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Abstract 30 

Peroxisomes are highly dynamic subcellular compartments with important functions in lipid and ROS 31 

metabolism. Impaired peroxisomal function can lead to severe metabolic disorders with developmental 32 

defects and neurological abnormalities. Recently, a new group of disorders has been identified, 33 

characterised by defects in the membrane dynamics and division of peroxisomes rather than by loss of 34 

metabolic functions. However, the contribution of impaired peroxisome plasticity to the 35 

pathophysiology of those disorders is not well understood. Mitochondrial fission factor (MFF) is a key 36 

component of both the peroxisomal and mitochondrial division machinery. Patients with MFF 37 

deficiency present with developmental and neurological abnormalities. Peroxisomes (and mitochondria) 38 

in patient fibroblasts are highly elongated as a result of impaired organelle division. The majority of 39 

studies into MFF-deficiency have focused on mitochondrial dysfunction, but the contribution of 40 

peroxisomal alterations to the pathophysiology is largely unknown. Here, we show that MFF deficiency 41 

does not cause alterations to overall peroxisomal biochemical function. However, loss of MFF results 42 

in reduced import-competency of the peroxisomal compartment and leads to the accumulation of pre-43 

peroxisomal membrane structures. We show that peroxisomes in MFF-deficient cells display alterations 44 

in peroxisomal redox state and intra-peroxisomal pH. Removal of elongated peroxisomes through 45 

induction of autophagic processes is not impaired. A mathematical model describing key processes 46 

involved in peroxisome dynamics sheds further light into the physical processes disturbed in MFF-47 

deficient cells. The consequences of our findings for the pathophysiology of MFF-deficiency and 48 

related disorders with impaired peroxisome plasticity are discussed.  49 



1. Introduction 50 

Peroxisomes are highly dynamic membrane-bound organelles with key functions in cellular lipid and 51 

ROS metabolism. Defects in peroxisome biogenesis and metabolic function can result in severe 52 

disorders with developmental defects and neurological abnormalities (Dorninger et al. 2017; Wanders 53 

2018). Peroxisome biogenesis disorders (PBDs) result from mutations in PEX genes, which encode 54 

proteins essential for peroxisomal membrane biogenesis and matrix protein import. PBDs, such as 55 

Zellweger Spectrum disorders, are usually characterised by a loss of functional peroxisomes. This 56 

impacts on multiple metabolic pathways (e.g., peroxisomal α- and β-oxidation of fatty acids, and the 57 

synthesis of ether-phospholipids, which are abundantly present in myelin sheaths) and results in various 58 

patient phenotypes and symptoms (Braverman et al. 2016). Peroxisomal single enzyme deficiencies 59 

(PEDs) on the other hand are caused by mutations in genes encoding a specific peroxisomal 60 

enzyme/protein and usually affect one metabolic pathway or function. The most prominent example is 61 

X-linked adrenoleukodystrophy, which is caused by mutations in the ABCD1 gene, encoding a 62 

peroxisomal ABC transporter required for the import of very-long-chain fatty acids (VLCFAs) into the 63 

organelle (Raymond et al. 1993). In addition to PBDs and PEDs, a third group of disorders has been 64 

identified, which is characterised by defects in the membrane dynamics and division of peroxisomes 65 

rather than by loss of metabolic functions (Waterham et al. 2007; Shamseldin et al. 2012; Ebberink et 66 

al. 2012; Koch et al. 2016). 67 

Peroxisomes can form and multiply by growth and division, a defined multistep pathway involving 68 

membrane elongation of existing peroxisomes, constriction, and membrane fission (Schrader et al. 69 

2016). In mammals, this involves the coordinated interplay of key membrane-shaping and fission 70 

proteins such as PEX11β, FIS1, MFF, and DRP1 (encoded by the DNML1 gene) (Schrader et al. 2016). 71 

The peroxisomal membrane protein PEX11β is involved in several steps of peroxisomal growth and 72 

division: membrane deformation to facilitate elongation (Delille et al. 2010; Opaliński et al. 2011), 73 

recruitment of the division factors MFF and FIS1 to constriction sites (Koch et al. 2005; Koch and 74 

Brocard 2012; Itoyama et al. 2013), and activation of the fission GTPase DRP1 (Williams et al. 2015). 75 

The tail-anchored membrane proteins MFF and FIS1 act as adaptor proteins for the recruitment of DRP1 76 

to the peroxisomal membrane and interact with PEX11β (Schrader et al. 2016). With the exception of 77 

PEX11β, all proteins involved in peroxisome growth and division identified so far are also key 78 

mitochondrial division factors. FIS1 and MFF are dually targeted to both peroxisomes and mitochondria, 79 

and also recruit DRP1 to the mitochondrial outer membrane (Koch et al. 2005; Gandre-Babbe and van 80 

der Bliek 2008; Costello et al. 2017a, 2018). Mitochondria also possess the adaptor proteins MiD49 and 81 

MiD51, which are specific to mitochondria and can recruit DRP1 independent of FIS1 and MFF (Palmer 82 

et al. 2013). GDAP1 is another tail-anchored membrane protein shared by mitochondria and 83 

peroxisomes, which influences organelle fission in an MFF- and DRP1-dependent manner in neurons 84 

(Huber et al. 2013). Recently, also MIRO1, a tail-anchored membrane adaptor for the microtubule-85 

dependent motor protein kinesin, has been shown to localise to mitochondria and peroxisomes and to 86 

contribute to peroxisomal motility and membrane dynamics (Castro et al. 2018; Okumoto et al. 2018; 87 

Covill-Cooke et al. 2020). 88 

Patients with mutations in DRP1/DNML1, PEX11β, or MFF have been identified and often present 89 

with neurological abnormalities (Waterham et al. 2007; Shamseldin et al. 2012; Ebberink et al. 2012; 90 

Costello et al. 2018). Loss of DRP1 or MFF function leads to a block in mitochondrial and peroxisomal 91 

fission resulting in highly elongated organelles with impaired dynamics. However, the metabolic 92 

functions of both peroxisomes and mitochondria are typically not or only slightly altered, indicating 93 

that changes in organelle dynamics and plasticity are the main contributors to the pathophysiology of 94 



the disease (Waterham et al. 2007; Shamseldin et al. 2012; Koch et al. 2016; Yoon et al. 2016; Vanstone 95 

et al. 2016; Nasca et al. 2016; Gerber et al. 2017; Nasca et al. 2018; Ladds et al. 2018). 96 

MFF deficiency displays with developmental delay, peripheral neuropathy, optic atrophy, and Leigh-97 

like encephalopathy (Shamseldin et al. 2012; Koch et al. 2016; Nasca et al. 2018). The mitochondria in 98 

MFF-deficient patient fibroblasts show no significant alteration in oxidative phosphorylation or mtDNA 99 

(Koch et al. 2016; Nasca et al. 2018). Likewise, loss of MFF did not significantly alter the mitochondrial 100 

membrane potential, ATP levels or the redox potential of the mitochondrial matrix in neuronal cells 101 

(Lewis et al. 2018). While the majority of studies into MFF-deficiency have focused on mitochondrial 102 

dysfunction, the contribution of peroxisomal alterations to the pathophysiology is largely unknown. 103 

Similarly to DRP1 and PEX11β patients, it appears that peroxisomal metabolic function is unaltered 104 

(Koch et al. 2016; Nasca et al. 2018), with the only known peroxisome dysfunction being hyper-105 

elongation. In this study, we assess the extent to which peroxisomal functions and properties are altered 106 

in MFF-deficient cells, giving further insight into the pathophysiological consequences of loss-of-107 

function of MFF. We show that loss of MFF impacts on the distribution of peroxisomal marker proteins 108 

and causes the accumulation of pre-peroxisomal membrane structures. Furthermore, peroxisomes in 109 

MFF-deficient cells display alterations in peroxisomal redox state and intra-peroxisomal pH. 110 

Interestingly, elongated peroxisomes in MFF-deficient cells are not fully static, and their dynamics can 111 

be modulated, e.g. through the induction of autophagic processes. The consequences of our findings for 112 

the understanding of the pathophysiology of MFF-deficiency and related disorders with impaired 113 

peroxisome plasticity are discussed.  114 



2. Materials and Methods 115 

2.1. Plasmids, Antibodies and siRNAs 116 

The plasmids and antibodies used in this study are detailed in Tables S1 and S2, respectively. PEX14 117 

siRNA (GAACUCAAGUCCGAAAUUA) (Lee et al. 2017) and MFF siRNA 118 

(GACCAGCAGAUCUUGACCU) (Long et al. 2013) were generated by Eurofins as 21-mer siRNAs 119 

with 3’ dTdT overhangs. PEX5 siRNA (TriFECTa kit) was obtained from Integrated DNA 120 

Technologies. siGENOME Non-Targeting siRNA Control Pool (Dharmacon) and siMAX Non Specific 121 

siRNA Control 47% GC (AGGUAGUGUAAUCGCCUUG-TT, Eurofins) were used as controls. 122 

2.2. Fibroblast Cell Culture and Transfection 123 

For routine culture and morphological experiments, MFF-deficient patient skin fibroblasts and controls 124 

(Shamseldin et al. 2012; Koch et al. 2016) were cultured in Dulbecco’s Modified Eagle Medium 125 

(DMEM), high glucose (4.5 g/L) supplemented with 10% FBS, 100 U/mL penicillin and 100 μg/mL 126 

streptomycin at 37°C (5% CO2 and 95% humidity). The patient cells used have previously been shown 127 

to carry the following mutations in the MFF gene: c.C190T:p.Q64* (Shamseldin et al. 2012); 128 

c.184dup:p.L62Pfs*13 combined with c.C892T:p.R298* (Koch et al. 2016; patient 1); 129 

c.453_454del:p.E153Afs*5 (Koch et al. 2016; patient 2). For FRAP experiments, cells transfected with 130 

EGFP-SKL were grown on 3.5-cm glass bottom dishes (Cellview; Greiner BioOne, Germany). For 131 

assessing peroxisome degradation during starvation, cells were cultured in Hanks’ Balanced Salt 132 

Solution (HBSS) for the time indicated, and recovered in full DMEM. For assessing peroxisome 133 

alterations with microtubule depolymerisation, cells were treated with 10 μM Nocodazole (or 0.07% 134 

DMSO as a control), for four hours prior to fixation. MFF-deficient (MFFQ64*) and control human 135 

fibroblasts were immortalised by introduction of the SV40 large T antigen. Immortalised fibroblasts 136 

(HUFs-T) were cultured in α-modified Eagle’s medium (MEMα) supplemented with 10% FBS, 2 mM 137 

Ultraglutamine 1 (Lonza) and 1× MycoZap antibiotics (Lonza) at 37°C (5% CO2 and 95% humidity). 138 

Transfection of fibroblasts was performed using the Neon Transfection System (Thermo Fisher 139 

Scientific) as previously described for roGFP2 constructs (Lismont et al. 2017) and siRNA (Schrader 140 

and Schrader 2017). 141 

2.2. Immunofluorescence and Immunoblotting 142 

Unless otherwise indicated, immunofluorescence was performed 24 hours post-transfection. Cells 143 

grown on glass coverslips were fixed for 20 minutes with 4% paraformaldehyde (PFA) in PBS (pH 7.4), 144 

permeabilised with 0.2% Triton X‐100 for 10 minutes and blocked with 1% BSA for 10 minutes. 145 

Blocked cells were incubated with primary and secondary antibodies sequentially in a humid chamber 146 

for 1 hour. Cells were washed 3 times with PBS between each individual step. Finally, coverslips were 147 

washed with ddH2O to remove PBS and mounted on glass slides in Mowiol 4-88-containing n-propyl 148 

gallate as an anti-fading (Bonekamp et al. 2013).  149 

For detection of protein levels, cells were trypsinised, washed in PBS, and centrifuged at 500×g for 3 150 

min. Cell pellets were lysed and equal amounts of protein were separated by SDS-PAGE on 12.5% 151 

polyacrylamide gels. Transfer to a nitrocellulose membrane (Amersham Bioscience, Arlington Heights, 152 

IL, USA) was performed using a semi-dry apparatus (Trans-Blot SD, Bio-rad) and analysed by 153 

immunoblotting with enhanced chemiluminescence reagents (Amersham Bioscience, Arlington 154 

Heights, IL, USA). 155 



2.3. Microscopy 156 

Cell imaging was performed using an Olympus IX81 microscope with an UPlanSApo 100x/1.40 Oil 157 

objective (Olympus Optical. Hamburg, Germany). Filters sets eGFP ET (470/40 Et Bandpass filter, 158 

Beamsplitter T495 LPXR and 525/50 ET Bandpass filter [Chroma Technology GmbH, Olching, 159 

Germany]), and TxRed HC (562/40 BrightLine HC Beamsplitter HC BS 593, 624/40 BrightLine HC 160 

[Semrock, Rochester, USA]) were used. Images were taken with a CoolSNAP HQ2 CCD camera.  161 

Live-cell imaging of roGFP2 constructs in HUFs-T fibroblasts was performed with an Olympus IX81 162 

microscope equipped with an UPlanSApo 100x/1.40 Oil objective (Olympus Optical, Hamburg, 163 

Germany), BP390-410 and BP470-495 bandpass excitation filters, a dichromatic mirror with a cut-off 164 

at 505 nm, a BA510-550 barrier (emission) filter, and a CCD-FV2T digital black and white camera.  165 

Confocal images of MFFQ64* fibroblasts to assess peroxisomal tubule localisation with microtubules 166 

were obtained using a Zeiss LSM 880 inverted microscope, with Airyscan spatial detector array (ChA-167 

T1 5.7, ChA-T2 6.9) for super-resolution imaging. The Alpha Plan Apochromat 100×/1.46 oil DIC M27 168 

Elyra objective was used, with lasers 561 nm (15% power) and 488 nm (3% power). 169 

Confocal images of the pHRed probe in fibroblasts were obtained using a Zeiss LSM 510 META 170 

inverted microscope equipped with a Plan Apochromat 63×/1.4 NA (oil/dic) objective (Carl Zeiss), 171 

using Argon excitation 458 nm and DPSS561 excitation 561 nm, with emission collection 600–620 nm. 172 

For detection of peroxisomal pHRed (pHRed-PO) the HC PL APO CS2 63×/1.4 Oil objective was used. 173 

For live‐cell imaging, cells were plated in 3.5 cm diameter glass bottom dishes (Cellview; Greiner Bio-174 

One). MetaMorph 7 (Molecular Devices, USA) was used to adjust for contrast and brightness. 175 

Photo-bleaching experiments were performed using a Visitron 2D FRAP system, consisting of a 405 176 

nm/60mW diode laser. The FRAP laser was controlled by UGA-40 controller (Rapp OptoElectronic 177 

GmbH, Hamburg, Germany) and a VisiFRAP 2D FRAP control software for Meta Series 7.5.x (Visitron 178 

System, Munich, Germany) The FRAP system was coupled into a IX81 motorized inverted microscope 179 

(Olympus, Hamburg, Germany), equipped with a PlanApo 100X/1.45 Oil objective (Olympus, 180 

Hamburg, Germany). Fluorescently-labelled proteins were visualised by using a VS-LMS4 Laser-181 

Merge-System with solid state lasers (488 nm/75mW, Visitron System, Munich, Germany). Images 182 

were captured using a Charged-Coupled Device camera (Photometric CoolSNAP HQ2, Roper 183 

Scientific, Germany). Peroxisomes in MFF-deficient fibroblasts expressing EGFP-SKL were irradiated 184 

by using 100% output power of the 405 nm laser for 150 ms with a beam diameter of 30 pixels. This 185 

was followed by immediate observation. Further details on the methods can be found in (Schuster et al. 186 

2011a, b). 187 

 188 

For transmission electron microscopy, fibroblast monolayers were fixed in 0.5% glutaraldehyde in 0.2 189 

M Pipes buffer, pH 7.2, for 15 min at room temperature. Cells were then scraped from the culture dish 190 

and pelleted at 17,000 g for 10 min. Following three buffer washes, the cell pellet was fragmented and 191 

postfixed for 1 h in 1% osmium tetroxide (reduced with 1.5% wt/vol potassium ferrocyanide) in 0.1 M 192 

sodium cacodylate buffer, pH 7.2. Following three 5 minute washes in distilled water, the pellet 193 

fragments were dehydrated through an ethanol gradient and embedded in Durcupan resin (Sigma-194 

Aldrich). 70-nm ultrathin sections were collected on pioloform-coated 100-mesh copper EM grids 195 

(Agar Scientific) and contrasted with lead citrate before imaging using a JEOL JEM 1400 transmission 196 

electron microscope operated at 120 kV. 197 



2.4. Measurement of Peroxisomal Body Size, Tubule Size and Length, and Number 198 

The Metamorph 7 (Molecular Devices, USA) region measurements function was used for analysis of 199 

peroxisome size in MFF-deficient fibroblasts, following calibration of distances for the magnification 200 

used. For measurement of peroxisome body and tubule width, transmission EM images were used at 201 

80,000- and 100,000-fold magnification. For measurement of peroxisome length, immunofluorescence 202 

images were used at 100-fold magnification and the Metamorph 7 segmented line tool was used. For 203 

calculation of peroxisomal number in control fibroblasts, an in-house ImageJ (Schneider et al. 2012) 204 

macro was used, utilising the Analyze Particles function. For MFF-deficient patient fibroblasts, 205 

peroxisome number was counted manually. 206 

2.5. Marker Protein Distribution Measurements 207 

To measure the fluorescence intensity of PEX14, PMP70, catalase or EGFP-SKL over the length of a 208 

single peroxisome in fixed cells, and EGFP-SKL fluorescence following live-cell photobleaching 209 

experiments, the ImageJ (Schneider et al. 2012) Plot Profile function was used. A 2 pixel width line 210 

was drawn along the centre of the peroxisome from the body, along the tubule for a total length of 5 211 

µm, with channels overlaid where appropriate. The fluorescence intensity for each colour channel was 212 

measured with 65 nm increments. For marker distribution measurements, data were normalised to a 0-213 

1 scale, with 1 representing the value of the pixel with the maximum intensity of unsaturated images. 214 

For photobleaching experiments, data are presented as the mean grey value for each increment. Only 215 

peroxisomes which did not overlap with other peroxisomes were analysed.  216 

2.6. Metabolic and Biochemical Analyses 217 

Peroxisomal parameters were determined in cultured skin fibroblasts (Ferdinandusse et al. 2016). 218 

Concentrations of VLCFAs and C26:0 lysophosphatidylcholine (C26:0 lysoPC) were measured in 219 

cultured cells as described previously (Dacremont et al. 1995; Ferdinandusse et al. 2016). Peroxisomal 220 

β-oxidation of the VLCFA hexacosanoic acid (C26:0) and pristanic acid were measured as described 221 

(Wanders et al. 1995). A D3-C22:0 loading test was performed by loading cells for 3 days with 222 

deuterated (D3) C22:0 followed by fatty acid analysis with tandem mass spectrometry, essentially as 223 

previously described (Kemp et al. 2004) but with D3-C22:0 instead of D3-C24:0. Peroxisomal phytanic 224 

acid α-oxidation (Wanders and Van Roermund 1993) and the activity of dihydroxyacetone phosphate 225 

acyltransferase (DHAPAT), a key enzyme in peroxisomal ether phospholipid synthesis, were measured 226 

as described (Ofman and Wanders 1994). Immunoblot analysis was performed with cell homogenates, 227 

which were separated by SDS-PAGE and subsequently transferred onto a nitrocellulose membrane 228 

using semidry blotting. For visualisation, the secondary antibody IRDye 800 CW goat anti-rabbit was 229 

used with the Odyssey Infrared Imaging System (LI-COR Biosciences, Nebraska, USA). 230 

2.7. Measurement of Subcellular Redox Dynamics 231 

The procedures involved in the measurement of subcellular redox levels have been previously described 232 

in detail (Lismont et al. 2017). In brief, SV40 large T antigen-transformed human fibroblasts (HUFs-T) 233 

were transfected with plasmids coding for GSH/GSSG- (roGFP2) or H2O2-sensitive (roGFP2-ORP1) 234 

reporter proteins targeted to various subcellular compartments [cytosol (c-), mitochondria (mt-), or 235 

peroxisomes (po-)]. One day later, the cells were incubated for 30-60 minutes in phenol red-free culture 236 

medium and imaging was performed to visualize both the oxidized (excitation 400 nm, emission 515 237 

nm) and reduced (excitation 480 nm, emission 515 nm) states of roGFP2. During image acquisition, 238 

the cells were maintained in a temperature-, humidity-, and CO2-controlled incubation chamber. For 239 

cytosolic measurements, the ROI was selected outside the nucleus. The Cell^M/xcellence software 240 



module (Olympus) was used to quantify the relative fluorescence intensities of roGFP2 at 400 and 480 241 

nm excitation, giving a ratiometric response. 242 

2.8. Measurement of Peroxisomal pH using pHRed 243 

Peroxisomal pH was measured as previously described (Godinho and Schrader 2017). Briefly, MFF-244 

deficient and control fibroblasts were transfected with plasmids coding for a cytosolic or peroxisomal 245 

pH-sensitive red fluorescent protein (pHRed-Cyto and pHRed-PO, respectively) (Godinho and 246 

Schrader 2017). Twenty four hours after transfection, cells were imaged using excitation wavelengths 247 

of 458 and 561 nm. Prior to image acquisition, a controlled temperature chamber was set‐up on the 248 

microscope stage at 37°C, as well as an objective warmer. During image acquisition, cells were kept at 249 

37°C and in a HEPES-buffered CO2‐independent medium. For calibration, the cells were incubated in 250 

solutions of known pH (containing 5 µM nigericin) in a confocal stage chamber. ImageJ (Schneider et 251 

al. 2012) was used to calculate the 561/458 ratiometric response.  252 

2.9. Statistical Analysis 253 

Unless indicated otherwise, a two-tailed, unpaired t-test was used to determine statistical differences 254 

against the indicated group (*, P < 0.05; **, P < 0.01; ***, P < 0.001). Boxplots are presented with the 255 

bottom and top of each box representing the 25th and 75th percentile values, respectively; the horizontal 256 

line inside each box representing the median; and the horizontal lines below and above each box 257 

denoting the range. In the roGFP (Fig. 4B) and roGFP-ORP (Fig. 4D) box plots, these lines denote the 258 

standard deviation. Bar graphs are presented as mean ± SEM. In-text data are presented as mean ± SD. 259 

Analysis was performed from at least three independent experiments.  260 



Table S1. Plasmids used in this study 261 

Plasmid Source 

EGFP-SKL Koch et al. 2005 

Myc-MFF Gandre-Babbe and van der Bliek 2008 

c-roGFP2 Ivashchenko et al. 2011 

mt-roGFP2 Ivashchenko et al. 2011 

po-roGFP2 Ivashchenko et al. 2011 

c-roGFP2-ORP1 Lismont et al. 2019b 

mt-roGFP2-ORP1 Lismont et al. 2019b 

po-roGFP2-ORP1 Lismont et al. 2019b 

pHRed-Cyto Godinho and Schrader 2017 

pHRed-PO Godinho and Schrader 2017 

HsPEX3(1-44)-EGFP Fransen et al. 2001 

 262 

Table S2. Primary and secondary antibodies used in this study 263 

Antibody Type Dilution 

______________ 

IMF            WB 

Source 

ACBD5 pc rb  1:1000 Proteintech (21080-1-AP) 

ACOX1 pc rb - 1:1000 
Proteintech (10957-1-AP) 

or gift from T. Hashimoto, Japan 

ATP synthase  mc ms 1:500 - Abcam (ab14730) 

α-Tubulin mc ms - 1:1000 Sigma (T9026) 

Catalase pc ms 1:150 - Abcam (ab88650) 

Catalase mc rb - 1:250 Abcam (ab179843) 

GAPDH pc rb - 1:5000 ProSci (3783) 

Myc mc ms 1:200 - Santa Cruz Biotechnology, Inc (9E10) 

PEX5 pc rb - 1:750 Sigma (HPA039259) 

PEX11β mc rb  1:1000 Abcam (ab181066) 

PEX14 pc rb 1:1400 1:4000 
D. Crane, Griffith University, Brisbane, 

Australia 

PMP70 pc rb 1:100 - 
A. Völkl, University of Heidelberg, 

Heidelberg, Germany 

PMP70 mc ms 1:500 - Sigma (SAB4200181) 



Thiolase pc rb - 1:2000 Atlas antibodies (HPA007244) 

Alexa Fluor 488 dk anti-ms 1:500 - ThermoFisher Scientific (A21202) 

Alexa Fluor 488 dk anti-rb 1:500 - ThermoFisher Scientific (A21206) 

Alexa Fluor 594 dk anti-ms 1:500 - ThermoFisher Scientific (A21203) 

Alexa Fluor 594 dk anti-rb 1:500 - ThermoFisher Scientific (A21207) 

HRP IgG gt anti-ms - 1:10000 Bio-Rad (170-6516) 

HRP IgG gt anti-rb - 1:10000 Bio-Rad (172-1013) 

IRDye 800 CW gt anti-rb - 1:12500 Westburg 

Abbreviations: IMF, immunofluorescence; WB, Western blot; pc, polyclonal; mc, monoclonal; ms, 264 

mouse; rb, rabbit; gt, goat; dk, donkey; HRP, horseradish peroxidase.  265 



3. Results 266 

3.1. Morphological characterisation of MFF-deficient peroxisomes 267 

To visualize peroxisomes in different MFF-deficient patient skin fibroblasts (Shamseldin et al. 2012; 268 

Koch et al. 2016) under similar conditions, we processed the cells for immunofluorescence microscopy 269 

using an antibody against PEX14, a peroxisomal membrane protein. As previously reported, fibroblasts 270 

from all three MFF-deficient patients show highly elongated peroxisomes, whereas in controls 271 

peroxisomes showed a punctate staining pattern typical for human fibroblasts (Fig. 1A). Mitochondria 272 

in patient cells were also reported to be elongated (Shamseldin et al. 2012; Koch et al. 2016). In many 273 

cells peroxisomes were extremely long (> 30 µm); elongation was even more pronounced than in DRP1 274 

patient fibroblasts, which also display tubular peroxisomes and mitochondria (Waterham et al. 2007; 275 

Nasca et al. 2016). The elongation of peroxisomes in MFF-deficient fibroblasts has been suggested to 276 

be the result of a constant lipid flow from the ER to peroxisomes via membrane contact sites, which are 277 

mediated by peroxisomal ACBD5 and ER-resident VAPB (Costello et al. 2017b). As peroxisomes 278 

cannot divide due to the loss of functional MFF, lipid transfer from the ER results in a pronounced 279 

growth/elongation of the peroxisomal membrane. Furthermore, re-introduction of MFF has been shown 280 

to restore the normal, punctate peroxisomal phenotype in MFF-deficient fibroblasts (Costello et al. 281 

2017b). We transfected MFF-deficient fibroblasts with Myc-MFF using microporation, which allowed 282 

us to monitor peroxisome morphology at early time points (2-3 hours) after transfection and therefore 283 

capture the initial stages of MFF-mediated peroxisome division (Suppl. Fig. S1). Cells were processed 284 

for immunofluorescence using antibodies against the Myc-tag and PEX14. Two – three hours after 285 

transfection, MFF was observed to localise in spots on elongated peroxisomes (and elongated 286 

mitochondria) supporting a role in the assembly of the division machinery and the formation of division 287 

sites. Many MFF-expressing cells already contained short, dividing peroxisomes or fully divided, 288 

spherical peroxisomes (Suppl. Fig. S1). 289 

 290 



Suppl. Figure S1. Re-introduction of MFF in MFF-deficient patient fibroblasts. MFF-deficient patient 291 

fibroblasts [mutation Q64* (Shamseldin et al. 2012)] were transfected with Myc-MFF using 292 

microporation. Cells were processed for immunofluorescence microscopy 2-3 hours after transfection 293 

using antibodies directed to the Myc-tag and PEX14, a peroxisomal membrane marker. Note the 294 

localisation of MFF in spots on elongated peroxisomes (upper panel; arrowheads), the appearance of 295 

shorter peroxisomes due to peroxisome division (middle panel), and the restoration of the normal, 296 

spherical peroxisome morphology (lower panel). Higher magnification of boxed regions is shown. Scale 297 

bars, 10 µm; magnification, 5 µm. 298 

 299 

Occasionally, peroxisomes in patient fibroblasts appeared to have a constricted, ‘beads-on-a-string’ 300 

phenotype (Fig. 1A, Magnifications). Such a phenotype is seen with DRP1 depletion, as peroxisomal 301 

constriction can occur independently of DRP1, but fission cannot (Koch et al. 2004). How peroxisomal 302 

constriction is mediated is still unclear. A constricted, ‘beads-on-a-string’-like peroxisome morphology 303 

in MFF-deficient cells would suggest that peroxisomal constriction can also occur independently of 304 

MFF (Ribeiro et al. 2012). However, MFF is also suggested to play a role in the constriction of the 305 

peroxisomal membrane, as it localises to peroxisomal constriction sites (Itoyama et al. 2013; Soliman 306 

et al. 2018). To confirm constricted peroxisome morphology in MFF-deficient cells, we performed 307 

electron microscopy (Fig. 1B). In contrast to immunofluorescence, constrictions of elongated 308 

peroxisomes were not observed in ultrastructural studies (Fig. 1B). Interestingly, EM revealed the 309 

presence of spherical peroxisome bodies, with a single, smaller tubule protruding from the body (Fig. 310 

1B). We assume that the “constricted” appearance of peroxisomes in immunofluorescence is likely due 311 

to instability of the extremely long, delicate membrane structures during fixation with para-312 

formaldehyde, highlighting the importance of ultrastructural studies to validate light microscopy 313 

observations. Ultrastructural studies (Fig. 1B) and immunofluorescence microscopy (Fig. 1C) show 314 

that the peroxisomal membrane tubules are frequently aligned along microtubules, which may 315 

contribute to tubule stability and maintenance.  316 

Measurement of peroxisomes in EM micrographs revealed that peroxisome bodies are significantly 317 

larger than peroxisomal tubules (mean width, body: 141 ± 37 nm, tubule: 81 ± 22 nm) (Fig. 1D). The 318 

measured body width is consistent with that of spherical peroxisomes in human fibroblasts from healthy 319 

individuals typically being reported to be between 50-200 nm in width (Arias et al. 1985; Galiani et al. 320 

2016). Peroxisome length was also quantified based on immunofluorescence data, with a wide range of 321 

lengths being present, from smaller, rod shaped peroxisomes (> 3 µm) up to very highly elongated 322 

tubules (> 30 µm) (mean length, 8.73 ± 9.2 µm) (Fig. 1E). As expected with a defect in division, the 323 

peroxisome number was reduced in MFF-deficient fibroblasts in contrast to controls (mean number, 324 

control fibroblasts: 244 ± 116, dMFF: 34 ± 25) (Fig. 1F). Overall, we reveal that peroxisomes in MFF-325 

deficient patient fibroblasts are fewer and consist of two continuous membrane domains: a spherical 326 

peroxisome body with typical peroxisome size, and a thin, highly elongated tubular structure protruding 327 

from this body.  328 



 329 

Figure 1. Morphological characteristics of peroxisomes in MFF-deficient patient fibroblasts are altered. 330 

(A) Control fibroblasts (C109) and MFF-deficient patient fibroblasts [mutations Q64* (Shamseldin et 331 

al. 2012), L62Pfs*13+R298* (Koch et al. 2016) and E153Afs*5 (Koch et al. 2016)] were processed for 332 

immunofluorescence microscopy using antibodies directed to PEX14, a peroxisomal membrane marker. 333 

Higher magnification of boxed region is shown. Arrowheads highlight potential membrane 334 

constrictions. Scale bars, 10 µm; magnification, 5 µm. (B) Electron micrographs of peroxisomes in 335 

MFF-deficient cells (MFFQ64*). White arrowheads highlight peroxisomal membrane tubules, black 336 

arrowheads indicate microtubules. Scale bars, 0.2 µm. (C) Confocal (Airyscan) images of peroxisomal 337 

membrane tubules (anti-PEX14) in MFFQ64* cells co-stained with anti-α-tubulin. White arrowheads 338 



indicated co-localisation of peroxisomes and microtubules. Scale bars, 3 μm. (D) Measurement of 339 

peroxisomal width (nm) of bodies and tubules based on electron micrographs of MFFQ64* fibroblasts [n 340 

= 33 (bodies), 79 (tubules)]. (E) Measurement of peroxisomal length (µm) from immunofluorescence 341 

images of MFFQ64* patient fibroblasts (n = 392). (F) Quantification of peroxisome number based on 342 

immunofluorescence images of control (C109) and MFFQ64* fibroblasts (n = 24). Data are from at least 343 

3 independent experiments. ***, p < 0.001; two-tailed, unpaired t test. 344 

3.2. MFF deficiency does not alter standard biochemical parameters associated with 345 

peroxisomal dysfunction 346 

Several biochemical parameters were studied to investigate peroxisomal function in cultured fibroblasts 347 

(Table 1). Peroxisomal α- and β-oxidation activities were measured with different radiolabelled 348 

substrates, i.e. [14C]-phytanic acid, pristanic acid and cerotic acid (C26:0). In addition, very long-chain 349 

fatty acid (VLCFA) metabolism was studied with a three day D3-C22 loading test, and total VLCFA 350 

levels and C26-lysophosphatidylcholine levels were determined in cell pellets (Ferdinandusse et al. 351 

2016). No notable abnormalities were found in all three MFF-deficient cell lines providing no indication 352 

of a disturbed metabolism of VLCFAs or branched-chain fatty acids in peroxisomes. α-oxidation values 353 

were slightly higher than the reference range, but this does not indicate any dysfunction. The activity 354 

of dihydroxyacetone phosphate acyltransferase (DHAPAT), the first enzyme of the plasmalogen 355 

biosynthesis pathway located in peroxisomes, was within reference range. The intra-peroxisomal 356 

processing of the peroxisomal β-oxidation enzymes acyl-CoA oxidase 1 (ACOX1) and 3-ketoacyl-CoA 357 

thiolase was not altered, suggesting normal peroxisomal matrix protein import and processing activity 358 

in contrast to fibroblasts from a patient with a peroxisomal biogenesis disorder (Fig. 2). This is in line 359 

with metabolic and biochemical analyses of plasma from different MFF patients (Shamseldin et al. 2012; 360 

Koch et al. 2016; Nasca et al. 2018). We can confirm from these studies that MFF deficiency does not 361 

cause alterations to overall peroxisomal biochemical function. This is also in line with reports from 362 

other disorders affecting the dynamics and plasticity of peroxisomes (e.g. DRP1- or PEX11β-deficiency) 363 

(Waterham et al. 2007; Ebberink et al. 2012).  364 

 MFFL62Pfs*13+R298* MFFE153Afs*5 MFFQ64* Reference range 

VLCFAs (μmol/g protein)     

C26:0 0.30 0.33 0.29 0.16-0.41 

C26/C22 ratio 0.06 0.07 0.07 0.03-0.1 

C26-lysoPC (pmol/mg protein) 12.3 9.2 7.0 2-14 

Alpha-oxidation activity 

(pmol/(hour.mg protein)) 

135 104 n.d. 28-95 

Beta-oxidation activity 

(pmol/(hour.mg protein)) 

    

C26:0 2109 1505 n.d. 800-2040 

Pristanic acid 1072 1099 n.d. 790-1072 

D3C22 loading test  

(μmol/g protein) 

    

D3C26 (chain elongation) 0.29 0.3 0.26 0.16-0.66 

D3C16/D3C22 ratio  

(beta-oxidation) 

1.25 1.74 2.27 0.64-2.13 

DHAPAT activity  

(nmol/(2hour.mg protein)) 

9.2 7.1 6.6 5.9-15.5 

 365 

Table 1. Biochemical parameters associated with peroxisomal dysfunction are normal in MFF-deficient 366 

patient fibroblasts. Peroxisomal parameters determined in three MFF-deficient patient fibroblast cell 367 



lines MFFL62Pfs*13+R298* (Koch et al. 2016), MFFE153Afs*5 (Koch et al. 2016), and MFFQ64* (Shamseldin et 368 

al. 2012). Very long-chain fatty acid (VLCFA) levels, C26-lysophosphatidylcholine (C26-lysoPC), α- 369 

and β-oxidation activity, VLCFA metabolism (D3C22 loading test) and dihydroxyacetone phosphate 370 

acyltransferase (DHAPAT) activity were measured. A reference range of control fibroblasts from 371 

healthy individuals is shown for comparison. Data present mean of duplicate measurements. n.d., not 372 

determined; VLCFA, very long-chain fatty acid; C26-lysoPC, C26-lysophosphatdylcholine; DHAPAT, 373 

dihydroxyacetone phosphate acyltransferase. 374 

 375 

Figure 2. Immunoblot analysis of fibroblast homogenates from MFF-deficient patients. Antibodies 376 

were directed against peroxisomal 3-ketoacyl-CoA thiolase (upper panel) or peroxisomal acyl-CoA 377 

oxidase 1 (ACOX1; lower panel). Lanes 1-3, MFF-deficient patient fibroblasts MFFQ64* (Shamseldin 378 

et al. 2012), MFFL62Pfs*13+R298* (Koch et al. 2016) and MFFE153Afs*5 (Koch et al. 2016), respectively. Lane 379 

4: control subject, Lane 5: fibroblasts of a patient with Zellweger Spectrum Disorder (ZSD). Results 380 

show normal proteolytic processing of 3-ketoacyl-CoA thiolase (40-kDa) and ACOX1 (50- and 20-kDa) 381 

in the MFF-deficient cell lines, whereas in the ZSD line the unprocessed bands of 3-ketoacyl-CoA 382 

thiolase (44-kDa) and ACOX1 (70-kDa) are present. Note that the protein band above the 70 kDa band 383 

of ACOX1 is non-specific. 384 

3.3. Protein import into MFF-deficient peroxisomes is impaired in tubular extensions 385 

As globular peroxisomal bodies were visible in ultrastructural studies (Fig. 1B) but surprisingly less 386 

visible in immunofluorescence studies with anti-PEX14, which labelled predominantly tubular 387 

structures (Fig. 1A), we performed co-localisation studies with anti-catalase, a prominent peroxisomal 388 

marker enzyme in the peroxisomal matrix (Fig. 3A). In contrast to PEX14, endogenous catalase was 389 

found to localise primarily to the spherical peroxisome bodies, with weaker fluorescence intensity along 390 

the peroxisomal tubules (Fig. 3A). Analysis of fluorescence intensity along single peroxisomes of both 391 

PEX14 and catalase confirmed PEX14 fluorescence primarily along tubules with some localisation in 392 

bodies, whereas catalase fluorescence was primarily detected in the peroxisomal body, with reduced 393 

intensity along the tubule (Fig. 3A). Peroxisomes import matrix proteins from the cytosol via dedicated 394 

import machinery at the peroxisomal membrane (Francisco et al. 2017). Matrix proteins such as catalase 395 

are imported into peroxisomes via a C-terminal peroxisomal targeting signal (PTS1). These steady-state 396 

observations imply that catalase is mainly imported into the spherical bodies, suggesting that those 397 

represent mature, import-competent structures. To test this hypothesis, we expressed a GFP-fusion 398 

protein with a C-terminal PTS1 signal SKL (GFP-SKL) in MFF-deficient cells. Cells were processed 399 

for immunofluorescence after 24 hours and labelled with anti-PEX14 antibodies (Fig. 3B). Similar to 400 

endogenous catalase, exogenously expressed GFP-SKL localised primarily to peroxisomal bodies, with 401 



less presence in the peroxisomal tubules (Fig. 3B). This was confirmed by analysis of fluorescence 402 

intensity (Fig. 3B). Immunofluorescence microscopy with the peroxisomal membrane markers PMP70 403 

and PEX14 revealed co-localisation of both membrane proteins at membrane tubules (Fig. 3C). PMP70 404 

also localised to the spherical bodies, where PEX14 is less prominent (Fig. 3C). These findings indicate 405 

that the spherical bodies represent mature, import-competent peroxisomes, whereas the tubular 406 

extensions comprise a pre-peroxisomal membrane compartment which has not yet fully acquired import 407 

competence for matrix proteins or lacks the capability to retain them. To confirm these conclusions, we 408 

performed FRAP experiments (Suppl. Fig. S2). Peroxisomes in MFF-deficient fibroblasts expressing 409 

GFP-SKL were photobleached followed by immediate observation through live-cell imaging. After 410 

photobleaching of the entire organelle (peroxisome body and short tubule), recovery of GFP-SKL 411 

fluorescence was first observed in the peroxisome body, indicating that recovery is due to import of 412 

GFP-SKL into the peroxisome body rather than into the tubule (Suppl. Fig. S2). We cannot completely 413 

exclude that there is some matrix protein import into the tubule, which may be slow or less efficient. 414 

However, our findings support our conclusion that spherical bodies are mature import competent 415 

structures, whereas the tubules represent pre-peroxisomal membrane structures which have not yet fully 416 

acquired import competence for matrix proteins or lack the capability to retain them. 417 



 418 



Figure 3. Altered marker protein distribution in MFF-deficient patient fibroblasts (MFFQ64*). (A) 419 

Patient fibroblasts were processed for immunofluorescence microscopy using antibodies against 420 

peroxisomal membrane marker PEX14 and matrix marker catalase, and fluorescence intensity measured 421 

along 5 µm of peroxisome, starting at peroxisome bodies (arrowheads) normalised to the maximum 422 

intensity. Shaded area in graphs represents the standard error of the mean (line) (n = 30). Arrowheads 423 

highlight peroxisomal bodies. Scale bar, 5 µm. (B) Patient fibroblasts were transfected with a plasmid 424 

encoding EGFP-SKL and processed for immunofluorescence microscopy using an antibody against 425 

PEX14. Quantification was performed as in A (n = 30). (C) As in A, using antibodies against membrane 426 

markers PEX14 and PMP70. Quantification was performed as in A, B (n = 30). Scale bar, 5 µm. (D) 427 

MFFQ64* fibroblasts were transfected with control siRNA (CT) or PEX14 siRNA (siPEX14) and 428 

processed for immunofluorescence microscopy after 48 hours using antibodies against catalase and 429 

PMP70. Scale bars, 10 µm, magnification, 2 µm. (E) As in D, transfecting with control siRNA (CT), 430 

or PEX5 siRNA (siPEX5), and processing for immunofluorescence using antibodies against catalase 431 

and PEX14. Scale bars, 10 µm, magnification, 2 µm. (F) Immunoblotting of control (CT), PEX14 432 

(siPEX14) or PEX5 siRNA (siPEX5) transfected patient fibroblasts, using antibodies against PEX14, 433 

PEX5 and α-tubulin or GAPDH (loading control). (G) Quantification of peroxisomal clustering in 434 

MFF-deficient fibroblasts either transfected with control (CT) or PEX14 siRNA (siPEX14) (n = 150). 435 

Data are from at least 3 independent experiments. ***, p < 0.001; two-tailed, unpaired t test. (H) 436 

MFFQ64* patient fibroblasts were treated with 0.07% DMSO (CT), or 10 μM nocodazole (NOC) for four 437 

hours prior to processing for immunofluorescence microscopy using antibodies against α-tubulin and 438 

PEX14. Scale bars, 10 μm, magnification, 2 µm. 439 



 440 

Suppl. Figure S2. The peroxisomal body is import-competent. MFF-deficient fibroblasts were 441 

transfected with GFP-SKL and grown on 3.5-cm glass bottom dishes. Photo-bleaching experiments 442 

were performed after 24-48 hours using a Visitron 2D FRAP system. The entire organelle (peroxisome 443 

body and short tubule) was photo-bleached (0 min) and recovery of GFP-SKL fluorescence monitored 444 

over a period of 10 minutes (A). Note that GFP-SKL fluorescence was observed in the peroxisome body 445 

(arrowheads), but not in the peroxisome tubule, indicating that recovery is due to import of GFP-SKL 446 

into the peroxisome body. (B) Quantification of fluorescence intensity. Data are presented at the mean 447 

grey value for each increment along the length of the peroxisome. Scale bar, 5 μm. 448 

 449 



3.4. A role of PEX14 in maintaining peroxisomal tubule stability 450 

As PEX14 is part of the matrix protein import machinery (Brown and Baker 2008), its predominant 451 

localisation to the peroxisomal membrane tubules (rather than the import-competent spherical bodies) 452 

is unexpected. However, additional functions for PEX14 have been suggested. Peroxisomes interact 453 

with and move along microtubules (Thiemann et al. 2000; Schrader et al. 2003; Castro et al. 2018). The 454 

N-terminal domain of PEX14 (1-78) has previously been shown to bind tubulin (Bharti et al. 2011; 455 

Theiss et al. 2012). Although PEX14 is not essential for microtubule-dependent peroxisomal motility 456 

(Castro et al. 2018), it may function as a peroxisomal microtubule docking factor. Indeed, in 457 

ultrastructural and confocal studies microtubules were frequently observed in close association with the 458 

entire length of peroxisomal tubules in MFF patient cells (Fig. 1B, C). Furthermore, in a previous study, 459 

we showed that highly elongated peroxisomal tubules in fibroblasts are associated with microtubules, 460 

and that tubule elongation is reduced in PEX14-deficient cells (Castro et al. 2018). Based on these 461 

observations, we hypothesised that PEX14 may be required for the stabilisation of highly elongated 462 

peroxisomal tubules. To test this, we depleted PEX14 by siRNA-mediated knock down in MFF-463 

deficient cells (Fig. 3D, F, G). Peroxisomal tubules in these cells are typically stretched out in the cell, 464 

allowing for easy visualisation. However, when PEX14 was knocked down, peroxisomes lost their 465 

tubular morphology and appeared clustered or fragmented (Fig. 3D) (cells with clustered/fragmented 466 

morphology: control siRNA: 4.7 ± 1.2%, PEX14 siRNA: 95.3 ± 3.1%) (Fig. 3G). The peculiar 467 

peroxisome morphology was specific for silencing of PEX14, and was not observed after silencing of 468 

PEX5, excluding an effect of impaired peroxisomal import (Fig. 3E). Furthermore, peroxisome 469 

morphology was not altered after silencing of PEX11β or ACBD5 in MFF-deficient cells (Costello et 470 

al. 2017b). Clustering and fragmentation of elongated peroxisomes in MFF-deficient cells was also 471 

observed after depolymerisation of microtubules with nocodazole (Fig. 3H). These observations 472 

suggest a role for PEX14 in facilitating and stabilising peroxisomal membrane extensions by linking 473 

the peroxisomal membrane to microtubules. This may explain why PEX14 is predominantly localising 474 

to the highly elongated peroxisomal membranes in MFF patient cells. 475 

3.5. Peroxisomal redox state and pH levels are altered in MFF-deficient fibroblasts 476 

The metabolic parameters of peroxisomes in MFF-deficient cells were normal, in particular their 477 

different functions in lipid metabolism (Table 1). As peroxisomes play a role in cellular H2O2 478 

metabolism and redox homeostasis, we also investigated these parameters (Fig. 4). Firstly, we assessed 479 

the glutathione disulphide (GSSG) to glutathione (GSH) ratio, a marker of oxidative balance. Therefore, 480 

MFF-deficient SV40 large T antigen-transformed human fibroblasts (HUFs-T) were transfected with a 481 

plasmid encoding cytosolic, mitochondrial or peroxisome-targeted roGFP2 (Fig. 4A). RoGFP2 is a 482 

highly responsive, pH-independent sensor for the glutathione redox couple, and oxidation causes a shift 483 

of its excitation maximum from 488 nm to 405 nm (Ivashchenko et al. 2011; Lismont et al. 2017). 484 

Analyses of the 400/480 ratiometric responses of peroxisome-targeted roGFP2 revealed that the intra-485 

peroxisomal pool of glutathione is less oxidized in the MFF-deficient fibroblasts than in the control 486 

cells (Fig. 4B). In contrast, no alterations in the glutathione redox state could be detected in the cytosol 487 

or the mitochondrial matrix.  488 

To monitor changes in hydrogen peroxide homeostasis, MFF-deficient HUFs-T and controls were 489 

transfected with plasmids coding for cytosolic, mitochondrial, or peroxisome-targeted roGFP2-ORP1, 490 

a H2O2-responsive variant of roGFP2 (Fig. 4C) (Lismont et al. 2019b). No changes in oxidation state 491 

were observed in the cytosol and mitochondria (Fig. 4D). However, for peroxisomes, a decreased 492 

400/480 nm ratiometric response was seen (Fig. 4D), indicating reduced levels of H2O2 inside 493 

peroxisomes in MFF-deficient cells. 494 



In addition, we used peroxisome-targeted pHRed (pHRed-PO), another ratiometric probe, to assess 495 

peroxisomal pH in MFF-deficient patient fibroblasts (Tantama et al. 2011; Godinho and Schrader 2017). 496 

Importantly, this sensor is insensitive to changes in H2O2 levels (Tantama et al. 2011). The pHRed-PO 497 

probe successfully targets to peroxisomes in control and MFF-deficient fibroblasts (Fig. 4E). It mainly 498 

distributes to the import-competent spherical peroxisomal bodies, but also to the membrane tubules 499 

(Fig. 4E). Following calibration of the pHRed probe (Fig. 4F), the intra-peroxisomal pH can be 500 

calculated based on the 458/561 nm ratiometric response. Interestingly, intra-peroxisomal pH in MFF-501 

deficient fibroblasts was found to be more alkaline than in control fibroblasts (Fig. 4G) (mean 502 

peroxisomal pH, control: 7.24 ± 0.30, patient fibroblasts: 8.00 ± 0.29). 503 

Overall, these findings point towards alterations in the peroxisomal redox environment. Specifically, 504 

we observed a decrease in the GSSG/GSH ratio and H2O2 levels in MFF-deficient fibroblasts. In 505 

addition, we have shown that absence of MFF results in a more alkaline intra-peroxisomal pH. This 506 

suggests that MFF-deficiency may compromise normal peroxisomal redox regulation. 507 

 508 



Figure 4. Peroxisomal redox state and pH levels are altered in MFF-deficient fibroblasts. Control (CT) 509 

or MFF-deficient (dMFF) SV40 large T antigen-transformed human fibroblasts (HUFs-T) were 510 

transfected with a plasmid encoding cytosolic (c-), mitochondrial (mt-) or peroxisomal (po-) roGFP2 511 

(A, B) or roGFP2-ORP1 (C, D). (A) Distribution patterns of the respective roGFP2 proteins. Higher 512 

magnification view of po-roGFP2 is shown. (B) Box plot representations of the 400/480 nm 513 

fluorescence response ratios of the respective roGFP2 proteins. (C) Distribution patterns of the 514 

respective roGFP2-ORP1 proteins. Higher magnification view of po-roGFP2-ORP1 is shown. Note that 515 

high expression levels of the peroxisomal reporter proteins result in labelling of peroxisome tubules. 516 

(D) Box plot representations of the 400/480 nm fluorescence response ratios of the respective roGFP2 517 

proteins. The bottom and top of each box represent the 25th and 75th percentile values, respectively; 518 

the horizontal line inside each box represents the median; and the horizontal lines below and above each 519 

box denote the mean minus and plus one standard deviation, respectively. The total number of 520 

measurements (two independent experiments; minimum 15 individual measurements in at least 20 521 

randomly chosen cells) is indicated below each box plot. The data from the dMFF cell line were 522 

statistically compared with those from the CT cell line (**, p < 0.01). (E) Distribution patterns of 523 

pHRed-PO in control (C109) and MFF-deficient patient fibroblasts (MFFQ64*) at excitation wavelengths 524 

of 458 and 561 nm, along with digital visualisation of individual peroxisomal pH levels. Higher 525 

magnification views of boxed regions are indicated. (F) Calibration of the pHRed probe using cytosolic 526 

pHRed. The 458/561 ratiometric response is given at each pH level. AU, arbitrary units. (G) 527 

Quantification of peroxisomal pH in control (C109) and MFFQ64* cells, converting the ratiometric 528 

response to pH using the calibration curve (n =20). Scale bars, 10 µm; magnifications, 2 µm. Data are 529 

from at least 2-3 independent experiments. *, p < 0.05; ***, p < 0.001; two-tailed, unpaired t test. 530 

 531 

3.6. Highly elongated peroxisomes in MFF-deficient fibroblasts can be degraded by autophagic 532 

processes 533 

Autophagic processes are important for the maintenance of cellular homeostasis and the integrity of 534 

organelles (Anding and Baehrecke 2017). Peroxisome homeostasis is achieved via a tightly regulated 535 

interplay between peroxisome biogenesis and degradation via selective autophagy (pexophagy) 536 

(Eberhart and Kovacs 2018). It is still unclear if highly elongated peroxisomes are spared from 537 

pexophagy, e.g. due to physical limitations, as the elongated peroxisomes may not fit into the 538 

autophagosome. Such a scenario would prevent degradation of peroxisomes and could have 539 

pathophysiological consequences. 540 

To examine if highly elongated peroxisomes in MFF-deficient fibroblasts can be degraded by 541 

autophagic processes, we first induced pexophagy by the expression of a fragment of peroxisomal 542 

biogenesis protein PEX3. Expression of the first 44 amino acids of the peroxin PEX3, which can insert 543 

into the peroxisome membrane, was observed to cause complete removal of peroxisomes (Soukupova 544 

et al. 1999). When expressing HsPEX3(1-44)-EGFP in control fibroblasts (Fig. 5A, B), peroxisomes 545 

were greatly reduced in number, with many GFP expressing cells showing almost complete loss of 546 

PEX14 labelling (Fig. 5A, C109). As reported earlier, loss of peroxisomes resulted in mistargeting of 547 

HsPEX3(1-44)-EGFP to the mitochondria (Soukupova et al. 1999) (Suppl. Fig. S3). Interestingly, in 548 

MFF-deficient fibroblasts, expression of HsPEX3(1-44)-EGFP also caused a marked reduction of 549 

peroxisomes (Fig. 5A, middle panel, B) or complete loss of PEX14 labelling (Fig. 5A, lower panel, 550 

B). Increased mitochondrial mistargeting of HsPEX3(1-44)-EGFP was observed with increased loss of 551 

peroxisomes (Fig. 5A; Suppl. Fig. S3).  552 



 553 

 554 

 555 

Suppl. Figure S3. HsPEX3(1-44)-EGFP is targeted to mitochondria when peroxisomes are lost. Human 556 

control (C109) or MFF-deficient (MFFQ64*) fibroblasts were transfected with a plasmid coding for 557 

HsPEX3(1-44)-EGFP to induce peroxisome degradation and processed for immunofluorescence after 558 

24 and 48 hours using antibody against mitochondrial ATP synthase (ATPB). Note the mistargeting of 559 

HsPEX3(1-44)-EGFP to mitochondria (arrowheads). Furthermore, mitochondrial morphology is 560 

altered including fragmentation and clustering. Scale bars, 10 µm, magnification, 2 µm. 561 

 562 

To examine peroxisome degradation under more physiological conditions, we applied nutrient 563 

deprivation. Limiting amino acids in the growth media of cells has been previously shown to induce 564 

removal of peroxisomes (Sargent et al. 2016). For assessing peroxisome degradation, controls and MFF-565 

deficient fibroblasts were cultured in Hanks’ Balanced Salt Solution (HBSS), which lacks amino acids. 566 

After 0, 24 and 48 hours, cells were processed for immunofluorescence using anti-PEX14 as a 567 

peroxisomal marker (Fig. 5C). In control cells, we observed a marked decrease in spherical peroxisomes, 568 

with often only a few organelles remaining after 48 hours in HBSS (Fig. 5C, D). As with HsPEX3(1-569 

44)-EGFP, we also observed a decrease in peroxisomes in nutrient-deprived MFF-deficient cells, which 570 

was accompanied by a significant reduction in peroxisomal length (mean peroxisomal length, 0 hours 571 

HBSS: 6.08 ± 4.90 µm, 48 hours HBSS: 1.55 ± 1.43 µm) (Fig. 5C, E). The reduction in peroxisomes 572 

was accompanied by a reduction in peroxisomal marker proteins (Fig. 5F). Peroxisomes and protein 573 

levels recovered in control and MFF-deficient cells after switching to complete culture medium for 24 574 

hours (Fig. 5C-F). Interestingly, the switch to complete growth medium resulted in the recovery of 575 



elongated peroxisomes (mean peroxisomal length, 24 hours recovery: 3.84 ± 3.40 µm) (Fig. 5E), 576 

indicating that peroxisomes in MFF-deficient fibroblasts are still dynamic under certain conditions. 577 

Overall, these data show that highly elongated peroxisomes in MFF-deficient cells are not spared from 578 

autophagic processes and are capable of being degraded.  579 



 580 



Figure 5. Degradation of peroxisomes in MFF-deficient patient fibroblasts. (A) Human control (C109) 581 

or MFF-deficient (MFFQ64*) fibroblasts were transfected with a plasmid coding for HsPEX3(1-44)-582 

EGFP to induce peroxisome degradation and processed for immunofluorescence after 24 and 48 hours 583 

using antibodies against PEX14. Note the almost complete loss of PEX14, and mistargeting of 584 

HsPEX3(1-44)-EGFP to mitochondria when peroxisomes are lost (Soukupova et al. 1999) (Suppl. Fig. 585 

S3). Scale bars, 10 µm. magnification, 2 µm (B) Quantification of HsPEX3(1-44)-EGFP expressing 586 

cells (control fibroblasts, C109; MFF-deficient, MFFQ64*) showing reduced peroxisomes after 24 and 587 

48 hours (n = 150).. ***, p < 0.001; two-tailed, unpaired t test. (C) Human control (C109) and MFF-588 

deficient fibroblasts (MFFQ64*) were incubated in Hanks’ Balanced Salt Solution (HBSS) to induce 589 

peroxisome degradation and processed for immunofluorescence after 0, 24 and 48 hours and after 24 590 

hours recovery in complete culture medium using antibodies against PEX14. Scale bars, 10 µm. (D) 591 

Quantification of the number of peroxisomes in C109 control fibroblasts following incubation in HBSS 592 

and recovery in complete culture medium (see C) [n = 62 (24h Recovery) to 139 (48h HBSS)]. ***, p 593 

< 0.001, *, p < 0.1, ns, not significant, Ordinary one-way ANOVA with Tukey’s multiple comparisons 594 

test. (E) Quantification of peroxisome length in MFFQ64* fibroblasts following 0, 48 hours of HBSS 595 

treatment, and after 24 hours of recovery in complete culture medium [n = 167 (0h HBSS) to 297 (48h 596 

HBSS)]. Data are from at least 3 independent experiments. ***, p < 0.001, Ordinary one-way ANOVA 597 

with Tukey’s multiple comparisons test. (F) Immunoblot of cell lysates from control (C109) and MFF-598 

deficient fibroblasts (MFFQ64*) which were incubated in HBSS for 0, 24, and 48 hours, and after 6 and 599 

24 hours of recovery in complete culture medium. Antibodies against the peroxisomal membrane 600 

proteins ACBD5, PEX11β and Catalase were applied. Anti-GAPDH was used as a loading control. 601 

Equal amounts of protein were loaded. Molecular mass markers (kDa) are indicated on the right.   602 



4. Discussion 603 

Whereas dysfunctional peroxisome metabolism and associated diseases are generally well studied, the 604 

consequences and pathophysiology caused by specific disruption to peroxisome dynamics and plasticity 605 

are less clear. Mutations in DRP1, MFF or PEX11β have been linked to defects in the membrane 606 

dynamics and division of peroxisomes rather than to loss of metabolic functions (Waterham et al. 2007; 607 

Shamseldin et al. 2012; Ebberink et al. 2012; Koch et al. 2016; Taylor et al. 2017; Nasca et al. 2018). 608 

This is in contrast to the classical peroxisome biogenesis disorders (e.g. Zellweger spectrum disorders) 609 

or single enzyme deficiencies and can complicate diagnosis through metabolic biomarkers. Despite 610 

considerable progress in the field, the precise molecular functions of several of the proteins regulating 611 

peroxisomal plasticity remain to be determined as well as the contribution of impaired peroxisomal 612 

dynamics to the pathophysiology of the above disorders. In line with this, depletion of PEX11β in 613 

epidermal cells was recently reported to result in abnormal mitosis and organelle inheritance, thus 614 

affecting cell fate decisions (Asare et al. 2017). As DRP1 and MFF also localise to mitochondria, and 615 

as loss of DRP1 or MFF function also inhibits mitochondrial division, focus has so far mainly been on 616 

mitochondrial properties under those conditions. Here, we assessed the extent to which peroxisomal 617 

functions and properties are altered in MFF-deficient cells. 618 

There are currently six patients with MFF-deficiency identified, with various mutations in the MFF 619 

protein shown; c.C190T:p.Q64* (Shamseldin et al. 2012); c.184dup:p.L62Pfs*13 combined with 620 

c.C892T:p.R298* (Koch et al. 2016); c.453_454del:p.E153Afs*5 (Koch et al. 2016); and most recently 621 

c.C892T:p.R298* alone (Nasca et al. 2018). Patient skin fibroblasts show a loss of MFF function with 622 

mitochondrial and peroxisomal hyper-elongation, and the patients themselves present with neurological 623 

abnormalities, showing developmental delay, peripheral neuropathy, optic atrophy, and Leigh-like 624 

encephalopathy (Shamseldin et al. 2012; Koch et al. 2016; Nasca et al. 2018). We confirmed a similar 625 

degree of peroxisomal hyper-elongation in skin fibroblasts from three different, previously 626 

characterized patients suffering from MFF-deficiency when maintained under the same culture 627 

conditions [c.C190T:p.Q64* (Shamseldin et al. 2012); c.184dup:p.L62Pfs*13 combined with 628 

c.C892T:p.R298* (Koch et al. 2016); c.453_454del:p.E153Afs*5 (Koch et al. 2016)]. Furthermore, 629 

peroxisomal biochemical parameters related to fatty acid α- and β-oxidation, plasmalogen biosynthesis, 630 

or matrix protein import/processing did not reveal any deficiencies in fibroblasts from those patients. 631 

This is in agreement with biochemical studies in other MFF-deficient patient fibroblasts (Koch et al. 632 

2016; Nasca et al. 2018). Overall, these findings support the notion that defects in the membrane 633 

dynamics and division of peroxisomes rather than loss of metabolic functions contribute to the disease 634 

pathophysiology.  635 

Similar observations in PEX11β- or DRP1-deficient cells (Waterham et al. 2007; Ebberink et al. 2012) 636 

have led to the general assumption that defects in peroxisomal dynamics and division result in elongated 637 

peroxisomes, which are, however, largely functional and otherwise normal. We now reveal in MFF-638 

deficient cells that this is not the case. We show that the elongated peroxisomes in those cells are 639 

composed of a spherical body, which represents a mature, import-competent peroxisome, and of thin, 640 

tubular extensions, which likely represent pre-peroxisomal membrane compartments; not yet fully 641 

import-competent for peroxisomal matrix proteins. An alternative interpretation may be that the tubular 642 

structures are to some degree import-competent but lack mechanisms to retain the imported matrix 643 

proteins. Such a mechanism for retaining matrix proteins may be provided by membrane constriction, 644 

which is impaired in MFF-deficient cells.  645 

These observations are consistent with the proposed multi-step maturation model of peroxisomal 646 

growth and division and with previous data on tubular membrane extensions after expression of 647 



PEX11β (Delille et al. 2010; Schrader et al. 2012, 2016). In this respect, elongated peroxisomes in MFF-648 

deficient cells resemble those observed after expression of a division-incompetent PEX11β, which also 649 

results in elongated peroxisomes with an import-competent spherical body and a pre-peroxisomal 650 

membrane expansion (Delille et al. 2010). In contrast, elongated peroxisomes in DRP1-depleted cells 651 

are constricted, with a “beads-on-a string” like appearance, and the interconnected spherical 652 

peroxisomes (“beads”) are import-competent for matrix proteins (Koch et al. 2004). These constrictions 653 

may therefore provide a mechanism to retain matrix proteins. This indicates that a defect in MFF 654 

influences peroxisome division earlier than a defect in DRP1, and results in a maturation defect of 655 

elongated peroxisomes, which are unable to constrict and to subsequently import and/or retain matrix 656 

proteins. Re-expression of MFF in the MFF-deficient fibroblasts early on results in a spot-like 657 

localization of MFF on elongated peroxisomes indicating a role for MFF in the assembly of the division 658 

machinery. In line with this, it has recently been shown that MFF can act as a sensor but also potentially 659 

as an inducer of mitochondrial constriction (Helle et al. 2017). We propose that MFF deficiency, which 660 

impairs peroxisomal membrane constriction and proper assembly of the division machinery, blocks 661 

further maturation of the pre-peroxisomal membrane compartment. 662 

This means that, although the number of fully functional peroxisomes is reduced and matrix proteins 663 

are largely restricted to the mature spherical bodies, membrane surface area and volume of the 664 

peroxisomal compartment are increased in MFF-deficient cells (mean estimated total surface area, 665 

control fibroblasts: 1.55x107 ± 7.29x106 nm2, dMFF: 1.15x108 ± 6.57x108 nm2; mean estimated total 666 

volume, control fibroblasts: 4.1x108 ± 1.94x108 nm3, dMFF 2.5x109 ± 1.45x109 nm3) (Suppl. Fig. S4), 667 

as well as the surface area to volume ratio (mean estimated SA:V, control fibroblasts: 0.038  ± 0.001, 668 

dMFF: 0.046 ± 0.005) (Suppl. Fig. S4). This likely explains why biochemical functions of elongated 669 

peroxisomes are overall normal under standard conditions. However, it can be speculated that sudden 670 

environmental changes (e.g. an increase in peroxisomal substrates via nutrients/diet or stress conditions), 671 

which require increased peroxisomal metabolic activity and number, will overwhelm the capacity of 672 

the peroxisomal compartment in MFF-deficient cells. This may also explain why mild alterations of 673 

peroxisomal metabolism are occasionally observed in patients with defects in peroxisomal dynamics 674 

and division (Waterham et al. 2007; Ebberink et al. 2012; Taylor et al. 2017). Furthermore, peroxisomes 675 

in patient cells may be less able to cope with increased expression of peroxisomal matrix enzymes or 676 

PMPs. Those may accumulate in the cytoplasm and may be degraded or mistargeted (e.g. to 677 

mitochondria) due to the reduced number of import-competent peroxisomes (Ebberink et al. 2012). 678 



 679 

Suppl. Figure S4. Calculations of peroxisomal surface area, volume, and surface area to volume ratio. 680 

(A) Values used for calculations (mean ± SD). For the non-elongated control (CT) body diameter, the 681 

value obtained from measurement of peroxisomal bodies in MFFQ64* was used. (B) Estimated total 682 

peroxisomal surface area in control (CT) and MFF-deficient (dMFF) fibroblasts, based on an average 683 

of a computer-generated population of peroxisomes using values taken from the distributions shown in 684 

A. (C) Estimated total peroxisomal volume, and (D) estimated surface area to volume ratio (SA:V). 685 

Error bars show the mean + SD for 10,000 generated peroxisome populations. ***, p < 0.001; two-686 

tailed, unpaired t test. 687 

We also show that peroxisomal matrix and membrane proteins do not distribute evenly along the 688 

elongated peroxisomes in MFF-deficient cells. Endogenous catalase or exogenously expressed GFP-689 

SKL predominantly localise to the spherical body, whereas PEX14 localises predominantly to the 690 

tubular membrane extensions. A heterogeneous distribution of peroxisomal proteins during membrane 691 

growth and division has been reported previously (Delille et al. 2010; Cepińska et al. 2011). The specific 692 

mechanisms which restrict the mobility of the peroxisomal proteins and keep them within the spherical 693 

or tubular membrane domains are still unknown, but may depend on protein oligomerization and/or a 694 

specific lipid environment. However, the prominent localisation of PEX14, a component of the 695 

docking/translocation complex for matrix protein import, to the tubular peroxisomal membranes in 696 

MFF-deficient cells is unusual. It is possible that PEX14, which has been reported to interact with 697 

microtubules (Bharti et al. 2011; Theiss et al. 2012), may also act as a peroxisome-microtubule docking 698 

factor: it predominantly localises to the peroxisomal membrane extensions in MFF patient cells and 699 

may anchor them to microtubules in order to stabilise those highly elongated, delicate membrane 700 

structures and to facilitate membrane extension. The membrane topology of PEX14 is poorly defined, 701 

but a recent study suggested that the N-terminal domain is protease-protected and may not be exposed 702 

to the cytosol (Barros-Barbosa et al. 2019). Such a topology may be inconsistent with tubulin-binding, 703 

but it is possible that different populations or complexes of PEX14 exist which may fulfil different 704 

functions at the peroxisomal membrane. 705 

Peroxisomes are oxidative organelles with important roles in cellular redox homeostasis (Fransen and 706 

Lismont 2018). Alterations in their redox metabolism have been suggested to contribute to aging and 707 



the development of chronic diseases such as neurodegeneration, diabetes, and cancer (Fransen and 708 

Lismont 2019). Using genetically encoded fluorescent sensors with ratiometric readout in live-cell 709 

approaches, we revealed alterations in the glutathione redox potential within peroxisomes of MFF-710 

deficient fibroblasts, which was less oxidising compared to controls. In addition, we detected reduced 711 

levels of peroxisomal H2O2 in these cells. Given that the peroxisomal parameters (Table 1) and catalase 712 

levels (Fig. 5F) are similar in control and MFF-deficient human fibroblasts, the possible mechanisms 713 

underlying these observations remain a subject of speculation. In this context, it is interesting to note 714 

that in a previous study in which mouse embryonic fibroblasts were cultured in medium containing 715 

1,10-phenanthroline, a Zn2+-chelating compound that induces oxidative stress and disrupts peroxisomal 716 

and mitochondrial function (Coyle et al. 2004; Jo et al. 2015), the intra-peroxisomal redox state in 717 

tubular peroxisomal compartments was observed to be slightly lower than in spherical bodies (Lismont 718 

et al. 2017). Given that (i) peroxisome-derived H2O2 can easily cross the peroxisomal membrane 719 

(Lismont et al. 2019a), and (ii) the surface to volume ratio is larger in the tubular structures, this may 720 

be explained by the fact that H2O2 can diffuse faster out of the tubular structures than out of the spherical 721 

bodies. Alternatively, as this study indicates that matrix proteins are predominantly imported into the 722 

spherical bodies and less into the peroxisomal tubules (Fig. 3; Suppl. Fig. S2), the lower values for 723 

peroxisomal redox parameters in the tubular structures may also be due to the fact that these structures 724 

contain less H2O2-producing oxidases. However, in contrast to what was observed before in cells 725 

cultured in the presence of 1,10-phenanthroline, no significant differences in the glutathione redox state 726 

or H2O2 levels could be detected between the spherical and tubular structures in MFF-deficient cells 727 

(data not shown). Importantly, the glutathione redox balance and hydrogen peroxide levels in the 728 

cytosol and mitochondria were similar to controls, indicating peroxisome-specific alterations due to 729 

loss of MFF-function. Peroxisome-derived H2O2 may be an important signalling messenger that 730 

controls cellular processes by modulating protein activity through cysteine oxidation (Fransen and 731 

Lismont 2019). However, the precise interrelationship between peroxisomal redox metabolism, cell 732 

signalling, and human disease remains to be elucidated. Further insight may come from the 733 

identification of primary targets for peroxisome-derived H2O2. We also revealed changes in the 734 

peroxisomal pH in MFF-deficient fibroblasts, which was more alkaline than in controls. The pI of most 735 

peroxisomal enzymes is basic, and consistent with this, an alkaline pH has been reported for the 736 

peroxisomal lumen (Dansen et al. 2000; van Roermund et al. 2004; Godinho and Schrader 2017). 737 

Studies addressing peroxisomal pH under disease conditions are scarce, but a more acidic peroxisomal 738 

pH has been reported in fibroblasts from patients suffering from Rhizomelic Chondrodysplasia Punctata 739 

type 1, a PBD based on a defect in the import receptor PEX7 and impaired matrix protein import of 740 

PTS2-containing cargo (Dansen et al. 2000). It remains to be determined if those changes are the result 741 

of slightly altered metabolic activity and/or changes in membrane properties which impact on 742 

peroxisomal membrane channels/transporters. In line with this, calcium influx into peroxisomes has 743 

been reported to induce a minor increase of peroxisomal pH (Lasorsa et al. 2008). Whether peroxisomes 744 

possess a proton pump is still debated, but it has been suggested that a peroxisomal proton gradient may 745 

be needed to drive other transport processes across the peroxisomal membrane (Rottensteiner and 746 

Theodoulou 2006). 747 

It is suggested that a block in peroxisome fission (e.g., due to mutations in MFF or DRP1), which results 748 

in the formation of larger, elongated organelles, may have deleterious effects on the mobility of 749 

peroxisomes, on synaptic homeostasis, and pexophagy (Schrader et al. 2014). We show here that highly 750 

elongated peroxisomes in MFF-deficient fibroblasts can be degraded by autophagic processes, which 751 

were induced by expression of a fragment of PEX3 [HsPEX3(1-44)] (Soukupova et al. 1999) or by 752 

amino acid starvation. Highly elongated mitochondria, for example, were reported to be spared from 753 

mitophagy under starvation conditions (Rambold et al. 2011; Gomes et al. 2011). Our data reveal that 754 



elongated peroxisomes are not spared from autophagic processes, e.g. due to physical limitations, and 755 

indicate that impaired peroxisome degradation may not contribute to the pathology of MFF-deficiency. 756 

However, degradation of elongated peroxisomes in MFF-deficient cells may be slower than in control 757 

cells containing predominantly spherical peroxisomes, as tubules may need to shorten/fragment prior 758 

to removal by autophagy. Interestingly, a shortening of elongated peroxisomes was observed during 759 

amino acid starvation in HBSS, which was accompanied by alterations in peroxisomal marker proteins, 760 

e.g. the PMPs ACBD5 and PEX11β, which are required for membrane expansion and elongation. 761 

PEX11β mediates membrane deformation and elongation of the peroxisomal membrane (Delille et al. 762 

2010; Opaliński et al. 2011), whereas ACBD5 has recently been shown to mediate membrane contact 763 

sites between peroxisomes and the ER by interacting with ER-resident VAP proteins (Costello et al. 764 

2017b; Hua et al. 2017). Depletion of ACBD5 (or VAP) in MFF-deficient fibroblasts resulted in a 765 

shortening of elongated peroxisomes, likely due to disruption of the peroxisome-ER contact sites and 766 

reduced transfer of lipids from the ER to peroxisomes, which are required for peroxisomal membrane 767 

expansion (Costello et al. 2017b; Schrader et al. 2019). Our findings are in line with these previous 768 

observations and indicate that elongated peroxisomes in MFF-deficient cells are not fully static, but still 769 

dynamic under certain conditions. It is possible that a shortening/fragmentation of elongated 770 

peroxisomes under conditions of amino acid starvation facilitates their subsequent removal by 771 

autophagy. 772 

Mitochondrial and peroxisomal dynamics are particularly important for brain development and function 773 

(Berger et al. 2016; Khacho and Slack 2018), likely explaining why MFF-deficient patients show 774 

primarily neurological defects. In contrast to the more prevalent neurological features in human patients 775 

with MFF-deficiency, mice without MFF die of heart failure at week 13, as a result of severe 776 

cardiomyopathy, which is likely based on mitochondrial alterations (Chen et al. 2015). However, 777 

removal of MFF exacerbated neuronal loss, astrogliosis and neuroinflammation in a Huntington's 778 

disease mouse model (Cha et al. 2018). Similar to patient fibroblasts, peroxisomes (and mitochondria) 779 

in MFF-deficient mouse embryonic fibroblasts were highly elongated (Chen et al. 2015). Interestingly, 780 

peroxisomal length was not substantially altered in MFF-deficient mouse cardiomyocytes (Chen et al. 781 

2015). This strongly indicates that peroxisome morphology and division is affected in a cell type-782 

specific manner.  783 

We recently developed a mathematical model to explain and predict alterations in peroxisome 784 

morphology and dynamics in health and disease conditions (Castro et al. 2018). In this stochastic, 785 

population‐based modelling approach, each individual peroxisome consists of a spherical body with an 786 

optional cylindrical elongation. Peroxisome shape (i.e. the body radius and elongation length) are 787 

determined by (i) membrane lipid flow into the body (e.g., from the ER) (governed by rate α and lipid 788 

flow constant γ), (ii) elongation growth (governed by speed v and minimum body radius rmin) and (iii) 789 

peroxisome division with a rate proportional to the elongation length (governed by rate β and minimum 790 

length Lmin). Peroxisome turnover is controlled by the peroxisome mean lifetime τ. We recently 791 

demonstrated that this model is applicable to a range of experimental and disease conditions, e.g. loss 792 

of PEX5 in Zellweger spectrum disorders (Castro et al. 2018). With wild-type parameters, peroxisomes 793 

in the model are typically high in number, with only a low percentage showing elongations, all of which 794 

are short (Fig. 6A). The morphological alterations of peroxisomes in MFF-deficient fibroblasts that we 795 

have observed experimentally are captured by changing only one parameter, namely by reducing the 796 

division rate β to almost zero (Fig. 6B). As the membrane lipid flow rate and elongation growth speed 797 

remain unchanged, this results in reduced numbers of peroxisomes with significantly longer membrane 798 

elongations (Fig. 6D, E). The observation that control fibroblasts display large numbers of small, 799 

spherical peroxisomes, but turn into few, extremely elongated organelles upon blocking of peroxisomal 800 



division, indicates that membrane lipid flow rate, elongation growth speed and division rate must be 801 

high in fibroblasts under normal conditions. In contrast, low membrane lipid flow rate or elongation 802 

speed in other cell types may result in a population of small peroxisomes and reduced numbers. This is 803 

reflected by depletion of ACBD5, which impacts on peroxisome-ER tethering and membrane expansion, 804 

resulting in shorter peroxisomes in MFF-deficient cells (Costello et al. 2017b). This morphological 805 

change can also be captured in the model by reducing the lipid flow rate α in addition to the division 806 

rate β (Fig. 6C-E). It is thus likely that peroxisome morphology is differently affected in various cell 807 

types in MFF-deficient patients. It should also be considered that environmental changes and related 808 

signalling events that trigger peroxisomal membrane expansion and division (e.g. metabolic alterations 809 

and certain stress conditions) can potentially promote the formation of hyper-elongated peroxisomes in 810 

formerly unaffected cell types and contribute to the pathophysiology of MFF-deficiency. 811 

 812 

 813 

Figure 6. A mathematical model of peroxisome morphology and dynamics in wild-type and MFF-814 

deficient patient fibroblasts. (A) Snapshot of model simulation for wild-type cells at t = 300 hours 815 

(α = 100 nm2/s, β = 2 × 10−5/nm/s, v = 0.3 nm/s, τ = 4 × 105 s, γ = 2.5 × 10−7/nm2). (B) Snapshot of model 816 

simulation of MFF-deficient cells (dMFF) at t = 300 hours (α = 100 nm2/s, β = 2 × 10−15/nm/s, 817 

v = 0.3 nm/s, τ = 4 × 105 s, γ = 2.5 × 10−7/nm2). (C) Snapshot of model simulation of MFF-deficient cells 818 

with reduced lipid flow to simulate silencing of ACBD5 (siA5) at t = 300 hours (α = 5 nm2/s, 819 

β = 2 × 10−15/nm/s, v = 0.3 nm/s, τ = 4 × 105 s, γ = 2.5 × 10−7/nm2). (D) Average peroxisome number at t 820 

= 300 hours of simulations shown in A-C, represented as percentages relative to WT (n = 100). (E) 821 

Average non-zero peroxisome elongation length at t = 300 hours of simulations shown in A-C, 822 

represented as percentages relative to WT (n = 100). Scale bars, 1 µm.  823 
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