combining the above two elements, i.e. the relatively short duration 12 

of the wave-height critical sub-tasks and the presence of quiescent periods, suggests that if the 13 

smaller waves could be deterministically predicted then a range of maritime operations could 14 

be safely undertaken under conditions whose overall sea state statistics would prohibit the 15 

execution of the task.  Hence, there is an increasing interest in the capabilities, such as quiescent 16 

period prediction (QPP), that are based upon DSWP (Pourzanjani et al., 1992; Ferrier et al., 17 

2000; Crossland et al., 2009; Ferrier et al., 2013). 18 

As discussed in Belmont et al. (2014), wave profiling radars are the only realistic sensing 19 

technology for shipborne applications of DSWP.  Conventional vessel-mounted wave radar 20 

returns statistical wave data (sea surface roughness).  In contrast, the OceanWaveS WaMoS II 21 

wave profiling radar (Reichert et al., 1999) offers the prospect of measuring the actual sea 22 

surface profile over an area of a few square kilometres around a vessel, based on the standard 23 

X-band radar carried by ships for safe navigation purposes. In Hilmer and Thornhill (2014), 24 

the accuracy of WaMoS II at rendering sea surface elevation was evaluated against a wave 25 
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buoy, where the majority of correlation coefficients exceeded 0.87. Due to the commercial 1 

nature of the source, full details of all the processing algorithms employed in extracting wave 2 

profiles from radar backscatter data are not available to users and their details are 3 

understandably not fully disclosed in the company’s published material (Hilmer and Thornhill 4 

2015).  5 

Using experimental wave profiling radar, Belmont et al. (2014) explored two forms of 6 

DSWP techniques. The first was so called “multiple fixed point” system based upon setting up 7 

a system of equations that described a sea composed of a modest number of wave directions. 8 

This approach had some success. Secondly a fully two-dimensional method in the form classic 9 

discrete time Fourier transform was employed that was slightly less effective. The WaMoS II 10 

system was deployed during a sea trial, designated as Golden Arrow, undertaken expressly to 11 

gather data for DSWP purposes. A fundamental challenge inherent in the use of WaMoS II is 12 

that it employs standard navigation radars whose antenna are typically mechanically rotated 13 

with scan times of few seconds. This means that the radar backscatter data evolves in both time 14 

and space and hence simple spatial Fourier techniques are only valid where the scan period is 15 

very small compared to the shortest period of interest. In the Golden Arrow trial, the rotational 16 

period of 2.52 s is considerable compared to the dominant wave periods of 11 s and 13 s for 17 

the prevailing westerly and south-westerly wave systems.  18 

In order to address the above problem, a new two-dimensional approach was developed in 19 

Al-Ani et al. (2019). This technique can accept the mixed space-time data arising from the 20 

rotating radar antenna and furthermore is not susceptible to the condition number problems that 21 

usually arise with any form of inversion into prediction models (e.g., Alford et al. (2015), 22 

Belmont et al. (2014) and Connell et al. (2015)). When applied to simulated wave data, the new 23 

technique produces very promising results (Al-Ani et al., 2019). In the present report, the 24 
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authors focus on applying this approach to the field data of the Golden Arrow and report on 1 

the wave prediction accuracy achieved.  2 

The remainder of the paper is organised as follows. In Section 2, the authors summarise the 3 

key elements of the new technique. The performance metrics that are used to assess the quality 4 

of prediction are detailed in Section 3. In Section 4, we describe the sea trial data and illustrate 5 

the accuracy of the wave profiles prediction. In Section 5, conclusions are drawn.     6 

2. DSWP Technique 7 

The prediction model is based on the standard linear oceanographic wave model of the sea 8 

surface elevation ℎ(𝑥, 𝑦, 𝑡) at the spatial coordinate (𝑥, 𝑦), and temporal coordinate 𝑡 that is 9 

given by  10 

ℎ(𝑥, 𝑦, 𝑡) = ∑ ∑[

𝑁

𝑛=1

𝑎𝑛,𝑟 cos(𝑘𝑛𝑥 cos(𝜃𝑟 ) + 𝑘𝑛𝑦 sin(𝜃𝑟) − 𝜔𝑛𝑡)

𝑅

𝑟=1

 11 

+𝑏𝑛,𝑟sin(𝑘𝑛𝑥 cos(𝜃𝑟 ) + 𝑘𝑛𝑦 sin(𝜃𝑟 ) − 𝜔𝑛 𝑡)],                   (1) 12 

where 𝑁 is the number of spectral components in the propagation direction 𝜃𝑟 , 𝑅 is the number 13 

of directions, (𝑎𝑛,𝑟 , 𝑏𝑛,𝑟) is the spectral coefficient pair at the wavenumber 𝑘𝑛 and its angular 14 

frequency 𝜔𝑛 in the direction 𝜃𝑟 . With this technique, use is made of the standard 15 

oceanographic assumption (Tucker et al., 1984) that in the Fourier transform of a particular set 16 

of wave profile data the spectral coefficients are considered to be statistically independent. (It 17 

is important to distinguish the spectrum of a particular set of sea data from spectral models, 18 

such as Pierson Moskowitz or JONSWAP, which represent the average of a large number of 19 

such individual spectra.)  20 

For a more compact representation, let 21 

𝛼𝑛,𝑟(𝑥, 𝑦, 𝑡) ≜ cos(𝑘𝑛𝑥 cos(𝜃𝑟) + 𝑘𝑛𝑦 sin(𝜃𝑟) − 𝜔𝑛𝑡)  ,                          (2)  22 

𝛽𝑛,𝑟(𝑥, 𝑦, 𝑡) ≜ sin(𝑘𝑛𝑥 cos(𝜃𝑟 ) + 𝑘𝑛𝑦 sin(𝜃𝑟) − 𝜔𝑛 𝑡) .                           (3) 23 
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Furthermore, we let  𝑧 = (𝑥, 𝑦) ∈ ℝ2. The sea elevation discrete measurements from one radar 1 

scan is denoted by {ℎ𝑠(z𝑚, 𝑡𝑠,𝑚)}
𝑚=1

𝑀
, z𝑚 = (𝑥𝑚, 𝑦𝑚 ), where 𝑀 is the size of the discrete data 2 

per scan 𝑠 (or a subdomain of the scan used in building the prediction model). For a single 3 

scan 𝑠, the sequence {𝑡𝑠,𝑚}
𝑚=1

𝑀
  range over the period (𝜏s, 𝜏s + ∆𝑡], where 𝜏s  is the start time 4 

of the scan and ∆𝑡 is the rotation time of the radar antenna, and {(𝑥𝑚, 𝑦𝑚 )}𝑚=1
𝑀  range over the 5 

radar scan spatial area.  6 

The coefficients 𝑎𝑛,𝑟 and 𝑏𝑛,𝑟   can be determined by solving the following minimization tasks  7 

min
𝑎𝑛,𝑟,𝑏𝑛,𝑟

∑ [𝑎𝑛,𝑟𝛼𝑛,𝑟(z𝑚 , 𝑡𝑠,𝑚) + 𝑏𝑛,𝑟𝛽𝑛,𝑟(z𝑚 , 𝑡𝑠,𝑚) − ℎ𝑠(z𝑚 , 𝑡𝑠,𝑚)]
2

𝑀

𝑚=1

.                  (4) 8 

The solution is given by  9 

[
𝑎𝑛,𝑟

𝑏𝑛,𝑟

] = 𝐇−𝟏𝐟 ,                                                                          (5)                                                                             10 

where 11 

𝐇 = ∑ [
𝛼𝑛,𝑟(z𝑚 , 𝑡𝑠,𝑚)

𝛽𝑛,𝑟(z𝑚 , 𝑡𝑠,𝑚)
] [𝛼𝑛,𝑟(z𝑚 , 𝑡𝑠,𝑚)       𝛽𝑛,𝑟(z𝑚 , 𝑡𝑠,𝑚)]

𝑀

𝑚=1

 ,                           (6) 12 

𝐟 = ∑ [
𝛼𝑛,𝑟(z𝑚 , 𝑡𝑠,𝑚)

𝛽𝑛,𝑟(z𝑚 , 𝑡𝑠,𝑚)
] ℎ𝑠(z𝑚 , 𝑡𝑠,𝑚)

𝑀

𝑚=1

.                                                 (7) 13 

We can see that 𝐟 is of size 2 × 1, 𝐇 is 2 × 2, and the solution in (5) is 2 × 1 which represents 14 

a single pair of spectral coefficients at wavenumber 𝑘𝑛 in direction 𝜃𝑟 . The solution (5) is 15 

determined for each of the 𝑅𝑁 spectral pairs in a one-by-one manner. This technique is related 16 

to the single-frequency least-squares estimation in nonuniform sampling theory, which is also 17 

known under other names, such as the Lomb-periodogram, depending on the application 18 

(Stoica et al., 2011). 19 
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The solution in (5) requires inverting 𝐇 - a matrix of size 2 × 2. This is more numerically stable 1 

than inverting potentially large (𝑅 × 𝑅) matrices involved in the Multiple Fixed Points method 2 

(Belmont et al., 2014) and even larger (𝑅𝑁 × 𝑅𝑁) matrices involved in the classical least-3 

squares fitting of the data to all the spectral components simultaneously, which are equivalent 4 

to solving Vandermonde systems that are well-known to be poorly conditioned with condition 5 

numbers that rise with their ranks (Bagchi and Mitra, 1996; Bilinskis, 2007; Belmont et al., 6 

2014). We can also observe that the technique accounts for the varied time instants of the 7 

measurements across the scan (unlike the standard two-dimensional Fourier transform, used 8 

for example in Wijaya et al. (2015), where a single time instant is associated with each scan).  9 

We note that the spectral components along with their coefficients in the prediction model can 10 

represent the sea surface elevation in the measurement and predictable zone at defined temporal 11 

points. This means that the prediction model is not a general representation of the prevailing 12 

sea and the coefficients derived from different scans are in fact independent.      13 

3. Performance Metrics 14 

The 𝑆 scans collected over the sea trial are denoted by 𝒽𝑠 = {ℎ𝑠(z𝑚 , 𝑡𝑠,𝑚)}
𝑚=1

𝑀
, 𝑠 = 1, … , 𝑆 15 

and used respectively to generate predictions of the sea surface over the prediction horizon  16 

𝒯 = (𝜏𝑠 , 𝜏𝑠 + 𝑇], where 𝑇 is the total prediction time (it is important to clarify that the term 17 

‘prediction horizon’ here is used to indicate a time period as opposed to a single time instant). 18 

The prediction of the sea surface based on 𝒽𝑠 at prediction time instant 𝑡𝑠+𝑝,𝑚 ∈19 

(𝜏𝑠 , 𝜏𝑠 + 𝑇], 𝑝 = 1, . . , 𝑃, where 𝑃 = 𝑇/∆𝑡, is denoted by {ℎ̂𝑠(𝑧𝑚, 𝑡𝑠+𝑝,𝑚)}
𝑚=1

�̂�
, where �̂� is the 20 

size of the spatial predictable zone. The relationship between the available prediction horizon, 21 

predictable zone, and the properties of the measurements can be described by the so called 22 

Space-Time diagrams (Edgar et al., 2000; Abusedra and Belmont, 2011; Qi et al., 2018) which 23 
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yield all the necessary information. In the multidimensional seas, the Space-Time diagrams are 1 

applied in all propagation directions with the final results being the intersection of the diagrams 2 

from all directions, see for example Qi et al. (2018) for an illustration. 3 

The first metric for assessing the prediction accuracy is the (temporal) correlation between 4 

the predicted and true wave profiles.  In maritime applications such as helicopter recovery at 5 

sea, it is more valuable from a practical point of view to evaluate the correlation in the temporal 6 

domain at a single spatial location (as opposed to the spatial correlation at a single time instant).  7 

Therefore, formally speaking, we determine the normalised correlation between the predicted 8 

wave profile for the prediction horizon  𝒯 = (𝜏𝑠, 𝜏𝑠 + 𝑇], at a spatial location and the “future” 9 

radar data available to us within the same time horizon and location.  Assuming that the 10 

predicted and true wave profiles, {ℎ̂𝑠(𝑧𝑚, 𝑡𝑠+𝑝,𝑚)}
𝑝=1

𝑃
  and {ℎ𝑠+𝑝(𝑧𝑚, 𝑡𝑠+𝑝,𝑚)}

𝑝=1

𝑃
 respectively, 11 

are zero-centred, their correlation coefficients based on 𝒽𝑠 are given by  12 

Q𝑠(𝑧𝑚) =

1
𝑃

∑ ℎ̂𝑠(𝑧𝑚 , 𝑡𝑠+𝑝,𝑚)ℎ𝑠+𝑝 (𝑧𝑚 , 𝑡𝑠+𝑝,𝑚)𝑃
𝑝=1

𝜎𝑠(𝑧𝑚)𝜎𝑠(𝑧𝑚)
 ,    𝑠 = 1, … , 𝑆,    𝑚 = 1, … , �̂�      (8) 14 

where 13 

𝜎𝑠(𝑧𝑚) = [
1

𝑃
∑ |ℎ̂𝑠(𝑧𝑚 , 𝑡𝑠+𝑝,𝑚)|

2𝑃
𝑝=1 ]

1/2

,                                                   (9)                     15 

𝜎𝑠(𝑧𝑚) = [
1

𝑃
∑ |ℎ𝑠+𝑝(𝑧𝑚 , 𝑡𝑠+𝑝,𝑚)|

2𝑃
𝑝=1 ]

1/2

.                                               (10)  16 

For overall illustration of  the results of (8), we average the correlation coefficients at each 17 

location 𝑧𝑚 across the scans, i.e. 𝐴(𝑧𝑚) =
1

𝑆
 ∑ Q𝑠(𝑧𝑚)𝑆

𝑠=1 . To further analyse the prediction 18 

accuracy within the prediction horizon, we obtain a second form of temporal correlation where 19 

we evaluate the inner product along the trial duration for a single time instant (𝑡𝑠+𝑝 ∈20 

(𝜏𝑠 , 𝜏𝑠 + 𝑇]) in the prediction horizon:  21 

Q𝑝(𝑧𝑚) =

1
𝑆

∑ ℎ̂𝑠(𝑧𝑚 , 𝑡𝑠+𝑝,𝑚)ℎ𝑠+𝑝 (𝑧𝑚 , 𝑡𝑠+𝑝,𝑚)𝑆
𝑠=1

𝜎𝑝(𝑧𝑚)𝜎𝑝(𝑧𝑚)
 ,    𝑝 = 1, … , 𝑃,    𝑚 = 1, … , �̂�      (11) 22 
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where 1 

𝜎𝑝(𝑧𝑚) = [
1

𝑆
∑ |ℎ̂𝑠(𝑧𝑚 , 𝑡𝑠+𝑝,𝑚)|

2𝑆
𝑠=1 ]

1/2

,                                                   (12)                     2 

𝜎𝑝(𝑧𝑚) = [
1

𝑆
∑ |ℎ𝑠+𝑝(𝑧𝑚 , 𝑡𝑠+𝑝,𝑚)|

2𝑆
𝑠=1 ]

1/2

.                                                 (13)  3 

Nonetheless, the correlation coefficient demonstrates the accuracy of predicting the shape of 4 

the wave profile and not its amplitude (Taylor 2001). Therefore, as an additional performance 5 

metric, we determine the relative RMS errors  6 

E𝐬(𝑧𝑚) = [
1

𝑃
∑ |ε𝑠

𝑝
(𝑧𝑚)|

2𝑃
𝑝=1 ]

1/2

,            𝑠 = 1, … , 𝑆,    𝑚 = 1, … , �̂�                 (14) 7 

where,       8 

ε𝑠
𝑝

(𝑧𝑚) =
ℎ̂𝑠 (𝑧𝑚 , 𝑡𝑠+𝑝,𝑚) − ℎ𝑠+𝑝 (𝑧𝑚 , 𝑡𝑠+𝑝,𝑚)

𝐻𝑠 (𝑧𝑚)
                                       (15) 9 

where 𝐻𝑠 (𝑧𝑚) represents the maximum wave height at location 𝑧𝑚 in the specified prediction 10 

horizon.   11 

4. The Sea Trial and Results  12 

The illustrative data presented here was obtained during an interval of long-period high sea 13 

state during the Golden Arrow sea trial on the 24th November 2014 between 9:20 and 14:00 14 

UTC off the western coast of Scotland, approximately 100 km west of the Isle of Mull. The 15 

development of the wave system during this part of the trial as reflected by the vessel’s wave 16 

driven heave motion is shown in Fig. 1, where the standard deviation of the ship heave is 17 

calculated over a window of ten minutes.   18 

Statistical directional wave spectra were determined from both: the WaMoS II wave radar 19 

(operating in traditional statistical mode as opposed to wave profiling mode) and free floating 20 

directional multi-axis wave buoys. Both data sources indicated that there were two significant 21 

wave directions, one from the west and one from the south west. (Here the wave directions 22 

represent the direction the waves are propagating from.) The dominant periods of these two 23 
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wave systems were up to 11 s and 13 s, respectively. These timescales were significant as the 1 

3dB point of the vessel frequency response in heave corresponds to 9 s period waves. Thus, to 2 

a zeroth-order approximation, the vessel acted as a wave follower in heave as will be discussed 3 

later. Between 13:00 and 14:00 UTC the ship was manoeuvring slowly and the waves were at 4 

their highest, and therefore the study is focused in this hour. The speed, course and heading of 5 

the ship from 12:58 to 14:00 UTC is shown in Fig. 2.   6 

4.1 Wave profiles predictions 7 

A subdomain from each WaMoS II scan is chosen, where the measurements are most 8 

reliable. The size and location of the reliable measurement zone, also known as the “sweet 9 

spot” in the literature, depends on the sea waves properties, radar height and characteristics, 10 

and the prediction requirements. It is usually located in the directions where waves are traveling 11 

towards the radar, beyond the dead zone around the ship where the radar backscatter is 12 

saturated, and therefore it usually follows the shape of a section of a ring (see, for example, Qi 13 

et al. (2016) for a discussion). For easy illustration, we restrict the measurement zone here to a 14 

trapezium, west of the ship. The dimensions and location of the measurement trapezium are 15 

illustrated in Fig.3 a.  The axes in Fig. 3 are labelled according to the ship location that is set 16 

at the spatial location (0,0) m.   17 

The wavenumbers  {𝑘𝑛 }𝑛=1
𝑁  in (1) are set to uniformly span over the longest and shortest 18 

waves to represent. The angular directions {𝜃𝑟}𝑟=1
𝑅  are evenly distributed over a half plane The 19 

wavenumber resolution in (1) is defined by π/𝛾, where 𝛾 is the radius of the scan that is 3 km 20 

here. The directional resolution depends on the choice of the maximum wavenumber 𝑘𝑁 and 21 

is defined by 2π/𝛾𝑘𝑁. Given that the dominant wavenumbers for the two dominant storm 22 

systems are 0.033 rad/m, and 0.024 rad/m, it was deemed reasonable to limit the maximum 23 

wavenumber to 0.09 rad/m in (1). Thus, the number of directions  𝑅 and the number of spectral 24 

components 𝑁 per direction are 135 and 85, respectively. To determine all the coefficients in 25 
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the prediction model (1), the presented technique requires 𝑂(𝑀𝑅𝑁) operations, where the 1 

number of signal samples 𝑀 in the measurement zone is 150 × 103 per scan. The computations 2 

are more demanding than an FFT, which typically requires 𝑂(𝑀log𝑀) operations.  However, 3 

an interpolation into a Cartesian grid is prerequisite in order for an FFT to be deployed, unlike 4 

the presented method that can handle data of any distribution with no extra computations. We 5 

note that increasing the number of wave components in (1) does not improve the prediction 6 

performance. Whereas, using the full resolution of the data inside the measurement zone offers 7 

an improvement in the prediction quality as the effect of measurements noise and jitter reduces 8 

with the number of data points used.   9 

The data from the measurement zone of the s-th scan  is used to build the prediction model 10 

which in turn is used to yield the sea surface motion over the corresponding predictable zone 11 

for prediction horizons 𝒯1 = [𝜏𝑠 , 𝜏𝑠 + 30] s, 𝒯2 = [𝜏𝑠 , 𝜏𝑠 + 60] s, 𝒯3 = [𝜏𝑠  , 𝜏𝑠 + 90] s, 𝒯4 =12 

[𝜏𝑠 , 𝜏𝑠 + 120] s, 𝒯5 = [𝜏𝑠 , 𝜏𝑠 + 150] s. It was adequate for illustration to simply identify the 13 

predictable zones by a single boundary from the west which we set to 5 m/s. It is important to 14 

note that in the correlation and prediction error calculations, we use the radar measurements 15 

available to us as the “true and future” waves. Therefore, the errors in the latter contribute to 16 

the performance results presented here. To minimise this effect, we illustrate the prediction 17 

accuracy in the areas where the reliable measurement zone and the predictable zones overlap. 18 

In Fig. 3. b – f, we show the mean correlation coefficients 𝐴(𝑧𝑚) in these overlapping areas.  19 

We can see that 𝐴(𝑧𝑚) vary around 0.95 for 𝒯1, and mainly around 0.92 for  𝒯2 , i.e. one minute 20 

ahead. For 𝒯3 , we can see 𝐴(𝑧𝑚)  to range between 0.85 and 0.95. The mean correlation 21 

coefficients are around 0.85 for 𝒯4 , i.e. two minutes ahead. Finally, the mean correlation 22 

coefficients go mostly down around 0.8 for  𝒯5 . We can observe that the correlation degrades 23 

with increasing the time horizon even with the conservative predictable zones set here, which 24 

is somehow expected. However, the high values of correlations are evident in the plots 25 
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especially for time horizons shorter than two minutes. To show the reliability of prediction 1 

across the hour, we include Fig. 4 which represents box plots that illustrate the distributions of 2 

the correlation coefficients. We can observe that the correlation degrades at 1– 3 min, 18 min, 3 

25 – 37 min, and 47-50 min past 13:00 UTC. These times can, to an extent, be linked to times 4 

when the ship had been changing its speed in Fig. 2. A possible explanation is that the change 5 

in speed, heading and course can introduce measurements jitter (i.e., errors in georeferencing 6 

the scans) which in turn reduces the accuracy of wave profiling and wave prediction. 7 

Nonetheless, the complete reasons for the variation in the prediction accuracy in the field data 8 

observed in Fig. 4 remain a question for future work. In Fig. 5 we show box plots of the relative 9 

RMS error across the hour for time horizons 𝒯1 , 𝒯2 , 𝒯3 , 𝒯4, and 𝒯5 . Our first observation is that 10 

the error is within reasonable limits, and it is only higher during the dropout periods in the 11 

correlation observed in Fig. 4, i.e. there are no additional dropouts in the prediction quality.  12 

Fig. 4 and 5 illustrate how the prediction accuracy deteriorates with increasing the prediction 13 

horizon. To further investigate the behaviour of the error in the predictable zones within the 14 

prediction horizons, we plot the second form of temporal correlation (11) in Fig. 6. The 15 

correlation (11) is evaluated at single time instants in the prediction horizons: 30 s, 60 s, 90 s, 16 

120 s, and 150 s, across the trial duration over the corresponding predictable zone. We also 17 

plot the relative error ε𝑠
𝑝(𝑧𝑚) in (15) versus the prediction time instants in Fig. 7.We can see in 18 

Fig. 6 that the correlation is rather poor beyond 120 s, which is not clearly observed in the 19 

correlation calculations shown in Fig. 4. It is clear from Fig. 6 and 7 that the prediction quality 20 

within the predictable zone monotonically decreases with the prediction time instant. With such 21 

simple relationship along with the Space-Time diagram, it will be a straightforward task for a 22 

DSWP intelligent system to determine the maximum available prediction horizon for given 23 

predictable zone and prediction reliability.   24 

 25 
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4.2 The vessel heave motion prediction 1 

Most applications of DSWP will involve determining the predicted wave-induced motions 2 

of some floating body. In linear ship theory, vessels are typically modelled by 6 weakly-3 

coupled ordinary linear differential equations that are typically Fourier transformed to produce 4 

a system of Frequency Response functions that are acted upon by the Fourier Transform of the 5 

wave system. Alternatively (and equivalently), the response of a narrow strip of vessel to an 6 

impulsive wave force input is integrated over the vessel hull profile (strip theory), giving rise 7 

to the so called response amplitude operators (RAO) coefficients. In either case, below 8 

resonance, the resulting heave Frequency Response function is crudely speaking a low pass 9 

filter. Consequently, at low wave frequencies relative to the ship’s dynamics as prevail in the 10 

present situation (the resonance is at approximately a 9 s period with dominant wave systems 11 

centred on 11 s and 13 s), the heave transfer function is at least to a zeroth-order approximation 12 

constant. Similarly, the phase shift between wave forcing functions and vessel motion is again 13 

to a zeroth-order approximation zero. Hence, for heave motions, the vessel approximately 14 

follows the wave profile and to a first-order approximation there is no requirement to 15 

compensate for vessel motions. This is not the case in pitch where the response changes rapidly 16 

with frequency below resonance which is why only heave is considered here. 17 

A high precision vessel motion sensor was present on the vessel. However, this was mounted 18 

14 m forward and 2 m above the vessels nominal dynamic centre (as supplied by the vessel 19 

operators), with the vessel being 90 m in length.  The sensor’s location meant that other modes 20 

of motion made some contributions to the measured heave. Unfortunately the vessel had been 21 

“cut and extended” and in addition had considerable extraneous deck equipment all of which 22 

meant that the exact location of the motion centre was not well defined. This made it difficult 23 

to confidently decouple pure heave motion so the authors were forced to use the uncorrected 24 

motion senor data as a “raw heave” motion estimate. Thus, Fig. 8 shows the correlations 25 
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between the wave predictions (taken to represent heave) and the raw measured vessel heave 1 

motion that was available to us in the time span 13:21 – 13:43 UTC, for prediction horizons 2 

[𝜏𝑠 , 𝜏𝑠 + 60] s and [𝜏𝑠 , 𝜏𝑠 + 120] s . Given the very crude nature of the heave assessment, the 3 

results shown are surprisingly good.  4 

The drops in the prediction quality seen in Fig. 8 appear to correlate to some extent with 5 

changes in the vessel’s heading and speed. Fortunately, the onset and the return to good 6 

prediction occur over a sufficiently long timescale for them to be recognised during operations. 7 

These drops are not present in the simulation work in Al-Ani et al. (2019) and as with the wave 8 

prediction estimates they would appear to be associated with the actual wave profile 9 

measurements of real seas rather than being fundamental artefacts of the prediction technique.  10 

5. Conclusions 11 

The level of errors encountered in the prediction based on the data obtained in the Golden 12 

Arrow sea trial indicates that in applications such as QPP (e.g., for operations such as launch 13 

and recovery of small craft and air vehicles), DSWP has real potential as a practical maritime 14 

tool. Drops occur in the prediction accuracy whose detailed cause remains a subject for further 15 

work. The absence of these in simulation studies indicates they are associated with aspects of 16 

the wave radar determination of actual sea profiles. However, from an application perspective, 17 

the onset of these occurs sufficiently slowly for them to be easily identified and thus not 18 

represent a barrier for future operations exploiting DSWP. 19 
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Figure Caption List 1 

Fig. 1 The standard deviation of the ship’s heave over the trial period, as recorded by the 2 

Differential GPS sensor.  3 

Fig. 2. The ship’s heading, course and speed over the duration 12:58–14:00 UTC of the trial.  4 

Fig. 3. The measurement zone in (a).  The mean correlation coefficients in the corresponding 5 

predictable zone for prediction horizon 𝒯1 = [𝜏𝑠 , 𝜏𝑠 + 30] s in (b), 𝒯2 = [𝜏𝑠 , 𝜏𝑠 + 60] s in (c), 6 

𝒯3 = [𝜏𝑠 , 𝜏𝑠 + 90] s in (d), 𝒯4 = [𝜏𝑠 , 𝜏𝑠 + 120] s in (e), and 𝒯5 = [𝜏𝑠 , 𝜏𝑠 + 150] s in (f). 7 

Fig. 4. The correlation coefficients across the hour at the labelled time horizon in the 8 

corresponding predictable zone. Each box marks the upper and lower quartiles, with the centre 9 

being the median; the black dashed lines indicate the full range of values. 10 

Fig. 5. The relative RMS prediction error across the hour at the labelled time horizon in the 11 

corresponding predictable zone. Each box marks the upper and lower quartiles, with the centre 12 

being the median; the black dashed lines indicate the full range of values. 13 

Fig. 6. The correlation coefficients in the corresponding predictable zone for prediction time 14 

instant 30 s in (a), 60 s  in (b), 90 s  in (c), 120 s in (d), and 150 s in (e). 15 

Fig. 7. The relative prediction error in the predictable zone versus the prediction time instants. 16 

Each box marks the upper and lower quartiles, with the centre being the median; the black 17 

dashed lines indicate the full range of values. 18 

Fig. 8. The correlation coefficients between the WaMoS II based prediction and the “raw” 19 

vessel heave data. 20 
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Fig. 1. The standard deviation of the ship’s heave over the trial period, as recorded by the Differential GPS 

sensor.  
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Fig. 2. The ship’s heading, course and speed over the duration 12:58–14:00 UTC of the trial.  
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Fig. 3. The measurement zone in (a).  The mean correlation coefficients in the corresponding predictable zone 

for prediction horizon 𝒯1 = [𝜏𝑠  , 𝜏𝑠 + 30] s in (b), 𝒯2 = [𝜏𝑠  ,𝜏𝑠 + 60] s in (c), 𝒯3 = [𝜏𝑠  , 𝜏𝑠 + 90] s in (d), 

𝒯4 = [𝜏𝑠  ,𝜏𝑠 + 120] s in (e), and 𝒯5 = [𝜏𝑠  , 𝜏𝑠 + 150] s in (f). 

(a) (b) (c) 

𝒯1 = [𝜏𝑠 , 𝜏𝑠 + 30] s 𝒯2 = [𝜏𝑠 , 𝜏𝑠 + 60] s 

𝒯3 = [𝜏𝑠 , 𝜏𝑠 + 90] s 𝒯4 = [𝜏𝑠 , 𝜏𝑠 + 120] s 𝒯5 = [𝜏𝑠 , 𝜏𝑠 + 150] s 

(e) (f) (d) 
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Fig. 4. The correlation coefficients at the labelled time horizon in the predictable zone. Each box marks the 

upper and lower quartiles, with the centre being the median; the dashed lines indicate the full range of values. 

 

𝒯1 = [𝜏𝑠 , 𝜏𝑠 + 30] s 

𝒯2 = [𝜏𝑠 , 𝜏𝑠 + 60] s 

𝒯3 = [𝜏𝑠 , 𝜏𝑠 + 90] s 

𝒯4 = [𝜏𝑠 , 𝜏𝑠 + 120] s 

𝒯5 = [𝜏𝑠 , 𝜏𝑠 + 150] s 
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Fig. 5. The relative RMS prediction error across the hour at the labelled time horizon in the corresponding 

predictable zone. Each box marks the upper and lower quartiles, with the centre being the median; the black 

dashed lines indicate the full range of values. 

 

𝒯1 = [𝜏𝑠 , 𝜏𝑠 + 30] s 

𝒯2 = [𝜏𝑠 , 𝜏𝑠 + 60] s 

𝒯3 = [𝜏𝑠 , 𝜏𝑠 + 90] s 

𝒯4 = [𝜏𝑠 , 𝜏𝑠 + 120] s 

𝒯5 = [𝜏𝑠 , 𝜏𝑠 + 150] s 
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Fig. 6. The correlation coefficients in the corresponding predictable zone for prediction time instant 1 

30 s in (a), 60 s  in (b), 90 s  in (c), 120 s in (d), and 150 s in (e). 2 

 

(a) (b) 

(c) (d) (e) 
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Fig. 6. The relative prediction error in the predictable zone versus the prediction time instants. Each box marks 

the upper and lower quartiles, with the centre being the median; the black dashed lines indicate the full range of 

values. 
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Fig. 7. The correlation coefficients between the WaMoS II based prediction and the “raw” vessel heave data. 

 

 

 

 

 


