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Abstract
Biological materials presenting early signs of cancer would be beneficial for cancer screening/diagnosis. In this respect, the
suitability of potentially exploiting mucus in colorectal cancer was tested using infrared spectroscopy in combination with
statistical modeling. Twenty-six paraffinized colon tissue biopsy sections containing mucus regions from 20 individuals
(10 normal and 16 cancerous) were measured using mid-infrared spectroscopic imaging. A digital de-paraffinization,
followed by cluster analysis driven digital color-coded multi-staining segmented the infrared images into various
histopathological features such as epithelium, connective tissue, stroma, and mucus regions within the tissue sections.
Principal component analysis followed by supervised linear discriminant analysis was carried out on pure mucus and
epithelial spectra from normal and cancerous regions of the tissue. For the mucus-based classification, a sensitivity of 96%,
a specificity of 83%, and an area under the curve performance of 95% was obtained. For the epithelial tissue-based
classification, a sensitivity of 72%, a specificity of 88%, and an area under the curve performance of 89% was obtained.
The mucus spectral profiles further showed contributions indicative of glycans including that of sialic acid changes between
these pathology groups. The study demonstrates that infrared spectroscopic analysis of mucus discriminates colorectal
cancers with high sensitivity. This concept could be exploited to develop screening/diagnostic approaches complementary
to histopathology.

Introduction

Colorectal cancer is the fourth most common type of cancer
in the UK and one of the most common types in the
Western world. The incidence is highest in the older
population and since the 1990s, colorectal cancers have
shown a stable incidence rate. Over half of these cases are
diagnosed at later stage [1]. Currently, screening is the best
option to triage individuals at risk of developing colorectal
cancer; early diagnosis being the best prevention strategy.

In the UK, colorectal cancer screening is offered via
Fecal Immunochemical Test and Bowel Scope test, also
called the flexible sigmoidoscopy [2]. Suspicious lesions
mostly in the form of polyps are endoscopically removed
and analyzed via histopathology, which is the current con-
firmatory test for cancer diagnosis.

In histopathology, changes in cell and tissue architecture
are examined at microscopic level, which are the manifesta-
tions of much smaller-scale biomolecular changes such as
those of nucleotides, proteins, sugars etc. Although, micro-
scopic changes are clearly diagnosed using histopathology,
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in some cases, early molecular changes that are not yet
expressed phenotypically are difficult to detect at the micro-
scopic level. Immunohistochemistry is adjunctively used in
histopathology to examine the expression levels of specific
biomolecules in a semiquantitative manner; this usually needs
multiple tissue sections for labeling different biomolecules of
interest [3]. Combining these approaches, it is possible to
obtain information on the holistic biomolecular changes,
however patient waiting time and cost effectiveness have to
be compromised. Furthermore, routine microscopic exam-
ination of large tissue samples is a laborious task that is time
consuming and can be susceptible to observer bias.

In this regard, there are two important unmet clinical
challenges that could potentially be improved in the process
of cancer diagnosis:

1. Examining alternative biological materials for detect-
ing early biomolecular changes.

2. Using novel analytical streams which could be coupled
to multivariate statistical and machine learning
approaches to digitize, automate, and thereby speed-up
the process of cancer diagnosis in an objective manner.

For the latter, several studies have demonstrated the
suitability of infrared (IR) spectroscopy approaches to probe
and identify biomolecular changes in various types of
cancer to detect and in some cases predict cancers [3–8].

IR spectroscopy is a non-destructive, label-free photo-
nic technology that probes the distinct vibrational bonds
of biomolecules such as DNA, RNA, proteins, lipids
and sugars and provides a biochemical fingerprint of
the measured material. The structural and compositional
changes of the samples can be deciphered from the spectral
peak shifts, varied peak intensities, and peak areas, using
suitable analytical approaches. This capability of IR
spectroscopy hence presents an important prospect to
develop novel screening/diagnostic tools that could be
made compatible with, and complementary to the current
clinical diagnosis processes.

Using this approach, biological materials mostly com-
prising of tissue biopsies and cells have been tested, pri-
marily with the aim to integrate IR spectroscopy into routine
clinical diagnosis process [9–14]. Bio-fluids such as serum
and sputum which are easy-to-obtain and less invasive
compared with tissue biopsy procedures have also been
tested using this approach for cancer diagnosis [15–17].
However, the complexity and the unknown nature of bio-
molecular constituents in bio-fluids pose significant chal-
lenges in identifying specific markers that could be used in
cancer diagnosis. Other analytical techniques such as
nuclear magnetic resonance and mass spectrometry (MS)
have been used to target known potential markers for cancer
diagnosis. However, rendering the techniques compatible

enough to complement the existing clinical diagnosis pro-
cess is another challenge [18, 19].

Hence, alternative biological materials that present early
signs of cancer before the morphological expression at
microscopic level could be hugely beneficial in cancer
diagnosis.

Mucus, the viscous fluid covering the surface epithelia of
organs, is known to undergo structural and quantitative
biomolecular changes during cancer; especially the glyco-
protein mucin, which is the predominant component in
mucus [20]. Structurally, mucin glycoproteins comprise
of a protein backbone onto which glycans are attached.
Initially N-acetylgalactosamine (GalNAc) is attached onto
specific amino acid residues on the protein which is then
elongated by stepwise addition of monosaccharides such as
N-acetylglucosamine (GlcNAc), galactose, mannose, and
fucose in different combinations, and the chain is termi-
nated by attachment of a sialic acid monomer. The glycans
mediate diverse roles in functioning of the body. In com-
parison with normal glycans, cancer-associated abnormal
glycans are known to have differential glycosylation
patterns and are differentially sialylated and influence
functions such as adhesion, tumor migration, and immunity
[20–24]. Identification of cancer-associated changes in
glycans is an important step in detecting early signs of
cancer.

IR spectroscopy with its ability to probe the molecular
composition of the sample that can be combined with novel
multivariate and machine learning approaches could be a
good candidate to detect these changes rapidly and in a
label-free manner.

In view of this, a proof-of-concept study has been under-
taken with the aim to test and identify biomolecular changes
between normal and cancerous mucus present in colon tissue
biopsies using IR spectroscopy. In the long term, the objective
would be to test mucus, either collected as part of the FOBT,
or from close to a suspected lesion under endoscopic exam-
ination with the aim to identify early signs of cancer.

Materials and methods

Twenty-six formalin-fixed paraffin-embedded colon tissue
biopsy samples (10 normal and 16 cancerous) from 20 indi-
viduals were obtained for this study. Fourteen samples (whole
sections) from eight individuals were obtained from partici-
pants recruited to the Risk Stratification for Rectal Cancer
Treatment (RIST) pilot project, via the Royal Devon and
Exeter Tissue Bank (RDETB) in an anonymized manner.
This is an ethically approved Tissue Bank (REC no: 16/SC/
0162) set up to proactively collect and store “spare” tissue,
and associated clinical data, available from routine clinical
procedures for forth-coming studies examining disease
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specific biomarkers. THE RDETB is facilitated through the
NIHR Exeter Clinical Research Facility. The 12 other sam-
ples from 12 individuals were obtained in the form of tissue
micro array (TMA) from US Biomax, Inc. Each of the sam-
ples was sliced into 7-µm thin sections and placed on a bar-
ium fluoride (BaF2) slide (Crystran, UK) compatible with IR
imaging. Sample details and the pathology information can be
found in supporting information Table 1.

Hyperspectral imaging was carried out on these tissue
sections to map mucus areas present within and close to
normal and cancerous epithelial regions using an FTIR
spectroscopic imaging system (Agilent 620 FTIR microscope
coupled with an Agilent 670 FTIR spectrometer, Australia).
The IR imaging set up uses a Globar® light source emitting
mid-IR radiation which is then focused onto the 7-µm thick
tissue section using a cassegrain condenser. The transmitted
light was collected with a matched cassegrain objective and
imaged onto a 128 × 128 pixel Focal Plane Array imaging
detector to capture the IR image. Using ×15 cassegrain
objectives a 700 × 700 µm2 sample area (field of view) is
captured in a single tile made up of 5.5 × 5.5 µm2 pixels (at
the sample). Several tiles were measured in mosaic to cover
the region of interest on the tissues.

The set-up records all the frequencies (1000–3800 cm−1)
at the same time and the output is an IR hyperspectral image
where x and y axes contain the image coordinates and the z
axis contain the IR spectral intensity values for each
wavenumber, all obtained in the same image. Images were
recorded in the mid-IR spectral range of 2–12 µm corre-
sponding to 1000–3800 wavenumbers, at a spectral reso-
lution of 8 cm−1.

For each tissue section, an adjacent 3-µm thick section
was also obtained and stained with haematoxylin and eosin
(H&E) for use as positive controls. These sections were
examined by an expert histopathologist for marking regions
of interest and to validate the spectro-morphological find-
ings. Glycan standards (Sigma Aldrich, UK) in the form of
powders were prepared as KBr pellets for IR transmission
measurements. For this, 0.1 g of standard and 0.99 g of dry
KBr powder were mixed in a mortar and pestle and pressed
into thin discs using a 15 ton hydraulic press (Specac® UK).
The pellets were immediately measured using the same
parameters as that of the tissue images.

A total of 26 images were generated from 26 samples
making a database of 1,622,016 spectra at a mean of
67,584 spectra/sample. From this, 24 samples showed epi-
thelial regions and 20 samples showed mucus regions and
were divided accordingly into two sets for further analysis.

Spectral preprocessing

The IR images were acquired directly from FFPE tissues
without any chemical de-paraffinization, with the intention

to retain the mucus intact within the tissue. Alternatively, a
digital de-paraffinization procedure based on Extended
Multiplicative Signal Correction (EMSC) algorithm was
used to neutralize the paraffin contributions together with
other spectral interferences [25–28]. The digital de-
paraffinization model based on a modified EMSC algo-
rithm consists of an ‘interference matrix’ which is a sepa-
rately measured pure paraffin spectral image that is
incorporated into the EMSC algorithm. A fit analysis of this
pure paraffin and the tissue spectra are performed against a
‘target spectrum’ or a ‘reference spectrum’ which is the
mean spectrum of a representative tissue image that is
commonly used for all the samples. A good fit indicates
presence of pure ‘paraffin dominated’ regions which are
then localized using the image coordinates and eliminated
from the data analysis. These eliminated paraffin regions
could be identified in the cluster images as white pixels
(Fig. 1b, f). The paraffin present in the ‘tissue dominated’
regions is normalized and its influence on the spectral data
is minimized. In addition to limiting the intra-sample
variability due to paraffin, the use of a single common target
spectrum for all samples also avoids the inter-sample
variability by taking into account only the biochemical
variability and not the baseline or paraffin variability across
samples. A more detailed explanation of development and
application of this approach could be found elsewhere in the
literature [25–28]. In brief, spectra were preprocessed using
EMSC to retain biomolecular variance from the tissue
and eliminate undesired physical variance (e.g. paraffin,
scattering artefacts) that could influence data classification.
In addition to the digital de-paraffinization, the algorithm
also performs baseline correction (4th order polynomial),
smoothing (Savitzky-Golay 3rd order polynomial and 11
point fitting) and normalization needed for further spectral
analysis.

Cluster analysis

The preprocessed spectra of each IR image were indepen-
dently subjected to k-means clustering. This process is
an unsupervised algorithm that segments an image into
pre-assigned class numbers based on the spectral variability
[29]. The number of groups explored ranged from 3 to 11.
By visually comparing the segmented images to the corre-
sponding HE images and using pathologist’s validation,
most representative class number was retained for further
analysis.

Multivariate data analysis

Principal component (PC) fed linear discriminant analysis
(LDA), a supervised algorithm was used to separate the
spectral features and classify the samples. This was carried
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out based on a leave-one-sample-out-cross-validation where
each time a sample is taken out of the model and used as the
test set while the remaining data set is used as training set
with pathology labels. Principal component analysis (PCA)
is a data reduction algorithm that reduces large spectral data
sets to a smaller number of orthogonal variables called
the principal components or principal component loadings.
This removes collinear variables from the analysis. After
computing the PCs, Analysis of Variance (ANOVA) was
used to select the PCs up to a maximum of 25, showing
a significant difference between the pathology groups at
99% significance level, to be used as inputs for LDA cross-
validation [30]. The test sample was then projected onto
the model and its predicted pathology classified. This
was repeated until all the samples had been independently
tested.

Results

Tissue segmentation

The segmentation results of representative normal and
cancerous spectral images using cluster analysis are shown
in Fig. 1. In Fig. 1b, a normal colon tissue section is seg-
mented using six clusters sufficient enough to identify the
important histological features based on the biomolecular
fingerprint. Using the H&E image as reference (Fig. 1a) and
pathologist’s validation, the clusters are assigned to the
following histological groups: cluster 2-mucus, 4-epithe-
lium, 3, 5-connective tissue, and 6-lamina propria and
randomly color-coded for easy visualization. A small

percentage of pixels represented by cluster 1 are not
assigned to any histological class and appear to represent
edge artefacts of the tissue. The histological assignment is
reinforced based on the heterogeneity in the dendrogram
(Fig. 1c) showing the biomolecular similarity (and dissim-
ilarity), and also based on the spectral centroids (Fig. 1d)
which for e.g. show typical mucus spectral features in the
1000–1300 cm−1 region [31]. In Fig. 1f, a cancerous colon
tissue is segmented using five clusters, sufficient to identify
the key histological features in comparison with the refer-
ence H&E image (Fig. 1e), which in this case are clusters 1,
2-mucus, 5-epithelium, and 3-stroma. The cluster 4 is not
assigned to any histological class and appears to represent
edge artefacts between the mucus and the epithelium. The
heterogeneity of the histological groups is seen in the
dendrogram (Fig. 1g) and the spectral features in the cluster
centroids (Fig. 1h).

Pathology classification

Following the cluster analysis, in order to identify the
potential hidden biomolecular signatures of mucus indica-
tive of carcinogenesis, a statistical modeling approach based
on PCA-LDA was used. Firstly, the aim was to see if the
mucus signatures in the normal tissues are different from
that found in the cancerous tissues. For this, spectra corre-
sponding to the mucus class were extracted from the cluster
maps of each sample and PC scores were computed from
the mean spectra using PCA as shown in Fig. 2. In the 2D
scatter plot of the first four PCs, PC3 showed the best
separation between normal and cancer samples (in both PC2
vs. PC3 and PC3 vs. PC4), with only one normal and one

Fig. 1 Segmentation of infrared spectral tissue images based on
cluster analysis. Representative examples of a normal (b) and a
cancerous (f) colon tissue segmented into respective histological fea-
tures using six and five clusters, respectively, using HE stained images

(a, e) as morphological reference. The corresponding dendrogram
(c, g) representing the heterogeneity of the clusters and the cluster
centroids (d, h) are also shown.
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cancerous sample misclassified into the opposite group. The
remaining PCs did not show any separation.

Building on this evidence of separation using mean
spectra, the next aim was to see if PC fed LDA model, with
mucus spectra as the input, could classify the samples into
benign or malignant groups. For this, PCs were computed
from all the mucus spectra extracted from the cluster maps.
Following this, the scores of ANOVA selected PCs show-
ing significant difference between the pathology groups up
to a maximum of 25 PCs, at 99% significance level were
used as inputs for an LDA classification model. In addition,
Receiver operating characteristics (ROC) curves were
plotted to evaluate the performance of the classifier. As
shown in Fig. 3 (top panel), a sensitivity of 96%, a speci-
ficity of 83%, and an area under curve (AUC) value of 95%
(bottom panel) was obtained for the leave-one-sample-out
cross-validated classification model.

To evaluate the performance, mucus-based spectral
classification was then compared with a similar classifica-
tion analysis on epithelial spectra from the same samples.
Comparing the PC scores from the mean epithelial spectra
in Fig. 4, PC2 showed the best separation between normal
and cancer samples (in both PC1 vs. PC2 and PC2 vs. PC3),
with one normal sample misclassified into the cancer group
and four cancerous samples misclassified into the normal
group. The remaining PCs did not show any important
separation. Following the PCA-LDA cross-validation of all
the epithelial spectra, as shown in Fig. 5, the classifier
showed a sensitivity of 72%, a specificity of 88% (top
panel), and an AUC value of 89% (bottom panel).

Correlation of spectral features to biomolecular
characteristics

In this study, an AUC performance of 95% when using
mucus spectra and 89% for epithelial spectra was obtained
in classifying cancer vs. non-cancer pathology. To achieve

this, the IR spectral window from 1000 to 1800 cm−1 was
used, which represents the global biomolecular composition
found within the tissues, in contrast to label-based methods
which are used for targeted detection. While the totality of
PCs denote the global biomolecular variability, specific
biomolecular components, or a combination of components
could be denoted by individual PCs. Therefore, in addition
to pathology classification, it was aimed to tentatively

Fig. 3 Classification performance of normal vs. cancer group using
leave-one-sample-out cross-validation of mucus spectra based on
principal component analysis followed by linear discriminant
analysis. (Top) Sensitivity and specificity values for normal vs. cancer
pathology model based on mucus spectra. (Bottom) Receiver operating
characteristic (ROC) curves representing the mucus classification
performance.

Fig. 2 Principal component analysis scatter plot of normal vs.
cancer groups using mean spectra of mucus. Normal and cancer
group separation using principal components PC1 vs. PC2 (left),

PC2 vs. PC3 (center) and PC3 vs. PC4 (right). The explained variance
of each component is shown in brackets adjacent to the principal
component number.
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assign the PCs to biomolecular attributes. For the mucus-
based classification, as expected the first few PC loadings
(that show the highest explained variance) mostly indicated
changes in the glycoprotein (1000–1300 cm−1 -glycan;
1500–1700 cm−1 -amide I and II of proteins) region (SI 1).
Interestingly, PC5 showed changes further beyond the
protein region at 1700–1800 cm−1 in addition to the glycan
region (Fig. 6a), indicative of sialic acid molecules. To

verify this, PC5 was compared with the glycan standards
namely GalNAc, GlcNAc, and sialic acid, known to com-
monly vary in cancers, as shown in Fig. 6b–d. In compar-
ison, PC5 spectral features could be assigned to sialic acid
with characteristic peaks at 1030 cm−1, 1070, 1152, 1262,
1530, 1650, and 1726 cm−1. In particular, the peak at 1726
cm−1 appears to be specific of sialic acid which arises from
ester vibrations and which is not present in the other glycan
standards. Considering the epithelium PCs, the contributors
for the classification appears to be distributed across the
fingerprint region (1000–1800 cm−1) mostly arising from
1500 to 1700 cm−1 region (amide I and II of the protein
region) (SI 2).

Discussion

The main aim of this study was to test the suitability of
mucus as a potential biological material for colorectal
cancer screening/diagnosis. In this endeavor, IR hyper-
spectral images from colorectal tissues were obtained and
subjected to statistical modeling.

In the first step, the IR spectral images were partitioned
into their constituent histological features based on cluster
analysis. Using K-means clustering, a clear segmentation of
the important histological features, which in this case were
mucus regions and the epithelial regions were obtained
(Fig. 1). K-means clustering is a rapid way to digitally map
associated biomolecular features within tissues. With
respect to the two-stain H&E method, an advantage of
cluster analysis is that it generates multiple digital stains
that are color-coded and easily visualized. Furthermore, the
biomolecular features are assigned specific coordinates on
the digital maps, so they can be retrieved anytime for further
analysis. In addition to delineating the important histologi-
cal structures, it is also interesting to note a heterogeneity

Fig. 5 Classification performance of normal vs. cancer group using
leave-one-sample-out cross-validation of epithelial spectra based
on principal component analysis followed by linear discriminant
analysis. (Top) Sensitivity and specificity values of the model for
normal vs. cancer based on epithelial spectra. (Bottom) Receiver
operating characteristic (ROC) curves representing the epithelium
classification performance.

Fig. 4 Principal component analysis scatter plot of normal vs.
cancer groups using mean spectra of epithelium. Normal and cancer
group separation using principal components PC1 vs. PC2 (left), PC2

vs. PC3 (center) and PC3 vs. PC4 (right). The explained variance of
each component is shown in brackets adjacent to the principal com-
ponent number.
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within the mucus of the tumoral sample as it is depicted by
two clusters in Fig. 1f. This feature is sometimes observed
in both normal and tumoral samples which is hard to
appreciate using H&E staining. Whether such heterogeneity
harbors biochemical changes that could be of diagnostic
significance remains to be explored.

In the next step, classification models developed from
the spectra extracted from the mucus and the epithelial
regions were tested. Comparing the classification attributes
of IR biochemical spectra from mucus and epithelium
(Figs. 3 and 5), mucus showed a higher sensitivity of 96%
for normal samples compared with 83% for cancer sam-
ples. In the opposite trend, the epithelium classification
showed a lower sensitivity of 72% for normal samples
but a higher sensitivity of 88% for cancer samples.
Overall, the diagnostic value of the model was calculated
by AUROC in which the mucus-based classification
showed a higher AUC performance at 95% in comparison
with epithelium at 89% in classifying cancer vs. non-
cancer pathology. One of the possible reasons for higher
AUC performance of mucus could be that the biochemical
variations of glycans are spectroscopically more dis-
cernible. Mucus has been shown to undergo several
alterations involving glycosylation, modified expression
levels of antigens, reduced number and length of carbo-
hydrate side chains and changes involving sialylation and
sulfation [32]. On the other hand, the normal colon epi-
thelial cells are known to be highly proliferative and have

high mitotic rate similar to neoplastic cells. Therefore, the
net variance of features such as nucleic acids, when
compared with moderately differentiated tumors in which
cellular proliferation is only slightly increased, these var-
iations could be spectrally less apparent [29]. Nonetheless,
in this study the AUC performance of epithelium is rela-
tively high in comparison with other approaches.

Finally, a tentative assignment of spectral features that
were significantly discriminant, to the biomolecular char-
acteristics was sought. Comparing the commonly present
glycans in mucus (Fig. 6) to the PCs, PC5 appears to
indicate sialic acid contribution to the classification model
particularly from the peak at 1726 cm−1 [33, 34].

Sialic acid that is present at the terminal ends of glycans
in mucus, has been shown as a potential biomarker indi-
cative of cancer using MS, surface enhanced Raman spec-
troscopy and immunohistochemistry [32, 35, 36]. So far,
very few studies have been carried out using IR spectro-
scopy on mucus as a potential material for cancer diagnosis
[27, 37]. These studies showed promising results where
discrimination between normal and cancerous tissues was
obtained based on mucin secondary structure changes,
although attempts to link these changes to Muc2 and
Muc5AC expression did not show any correlation. Impor-
tantly, there were also no significant differences in the
glycan region/sialic acid specific components of mucus that
we observed in this study. This observation therefore
emphasizes the need to further understand the role of sialic

Fig. 6 Spectral peak assignment to biomolecular features. Principal component loading 5 (a) showing features of sialic acid when compared
with different glycan standards—N-acetylglucosamine (b), Sialic acid (c) and N-acetylgalactosamine (d).
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acid and associated glycans in mucus, as potential indicators
of cancer.

This work is a proof-of-concept study showing the possi-
bility of exploiting mucus as a potential biological material
using IR spectroscopy. In colorectal cancer screening and
diagnosis, where excised polyps are scrutinized using histo-
pathology, mucus could be an interesting adjunct that can
provide early signs of neoplastic transformation that are
phenotypically not expressed in histological sections. In
addition to the cellular and tissue information, changes in the
expression levels of acidic/neutral mucins, glycans, and gly-
cosylation patterns could be of important diagnostic value.

All the aforementioned steps which are currently detec-
ted by chemical stains over long processing times, can be
obtained via IR spectral imaging in a single measurement.
In this way, both cellular, histological and mucus features
can be analyzed at the same time.

In this study, mucus present within excised tissues has
been studied using an imaging approach. The current
workflow is a stainless-staining approach that uses spec-
troscopic imaging, digital de-paraffinization and cluster
analysis for data segmentation and, PCA-LDA for pathol-
ogy classification. As such, this ‘spectral histopathology’
diagnosis workflow can be rapid and automated to reduce
human involvement at the same time complementing the
current histopathological process.

It is important to note that at this point, the study is
limited in terms of sample number. To strengthen and
validate the findings, large-scale studies based on this
concept are needed for better understanding the contribu-
tions of sialic acid and other glycans in mucus. Based on
this concept and with the main goal of moving towards a
‘liquid biopsy’ approach, it is also crucial to study fresh
mucus collected from patients. For this, a potential way
forward could be to collect mucus as part of the FOBT
screening [38, 39].

Subject to developing a collection protocol, studying
mucus this way will avoid potential tissue fixation or
embedding effects [40, 41]. Although, mucus collected this
way may be more heterogeneous due to presence of fecal
and other fibrous material, blood, bacteria etc, various
purification steps could be used to test the extracted mucus
either as a whole glycoprotein, or it could be broken down
to separate the glycan and protein components. It is also
possible to isolate individual glycan molecules such as sialic
acid and quantify them using IR spectroscopy without
the need for an imaging modality. Such studies would
provide stronger basis for moving closer towards clinical
applications. Furthermore, other data analytical streams
encompassing Machine Learning algorithms such as Ran-
dom Forests, Support Vector Machines, etc., may deliver
improved outcomes over larger sample sizes, considering

they are more difficult in providing information on the basis
for their decision.
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