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Abstract Game theory and its application in multi-agent systems continues to at-
tract a considerable number of scientists and researchers around the globe. More-
over, the need for distributed resource allocation is increasing at a high pace and
multi-agent systems are known to be suitable to deal with these problems. In this
chapter, we investigate the presence of multiple resources in minority games where
each resource can be given a weight (importance). In this context, we investigate
different settings of the parameters and how they change the results of the game.
In spite of some previous works on multi-resource minority games, we explain why
they should be referred as multi-option games. Through exploring various scenarios
of multi-resource situations, we take into account two important issues: (i) degree
of freedom to choose strategy, and (ii) the effect of resource capacity on the differ-
ent evaluation criteria. Besides, we introduce a new criterion named resource usage
to understand the behavior of the system and the performance of agents in utiliz-
ing each resource. We find that although using a single strategy may involve less
computation, using different strategies is more effective when employing multiple
resources simultaneously. In addition, we investigate the system behavior as the im-
portance of resources are different; we find that by adjusting the weight of resources,
it is possible to attract agents towards a particular resource.
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1 Introduction

With the expansion of computer systems, the need for distributed resources seems
to be a vital issue. Therefore, we need an effective resource allocation system that
preferably meets two important requirements: simplicity and distribution. From a
different point of view, we have the concept of intelligent agents. If a system em-
ploys several agents to reach its goal, it is called a Multi-agent System (MAS) [21].
Given that agents in a multi-agent systems can be designed to coordinate or even
compete with each other, they are suitable for use in distributed scenarios. There-
fore, a resource allocation problem could involve intelligent agents with bounded
rationality competing for limited resources [[15]]. These scenarios exist across count-
less disciplines. For example, sellers and buyers can be considered as agents who
complete on price of items on a market. Moreover, animals can be observed as
agents that are competing on their territories. In fact, these are some typical ex-
ample of complex adaptive systems with self-organizing agents whose behaviors
dynamically adapt over time [[18]]. It is arduous to model numerous different scenar-
ios of resource allocation problems, and this makes it challenging for determining
the best approach to solve them.

Latterly, the minority game has been adopted as an effective model for resource
allocation using inductive reasoning [15]. We believe the literature has been incor-
rectly proposing multi-option games as multi-resources. In Section 2] we clarify this
issue in more details.

1.1 The Minority Game

Back 1994, Arthur [[1] introduced a resource allocation model, the EI Farol Bar
problem, that paved the way for the minority game. In the El Farol bar problem,
there are a number of people who want to enjoy their evening in a bar. The bar
has a limited capacity, so if people go to an overcrowded bar, they cannot enjoy
their evening, and the ones who stay at home will have a better evening. Two years
after the introduction of El Farol Bar problem, challet and zhang [[6] mathematically
modeled El Farol bar problem. They assumed that a population of N agents want to
use a resource and the capacity of the resource is half of the population. The agents
have two options: to go or not to go. If agents end up to an option chosen by less
than half of the population, they they are winners. Agents should try to be in the
winner group using the previous outcome of the game and their best strategy for
each round of the game.

Agents pick their favorite choice with respect to their best strategy. An strategy
is a mapping table from the last m outcome of the game to a decision in a round
of the game. The last m outcome is also called the history of the game which is
global in a traditional classic minority game. There are 2™ possible inputs for a
strategy and 22" possible strategies. Agents reward their strategy if it leads them in
the minority group of the previous round of the game, otherwise, the strategy loses
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points. Before choosing the best strategy in each round, agents sort their strategies
based on the scores they could received.

At the end of each round, the outcome of the game is determined based on the mi-
nority rule. Consequently, winning agents are given points and the losers are taken
points according to a prize-to-fine ratio. The individual strategies of the agents are
reinforced in this manner as well. This payoff process is the essence of learning in
the minority game, whereas agents receive feedback from environment and adjust
their strategies’ scores in order to detect the best strategy. Finally, the outcome of
the game constructs the global memory. The game is normally repeated for a cer-
tain number of iterations. The system containing this game is preferred to have the
agents’ attendance close to the capacity of the resource and agents have won almost
50% of the rounds [12].

1.2 Evaluation Criteria

In order to understand the behavior of a minority game we can make use of sev-
eral evaluation criteria. The conventional criteria used in the literature include at-
tendance, variance, and winning rate. Attendance A(f) is a measure of how many
agents chose to attend a resource in " iteration [13]. Usually, attendance rates are
measured over many iterations. Since there is a reinforcement process for agents, the
simulation should end to a state with low attendance fluctuation around the resource
capacity which is considered as the threshold for the minority rule.

The variance of attendance rates are used to measure the stability of resource
attendance [[15]. Low variance is indicative of a stable attendance rate, while high
variance is a sign of volatility. The trends in variance for complete simulations are
often plotted against different memory sizes. Many works use the value called o
(a function of memory size, calculated as o« = 2" /N) to express the dynamics of
the attendance rate variance (as shown in Figure [I). The figure demonstrates the
existence of memory sizes optimal for minimizing the variance for different agent
population sizes. The figure also shows that after a certain value of ¢, increasing the
memory size does not decrease the variance.

Another important criterion in minority games is the winning rate defined as a
ratio between the number of times the agent was in the minority for a resource (a
win) and the total number of game iterations. When resource allocation is efficient
and resource capacity is 50% of the population size, winning rates among the agents
would be almost 50% of the population.

The above metrics are some of the most important criteria for the minority game
according to the standard literature [7 [13]], but how can one claim that a resource
has been utilized effectively in a game or during some iterations? In our study, we
want to take into account the general concept of resource usage (8l 9] to analyze
system behavior. If the number of participants in a resource is less than the resource
capacity, the resource is being used effectively. Consequently, the agents that use
the under-crowded resource are the winner of game. For more illustrations, we ex-
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Fig. 1: Association of o> and alpha for the classic minority game, N =
101,501,701,1001, s = 6, t = 1000, resource capacity = 500.

plain an example of a computer system in which some processes need to use shared
resources. We would prefer the processes to hold all of the resources that they need,
but the operating system may put them in a sleep mode or waiting list if they attempt
to use an overcrowded resource [20,22]]. Therefor, if a resource is overcrowded most
of the times, it is not used properly.

2 Multi-option Versus Multi-resource

We begin explaining the difference between multi-resource and multi-option ap-
proach with a real-world example. We consider a situation in which “Diego" wants
to go to a movie theater. We assume that all movies in the theater start at the same
time so he cannot watch all of them at the same night, thus, he must choose one of
the movies. However, regardless of his choice, he will be using the capacity of just
one single resource. If he chooses a movie playing in a movie theater that is over-
crowded, he will not get in and hence not be able to watch any movie. As a result,
Diego will not enjoy the night and will "fine" the strategy that led him to choose
that movie. This situation is an example of a multi-option game in which multiple
options are applied to a single resource, in this case the movie theater.

Now imagine the situation in which Diego wants to watch a specific movie that
is being played in more than one movie theater. If one theater is overcrowded, other
theaters could still be available. This situation may be considered as a multi-resource
minority game. The theaters are only equivalent when Diego and his friends choose
not to split and necessarily go all together to the same theater. In this example, if
we consider Diego (or either of his friends) individually as an agent, we are facing
a multi-option game. On the contrary, if we look at the entire group as an agent, we
have a multi-resource game. In fact, the multi-resource game is a more general case
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of a multi-option case where agents can use more than one resource/option at each
round of the game.

It should be noted that in resource allocation game studies, we can consider one
single resource with two options as two resource with one option per each. If we
generalize it, a game with one resource and k options for that resource is equivalent
to a game with k£ mutual exclusive resources, i.e. agents cannot contribute to more
than one resource at each round of the game. Fig. 2 demonstrates the difference be-
tween multi-resource and multi-option minority games. Unlike a multi-option (MO)
model in which agents make decision for one resource, in multi-resource (MR)
model, each agent can decide over different resources and pick more than one of
them. In other words, an agent chooses one of the k resources available in the MR
model.

For more illustrations, We assume that agent; wants to pick one resource in an
MR model. If the strategies of the agent suggest action a; where a; = (0,1,1,0,1,...,0),
we can say this agent decided to use the 2", 3™ and 5" resources (If we count
the options/decisions from zero, then a; ; = 1). Nonetheless, agent; may decide to
choose the 2" option for resource R in an MO model. In this case, the suggested
action is a; = (0,1,0,0,0,...,0) or a; = 1. As it can be seen, MO and MR models
may be mistakingly assumed to be equal, but this is true if and only if agents are
allowed to choose one resource for each round of the game. Moreover, the multi-
resource model is a more generalized version of the multi-option one. Indeed, MO
games can be classified as a sub-category of the MR games.

(@) R, (b)
o | e
ol !

Agent; aj Agent;
‘Ii/' =1{1,2,...,k}

aje {0,1}

Fig. 2: Multi-option vs multi-resource: (a) Agent i should decide to choose more
than one resource in the multi-resource model, (b) There are k options corresponding
to the resource R and agent i should choose one of them. The action a; can be in 1
dimension -a single value- where g; € {1,2,3,--- ,k}.

A summary of our discussion over MO and Mr models is shown in Fig.[3] Asitis
shown, the classic minority game - the game with one single resource - is a specific
form of the multi-option (MO) model, because the agents can use one resource with
two options. Furthermore, multi-option games are a specific form of multi-resource
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(MR) model, because the agents can choose exactly one resource/option at each
iteration.

Multi-resource

Multi-option

‘ Multi-option ‘

Single resource

Fig. 3: From left to right: The hierarchical and Venn diagram of the relation among
single resource, multi-option and multi resource model.

3 Related Works

One of the earliest variations introduced for minority game is an evolutionary model
in which agents’ strategies are targeted to be evolved during the game in order to uti-
lize the resources in a more efficient way [[L1]]. In this model, instead of using binary
or bipolar representation for agents’ strategies, a probability p is assigned to each
agent as an strategy. Agents can either refer to local information with probability
p or act alone with probability of p — 1 [10]. The system results in self-organizing
agents who choose strategies in groups. The significant part of the work of Huant et
al. [10] is that they actually tried to investigate a multi-option model; in their model,
each agent is allowed to choose only one resource at a time, which is a representa-
tion of the multi-option model (as depicted in Figure 2{b)). The other part of their
work focuses on the observed grouping phenomenon among the agents on a lattice.
They detect this phenomenon on a stock market dataset and analyze it by mean field
theory.

The structure underlying the agents’ relation to each other is an interesting topic,
because networks allow researchers to represent the relations between agents. In
real resource allocation problems, agents may often communicate over a social net-
work. The study of structures of social networks has received much recently in the
so-called field of Network Science [3]. By using different network structures in
agent communication in conjunction with the minority game, agents might influ-
ence each other in groups. Remondino and Cappellini [16] connected agents using a
random network. The simulation provides the agents two modes of decision-making
on a resource: synchronous and asynchronous. With asynchronous decision-making,
each agent in sequence makes a decision on a resource. While in the synchronous
decision-making, each agent broadcasts its proposed decision to their neighbors.
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Subsequently, all agents consider their neighbors’ proposed decision and choose
what decision to make simultaneously.

Shang and Wang [18]] probed the evolutionary minority game on four different
network topologies connecting agents to the neighbors: a star network, a regular
network (lattice), a random network, and a scale-free network [2/]. Similar to the
work in [L1], they assign a probability p as strategy to each agent. Then, they in-
vestigate the distribution of probability p among agents with respect to the different
values of the mutation variable L and the variation of the prize-to-fine ratio p. With
p = 1, most networks showed the agents segregating to polar probability values,
while the star network showed agents with a probability close to 0.5. With p = 0.9,
all network topologies showed agent probabilities clustered around 0.5, suggesting
that regular, random, and scale-free networks are sensitive to the value of p, while
the star network is sensitive to the value of L.

Caridi and Ceva [4] looked at underlying networks in the minority game by con-
necting agents who have similar strategies together. They found that there are dif-
ferent phases with different networks (e.g. different link definition). Furthermore,
in the phase where the system performs like in a game of random decisions, the
underlying network behaves as a random one with the same network characteristics.

Applications of the minority game consist allocating energy to rooms in smart
buildings with varying energy needs from multiple energy sources [23]. Addition-
ally, computers could use the minority game in allocating re-configurable multi-core
processors to maximize efficiency [17]; the results demonstrate that the minority-
game policy achieves on average 2-times higher application performance and a 5-
times improved efficiency of resource utilization compared to state-of-the-art. Fur-
thermore, the minority game may also be used in cognitive radios and other wireless
networks to facilitate cooperation between devices without as much energy or com-
munication overhead|[14, 9]].

Catteeuw and Manderick [5] conducted a research in which the reinforcement
process of Q-learning is used in the minority game. In their version of minority
game, agents decide to attend (or use) only one of the multiple resources, what
is called here “multi-option™. Agents will be punished or rewarded based on the re-
source that they chose to attend. The reinforcement process allows agents to balance
between exploration and exploration of new strategies and their best known strategy.
In fact, in their research, agents are allowed to choose just one of the resources in
each round of the game. Genuinely, their approach may be considered as a minority
game in which there is just one resource and more than one option to choose over
that resource.

Recall that in the classic minority game, one considers the game for one resource
and two mutual exclusive options. However, in distributed systems, a process may
need to obtain several different resources at once (such as CPU, RAM, and bus
channels) before executing [19]]. Although few studies have considered multi-option
instead of multiple resources in their research, none have done an in-depth explo-
ration of the variation of the minority game parameters with multiple resources in
which an agent is able to apply for more than one resource at each round.
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4 The Multi-resource Minority Game Model

In our model of multi-resource minority game, we have more than two resources and
two options for each one. The resources have their specific capacity and memory.
The minority threshold is the capacity of each resource. Using this model, we ex-
plore scenarios that can be taken into account only in a multi-resource model. First,
the way that the agents may use their strategies could be different. Here, agents can
use different strategies for different resources while in another scenario they can act
like simple agents in a classic single resource minority game and use the same strat-
egy for all the resources. We use the aforementioned criteria to analyze the system
behavior.

There exists many different possible scenarios one can now consider in this vari-
ation. In the following, we express a number of scenarios that deal with real world
applications. A real-world example is provided with each scenario. The basis of the
examples is a computer system in which a number of processes need to hold some
resources to finish their task.

1. Agents need to win all the resources in order to win the game in each round. For
example, a process simultaneously needs CPU, RAM, and access to the network.

2. Agents need to win at least one resource in order to win the game in each round.
For example, in a multi-processor system, a process needs to win at least one of
the processors.

3. Winners are the agents who win the most valuable resources. For example, hold-
ing more CPU may be better than having access to different network channels
for a particular process.

There are two major variations that can be applied on the aforementioned sce-
narios. On the one hand, one can now vary the memory size independently for each
resource. On the other hand, variations on the capacity which means we have games
where the total capacity of all resources equals to N (number of agents), or are less
than N, or more than N.

4.1 Weighted resource model

After we explain the concept of multi-resource, one may ask: what if the resources
are valued different by the agents? We examine the effect of two different kinds
of resource-weighting methods, linear and exponential. In fact, weights could be
used to prioritize the acquisition of one resource over another. In these models, each
resource has a weight that is applied to strategy scores during the payoff phase of the
game. In the linear method, in every iteration, the weight of every resource is either
added to the old score when the agent is the winner, or it is subtracted from the old
score when the agent is not in the minority for the resource. This is accomplished
with:
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St+1)=8@1)+wxp, (1)

where S(7) is the score of the agent at iteration 7, w is the resource weight, and f3 is
1 when the agent is in the minority, and it is -1 when the agent is not in the minority.
Increasingly larger values for resource weights alter agent and strategy scores at a
rate linearly proportional to the value of the changing weight itself.

With the exponential method, updating the score is a multi-step process. First,
for every resource, the old agent and strategy scores are multiplied by the resource
weight to the power of 3 (equation . Second, the value obtained by this equation
for each resource is averaged to compute the new score. In other words, the new
agent and strategy score is calculated by equation 3]

S(t+1)=5() x wP, 2)

where S(t) is the score of the agent at iteration 7, w is the resource weight, and 8
determines positive or negative payoff.

R B
K )
where K is the number of resources and w; is the base/weight of the r resource,

where w must be greater than 1. More details on resource weighting are found in
Section

Si(t+1) = 3)

5 Experimental Results

In this section, we try to compare the situation in which agents are allowed to use one
strategy for all resources with the situation where agents can use different strategies
for resources. Further, the different weighting methods will be compared with each
other. In the same strategy simulation, agents use their best strategy to make decision
over all the resources in the system. On the other hand, in the different-strategies
simulation, each agent refers to its best strategies with respect to the resource on
which it makes decision. As it is mentioned before, we can have different minority
rules, here we consider an agent a winner if it is in the minority for all resources. If
we use other types of the minority rule we will mention them. In all simulations, N =
501 is the population size, S = 3 is the number of strategy, m = 4 is the memory size
and 7 = 1000 is the maximum iteration of the game. We consider k = 3 resources
for our simulations because having 3 resources is enough to satisfy our assumption
about the multi-resource model.
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5.1 Multi-resource Simulation

The first experiment is about the attendance of the agents which use the same strat-
egy, i.e. A(7). In this experiment, the capacity distribution is ¢ = ( %, %, 371\'), ie.
capacity of resource 1 is 25% of the population (125), resource 2 is 50% (250), and
resource 3 is 75% (375). Figure []left) shows the impact of the resource capacity on
the attendance in that resource. The obvious trends are steady over-attendance for
resource 1 and steady under-attendance for resource 3. This is because the capacity
is the lowest one in resource 1 and agents have a difficult time winning by attending
in it. Meanwhile, it is easy to win by attending resource 3 because its capacity is the
highest (375). This phenomenon causes the history to consistently suggest agents
avoid attending resource 1, and always attend resource 3. In this simulation, the
strategies which have zero in their first element and 1 in the last elements can lead
their corresponding agents to win the rounds of the gameﬂ

= = )

T B iv——
Sinta M Rt

Fig. 4: Attendance vs. iterations for N = 501, 7 = 1000, S = 3, and m = 4. Left:
Agents are allowed to use just one strategy for all resources (SS approach). Right:
Agents are allowed to use different strategies for different resources (DS ).

In order to start the analysis, we look at A(#) when agents are allowed to use
different strategies in Fig. @{right). The attendance rate is still heavily under the
influence of the resource’s capacity; but by allowing agents to change their strategy
we can observe variation in the outcomes. The dashed lines in Fig. [5] imply that
losing agents tend to change their strategies in order to avoid attending resource 1.
That is to say, the number of agents using resource 1 is decreased and that allows
those agents to win. Therefor, a considerable number of agents reward the strategy
that helps them avoid this resource. Similarly, we can observe a repetitive pattern
with resource 3 where agents that have not attempt for resource 3 try to switch their
strategy to a new strategy in order to be in the resource 3. As a result, a periodic over-

! The first element of the strategy taken into account corresponds to the situation where all previous
outcomes of the game (or the recent ones in memory) should be zero (i.e. no agent chooses to use
or go for the resource). Similarly, the last element represents the situation where all of the previous
outcomes of the game is one (i.e. all agents choose to use the resource).
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attendance happens for resource 3. Figure[5]also allows us to observe the differences
between the use of different strategies (DS) (dashed lines) and the same strategy
(SS) (solid lines). One main difference between the DS and the SS approach is that
if agents use SS, then resource 1 is mostly over-utilized while resource 3 is mostly
under-utilized. Another key fact to remember is that the variance in the utilization
of resource 2 in DS approach is lower than the SS approach.

Attendance

Fig. 5: A zoomed in view of what is happening from iteration 300 to iteration 350.
Dashed lines and solid lines show the attendance for different strategy and same
strategy approaches receptively.

Furthermore, the impact of memory size in attendance for the SS and DS ap-
proaches is investigated in Fig.[6] As it is shown in Fig.[6] using different strategies
let the agents have consistent variances over different memory size. Additionally, it
is observed that in the same strategy approach, there are more fluctuations on the re-
source with capacity of 50% of the population. The reason behind this phenomenon
is that agents are using just one strategy, and they try to use the strategy that gives
them the most for all three resources.

In Figure[7|left), we explore the resource usage for the same strategy simulation.
As a result, the resource with lowest capacity has been never successfully used dur-
ing the game. That happens because it is mostly overcrowded and difficult to win;
s0, agents decide to not attend to this resource. However, the resource with highest
capacity has been 100% successfully utilized.

The story is different when agents are allowed to use different strategies for dif-
ferent resources. Evidently, it is more possible for agents to obtain all resources suc-
cessfully. Since the different strategies used for resources are independent, agents
have the opportunity to use their best strategy for individual resources. Therefor,
resource 1 can be periodically under-capacity, which was never the case when using
the same strategy. As shown in Table [] the number of iterations in which agents
successfully utilize resource 1 increases to about 14%. Figure [7[right) develops the
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Fig. 6: 6% vs. o for N = 501, T = 1000, and S = 3 for the same-strategy simulation
(SS) and different-strategies simulation (DS). The variance is quite high for 25% of
the capacity (125) and 75% of the capacity (375) when using different strategies.

claim that if agents need all resources in order to accomplish their tasks, then using
different strategies is beneficial for them.

Table 1: Percentage of iterations with under-capacity attendance for N = 501, T =
1000, S = 3, and m = 4.

Same Strategy  Different Strategies

Resource # Resource #
1 2 3 1 2 3

0.000 0.520 1.000 0.140 0.500 0.870

Another mentioned criterion is the average resource usage that is stated in Ta-
ble 2] The results from SS analysis shows that if you want your agents to use the
resources, and the resources are the same, it is better to use the same strategy. How-
ever, the results suggest to consider different strategies in the case that you need to
utilize different resources. The average resource usage (ARU) is calculated based
on Equation [}

Y Air).8(1)
T.C; ’

where i and 7 represents the resource index and iteration number, A;(¢) is the number
of agents using resource i at iteration ¢ (aka attendance rate), C; is the capacity of
resource i, T is the total number of iterations, &;(¢) = 0 if resource i is overcrowded
at iteration ¢, and §;(t) = 1 if resource i is not overcrowded at iteration 7.

ARU; = “)
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Fig. 7: Resource usage vs. iterations for N = 501, T = 1000, S = 3, and m = 4. Left:
Same strategy Method. Right: Different strategy method. unlike in the same-strategy
simulation, resource 1 is successfully utilized.

Table 2: Average resource usage for N = 501, T = 1000, S = 3, and m = 4. Re-
source 1 is never successfully used in the same-strategy simulation. Note that here
we do care about the number of agents (attendance rate) in a resource that is not
overcrowded.

Same Strategy ~ Ditfferent Strategies

Resource # Resource #
1 2 3 1 2 3

0.000 0.494 0.858 0.137 0.479 0.748

When agents use the same strategy for each resource, they have a higher average
winning rate, as seen in Table[3] The pitfall is the fact that some agents cannot win
even one single round of the game. In order to understand this phenomenon, we
should take a closer look into the strategies for each resource separately. Since most
of the times th resource number 1 in over crowded, the one which decide not to use
it are the winners. As a result, most of the times the memory is as m = (0,0,...,0)
for resource 1. So agents need to have the value 0 in the element number 0 in their
strategy to be able to win the next round with a high probability.

What’s more, we consider the resource 3 (the resource with capacity of 75% of
the population). In this case, it is more likely that the agents that use this resource
are the winners. So the outcome will be 1 and it should happens frequently. Conse-
quently, the agent’s memory will be m = (1,1,...,1) for the third resource. Then,
the winners will be the agents which have 1 in the last element of their strategy.
All facts considered, the agents that have a strategy s = (0,..., 1) are guarantied to
make the correct decision for two resources. They just need to adjust their strategy
for the resource 2 (with capacity of 50% of the population). In other words, if agents
have strategies that meet these requirements (i.e. having 0 and 1 in their first and last
element of strategy respectively), the deciding factor is their attendance in resource
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2. The advantage of using the same strategy for each resource happens when agents
have strategies meeting this criterion given that they only need to make a decision
for resource 2 in order to win. The disadvantage of using the same strategy is the
considerable number of agents which never win a round of game (almost one-third
of the population based on Table [3). Agents tend to have lower average winning
rates when they can use different strategies for each resource. Although it is more
difficult for agents to become winner, we found that every agent is able to win at
least one round of the game.

Table 3: Average winning rate of agents and the average percentage of agents with
no wins in all simulation iterations.

Avg. Winning Rate Agents w/o wins

Same Strategy 19.8 29.1
Different Strategies 15.8 0.0

The resource usage percentage is shown in Table 4, We considered two other
types of capacity distribution over the resources. In one of them, all the resources
have different capacity but all at the level that is less than the half of the population.
In this situation, agents are expected to have more chance to win all resources. In the
other distribution, resources have the same capacity (33%) at a level less than half of
the population size. In a general case, the capacity of resource ¢; can be considered
as ¢; = %, where N is the population size and K is the number of resources. We
also cover a scenario with a different winning rule in which agents have only to win
two resources out of three available ones. In this scenario, we consider the same

distributions we use in the last simulation.

Table 4: Resource usage for different capacity distribution. Terms "DS" and "SS"
are refer to different strategy and same strategy respectively.

Need to win 3 out of 3 resources
20 30 40 25 50 75 33 33 33

SS 0 199199 0 494858 143 14.3 14.29
DS 12,5 142 355 13.7 479 74.8 143 143 143

Need to win 2 out of 3 resources
20 30 40 25 50 75 33 33 33

SS 5.8 19.937.6 11.79 53.0 88.3 14.3 14.3 143
DS 12.5 142355 14.2 50.2 875 12.5 142 355

First we discuss other types of the distribution in the scenario of “win 3 out
of 3” situation. As it can be seen in Table [4] using different strategies (DS) can
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improve the resource usage significantly where resources have different capacity
distributions and the capacities are less than half of the population. However, when
the capacity is uniformly distributed, there is no significant difference between SS
and DS. Since the same strategy approach requires less computational power, it is
better to follow it. This situation can be modeled as assigning similar resources to
the processes in a computer system.

In the “winning two out of three resources" scenario, we expect that agents will
be biased to the resources with higher capacity. The results in Table f] show that
using SS works better in this scenario. Nonetheless, using the DS approach helps
the system to have a better load balance over the resources. However, we will prefer
to use the SS approach in the systems that the capacity distribution is ¢ = (%, %, %TN),
because it is as effective as the DS approach.

The lower part of Table [ refers to the scenario in which agents should win two
out of three resources. Since there is a higher chance for them to win or utilize
resources with higher capacity, we anticipate that the agents tend to participate in
those resources. Furthermore, we expect that simulations with DS approach may
show much better results, because agents have more degree of freedom to choose
a suitable strategy. Surprisingly, the results show that in this experiment, using the
same strategy (SS) performs better than DS approach. Particularly, using SS seems
to be more efficient where the capacities are less, equal and more than half of the
population size. Notwithstanding, it is better to use different strategy (DS) when a
balanced load on the resources is more important than the computational complexity
of DS approach. Similar to the previous scenario, there is no significant difference
between SS and DS when the capacity is uniformly distributed.

5.2 Multiple Weighted Resources

In this section we investigate the linear and exponential methods of weighting re-
sources. In the weighted model, either the high capacity resource has a greater
weight or the low capacity resource has the greater weight. We refer to the for-
mer as heavier high capacity resource and the latter as heavier low capacity. Note
that resource weighting simulations were initially performed with three resources,
two resources with a capacity of 250 and one resource with a capacity of 166 1/2
and 1/3 of the agent population of 501, respectively). Weights were chosen to sum
to 1, with the two identical resources having identical weight values. For clarity of
the description, only two resources are presented in the figures.

Figure [8| shows a situation in which the higher capacity resource is weighted
higher (.4) than the lower capacity resource (.2). As expected, the attendance rates
for both resources stay close to the capacity of the more heavily weighted higher
capacity resource 1. This causes significant and consistent over-attendance for re-
source 2. In contrast, Fig [0] shows a situation in which the lower capacity resource
is weighted higher (.8) than the higher capacity resource (.1). The attendance rate
of resource 2 quickly drops to its capacity of 166 over the course of the simulation,
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— Resource 1; capacity = 250, W= .4 —Resource 2: capacity = 166, W= .2 ‘
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Fig. 8: Attendance rate for resources with different capacities with heavier high
capacity resource using a linear resource weighting method, N = 501, T = 1000, S
=6, and m = 3.

— Resource 1: capacity = 250, W = .1 —Resource 2: capacity = 166, W = 8
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Fig. 9: Attendance rate for differing capacity resources with heavier low capacity
resource using a linear resource weighting method, N = 501, T = 1000, S = 6, and
m = 3. Note that attendances are influenced by the heavily weighted low capacity
resource.

while attendance for Resource 1, with a capacity of 250, swings back and forth from
around 250 to around 166. The attendance rate is more predictable for both resources
and more importantly, both resources enjoy efficient utilization, as attendance more
frequently is at or below capacity.

Figure [10] shows a situation in which the low capacity resource is weighted at
2 and the higher capacity resource is weighted at 1.5. The plot looks remarkably
similar to the baseline plot, however the point at which the attendance spikes meet
rise from approximately 220 to 230. This is unexpected, as higher weights for the
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250

THRATHRL

100 200 300 400 500 600 700 800 900
Iterations

Attendance

Jl

Fig. 10: Attendance rate for differing capacity resource resources with heavier low
capacity resource using resource weighting method 2, N = 501, T = 1000, S = 6,
and m = 3.
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Fig. 11: Attendance rate for differing capacity resource resources with heavier high
capacity resource using resource weighting method 2, N = 501, T = 1000, S = 6, and
m = 3. Shows attendance of low capacity resource pulled to capacity of resource
with heavier weight.

low capacity resource should have resulted in a stronger pull towards the low ca-
pacity. It is unclear why this occurred. However, when the low capacity resource is
weighted at 1.01 and the higher capacity resource is weighted at 1.5, there is a dra-
matic change in plot appearance, as seen in Figure[TT] The attendance of both plots
approach equilibrium about highly weighted resource 1’s capacity of 250. Variance
around the attendance mean minimizes very rapidly. This suggests that the effect of
a lower capacity resource on the attendance rate of a higher capacity resource can
be minimized if the weight of the low capacity resource is reduced.
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Based on these experiments, the weighting methods appear to have different
strengths. The linear weighting method can increase resource utilization for all re-
sources in the system by weighting low capacity resources more heavily. The ex-
ponential weighting method can dramatically decrease the attendance variance of a
high capacity resource by weighting low capacity resource less heavily.

Another interesting result for the weighted multi-resource minority game simu-
lation has been observed when we try two other weight distributions. In this simu-
lation, we investigate a different game with a uniform capacity distribution. In one
system, the capacity of each resource is % of the population, i.e. ¢; = %; in the other
one, the capacity is half of the population, i.e. ¢; = % Surprisingly, the resource
usage is the same for SS and DS approaches in the case that resource capacity is %,
and neither using different weights for resources nor different weighting methods
can make difference. Apparently, it is more important for agents to be a winner than
taking the risk to win a resource with higher weight.

In the simulation with the capacity ¢; = % the resource usage is almost the same
for the resources with different weights in each simulation. Table[5|shows the results
for this experiment. In the simulation with 3 strategies per agent and memory size
of 4, the resource usage is 0.14 for all conditions. While changing the number of
strategy per agent does not make any significant difference, increasing the memory
size causes dropping down in resource usage except the situation in which we use
weighting method 2 and different strategy approach. One reason behind this phe-
nomenon is the fact that agents avoid utilizing resources because they can easily be
overcrowded. However, increasing the number of strategies per agent can slightly
improve the resource usage.

Table 5: Resource usage for weighting methods 1 and 2 with SS and DS approaches.
Each number in the table represents the resource usage for all three resources, be-
cause they have the same resource usage. Capacity of each resource is %, N =501,
T = 1000, and k = 3; the weight distribution is w = (0.4,0.35,0.25) for weighting
method 1, and w = (2,1.5,1.01) for weighting method 2.

Strategy per agent 3 5 7 3 3
Memory size 4 4 4 6 8

Weighting method 1 +SS  0.14 027 028 0.11 0.08
Weighting method 1 + DS 0.14 026 029 0.11 0.09
Weighting method 2 +SS  0.14 026 028 0.11 0.09
Weighting method2+DS  0.14 026 0.28 0.16 0.11
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6 Conclusion and Future Work

This study proposed an extension of the minority game in which agents need to
compete for more than two resources and are able of utilizing multiple resources
at the same time. We introduced the idea of a multi-resource minority game and
investigated the behavior of agents and systems for several cases using 3 resources.
We clarified that multi-resource as we describe is different than what we call multi-
option (but other authors insist in calling multi-resource). We have made the case
for the naming as we use in this text.

Additionally, we investigate the weighted resources approach and we observed
that a linear method is potentially able to improve resource utilization by adjusting
the weights of the resources. Further, the impact of exponential weighting seems to
be crucial to the attendance variance of high capacity resources. However, when the
resource distribution is uniform, different weighting methods cannot make signif-
icant changes in resource usage. More research with these weighting methods has
the potential to unveil many more practical uses of resource weighting with multi-
ple resources. For instance, having different method of rewarding in a single close
system can change agent behavior in favor of a particular resource.

A further potential work can focus on the mathematical analysis of the evolu-
tionary multi-resource minority game. In this case, instead of using a traditional
binary/bipolar representation of strategies, agents can use a probability to chose
the resource. Additionally, analyzing the significance of different memory size with
respect to the umber of strategies needs more explorations. Besides, analyzing the
influence of connected agents over different networks may be useful for the situation
in which the agents share information.
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