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Abstract 
We compare centralised and decentralised distribution network designs for a two-level 
supply chain. The demand pattern faced by the retailers is modelled as a first order 
Vector Auto-Regressive process, which is used to represent the progression of and 
relationship in sets of time series. All participants, i.e. retailers and distribution centres, 
operate an Order-Up-To policy with the MMSE forecasting. Inventory and capacity 
costs are considered. The result shows that the demand correlation has a significant 
impact on decision about consolidation of the distribution system. 
 
Keywords: Distribution network design, Vector Auto-Regressive (VAR), Correlated 
demand 
 
 
Introduction   
This study is concerned with Distribution Network Design (DND).  DND is concerned 
with determining the number, location and capacity of distribution centres in order to 
achieve efficient flow of product from suppliers to customers. We develop an analytical 
model of a two-level supply chain in which the benefit of the consolidation of the 
distribution network can be evaluated.  

The demand pattern faced by the retailer is modelled as a first order Vector Auto-
Regressive process, VAR(1). The VAR model is used to represent the progression of 
and relationships in sets of time series. Thus, the VAR model is used to represent a 
situation where the demand is correlated over time and between retailers (or with other 
products). The correlation of demands between retailers complicates distribution 
network modelling and has been disregarded by most researchers (Chen et al., 2002). 
Since this complexity occurs with real consumer products (Erkip et al., 1990) and 
neglecting it can cause significant deviation from the optimal inventory policy, we are 
interested in finding an analytical description of the dynamics of this situation. 

We are also concerned with the bullwhip effect, (Lee et al., 1997). This study 
captures the relationship between distribution network design, inventory costs and 
capacity costs in our model. The capacity cost represents the opportunity costs 
associated with the Bullwhip effect (Disney et al., 2006).  Using some Control 
Engineering tools we have derived analytical expressions that describe the dynamics of 
the net stock levels and order rates over time. These allow us to find the net stock 
variance and the order variance, which are important inputs for our cost model. From 
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the model we are then able to analyse the costs of network consolidation.  In certain 
circumstances the square root law for inventory is shown to hold, as well as the newly 
discovered “square root law for bullwhip”, Ratanachote and Disney (2008) and Disney 
et al. (2006). In addition, a numerical example is presented in order to evaluate the 
impact of the demand correlation and consolidation in the distribution network. 
 
Literature review 
Although most literature neglects the impact of demand correlation in supply chain 
models, a number of papers have paid close attention to the matter in a variety of model 
settings. Erkip et al. (1990) develops a depot-warehouse model acting as a centralised 
distribution system with one supplier, one depot and n warehouses. The depot holds no 
inventory. The warehouses employ base-stock policies. The study shows the impact of 
demand correlation both across warehouses and in time on the optimal safety stock of a 
periodic review system.  The demand correlation in time is represented by an Auto-
Regressive process of the first order, AR(1). This is assisted by a periodic index-
variable that represents demand correlation between warehouses.  

Güllü (1997) investigates inventory levels and system costs resulting from a 
proposed forecasting approach. Probabilistic demands models are adopted. The study 
allows correlation through time and among retailers of both demands and demand 
forecasts. Chen et al. (2002) shows that the inventory position at each location is 
stationary and uniformly distributed under a lot-size reorder point inventory system in 
which there is one supplier and multiple retailers. Raghunathan (2003) evaluates the 
value of and incentives for information sharing in a one-manufacturer and n-retailer 
setting. The retailers’ lead-times are set to zero. Demand patterns at each retailer are an 
AR(1) process. The correlation of demands between retailers is modelled by the 
correlation coefficient between pairs of retailers. The study shows the magnitude of 
value of information sharing under different levels of demand correlations and different 
numbers of retailers. 

Our study differs from the previous studies as; (1) we employ the VAR(1) process 
for the retailer demand. The VAR(1) model uses explicit correlation coefficients in time 
and between demands of two retailers. (2) We provide a closed form solution of all the 
order variances and all the net stock variances. (3) We compare two 2-level distribution 
networks: a decentralised system and a centralised system. The retailer operates Order-
Up-To (OUT) inventory replenishment policy with Minimum Mean Squared Error 
(MMSE) forecasting, as does the distribution centre. 
   
The model 
To evaluate the impact of the distribution network design on its dynamic and economic 
performance, we consider two different distribution networks: a decentralised system 
and a centralised system. In the lower echelon of each system, there are two retailers 
operating OUT replenishment policies with MMSE forecasting. For the upper level, 
there are two distribution centres in the decentralised system. There is one distribution 
centre in the centralised system. All distribution centres also operate an OUT policy 
with MMSE forecasting. Unit lead-times are assumed at all locations in both 
distribution systems.  Fig. 1 depicts our model.  
 
The VAR(1) demand process  
We assume that the demand at each the retailers follow a first order vector 
autoregressive (VAR(1)) demand process.  Specifically we use the mean centred 
VAR(1) demand process given by  
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Figure 1 – The decentralised and the centralised distribution networks 
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Here we can see that tD ,1 , the mean centred demand for retailer 1, at time t, is given by 

the sum of four components.  The first term is the mean demand level of retailer 1, 1 . 
The second term is an autoregressive term of one period with it own mean centred 
demand, )( 11,111  tD .  The third term is an autoregressive term with the previous 

realisation of retailer 2’s mean centred demand, )( 21,212  tD . The final term is 

independently and identically distributed (white noise) random process, t,1 . The 

demand process at the second retailer, retailer 2, is simply a mirror image of the demand 
process for retailer 1 with the obvious change in notation,  1 2, 2 1  . t},2,1{ can be 

regarded as the one period forecast error and we assume that it has zero mean and unit 
variance.  We assume from now on that these error terms are uncorrelated as this 
simplifies the mathematics considerably.  In order for the VAR(1) demand process to be 
stationary the following criteria must be hold 
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We will now simplify the demand model to allow a meaningful exposition of this 

short conference paper by the following assumptions. (1) The correlation in time at each 
retailer is the same.  That is,   2211 . (2)  The correlation between the two retailers 

is the same in both directions. That is   2112 .  
For stationary processes the variance of the demand at retailer i is the given by  
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The replenishment policies and the forecasting model 
Each retailer operates an OUT replenishment policy with MMSE forecasting. The 
replenishment order at retailer i at time t is given by 
 

titiititi WIPNSTNSFOR ,,,,                                                                                     (4) 
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where (Fi,t + TNSi) is the order-up-to level of retailer i at time t. The first term, Fi,t, is the  
forecast of demand. For MMSE forecasting, this forecast is the conditional expectation 
of demand over the lead-time and review period. For a unit lead-time, the forecast is  
  

))(2())((2 ,,
22

, jtjitiiti DDF   .                                      (5) 

 
The second term in Eq. 4, TNSi (Target Net Stock at retailer i) can be thought of as a 

safety stock. The net stock of retailer i at time t is given by 
 

titititi DORNSNS ,2,1,,   .             (6) 

 
The work in progress of retailer i at time t is given by 

 

1,,  titi OWIP .               (7) 

 

For each of the DCs in the decentralised system, the mathematical expressions of the 
replenishment system are similar to Eqs (4), (6) and (7) since each DC also employs an 
OUT policy. A superscripted DC is used to differentiate the DC’s variables from the 
retailer’s: DC

tiOR , , DC
tiF , , DC

tiNS , , DC
tiWIP, and DC

tiD , .  Note, this is not an exponent. The 

demand for DC i at time t is actually the retailer i’s order that is placed at time t and is 
passed to DC i. We assume here that orders from the retailer are passed to the DC 
without delay. We omit the full description of the distributor centres difference 
equations to save space.  It is all rather obvious except for the forecast of demand at DC 
i which is given by 
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where for retailer 1, i=1 and j=2; for retailer 2, i=2 and j=1. 

For the DC in the centralised system, the expressions are again similar to Eqs (4), (6) 
and (7). A superscripted DC is also used here but the subscript i is omitted. The demand 
for the DC at time t is the sum of orders from the two retailers. The forecast of the DC 
at time t is given by 
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The variances of the order rate and the net stock levels 
In order to capture the dynamics of our distribution networks to evaluate their economic 
performance, we will first obtain expressions for the order variances and the net stocks 
variances using some Control Engineering tools. The block diagram in Fig. 2, Fig. 3 and 
Fig. 4 represents our replenishment decisions using the discrete time z-transform. We 
refer interested readers to Nise (1995) for background reading on Control Theory and 
Hosoda and Disney (2006) for an application to a 3-level supply chain. 
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Figure 2 – Block diagram of the retailers’ replenishment decision  
 
Retailer Level 
We may manipulate the block diagram for the transfer function to find the relationship 
between the noise (the error term) and the state variables of interest. We then exploit 
Jury’s Inners technique, Disney (2008), to obtain the corresponding variance ratio. This 
technique utilizes the determinants of certain matrices formed by the coefficients of the 
transfer function. The variance of the orders for retailer i, which is the summation of 
variances resulted from error i and error j, is given by 
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           (10)  
The variance of the net stock for retailer i is given by 
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Distribution Centre Level: Decentralised system 

The distribution centre’s replenishment decision of the decentralised system is depicted 
in Fig. 3. The block diagram in Fig. 2 and Fig. 3 are actually connected. The demands 
fed into the DC are the orders from the retailers.  
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Figure 3 – Block diagram of distribution centres’ replenishment decision: decentralised system 
 
The variance of the orders for DC i is given by 
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The variance of net stock of DC i is given by 
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Distribution Centre Level: Centralised system 
The distribution centre’s replenishment decision of the centralised system is depicted in 
Fig. 4. The block diagrams in Fig. 2 and Fig. 4 are also connected. The demand for this 
system is the sum of orders of the two retailers. The forecast expression was given by 
Eq. 9. 
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Figure 4 – Block diagram of distribution centres’ replenishment decision: centralised system  
 

The variance of the orders for the DC is given by  
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The variance of the net stock for the DC is given by  
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The costs in the distribution network 
Both a centralised and a decentralised network are considered under two main types of 
costs; inventory and capacity costs. For inventory costs, we assume that piece-wise 
linear and convex inventory holding and backlog costs exist,  
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where H and B are the unit costs per period of holding and backlog respectively. The 
capacity costs have been added to capture the opportunity costs associated with the 
bullwhip effect. The normal capacity is set to )( Sd  where d is the mean demand and 

S is spare capacity above (or below) the mean demand. If the order quantity is smaller 
than the normal capacity, we consider this as a lost capacity situation which has 
opportunity costs. Then again, if the order is larger than the normal capacity, we will 
pay a premium: either for overtime capacity or subcontractors. We also assume that 
piece-wise linear and convex lost capacity and overtime costs exist.     
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where N and P are the unit costs of lost capacity and overtime respectively. As the error 
terms, ti, , are assumed to be normally distributed, the inventory levels and the order 

rates will also be normally distributed. Using this knowledge, Disney et al. (2006) 

derived the optimal target net stock    * 1 B
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capacity  * 1 P
OR P NS  

    that minimises the inventory costs. When the target net 

stock is set to its optimum, TNS*, the inventory cost per period is given by 
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where     is the standard normal density function and  1   is the inverse of the 

cumulative probability density function of the normal distribution. Likewise, when the 
spare capacity is set to S*, the capacity cost per period is given by  
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The square root law for inventory and bullwhip 
In this section, we will show that under certain circumstances the ratio of capacity 
related costs between the decentralised and the centralised systems equals to the square 
root of the number of DC’s in the decentralised system. Ratanachote & Disney (2008) 
have shown this quality for the case of AR(1) demands, arbitrary lead-times and n DC’s 
in the decentralised system.  

If 0  there is only a correlation of the demands over time.  There is no correlation 
between the two retailer demands. In this particular case, we can see that the following 
order variances are equivalent,  
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The ratio we are interested in is given by  
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The result shows that under these circumstances the cost ratio equals to the square 
root of two, the number of distribution centres in the decentralised system. This can be 
easily extended to n distribution centres and is a “square root law for bullwhip”. The 
inventory cost has the similar character and we can also conclude that the “square root 
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law for inventory”, Maister (1976) also holds for the OUT policy with MMSE 
forecasting. 
 
Numerical example 
We now present a numerical example of our system. We assume that the unit costs of 
H=1, B=9, N=4 and P=6 are present at all locations in our distribution network. We use 
the ratio of costs between the decentralised and the centralised systems to show the 
impact of the correlations on the consolidation decision. The capacity and the inventory 
costs are considered separately and the result for each cost is shown in Fig. 5.  
 

    
Figure 5 – Ratio of cost between the decentralised and the centralised systems  

 
The result shows that the ratio is greater than unity in all the cases above. That is, the 

centralised system always has less cost than the decentralised system. When there is no 

correlation across retailers, 0 , the ratio is 2  regardless the level of the correlation 
over time. This means the centralised system provides about 30% less cost than the 
decentralised system in this particular case. In general, the ratio is smaller when 
correlation across retailers increases towards +1. This is true for both capacity and 
inventory costs. However, this relationship is reversed when 0.5   . 

Overall, for negative correlation across retailers, the ratio for both capacity cost and 
inventory cost increases rapidly when the correlation over time increases. The higher 
ratio means a greater percentage of cost saving by the network consolidation.  In 
contrast, for positive correlation across retailers, the ratio decreases with correlation 
over time. We can also see in Fig. 5 that the inventory variance is finite, even for non-
stationary demand outside the boundaries give by Eq. (2).  However the order variances 
are infinite for non-stationary demand, hence we can only obtain the cost ratio inside the 
boundary given by Eq. 2, the diamond shape in Fig. 5.  
 
Implications and Conclusions  
We study the impact of demand correlation on a distribution network design. Two-level 
supply chain models for centralised and decentralised distribution systems have been 
analysed. The VAR(1) demand is used to represent the progression of and relationship 
in sets of time series. All participants, i.e. retailers and distribution centres, operate an 
Order-Up-To policy with the MMSE forecasting. We have derived analytical 

Inventory cost ratio Capacity cost ratio 
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expressions to describe the dynamics and the variances of the net stock levels and order 
rates over time. The variance expressions can be embedded into computer programs 
that practitioners can use to support their decision making.  

We use the ratio of costs between the decentralised and the centralised systems to 
show cost savings resulting from the consolidation of the distribution network. Our 
results encourage the consolidation of the distribution network as it produces less cost 
than the decentralised system. The magnitude of the impact of demand correlation 
depends on the level of correlation. We have also showed that “the square root law for 
bullwhip” holds in certain circumstances. Again, this law emphasises the benefit of 
centralised distribution systems.  The work can be extended to the case of arbitrary 
lead-times. Furthermore adding a transportation cost into the objective function may be 
interesting.  
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