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Abstract

Crime is a major threat to society’s well-being but lacks a statistical characterization
that could lead to uncovering some of its underlying mechanisms. Evidence of nonlinear
scaling of urban indicators in cities, such as wages and serious crime, has motivated the
understanding of cities as complex systems—a perspective that offers insights into
resources limits and sustainability, but that usually neglects details of the indicators
themselves. Notably, since the nineteenth century, criminal activities have been known
to occur unevenly within a city; crime concentrates in such way that most of the
offenses take place in few regions of the city. Though confirmed by different studies, this
concentration lacks broad analyses on its characteristics which hinders not only the
comprehension of crime dynamics but also the proposal of sounding counter-measures.
Here, we developed a framework to characterize crime concentration which divides cities
into regions with the same population size. We used disaggregated criminal data from
25 locations in the U.S. and the U.K., spanning from 2 to 15 years of longitudinal data.
Our results confirmed that crime concentrates regardless of city and revealed that the
level of concentration does not scale with city size. We found that the distribution of
crime in a city can be approximated by a power-law distribution with exponent α that
depends on the type of crime. In particular, our results showed that thefts tend to
concentrate more than robberies, and robberies more than burglaries. Though criminal
activities present regularities of concentration, we found that criminal ranks have the
tendency to change continuously over time—features that support the perspective of
crime as a complex system and demand analyses and evolving urban policies covering
the city as a whole.

Introduction 1

Cities are the fundamental drivers of human societies; their capability to bring 2

individuals together fosters innovation, wealth creation, and economic growth, but 3

unfortunately they suffer from problems such as pollution, disease spread, and more 4

pervasively, crime. Yet, even though crime is a danger to the development of cities, and 5

counter-measures are greatly desired, we still fail to understand its structure and 6

dynamics [1, 2]. Notably, the interconnected dimensions in cities, such as social and 7

infrastructural, coupled with their natural dynamics, requires an understanding of cities 8

not as static objects or locations but as complex systems [3, 4]. This point of view has 9

provided the means to comprehend the growth of cities and its impact on urban 10

indicators, such as employment, patent, wage, and crime [5–15]. Still, only a few studies 11

have taken into account the intricacies of these indicators when analyzing allometric 12
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relationships of cities [13–16]. For almost two centuries, however, crime in cities has 13

been known to be unevenly distributed [17,18]. Criminal events concentrate in such way 14

that most of the offenses happen in very few regions [19]. Still, this aspect of crime has 15

never been objectively characterized, albeit confirmed in different locations. Such 16

characterization has the potential to help researchers to create realistic models of crime 17

and to present the grounds to understand the impact of local activities on global 18

patterns of cities. 19

The very notion of a city bringing people together to interact comprises the idea of 20

emergence of self-organized coordination derived from local activities [20–23]. Despite 21

the apparent individual disorder in the decisions and processes at local levels, cities 22

exhibit several regularities that are argued to be a result of the need to expand and to 23

develop [4, 23–32]. These findings support the perspective of cities as complex systems 24

and have helped to understand various aspects of cities [6–11]. Several urban indicators 25

have been found to scale with the population size N of the city according to a law of 26

the form: 27

Y ∝ Nβ , (1)

where the exponent β relates to the class of the indicator [6]. For aspects associated 28

with infrastructure (e.g., roads, gasoline stations), the quantities scale sub-linearly, 29

while sociological dimensions, such as innovation, wealth, or crime, present superlinear 30

scalings—though the scaling depends on the city definition and the model for Pr(Y |N) 31

(see S1 Text) [33–35]. In the case of sublinear scalings, cities utilize resources more 32

efficiently as they grow, while superlinear relationships imply more accumulation in 33

larger cities. The superlinear scaling is claimed to be associated with population density 34

and human interactions in cities [8–11]. As individuals meet in space and time, simple 35

principles on the formation of ties can explain the existence of regularities in urban 36

indicators, despite idiosyncrasies of each city [8]. Such models and analyses disregard, 37

however, details of urban indicators such as variations across the city, likely due to the 38

lack of high-granularity data. Still, social media and mobile phone data have been used 39

to demonstrate that human interactions scale super-linearly with city size while the 40

probability 〈pc〉 that two peers of an individual interact presents scale-invariance with 41

〈pc〉 ≈ 0.25 [14,16]. Such features imply an efficient spreading processes in the social 42

network when cities grow and suggest the emergence of regularities in urban indicators 43

as an outcome of patterns in human interactions [14]. 44

Accordingly, human dynamics also play a major role in criminal activities, which are 45

likely to drive patterns in crime activity [2, 36–38]. In fact, empirical evidence has 46

shown that crime presents a remarkable regularity of concentration in several 47

dimensions that relate to context (e.g., target, location, offender) and to features (e.g., 48

spatial, temporal, type of crime) [39]. In particular, the spatial concentration of crime 49

exists in such way that, regardless of granularity level, some areas have 50

disproportionately more crime than others—popularly called hotspots [19]. The 51

phenomenon has been confirmed in different cities using various spatial aggregation 52

units including street and area level (e.g., street segments, census tracts, blocks) [40–42]. 53

Such ubiquity motivated the proposition of the law of crime concentration which states 54

that a small number of micro-geographic units account for most of the offenses in a 55

neighborhood or city [19]. Yet, the use of distinct approaches to aggregate criminal 56

events hinders an objective definition of crime concentration—though necessary to 57

confirm the existence of the phenomenon. Even when the same type of aggregation unit 58

is used, analyses might be biased due to particularities in the units of the cities (e.g., 59

street segments). The lack of a more general framework for analyzing the spatial 60

distribution of offenses prevents the general characterization of crime concentration. 61

Such framework enables the examination of allometric scaling in cities regarding the 62

clustering of crime and its dynamics as well as to assess signatures in different types of 63
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crime. The characterization of crime concentration paves the way for unveiling the very 64

mechanisms that underlie the phenomenon in cities. Yet, an unbiased assessment of any 65

regularity in crime needs to consider the relationship between population and crime, 66

and thus an ideal framework must employ aggregation units that take into account the 67

population in each unit [6, 12,43–45]. 68

Here we develop a framework to assess the distribution of criminal activities in cities 69

by dividing the area of a city in regions with equal population size and aggregating 70

offenses that happened within the same regions. This general framework allows us to 71

perform a comprehensive analysis on the allometric relationship between crime 72

distribution and city population. We examined criminal data from locations in the 73

United States and the United Kingdom, and found that not only crime concentrates 74

regardless of city, but also population size does not have influence on the levels of 75

concentration—despite the relationship between crime and total population. Crime 76

concentration manifests in the probability distribution of crime across a city which can 77

be described by a power law 78

p(x) ∝ x−α (2)

where the exponent α relates to the type of crime. From the perspective of cities as 79

complex systems, our results indicate cities, and thus crime, growing in such a way to 80

maintain concentration of crime. To evaluate the dynamics of crime we measured the 81

entropies of the ranks of criminal regions in the cities. We found that the certainty 82

about the region in a position of the rank decreases exponentially with the position 83

rank, which implies that we have only confidence about few of the most criminal regions 84

of a city. The high fluctuation of crime across the city suggests that crime in cities is 85

not in a state of equilibrium, despite the regularity in the concentration of offenses; such 86

features support the viewpoint of crime as a complex system. This perspective 87

encourages crime analyses that cover the whole city, instead of the focus on criminal hot 88

spots. Our work sheds light on the challenges posed by the increasing number of people 89

in cities which demands strategies towards sustainable development. 90

Results 91

Our analysis of crime concentration is based on official disaggregated data sets of 92

criminal occurrences from locations of different population size from the United States 93

and the United Kingdom, summarized in Table 1. The basic information in these data 94

sets includes the place where the offense occurred, the date when it happened, and the 95

type of crime (e.g., burglary, theft, robbery). Here we assess spatial concentration of 96

crime across cities considering the regularities with respect to the concentration itself 97

and its dynamics. 98

Characterizing crime concentration in cities 99

We divided each city in regions with the same population size and analyzed the 100

distribution of the number offenses that occurred within each region. When dividing a 101

region in areas with the same population size, it is important to understand that there 102

are a very large possible number of divisions. Hence, for each city c we first generated 103

30 arrangements in which each comprises of Rc same-population divisions of the 104

city (see Methods), then aggregated the occurrences of crime by type of crime such as 105

theft, burglary, and robbery; the aggregation was done for each arrangement. Such 106

procedure provides us a generalized approach to assess the distribution of crime in a city 107

by examining the amount of occurrences across regions. For instance, the Lorenz curves 108

of crimes in Chicago, depicted in Fig 1A, show that the distribution of crime in the city 109

seems not only to concentrate but also to present different levels of concentration that 110
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Table 1. Official disaggregated data sets of offenses in different locations in the U.S. and the U.K.

United States (cities)
Population Period #Records Population Period #Records

Atlanta/GA 447, 841 2009–2015 241, 070 Los Angeles/CA 3, 928, 864 2012–2015 944, 039
Baltimore/MD 622, 104 2011–2015 261, 446 New York/NY 8, 550, 405 2006–2015 1, 123, 466
Baton Rouge/LA 229, 426 2011–2015 803, 934 Philadelphia/PA 1, 567, 442 2006–2015 747, 743
Boston/MA 645, 966 2012–2015 268, 057 Portland/OR 609, 456 2004–2014 649, 349
Chattanooga/TN 173, 366 2011–2012 155, 241 Raleigh/NC 431, 746 2005–2015 492, 899
Chicago/IL 2, 695, 598 2001–2015 6, 000, 707 San Francisco/CA 837, 442 2003–2015 1, 856, 293
Dallas/TX 1, 258, 000 2014–2015 161, 998 Santa Monica/CA 92, 472 2006–2015 92, 456
Denver/CO 649, 495 2011–2015 366, 352 Seattle/WA 652, 405 2008–2015 610, 079
Hartford/CT 125, 017 2005–2015 516, 043 St. Louis/MO 318, 416 2008–2015 301, 713
Kansas City/MO 467, 007 2009–2015 2, 679, 336
United Kingdom (police forces)

Population Period #Records Population Period #Records
Cleveland 566, 740 2011–2015 446, 625 Leicestershire 1, 005, 558 2011–2015 439, 950
Metropolitan 8, 538, 689 2011–2015 5, 377, 392 North Wales 687, 937 2011–2015 330, 527
Greater Manchester 2, 732, 854 2011–2015 1, 701, 428 West Yorkshire 2, 264, 329 2011–2015 1, 337, 565

See S1 Text for preprocessing and sources.

depend on the type of crime. In fact, as shown in Fig 1B, all considered cities appear to 111

exhibit similar patterns: thefts concentrate more than robberies, and robberies 112

concentrate more than burglaries. 113

To assess the regularities in the concentration of crime, we fit the distribution of 114

crime in each arrangement with the following distributions: power law, truncated power 115

law, lognormal, exponential, and stretched exponential; and then compare them using 116

the likelihood ratio test [46]. For each arrangement, we tested the plausibility of the 117

power law to describe the crime distribution and compare the fits against the 118

alternatives. We performed this procedure on all arrangement for all types of crime in all 119

considered cities in order to give a score to each model for each city–crime pair. In most 120

of the data sets, we found moderate support to the power-law distribution; from the 75 121

city–crime pairs, the truncated power law was favored only in 4 cities when taking into 122

account thefts, 5 in the case of robberies, and 2 cities for burglary data (details in S1 123

Text). By analyzing the estimated α of the pure power-law fits, we found that the 124

Fig 1. Different types of criminal activities present distinct levels of
concentration in cities. (A) The Lorenz curves of the distributions of crime in the
regions of Chicago reveal higher tendency of concentration in the case of thefts than in
robberies and burglaries, a tendency that (B) seems to occur systematically in all
considered cities: theft concentrates more than robbery, and robbery more than
burglary. The difference between these types of crime manifests itself in their respective
estimated complementary cumulative distribution. For instance, (C) the probability of a
place with high rate of burglaries in Chicago decays almost as fast as an exponential
with λ = 0.11, while the curve for thefts follows approximately a power-law with
α = 2.44 which decays slowly and allows the existence of places with high number of
thefts. Such pattern of concentration occurs similarly (D) in the other cities (circles,
squares, and diamonds, are the means from each set of arrangements) in which the
exponents for theft seem to be well-behaved in the interval [2, 3], whereas robbery and
burglary have wider ranges (actual values are found in S1 Text), as depicted by the
density estimation (KDE using Gaussian basis with h = 0.2).
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exponent value relates to the type of crime. For instance, the estimated exponents of 125

the power law for the distribution of crime in Chicago (Fig 1C) yield αt ≈ 2.44 for theft, 126

αr ≈ 3.31 for robbery, and αb ≈ 5.45 for burglary—in agreement with the Lorenz curves 127

given that higher values for α imply lower likelihood of concentrated criminal spots. 128

Our results revealed that different types of crime present distinct levels of concentration 129

which manifests on the range of the power-law exponent: αt is between 2.1 and 3.0; 130

whereas the exponents for burglaries αb and robberies αr vary in wider ranges with αr 131

within 2.4 and 4.1, and αb between 2.9 and 6.0 (see Fig 1D). Note that, in some data 132

sets from the ones that exhibit large α values, we found that the exponential and 133

power-law distributions are both good descriptions of the data, albeit the power law 134

describing better crime distribution when small α values (see S1 Text). The distinct 135

exponent intervals are plausibly due to particularities in the dynamics of each type of 136

crime. The well-behaved interval of αt suggests independence of the dynamics of theft 137

from the idiosyncrasies of the cities; whereas the high variance of αr and αb suggests a 138

dependency on the characteristics of the city, such as city layout, demographics. Despite 139

the differences between exponents, our results showed that αt ≤ αr ≤ αb in all the cities 140

with the exceptions of Santa Monica (αr < αt), Baton Rouge and Atlanta (αb < αr). 141

Though the regions in the cities have the same population size, the distributions of 142

crime in the regions are highly skewed and depend on crime type. 143

The allometric scaling of crime in cities suggests, however, a similar relationship 144

between the concentration of crime and population size. To examine the relationship we 145

evaluate the statistical dependence between city size and the distribution of crime across 146

the city. We employ the Hoeffding’s test of independence H between the population size 147

of the cities and the average power-law exponent α. We here analyze the U.S. urban 148

system and thus use the census data from the considered U.S. cities and the estimated 149

power-law exponents found for each type of crime in the city (see Fig 2). From our 150

experiments, we could not reject the hypothesis that the size of the city and the level of 151

crime concentration are independent with the 95% confidence. The disassociation found 152

between the distribution of crime and the system size indicates crime concentration as 153

an attribute of criminal phenomena which occurs regardless of the population size of the 154

city; that is, not only crime concentrates, but also this concentration is not related to 155

the size of the city, despite the existence of population and crime relationship. 156

The entropy of crime concentration 157

To assess the dynamics of crime, we measure the entropy of the positions in the rank of 158

criminal spots over time. We thus divide each data set in temporal intervals using two 159

procedures: amount-based and time-based. In the former, data is aggregated every aw 160

records; whereas the latter aggregates data every tw days. The two approaches are used 161

to take into account possible discrepancies in crime dynamics due to the existence of 162

cities with high and low crime rates. To analyze the relative variation of crime in a 163

Fig 2. The size of the city lacks influence on the level of crime
concentration. Though the growth of a city implies an increase in crime rates, the
spatial concentration of offenses seems to be independent of the population size of the
city. To test this, we employed Hoeffding’s independence test from which we could not
reject the hypothesis that population size and the exponent of the power-law fit of the
crime distribution are independent. In the case of thefts, the well-behaved α exponent
suggests scale invariance, while robberies and burglaries seem to be more sensible to the
cities, albeit uncorrelated with city size. In the double-y-axes plots, squares indicate the
total number of offenses in a city during a year; while diamonds represent the average
power-law exponent for a city.
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given city, we first rank its regions by the amount of crime using each instance of 164

aggregation w that is created by the amount-based and time-based approaches, which 165

results in the ranks rwa and rwt . The instances of the ranks over time allow us to 166

measure the entropy of the position i in the rank as Hc
r (i) = −

∑Rc

s=1 pi(s) log pi(s) 167

where pi(s) is the probability that the region s is in the ith position of the rank r of the 168

city c (see S1 Text). Here we separately evaluated Hc
ra and Hc

rt for the ranks ra and rt 169

of each considered city and type of crime. We used two-years data to enable us to 170

compare the considered cities given that the smallest longest temporal interval of data 171

among all cities is two years. In the case of rt, we aggregated data every tw = 7 which 172

allows us to capture weekly variation and guarantees enough number of instances of 173

aggregation to calculate the probabilities. For the amount-based approach, we 174

constructed ra for each city by aggregating every aw = acw records, where acw is the 175

value at which the entropy stabilizes on a minimum value (see Fig 3A). 176

We found that most positions in both ranks tend to have high entropy with sample 177

means H̄r =
∑
c

∑
iH

c
r (i)/Rc/N among the cities for thefts H̄ra = 0.98 and H̄rt = 0.97, 178

H̄ra = 0.99 and H̄rt = 0.95 for burglaries, and H̄ra = 0.98 and H̄rt = 0.96 for robberies, 179

which indicates that criminal spots are likely to vary across regions over time (see 180

Fig 3B and Fig 3E). Still, the first positions in the rank present distinct dynamics with 181

the entropy H(i) of a position i in both ranks increasing quickly with the position i 182

which means that the most criminal places have the tendency to be the same regions. In 183

particular, our results revealed that the rank of thefts present lower entropy in the first 184

rank positions in comparison to the other types of crime, and we found that H(i) 185

reaches its highest value when i > 10 for rt, as seen in Fig 3D for some cities, and when 186

i > 15 for ra. In other words, we have more certainty about the whereabouts of the 187

hottest spots of theft than the hottest spots of robbery and burglary. Similarly, our 188

results showed that the regions with few number of crime are usually the same ones. As 189

depicted in Fig 3C and Fig 3F, the entropy rapidly increases with position of the rank, 190

reaching the peak of uncertainty, then the values decrease to a range of positions with 191

steady entropy. In order to examine this steady range, we analyzed ranks that are 192

constructed with stable and unstable sorting algorithms. The rationale here is to 193

evaluate the influence of ties in the rank on the entropy: unstable sorting gives different 194

ranks in the case of ties and thus increasing the entropy of the positions. We found that 195

unstable ranks result in non-decreasing entropy, which implies that the steady entropy 196

range is due to ties in the rank. The drops in the curves are due to regions with similar 197

number of crime over time, a behavior also observed in the other types of 198

crime (see Fig 4A-B). Still, the values of the entropies decrease to zero in the last 199

positions of the rank, which represent regions where crime was never recorded. Note 200

that this procedure can help us to identify categories of regions in the city with respect 201

Fig 3. Crime moves across the regions in the cities. Though criminal activities
exhibit regularities in their spatial concentration, the relative amount of crime in the
regions of the city changes continuously over time. For that, we calculated the Shannon
entropy of the positions in the criminal ranks of regions rt and ra which are created
using the number of offenses aggregated by time and by total amount of crime,
respectively. In the case of ra, we used data slices of size that (A) minimizes the entropy
of the first position of the rank in order to measure (B–C) the entropies of the positions
in the rank for all considered U.S. cities. For the time-based rank, weekly data allowed
us to measure (D–F) the entropies with respect to time. The overall high entropy in the
positions of both rank indicates that crime is likely to fluctuate across the city, leading
to uncertainty about the regions in the rank; still, the most criminal regions have the
tendency to be the same ones.
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to the dynamics of crime. 202

Not only categories of regions, we also found categories of cities. The curves of Hrt 203

seen in Fig 3D suggest that some cities present similar dynamics in the hottest spots of 204

theft. To examine such similarities, we employed hierarchical clustering for building 205

clusters of cities according to their ranks; we used the entropies of the first 20 positions 206

in their rank as feature vector for each city (see S1 Text). Our results revealed three 207

distinct groups in which cities have (i) stable hottest spot (e.g., Los Angeles, Hartford), 208

(ii) stable hot spots (e.g., Chicago, Atlanta), and (iii) less stable hot spots (e.g., Dallas, 209

Seattle), as illustrated in Fig 4C. Such categories arise from the signatures in the 210

dynamics of criminal regions in cities and describe the relative crime mobility in a city 211

(i.e., changes in the ranks). Though criminal activities concentrate regardless of city, 212

crime continuously flows across the city, and some cities present similar dynamics in the 213

most criminal regions. 214

Discussion 215

Crime is ubiquitous in cities but still needs quantitative understanding. To characterize 216

crime in cities, we examined criminal activities in 25 locations from two different 217

countries using longitudinal data sets spanning 2 to 15 years. We developed a method 218

to assess the spatial concentration of crime which divides a city in regions based on the 219

resident population; then analyzed the distribution of crime in the regions. In all 220

considered cities, we were able to confirm previous studies and identified that offenses 221

take place in few regions of a city. Here we performed a comprehensive statistical 222

characterization of the phenomenon in cities and showed that not only crime 223

concentrates but also presents concentration level that depends on the type of crime and 224

exhibits independence of the size of the city—despite the relationship between 225

population and number of crimes. Yet, though cities have such regularity in the 226

concentration of crime, our results revealed that criminal ranks in the cities have the 227

tendency to change over time. 228

The regularities in concentration of crime coupled with the constant displacement of 229

crime suggest an understanding of crime as a complex system. Criminal activities flow 230

continuously across the city while maintaining the organization of the system in such 231

way that its dynamics and regularities appear to be scale-invariant. Different types of 232

crime exhibit particular dynamics that lead to distinct levels of concentration and 233

allometric scaling laws. Our results revealed thefts presenting a well-behaved 234

concentration over cities which indicates invariance with city size and with 235

idiosyncrasies of cities; while burglaries and robberies are more dependent of the city. 236

Fig 4. The categories of criminal regions and the categories of crime
dynamics in cities. The entropy in the ranks of a given city (A–B) increases rapidly
with position, reaching a peak in which the uncertainty about the regions in this
interval of positions is the highest for the particular city. After this range of minimal
information, the entropy drops to an interval of steady entropy, then finally decreases to
zero entropy. The intervals of increasing, highest, and steady, can be seen as different
categories of regions in the criminal ranks. The steady-entropy positions vanish when
the ranks are created with unstable sorting algorithms, which means that these
positions hold criminal regions with similar number of offenses. Not only regions, but
also (C) some cities present similar dynamics of crime—as also seen in Fig 3D. Cities
group together in three distinct categories with respect to dynamics of theft: stable
hottest spot, stable hot spots, and less stable hot spots. Here we used hierarchical
clustering with Euclidean distance and define 0.5 as the threshold to segment clusters.
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These findings are particularly intriguing in light of the superlinear scaling found in 237

thefts in contrast to the linearity in burglaries—though we are still in need of more 238

conclusive analyses on the scaling laws of robberies (see S1 Text). Such regularities in 239

crime concentration might be linked to the way crime scales in cities. 240

The characterization of crime paves the way for a better understanding of crime 241

dynamics and provides the means to create and validate models. Though the proposal 242

of a generative mechanism is beyond the scope of the present study, our framework can 243

be employed for modeling given its implicit network of regions which can be used to 244

represent a city. A theory or model attempting to explain this complex phenomenon 245

have to conform to the skewed distribution of crime and the existence of distinct 246

concentrations of offenses for different types of crime. For instance, models for burglary 247

are expected to be more dependent on features of the city such as layout of the streets 248

or demographics. One should not conclude that we argue for any universality of power 249

laws here, but instead we present statistical characteristics in criminal activities which 250

we systematically found in different locations [47]. 251

The perspective of crime as a complex system demands analyses that need to cover 252

the system as a whole in order to assess crime. The connectedness of the city suggests 253

that one should resist to neglect the “cold” areas by studying solely the hotspots of 254

crime. Moreover, our results suggest that areas of high concentration of crime are 255

expected to exist as the city grows—finding that urges for proper government policies. 256

Still, the notion of the city as a process implies that developing static policies is likely to 257

fail and, as such, policy-makers should pursue evolving strategies based on real-time 258

data [48]. Urban planners may take advantage of our framework to analyze different 259

types of criminal regions and categories of crime dynamics. Such objective analyses of 260

the city have the potential to assist sustainable urban development, not only regarding 261

crime, but also with respect to other demographics. 262

Methods 263

Data sources 264

Since police departments employ different nomenclature for types of crime as well as 265

different subcategory of offenses, we preprocessed the records in order to group together 266

thefts, burglaries, and robberies (as described in S1 Text). For the spatial analysis, we 267

considered the bounding box of the U.S. cities and the jurisdiction of the U.K. 268

constabularies. In the case of the temporal analysis, we analyzed only the U.S. cities 269

because the U.K. data include solely the month when offenses occurred. The sources for 270

all the criminal data sets and census bases are further described in S1 Text. 271

Splitting cities 272

To split a city in regions with same population size, we use census data in order to build 273

a graph with nodes that represents roughly the same number of people and divide this 274

graph in R partitions. To construct the graph, a set si of pi random coordinates is 275

created for each census block bi of a place L, where pi is the number of people in bi and 276

each x–y coordinate is uniformly generated within the geographical shape of the block. 277

The nodes of the graph are created based on the cells of each Voronoi diagram vi that is 278

constructed from each si, and the edges between nodes exist if their respective cells are 279

neighbors of each other. Finally, this graph can be partitioned using a graph 280

partitioning algorithm in order to generate regions (i.e., partitions) with approximately 281

the same population size [49]. Still, to properly analyze crime in a given city c with this 282

method, a value for Rc has to be chosen to allow us to examine crime distribution. In 283
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all data sets we analyzed, we found that the number of regions that contains at least 284

one offense Rn≥1 increases with the total number of regions R, until Rn≥1 saturates at 285

a point Rn≥1(ru) = u in which new regions do not have any crime occurring within 286

them. A plausible reason for such behavior is the accuracy level used in police offices as 287

offenses are registered in the criminal systems. In order not to bias our results with any 288

particularity of such procedures, we have to set Rc = ρru with ρ lesser than the unit 289

and sufficiently high to avoid any averaging problem [50], thus for all data sets we 290

define ρ = 0.9 (see S1 Text). 291

Supporting Information 292

S1 Text. Supplementary Material. 293
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