A PRIMER ON BOOTSTRAP TESTING OF HYPOTHESES IN
TIME SERIES MODELS: WITH AN APPLICATION TO
DOUBLE AUTOREGRESSIVE MODELS
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ABSTRACT

In this paper we discuss the bootstrap as a tool for statistical inference in econo-
metric time series models. Importantly, in the context of testing, properties of the
bootstrap under the null (size) as well as under the alternative (power) are dis-
cussed. While properties under the alternative are crucial to ensure consistency of
bootstrap-based tests, it is often the case in the literature that only validity under
the null is discussed. We provide new results on bootstrap inference for the class of
double-autoregressive [DAR] models. In addition, we review key examples from the
bootstrap time series literature in order to emphasize the importance of properly
defining and analyzing the bootstrap generating process and associated bootstrap
statistics, while also providing an up-to-date review of existing approaches. DAR
models are particularly interesting for bootstrap inference: first, standard asymp-
totic inference is usually difficult to implement due to the presence of nuisance
parameters; second, inference involves testing whether one or more parameters are
on the boundary of the parameter space; third, even second order moments may
not exist. In most of these cases, the bootstrap is not considered an appropriate
tool for inference. Conversely, and taking testing non-stationarity to illustrate, we
show that although a standard bootstrap based on unrestricted parameter esti-
mation is invalid, a correct implementation of the bootstrap based on restricted
parameter estimation (restricted bootstrap) is first-order valid. That is, it is able to
replicate, under the null hypothesis, the correct limiting distribution. Importantly,
we also show that the behavior of this bootstrap under the alternative hypothesis
may be more involved, because of possible lack of finite second-order moments of
the bootstrap innovations. This feature makes for some parameter configurations
the restricted bootstrap unable to replicate the null asymptotic distribution when
the null is false. We show that this possible drawback can be fixed by using a
novel bootstrap in this framework. For this ‘hybrid bootstrap’, the parameter es-

timates used to construct the bootstrap data are obtained with the null imposed,
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while the bootstrap innovations are sampled with replacement from unrestricted
residuals. We show that the hybrid bootstrap mimics the correct asymptotic null
distribution, irrespective of the null being true or false. Monte Carlo simulations
illustrate the behavior of both the restricted and the hybrid bootstrap, and we find

that both perform very well even for small sample sizes.
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1 INTRODUCTION

Outcomes of various bootstrap schemes applied to econometric time series models are
routinely reported in the literature. This is generally done in cases where (i) the limiting
distribution of the reference estimator or test statistic depends on a (possibly infinite-
dimensional) vector of unknown nuisance parameters; (ii) critical values or standard
errors can be obtained by simulations only; (iii) the asymptotic approximation to the
distribution of the reference estimator or test statistic is poor. The increasing compu-
tational power available to researchers coupled with the fact that the implementation of
bootstrap algorithms is typically straightforward, makes the bootstrap one of the most
popular inference tools in the econometric analysis of time series data; see, inter alia,
Davidson and MacKinnon (2006) and MacKinnon (2009).

Despite its many appealing features, the application of the bootstrap to time series
models requires a detailed analysis of its asymptotic properties. This is necessary in
order to establish asymptotic validity of the bootstrap, at least up to first order. Taking
hypothesis testing to illustrate — as we do throughout this paper — a proper statistical
analysis of any bootstrap test would necessarily involve two main, interconnected steps.
First, it requires to determine whether, conditionally on the original data, the bootstrap
correctly mimics the null asymptotic distribution of the reference test statistics under
the null hypothesis. This step is generally more involved than the asymptotic analysis
of the original test statistics, as the conditional distribution of the bootstrap statistic
given the data is a random element in the space of distribution functions. Hence,
specific probability tools are required. In general, further high level conditions over
those required for asymptotic inference are necessary and, consequently, any application
of the bootstrap which is not backed up by a proper analysis of these conditions must
be taken with caution.

The second step, which is often neglected in applications of the bootstrap, is the
statistical analysis of the properties of the test under the alternative hypothesis, i.e.
consistency of the bootstrap test. This step is more involved than assessing bootstrap
validity under the null. Essentially, difficulties may arise because it requires to analyze
the asymptotic behavior of the estimators used to generate the bootstrap data when
the null is false: in particular when estimators restricted by the null hypothesis are
considered.

In this paper we aim at discussing the two aforementioned steps by considering a
novel application of the bootstrap to econometric time series models. Specifically, we
consider bootstrap inference in the class of double-autoregressive [DAR] models, see
e.g. Borkovec and Kliippelberg (2001), Ling (2004, 2007a) and Chen, Li and Ling
(2013). The DAR is a time series model with an autoregressive structure both in the

conditional mean and in the conditional variance. The conditional mean has the classic



autoregressive formulation, ¢.e. it is linear in the lagged level of the process. The
conditional variance is also linear in the lagged (squared) level of the process, which
therefore contrasts classic ARCH-type or AR-ARCH type specifications where lagged
innovations appear (see e.g. Ling and Li, 1998; Ling and MacAleer, 2003; Lange, Jensen
and Rahbek, 2006; Ling, 2007b; Nielsen and Rahbek, 2014). In this sense, it allows
the levels of the process to affect both the conditional mean and conditional variance,
as desirable in econometric modelling of interest rates', see also Nielsen and Rahbek
(2014). We discuss (non-standard) bootstrap-based inference in the DAR model, with
main emphasis on the likelihood-ratio [LR] test for the hypothesis that the DAR model
reduces to a random walk. In essence, this can be viewed as a non-stationarity test
within the DAR model. Previous studies of this testing problem are given in Ling
(2004), who considers the score test, and in Kliippelberg et al. (2001), who consider a
LR testing approach.

DAR models and the associated (non-)stationarity testing problem are particularly
interesting to illustrate implementation of the bootstrap to time series, for several rea-
sons. First, standard asymptotic inference is usually difficult to implement, due to the
presence of nuisance parameters under the null hypothesis. The asymptotic distribu-
tion of the test statistics, for instance, depends on nuisance parameters (such as the
kurtosis of the innovations) which makes it hard to construct tables of critical values.
Second, the autoregressive parameter entering the conditional variance equation is —
in order to guarantee non-negativity of the conditional variance — usually restricted
to be non-negative. As a consequence, inference must deal with possible parameters
on the boundary of the parameter space, a situation where the bootstrap is usually
regarded as invalid (see, e.g., Andrews, 2000, Cavaliere, Nielsen and Rahbek, 2017).
Third, under strict stationarity, second order moments may not exist. Hence, under-
standing the properties of the bootstrap under the alternative hypothesis, which would
require re-sampling from an infinite variance process, may be cumbersome, if not even
impossible (seminal results about the possible invalidity of the bootstrap when second
order moments may not exist are given in Athreya, 1987, and Knight, 1988; for time
series models see also Cavaliere, Nielsen and Rahbek, 2018, and the references therein).

In the following, the paper shows that for the DAR model, as expected in the
aforementioned cases, classic bootstrap hypothesis testing, based on generating the
bootstrap data using estimators (and residuals) obtained without imposing the null
hypothesis (as suggested in Hall, 1992), is invalid. Despite this fact, we also show
that the problem of (non-)stationarity testing in a DAR model can be successfully
solved by a proper implementation of the bootstrap. More specifically, we initially show

that the bootstrap based on restricted parameter estimation (the so-called ‘restricted

'The Cox-Ingersoll-Ross (CIR) Model is an example of a level-dependent heteroskedasticity model.



bootstrap’) is first-order valid under the null hypothesis; that is, it is able to replicate
the correct limiting null distribution when the null hypothesis is true. However, we
also show that the behavior of this bootstrap under the alternative hypothesis may
be different because of possible lack of finite second-order moments of the bootstrap
innovations. This features makes — for some parameter configurations — the restricted
bootstrap unable to replicate the null asymptotic distribution when the null is false.
This is a typical instance where validity of the bootstrap under the null does not imply
consistency of the bootstrap test under the alternative.

We next show that this drawback can be fixed by using a new ‘hybrid’ bootstrap,
where the parameter estimates used to construct the bootstrap data are obtained with
the null imposed, while the bootstrap innovations are sampled with replacement from
the unrestricted residuals. This simple modification of the bootstrap algorithm, which
is novel in this framework, mimics the correct asymptotic null distribution also under
the alternative.

We use a Monte Carlo experiment to analyze the finite sample properties of the
different bootstrap algorithms. We show substantial gains in terms of accuracy of the
empirical rejection probabilities under the null hypothesis, while under the alternative
we show that our bootstrap has power very close to the pointwise size-adjusted power
of the (infeasible) asymptotic test.

Throughout the paper, we use a number of examples from the bootstrap (time
series) literature to illustrate the importance of properly defining the bootstrap gener-
ating process and associated bootstrap statistic, as well as the need for looking at the
appropriate bootstrap statistic on the basis of a rigorous, case-by-case analysis of its

theoretical properties, both under the null and under the alternative hypothesis.

1.1 STRUCTURE OF THE PAPER

The structure of the paper is the following. In Section 2 we introduce the reference
DAR model and the testing problem we consider throughout the paper. In Section 3
we introduce the main bootstrap approaches and discuss their validity under the null
hypothesis. Section 4 focuses on the behavior of the bootstrap test under the alternative
hypothesis. Here we also introduce and discuss the hybrid bootstrap scheme. Results
from a small Monte Carlo study on the finite sample behavior of the asymptotic and
bootstrap tests are reported in Section 5. We consider some extensions of the model
and of the tests in Section 6, while Section 7 concludes. All mathematical proofs are

located in the appendix.



1.2 NOTATION

The following notation is used throughout. With z := y (y =: ) we mean that z is
defined by y (y defined by x). For any ¢ € R (R denoting the set of real numbers),
+
q
numbers is denoted by RT. The space of m x 1 vectors of cadlag functions on the unit
interval [0, 1] is denoted by 2™. With X,, —, X and X = wlim X,, we mean that
X, converges weakly to X. Also, 2 denotes equality in distribution. We use P*, E*

:= max{0, ¢} and |g| denotes the integer part of q. The set of non-negative real

and V* respectively to denote probability, expectation and variance, conditional on the
original sample. With ﬂp we denote weak convergence in probability; that is, X} ﬂp X
means that, as the sample size n diverges, the cumulative distribution function [cdf] of
X conditional on the original data, i.e. G} (z) := P*(X} < z), x € R, converges in
probability to the cdf G' of X, at all continuity points of G. For a given sequence X
computed from the bootstrap data, X — X = 0;(1), in probability, or X p—*>p X, means
that for any ¢ > 0, P*(||X;; — X|| > €) —, 0, as n — oc. Similarly, X = Oy (1), in
probability, means that, for every € > 0, there exists a constant M > 0 such that, for all
large n, P(P*(||X}|| > M) < ¢) is arbitrarily close to one. Unless otherwise specified,

integrals are between 0 and 1.

2 (NON-)STATIONARITY IN A DAR MODEL

In this Section we present the leading DAR model and the associated (non-)stationary
testing problem which we discuss throughout the paper. We introduce the main assump-
tions in Section 2.1, discuss estimation in Section 2.2 and the key testing procedure in

Section 2.3. Bootstrap inference and hypothesis testing is discussed in Section 3.

2.1 MODEL AND ASSUMPTIONS

Consider the double-autogressive [DAR| model (Ling, 2004), as defined through the
recursion

2 2
Az =11 + 64, € =012, O =w+azr; (1)

where the z;’s are i.i.d. random variables with zero mean and unit variance, and with a
continuous, strictly positive density with respect to the Lebesgue measure?. The initial
value, denoted by xg, is independent of the future z;’s and will be considered fixed in

the statistical analysis. As is customary for this class of models, it is also assumed that

¢£:=Ez =0, k= Ez} —1 < oo;

2The assumption of a continuous and positive density with respect to the Lebesgue measure can be
relaxed.



the case & # 0 is considered in Section 6. In this model, the mean of x; conditional on the
o-field generated by {zo, 21, ..., zt—1}, say Z;—1, equals (14 7)x;—1 while the conditional
variance is given by o? := w + az? ; and hence is level-dependent. In this respect, it
differs from the standard AR-ARCH model (see e.g. Lange, Rahbek and Jensen, 2011),
where the conditional variance o7 depends on €7 ; rather than on #?_; (see also Nielsen
and Rahbek, 2014, for a discussion of the multivariate DAR). Clearly, the model reduces
to a standard autoregression with i.i.d. innovation when o = 0, and to the ARCH model
when 7 = —1, which implies z; = (w + aacf_l)l/ 2%. In the DAR model, a sufficient
condition for 2 to be positive a.s. is given by the usual non-negativity constraint
a > 0, which we assume to hold throughout. A necessary and sufficient condition for
Ea? < 0ois (1 + )% +a < 1; moreover, provided Elog |1+ m 4 /az| < 0, the process
can be given an initial distribution such that it is strictly stationary and geometrically
ergodic if some mild regularity conditions on the density function of z; also hold. A
key feature of the model is that the classical autoregressive unit root condition, m = 0,
does not imply that the process is non-stationary. More specifically, 7 = 0 implies
non-stationarity only if o = 0; see Figure 1 in Ling (2004). We discuss the issue of
testing for non-stationarity in Section 2.3 below.

In the following we assume that the parameter space for the true value, denoted as
0, is given by Qg := O5 U O, where Og := {0 := (1,0, w)" : Elog |l + 7 + /az]| <0
with @ > 0 and w > 0} and O := {# := (0,0,w) : w > 0}. That is, we assume
that either the process is strictly stationary (the true parameter is in Og), or that the
process is non-stationary and, specifically, reduces to a standard random walk with i.i.d.

increments (the true parameter is in ©r).

2.2 ESTIMATION

As in Ling (2004) and in Kliippenberg et al. (2002), we consider quasi maximum
likelihood [QML] estimation based on the auxiliary assumption of Gaussian innova-
tions. The results given here are employed in Sections 3 and 4 in order to estab-
lish the properties of the bootstrap test. We further assume that the user-chosen
optimization set employed for maximization of the likelihood function is given by
T:={0:=(mo,w): -1 <71 <7y,0<a<ay,w, <w<wy}, with 77, 7y, oy, wr,
and wy positive constants and wy, < wy. In practice, estimation is performed imposing
the non-negativity restriction o > 0 while leaving 7 unrestricted (and w positive).

For a time series {z1,...,z,}, and with xo fixed in the statistical analysis, the
Gaussian QMLE is given by

Oy, = argmaxLy, (0), Ly, (0) := Z e (6)
0cT t=1



where, for t =1, ..., n,

00 = oot o) - L (BTN gyt
2 2 o (0)

Theory for the QMLE under the strict stationarity assumption, i.e. when the true
parameter 6 is in Og, is provided in Ling (2004) under the assumption that ag is not
on the boundary (specifically, it is required that ag € [ar,ay] with az, > 0), hence
not covering the case where ag may be zero, that is, on the boundary. By employing
non-standard arguments as e.g. in Andrews (1999, 2001), see also Cavaliere, Nielsen,
Pedersen and Rahbek (2019), we generalize Ling (2004, Theorem 1) as follows:

THEOREM 1 Suppose that {x;} is generated as in (1) with € =0 and k < oo, and that
the true parameter vector 0y € ©s. Then, as n — oo, 0, = (7 G, )" s comsistent,

ie. O, —p 0o = (0, 0, wo)’. The asymptotic distribution of 0,, is given by
20— 00) —uw ¢ = (¢r:C5)'

with ¢ LN (0,02), 02 :=1/E (2} ,/0}). Moreover, (. is independent of the bivariate
random vector (., = (C,, ¢,), where:

(i) for ag >0, 4 (0,9,) with 0 given in the Appendiz, eq.(A.22);

(ii) for ag = 0, then, with o .= Ex?,

(o =max (0,¢3) . and ¢, = ¢} — omax (0,¢2),

where ¢ LN (0,02) and o 4N (0,02) are independent, o2, = 02/6, 0., = /Kwo

and 6 = E (2}) — (E (:1:%))2

With respect to Ling (2004), the asymptotic distribution is no longer Gaussian when
ag = 0 due to the restriction that a > 0. As a result, the asymptotic distribution of
(n'/? times) @, is ‘half-normal’, i.e. of the form ¢* := max (0,¢) with ¢ Gaussian. For
the case of ay > 0, the asymptotic distribution of ¢ is as in Ling (2004, Theorem 1).
Note that asymptotic normality and consistency at the nl/2-rate is established even in
cases where E(Ax;)? = 400, due to the structure of the score of the likelihood function,
see Appendix A.2 (and Jensen and Rahbek, 2004, for similar arguments in the ARCH

case).

REMARK 2.1 Note that the results in Theorem 1 can be generalized to the case of £ # 0.

In this case however, see Appendix A.2, ¢, and ¢, are dependent with covariance matrix
Cov (Cﬂ, C,Y) = £Qry # 0, with Q, given in Appendix A.2, eq.(A.16).

In order to discuss the large-sample behavior of the bootstrap tests, we also need to



analyze the properties of the estimator under non-stationarity. These are provided in

the following theorem which, like Theorem 1, is novel.

THEOREM 2 Suppose that {x} is generated as in (1) with £ = 0 and kK < oo and that
the true parameter vector 8y € Opr, i.e. mg = 0 and ag = 0. Then, as n — 00,

9n —p to. Moreover,
diag(n, n>?,n2)(6, — 00) —w A = (Ars Aay M)’

where, with B and W independent standard Brownian motions,

-1
Ap = </ Bidu) /BdB, Ao = (A2)T = max (0,12) ,

A = ﬁ(/ Bidu — (/Bgdu)2) - (/BQdW— /Bgduwl) :

Moreover, \, = )\g —(f B2du) )\, where )\g < o W1 and oy, = \/kwg.

for

REMARK 2.2 With respect to the (strict) stationary case, we observe that the rate of
convergence of the estimator varies across parameters. In particular, 7,, converges at
the rate of n, similar to the standard autoregressive case with a unit root, while the
volatility parameter, é,, converges at the faster rate of n3/2. The estimator of the

intercept term in the variance equation has the usual stationary, n'/2 rate.

REMARK 2.3 While A in Theorem 2 clearly is non-Gaussian, and thus different from
the stationary case with ag = 0 in Theorem 1, one can immediately observe some sim-
ilarities: (i) in the expression for Ay, the term ([ B2du)~! corresponds to the variance
o2 of (5 (i3) in A2, the term /k([ Bidu — ([ B2du)?)~! corresponds to 02 = 02 /5 in
(g; (#4i) finally, in the expression for A,,, while )\g 4 Cg, the loading [ B?du corresponds
to the p term in &,.

REMARK 2.4 Similar to the case of Theorem 1, Theorem 2 can also be modified to the

asymmetric case of £ # 0, see the discussion in Section 6.

2.3 TESTING NON-STATIONARITY

Suppose that the econometrician is interested in testing whether {z;} is non-stationary,
against the alternative of (strict) stationarity. In a pure AR-ARCH framework, the
(unit root) null hypothesis corresponds to # = 0 in eq. (1). However, the DAR process
can be strictly stationary even if 7 = 0, provided o > 0 and E'log |1+ /az| < 0; hence,

testing nullity of 7 is not alone sufficient to assess the non-stationarity of z;. Rather,



as discussed in Ling (2004), one may test the pure random walk hypothesis, as given
by Ho : # = 0, @ = 0, against the alternative H; : m # 0, a > 0. The likelihood ratio

test can easily be computed in the usual way as
LRy, := —2(Ln(05) — Ln(6y)) (2)

where 6, == (0,0,0,), @n == n"1 31", (Azs)?, denotes the restricted estimator of 6,
0 /

ie. 6, := argmaxgper, Ly () where 7y := {6 := (0,0,w) : wy, < w < wy}. Now,
the asymptotics in the previous Theorem 1 obviously break down when 0y € Oy, see
Theorem 2. In this case, Kliippelberg et al. (2002) establish the following result for the

LR test statistic in (2).

THEOREM 3 Suppose that {x;} is generated as in (1) with Ez} < oo and that the

true parameter vector 0y € Onr, ie. w9 = 0 and a9 = 0. Then, as n — 00,
LR, —y LR (K), where

x | BiduW — [ Biaw, \\*
LR (k) = 5 (max <0’ ([ Bidu— ([ Bﬁdu)2)1/2)> @
([ BudB,)?

where B and W are as in Theorem 2.

Some remarks follow.

REMARK 2.5 Notice that since B and W are independent, conditionally on B, we have

in particular that

W, [ B2du— [ BXdW, 4 N (0, [(B2— ([ B2du))’du) 4

N (0
(f Bidu — ([ Bidu)*)!/2 ([ (B} = (] Bidu))>du)!/>

N(0,1).

This implies that the first term in (3) is distributed as § (max(0, IV (0, 1)))?, ie.

K
2
times the half-y? distribution.

Moreover, it is independent of the second term, ([ B?du)~!([ BdB)?, which is a
squared Dickey-Fuller distribution. Should the condition £ = 0 fail to hold, both the
half x? property and the independence of the two terms in (3) would no longer hold

true; see also Section 6.

REMARK 2.6 The distribution in (3) is non-pivotal, since it depends on x. A consistent
estimator of this quantity can be constructed by using the unrestricted residuals, as
fn = n7 13T (1 — 22)%, where 2 = &;/6¢ for & = Azy — Fpmio1, 62 = Op +

énz? ;. An estimator &, which imposes the null hypothesis may be constructed using

10



the restricted residuals, Z; := &y, 1/2

Axy. However, this estimator overestimates x when
the null hypothesis does not hold, hence reducing the power of an asymptotic test based

on LRoo(Rn). O

3 BOOTSTRAPPING THE ASYMPTOTIC DISTRIBUTION UNDER
THE NULL HYPOTHESIS

3.1 PRELIMINARIES AND BOOTSTRAP ALGORITHMS

The classical requirement of any bootstrap implementation is consistent estimation of
the asymptotic null distribution of the reference test statistic when the null hypothesis
is true. Specifically, and taking the LR, test statistic to illustrate, consider a bootstrap
analog, say LR}, which is a function of the original sample and of a vector of bootstrap
innovations, say 77, ...n;,, defined jointly with the original data on a possibly expanded
probability space. With G}, (-) := P* (LR}, < x) denoting the conditional distribution
of LR}, given the original data, this requires that, under the null hypothesis, G}, (-) —
Goo (+), where G denotes the cdf of LR (k), the asymptotic distribution of LR,
under the null; see eq. (3). That is, LR, ﬂp LR (k). If, additionally, G (+) is
continuous, then by Pélya’s theorem proximity of G} (-) to G (-) holds in the sup
norm,

sup |G () — G () | = 0,
zeR

and the bootstrap p-value, given by
pr=1-G} (LR,),

is asymptotically uniformly distributed, i.e. p} —,, UJ[0,1]. This allows to construct
a bootstrap test with the correct asymptotic size at any nominal significance level.
In addition, it is crucial to analyze the behavior of the bootstrap statistic under the
alternative hypothesis, which is often overlooked in applications. We discuss this issue
in Section 4.

Two main approaches can be given in order to define the bootstrap statistic LR}.
The first, the ‘restricted bootstrap’, is based on estimation of the original model with the
null hypothesis imposed; i.e. with m = o« = 0. In this case, the bootstrap statistic mimics
the original test statistic and tests the restriction m = o = 0 on the bootstrap data. The
second, the ‘unrestricted bootstrap’, uses the unrestricted parameter estimates ,,, &y,
to generate the bootstrap data and the bootstrap statistic is based on testing m = 7,
and a = &, on the bootstrap data; see e.g. Hall (1992). We introduce the restricted
bootstrap first.

11



RESTRICTED (I.I.D.) BOOTSTRAP:

(i) Estimate model (1) using Gaussian QML under the null hypothesis, yielding the
estimates 6, := (0,0,&,), together with the corresponding restricted QML resid-
—1/2

uals, & := Ax; and Z; := @, ' “&;, as defined above;

(ii) Standardize the residuals as

s Z—n Y 5
s,t + — — ~ — ~
(n~t Z?:I(Zt —n~t Z?:l Zt)2)1/2

and construct the bootstrap innovations using the i.i.d. bootstrap re-sampling

scheme; i.e., z; := Zs,r, where ny, t = 1,...,n is an i.i.d. sequence of discrete

uniform distributions on {1,2,...,n};

(iii) Construct the bootstrap sample {z}} from the recursion
Azf=¢f, e =0z, o0?=0,t=1,...,n, (4)

with the n bootstrap errors z; generated in Step (ii) and with initial values zj§ =

zo.

(iv) Using the bootstrap sample, {z}}, compute the bootstrap test statistic LR.
Define the corresponding p-value as p := 1 — G} (LR,) with G} (-) denoting the
conditional (on the original data) cdf of LR}.

(v) The restricted bootstrap test of Hy at level ¢ rejects if p < (.

There are many variants of the restricted bootstrap, as exemplified in the following

remarks.

REMARK 3.1 In the definition above, the length of the bootstrap sample equals the
length of the original sample, n. A different sample size, say m < n, could be used in
order to form the bootstrap sample. This is the so-called ‘m out of n’ bootstrap, which
(under proper conditions on m as n increases, such as m~!+mn~! — 0) has been proved
to be asymptotically valid in certain cases where bootstraps based on n observations fail;
see Politis, Romano and Wolf (1999) and the references therein. However, for the ‘m out
of n’ bootstrap, while mathematically appealing in the derivations of the asymptotic
theory, the choice of m is ‘delicate’ (see Davison, Hinkley and Young, 2003), and,
moreover, in general it does not deliver satisfactory finite sample results. As pointed
out by the Editor, a further issue of the ‘m out of n’ bootstrap (and, in general, of
subsampling) is that it can lead to initialization problems in nonstationary settings,

which may not be easy to address.

12



REMARK 3.2 The bootstrap shocks in Step 2 are based on i.i.d. re-sampling (i.e., with
replacement) from the standardized residuals. Different bootstrap schemes could in
principle be used. For instance, the so-called wild bootstrap (Wu, 1986; Liu, 1988;
Mammen, 1993) generates the bootstrap innovations as the (conditionally) indepen-
dent sequence z; := Z; yw; where wy is i.i.d.(0,1) with bounded fourth order moments.
Alternatively, re-sampling without replacement of the Z,;’s could be employed, leading
to the permuted bootstrap sample 2} = Z, 1), t = 1,...,n, where {7*(1),...,7"(n)}
is a (uniformly distributed) random permutation of {1,...,n} (Cavaliere, Georgiev and
Taylor, 2016; Cavaliere, Nielsen and Rahbek, 2018). Finally, a fully parametric boot-
strap could be obtained by generating z; as i.i.d. from any pre-specified zero mean,

unit variance, distribution.

REMARK 3.3 In practice, the cdf G} required in Step (iv) of Algorithm 1 can only
be approximated through numerical simulation. As is standard, this requires gener-
ating B (conditionally) independent bootstrap statistics, LR},, b = 1,...,B, com-
puted as above. The approximated bootstrap p-value for LR,,, is then computed as
Pt =B 'S0 [ I(LR*, > LR,), and is such that % “3 p* as B — oo. For the choice
of B, see, inter alia, Andrews and Buchinsky (2000) and Davidson and MacKinnon
(2000). O

The key feature of the restricted bootstrap is that the parameter estimates used in
constructing the bootstrap sample data are obtained under the restriction of the null
hypothesis, Hg. As discussed for instance in Hall (1992), in the statistics literature it
is often the case that in bootstrap implementations parameters are estimated without
imposing the null hypothesis, and to subsequently calculate a bootstrap test statistic
for the hypothesis 8 = 9n, that is, the hypothesis that # equals the unrestricted esti-
mate. Formally, this corresponds to the unrestricted bootstrap, as defined through the

following steps.
UNRESTRICTED (I.I.D.) BOOTSTRAP:

(i) Estimate model (1) using Gaussian QML without imposing the null hypothesis,
yielding the estimates 0, = (7 n, G, &p)', together with the corresponding unre-
stricted QML residuals, &, := Az, — Tpz—1 and 2 := (@, + &na:?_l)*l/%t, as
defined above;

(ii) Standardize the residuals as

~ —1 n ~
LD L

(Rt 300y (B — 7t 300 2)2)12

Zs,t L=
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and construct the bootstrap innovations using the i.i.d. bootstrap re-sampling
scheme; i.e., z; := Zs ¢, where n;, ¢ = 1,...,n is an i.i.d. sequence of discrete

uniform distributions on {1, 2, ...,n};
(iii) Construct the bootstrap sample {x}} from the recursion

* S * * K % *2 o~ A * 2 _
Ax} =Tpxy_ 1 +ep, € =07z, 0= +an(z;_)t=1,...,n,

with the n bootstrap errors z; generated in step (ii) and with initial values zf; = zo.

(iv) Using the bootstrap sample, {z;}, compute the bootstrap test statistic LR} for
the (auxiliary) null hypothesis 7 = 7, & = &,,. Define the corresponding p-value
as pi :=1— G} (LR,) with G} () denoting the conditional (on the original data)

cumulative distribution function (cdf) of LR;.

(v) The unrestricted bootstrap test of Hy at level ¢ rejects if pf < (.

The logic behind the unrestricted bootstrap is to avoid potential power losses that
the restricted bootstrap test may experience because of incorrectly imposing a false
null hypothesis when the null does not hold. There are, however, many cases where the
unrestricted bootstrap fails to mimic the asymptotic distribution, whereas the restricted
bootstrap does not. Among those, two cases are extremely relevant for the testing
problem considered here. The first is the case of bootstrapping when data have unit
roots — as it happens in the DAR model when m = 0. The second is the case where a
parameter lies on the boundary of the parameter space — which again appears in our
testing problem as o = 0 is a boundary point under the maintained hypothesis that

a > 0. We briefly discuss these two examples in the following.

ExXAMPLE 1 (UNIT ROOTS AND UNRESTRICTED BOOTSTRAP) Consider as in Basawa

et al. (1991) the first order autoregression with a unit root,
Axy = mxi_q +e¢, m=0,

gt 1.0.d.N(O,w), xzg = 0 and t = 1,...,n. Let J. denote an Ornstein-Uhlenbeck process
with mean reversion parameter ¢ (such that ¢ = 0 corresponds to a standard Brownian
motion) and set T (c) := [ J.dJ./ [ J2du. The QMLE of 7 is the least squares estimator,
fn =Y pq Amm_1/ > 1y a2, which satisfies

Tp 1= N7 —w Too := T (0) (5)

14



see Phillips (1987) and the references therein. Now, consider a (fully parametric) un-

restricted bootstrap, based on the recursion
Axy = Tpxi_ ) + €5, (6)

fort=1,...,n, initialized at x{ = o, and with €} i.i.d. N(0,1). With 7}, the bootstrap
(least squares) estimator, 7\ = .1 Azfzi /S 1 (x}_1)?, the bootstrap analog of
Tn 1S defined as 1), := ni,. Unfortunately, despite 7t,, being superconsistent, 7}, fails
to mimic the asymptotic distribution in (5). Essentially, because niy, = Op (1) rather
than oy (1), the bootstrap sample (normalized by the usual rate n~Y2) behaves, in large
samples, as an Ornstein- Uhlenbeck process with random drift parameter, rather than as
a Brownian motion. To see why, replace 7, in (6) by a sequence my, such that nm, — v.
Then, by extending the results in Phillips (1987) to the bootstrap case, we have that
(conditionally on the original data), T} := n(7), — T,) is asymptotically distributed as
7 (v) (see Basawa et al., 1991). In our case, Ty, := Ny, —y Too and, as a result, the
bootstrap statistic has a random distribution function, even for n — oo, given by 7 (Too).

More specifically, it can be proved that

<z)=P(r);, <zx|tp) = P(n(m), — ) < x|mh)

—y P (/dej%//ﬁwdug T Too>.

That is, the limiting distribution can be written in terms of an Ornstein-Uhlenbeck

process with a random drift, distributed as Too, i.e. as a Dickey-Fuller distribution.
Similar arguments are applied in Cavaliere, Nielsen and Rahbek (2015), see also the
next Section, and in terms of random bootstrap measures in Cavaliere and Georgiev
(2019) and Boswijk et al. (2019).

EXAMPLE 2 (UNIT ROOTS AND THE RESTRICTED BOOTSTRAP) While the unrestricted
bootstrap fails to mimic the unit root distribution, the restricted bootstrap does not; see
Cavaliere and Taylor (2008, 2009a) and Cavaliere, Rahbek and Taylor (2012) for the
multivariate case. Specifically, by imposing the unit root on the bootstrap sample, i.e.
by setting

Axi =<,

*

where f are i.i.d. N(0,1) and t = 1,...,n, it is guaranteed that 77, := n7} 5, 7(0), in
probability.

Alternatively it follows by standard arguments that one may use an ‘m out of n’
version of the unrestricted bootstrap which, by considering samples of size m = o(n)
ensures that ma, = op (1) as m — oo, which is sufficient for T}, = mary, w—>*p 7(0),

i probability. However, as already emphasized, while the asymptotic arguments are
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mathematically appealing, in practice the ‘m out of n’ bootstrap in this case does not

have adequate finite sample properties.

EXAMPLE 3 (BOUNDARY PROBLEMS AND THE UNRESTRICTED BOOTSTRAP) The stan-
dard unrestricted bootstrap is also known to fail when (some of) the parameters lie on
the boundary of the parameter space. Consider, as in Cavaliere, Nielsen and Rahbek
(2017), see also Andrews (2000), the Gaussian ARCH model,

T = /w+ ax? |z,

with z; i.i.d. N(0,1). Moreover, the optimization set is given by T, = {a : a € [0, ay]},
ap € Og,,, with Og, = {a : F'log (azf) < O}, while w is kept fized for simplicity here.
We consider here testing ag = 0 by the likelihood ratio statistic, LR,,. As in Theorem
8 for the DAR, the MLE &, satisfies for ag > 0,

\/ﬁ(&n - Ck()) —w %C; C ~ N (07 1) ’

0=V (x?), and the associated LR statistic for a = ag is asymptotically x3 (times 5)

In contrast, if ag =0,
V(b — p) —w aoo = max{0, (},
and the associated LR statistic for o = 0 has an asymptotic distribution given by,
LR, —y 5¢*1(¢ > 0) = 5max{0,¢}°.

Now, consider instead the (parametric) unrestricted bootstrap sample, as given by
Ty = \Jw+ a2 2f, with z; id.d. N (0,1) (independent of the original data), and
the associated bootstrap statistic, LR}, for the (bootstrap) hypothesis that o equals the
bootstrap true value, &,,. With ¢* ~ N (0,1) and independent of (, we conjecture from
the theory in Cavaliere, Nielsen, Pedersen and Rahbek (2019) that, conditionally on the

original data, the asymptotic distribution of the LR, statistic has a random limit,
5(C+a)?L((+a"20)| o,

where a* is a function of as given above. Thus, as expected the unrestricted bootstrap

fails to mimic the null asymptotic distribution. O

3.2 BOOTSTRAP VALIDITY IN THE DAR MODEL

Testing the pure random walk hypothesis in the DAR framework features the compli-

cations discussed in the previous Examples 1 and 3. First, since the null hypothesis
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implies a unit root in the data, a bootstrap which does not impose the unit root on
the bootstrap sample is likely to fail to be first-order valid. Second, since the null hy-
pothesis implies a parameter («) on the boundary of the parameter space, a bootstrap
which does not account for this feature may display a random limiting distribution.
The unrestricted bootstrap is neither imposing the unit root nor restricting o to be on
the boundary of the parameter space; hence, it fails to be first-order valid. Conversely,
under mild conditions the restricted bootstrap is able to replicate the correct null lim-
iting distribution of the LR test when the null hypothesis holds true. This is proved in

the next theorem.

THEOREM 4 Under the conditions of Theorem 3, provided Ez§ < oo, as n — oo the

restricted bootstrap LR statistic satisfies:
LR, LR ().

The logic behind the proof of bootstrap validity under the null hypothesis is the
following. When the restricted bootstrap is employed, the sample bootstrap is generated
as

* kA %
Az} =] = Wp2y.

Conditionally on the original data, the bootstrap score, see Appendix A, depends on
the vector (zf,2;? — 1), which needs to satisfy a (bootstrap) functional central limit

theorem of the form,

ln-] .

Zr () =n"Y2 z (25,22 = 1) %, (B*, VEWY) (7)
with B* and W* two independent standard Brownian motions. It is therefore crucial
to control what conditions are needed for (7) to hold, given that z; is a zero mean
(conditionally) i.i.d. sample from the centered standardized residuals, Zs;. This re-
quires checking whether the (conditional) variance of Z (-) converges to diag(1, k) and
whether the Lindeberg condition holds. As shown in the Appendix, these requirements
hold provided z; has bounded eighth order moments. Notice that it is usually the case
that in order to establish the asymptotic properties of the bootstrap, further condi-
tions are required when compared to non-bootstrap asymptotics; the DAR case is not
an exception. Notice also that the eighth order moment condition simplifies consider-
ably some steps of the proof using Chebychev-type and more general inequalities (for
early use of this approach in time series models, see Biihlmann, 1997, Swensen, 2003,
Goncalves and Kilian, 2004). It is likely that this condition can be relaxed to 4 4+
moments (§ > 0), e.g. by using Marcinkiewicz-Zygmund-type law of large numbers,

as done by Liu (1988) for location and regression models. The Monte Carlo results in
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Section 5 seems to support this conjecture.

It is worth emphasizing that for the DAR model, the limiting distribution of the
LR, test statistic for reduction to a pure random walk features a nuisance parameter,
namely the constant . This makes the testing problem based on asymptotic inference
convoluted, since the practitioner needs first to estimate x using a proper (consistent)
estimator, say Kk, and then using Monte Carlo methods to simulate the quantiles of
limiting distribution LR (k). The bootstrap allows to circumvent this problem, as it
replicates the correct limiting distribution without the need of plug-in methods. This
is an example of a classic application of the bootstrap to time series data, where it is
used to retrieve quantiles from an asymptotic distribution which depends on a (possibly

infinite dimensional) vector of nuisance parameters, see the following example.

EXAMPLE 4 (NON-STATIONARY VOLATILITY) A classic instance of a limiting distrib-
ution depending on a nuisance parameter is the case of ‘non-stationary’ volatility, see
Boswijk et al. (2019). In this case, in the simplest form the innovations of an economet-
ric model can be represented as € = o12¢, where z; is an i.i.d. finite variance sequence
and oy = h(t/n), where h is a bounded function satisfying some regularity conditions
(e.g., it is cadlag; see Cavaliere, 2004, and Boswijk et al., 2017 and 2019). In this case,

the partial sum process associated to ¢ delivers the following result

] .

Sul) = # ;gt M () = /O h(u)dB (u) |
where B is a Brownian motion. In this specific case, M is a continuous-time martin-
gale with covariance kernel given by Cov (M (s), M (s')) = fomm{s’sl} h(u)? du. Limit
distributions of estimators and test statistics usually depend on such a covariance ker-
nel, which is unknown in practice. Although consistent estimators could be constructed
(see e.g. Cavaliere and Taylor, 2007), the bootstrap can in general automatically repli-
cate the limiting functional M. That is, consider a vector of residuals &; satisfying
nTLS (82 —2) = 0, (1), and construct the bootstrap errors using the ‘wild” bootstrap
as

* . A * j—
g =&w,t=1,..,n,

where the wy’s are i.i.d. N(0,1). Then, it holds, as n — oo, see Boswijk et al. (2017
and 2019) and the references therein,

[n]
* 1 * w*
Sp(e) = Yo th —p M () (8)
=1

and hence the wild bootstrap replicates the same limiting distribution of the original
functional Sy,. U
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4 THE BEHAVIOR OF THE BOOTSTRAP UNDER THE
ALTERNATIVE HYPOTHESIS

4.1 PRELIMINARIES AND BOOTSTRAP CONSISTENCY

The analysis of the large sample properties of the bootstrap test statistic under the al-
ternative hypothesis is a key requirement for a correct implementation of the bootstrap.
Unfortunately, as it will be exemplified later in this Section, this step is in general more
involved than just proving validity under the null hypothesis.

Ideally, one would aim that, under the alternative hypothesis, LR} is (asymptoti-
cally) distributed as the LR,, limit under the null. This would require that, as n — oo,

LR: Y, LRoo () (9)

also when Hg does not hold.

This immediately implies that the (bootstrap) test is consistent: if LR,, diverges to
—+o00 under the alternative hypothesis then, with G denoting the cdf of LR} conditional
on the original data, it holds that the bootstrap p-value satisfies p}; := 1—G},(LR;,) —p
0. Moreover, in large samples a test based on the (conditional) quantiles of LR} would
have power approximately equal to the size-adjusted power of the (asymptotic) test
based on the quantiles of LR .

In fact, a weaker result that implies bootstrap consistency can be used in case (9)
does not hold. Specifically, a sufficient condition for the bootstrap p-value to shrink
to zero under the alternative is (again, provided LR, — oo under the alternative
hypothesis)

LR}, = Op(1), in probability, (10)

or the even weaker result that
LRy, = o,(LRy), in probability. (11)

In the first case, the bootstrap test statistic is bounded in probability, which implies con-
sistency of the bootstrap test at the usual rate. In the second case, both the bootstrap
and the original test statistics diverge to +o0o0. However, the fact that the conditional
quantiles of LR} diverge at a slower rate implies consistency of the bootstrap test.
This implies that in both cases the power of the bootstrap test converges to unity as
the sample size increases.

Two simple examples are now given.

EXAMPLE 5 (ARCH | BOUNDARY AND RESTRICTED BOOTSTRAP) In Example 3, un-

restricted bootstrap based testing for Hg : o = 0 was discussed in the ARCH model given
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by,
/
T =0z, or=wtariq, 0=(xw).

Recall furthermore that the likelihood ratio statistic LR, has the asymptotic limiting

distribution as given by,

LRo (k) = 2(¢1)? = 2 max{0,¢},

with ¢ a N (0,1) random variable. Consider here the restricted bootstrap based on i.i.d.
resampling of the (standardized) restricted residuals proposed in Cavaliere, Nielsen and
Rahbek (2017), hereafter. With 0,, := (&n,0) denoting the restricted (QML) estimator,
the bootstrap data are given by

xp =\ WOnzy, (12)

with zf sampled with replacement from the standardized residuals from restricted es-
timation, given by %5 = (% — Zp)/(n V01 (B — Z0)2)V2, 2, o= 07 Y00 F, with
Z = x4/\/On. The bootstrap shocks {zf : t < n} are an i.i.d. sample from zZ{ |
t =1,...,n, such that, conditionally on the original data, E* (zf) =0 and V* (2}) = 1.
Cavaliere, Nielsen and Rahbek (2017, Theorem 1) show that under the null hypothesis,
the bootstrap QLR statistic, say LR}, satisfies

LR: %, LR (), (13)

hence mimicking the correct asymptotic null distribution. However, if the null hypoth-
esis does not hold, result (13) may no longer hold. FEssentially, the reason is that the
unrestricted estimator @, equals n~! Yo x?, which may even diverge under the stated

assumptions. For instance, while under the null hypothesis xy = wl/?

z¢, which implies
that also {x; : t > 1} has finite fourth order moments, under the alternative hypothesis
xr may have infinite fourth order moments. If, additionally, it is assumed that z; has
finite fourth order moments, such that k' := E(x})/(E(2?))? — 1 < oo, by Theorem 1

in Cavaliere, Nielsen and Rahbek (2017) it follows that under the alternative,
LR, LR (k1)

such that LR}, = Oy (1), in probability. Hence, while as shown in Example 3 the un-
restricted bootstrap is invalid, the restricted is. Finally, note that when ag # 0 the
constant k' > k, hence implying a potential power loss of the bootstrap test with respect

to the asymptotic test.

ExXAMPLE 6 (HYPOTHESIS TESTING ON THE COINTEGRATING VECTORS) Consider a p-
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dimensional VAR process with v co-integrating relations, as given by
Avy=7xy 1+, m=af (t=1,..,n), (14)

with {e:} independent and identically distributed (i.i.d.) with mean zero and covariance
matriz 2, and where the initial value xo is fixed in the statistical analysis. Further-
more, assume that the so-called ‘I(1,r) conditions’ holds; that is, (a) the characteristic
polynomial associated with (14) has p — r roots equal to 1 and all other roots outside
the unit circle, and (b) o and B have full column rank r. Under these conditions
is I(1) with co-integration rank r, such that the co-integrating relations [3'x; are sta-
tionary. We want to test the null hypothesis Hy : 8 = 7, where 7 a known p X r
matriz of full column rank r. To this aim, it is customary to consider the LR test of
Johansen (1996), which rejects Hy when the associated LR statistic LR, is large, with
LR, asymptotically Xi(p_r) distributed. Now, consider a restricted bootstrap for Hy, as
initially proposed in Fachin (2000), Gredenhoff and Jacobson (2001) and later discussed
in Fachin and Omzigt (2006). This bootstrap requires estimation of (14) under Hy and
then use the corresponding (restricted) estimates &, and T to generate the bootstrap
sample as

Az} = a, 'z +€f, (15)

where the bootstrap shocks €} are obtained by re-sampling (after re-centering) from the
restricted residuals, & := Axy — o, 7'xi_1. Under Hg, consistency of &, implies, along
with a bootstrap (functional) CLT for {ef}, that the bootstrap LR statistic, say LRy,
satisfies
LR}, &p Xi(pr)'

Hence, the bootstrap mimics the correct asymptotic distribution under the null. How-
ever, as proved in Cavaliere, Nielsen and Rahbek (2015), the same result does not hold
when Hg is false. Intuitively, this is the case because when Hg is false, 7/ X;_1 is no
longer stationary, and hence the restricted estimator &, is based on the unbalanced re-
gression of Axy (stationary) on 7'xi_1 (non-stationary in p—r* directions , with r* < r).
This implies that ¢, 7', properly normalized, does not converge to a constant but, rather,
to a stochastic matriz of reduced rank r* (see Cavaliere et al., 2015, Proposition 1). As
a consequence, the bootstrap estimator of 5 is no longer mixed Gaussian (as it is un-
der the null hypothesis) and the statistic LR} has a random limiting distribution which
differs from the target x? distribution. However, it still holds that LR} = O, (1), in
probability, as in (10), hence implying that the bootstrap test is consistent.

EXAMPLE 7 (BOOTSTRAP FINANCIAL BUBBLES) Phillips, Wu and Yu (2011) consider

testing for an explosive bubble regime, based on the supremum of a set of recursive right-
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tailed DF test statistics, T,. While Harvey, Leybourne, Sollis, and Taylor (2016) show
that the restricted (Wild) bootstrap statistic T, mimics the right limiting distribution
under the null hypothesis, this result does mot hold under the alternative; neither does
it hold that T}, = Oy (1), in probability. Rather, Harvey et al. (2016) show that T;, =
0, (n1/2), in probability and hence both the original and the bootstrap statistics diverge
to +0o. But since the bootstrap statistic diverges at a polynomial rate n'/? while the

U72=71)  see Theorem 3

original statistic diverges at the exponential rate n'/? (1+07)
in Harvey et al. (2016), the bound in (11) applies and the bootstrap test rejects with

probability tending to one as n diverges. O

4.2 ON CONSISTENCY OF THE BOOSTRAP FOR THE DAR MODEL

Despite the restricted bootstrap correctly estimating the null asymptotic distribution
under the null hypothesis, its performance under the alternative is not at all straightfor-
ward to establish. This is because, under the alternative hypothesis of strict stationarity,
the retricted residuals Z; are no longer close enough to the true innovations, z;, and do
not share the same properties in terms of moments. Consequently, the bootstrap score
and information may have different asymptotic properties with respect to their sample
analogs. Intuitively, this happens because while under the null hypothesis, z; ~ 2z,
under the alternative hypothesis Z; = &, 1 2Amt, where x; may not possess finite fourth
order moments (take, for instance, the case where o + (1 4+ 77)2 = 1 with 7 # 0, such
that z; is strictly stationary and ergodic but Ex? = +oc0).

More precisely, recall that a first requirement for the asymptotic result in Theo-
rem 4 is to assess whether the bootstrap functional CLT [FCLT] in (7) holds, with
z{ (conditionally on the original data) i.i.d. from the centered standardized residuals,
Zspi=(n YR (G -0 Y, 2)°) V25, —nl > i1 Zt). In terms of zf, conditions
for

~1/2 R
n t; zf —p B ()

with B* a standard Brownian motion, are: (i) E*zf =0, (i) E*(z})? = n~' Y7 22, —,
1, and (iii) a Lindeberg condition. The complication here is that under the alternative
it no longer holds that Z;; is close to z;, as it happens under the null. In contrast,
Zs+ is close to Az (properly standardized). While (i) and (ii) are simple to verify, the
Lindeberg condition in (iii) requires further restrictions. In particular, by Lemma B.1
in Cavaliere et al. (2017) (iii) holds provided Az; has bounded fourth order moments.
Similarly, in order to deal with n=1/2 ZEZ%(ZZ‘ 2 1), the aforementioned lemma applies,
provided Ax; has bounded eighth order moment. Under this additional assumption,

the following Theorem can be established.
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THEOREM 5 Let the conditions of Theorem 4 hold, and consider the restricted bootstrap
test statistic, LRY,. Then, under Hy, if additionally E (AXt)8 < 00, then as n — o0:

LR: %, LR (k1)

where k! := %—1 > K.

This theorem proves that even in the case of bounded eighth order moments of
Axy, under the alternative hypothesis the bootstrap does not mimic the asymptotic
distribution given in Theorem 3. Rather, it converges to LR (k') rather than to the
null distribution LR« (x). However, since LR;, remains of order O}, (1), in probability,
the bootstrap test is consistent.

We now turn to the case where the moment condition on Ax; fails. Establishing the
limiting distribution in this case is extremely complicated, in particular because under
lack of moments (in particular, second order moments), the bootstrap CLT no longer
holds. Specifically, it is well known from Athreya (1987) and Knight (1989) that in this
case the bootstrap delivers a random limiting distribution, as reported in the following

example.

EXAMPLE 8 (BOOTSTRAP OF THE SAMPLE MEAN UNDER INFINITE VARIANCE)

Suppose that the xy’s form an i.i.d. sequence in the domain of attraction of a Stable
law with tail index denoted by v € (0,2). In this case it is well known that there are
sequences an and by, such that Sy = a, ' > 1 (¢ — by) —u S (v), a Stable random
variable with tail index v. Its i.i.d. bootstrap analog is given by Sf := a,' Y ¢ (zf —
E*z}), where the x}’s are (conditionally on the original data) i.i.d. from {xi,...,xn}.
Bootstrap validity would require that, in probability, S; v S (v). However, as shown
by Knight (1989), because of the lack of finite second order moments the large extremes
in the original sample do not ‘wash away’ and, consequently, the cdf of the bootstrap
statistic also depends on the original data asymptotically. Put differently, the cdf of the
bootstrap statistic, conditionally on the data, is random in the limit (see equation (2)
in Knight, 1989) and hence does not match the cdf of the S (v). FEuxtensions to other
bootstraps in the context of (stationary and mon-stationary) time series models with
infinite variance are provided in Cavaliere, Georgiev and Taylor (2018, 2016, 2018)
and Cavaliere, Nielsen and Rahbek (2018). O

In particular, it is reasonable to conjecture that — similarly to the bootstrap statistic
S, of the previous example —the term n~1/2 > o1y 7, albeit not satisfying a central limit
theorem (due to the randomness of its limiting distribution), is still of order O} (1), in
probability. Put differently, the central limit theorem does not hold on z;; however,

1/2

its sum is still of order n'/“. This would suggest that the bootstrap LR statistic may

have a random limiting distribution which, however, is bounded in probability, hence
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ensuring consistency of the bootstrap test. The Monte Carlo simulations of Section 5

support this conjecture.

4.3 A HYBRID BOOTSTRAP

We here propose a bootstrap method which is able to mimic the null asymptotic distri-
bution even if the null is false. This is simply a hybrid bootstrap, where we combine the
use of the restricted parameter estimators (typically employed for the restricted boot-
strap) with the use of the unrestricted residuals (typically employed for the unrestricted

bootstrap). The hybrid bootstrap test statistic is defined through the following steps.
HYBRID (1.I.D.) BOOTSTRAP:

(i) Estimate model (1) using Gaussian QML under the null hypothesis, yielding the
estimates 0,, := (0, 0,@,)"; similarly, also estimate model (1) using Gaussian QML
without imposing the null hypothesis, yielding the estimates 6,, := (s Oy 0n),
together with the corresponding unrestricted QML residuals, &; := Axy — a1

and 2y := (W, + dnxffl)_lﬂét, as defined above;

(ii) Standardize the unrestricted residuals as

~ —1 n ~
Ze—mT ) 2

(1Y (2 —n L3 5))Y?

and construct the bootstrap innovations using the i.i.d. bootstrap re-sampling

Zs,t L=

scheme; i.e., z; := Z; ¢, where n;, ¢ = 1,...,n is an i.i.d. sequence of discrete

uniform distributions on {1, 2, ...,n};
(iii)-(v) As Steps (iii)-(v) of the restricted bootstrap.

This bootstrap is simple to implement and — with respect to the standard restricted
bootstrap — it only requires unrestricted estimation of the model on the original data.
Since this step is done one time only, implementation of this bootstrap is not more time
consuming than the two bootstraps described earlier.

The crucial features of this bootstrap are that, due to the use of the unrestricted
residuals, a bootstrap invariance principle for (2}, 2} — 1) holds irrespective of the null
hypothesis to be true or not. Hence, the issue of possible lack of (fourth order) moments
for z; described in the previous Section 4.2 does not arise when this bootstrap is im-
plemented. Moreover, the use of the restricted parameter estimates in the construction
of the bootstrap sample allows to avoid possible randomness of the limiting bootstrap
measures due to unit roots and a parameter on the boundary under the null hypothesis.

We have the following theorem.
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THEOREM 6 Let the conditions of Theorem 4 hold, and consider the hybrid bootstrap
test statistic, LR} . Then, both under Hy and Hy, as n — oo:

LR: %, LR (K)

REMARK 4.1 In principle, under the null hypothesis it is well expected that the boot-
strap based on ‘restricted’ residuals, i.e. from estimation with the null imposed, delivers
better size control than the hybrid bootstrap discussed here. This is a well-known prop-
erty of bootstrap tests for a unit root; see e.g. Cavaliere and Taylor (2008, 20095) and
Palm et al. (2008) and the references therein. The amount of size accuracy which is lost
by bootstrapping unrestricted residuals instead of plain restricted residuals is usually
negligible. However, how the DAR structure affects the finite-sample properties of these
two bootstrap schemes cannot be inferred from the proofs of (first-order) bootstrap va-
lidity. In the next Section we aim to cast some light on this issue by means of Monte

Carlo simulation.

5 SIMULATIONS

In this Section we compare the finite sample properties of the LR test for the pure
random walk null hypothesis with its (asymptotically valid) bootstrap analogs: the
restricted bootstrap LR test and the hybrid bootstrap test of Section 4.3. By considering
a detailed simulation study based on the DAR model, we aim at analyzing the finite-
sample performance of the various bootstrap schemes across different choices of the
bootstrap true values and different distributions of the innovations, both under the null
and under the alternative hypothesis of (strict) stationarity.

The Section is organized as follows. First, in Section 5.1 we describe (i) the model;
(ii) the null hypothesis; (iii) the reference LR test and associated bootstrap test sta-
tistics. Finally, we describe the design of the Monte Carlo experiment. The empirical
rejection probabilities [ERP] of the tests under the null hypothesis are investigated in
Section 5.2. Section 5.3 is devoted to the analysis of the behavior of the test when
the null hypothesis is false. Here we investigate both raw and (pointwise) size-adjusted

ERPs under the alternative hypothesis.

5.1 MONTE CARLO DESIGN

We consider the DAR process

Axy = mxi 1 + &1, €1 = 042, af =w+ amf_l, 2z ~1.1.d.(0,1), (t=1,...,n) (16)
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with g = 0 and different choices of the distribution of z;. Specifically, we consider the

following three cases:

(&1) 2z is a zero mean, unit variance Gaussian random variable;

(&2) 2z is a standardized Student ¢ random variable with v > 4 degrees of freedom,
i.e. z is distributed as t (v) \/(v — 2)/v, where t (v) denotes a t random variable with
v € R" degrees of freedom;

(€3) z is a symmetric, standardized x2(1) random variable, i.e. z; is distributed as
S(x2 — k)/v/2k, with X2 denoting a x? random variable with k € N degrees of freedom
and S is a Rademacher random variable (i.e., a two-point distribution with P(S = 1) =
P(S=-1)=1/2).

For all error distributions, £ = 0 and k < oco. Notice that for the (unimodal)
distribution in &, the moment of order m exists provided v > m; moreover, for v > 4

the fourth-order moment (which appears in the asymptotic distribution of the LR test of

3(r—2)
v—4

moreover, all moments exist and in particular the fourth-order moment is given by

Section 2.3) is given by

. Under &3 the distribution of the innovations is bimodal;

12/k + 3. In the simulations, we force the ¢ and the symmetric x? distributions to have
the same fourth-order moments, which requires setting k = 2 (v — 4); specifically, we
set v = 5.5 and k = 3, which corresponds to k = 6.

The null hypothesis is the pure random walk hypothesis Hg : m = o« = 0, see Section
2.1. We focus in particular on alternatives of the form 7 < 0 and o = 0 (no unit root
in the mean equation and no conditional heteroskedasticity) and on alternatives of the
form 7 = 0 and a > 0 (conditionally heteroskedastic strictly stationary with a unit root
in the mean equation). In order to investigate power, we consider these alternatives

under Pitman drifts. We first consider the sequence of (near unit root) local alternatives

L a=0 (17)

Hgﬂ) T = Cr
with ¢, < 0 fixed. For n fixed, this alternative lies in the region of the parameter space
where the process is strictly stationary, conditionally homoskedastic and with finite

fourth order moments. Moreover, we also consider the sequence of local alternatives
Hga) =0, a=con > (18)

with ¢, < 0 fixed. For n fixed, this alternative with 7 = 0 lies in the region of

the parameter space where the process displays volatility-induced strict stationarity, is

conditionally heteroskedastic, but does not possess finite second order moments.
Restricted and unrestricted estimation and associated LR tests are based on the

Gaussian likelihood associated with (16), with z¢ considered fixed in the statistical
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analysis. Maximization of the likelihood function imposes the non-negativity constraints
a >0 and w > 0.2 The (asymptotic) LR test is based on asymptotic critical values
obtained numerically by discretizing the distribution in (3) over 100, 000 steps and using
100,000 Monte Carlo repetitions (these do not substantially differ from those reported
in Table 1 of Kliippelberg et al., 2002) under the assumption that x = 2 and £ = 0;
hence, the asymptotic case is not expected to be correctly sized, even in large samples,
when the actual distribution of z; departs from the Gaussian distribution.

We consider the two (asymptotically valid) bootstrap schemes introduced earlier
in the paper. First, the plain restricted bootstrap of Section 3.1, which is based on
resampling the residuals from restricted estimation and impose the null hypothesis on
the bootstrap generating process. Second, the hybrid bootstrap scheme, which employs
the residuals from unrestricted parameter estimation but still imposes the null on the
bootstrap sample.

Throughout, we use 10,000 Monte Carlo replications and use B = 399 bootstrap
repetitions. Samples of size n € {50, 100,200,500} are considered throughout. All tests

are run at the nominal 1%, 5% and 10% significance levels.

5.2 EMPIRICAL REJECTION PROBABILITIES UNDER THE NULL

Table 1 reports the empirical rejection probabilities (as estimated on the 10,000 Monte
Carlo replications) under the null hypothesis, Hy : « = 7 = 0, for the three distributions

for the innovations.

[Table 1 about here]

The following points can be made from the analysis.

For the leading case of Gaussian errors, the asymptotic LR test tends to be under-
sized for samples of size n € {50,100,200}. For n = 500, the ERPs are closer to the
nominal level. In contrast, both the restricted bootstrap and the hybrid bootstrap tests
show excellent size control for samples of n € {50,100,200}, with ERPs very close to
the corresponding nominal levels. The bootstrap tests do not seem to dominate the
asymptotic test in terms of size when n = 500.

For t-distributed errors, the asymptotic LR test is significantly oversized. This is
expected, since this test is implicitly based on the (false) assumption that the errors are
Gaussian. The bootstrap tests show very good size control, with the restricted bootstrap
being slightly more accurate than the hybrid bootstrap (as is expected, since under the

null the restricted bootstrap is based on resampling the true errors). It is interesting

3 All computations are performed in Matlab R2018b using the ‘fmincon’ constrained optimization
routine. Code is available upon request.
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to notice that in this case both Theorem 4 and Theorem 6, which provide sufficient
conditions for validity of the two bootstraps under the null, cannot be applied, as the
errors do not possess finite eighth order moments. Despite this fact, the performance of
these bootstraps is largely satisfactory. A possible explanation for this finding, which
is not uncommon in the bootstrap literature (see e.g. the simulations in Gongalves and
Kilian, 2004, for stationary AR processes, or in Cavaliere, Rahbek and Taylor, 20104, for
multivariate non-stationary AR processes) is that the moment condition in Theorems
4 and 6 is indeed sufficient rather than necessary, as also conjectured in Section 3.2. In
this respect, note that the ¢ distribution employed here satisfies the conjectured 4 + ¢
moment condition.

For the bimodal x?-type errors, the asymptotic tests are again substantially unreli-
able. For instance, when the nominal level is 1% and n = 500, the ERP equals 5.5%.
The bootstrap seems to fix this problem very well, again with ERPs very close to the
corresponding nominal levels at all the sample sizes considered. Again, the restricted
bootstrap seems to marginally outperform the hybrid bootstrap.

In summary, the performance of the bootstrap tests is largely satisfactory. Not only
the bootstrap allows to circumvent the non-pivotality of the asymptotic test, whose
distribution depends on the unknown parameter x, but it also delivers an excellent
control of the ERP when the null hypothesis holds true.

5.3 EMPIRICAL REJECTION PROBABILITIES UNDER LOCAL ALTERNATIVES

We now turn to the inspection of the ERPs of the (asymptotic and bootstrap) tests
when the null hypothesis does not hold. To this aim, in Section 5.3.1 we consider pure

homoskedastic autoregressive alternatives in HY). Next, in Section 5.3.2 we consider

heteroskedastic alternatives with a unit root in the mean equation, as given in Hga).
Throughout this Section we present both raw ERPs and (pointwise) size-adjusted
rejection probabilities. To compute the latter, as suggested in Cavaliere et al. (2015)
for each given point in the parameter space, we first perform the simulation under the
null and record the nominal level that would have given an ERP equal to the desired
significance level. Next, we use this adjusted nominal level in the simulations under the
alternative hypothesis. Let, for instance, p} denote the p-value of the bootstrap test,
and let po (n) := P (p;, < n|Hp), with n denoting the chosen significance level. Then,
the size-adjusted bootstrap test at the 100n% level corresponds to rejecting Hy when

pl <7, where 7 is such that p (7)) := P (p¥ < 77|Ho) = 7.

5.3.1 PURE AUTOREGRESSIVE ALTERNATIVES

Consider the local power of the tests under the local alternative HY) in (17), with
samples of size n € {50, 100,200,500} and all the three error distributions described
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earlier. Results are reported in Table 2 for ¢ = —10. For completeness, we also report
the raw ERPs in Table 3. Obviously, these ERPs are affected by the deviations of the

actual size of the tests from the corresponding nominal levels, see Table 1.

[Tables 2 and 3 about here]

For Gaussian errors, the two bootstrap tests perform similarly to the (size-adjusted)
asymptotic LR test for all the sample sizes considered. This is well expected from the
theory.

For t-distributed errors, at nominal significance levels of 10% the restricted bootstrap
test behaves very similarly to the asymptotic test. At smaller nominal levels, however,
there seems to be some power gains over the asymptotic test. The hybrid bootstrap
seems somehow less powerful than the restricted bootstrap, although the differences
between the two methods seem to decrease as m increases. A similar pattern can be
observed for the case of symmetrically x2-distributed errors. Here, again, the restricted
bootstrap test seems to be slightly preferrable.

The fact that in the non-Gaussian cases (£2 and &£3) the restricted bootstrap seem
to experience some power gains over the asymptotic test and the hybrid bootstrap test
may appear surprising. Clearly, it may depend on the chosen Monte Carlo design.
However, similar evidence has already been documented in the literature: for example,
Davidson and MacKinnon (2002, Figure 14) report a case where the restricted bootstrap
dominates the asymptotic test. In addition, in terms of theory there is no result that
prevents this from happening (see, e.g, Davidson and Mackinnon, 2006).

As for the size results in the previous Section, in the non-Gaussian case &£, z; violates
the regularity condition of finite eighth order moment. Again, this violation does not
seem to affect the power of the bootstrap test.

In summary, the restricted bootstrap tests display power which is not inferior (some-
times even superior) to the power of the corresponding asymptotic test. Moreover, im-
plementation of the hybrid bootstrap does not seem to provide power gains (its power

is in line with the power of the asymptotic test).

5.3.2 HETEROSKEDASTIC, UNIT ROOT ALTERNATIVES

Results for alternatives Hga) in (18) are reported for ¢ = 10 in Table 4 (size-adjusted

ERPs) and 5 (raw ERPs).

[Tables 4 and 5 about here]
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In terms of this local power analysis under Gaussian errors of £, the hybrid boot-
strap performs similarly to the asymptotic test. This is expected from our theoretical
analysis (Theorem 6), which shows that the hybrid bootstrap mimics the null asymp-
totic distribution of the original statistic and hence, in large samples, should have the
same (local) power than the asymptotic test. The same result is expected for symmetric
x? distributed errors. Surprisingly, also the plain, restricted bootstrap has comparable
power properties. This seems to show (parallel to the discussion of the simulations under
the null) that the moment requirement in Theorem 5 is sufficient, while not necessary.
Comparable results are obtained for the error distributions & and &s.

In summary, for both alternatives the bootstrap tests display power which is gen-
erally not inferior (and sometimes superior) to the power of the corresponding (size-
adjusteed) asymptotic test. The implementation of the restricted bootstrap seems to
provide the best performance not only in terms of size, but also in terms of size-adjusted

power.

6 EXTENSION TO ASYMMETRIC INNOVATIONS

One of the assumptions in Ling (2004) and that we have assumed so far is that the
third order moment of the innovations, £ = Ez}, equals zero. This condition ensures
that the two Brownian motions characterizing the asymptotic distribution in (3) are
independent.

If this moment condition fails to hold, the limiting distribution of LR, can no
longer be expressed as the (weighted) sum of a squared Dickey-Fuller and a half-y?
independent random variables, see Remark 2.6. More precisely in Theorem 3, as shown
in Kliippelberg et al (2002, Theorem 3.1), the second term in the expression for the
LR (k) in (3) for general £ is given by:

L nax (o, {g/g?dgju \/Q/BQdW—/B%u {531 + m—?wl}Dz (19)
/ Biidu — ( / Bgdu>2] R

where, as before, B and W are independent standard Brownian motions.

X

Interestingly, the bootstrap may take care of this non-pivotality and we can establish

the following result.

THEOREM 7 The results of Theorem 4 and Theorem 6 hold independently of whether
& =0 or not.

For the restricted bootstrap, where the z;’s are based on the restricted (standard-
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ized) residuals Zs;, a key insight is the following. It holds that the bootstrap (condi-

tional) third order moment &, is given by,

n

1 -
AU SE N
t=1
such that, under suitable moment restrictions on the {z:} sequence, §;, —, . This
implies, under some additional algebra, that Z () of (7) satisfies in this more general

setting,

[n]

* — * * I w? 1 0 B*
2 () =0T (E A1) S, <£ ﬂ) ( W )

see Appendix A.5.1, eq.(A.40). Hence, the bootstrap mimics the asymptotic distribu-

tional properties of the original statistics even if & # 0.

7 CONCLUSIONS

In this paper we have discussed several issues which may arise in the implementation
of the bootstrap hypothesis testing to time series econometric models. Essentially,
these are related to the assessment of bootstrap validity under the null hypothesis (i.e.,
establishing that the bootstrap mimics the correct limiting distribution of the original
test statistic under the null hypothesis) as well as to the behavior of the bootstrap
statistic under the alternative hypothesis.

Our discussion has focused on the double-autoregressive, or DAR, model, where
the time series properties of the data — such as strict stationarity or the existence of
moments — are determined through a very delicate balance between the parameters of
conditional mean and the conditional variance equations.

Focusing on tests of the null hypothesis of non-stationarity, i.e. reduction to the
pure random walk, we have initially shown that — due to the possible presence of unit
roots and of parameters on the boundary of the parameter space a classic — unrestricted
bootstrap fails to mimic the null distribution under the null. Conversely, the restricted
bootstrap works, irrespectively of a parameter of the conditional variance equation being
on the boundary of the parameter space under the null hypothesis.

Next, we have discussed the possible issues which may arise under the alternative.
Here, the crucial issue is that, under the alternative, the data may have infinite vari-
ance. Hence, the restricted bootstrap, based on re-sampling the residuals with the
null imposed, may in fact be based on re-sampling an infinite variance sequence. As
a consequence, the bootstrap statistic may have a random limiting distribution which

may lead to a lack of power over the infeasible size-adjusted asymptotic test. This

31



observation is the basis of our next suggestion, which is a hybrid implementation of
the bootstrap where the parameters used to generate the bootstrap sample are based
on restricted estimation while the residuals used to construct the bootstrap shocks are
based on unrestricted estimation.

Although most of our analysis is based on the DAR model, many of these issues are
common to the great majority of econometric models. Hence, a thorough investigation
of the properties of the bootstrap under the null and under the alternative is always
required before its practical implementation.

There are further issues which have not been touched in this paper but may as well
be important to establish bootstrap validity. For instance, in our testing example the
parameters of the model are (up to an intercept) all restricted by the null hypothesis.
In most cases, however, the null hypothesis restricts only a subset of the parameters.
An example is testing if a parameter is on the boundary of the parameter space when
the remaining parameters might be on the boundary, as in Cavaliere, Nielsen, Pedersen
and Rahbek (2019). In this case the limiting distribution of the bootstrap statistic
depends on the asymptotic properties of the estimators used to generate the bootstrap
data. Validity would then require (i) determination of the pseudo-true values to which
the estimators converge and at what speed, and (ii) the implications of this convergence

on the properties of the bootstrap sample.
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A MATHEMATICAL APPENDIX

A.1 INTRODUCTION

This appendix contains the proofs of the theory for the bootstrap implementation in
the DAR model for testing the null of non-stationarity, that is Hg : # = a = 0.

In Appendix A.2 and A.3, we first establish new asymptotic (non-bootstrap) results
for the QMLE én = (frn,oln,cbn)' under both stationarity as well as under the null

Ho of non-stationarity, see Theorem 1 and Theorem 2, respectively. Appendix A.3
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additionally provides asymptotic theory for the LR, statistic under Hp, see Theorem 3.
The asymptotic results for the QMLE, as well as LR,,, are then applied in Appendix
A.5, where asymptotic results for the (restricted and hybrid) bootstrap variants LR}
of LR,, are derived.

As to the general (nonstandard) likelihood theory, recall that the parameter (or,
optimization) set for the DAR model is given by

T:={0=(maw)  :m€|-r,7my],a€0,ay] and w € [wr,wy]},

and, for estimation with the null hypothesis imposed, by 7 := {0 = (7, a,w)" : 7 =
a=0and w € [wr,wy]}. As a > 0, inference and testing is nonstandard and we apply
theory from Andrews (1999, 2001) which treats estimation and testing under inequality
constraints (and more general boundary issues), see also Vu and Zhou (1997), Kliip-
pelberg et al. (2002) and Cavaliere, Nielsen and Rahbek (2017). Thus, the asymptotic
distributions of the QMLE 6,, and the associated LR,, statistic follow by verifying regu-
larity conditions for (i) the parameter spaces 7 and To; (ii) consistency of 0,,; and, (i)
convergence of the score, information and third derivative of the log-likelihood function.
For the bootstrap asymptotic theory, we verify the analogous regularity conditions for
the bootstrap log-likelihood quantities, applying convergence (weakly, and in probabil-
ity) conditional on the data, see e.g. Cavaliere, Nielsen and Rahbek (2015, 2017) and
Cavaliere, Rahbek and Taylor (2012).
As to (i), consider first the stationary case, where the true parameter 6y € O, with
o = (mo, g, wp) . In this case, T — fp, in the sense of Andrews (1999, 2001), is locally
equal to the cone(s),
A(A) =R x A xR, (A1)

where A =R if ag > 0, and A = RT if g = 0, such that Assumption 52*(") in Andrews
(1999) holds with By = n'/2. For the non-stationary case, where 0y € O, then T — 6,
and 7y — 6 are locally equal to the cones A := A (R") and

Ao := {0} x {0} x R, (A.2)

respectively. That is, with By := G,, := diag (n, n3/2, n1/2) in the non-stationary case,
Assumption 5%®) in Andrews (1999) holds.

With respect to (ii), the regularity conditions verified under (ii) imply, with proba-
bility tending to one, that 6, —p 0. As to (i), note that we verify suitable bounds on
the third-order log-likelihood derivative(s), rather than, as is standard, establish uni-
form convergence of the information (that is, the second order log-likelihood derivative);
see Jensen and Rahbek (2004, Lemma 1) and Kristensen and Rahbek (2010, Lemmas 11

and 12) for general asymptotic likelihood theory in the stationary and non-stationary
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cases respectively.

Finally note that while the results quoted in Theorems 1 and 2, and Theorem 3, are
for the case of the nuisance (asymmetry) parameter £ = 0, the results are derived in the
next Subsections under the general assumption of £ # 0 as needed for the discussion in
Section 6 where we extend the asymptotic (and bootstrap) theory to address also the

nuisance parameter £ (in addition to ).

A.2 QMLE UNDER STATIONARITY — PROOF OF THEOREM 1

In this Section we derive the asymptotic theory for the QMLE 0, = (s O, p) in
Theorem 1 for the stationary case where 6y € ©s. We verify conditions (A.1)—(A.3)
in Jensen and Rahbek (2004, Lemma 1) [JR hereafter] which imply, with probability
tending to one, that 6, —, 6. Conditions (A.1) and (A.2), that is convergence of
the score and information, are detailed below, while condition (A.3) for the third order
derivative follows as for the proof of establishing condition (C.ii) in Section A.6 for the

non-stationary case.

A.2.1 SCORE AND OBSERVED INFORMATION

In terms of the log-likelihood function L, (§) = >} ; l; (f), define the score quantities,

Sn(0) = si=> 0l;(0) /00 and S, = Sy, (0, - (A.3)
t=1 t=1

Likewise, the observed information is given by

n n

L,(0) = iy =Y (—0l(0) /0606") and I,, = I, (0)]s_p, - (A.4)
t=1 t=1

The terms in score S, (§) are given by

sy = (s7, 87, s¢) (A.5)

— (s fo ) (/0 — 1) ad 1 foR (/07— 1) /o).

At the true value 6y, the score is (the sum of ) a martingale differences (MGD) sequence,

o= gy = (vt b (F = 1) o2 1.3 (F — 1) Jod), (A)

with Vi1 = .'L’t_l/O't.
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The terms ¢; of the observed information are given by

i i
iv= | om o jow (A7)
i Qe e
vy (et/or) vy (etvi-1) o}
= (e¢/0¢) U?fl (5%/U% - 1/2) v;{l (5%/‘7% - 1/2) ’Ut{l/‘f%

(i) fo}  (ef/of = 1/2)viy/of  (f/of = 1/2) Joi

which at the true value 6g reduces to

Uiy 2V (21ve-1) /o7
14,0 = Utlg_g, = 2Py (22 —1/2)vf,  (F—1/2)v} /o |. (A8)

(zver) fof (2 —1/2)viyfof (5 = 1/2) Jo}

A.2.2 ASYMPTOTICS FOR THE SCORE AND THE HESSIAN — PROOFS OF
CoNDITIONS (A.1) AND (A.2) IN JR

Note initially that, by « < oo, standard application of central limit theory for i.i.d.

variables gives

t—1 § K

n_l/Qi (zt,zf —1) 5V, Var(V)= ( 1¢ ) . (A.9)

Next, the MGD representation of the score s; 0,
V-1 0 0
2
sto = (22 — 1) 0 L2 1 ’
Vi1 352

together with (A.9), implies by standard arguments that condition (A.1) holds, i.e.:

n 28, (00) =n 2D 510 Seo = (S, S)' L Sy = (SanSa)
t=1

T Sy

Here Sy is Gaussian with covariance matrix

Qs an .
Q= 5™ “Sam ) (A.10)
QS,’YTI’ QS,WW

where
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and
26— " ( E (et fof) E (o 1/o}) ) |
E(xf/o})  E(1/0})
Note that on the one hand for ag > 0, it follows that E (z}_;/0}) < co under sta-
tionarity of z; as in JR. If, on the other hand, oy = 0, then Ex} < oo is implied by
Kk < 00. Moreover, for ag = 0 and denoting Qs under ag = 0 by Q?S, the covariance g

simplifies to the following
1

QS Tr — ;E (I’t 1) QS T = (#E (l’?_l) 5 O) and (All)
0 “o
o _ & [ El(w,) E(st,)
Sy 4("}3 E (ng]_) 1 :

As to condition (A.2) for the observed information, it follows by the same arguments

used for the score that by standard application of the law of large numbers,

" T 0 9) 0
I 00)=n"1S g BT = " e . (A2
(6o) > i 0 T, 0 2 (A.12)

t=1 205y
A.2.3 ASYMPTOTICS FOR THE QMLE

Define first the tri-variate Gaussian variable, Z := (Z,,, ZQ)/ with 2, := (Z,, Z,) and
Z =718 £ N(0,Qz), where Qz = T QsT). (A.13)

For ag > 0, Qs is given by (A.10), while from (A.12) it follows that

- It 0 Vsrr O
Iool — ( 0 Ifl ) — ( % HQ— ) . (A14)
7Y Sy
Hence,
Qz r X
Oz = 1_1951_1 = Z 2o , (A.15)
oo oo 0 0
ZAT Zy
where
QZJ”" QEWT(’ QZWV Q ,lw'y
and )
ECHECT) - BCI )
QZ,”ﬂr QZ T t ) . s (A16)

E(-5HE("5) - B( 7 E()

O Ty

with § = B("E) B() - (B(5))
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Now, with 6, := arg maxger > 1 by Andrews (1999, Theorem 3),

20— 0,) 2 inf ||\ — Z|2 Al
n=(0n o)ﬁargAelg(A)H 17 (A.17)

where A =R if op > 0 and A =R" if ag = 0, see (A.1).
In the case of ag > 0, it follows that for A (R), with Z defined in (A.13),

n2(0, — 00) > 2 = (2., 2)".

Consider now the case of ag = 0. For A (R™), use the block-diagonality of Zo, to rewrite
the quadratic form on the right hand side of (A.17) as

. 2 : _ 2 N’
arg inf 1A= 2z, = (Zr, (arg | inf 1A= 24lIz,))

_ 71 ; _7-1_ 01
where Z, =1.'S, has covariance Qz ,, =1 = 5Q5 , see (A.15).

Next, diagonalization of 7, is obtained by using the matrix M,

1 —po 9
M = , = Faxy,
(0 1 ) Y t

such that Z,, is diagonalized by post- (and pre-multiplying) with M (M’). That is,

1

5 0
L, = MZI, M = 2 ( o ) : (A.18)

with 6o := E (2} 1) — (E (m?_l))z. Define next,

-1

Zy = (Za, Zw)l = (M/) 2y = (IVVM)il Sy

which by definition, using the identity €25 ., = §Z,,, has covariance

R A
: |

2
0 KW§

Finally, note that A (R*) is invariant under transformation with the transpose of M 1.
That is, for any (z,y)" € A (RY),

(M) (2,9) = (2,9 — ox) € A (RY).
Collecting terms,

inf [[A—Z, |2 = inf — Z|]? A.19
oof Yz, n:(nwﬁ,ewwlln Iz, (A.19)
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_ 1 : 2 2
= iy it {0 = Za)* 80+ (n, = Zu)%)

It follows that

arg inf {(n, — Za)2 do + (0, — ZUJ)Z} = (max (0, Za) , Zw)/v
neERT xR

such that by (A.19), and using that by definition, A = M'n,

. 2 _ ! /!
arg /\e]gifx]R A — ZAYHIw = M’ (max (0, Z,) , Zy,) (A.20)

= (max (0, Z,) , Z, — omax (0, Z,)) .
Here, Z, and Z, are independent Gaussian distributed with
Zo L N (0,5w2/6) and Z, 2L N (0, sw) (A.21)
This establishes Theorem 1.

REMARK A.1 Note that if & = 0, the covariance of Z, see (A.15) becomes block-

diagonal,
QZ T 0
Oz = ’ . A.22
‘ ( 0 QZ,W) ( )

REMARK A.2 The above also reduces to Ling (2004, Theorem 1) for the case of ag > 0
and ¢ = 0.

A.3 QMLE AND LR TEST UNDER NON-STATIONARITY — THEOREM 2 AND
THEOREM 3

We proceed in the following by establishing regularity conditions under which the as-
ymptotic distribution of the QMLE and the likelihood ratio test can be derived for
the non-stationary case where 6y € ©,r. Specifically, we verify the following regularity

conditions (C.i)-(C.ii) in terms of the log-likelihood function, L,, (#), and its derivatives.

ConpITION (C.%). With Gy, =diag(gn,i) where

i=1,2,37
(91m 92m> 93.m) = (n, 0%/ nY/?),
it holds that
(G185 (60), G I (60) G) (S0, Toc) (A.23)

CONDITION (C.ii). With 0 := (01,04,03) = (m,,w)’, and i,j,k =1,2,3,

sup
0€ Ny (6o)

—0,(1) (A.24)

‘”1/2 (9°Ly, (0) /90;00,00) | (ginGjnkn)
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where the supremum is over a the sequence of neigborhoods given by,
N, (6o) = {0 : ginﬂ2 + g%}na2 + g?,,n (w— w0)2 < a/n} .

Conditions (C.i) and (C.ii) are from Kristensen and Rahbek (2010, Lemma 11 and
Lemma 12) where general asymptotic theory is presented for (non-)stationary variables.
With the parameter spaces 7 and 7y satisfying (i), that is, shifted they are locally equal
to A and A, it follows as in Kliippelberg et al. (2002, Lemma B.1), see also Vu and
Zhou (1997) and Andrews (2001), that with

Z: =T 'S,
then the LR, statistic converges in distribution:
o a2 2
LR, —y LR (K) = ,\lngo A= Z|Z, ;\Ielf\ A= Zlz. - (A.25)
Likewise, as in Andrews (1999, Theorem 3), under (C.i)-(C.ii) it follows that
(0 — w arg inf [\ — Z|3 . A2
G (0n = 00) = arg inf [|A — 2]z (A.26)

A.3.1 PRELIMINARIES

Note initially, that under the null hypothesis Hy, Sy, (60) = > ;"4 s¢,0, see (A.3), where
with 0g € Oy,

t
st0 = (ve—12t, %vf_l (zt2 — 1) , ﬁ (zt2 — 1))', with vy 1= Z 2.
=1

Standard application of the invariance principle implies convergence to the Brownian
motion V,,, u € (0,1):

)
n_1/2; (Ztvth - 1)/ B} V= (Vla‘/?),v E(Vlvll) = ( 2 i[ ) . (A27)

Define next the matrix

1 0 1 0
= , with Q7! = , A.
¢ (—Uv%—fZ]/Vﬂ—§2> e (5 m—fZ) 2%

and use it to define the bivariate standard Brownian motion (B, W)":

(B,W) :=QV = (Vi,(Va — V1) /\/k — €)' (A.29)

43



It then follows that

n~1/2 Z Q (21,28 — 1) % (B, W) . (A.30)

A.3.2 Score - ConbpiTION (C.1)

Consider next the score S, (6p), normalized by G,, where

G, ! = diag <n*1,n*3/2,n*1/2) . (A.31)
It follows, with
n 23 A 0
2
G 1S, (00) = 1/2 Z 0 <n*1/2 Zf;i Zt) /2 (2t P 1)/’
0 1
2wo
that
Ggls (90) g Soo (5) (871'7 S;) (Saa Soza Sw), (A 32)
(/BdB /B2dB+V“2_§2/B2dW,2w B+ Y& W)

A.3.3 INFORMATION — CONDITION (C.I)

Under Hy, it follows by standard arguments that (jointly with the score) the information
I, (00) = > 7 it converges weakly

w I’?Tﬂ' 0
G, (00) Gt % T = : A.33
<o>new<0%) (A3

with
1( [Bldu g [B%du
Iy = ( L [ B 0 3 , and IM:/B2du.
wo

Also observe that by definition,

_ I;Wl 0 _ 2 1 —wo [ B%du
I = L =3 ) ) / . (A.34)
0 ) 0 \ —wo [B?du  wi [ Bidu

with 6 = [ B*du — ([ B%du)’.

A.3.4 THIRD ORDER DERIVATIVES — CONDITION (C.11)

It follows that (C.ii) holds by the considerations in Appendix A.6 below.
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A4 QMLE — PROOF OF THEOREM 2

By (A.26) we have,
b, — = inf [\ — Z|> =: !
Gn(0,, — 0y) — arg inf |A 17, = Ay Aas Aw)' s

with Z given by (A.35). As before, by block-diagonality of Zo in (A.34) and the
definition of Z in (A.35),

A = Zn = /BdB//BQdu.
For A, = (Aa, A,)" use that by definition of Z, := (Z,, Z,)’ defined in (A.37), we have
inf A= 2,2 = inf |- 22 .
AeRFxR Ty T eRT xR Iy
In terms of n = (n,,n,,)" we find
arg_inf |- 23 =arg inf (0= Za)?+ (0. — Zu)?)
neR+ xR Ly n=(1Na:M,) ERT xR
= (max (0, Z,) , Z,,)" .
Finally, use the identity A, = (A, Ay)' = M'n to see that
Ay = M (max (0, Z,), Z,) = (max (0, Z,) , Zy, — (wo/B2du) max (0, Z,))'.

Collecting terms, and setting £ = 0, ends the proof of Theorem 2.

A.4.1 LR, CONVERGENCE — PROOF OF THEOREM 3

From (A.25),

w s _ 2 s _ 2
LRy, = LR (K) = \nf 1A= 2lz,, — jnf | = 2]z,
where Z := (2, 20, 2,) = (2x,2]) = I3 Sw satisfies Z; = [ BdB/ [ Bdu,

2l [ 0 o= [~ [ o emcw, - a

and

Z,= ?(/B‘ldu(gBl +\/ k= W) — /BQdu(g/BdeJr \/n—§2/B2dW)).
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By the block-diagonality of Zo, in (A.34), we may write LR« (k) as

_ 22 - 2 22
[Roo (W)= Z2Ten+ | inf A= 237~ inf A= 2,7,

Diagonalization of Z,, can next be obtained by using the matrix M defined as

M= 1 —wofB2du ,
0 1

such that
;1 6 0
L :=MI, M =5 0o L | (A.36)
wg

Next, note that Z, = IV_VISA,, and hence we can define 7, := (Z,, Z,), where

1 1

Z,= (M) 2, = (T, M) 'S, (A.37)
By definition,
§ L [B2%du
Iy M' = % ( e fl )
0 >l
Wo
and hence
g §H(€ [ BMdB + 'k — €2 [ BHW) — [ B2({du¢B; + 'k — £2W71))
! wo({B1 + VK — EW7)
Finally, the cones Rt x R and {0} x R are invariant to multiplication by (M’)~", such
that we get, using the identity (A.36),
. 2 _ . o /! o
o A=Zlz = nf (A—Z2y) Ty (A2, (A.38)
— 7y () —
= )\Eﬁg}rfo(A Zy) (MI’Y’YM) (A= 2Zy)
5 - 2 . 2 2
=% inf (A—2Z f (A= 2Z 2
2 inf, A= Za)” + fof (A= Zu)7/ (20)

=3721(Z, <0).
Here, by definition,
Zo = 5—1((5/3%3 +1/k— 52/B2dW) - /B2du(§Bl + /K —E2W7)).  (A.39)

Collecting terms we find

)
LRoo (k) = Z2T5n + 52341 (Zo < 0)
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0
— (/ BdB)2//Bzdu+ 5Zgl (Zo < 0),
and setting £ = 0 ends the proof of Theorem 3.

A.5 BoOTSTRAP — PROOF OF THEOREM 4

We verify here the equivalent of the conditions (C.i) and (C.ii) for the bootstrap from

which the bootstrap results are derived.

A.5.1 BOOTSTRAP SCORE AND INFORMATION

It follows that the bootstrap score is given by

t

!
* *2 *2 1 *2 : * *
Si0 = (Ut 124 2vt 1 (Zt 1) T (Zt — 1)) , with vy = Zzi.
=1

The bootstrap invariance principle (cf. Cavaliere, Rahbek and Taylor, 2012) implies
the main result of convergence to the Brownian motion V*, as stated in the following

Lemma.

LEMMA A.1 Assume that E(z2§) < co. Then, as n — oo,
Ln-] X 1 ¢
w0 V= (Y E(RY) = < ¢ ) |
K

PROOF. By definition, z; is re-sampled with replacement from Z ,

~ -1 n ~
Zi—mT Y i

(13 (B —n 1300, Z))Y2’

Zst=

where, under Hy,

Zr = w,, /Ax —&1_/ /zt.

With mf := (zt ,zi — 1)/ consider, for any A € R?, \ # 0,
Nmy =Mz + X (52— 1).

Again, conditional on data, \'mj is i.i.d., and hence as in Swensen (2003, eq. (10),

proof of Theorem 1) it suffices to establish
* (y1, *\2 P / 2 x (v, *\4 P / 4
E*(Nm§)” = E(Nmy)”, and E* (Nmj)" = E (Nmy)
where m; = (zt, 22— 1)/, which by standard arguments holds if Ez < co. This ends

the proof of Lemma A.1. O
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Next, with @* = @ in (A.28), construct the bivariate standard Brownian motion
(B*,W*)" as
(B*, W*>, — Q*V* _ (V1*7 (V2* _ gvl*)/ K — 52)l’
such that

n~1/? Z Q" Zt ) Zt )/ li*’p (B, W) (A.40)
Then, the following lemma follows.

LEMMA A.2 If Ez8 < oo, and with G, defined in (A.31), then the bootstrap score
satisfies,
G;LIS:L 11)]3 S:ov

where S&, = (8%, 8%, 8%) with,

S*l o /B*dB*’Z/B*QdB* \/li 5 /B*Zdw* & VK Wl)

) 2wo 2w0

We also have the following result on the information.

LEMMA A.3 Under the conditions of Lemma A.2 it follows that the bootstrap informa-
tion converges jointly with the score as follows:

—1 - % —1 w * I:;T( 0 .
G, th,ﬁ G, —pl, = 0 T , with
VY

1
oo L[ B [ B%d
olal 5 wiofBanu % y
wo

and T} = [ B**du.

Finally, condition (C.ii) is shown in Appendix A.6 to hold also for the bootstrap

case.

A.5.2 BOOTSTRAP LR} STATISTIC

Observe that by definition

1—*—1 — 1;7?1 0 I*_l _ 3 1 *WOIB*zd’UJ
= 0 Izt ) T 6"\ —wo [B*?du w3 [B*du )’

with 6* = [ [ B*du— ([ B*2)2] We define 2*= (27, 25, 2%) = T-1S% (€), where

Zr= /B*dB*//B*Qdu (A.41)
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Zr = 51*({5/3*2dB* +1/k— 52/3*2dW} - /B*2du{§B>{ +1\/k— EW))
Z¥ = 3;,9(/ B*Qdu{g/B*QdB* + /K — 52/3*2dW}

+ / B*du{¢B} + \/k — E2W1})

It follows that, as for the LR, statistic under Ho, LR}, "itp LRE, (k), where,

6*

2
(5*

— (/ B*dB*)Q//B*2du+ 52;21 (Z% >0),

LR (0)=(25)* Tin + 5 Z371(Z5 > 0)

with

Zr = 5”({5/3*%3* + /K — 52/3*2dw*} (A.42)

- /B*2du{53{ +\/ Kk — E2WTY).
which ends the proof of Theorem 4 using LR (k) 2 [Reo (K).

A.5.3 BOOTSTRAP — PROOF OF THEOREM 6 AND THEOREM 7

The proof of Theorem 6 follows by replicating the proof of Theorem 4, as Lemma A.1

also applies to the case where the bootstrap innovations z; are resampled from

P ét — n’l 2?21 ét
s, t— — N — N
(2 30 (B =m0 2)2) 12

where the unrestricted residuals are given by

(A.43)

. . . . 1/2
Zr = (Azy — Tpzi—1) / (wn + ozn:c?,l) 2

The proof of Theorem 7 holds trivially as all arguments used to establish Theorems 4
and 6 allow & # 0.

A.6 ON THE THIRD ORDER DERIVATIVES — CONDITION (C.1I)
A.6.1 NON-BOOTSTRAP CASE

With ¢ and (¢;)7_, generic constants, it follows that (C.ii) holds as follows:
P*L,, (0) Jor® = 0.

n

4 n
9, 29%L, (0) JOn?0a = n~? Z th—zl <en? Z zi=0,(1).
’ o
t=1 1 t=1
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n 2 n
n g 20500 Lo (0) (00 =2 3 "L < en™? Y a1 = 0, (1).
t=1 t t=
1/2 —3 37 3 4 q;? 1
253001 0 0| = 3% ) (P
0y
<cin Za:tl —1 +02n 42%1_0(1).
t=1
1/2 37 2 3Ny Er i)
‘ 92.09500°Ln (0) /Ocx &u‘: n 2[3?— ] =5
t=1 t t

<3ty (1)t Yot =0,0)

EtT
g

[n1/205207 L6 L,y (0) /0020 | =
t=1 t

< e Y (Jul = Blal) Jaefy |+ en Y |5 = 0, (1).

t=1 —1

n 2
1/2 -3 493 3 -1 €t 1
a5 /0| = o S0 % 1) ()

t=1 t

<en” IZ 1]+ =0,(1).

[n1/2g7 L0526y, (0) /0?0 | =
t

n
— EtTt—1
Y e
g
t=1

<an Y (lul = Elal) w1l + con 2> ] = 0, (1).

t=1 =1

1/2 —143 5 o~ E2a? 1
’ 93n92 0°Ly, (0) /0w 804‘ =|n 2[3 - 1] 5
t=1 t t

<cn” 22 —Ua? | +can” 2z:(xf,l—l—l):Op(l).

t=1

’ 1/293 n92, n91 nag n () /Gwawﬁa) =

" gl
t
n 5/2 g 27151
b
t=1

t
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<an 23" (lul = B lal) 6] + e 3 [ad | = 0, (1).
t=1 t=1

REMARK A.3 Note that we here used that an invariance principle applies to the term,

1[51]1 (|2¢| — E |z|) normalized by n~=1/2.

A.6.2 BOOTSTRAP CASE

With ¢ and (Ci)?zl generic constants, it follows that (C.ii) holds for the bootstrap by
replicating the arguments in Appendix A.6. That is, we have:

93L% (9) JOr® = 0.

n *4
_ * - Li_1
91,283Ln (6) /on*da =n"? Z of - Ziﬂt 1=
t=1 1
n
nl/2 183L*()/8 29, — 7225’;?— QZ
gl ngg T"0w =n p SUt 1=
t=1 1
1/2 -3 93 7% 3 —4 - e’ x5y
0!/ 808 L7, (60) f00?| = |n~t Y (375 — 1] (=5
=1 t t
n n
<e¢n? me{fl (z;fQ -1)+ con™* Zﬁg =0, (1).
-1 t=1

[n1/2g5 20540 L (0) /0020 =

t=1
n n

< cln_3 Zazf{fl (z,?k2 — 1) + C2n_3 Zl‘fﬂ = O; (1).
t=1 t=1

%5
S
n-?/QZ2 t t 1

(!5 297 A6 L (0) /00207 = !
t=1 i

<en/? Z 2| = B |2f]) |2724 ] + con™ 7/2Z|$t 1| =0, (1).

t=1 t=1

1 & 6?2 1
n S TBL 1) (=
Y% -1 ()

[n!2g3 20 L, (0) 0u? | =
t

<en ') [ -1+ e =0;(1).

n1/2g1 ng3283L*( )/8w267r‘ _ n—3/2228twt 1

Oy

o1



n n
<an 2N (12| = Bl ) [wiiy | + eon ™Y Jai| = 05 (1)
t=1 t=1

- e:%z‘% 1(1)‘
_] *6 :
Oy

<cn~ 22 Ux?, + con™ th 1 +e3=0,(1).

1725 205 A0 L, (0) /0200 =

%3
ez}

n5/2z ttl'
oy

’ 1/293 n92. n91 n83L* (0 )/8%(‘%}8&‘ =
1

n n
<an? Y (2] EED) [2io ]+ en™ Y [ai P = 05 (1).
t=1 t=1

REMARK A.4 We have here used that a bootstrap invariance principle holds for the
term, n~1/2 [nu] (|zF] — E*|z{|), under the conditions in Lemma A.1.

52



Table 1: Size of the asymptotic and bootstrap tests

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

z~N 50 06 40 90 10 47 98 1.0 5.0 10.1
100 05 39 88 09 47 96 1.0 49 100

200 06 42 92 10 48 98 10 51 99

500 0.8 49 105 11 57 108 1.1 58 10.9

2~ t 50 2.1 6.5 11.7 0.8 44 97 18 5.9 10.7
100 28 7.8 136 09 50 103 20 6.3 11.2

200 32 81 141 09 49 98 18 58 105

500 39 99 164 09 52 105 14 59 10.9

z~x? 50 27 76 132 09 47 98 24 6.8 118
100 3.8 98 153 09 50 108 23 74 119

200 46 11.2 169 10 52 108 21 6.8 11.7

500 5.5 125 192 12 56 11.0 18 6.5 115

Notes: The parameter setting under the null is # = 0, = 0 and w = 1. The innovation
process (z;) is drawn, respectively, from standard normal distribution, standardized ¢
distribution with degrees of freedom 5.5, and standardized symmetric x? distribution
with degrees of freedom 3. The results are obtained from 10000 Monte Carlo simulation

iterations each of which is evaluated using 399 bootstrap samples.
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Table 2: Size-adjusted power of the asymptotic and bootstrap tests under the local
alternative 7 = ecn™!,a = 0.

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

ze~ N 50 220 61.6 81.2 249 63.1 821 219 61.3 80.5
100 219 60.3 81.0 24.2 623 81.0 246 60.8 80.3

200 21.6 588 788 23.7 59.5 789 203 580 79.0

500 20.0 55.0 772 203 548 76.3 204 544 76.1

zp ~t 50 73 450 729 17,5 5B3.7T 728 9.2 415 679
100 4.5 357 66.0 14.6 440 65.5 7.8 348 61.5

200 29 330 637 11.3 38.6 623 6.1 33.1 59.9

500 2.6 26.7 58.2 83 334 574 55 289 552

2~ X2 50 46 36.2 66.5 155 446 66.9 55 32.0 574
100 4.0 26.2 559 11.5 36.5 57.2 7.0 259 50.3

200 2.5 21.8 49.6 79 306 530 4.2 226 46.6

500 1.8 185 447 44 227 46.8 2.7 204 432

Notes: The parameter setting is ¢ = —10, and w = 1. See also notes to Table 1.

Table 3: Raw power of the asymptotic and bootstrap tests under the local alternative
—1
m=cn -, a=0.

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

ze ~ N 50 16.2 545 782 21.2 60.0 80.7 21.9 59.9 80.5
100 154 534 77.6 20.5 594 797 21.1 592 795

200 15.7 53.6 76.8 203 57.9 782 203 580 782

500 16.4 54.7 785 203 57.7 785 204 578 785

zp ~ 1 50 179 552 783 144 494 713 155 476 69.6
100 182 545 784 11.9 427 66.3 129 423 65.2

200 186 543 Y77 93 373 615 101 371 60.9

500 20.0 57.7 797 6.5 334 582 74 335 58.0

2~ X2 50 174 540 783 12.8 434 66.0 14.8 42.0 634
100 18.6 54.8 785 95 365 604 114 358 59.1

200 19.7 56.0 79.8 6.2 306 55.3 7.8 30.8 54.9

500 21.8 574 796 44 252 50.1 53 254 49.7

Notes: The parameter setting is ¢ = —10 and w = 1. See also notes to Table 1.




Table 4: Size-adjusted power of the asymptotic and bootstrap tests under the local
alternative 7 = 0, = en=3/2.

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

ze~ N 50 243 396 50.3 215 382 50.0 245 402 50.6
100 29.1 43.7 54.6 27.8 43.6 54.6 30.3 44.4 55.0
200 324 469 569 319 46.6 570 314 46.6 574
500 34.8 48.6 59.1 343 483 586 350 488 B8.7
zp ~t 50 17.0 323 432 163 33.0 435 179 321 435
100 188 347 451 206 354 454 20.1 34.0 45.0
200 20.3 37.7 482 239 38.7 482 21.7 373 480
500 22.7 38.2 487 26.1 39.7 49.0 24.7 385 485
2~ X2 50 15.8 30.6 40.5 15.6 30.8 41.1 146 299 402
100 184 319 414 188 33.2 422 194 31.6 41.3
200 19.0 34.1 434 20.8 352 443 198 33.1 428
500 21.1 359 459 223 36.3 46.2 205 36.1 454
Notes: The parameter setting is ¢ = 10 and w = 1. See also notes to Table 1.

Table 5: Raw power of the asymptotic and bootstrap tests under the local alternative
T=0,a= en =372,

Asymp. Test Restr. BS Hybrid BS

n 1% 5% 10% 1% 5% 10% 1% 5% 10%

ze~ N 50 21.7 364 484 19.6 36.8 49.1 245 39.6 50.6
100 259 41.2 526 259 424 53.7 289 43.8 54.6
200 294 446 559 30.1 458 56.5 314 46.6 56.8
500 334 485 59.8 343 49.8 598 350 50.1 60.0
zp ~ t 50 23.0 359 46.2 14.7 30.8 425 21.6 34.7 44.2
100 27.6 40.8 50.3 18.8 34.8 458 24.1 371 46.7
200 31.6 449 543 222 381 479 256 39.1 484
500 35.6 48.5 57.8 244 39.7 494 26.6 40.6 49.7
2~ X2 50 235 36.1 452 14.1 30.3 406 219 34.0 423
100 28.8 41.2 50.1 171 33.2 43.5 229 358 445
200 33.1 45.1 53.3 19.2 352 451 23.5 36.8 45.8
500 37.3 49.9 58.0 223 37.7 475 248 385 48.1
Notes: The parameter setting is ¢ = 10 and w = 1. See also notes to Table 1.




