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Abstract
Raw output from deterministic numerical weather prediction models is typi-
cally subject to systematic biases. Although ensemble forecasts provide invalu-
able information regarding the uncertainty in a prediction, they themselves
often misrepresent the weather that occurs. Given their widespread use,
the need for high-quality wind-speed forecasts is well-documented. Several
statistical approaches have therefore been proposed to recalibrate ensem-
bles of wind-speed forecasts, including a heteroscedastic truncated regression
approach. An extension to this method that utilises the prevailing atmospheric
flow is implemented here in a quasigeostrophic simulation study and on Global
Ensemble Forecasting System (GEFS) reforecast data, in the hope of alleviating
errors owing to changes in the synoptic-scale atmospheric state. When the wind
speed depends strongly on the underlying weather regime, the resulting fore-
casts have the potential to provide substantial improvements in skill relative to
conventional post-processing techniques. This is particularly pertinent at longer
lead times, where there is more improvement to be gained over current methods,
and in weather regimes associated with wind speeds that differ greatly from cli-
matology. In order to realise this potential, an accurate prediction of the future
atmospheric regime is required.
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1 INTRODUCTION

Numerical weather prediction (NWP) models aim to repli-
cate the physical laws governing the atmosphere's tra-
jectory. Due to the chaotic nature of the atmosphere,
these models rely on a perfect formulation of their ini-
tial state. Since this is impossible to obtain in practice,
the uncertainty in the model's initial conditions should

be described using probability. The evolution of this prob-
ability distribution over time then provides information
regarding the uncertainty of the atmosphere's future state
(Epstein, 1969). Ensemble forecasts act as a Monte Carlo
approximation to this, comprising multiple model runs
from conditions sampled from the initial probability distri-
bution, with the resulting forecasts assumed to be random
draws from the distribution of the predictand (Leith, 1974).
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This assumption is subject to two errors in particular:
error when specifying the distribution for the initial condi-
tions, and error due to the NWP model not fully capturing
the small-scale effects and interactions that are present in
the atmosphere. The ensemble forecasts therefore exhibit
biases, typically being overconfident about their predic-
tion. Statistical post-processing techniques have become
an essential component of weather forecasts over the last
couple of decades, due to their ability to correct for such
errors (Vannitsem et al., 2018).

Statistical post-processing refers broadly to any statis-
tical procedure that is applied to forecasts after having
obtained the numerical model output, examples of which
include statistical downscaling and bias correction. It is
used here to refer to forecast recalibration, a particular
branch of post-processing that concerns issuing and cal-
ibrating probabilistic predictions, typically by specifying
a parametric distribution for the response variable that
depends on the raw ensemble forecast. The most promi-
nent recalibration approaches are variations of Bayesian
model averaging (BMA: Raftery et al., 2005) and ensemble
model output statistics (EMOS), also known as nonhomo-
geneous regression (Gneiting et al., 2005).

High-quality forecasts of wind speed are particularly
valuable, due to their application in decision-making
in areas such as transportation, insurance, and renew-
able energy production. Therefore, several post-processing
methods have been proposed to deal with systematic errors
present in wind-speed forecasts. These include quantile
regression (Bremnes, 2004, 2019), BMA using gamma
component distributions (Sloughter et al., 2010; Eide et al.,
2017), and implementations of EMOS with various choices
of parametric family: truncated normal (Thorarinsdottir
and Gneiting, 2010), gamma (Scheuerer et al., 2015), and
censored or truncated logistic distributions (Messner et al.,
2014; Scheuerer et al., 2015), for example. Lerch and Tho-
rarinsdottir (2013) and Baran and Lerch (2015) introduce
regime-switching approaches that use linear combinations
of predictive distributions to improve the upper tail of
wind-speed forecasts, and more flexible combinations of
EMOS models have also been found to outperform the
component forecasts (Baran and Lerch, 2016, 2018).

Since the aim of forecast recalibration is to alleviate
systematic biases in the dynamical model output, it is
common to use only the ensemble forecast of the predic-
tand as an input variable. Recently, however, techniques
have been proposed that utilise more predictors, highlight-
ing the potentially useful information that can be gained
from other sources. Scheuerer (2014) and Scheuerer and
Hamill (2015), for example, exploit predictions at neigh-
bouring grid points when recalibrating precipitation fore-
casts, while Eide et al. (2017) employ wind direction as
an additional predictor for wind speed. More data-driven

approaches have also been proposed that can deal with a
large set of possible inputs, and automatically select those
most relevant for post-processing (Taillardat et al., 2016;
Messner et al., 2017; Rasp and Lerch, 2018).

The underlying reason for adding predictors is that
the additional variables provide helpful indications as
to when the relationship between the forecast and the
observation might vary. It may be the case that forecast
accuracy is affected by the weather situation at hand.
Weather forecasters often adjust their predictions depend-
ing on the prevailing large-scale flow (Roebber, 1998), and
incorporating the flow directly into forecast recalibration
methods serves as a way of automating this procedure.
Synoptic-scale patterns in the atmosphere's circulation
can also explain relationships between certain weather
variables and locations. Integrating the circulation into
post-processing therefore allows information from alter-
native variables to be utilised, without including them
directly in the calibration.

Numerous studies have investigated how recurring
weather patterns influence model biases in synoptic-scale
forecasts, finding that errors are dependent on the underly-
ing weather regime (Koch et al., 1985; O'Lenic and Livezey,
1989; Stoss and Mullen, 1995). However, in comparison,
limited work has examined how forecasts of smaller-scale
variables rely on the flow. Lorenz (1969) remarks that the
low-frequency circulation has a much larger range of pre-
dictability than shorter-scale flows, and hence predictions
of the large-scale information could be used to assist fore-
casts of high-frequency, noisy events, such as the weather.

Atmospheric regimes are synoptic-scale patterns in the
circulation that persist and recur at the same locations,
defined dynamically as metastable equilibria in the atmo-
sphere's phase space (Franzke et al., 2008). They have
been found to account for a large fraction of the atmo-
sphere's low-frequency, or intraseasonal, variability, and
commonplace statistical techniques are frequently used to
estimate their occurrence (Horel, 1985; Cheng and Wal-
lace, 1993; Kimoto and Ghil, 1993; Smyth et al., 1999;
Majda et al., 2006). Scheuerer and Büermann (2014) sug-
gested that these regimes could provide a suitable basis by
which to train post-processing methods, and they have pre-
viously been used to calculate ensemble member weights
in a consensus forecast (Greybush et al., 2008), to calibrate
and blend short-range precipitation forecasts (Kober et al.,
2014), and to extend probabilistic post-processing methods
(Allen et al., 2019).

The atmosphere's circulation is intimately connected
to the Earth's winds and therefore forecasts of wind
speed might be susceptible to improvements if this regime
information were incorporated into the post-processing.
Allen et al. (2019) introduced regime-dependent statistical
post-processing, proposing that, if statistical techniques
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can specify a probability model for the regime, then cur-
rent post-processing methods can be conditioned on the
underlying weather regime:

p(y|x) = R∑
r=1

p(y|x, r)p(r), (1)

where p(r) is the probability of residing in regime r and
p(y|x) is the conditional distribution of the predictand y
given the ensemble forecast x = (x1, … , xM). The forecast
in this case takes the form of a predictive distribution, also
referred to as the forecast distribution. The probabilistic
forecast is composed of predictive distributions, p(y|x, r),
that depend on the prevailing weather regime and there-
fore, rather than specifying just one forecast distribution,
a separate distribution must be specified for each regime.

Siegert et al. (2016) utilise the joint distribution of the
verification and the forecast, arguing that the ensemble
members should be treated as random quantities rather
than known constants. This approach could similarly be
extended, accounting for the fact that ensemble members
may arise from different distributions depending on the
atmospheric state:

p(y, x) =
R∑

r=1
p(y, x|r)p(r) = R∑

r=1
p(y|x, r)p(x|r)p(r). (2)

Improvements would then be expected if the forecast
distribution, p(y|x, r), or the ensemble distribution, p(x|r),
were to change between the regimes.

Allen et al. (2019) present a motivating example in
which regime-dependent post-processing greatly outper-
forms current approaches when applied to simulated data
from a highly idealised atmospheric model. Hence, the aim
of this article is to investigate how the methods perform
in more realistic settings. The post-processing framework
is presented in the following section. A truncated normal
(TN) EMOS approach is applied to wind-speed forecasts,
along with extensions suitable for the regime paradigm.

The method is first implemented in a three-layer quasi-
geostrophic (QG) model of the Northern Hemisphere in
Section 3. The QG model used here is sufficiently realis-
tic that it is capable of generating atmospheric patterns
that are present in climate reanalyses, but simple enough
that a large amount of data can be simulated, allowing an
extensive investigation of regime-dependent approaches.

In Section 4, the same approach is trialled on ret-
rospective wind-speed forecasts over the Euro-Atlantic
region, taken from the National Centers for Environmental
Prediction (NECP) Global Ensemble Forecasting System
(GEFS: Hamill et al., 2013). The GEFS reforecasts are gen-
erated from a higher resolution model than that used in
the QG setting, yet still provide sufficient data with which

to construct and assess regime-dependent forecast distri-
butions reliably. Section 5 concludes and discusses the
results.

2 METHODOLOGY

2.1 Statistical post-processing

To capture the relationship between the model and the
atmosphere, statistical post-processing relies on a set of
historical forecasts and observations, from which param-
eters can be estimated. This training set consists of pairs
of data (x, y), where x = (x1, … , xM) denotes an ensemble
forecast comprised of M members, and y is the corre-
sponding verification. Regime-dependent post-processing
methods extend this, such that the training data pairs
become triples of the form (x, y, 𝜌), where 𝜌 represents
some information regarding the atmospheric flow asso-
ciated with that forecast and observation. This could be
one weather regime, the probabilities of residing in each
identified regime, or a continuous measure of the atmo-
spheric flow, for example. Post-processing can then utilise
this additional information. Allen et al. (2019) discuss ways
of including the flow in forecast recalibration, arguing that
partitioning the phase space into a discrete number of
regimes can allow for more flexible forecast distributions.

Thorarinsdottir and Gneiting (2010) introduce an
EMOS approach that extends truncated regression mod-
els to include a nonconstant variance term. The method
suggests that, given an ensemble forecast, the observed
wind speed is a random variable y that follows a normal
distribution truncated below at zero:

y|x ∼ N0(𝛼 + 𝛽x, 𝛾 + 𝛿s2). (3)

The location and spread of the distribution are then
linear functions of the ensemble mean x and ensemble
variance s2, respectively. This method was found here to
outperform implementing BMA with gamma component
distributions, and the resulting predictions were also of
similar skill to the combination forecast approach of Baran
and Lerch (2016).

We employ Equation 3 in the regime-dependent frame-
work by using a mixture of truncated normal forecast dis-
tributions that depend on the coinciding weather regime:

y|x ∼
R∑

r=1
wrN0(𝛼r + 𝛽rx, 𝛾r + 𝛿rs2), (4)

where wr represents the probability of the atmosphere
residing in regime r at the forecast validation time. This
method involves estimating post-processing parameters
(𝛼, 𝛽, 𝛾, 𝛿) for each of the regimes.
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2.2 Mixture-model weights

It is also necessary to define the mixture-model weights,
wr. The motivation for regime-dependent approaches
assumes that there are differences in model biases that
depend on the prevailing weather regime. Since the
weather that materialises is dependent on the atmospheric
state, the weights should provide probabilities that the
atmosphere will reside in each regime at the forecast
validation time. The weights can thus be thought of as
predictions of the future atmospheric state.

Three choices for the weight are compared here. A first
choice defines the weights by a persistence forecast: if s
is the regime present at the forecast initialisation time,
then wr = 1 when r = s and wr = 0 when r ≠ s. These will
be called “initial regime” weights. The disadvantage of
this approach is that, as the forecast horizon increases,
so does the probability of transitioning to another regime.
The initial regime would thus not be representative of the
atmospheric conditions at the validation time. When the
forecast lead time is long relative to the regime persistence
times, model biases would not be expected to vary depend-
ing on the initial regime and hence the regime-dependent
mixture model would revert back to the conventional trun-
cated normal distribution in Equation 3, offering little
improvement despite the added flexibility.

Since it is possible to determine which regime actu-
ally materialised for forecasts in the training data, a second
choice is to find conditional probabilities of each regime
occurring given the initial regime. That is, given a certain
regime occurs at the initialisation time, one can calculate
the proportion of instances in which each regime mate-
rialises at the validation time. An example of this for the
GEFS reforecast data in Section 4 is shown in Table 1.
The data and identified regimes are described in detail
in Section 4.1. The initial regime weights assume that
the probability of European blocking (EB) occurring after
2 days, given that it transpired at the initialisation time, is
one, for example, whereas Table 1 suggests it is only 0.657
in reality. This, in theory, provides a more realistic prob-
ability of the regime at the forecast validation time. Such
weights are called “conditional regime weights”.

The ensemble members are themselves simulated tra-
jectories of the atmosphere, and hence regimes can also
be estimated from each ensemble member. The propor-
tion of ensemble members that are assigned to a regime
thus constitutes a probability of residing in that state at
the forecast validation time. This third choice is called
“ensemble regime weights”. Allen et al. (2019) find that
post-processing using ensemble regime weights outper-
forms the initial regime weights.

Since the weights define a probabilistic forecast of the
future atmospheric state, they can be assessed by their

T A B L E 1 Matrix of conditional probabilities of each regime
occurring 48 hrs after a given initial regime

True Reg.

NAO+ NAO− AR EB

Init. Reg. NAO+ 0.740 0.070 0.094 0.095

NAO− 0.105 0.664 0.147 0.083

AR 0.163 0.137 0.565 0.134

EB 0.102 0.129 0.113 0.657

Note: As lead time increases, every row tends to the climatological
frequencies of the regimes.
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F I G U R E 1 Brier skill score relative to climatology for
different forecasts of the future weather regime

ability to capture the regime that materialises. Figure 1
shows the Brier skill score (Brier, 1950) for the three dif-
ferent choices of weight, averaged across the four regimes
identified in the reforecast data. The climatological fre-
quencies of the different regimes are used as a reference
forecast.

Although useful at very short lead times, initial regime
weights become detrimental to forecasts relative to clima-
tology after only a few days. Unsurprisingly, this scheme
is particularly poor at predicting less persistent weather
types. Conditional regime weights, on the other hand,
are designed to be at least as good as climatology and
hence always result in a positive skill score. However, they
rely on information from the initial regime, and the skill
score therefore tends to zero as the lead time increases.
Output from the NWP model will also contain progres-
sively less information as the forecast horizon increases,
with studies highlighting model deficiencies in captur-
ing the onset and decay of atmospheric blocking events
(Tibaldi and Molteni, 1990). Nonetheless, the weights
defined by the ensemble members offer considerably
more skill than alternative approaches at all lead times
considered here.
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In a study such as this, where predictions are evaluated
over a set of hindcasts, forecasts can be conditioned
on perfect knowledge of the regime at the validation
time. Although this information is not available a pri-
ori to forecasters, it is implemented here to obtain a
rough upper bound on the improvements gained from
regime-dependent post-processing. This is henceforth
referred to as the “true regime”. Furthermore, although
conditional regime weights are found to offer better fore-
casts of the atmospheric state, the results are found to be
similar to using the initial regime. In the subsequent anal-
ysis, results are therefore compared only for the initial
regime, ensemble regime, and true regime weights.

Regime information is incorporated into post-
processing via these mixture-model weights. Therefore, in
order to obtain forecast distributions that utilise the regime
information, the weights are estimated first, prior to fitting
the regime-specific predictive distributions. Coefficients
for these component distributions are then estimated con-
ditional on the regime weights. Furthermore, since the
regime-dependent weights considered here are functions
of the atmospheric flow, rather than constant parameters,
they can adapt to the current atmospheric conditions.
This allows forecasts to be post-processed differently from
one another, even when trained using the same data.

This is in contrast to alternative approaches that
have been introduced to combine predictive distribu-
tions (Gneiting et al., 2013). Baran and Lerch (2016), for
example, estimate the mixture-model weights simultane-
ously to the post-processing parameters. Although the
resulting wind-speed forecasts are found to exhibit signif-
icantly better calibration than the individual components,
the corresponding parameter estimation step can result
in optimisation problems that are complex and unsta-
ble, and thus computationally expensive. Baran and Lerch
(2018) therefore investigate the use of forecast combina-
tion approaches that use a two-step procedure to estimate
model parameters. The approaches discussed therein first
fit two or more distinct EMOS models individually to
all training data, and then find the optimal weights to
combine the resulting forecast distributions. The method
presented in this study similarly divides the parameter esti-
mation into two stages, but distributional coefficients are
instead estimated after having obtained the mixture-model
weights. Doing so allows the component distributions to
capture separate features of the training data that arise due
to the occurrence of each weather regime.

2.3 Parameter estimation

Gneiting and Raftery (2007) introduce the notion of opti-
mum score estimation, which identifies the parameter

values that optimise a proper score over the available train-
ing data. Maximum-likelihood estimation fits into this
framework, since it is analogous to minimising the nega-
tive log-likelihood (NLL), or logarithmic, score. Another
popular score in the forecasting literature is the continuous
ranked probability score (CRPS), defined as

crps(F, y) = ∫
∞

−∞
(F(u) − 𝟙{u ≥ y})2 du, (5)

where 𝟙{⋅} denotes the indicator function, F is the fore-
cast distribution, and y the verification (Matheson and
Winkler, 1976).

However, Baran and Lerch (2016) note that the CRPS
for mixture models such as that in Equation 4 can-
not be evaluated analytically and hence must be calcu-
lated numerically. As a result, parameter estimation with
the CRPS becomes computationally expensive. Although
minimum CRPS estimation is generally regarded as a
more robust choice than maximum likelihood for fore-
cast recalibration, Gebetsberger et al. (2018) suggest that
the estimators should generate similar results, provided
the distributional assumptions are valid. Maximum like-
lihood is therefore chosen to estimate parameters in this
study.

The density of a TN distribution N0(𝜇, 𝜎2) is

f (y) = 1
𝜎
𝜙

(y − 𝜇

𝜎

) [
Φ
(
𝜇

𝜎

)]−1
, (6)

where 𝜙(⋅) is the probability density function, and Φ(⋅) the
cumulative distribution function, of the standard normal
distribution. The density for a mixture of TN distributions,∑R

r=1 wrN0(𝜇r, 𝜎
2
r ), is then simply a weighted sum of the

component densities:

g(y) =
R∑

r=1

wr

𝜎r
𝜙

(
y − 𝜇r

𝜎r

)[
Φ
(
𝜇r

𝜎r

)]−1

. (7)

The regime-dependent approaches estimate a set of
parameters for each of the R identified regimes (𝛼r, 𝛽r, 𝛾r, 𝛿r
for r = 1, … ,R) by maximising the likelihood of the mix-
ture model in the training data, conditional on each choice
of regime weights.

If the weight takes the form of an indicator function,
as is the case for the initial and true regime weights, then
the mixture-model forecast at a given time is equivalent
to a truncated normal distribution with post-processing
parameters that correspond to the predicted regime. The
CRPS thus reduces to that for a truncated normal dis-
tribution, which is given in closed form in Equation 8.
Nonetheless, to retain correspondence between the dif-
ferent methods, all statistical models are fitted using
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maximum likelihood. In the case of indicator weights,
each forecast–observation pair in the training data is
assigned to exactly one regime, and the training data can be
partitioned into R mutually exclusive, collectively exhaus-
tive training subsets. Post-processing parameters for the
truncated normal distribution associated with a regime
are then estimated by maximising the likelihood only over
the subset of data containing forecast–observation pairs
allocated to that regime.

Regime-dependent methods with indicator weights
can therefore also be interpreted as analogue-based
post-processing approaches, whereby a training data
set is constructed from forecast–observation pairs that
are believed to exhibit behaviour similar to the cur-
rent forecast (Junk et al., 2015). In this case, the
assumption is that the forecast biases depend on the
synoptic-scale behaviour of the atmosphere, which aligns
with the motivation for using regime analogues in
Barnes et al. (2019).

If the probabilities of residing in each regime are
not strictly zero, or one then the training data consist
of all available forecasts and observations. In this case,
when estimating the post-processing parameters corre-
sponding to a regime, the probability of each histori-
cal forecast–observation pair belonging to that regime
determines the leverage it has in estimating the coeffi-
cients. In this case, all post-processing parameters are
estimated simultaneously. Although this can be consider-
ably more time-consuming than parameter estimation for
conventional methods, it is not found to be prohibitively
expensive.

Thorarinsdottir and Gneiting (2010) find a local EMOS
approach, in which forecast recalibration occurs sep-
arately for each individual location, to perform bet-
ter than aggregating training data across several spatial
locations. Despite being more computationally demand-
ing, this approach is implemented here, allowing the
post-processing to account for local biases.

2.4 Forecast verification

A forecast distribution is said to be calibrated if events
materialise with the same frequency with which they are
forecast, while sharpness refers to the concentration of
the distribution. Forecasters have come to seek predic-
tive distributions that are sharp subject to being calibrated
(Gneiting et al., 2007). The evaluation of forecasts must
thus account for these two qualities, something that is
achieved through the use of proper scoring rules (Gneit-
ing and Raftery, 2007). The CRPS is used to verify forecasts
in the following sections, though similar conclusions are
drawn from the NLL score.

Thorarinsdottir and Gneiting (2010) provide the CRPS
for a truncated normal predictive distribution in closed
form:

crps
[
N0(𝜇, 𝜎2), y

]
= 𝜎

[
Φ
(
𝜇

𝜎

)]−2
{

y − 𝜇

𝜎
Φ
(
𝜇

𝜎

) [
2Φ

(y−𝜇

𝜎

)
+ Φ

(
𝜇

𝜎

)
−2

]
+2𝜙

(y − 𝜇

𝜎

)
Φ
(
𝜇

𝜎

)
− 1√

𝜋
Φ

(√
2𝜇
𝜎

)}
. (8)

Since wind speed is non-negative, Equation 5 for a
mixture-model forecast is evaluated using Gauss–Laguerre
quadrature.

The CRPS is negatively oriented and hence larger val-
ues indicate poorer performance. To compare the abil-
ity of the TN and regime-dependent truncated normal
(RDTN) frameworks, the continuous ranked probability
skill score (CRPSS) is also applied, with the conventional
TN approach as the reference, or baseline forecast. The
CRPSS is defined as

CRPSS=
⟨crps(F, y)⟩− ⟨crps(G, y)⟩⟨crps(F, y)⟩ = 1−

⟨crps(G, y)⟩⟨crps(F, y)⟩ . (9)

F denotes the predictive distribution obtained from
TN, G denotes that obtained from RDTN, y is the corre-
sponding verification, and ⟨crps(⋅, y)⟩ is the average CRPS
over forecasts in the test data set (Wilks, 2019). The skill
score can be interpreted as the percentage improvement
in score upon current post-processing methods, gained
from regime-dependent post-processing. Skill scores are
bounded above by one, and scores below zero indicate that
the RDTN method is performing worse than its reference.
Therefore, unlike the CRPS, high values of the CRPSS are
desired.

3 QUASIGEOSTROPHIC MODEL

3.1 Data

We use here a spectral quasigeostrophic three-level atmo-
spheric model of the Northern Hemisphere, truncated tri-
angularly at wavenumber 21. The levels are located at 250,
500, and 750 hPa. The governing equations are

𝜕qi

𝜕t
+ J(Ψi, qi) = Di + Si, i = 1, 2, 3. (10)

Here, Ψi and qi are the streamfunction and the poten-
tial vorticity at level i, respectively, and J denotes the
Jacobian operator on the sphere. The dissipative terms Di
comprise Newtonian temperature relaxation at all levels,
Ekman damping at the lowest level, and hyperviscosity
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on the time-dependent part of the potential vorticity at all
levels. The time-independent but spatially varying forcing
terms Si are diabatic sources of potential vorticity.

The model parameters and forcing are tuned in
such a way that the model in a long-term integration
exhibits a remarkably realistic mean state and variabil-
ity pattern of streamfunction and potential vorticity. The
model is integrated forward in time using the third-order
Adams–Bashforth scheme with a constant time step of
1 hr. The details of the model configuration, parameter
setting, parameter tuning procedure, and performance ver-
sus reanalysis data can be found in Kwasniok (2007) and
Kwasniok (2019). The model configuration used here is
exactly the same as described in Kwasniok (2019).

The streamfunction, 𝚿, represents the trajectory
of particles in this model and hence the circulation
of the atmosphere in the Northern Hemisphere for
each of the vertical levels can be represented instanta-
neously by the streamfunction in 1024-dimensional space,
comprised of grid-point values at 64 equally spaced lon-
gitudes and 16 Gaussian latitudes. Regimes are therefore
located by searching for quasistationary equilibria in the
streamfunction.

The system described above was first integrated for-
ward in time for 50 years and the atmospheric regimes
were identified using the resulting time series of daily
streamfunction fields. To construct training and test data
sets, the QG model was then run for a further 30 years,
with both the streamfunction and wind speed at all loca-
tions recorded daily. Since this systems acts as a surro-
gate for the atmosphere, the recorded wind speeds are
treated as observations, and the streamfunction field pro-
vides a best guess of the atmospheric state at that time.
These “observed” states are then used as forecast analy-
ses. An ensemble forecast comprised of ten exchangeable
members was constructed by adding random perturba-
tions from a N(0, 0.000252) distribution to these analy-
ses, expressed in spherical harmonics, and propagating
the resulting initial conditions through time for 7 days,
using a version of the quasigeostrophic model truncated
at wavenumber 19. Perturbing the analyses reflects uncer-
tainty in the initial forecast state, while a more severely
truncated model is used to replicate an imperfect NWP
model. The results were not dependent on the ensemble
size, and post-processing separately at each location means
that perturbations not necessarily being spatially indepen-
dent should not have an adverse effect on the results.

The resulting data therefore include 30 years worth of
daily forecast–observation pairs, for daily lead times up to
one week ahead. Half of these data are used to train the
post-processing methods and the remaining data are used
to assess the resulting predictions. Both the training and

test data sets thus consist of 5,475 ensemble forecasts of
wind speed and their corresponding observations.

Quasigeostrophic models have previously been
employed to investigate the behaviour of planetary-scale
flow regimes (Marshall and Molteni, 1993; Majda et al.,
2006; Franzke et al., 2008). Kondrashov et al. (2004),
for example, used a similar model to study transitions
between phases of the North Atlantic Oscillation and
the Arctic Oscillation (or Northern Annular Mode), two
dominant flow regimes in the Northern Hemisphere. One
particular feature of the QG model is that it exhibits no
seasonal cycle, residing perpetually in winter. This is the
season in which the regime behaviour of the atmosphere is
most pronounced, and therefore this system has the added
benefit that it could produce more robust atmospheric
states (Hannachi et al., 2017).

Principal component analysis (PCA) is applied to the
gridded streamfunction anomaly values at 500 hPa to
reduce the dimension of the data. PCA works by find-
ing orthonormal variables, z, that are themselves linear
combinations of the original variables, allowing a large
proportion of the variation in the data to be represented
by a comparatively small number of transformed variables
(Wilks, 2019).

That is, rather than representing atmospheric circu-
lation using a vector of streamfunction values at each
gridded location

𝚿 = (Ψ1,Ψ2, ...,Ψ1024), (11)

PCA allows the flow to be described by just a few of the
uncorrelated, transformed variables

z = (z1, z2, ..., zp), (12)

which explain a relatively large proportion of the
low-frequency variability in the atmosphere. In this study,
the norm streamfunction metric is used in the PCA. The
number of principal components chosen is p ≪ 1024;
the leading three principal components are retained
here, explaining 22.0% of variation in the hemispherical
streamfunction.

Barnes et al. (2019) define weather regimes as the lead-
ing principal components of mean sea-level pressure fields
over a relevant spatial domain. In the work presented
here, the synoptic-scale atmospheric state is similarly pro-
jected on to the leading principal components, but regimes
are then identified by performing an additional clustering
step in this reduced space. This nonlinear approach allows
opposite phases of a mode of atmospheric variability to
exhibit spatial asymmetries, as is the case for the North
Atlantic Oscillation (NAO), for example (Cassou et al.,
2004).
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AO+ AO- PNA+ PNA-

F I G U R E 2 Regime centres when fitting a hidden Markov model to streamfunction anomalies from the quasigeostrophic model. Blue
regions represent negative contours, while positive anomalies are shown in red. Contours are separated by intervals of 5 × 105 m2s−1

In particular, the time series consisting of 50 consec-
utive years worth of daily streamfunction anomalies is
projected on to its leading three principal components,
and it is from this sequence of 18,250 materialisations of
z that the regimes are detected. These archived data are
sequential, and so a hidden Markov model (HMM) is used
to discern the regimes. Majda et al. (2006) first proposed
the use of hidden Markov models in detecting atmospheric
regimes, highlighting their ability to distinguish between
distributions despite the leading principal components
exhibiting nearly Gaussian statistics; HMMs are designed
to detect more persistent regimes by exploiting the system's
underlying dynamics.

A HMM assumes that the transformed variables in
each regime follow a multivariate normal distribution,
z ∼ N(𝛍r ,𝚺r), and hence a mean vector, 𝛍, and covariance
matrix, 𝚺, corresponding to each state must be estimated.
A transition matrix, documenting the probability of transi-
tioning between regimes, is also estimated. This is imple-
mented using maximum likelihood via the Baum–Welch
algorithm, a variant of the expectation-maximisation (EM)
algorithm (Dempster et al., 1977).

The centres of the four regimes identified by fitting a
hidden Markov model to the archived data are depicted in
Figure 2. The number of clusters is chosen to be four, due to
the similarity of the resulting patterns to recognised atmo-
spheric regimes: the positive and negative phases of both
the Pacific North American (PNA+, PNA−) and Arctic
Oscillation (AO+, AO−) patterns. The positive (negative)
phase of the AO is synonymous with a strong (weak) polar
vortex over the Arctic Circle, surrounded by a band of
above (below) average streamfunction anomalies in the
midlatitudes. The AO thus represents a zonally symmetric
seesaw in streamfunction, or pressure anomalies between
the Arctic basin and the extratropics (Thompson and Wal-
lace, 1998). The positive (negative) PNA pattern, on the
other hand, consists of below (above) average stream-
function anomalies over the Aleutian Islands and areas

of high (low) anomalies over the Pacific basin and the
northwestern United States (Wallace and Gutzler, 1981).
Mean persistence times can be calculated from the Viterbi
path, the most likely regime sequence over the data set,
which can readily be determined from the HMM. The AO−
regime (which occurs 24.9% of the time) has the longest
mean persistence time, 10.7 days, followed by the AO+
regime (26.0%), which lasts for 9.6 days on average. The
PNA patterns are comparatively less persistent, with the
positive mode (29.2%) lasting for 6.1 days on average and
the negative mode (19.9%) only 5.6 days, making it the least
stable.

3.2 Assigning forecasts to regimes

As mentioned above, HMMs assume a statistical distri-
bution for the transformed streamfunction variables con-
ditional on each underlying regime. As a result, having
projected the streamfunction anomaly field on to the lead-
ing three principal components, Bayes' theorem can be
used to calculate posterior probabilities of the atmosphere
residing in each regime given the streamfunction values.
The probability of residing in regime r given the reduced
circulation, z, is

p(r|z) = p(z|r)p(r)
p(z)

=
p(z|r)p(r)∑R
j=1 p(z|j)p(j) . (13)

Here, p(z|r) is the likelihood of seeing the observed
or predicted streamfunction values given that the atmo-
sphere resides in regime r, and can be calculated from the
multivariate normal density with mean vector and covari-
ance matrix associated with that regime, 𝛍r and 𝚺r . The
climatology frequency of regime r is denoted by p(r).

When the forecast must be assigned to exactly one
regime, that with the highest posterior probability is
chosen. Therefore, the initial and true regimes can be
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determined by finding the regime that maximises the
posterior probability given the observed streamfunction
anomaly field at the forecast reference time and validation
time, respectively. Similarly, the predicted streamfunction
fields from the ensemble members can be used to allocate
each member to a regime.

Obtaining a probabilistic distribution for the regime
accounts for some of the inherent uncertainty present
when identifying the latent atmospheric state. However,
Bayes' theorem as given in Equation 13 does not make
use of the estimated transition matrix and hence does not
utilise the HMM's dependence on the system dynamics
perfectly. A HMM produces a time series of posterior prob-
abilities for each state given all data in the sequence. Cal-
culating the Viterbi path, the most probable sequence of
hidden states, then allows exactly one regime to be identi-
fied at each point in time. In a forecast setting, if a window
of recent values were available prior to the current fore-
cast, then the initial regime could be determined from the
Viterbi path over this window, rather than the static poste-
rior probability. A similar procedure is often implemented
in data assimilation.

This would exploit the dynamics of the underlying
states, and would therefore be particularly useful when
the spatial structures of the regimes were similar, so that
the temporal behaviour was more important when dis-
tinguishing between states. The regimes here differ con-
siderably in space, and hence the estimated regime is
not sensitive to the choice of method (not shown). Bayes'
theorem, however, can be applied more easily to determine
the future regime from each ensemble member when the
preceding states are also unknown. Therefore, for ease of
implementation, Bayes' theorem is used here to evaluate
the regime given a streamfunction anomaly field.

3.3 Results

The spatial domain of the QG model consists of 64 lon-
gitudes and 16 latitudes in the Northern Hemisphere
and statistical post-processing is implemented at every
grid point, yielding calibrated forecasts at 1024 loca-
tions. No spatial aggregation is performed and hence fore-
casts at each site are recalibrated using only previous
forecast–observation pairs at the same location.

Figure 3 displays the CRPS for the TN approach, plot-
ted on a map of the Northern Hemisphere at a lead time
of 6 days. Forecast accuracy is worst towards the centres
of the Pacific and Atlantic oceans, areas which corre-
spond to well-known storm tracks. Maps of the CRPSS
for the three regime-dependent methods, assessed using
TN as reference, are also shown in Figure 3 for the
same lead time. RDTN-init denotes the regime-dependent

truncated normal approach conditioned on the initial
regime, RDTN-ens is that using the ensemble member
weights to predict the regime, and RDTN-true is depen-
dent on the true weather regime at the forecast validation
time. At locations far removed from the centres of the
weather regimes, the improvements unsurprisingly fluc-
tuate around zero. However, when the regimes affect the
local wind speeds strongly, the RDTN-true method pro-
duces noticeable improvements in forecast skill. Both the
RDTN-init and RDTN-ens methods appear considerably
less effective than using the true regime.

In the Northern Hemisphere, wind travels counter-
clockwise around large-scale low-pressure systems and
clockwise around high pressure, with the strengths of the
winds related to the north–south pressure gradient (Hur-
rell and Deser, 2009). The improvements gained from the
RDTN-true approach in Figure 3 are therefore concen-
trated in the North Atlantic and Pacific basins, and over
northwest Canada: these regions surround the regime cen-
tres of action, so that the wind direction and intensity
vary substantially depending on the prevailing regime. The
wind speeds at these locations are thus influenced more
heavily by the different regimes, resulting in an increased
need for regime-dependent post-processing methods.

Historical observations at any given location can be
grouped depending on the coinciding regime. At this
location, the average wind speed given a regime can be
described by the sample median of the observations in
the relevant group. The variance of the sample medi-
ans then measures the spread of the average wind speed
among the regimes. This spread quantifies the effect the
regimes have on the wind speed at this location. A scat-
ter plot is displayed in Figure 4, showing this metric
against the CRPSS for all locations at a lead time of one
week. Table 2 records the associated correlation between
the spread of the regimes and the improvements gained
from regime-dependent post-processing at lead times up
to 7 days. Although the correlation is initially fairly low,
the improvements gained when the true regime is used in
post-processing become highly correlated with the spread
of the average wind speeds at longer lead times. This sug-
gests that there is more potential for improvement upon
current post-processing approaches for forecasts further
in advance. Neither the initial regime nor the ensemble
members capture this behaviour.

To highlight the potential improvements, we focus now
on results at one location in the west of the Atlantic Ocean.
The marginal distribution of the wind speed, shown in
Figure 5 when the atmosphere resides in each regime,
indicates that the local wind speed is dependent on the pre-
vailing state. At this location, AO+ corresponds to a strong
negative meridional gradient in streamfunction anoma-
lies, in turn producing high zonal wind speeds. Conversely,
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F I G U R E 3 Map of the CRPS for the TN approach and the CRPSS for RDTN methods using TN as the reference forecast, at a lead time of
6 days. Standard errors in the CRPS are typically around 1% of the score's magnitude

the negative phase of the Arctic Oscillation is synonymous
with low wind speeds in this area. The PNA patterns have
less influence at this location, though wind speeds that are
slightly lower than average occur in the negative phase.

The shape of the empirical wind-speed distributions
also undergoes noticeable changes between the regimes:
in the AO− regime the wind speeds are far more positively
skewed than in the AO+ pattern. Although the formula-
tions of the mixture model in Equations 1 and 2 allow
separate forecast distributions to be issued depending on
the regime, the truncated normal distribution is able to
adapt for such changes.

The skill of the TN post-processing approach can be
evaluated using the CRPS. Figure 6 displays the break-
down of the CRPS depending on the weather regime that
occurs at the forecast validation time. There is a clear
difference in forecast performance depending on the pre-
vailing weather type. Scores are largest when the AO+

regime, in which extremely high wind speeds occur more
frequently, materialises, while the lower wind speeds in
the AO− regime are more predictable.

Figure 7 exhibits the skill of the regime-dependent
TN predictive distributions relative to the conventional
TN approach, assessed using the CRPSS. The uncertainty
in the skill score is described by errors bars represent-
ing 95% confidence intervals, obtained via nonparamet-
ric bootstrap resampling. Although the improvements
for all methods are initially negligible, RDTN-true fore-
casts become substantially more skilful at longer lead
times; wind-speed forecasts at this location improve by
almost 5% by including the synoptic-scale information.
The RDTN-init approach, on the other hand, fails to make
any meaningful contribution to the forecast. The CRPSS
for RDTN-ens is significantly larger than zero for fore-
casts 5 and 6 days in advance, though the magnitude of
the improvement in both cases is small. Figure 6 suggests
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F I G U R E 4 Scatter plot showing the variance of the average
wind speeds among the regimes against the CRPSS at each location
at a lead time of 7 days

that forecast biases are initially relatively insensitive to
the underlying regime and hence incorporating regimes
would only be expected to benefit forecasts at longer lead
times. However, by the time the biases become dependent
on the weather regime, the ability of the mixture-model
weights to recognise the true regime deteriorates. The skill
score for the RDTN-init and RDTN-ens methods therefore
consistently remains close to zero.

It is possible to decompose the CRPSS for the
RDTN-true approach into the constituent regimes, as
displayed in Figure 8. Although wind speeds are initially
most predictable in AO−, improvements are also largest
in this regime, reaching 12% for forecasts one week
ahead. Predictions of the higher wind speeds in AO+
also improve, becoming up to 6% more skilful than when
regime information is neglected. The PNA patterns have
much less influence on the wind speed here and hence
there is little benefit to including information in these
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F I G U R E 5 Empirical distribution of wind-speed
observations at the location of interest when the atmosphere resides
in each regime in the QG setting
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F I G U R E 6 CRPS for the TN method against lead time when
the atmosphere resides in each regime at the forecast validation
time in the QG study

T A B L E 2 The correlation between the variance
of the average wind speeds among the regimes and
the CRPSS, calculated over all locations

1 3 5 7

RDTN-init 0.047 0.367 0.357 0.275

RDTN-ens 0.022 0.432 0.500 0.298

RDTN-true 0.056 0.646 0.816 0.845

Note: Results are shown for the three regime-dependent
methods at lead times of 1, 3, 5, and 7 days.

states. Nonetheless, the improvements in forecasts in the
AO regimes indicate that regime-dependent approaches
may be more capable of forecasting events that deviate
substantially from the local climatology, including extreme
weather events.

For sufficiently large lead times, the raw forecast
becomes uninformative, containing no information about
the predictand. In this case, the statistical post-processing
methods should forecast the marginal distribution of
the weather variable of interest. It is believed that
if the atmospheric regime could be forecast perfectly
then the improvement gained from regime-dependent
post-processing would be present even this far in advance,
since the regime-dependent post-processing will issue the
marginal distribution of the wind speed in each regime.
The additional flexibility of the mixture model therefore
allows it to capture more complex features that arise due
to the different regimes, such as multimodality of the
marginal distribution.

Figure 9 displays the relative frequency with which
the observation assumes each rank when pooled with
the ensemble members, at a lead time of 5 days. Rank
histograms are a commonly used tool for assessing
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as the baseline. Error bars show 95% confidence intervals at each
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F I G U R E 8 CRPSS for RDTN-true forecasts against lead time
when the atmosphere resides in each regime at the forecast
validation time in the QG study, with TN as the baseline

the calibration of ensemble forecasts, with uniform
histograms denoting reliable predictions (Anderson, 1996;
Hamill and Colucci, 1997; Talagrand, 1997). Clearly, how-
ever, the raw ensemble forecast is underdispersed, with
observations falling outside the range of ensemble mem-
bers more frequently than would be expected if the fore-
cast were calibrated, regardless of the underlying regime.
Also shown in Figure 9 are probability integral trans-
form (PIT) histograms, the continuous analogue of the
rank histogram. The PIT histograms evaluate the TN and
RDTN-true forecast distributions at the verification, and
record the rate at which the resulting probabilities fall into
each of a number of equally sized bins. There are 11 pos-
sible positions of the verification when pooled with the 10
ensemble members, and hence the number of bins is also
chosen to be 11.

Although the PIT histogram for the TN approach over
all forecast–observation pairs is suitably uniform at this

location, the parameters estimated over the entire train-
ing set produce a model that does not fit the data well
when the system resides in the Arctic Oscillation patterns.
In particular, oppositely skewed PIT histograms indicate
that the observed wind speed falls into the upper tail of
the forecast distribution when the AO+ regime occurs, and
the lower tail when the AO− pattern materialises. The TN
approach is thus not calibrated conditional on the regime.
The RDTN-true approach, on the other hand, accounts for
the varying model biases in the regimes, and the corre-
sponding PIT histograms are close to uniform in all of the
four regimes.

4 GEFS REFORECASTS

4.1 Data

Previous occasions in which similar atmospheric
behaviour has occurred will likely lead to similar
model biases. Therefore, regime-dependent statistical
post-processing would be particularly well-suited to
use with reforecast data, where a large set of hindcasts
from a frozen operational model are available. These
hindcasts, spanning several years or decades, can be
used to train statistical post-processing methods (Hamill
et al., 2004). In this section, the regime-dependent
approaches are implemented on data from version 2
of the National Oceanic and Atmospheric Administra-
tion's Reforecast project (Hamill et al., 2013). Forecasts
are taken from a recent version of the National Centers
for Environmental Prediction's (NCEP) Global Ensemble
Forecasting System (GEFS), and although Hamill et al.
(2013) note that they may also be prone to model biases,
the reanalyses are used as a best guess for the observed
wind-speed values. To negate these biases, the control
member run from the reanalysis is omitted, resulting in
a forecast of 10 statistically interchangeable ensemble
members.

Since regime behaviour is most prominent dur-
ing winter, the data set covers the 34 cold seasons
(November–March inclusive) between 1985 and 2019.
Results in the previous section established that loca-
tions heavily affected by the identified weather regimes
are likely to improve as a result of regime-dependent
post-processing. Therefore, it is hoped that defining
localised regimes over a smaller spatial domain will have
a larger effect on the recalibration. Following Ferranti
et al. (2015), the atmospheric regimes here are detected
using k-means clustering over the Euro-Atlantic sector
(80◦W–40◦E, 30–90◦N). k-means clustering partitions data
into a prespecified number of groups by assigning data
points to clusters such that the distance between the point
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F I G U R E 9 Rank and PIT histograms showing the relative frequency of each bin for the raw ensemble forecasts, the TN and
RDTN-true post-processing methods at a lead time of 5 days. Histograms are shown for forecasts grouped by the atmospheric regime at the
forecast validation time. A horizontal line is added in red at 0.091 to indicate perfect uniformity across the bins

and the allocated cluster centroid is minimised (Michelan-
geli et al., 1995; Wilks, 2019). The number of clusters,
k, must be chosen prior to implementing the algorithm.
Four regimes are again used here due to the similarity
of the resulting patterns to those identified in numerous
studies of regime behaviour over this domain (Cassou
et al., 2004).

Reanalyses of 500-hPa geopotential height anomaly
fields are used to represent the atmosphere's circulation

in this domain. PCA is then applied, using the Euclidean
metric in grid-point space, to these anomaly fields and
clustering is performed in this reduced space. The lead-
ing three principal components, which explain 48% of
the variation in the flow, are chosen. Figure 10 shows
the geopotential height anomalies that correspond to
the regime, or cluster, centres identified using k-means
clustering. Despite fewer principal components being used
than in Ferranti et al. (2015), there is similar evidence
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NAO+ NAO- AR EB

F I G U R E 10 Regime centres identified by applying k-means clustering to the reforecast geopotential height anomalies. Anomalies are
displayed at 25-hPa intervals, with blue regions indicating negative contours and red regions representing positive anomalies

to support the use of four regimes, which resemble the
positive and negative phases of the NAO as well as Euro-
pean Blocking (EB) and an Atlantic Ridge (AR). It has
been proposed that the NAO corresponds to the same
mode of circulation variability as the Arctic Oscillation
described in Section 3 (Hurrell and Deser, 2009). The NAO
thus constitutes a north–south dipole, characterised by
negatively correlated height anomalies between Iceland
and the Azores, although opposite phases of the NAO do
not exhibit identical spatial structures. The AR pattern
represents an anticyclonic regime over the eastern North
Atlantic Ocean, while European Blocking consists of a
dipole with positive geopotential height anomalies over
Scandinavia and negative anomalies to the south of Green-
land. The atmosphere resides in the NAO+ regime 30.8% of
the time, making it the most frequently occurring regime.
The NAO− and EB regimes occur similarly often (24.2
and 24.3% respectively), while AR materialises least often
(20.7%).

The data are noncontiguous and hence a hidden
Markov model cannot readily be applied to the data. The
main benefit of k-means clustering, on the other hand,
is that forecasts can be assigned to a regime with ease.
Franzke et al. (2008) remark that, although clustering
approaches find the states that have the highest probabil-
ity of occurring, the resulting regimes do not necessarily
exhibit persistence. As a result, the mean persistence times
are much lower for these regimes than for the patterns
found using a HMM in the QG framework: AR events per-
sist for only 3.8 days on average, EB for 4.9 days and the
NAO− and NAO+ regimes for 5.4 and 6.1 days on average,
respectively.

Forecasts are assigned to one of these four patterns
by finding the regime for which the Euclidean distance
between the associated cluster centroid and the reduced
geopotential height anomaly field is minimised. As before,
the initial and true regimes make use of the observed
geopotential height anomaly field at the forecast reference
time and validation time, respectively, while output from
the ensemble forecast is used to allocate each member to
a regime. This approach fails to account for the inherent

uncertainty when assigning a forecast to a regime; every
point allotted to a cluster is assumed to exhibit the
same biases and systematic errors, regardless of its
distance to the cluster centre, and hence a method that pro-
vides the probability of residing in the different regimes,
or a degree of membership, would be more informative in
this respect.

Hamill et al. (2013) remark that the method for
constructing the forecast analyses in the GEFS changes
in February 2011, and the forecast skill consequently
improves. Therefore, to maintain the similarity of the
model biases in the study, only forecasts in the 25
cold seasons from November 1985–March 2010 are con-
sidered. Although this model change also affects the
observed geopotential height anomalies, it provides a
more informed estimate of the atmospheric state and
hence data after this change are still utilised when
detecting the regimes. The resulting regimes are found
to be more robust when these additional data are
included.

Although techniques have recently been proposed that
include cyclic functions to remove seasonal model errors
(Dabernig et al., 2017; Lang et al., 2019), parameter estima-
tion is typically performed operationally using a training
window that consists only of the most recently available
forecast–observation pairs. These rolling windows account
for the recent behaviour of forecast errors, and alleviate
biases owing to changes in the NWP model. The size of
this window is clearly a compromise that requires having
enough data to obtain reliable parameter estimates with-
out using too much, so as to capture the recent behaviour
of the atmosphere.

The CRPS is found here to decrease as the amount of
training data available increases, but is generally insen-
sitive to the window length (not shown). In fact, at the
majority of locations tested, more skilful forecasts are
issued when a fixed training window is used, containing
several years of past data. Therefore, for both the stan-
dard and regime-dependent post-processing methods, the
first 15 cold seasons (those beginning in 1985–1999) are
used as a fixed training window, while the remaining 10
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F I G U R E 11 CRPS for the TN approach and CRPSS for the
RDTN-init, RDTN-ens, and RDTN-true extensions at a lead time of
7 days, plotted on a map of the spatial domain under consideration.
Standard errors typically lie between 1.5 and 2.5% of the CRPS itself

(2000–2009) are used as test data. The advantages of using
a rolling window diminish in this case since, there are no
changes in the prediction system, and investigating only
cold seasons accounts for some of the seasonality in the
biases.

T A B L E 3 The correlation between the variance
of the average wind speeds among the regimes and
the CRPSS, calculated over all locations

1 3 5 7

RDTN-init 0.010 0.034 0.044 −0.017

RDTN-ens −0.055 −0.059 0.040 0.010

RDTN-true −0.065 −0.007 0.212 0.569

Note: Results are shown for the three regime-dependent
methods at lead times of 1, 3, 5, and 7 days.

4.2 Results

Post-processing is performed here on a subset of the spa-
tial domain under consideration, which consists of 1,353
locations over western Europe and the east of the North
Atlantic ocean (21◦W–19◦E, 37–69◦N). Locations are sep-
arated by 1◦ of longitude and latitude.

The CRPS for the TN post-processing approach is
displayed in Figure 11. Wind-speed forecasts are signif-
icantly more skilful over land than sea and forecasts at
locations close to Iceland are particularly poor, since this
corresponds to a mode of North Atlantic storm-track vari-
ability (Serreze et al., 1997). The CRPSS for RDTN-init,
RDTN-ens, and RDTN-true are also displayed in Figure 11
at a lead time of one week. At this longer lead time, the
CRPSS for RDTN-init and RDTN-ens remains close to
zero, though large improvements are seen when the true
regime is used, particularly at locations surrounding the
North Sea.

We postulate that the spatial structure of the improve-
ments in Figure 11 is again linked to how air flows
around large-scale pressure systems. The regime centres
in Figure 10 suggest that the regions between the modes
of high and low pressure often intersect the area sur-
rounding the North Sea, and therefore the wind speeds at
neighbouring grid points are more dependent on the pre-
vailing weather type. Calibrating forecasts separately in
each regime thus produces larger improvements at these
locations.

Table 3 shows that the improvements are again corre-
lated with the spread of the average wind speeds between
the regimes. The magnitude of the spread tends to be much
smaller than in the QG study, suggesting that the regimes
have less effect on the wind speeds in this sectorial domain
than over the entire hemisphere. This is consistent with
results in Tibaldi and Molteni (1990), which show that rel-
atively intense blocking events occur more over the Pacific
than the Euro-Atlantic.

More detailed results are provided for one location
close to Bergen, on the west coast of Norway. The qual-
ity of the raw ensemble forecast can be assessed using
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T A B L E 4 CRPS for raw ensemble forecasts initialised in
each regime, at a lead time of 3 days

NAO+ NAO− AR EB Total

Raw ensemble 1.44 1.18 1.06 1.24 1.23

the CRPS to understand how the raw model errors
change with the regime. Table 4 displays the skill of the
raw ensemble forecasts initialised in each regime. Fore-
casts initialised in the NAO+ regime, which coincides
with more extreme wind speeds, exhibit considerably less
skill than those in the other regimes. Differences in the
skill of forecasts among the regimes indicate that con-
ditioning the statistical post-processing on the prevailing
regime may therefore be expected to yield more skilful
forecasts.

Figure 11 suggests that using the true regime at this
location provides relatively large improvements that are
not present when conditioning forecasts on the regime
at the initialisation time. The CRPSS is shown for all
lead times in Figure 12, with 95% confidence intervals
at each lead time estimated using nonparametric boot-
strap resampling. A pattern similar to that seen previ-
ously emerges: scores for the initial regime recede to
zero as lead time increases, while there appears to be
more room for improvement at longer lead times, some-
thing that is exploited when using the true regime. The
RDTN-ens approach performs significantly better than the
TN method, and is comparable to RDTN-true, for fore-
casts up to 4 days ahead, but its skill declines as lead
time increases. The fact that RDTN-ens produces a larger
CRPSS than RDTN-true at early lead times could indicate
that the ensemble regime may be exploiting a feature of
the data that is not picked up by the true regime, though
it is more likely a result of sampling variation. Due to
the large amounts of training data available from refore-
casts, no methods perform worse than when regimes are
not included in the post-processing, despite the increased
number of parameters.

Figure 13 shows the empirical distributions of the wind
speed when the atmosphere resides in each regime. Posi-
tive NAO indices are linked to more intense and frequent
storms in the Norwegian Sea (Serreze et al., 1997), and
hence wind speeds here are largest in the NAO+ regime.
Comparatively low wind speeds are associated with the
NAO− regime, while the EB and AR regimes do not have
much effect on the wind speed at this location. As a
result, the improvements gained from regime-dependent
post-processing are dominated by improvements in the
two phases of the NAO patterns. Figure 14 shows the
CRPSS for the RDTN-true approach for forecasts corre-
sponding to each regime at the forecast validation time. In
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particular, Figure 14 suggests that improvements at short
lead times occur primarily in the NAO− regime, while at
longer lead times forecasts in the NAO+ regime improve
upon the conventional TN approach by as much as 4%.
Since the positive phase of the NAO is associated with par-
ticularly high wind speeds at this location and the negative
phase with low wind speeds, these results reinforce the
idea that if the regime at the forecast validation time is cor-
rectly identified then regime-dependent post-processing
can provide better forecasts of extremely high and low
wind speeds. Rank and PIT histograms for the various
post-processing methods display features similar to those
shown in Figure 9: the observation falls into the upper
tail of the TN forecast distribution more frequently than
expected during NAO+ events, and less frequently dur-
ing NAO− events, while the RDTN-true method appears
calibrated conditional on the regimes. However, since the
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improvements are smaller here, deviations from unifor-
mity are less pronounced.

5 DISCUSSION

This article builds upon previous work on the
regime-dependent statistical post-processing of ensemble
forecasts (Allen et al., 2019). It is suggested that NWP
models exhibit biases that change depending on the
concurrent atmospheric regime and hence conditioning
current statistical calibration methods on these regimes
can enhance forecasts. Wind speed is closely connected
to the movement of air in the atmosphere and is hence
dependent on the prevailing regime behaviour.

Regime-dependent extensions of nonhomogeneous
regression are proposed that utilise a weighted mixture of
truncated normal predictive distributions. Mixture models
of this form provide a more flexible forecast distribution
that accounts for biases owing to large-scale changes in
the atmosphere's circulation. The weights represent the
probability of residing in a number of identified weather
regimes, and results are presented here for three ways
of defining them. The first is an indicator function that
depends on the regime at the forecast initialisation time,
the second is the proportion of ensemble members pre-
dicting each regime at the validation time, and the regime
that actually materialises at the validation time is also
implemented. Although the latter approach is not appli-
cable in practice, it is regarded here as an upper bound
for the improvement and hence provides a useful compar-
ison. It could also be argued that if the true regime were
known then it might be more useful to condition on both
the true regime and the forecast regime; if the forecast
predicted one regime yet the actual regime was known to

be different, then the biases would be larger than if the
forecast and atmosphere agreed on the regime.

The regime-dependent approaches are implemented in
two scenarios: in a quasigeostrophic model of the North-
ern Hemisphere and on GEFS retrospective forecasts over
the Euro-Atlantic sector. Regimes are identified by pro-
jecting the large-scale flow, represented by the stream-
function or geopotential height anomalies at all spatial
locations, on to the leading three principal components,
before detecting patterns in the resulting variables. A
hidden Markov model is fitted in the QG setting, while
k-means clustering is applied to the reforecast data. The
retrospective forecasts are generated from a higher reso-
lution NWP model than that studied in the QG frame-
work, but a data-rich simulation study is also helpful when
trialling a new method, since conclusions can be made
that are more resistant to sampling variation. The results
found in the reforecast setting corroborate those in the
QG study.

If a probabilistic approach is used to define the regimes
at the initialisation time, as is done in the QG study, then it
is possible to use these posterior probabilities as weights in
Equation 1. Results indicate that accounting for this uncer-
tainty improves the skill score for the RDTN-init approach
slightly. These results were not included to maintain com-
parison between the results in the different settings: such a
probabilistic approach is not possible when using k-means
clustering to identify regimes. It would also be possible to
use the training data to obtain conditional probabilities of
each regime occurring given the ensemble member regime
weights. This could itself be thought of as post-processing
applied to the forecast of the regime.

Hamill et al. (2004) conclude that running opera-
tional models from historical analyses, or reanalyses, is
a more efficient use of computational resources than
increasing the model resolution. Recalibration methods
can then utilise a considerably larger amount of data.
Although this is highly computationally demanding at
first, it obviates the need to re-estimate post-processing
parameters for every forecasting occasion. The use of more
data helps to refine forecasts of more extreme weather
events, whilst also reducing parameter uncertainty in
the post-processing models considerably. These benefits
have been reinforced here, where a fixed training win-
dow consisting of several cold seasons worth of previ-
ous forecast–observation pairs was found to outperform a
rolling training window at the majority of locations.

The improvements gained from regime-dependent
post-processing were found to be positively correlated with
the spread of the average wind speed between the regimes.
That is, the larger the effect of the weather regimes on
the local wind speed, the larger the expected improve-
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ment. This allowed us to provide an example for both
studies that highlighted the potential developments from
the regime-dependent approach.

Forecasters have noted that knowing the prevailing
synoptic behaviour of the atmosphere at the initialisation
time can help to predict the forecast accuracy. It is found
here that, in order to benefit post-processing at longer lead
times, it is not enough to know the behaviour at the initial-
isation time; instead, a good estimate of the behaviour at
the validation time is required.

Using the regime defined at the forecast initialisation
time contains little information regarding the true regime
at longer lead times and therefore, although there were
minor improvements for forecasts at small lead times,
they were significantly less pronounced for longer fore-
cast horizons. Using the ensemble members to predict the
regime offered more skill than using the initial regime,
though skill scores again reduced to zero as lead time
increased. The upper bound on the skill score, on the
other hand, appeared to increase with lead time, suggest-
ing that larger relative improvements over conventional
post-processing methods are potentially available for
forecasts further in advance.

A more accurate NWP model would likely be more
adept at identifying the regime correctly at the forecast
validation time. However, if the NWP model is used to
identify the regime, then as the model produces more skil-
ful forecasts of the large-scale circulation (from which the
regimes can be identified) it may also provide better fore-
casts of other, smaller-scale variables, such as wind speed
or temperature. The available improvements upon stan-
dard post-processing methods would therefore decrease
as the biases in the model become smaller and less varied
between the different regimes. This intuition also explains
why the potential improvements of regime-dependent
post-processing are particularly small at short lead times;
the magnitudes of model biases are generally smaller
and hence the differences between the regimes become
insignificant.

Nonetheless, Ferranti et al. (2015) show that
high-resolution ensemble prediction systems still exhibit
biases that depend on atmospheric regimes, and hence
there is still reason to believe that regime-dependent
approaches will be useful when calibrating these more
accurate forecasts. The GEFS reforecasts here were ver-
ified against model analyses, which may be subject to
the same limitations as the prediction system. Since the
NWP model may not simulate the spatial and temporal
characteristics of the observed weather regimes correctly,
evaluating forecasts against station observations may
result in larger regime-dependent biases.

It may be the case that the choice of predictive distri-
bution should vary with the regime and hence future work

could investigate which distributions are most appropriate
for certain weather types or situations. The numbers of
regimes used in this study were chosen subjectively, using
results from previous studies as guidance. Whether there
exists a statistical procedure to estimate these regimes such
that they are optimal for use in post-processing is also a
topic for further research.

Furthermore, it may be the case that the optimal
regimes, or number of regimes, changes depending on
the location or predictand under consideration. The extent
to which a regime affects the wind speed at a certain
location was found here to depend on its proximity to
the regime centres of action. Each regime thus provided
valuable information at some locations, but not others. If
interest lies only in one location, then it may be preferable
to estimate more localised, or even site-specific, regimes,
which could also vary for each predictand being forecast.

The regimes considered here are advantageous because
they are physically meaningful, which may not be the case
for regimes estimated separately at every location for each
variable. As a result, considerable work has been devoted
to studying their dynamical and statistical properties, and
such studies can be used to identify situations where the
inclusion of regimes may be most beneficial. Previous
work, for example, has noted the impact they have on
local weather systems, and how they can account for the
dependence between meteorological variables and multi-
ple locations. They thus naturally lend themselves to use
with post-processing in a spatial or multivariate context.

We therefore argue that the appropriate regimes
and number of regimes, should be investigated
prior to post-processing, utilising previous studies of
low-frequency variability in the domain under consider-
ation. The number of regimes to use also depends on the
amount of data available. Using a large number of weather
types can result in overfitting of the training data, leading
to less informative out-of-sample predictions. In the study
reported in this article, estimating four times as many
parameters as the original truncated normal approach did
not induce any problems of this sort.

Alternatively, atmospheric circulation could be incor-
porated into post-processing approaches without discreti-
sation into a finite number of regimes. It is found that
improvements are only likely to be seen for regimes in
which wind speeds differ severely from the average wind
speed at a location. If the local weather depends strongly
on one or two known regimes, then the continuous indices
for these patterns, if such indices exist, could be incor-
porated as additional covariates in the post-processing
model. Since this requires fewer parameters to be esti-
mated, it would be more feasible to implement with a
rolling training window when reforecast data were not
available.
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We expect improvements from regime-dependent
post-processing to be largest in winter, since this is when
the regime behaviour of the atmosphere is most pro-
nounced. The regime-dependent model biases may them-
selves be dependent on the season. For example, blocking
episodes are associated with heat waves in summer and
cold snaps in winter and therefore temperature biases may
be inconsistent between separate occurrences of the same
regime. If all seasons are considered at once, then these
could be treated as separate regimes, despite correspond-
ing to the same large-scale mode of variability. If a large
number of regimes, or even smaller-scale weather pat-
terns, were used, then other latent variable methods, such
as hierarchical models, may be more appropriate.

Moreover, results here suggest that regime-dependent
post-processing is particularly adept at calibrating fore-
casts corresponding to regimes in which the weather dif-
fers greatly from the local climatology. Further investiga-
tion into the use of regime-dependent approaches when
forecasting extreme events would therefore complement
previous comparison studies (Williams et al., 2014).
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