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Abstract:  23 

 In arctic ecosystems, climate change has increased plant productivity. As arctic 24 

carbon (C) stocks are predominantly located below ground, the effects of greater 25 

plant productivity on soil C storage will significantly determine the net sink/source 26 

potential of these ecosystems, but vegetation controls on soil CO2 efflux remain 27 

poorly resolved.  28 



 To identify the role of canopy forming species in below-ground C dynamics, we 29 

conducted a girdling experiment with plots distributed across 1 km2 of treeline birch 30 

(Betula pubescens) forest and willow (Salix lapponum) patches in northern Sweden 31 

and quantified the contribution of canopy vegetation to soil CO2 fluxes and below-32 

ground productivity.  33 

 Girdling birches reduced total soil CO2 efflux in the peak growing season by 53% -34 

double the expected amount given that trees contribute only half of the total leaf 35 

area in the forest. Root and mycorrhizal mycelial production also decreased 36 

substantially. At peak season, willow shrubs contributed 38% to soil CO2 efflux in 37 

their patches.  38 

 Our findings indicate that C, recently fixed by trees and tall shrubs, makes a 39 

substantial contribution to soil respiration. It is critically important that these 40 

processes are taken into consideration in the context of a greening arctic since 41 

productivity and ecosystem C sequestration are not synonymous.  42 



Introduction 43 

Climate warming is causing large-scale increases in primary productivity in much of 44 

the terrestrial Arctic (Myers-Smith et al., 2020), as predicted by long-term warming 45 

experiments (Elmendorf et al., 2012a) and vegetation models (Yu et al., 2017). Where  46 

changes in ecosystem productivity are occurring, they are driven by increased growth of 47 

tundra vegetation (Elmendorf et al., 2012b; Bjorkman et al., 2018), but also often by an 48 

increase in cover and geographical range of deciduous shrub species (Myers-Smith et al., 49 

2011). Above-ground carbon (C) accumulation at northern high latitudes, following 50 

increased productivity, is projected to continue into the next century (Qian et al., 2010). 51 

There is also clear evidence, from responses of trees to historical changes in climate, and 52 

global gradient studies, that arctic and alpine treelines are influenced by climate and that 53 

forests will expand if climate continues to warm (Richardson & Friedland, 2009). Poleward 54 

and altitudinal shifts of treelines have already been observed in some locations (Wilmking et 55 

al., 2006; Harsch et al., 2009; Hofgaard et al., 2013; Hagedorn et al., 2014), although 56 

responses are heterogeneous due both to historical and on-going land use and grazing 57 

pressure. Forest expansion in the near future will only influence the tundra close to the 58 

present treeline, but significant increases in productivity have also been observed in large 59 

parts of the low arctic tundra (Reichle et al., 2018). These subzones are found where 60 

deciduous shrub species are present, and often dominant, in the plant community (Walker 61 

et al., 2005). Shrubs in the tundra grow taller and expand their spatial range in response to a 62 

warmer climate (Myers-Smith et al., 2011, 2019a), and are the most likely plant group to 63 

increase in dominance across large areas of the low Arctic in this and the next century 64 

(Pearson et al., 2013). 65 

Above-ground biomass in the most productive tundra subzones has increased by up 66 

to 0.1 kg C m-2 to approximately 0.5 kg m-2 between 1982 and 2010 (Epstein et al., 2012). 67 

However, this stock of biomass C is small compared to soil C stocks. Tundra soils in the 68 

majority of the treeless Arctic store up to 50 kg C m-2 and the highest densities of C are 69 

commonly found in the top 30 cm of the profile (Kuhry et al., 2013; Siewert, 2018), along 70 

with almost all of plant root biomass (Jackson et al., 1996; Iversen et al., 2015). This stock 71 

surpasses by far the aboveground C storage even in fully forested boreal (Siewert et al., 72 

2015) and subarctic forests (Hartley et al., 2012). Increasing photosynthetic biomass in the 73 



Arctic results in more C entering the ecosystem, and there is much interest in the ecosystem 74 

feedbacks that may result (Myers-Smith et al., 2011, 2019b). However, primary productivity 75 

is just one facet of the terrestrial C cycle, and the fate of assimilated C must also be 76 

understood, on timescales varying from minutes to millennia, to enable a forecasting of 77 

future ecosystem C storage. 78 

The task of linking above-ground changes in GPP to total ecosystem storage of C is 79 

complex. Most C fixed by arctic vegetation is allocated below-ground (Street et al., 2018), 80 

where the majority of plant biomass is located (Iversen et al., 2015). GPP can be robustly 81 

characterised in tundra based on leaf area and basic meteorological data (Shaver et al., 82 

2007), meaning that GPP may be predicted by changes in above-ground canopy properties 83 

that can be detected via remote sensing (Epstein et al., 2012). However, the change in 84 

ecosystem respiration with increasing shrub and tree encroachment is much more 85 

challenging to predict. For example, tall deciduous shrub species that are structurally similar 86 

aboveground (Betula and Alnus) allocate C belowground very differently in relation to 87 

nitrogen acquisition (Street et al., 2018), which may, in turn, affect C turnover rates in the 88 

soil. The fate of photosynthesised C within an ecosystem may therefore differ significantly 89 

between contrasting arctic plant communities.  90 

Soil CO2 efflux constitutes the largest component of ecosystem C losses; in many 91 

forest systems soil CO2 efflux comprises, in roughly equal measure, of heterotrophic and 92 

autotrophic sources (Bond-Lamberty et al., 2004; Subke et al., 2006). The ratios of 93 

heterotrophic to autotrophic contributions to the total soil CO2 efflux are less well 94 

characterised in tundra (Shaver et al., 2007; Hicks Pries et al., 2015), but this information is 95 

required in order to understand C budgets. As tall shrubs and trees represent future plant 96 

communities, given further climate change (Pearson et al., 2013), it is particularly important 97 

to quantify and understand their contribution to soil CO2 efflux within their present 98 

distribution.  Quantifying the contribution of recent plant C inputs to soil CO2 efflux is 99 

technically challenging, usually requiring either destructive methods or isotopic labelling 100 

techniques to partition autotrophic and heterotrophic CO2 sources (Subke et al., 2006). 101 

Previous trenching and clipping approaches in these ecosystems have caused considerable 102 

disturbance, altered soil thermal and moisture regimes, and have generally only been able 103 

to quantify the total contributions of all vegetation, including short-stature species, to 104 



ecosystem fluxes (Hartley et al., 2012).  Stem girdling halts the delivery of photosynthate 105 

from canopies to below ground by disrupting the phloem tissue while limiting the reduction 106 

in movement of water to the rest of the plant through the xylem, while leaves remain alive. 107 

This method therefore makes it possible to identify the contribution of canopy-forming 108 

species to soil CO2 efflux, even where extensive understorey plant communities remain, and 109 

provides a unique insight into the role of canopy species and associated ectomycorrhizal 110 

(ECM) fungi in controlling C fluxes from the soil (Högberg et al., 2001).  111 

Alongside plant root respiration, respiration from extraradical ECM mycelium can 112 

contribute 15-25 % of the total soil CO2 efflux in boreal and temperate forests (Heinemeyer 113 

et al., 2007; Hasselquist et al., 2012; Hagenbo et al., 2019) and ECM mycelial necromass has 114 

been linked with fast decomposition (Drigo et al., 2012; Clemmensen et al., 2015). 115 

Furthermore, low stocks of soil C in treeline forests (compared to adjacent tundra) may be 116 

linked to enzymatic oxidation of organic matter by ECM fungi, as they extract organic forms 117 

of N (Bödeker et al., 2014), and to a broader rhizosphere priming effect by birch trees and 118 

their symbionts (Hartley et al., 2012). In such a system, where canopy-assimilated C is in 119 

high demand for the acquisition of N and other nutrients by symbiotic fungi, a large 120 

proportion of soil CO2 efflux should be linked to the C supply from the canopy. In contrast, 121 

tundra willow shrub communities typically grow in riparian zones and in areas of deep snow 122 

cover, where soil moisture and mineral nutrient influx is higher than in other tundra types 123 

(Nadelhoffer et al., 1991; Sturm et al., 2005), potentially reducing plant investment in ECM 124 

fungi (Treseder, 2004). Furthermore, high soil moisture and occasional anoxia are not 125 

favourable to many ECM fungi, and can limit their growth within the soil matrix (Lodge, 126 

1989; Wurzburger et al., 2004; Barnes et al., 2018), thus reducing the demand for 127 

assimilated C. Willow shrubs have been widely documented to increase in growth and cover 128 

in response to climate change (Tape et al., 2006; Forbes et al., 2010; Myers-Smith et al., 129 

2019a), therefore it is important to understand C cycling in this ecosystem at present, in 130 

order to predict changes in the future. 131 

Flux partitioning experiments have seldom been done in arctic ecosystems (Subke et 132 

al., 2006), and the relative influence of the canopy has never been elucidated by girdling. 133 

The problem of partitioning is exacerbated by the diversity and heterogeneity of tundra and 134 

treeline plant communities with contrasting dominant plant species (Walker et al., 2005). 135 



Quantitative information on rhizosphere processes in contrasting treeline and tundra plant 136 

communities in relation to plant productivity is essential to underpin a better understanding 137 

of variations in landscape soil CO2 efflux. To address these issues, we conducted a girdling 138 

experiment at plots across a sub-arctic landscape in northern Sweden to isolate and test the 139 

importance of canopy inputs for soil CO2 efflux and below-ground productivity.  140 

Past experiments that partitioned autotrophic and heterotrophic CO2 fluxes in boreal 141 

and northern temperate forests, using stem girdling and trenching, were in situations where 142 

the canopy comprised the majority of leaf area (Högberg et al., 2001; Subke et al., 2006). In 143 

a subarctic birch forest, leaf area is likely more equally distributed between canopy and 144 

understorey vegetation. In this forest, trenching canopy roots and clipping the understorey 145 

reduced soil CO2 efflux by 50 % in peak season (Hartley et al., 2012). We therefore 146 

hypothesised (1) that the contribution by canopy dominant trees to autotrophic soil CO2 147 

effluxes would broadly reflect their contribution to the total leaf area of the community.  148 

Furthermore, we hypothesised (2) that autotrophic contribution to soil CO2 efflux would be 149 

lower under tundra willow than under treeline forest alongside a lower investment in 150 

mycorrhizal fungi. 151 

152 



Methods 153 

Site selection and experimental design 154 

The experiment was located around a forest-tundra ecotone 3-4 km south of the 155 

Abisko Scientific Research Station, Sweden (68°18 N 18°49 E, ~600 m asl). The girdling 156 

experiment was carried out in mountain birch forest (Betula pubescens Ehrh. ssp 157 

czerepanovii (Orlova) Hämet Ahti) and willow thickets (Identified as Salix lapponum L. but 158 

there is very high potential for hybridisation in this genus (Forrest, 2006)) that were 159 

distributed across a 0.88 km2 area (Fig. 1). The birch forests grow on well-drained spodosols, 160 

underlain by glacial till without permafrost (Sjögersten & Wookey, 2002). The understorey 161 

primarily comprises of ericaceous dwarf shrubs (Empetrum nigrum L. ssp hermaphroditum 162 

(Hagerup) Böcher, Vaccinium myrtillus L., Vaccinium vitis-idaea L. and Vaccinium uliginosum 163 

L.) and feather mosses (e.g. Hylocomium splendens and Pleurozium schreberi) (Fig.S1a). 164 

Willow thickets (Fig.S1b) in this area typically grow in poorly drained, late snow-lie 165 

communities, alongside Betula nana L., with an herbaceous and graminoid understorey.  166 

Prior to girdling, 5 willow and 6 mountain birch plots were established in early June 167 

2017, with each plot divided into paired sub-plots. Pairs were selected to have similar tree 168 

and stem density, soil C stocks, soil C:N ratio (Table 1) and understorey (birch plots: 169 

ericaceous dwarf shrubs and mosses; willow plots: forbs and mosses). The birch sub-plots 170 

had a circular area with a radius of 10 m and an average tree density of 586 trees ha-1 (Table 171 

1). The willow sub-plots had a radius of 2 m and a density of 5-6 stems m-2, representing the 172 

largest plots with willow-only canopies that could be found in the study area.  The larger size 173 

of the birch plots was necessary to ensure that all trees were girdled that could potentially 174 

be contributing to below-ground respiration at the central measurement area. The outer 175 

perimeters of paired birch sub-plots were separated by 10 – 20 m and the paired plots were 176 

separated from other pairs by between 300 to 1100 m (Fig 1a). For the willow plots, the 177 

distances between paired sub-plot outer perimeters were 2 - 16 m and pairs were separated 178 

by between 300 and 900 m. Each birch plot contained 3-4 trees within the central 3 m 179 

radius, within which all subsequent measurements were taken. Unlike in the relatively 180 

sparse birch forest, the lack of gaps between willow shrubs meant that it was also necessary 181 

to trench the perimeter of each willow plot, and plastic sheet was then inserted through the 182 

entire soil depth until rocks were encountered (top 10 – 30 cm of soil) to prevent roots from 183 



adjacent plants from entering. Trenching was not carried out around the birch plots, 184 

because the size of the buffering area around the central 3 m radius was deemed sufficient 185 

to minimise edge effects.  186 

Soil CO2 efflux measurements (see Soil CO2 Efflux section for methods) were carried 187 

out twice at all birch and willow plots after snow-melt (9-12 June 2017) but prior to the 188 

application of girdling treatments. Paired T-tests were carried out to test for a pre-girdling 189 

difference in plot characteristics between sub-plots and no significant differences were 190 

observed (Table 1).  One sub-plot of each pair was girdled between 12th June 2017 and 15th 191 

June 2017. All birch stems over 1 cm in diameter were girdled within the 10 m radius plot. In 192 

the birch plots, a 4-8 cm section of the bark was removed around the circumference of each 193 

stem down to the xylem approximately 30 cm from the ground, leaving no phloem 194 

connection between leaves and roots (Högberg et al., 2001). In the willow plots, every 195 

willow stem was girdled approximately 10-20 cm above the ground. Re-sprouting shoots 196 

from below the girdle-line were removed by hand whenever observed during the 197 

experiment. Birch and willow plants retained leaves until natural senescence in 2017 and all 198 

birch trees produced full leaves above the girdle-line in spring 2018. However, girdled 199 

willow canopies failed to produce leaves in 2018. 200 

 201 

Soil CO2 Efflux 202 

Two days prior to the first efflux measurement and 5 - 7 days prior to girdling, three 203 

5 cm tall, 15 cm inner-diameter, PVC collars were secured within 1 m of one of the three 204 

central trees of each birch plot. Collars were placed between under-storey stems and areas 205 

of moss mats in order to exclude live above-ground plant material. The collars were pushed 206 

firmly onto the soil and secured to the ground with non-setting plumber’s putty (Evo-Stik 207 

Plumber’s Mait®), to provide a good seal between collar and soil surface without severing 208 

shallow roots. The same method was applied to willow plots, with three collars placed 209 

within the central 1 m radius of the plot. Effectiveness of the collar seal using plumber’s 210 

putty has been demonstrated by a linear increase in CO2 concentrations when a closed 211 

chamber is attached to the collar (Parker et al., 2015). 212 



After girdling, CO2 efflux was measured on 10 dates in the birch plots and 9 dates in the 213 

willow plots during the 2017 growing season, and 10 times each during the 2018 growing 214 

season.  An EGM-5 infrared gas analyser (PP Systems International, Amesbury, MA, USA), 215 

with an attached CPY-5 darkened chamber, was used to measure soil CO2 efflux (root-216 

associated and heterotrophic activity). CO2 efflux was calculated based on the linear 217 

increase in CO2 concentration over 90 seconds. For each measurement date, all plots were 218 

visited on the same day between the hours of 09:00 and 18:00. The order in which plots 219 

(species and girdling treatment) and collars were sampled was alternated at every sampling 220 

day in order to minimise temporal sampling bias. The average soil CO2 efflux value from the 221 

three collars was recorded as the true replicate flux per plot. 222 

 223 

Soil and vegetation characteristics 224 

To understand the effects of girdling on soil CO2 efflux we measured plant and soil 225 

characteristics in the different plots. Soil organic C stocks of the organic horizon at each plot 226 

were calculated from a mean of nine soil cores (3.8 cm diameter) taken evenly across a 2 × 2 227 

m area in the centre of the plot. The organic horizons from each core were separated from 228 

the lower mineral horizons, mixed together, oven-dried (60 °C) and weighed. C and nitrogen 229 

contents were measured on the combined sample in a Flash SmartTM elemental analyser 230 

(ThermoFisher Scientific, Waltham, MA, USA). Canopy leaf area index (LAI) was measured 231 

using an ACCUPAR LP-80 leaf area meter (Pullman, WA, USA) in early August in 2017 (all 232 

plots) and 2018 (birch plots only). At the birch plots, an average of 20 measurements taken 233 

evenly at 30 cm height across the north-south diameter of the plot was used. In the willow 234 

plots LAI was measured at 30 cm height at five points across the plot. The understorey LAI of 235 

each birch forest plot was estimated from the average NDVI of the visible forest floor in the 236 

10 m radius of the plot from a drone platform  according to relationships from a previous 237 

remote sensing study at 3 m scale at a nearby forest-tundra ecotone site (LAI = 0.00059 238 

e9.502 NDVI (R2 = 0.90) (Williams et al., 2008)). 239 

Drone imagery was taken on the 2nd August 2017 and 30th July 2018 in two flights 240 

using a senseFly eBee mapping drone (senseFly Inc., Switzerland) carrying a Parrot Sequoia 241 

multi-spectral sensor that delivers imagery in four spectral bands (Green, Red, Red Edge, 242 



Near Infrared) and a separate RGB orthophoto. The drone was operated at a target 243 

elevation of 106 m resulting in an effective ground resolution of 10.3 cm (2017) and 11.2 cm 244 

(2018) in the final processed raster data of each flight. We used the Pix4Dmapper 245 

photogrammetric software (version 4.2.15, Pix4D, Lausanne, Switzerland) to combine 246 

individual images into continuous raster maps. We extracted an orthophoto and the 247 

normalized difference vegetation index (NDVI), which is considered an indicator of 248 

vegetation abundance and health (Rouse et al., 1974). Each plot was visually marked in the 249 

field and later identified and outlined in the orthophoto composite using 4 m and 20 m 250 

diameter circles for willow and birch plots, respectively. The orthophoto was used to digitise 251 

manually the outline of the canopy of each individual tree in the birch plots and of the 252 

willow shrub coverage in willow plots. For birch plots, we extracted NDVI pixel values for the 253 

most centrally located trees in each plot. Understorey NDVI pixel values per plot were 254 

extracted from within each circle after masking out all tree canopies. 255 

With every soil CO2 efflux measurement from 24th July 2017 onwards, conductivity of 256 

the top 5 cm of soil was measured at all plots using a handheld HH2 ThetaProbe soil 257 

moisture meter (Delta-T Devices, Cambridge, UK). In birch plots, measurements were taken 258 

every meter in a 9 m2 central square grid (16 measurements), and in the willow plots nine 259 

measurements were taken in a 4 m2 square grid. Soil temperature at 5 cm depth was 260 

measured three times across the grid using a hand-held digital thermometer. Average 261 

temperature and conductivity values were calculated for each plot on each sampling date, 262 

then conductivity was converted to gravimetric moisture content according to: 263 

Gravimetric moisture (%) = e(a+Mb) 264 

Where M is the soil conductivity measured in the field and a and b are estimated 265 

based on the fitted relationship between gravimetric moisture and soil conductivity 266 

measured during a dry-down curve of saturated ericaceous peat from near the study plots 267 

(a = 4.402, b = 0.00129, Adjusted R2 = 0.955). Using the bulk density of the calibration soil, 268 

gravimetric moisture was converted to volumetric moisture. To capture continuous 269 

volumetric soil moisture and soil temperature dynamics through timespan of the 270 

experiment, EC 5 soil moisture and TMB temperature smart sensors (Onset, Bourne, MA, 271 

USA) were installed at 5 cm depth in one birch and one willow plot. The probes logged 272 

hourly measurements to HOBO microstation loggers (Onset, Bourne, MA, USA). 273 



 274 

Growing season root production and birch copy numbers  275 

Root production over the growing season was estimated using ingrowth bags 276 

(Sullivan et al., 2007). Cylindroid fibre-glass mesh bags (6 cm deep and 2.5 x 1.5 cm wide 277 

with a mesh size of 2 mm) were loosely packed with ericaceous peat. The peat was collected 278 

within the study landscape, dried for 48 h at 85°C, and sieved through a 4 mm mesh, with 279 

remaining roots picked out by hand prior to deployment in the bags. Ensuring maximum 280 

contact with the native soil, a root ingrowth bag was inserted vertically into the top six cm 281 

of organic soil, below the litter and moss layers, 30 cm from every CO2 efflux collar in the 282 

willow and birch plots. Bags remained in the soil from 14th June 2017 until 18th September 283 

2017, and new bags were inserted from 2nd June 2018 until 12th September 2018 with a 284 

total of 96 and 102 days field incubation per respective growing season. Bags were retrieved 285 

from the soil by carefully running a scalpel around each bag to a depth of 6 cm. Outside 286 

portions of in-grown roots were cut off in the lab and all roots inside the core were 287 

extracted, washed and dried at 60 °C for 72 hours, after which dry mass was recorded. C 288 

content of the roots was then analysed using a Flash SmartTM elemental analyser. 289 

For a species-specific assay, subsamples (0.7 - 30 mg (depending on amounts 290 

remaining after other analyses)) of dried in-growth roots from birch plots were finely milled 291 

by steel nuts (40 s at 5000 rpm) in 2 ml tubes (Precellys, Bertin Instruments, Germany), and 292 

DNA was extracted using the NucleoSpin soil kit (Macherey-Nagel, Düren, Germany). Copy 293 

numbers of the ITS region of Betula sp. were analysed by quantitative PCR (qPCR) using 294 

birch-specific primers (ITSb_F and ITSb_R) and a Biorad iQ5 real-time PCR detector system 295 

(Bio-Rad, Richmond, CA, USA) according to Pérez-Izquierdo et al. (2019). Two 2017 root 296 

samples from girdled plots were not extracted due to lack of sample material at this stage. 297 

Tests with known amounts of plasmid DNA and corresponding M13 primers (Pérez-298 

Izquierdo et al., 2019), using the same PCR conditions, indicated no significant PCR inhibition 299 

by the root extracts. 300 

 301 

Hyphal production 302 



Ectomycorrhizal (ECM) fungal hyphal production over the growing season (same dates as 303 

root bags) was estimated using sand-filled ingrowth bags (Wallander et al., 2013). 5 x 5 cm 304 

nylon mesh bags with a 37 µm mesh size were filled with 18 g of sand from Lake Torneträsk 305 

(Parker et al., 2015). The sand was sieved to select particle sizes between 0.125 and 1 mm 306 

and autoclaved twice, then dried at 100 °C for 72 hours. Bags were designed to be thinner 307 

than common practice (only 0.5 cm thick when filled) to limit the distance that mycorrhizal 308 

fungi had to grow in order to colonise the sand, and to encourage fungal groups that may 309 

not typically grow into sand to colonise (Hagenbo et al., 2018). Bags were inserted into the 310 

ground at a 45° angle, directly below the litter layer, 30 cm from each CO2 efflux collar but 311 

on the opposite side to the root ingrowth cores.  Prior to insertion, bags were wetted with 312 

deionised water on a solid surface in order to ensure uniform sand depth across the bag. 313 

Bags remained in the field over the same period as the root bags and blanks were 314 

maintained in the laboratory. Sand was extracted from bags four to six hours after recovery 315 

from the field, frozen at -80 °C, and freeze-dried for 72 hours in a ModulyoD freeze drier 316 

(ThermoFisher Scientific, Waltham, MA, USA). 1.5 g of sand from each bag were sonicated in 317 

25 ml of deionised water for 10 minutes in order to free hyphae from the sand. A 10 ml 318 

aliquot of the hyphae-containing solution was transferred to a Falcon tube, to allow further 319 

separation of hyphae and sand by sedimentation, then transferred into an open container, 320 

dried at 50 °C, weighed and analysed for C content using a Flash SmartTM elemental 321 

analyser. This process was repeated for eight blank samples that had not been deployed in 322 

the field and the average C content was subtracted from all samples.  323 

 324 

Statistical analysis 325 

The effects of girdling, species (willow or birch) and season (early, mid and late) on soil CO2 326 

efflux, soil moisture and temperature were analysed using linear mixed effects models with 327 

the nlme package in R (Pinheiro et al., 2016; R Development Core Team, 2016). In the linear 328 

mixed effects model, “plot” was designated as a random variable, to account for the paired 329 

design of the experiment, as was “sub-plot”, to take account of repeated measures. Soil CO2 330 

efflux immediately after girdling treatment in June 2017 was not considered in the analysis, 331 

as it was assumed that the treatment had not yet taken effect. All flux data were natural-log 332 

transformed in order to conform to the assumptions of the parametric analysis. The effect 333 



of girdling on root and hyphal production, LAI, canopy NDVI and understorey NDVI in birch 334 

and willow plots was also analysed using linear mixed effects models after natural-log 335 

transformation when appropriate (except NDVI, which required arcsine-square root 336 

transformation in order to be appropriate for parametric analysis). 337 

338 



Results 339 

Across all plots, birch had significantly higher soil CO2 efflux rates than willow plots in 340 

2017 (P = 0.005; Fig. 2) but not in 2018. Girdling significantly reduced soil CO2 efflux in both 341 

2017 (P < 0.001; Fig. 2) and 2018 (P < 0.001; Fig. 2) in birch and willow plots compared to 342 

paired control plots. This reduction in soil CO2 efflux was large and sustained throughout the 343 

peak seasons of 2017 and 2018. The effect of girdling was maintained into late season 344 

(September), although not as pronounced then as in mid-season. The girdling treatment did 345 

not have a detectably larger effect on soil CO2 efflux in the birch plots compared to the 346 

willow plots in either year, with a statistically non-significant interaction term between 347 

species and treatment (P = 0.38 and P = 0.11 in 2017 and 2018, respectively; Fig. 2).  348 

The girdling treatment allowed for the estimation of ‘canopy-linked’ soil CO2 efflux 349 

(the difference between control and girdled plots) as a proportion of the total soil CO2 efflux 350 

in the control plots (Fig. 2, Fig.S2). The remaining proportion of the total flux constituted 351 

respiration of free-living heterotrophs and remaining roots (understorey and canopy species 352 

roots that were still alive). Over the 2017 growing season, the average contribution from 353 

canopy-linked sources to total soil CO2 efflux in the birch plots was 33 %, but this increased 354 

markedly to 53 % during the peak growing season in early August (Fig. 2, Fig. S2). In 2018 355 

the average canopy-linked contribution to soil CO2 efflux was again 33 %, with a maximum in 356 

early August of 46 %. The canopy-linked contribution to soil CO2 efflux in willow shrub plots 357 

was smaller, but still considerable, with an average of 26 % (in 2017) and 21 % (2018), and 358 

maximum contributions of 38 % and 30 %, peaking in early August in each of the respective 359 

years.  360 

Girdling significantly reduced total root production compared to control plots in 361 

2017, for birch and willow combined (willow: -30 % change, birch: -75 % change; P = 0.009; 362 

Table 2, Fig. 3), with no significant difference between species (P = 0.834). This difference 363 

was lost in 2018, with no significant effect of species or girdling treatment on root 364 

production. However, girdling caused a highly significant reduction in birch ITS copy 365 

numbers in ingrowth bags in 2018 (P = 0.004, Table 2, Fig. 5), with birch root production 366 

decreased to almost zero in girdled plots. Girdling also tended to reduce birch copy numbers 367 

during the first growing season of the treatment (2017) (P = 0.079, Table 2, Fig. 5).  368 



Although birch control plots tended to have higher hyphal production than girdled 369 

plots or willow plots in 2017, there was no overall effect of girdling and only a marginally 370 

significant difference between birch and willow plots (P = 0.059; Table 2, Fig. 4). By 2018, 371 

however, there was a highly significant effect of girdling on hyphal production owing 99 % 372 

reduction in girdled birch plots (P < 0.001; Table 2, Fig. 4). The lack of difference between 373 

girdled and control in 2018 in willow plots was associated with a significant interaction 374 

between treatment and species (P < 0.001). 375 

Willow plots had significantly lower NDVI than birch canopy, despite no significant 376 

difference in LAI (Table 2), likely due to the pubescent leaves of S. lapponum, which reduce 377 

reflectivity (Street et al., 2007). Girdling significantly reduced canopy NDVI of both species, 378 

but more so in the willow plots, resulting in a significant interaction between species and 379 

treatment (Table 2). In 2017, despite differences in canopy NDVI, LAI remained unaffected 380 

by girdling with no differences between species. In 2018, LAI in girdled birch plots 381 

(0.65 m2 m-2) dropped significantly below control values (0.92 m2 m-2) due to reduced birch 382 

leaf development in girdled plots (P = 0.024, Table 2). Understorey NDVI under birch was 383 

the same between girdled and control plots in both 2017 and 2018, on average remaining at 384 

0.77. The average LAI of the understorey of 0.88 m2 m-2, estimated from NDVI according to 385 

the relationship between ground vegetation LAI and NDVI at a 3 m scale at a nearby site (LAI 386 

= 0.00059 e9.502 NDVI (Williams et al., 2008)), indicated that birch trees contribute 387 

approximately half of the leaf area in this ecosystem. It was not possible to make this 388 

calculation in the willow plots due to the resolution of the imagery, making it hard to 389 

differentiate willow and understorey from the drone platform. 390 

Soil moisture varied significantly between vegetation types (P < 0.001, Fig. S3b). In 391 

the growing season of 2017, soil moisture was 1.6 times higher in willow plots than in birch 392 

plots and in 2018 it was 1.5 times higher. There was no statistically detectable effect of 393 

girdling on soil moisture in either year. Both willow and birch plots were exposed to a flush 394 

of water at the time of snow melt in May/June, but soon after soil moisture dropped to 395 

distinctly lower levels in birch plots until soil freeze-up in November (Fig. S3b). Soil 396 

temperature was not different between species or girdling treatment (Fig. S3a). 397 

  398 



Discussion 399 

Mountain birch forests and willow shrub patches are amongst the most productive 400 

ecosystems in the Fennoscandian subarctic and are representative of plant communities 401 

that are expanding onto tundra as northern latitudes warm (Myers-Smith et al., 2011; 402 

Hofgaard et al., 2013). Although expansion of forest and shrub communities is expected to 403 

increase gross primary productivity there is little understanding of how vegetation change 404 

will influence the C dynamics of the whole system, primarily because the subsequent fate of 405 

assimilated C is so poorly quantified and understood (Street et al., 2018). Here, we use a 406 

girdling experiment to show that recently fixed C contributes 53 % and 33 % (peak season 407 

and full season, respectively) to soil CO2 efflux in mountain birch communities, and 38 % and 408 

26 % to soil CO2 efflux in willow communities. The results suggested that much of the C fixed 409 

into these relatively productive ecosystems is rapidly returned to the atmosphere, 410 

constituting a significant fraction of soil CO2 efflux.  411 

We found that leaf area of the birch canopy (measured here at 0.5-0.92 m2 m-2 412 

depending on sampling year) was approximately the same as the leaf area of the 413 

understorey (~0.88 m2 m-2 based on conversion from NDVI). The understorey of subarctic 414 

(Kulmala et al., 2019) and boreal (Wardle et al., 2012) forests can contribute 50 % of GPP, 415 

and exclusion of all autotrophic C inputs to the soil in a subarctic birch forest (both canopy 416 

and understorey) resulted in a ~50 % reduction in soil CO2 efflux at peak growing season 417 

(Hartley et al., 2012). We therefore hypothesised that the contribution from canopy 418 

assimilation to autotrophic soil CO2 fluxes in mountain birch would reflect its contribution to 419 

community leaf area, which would equate to an approximate 25 % reduction following 420 

girdling given the broadly equal LAI of overstorey and understorey vegetation.  Thus, our 421 

finding of a 33 % reduction in soil CO2 efflux during the growing season following cessation 422 

of inputs from only the birch canopy disagrees with our hypothesis and suggests that birch 423 

makes a larger than expected contribution to soil CO2 fluxes. In the wider context of 424 

autotrophic-heterotrophic soil CO2 efflux partitioning (broadly 50 % autotrophic (Subke et 425 

al., 2006)), the relative contribution of one species which is only one half of the ecosystem 426 

leaf area is also remarkable. 427 

The peak season 53 % reduction in soil CO2 efflux with girdling in early August 428 

roughly coincides with peak vegetation productivity (Heliasz et al., 2011). Although 429 



phenology of peak belowground allocation will vary from year to year, we suggest that 430 

allocation belowground scales with increasing assimilation aboveground. The scale and 431 

seasonality of the canopy-driven soil efflux agrees closely with the results of a previous 432 

girdling experiment in a Swedish boreal forest (Högberg et al., 2001).  The Högberg et al. 433 

(2001) study was carried out in Scots pine forest (Pinus sylvestris) with a sparse understorey 434 

and approximately double the density of trees compared to the present study. Although 435 

there are obvious differences between these ecosystems, our data suggest that mountain 436 

birch trees play a disproportionate role in controlling below-ground C dynamics in these 437 

ecosystems. A girdling treatment in an ericaceous dwarf shrub community (Calluna vulgaris) 438 

showed no detectable change in soil CO2 efflux (Kritzler et al., 2016), indicating that roots 439 

and associated fungi made a much smaller contribution to total soil respiration than in 440 

mountain birch forest. Should trees or shrubs expand onto ericaceous heath, our 441 

experiment suggests that the autotrophic component of soil CO2 efflux would increase 442 

disproportionately along with increased GPP.  443 

 The reduction in soil efflux of CO2 in birch plots after girdling coincided with 444 

reductions in production of birch roots and mycorrhizal mycelium in birch plots, 445 

demonstrating the tight coupling between C assimilation in the canopy, belowground 446 

biomass production and return via soil CO2 efflux. The reduction in birch root and mycelium 447 

production was greatest in the second year of the treatment with four of six girdled plots 448 

showing zero or near-zero biomass production. This delayed effect suggests that these trees 449 

have a degree of resilience to disturbance, potentially in the form of stored non-structural 450 

carbohydrates that can supplement rhizosphere demand in the short term (Palacio et al., 451 

2008), also supported by some resprouting of shoots below the girdling line. Nevertheless, it 452 

is clear that reduction in C supply from the canopy to the rhizosphere resulted in large 453 

reductions in soil respiration in both birch and willow plots.  454 

In 2018, despite the large reduction in birch ITS copy numbers, there was no 455 

significant difference in total root production in the girdled and control plots. We were not 456 

able specifically to estimate ericaceous biomass production directly (because of our lack of 457 

primers targeting the Ericaceae). However, the recovery of overall root productivity, 458 

coupled to the major decline in birch ITS copy numbers,  strongly suggests that there was an 459 

increase in root productivity from the ericaceous understorey plants, most likely as a result 460 



of these plants being released from competition with the birch trees. In open birch forests, 461 

it is unlikely that shading by the canopy is limiting ericaceous understorey growth; instead, 462 

competition for nutrients may exert a stronger control. In support of this explanation, 463 

invertebrate herbivore events are known to exert a strong control on canopy productivity in 464 

subarctic birch forests (Bjerke et al., 2014) and also increase soil nitrogen availability (Parker 465 

et al., 2017), which, along with frass inputs, is suggested to be driven by reduced uptake by 466 

the birch canopy (Parker et al., 2017). Such disturbance events may release the understorey 467 

from belowground competition and allow for greater ericaceous shrub productivity, as 468 

appears to have occurred in our girdling study. Overall, these findings further demonstrate 469 

the disproportionate role that birch trees play in driving C and nutrient cycling within these 470 

ecosystems, when compared with their contribution to total LAI.    471 

  The substantial canopy-linked soil respiration flux integrates a number of processes 472 

that occur subsequent to the allocation of photosynthate to the roots. Firstly, roots and 473 

their associated mycorrhizal fungi respire as they grow through the soil (Söderström & Read, 474 

1987; Hagenbo et al., 2019). The second potential source of canopy-linked soil CO2 efflux is 475 

positive priming of soil organic matter: greater microbial decomposition of soil C as a result 476 

of autotrophic C delivery (Kuzyakov, 2002). Priming has previously been inferred to reduce 477 

soil C storage in mountain birch forests compared to tundra heath, despite high above-478 

ground biomass and productivity (Hartley et al., 2012). Furthermore, ECM fungi have been 479 

linked to decomposition in boreal, organic-rich soils through the production of extracellular 480 

oxidative enzymes (Lindahl & Tunlid, 2015; Sterkenburg et al., 2018; Zak et al., 2019), 481 

especially when mineral nitrogen availability is low (Bödeker et al., 2014). Therefore, 482 

priming of organic matter by tree and shrub roots and associated mycorrhizal fungi could 483 

contribute a significant fraction of the large canopy-linked soil CO2 efflux. 484 

It is clear that more mycorrhizal hyphae were produced in the birch plots than in the 485 

willow plots and that girdling dramatically reduced this production to almost zero. 486 

Respiration by mycorrhizal hyphae can contribute from 14 to 26 % of total soil CO2 efflux in 487 

boreal forest (Hasselquist et al., 2012; Hagenbo et al., 2019) and is likely to contribute a 488 

significant fraction of the canopy-linked flux in our mountain birch plots. Furthermore, non-489 

melanised mycorrhizal necromass is known to degrade rapidly (Wilkinson et al., 2011; Drigo 490 

et al., 2012; Fernandez et al., 2019) and ECM-dominated soils correlate with high soil 491 



turnover rates and low soil C compared to ericoid mycorrhizal-dominated systems 492 

(Clemmensen et al., 2015; Parker et al., 2015). Therefore, we expect that, in areas of the 493 

tundra where soils are dominated by ECM symbioses, fungal symbionts play an important 494 

role in the rapid return of autotrophic C as soil CO2 efflux. 495 

The girdling experiment demonstrates a significant contribution of the willow shrub 496 

canopy to soil CO2 efflux. At its peak, canopy-linked soil CO2 efflux in willow plots reached 497 

38 % of the total flux. Willows belong to a genus of shrubs that are well documented to be 498 

expanding in the Arctic, garnering significant interest in their associated ecosystem 499 

feedbacks (Myers-Smith et al., 2011, 2019b). Shrubby ecosystems in the tundra have 500 

previously been linked to fast turnover of below-ground C (Parker et al., 2015; Sørensen et 501 

al., 2018) and leaf litter (Demarco et al., 2014; Parker et al., 2018), but with this experiment 502 

we were able to quantify soil CO2 efflux directly driven by recent canopy C assimilation. We 503 

hypothesised that girdling would cause a larger relative reduction in soil CO2 efflux in birch 504 

than in willow plots as a result of higher allocation of C to mycorrhizal networks in the 505 

former. Indeed it is clear that more mycelium was produced in birch plots, and we observed 506 

a trend towards greater canopy-linked soil CO2 efflux was greater in the birch plots. 507 

However, the fact that this was not statistically significant may be related to the more rapid 508 

reduction in LAI within the willow plots.  509 

The limited hyphal colonisation of the in-growth bags in both girdled and control 510 

willow plots suggests that willow shrubs do not rely significantly on ECM extramatrical 511 

mycelium for nutrient acquisition (although colonisation by smooth, contact type ECM fungi 512 

without extensive mycelial proliferation outside of the roots may take place (Agerer, 2001)). 513 

As outlined above, this may be due to a) greater soil moisture in the willow plots, and 514 

potential for anoxic conditions, having adverse effects on the fungi (Lodge, 1989; 515 

Wurzburger et al., 2004; Barnes et al., 2018), or b) drifting snow (Naito & Cairns, 2011) 516 

resulting in increased influx of dissolved and particulate compounds and/or increased 517 

mobilisation of nitrogen by the winter-active microbial community (Nadelhoffer et al., 1991; 518 

Schimel et al., 2004), and thus reducing investment in mycorrhizas by the shrubs. We 519 

propose that arctic willows, growing typically in moist topographies, may rely more on roots 520 

and direct uptake of nutrients, than on ECM fungi.  521 



We have demonstrated that recent photosynthate regulates soil CO2 efflux in 522 

subarctic forest communities beyond what is expected from the contribution of canopies to 523 

community LAI. Trees and shrubs are potential future land cover types on what is presently 524 

tundra heath (Pearson et al., 2013) and some of the extra C that will be fixed as a result of 525 

increasing photosynthesis in these more productive ecosystems will be rapidly returned to 526 

the atmosphere through the rhizosphere. Unexpectedly, we found that birch and willow 527 

canopies contributed similarly large proportions to soil CO2 efflux, but much more canopy-528 

fixed C was allocated to mycorrhizal mycelium by birch. At present, our understanding of 529 

rhizosphere processes and subsequent C losses lags behind research on above-ground 530 

processes. Evidence from previous research suggests that rhizosphere priming of soil 531 

organic matter occurs in subarctic treeline forests and that forest expansion could even lead 532 

to a net loss of C from the ecosystem (Hartley et al., 2012). The majority of tundra soils have 533 

scarce mineral nutrient availability (Shaver et al., 1992), therefore greater investment 534 

below-ground by plants may be required to mobilise nutrients for further growth. If soil CO2 535 

efflux increases in tundra soils in response to increased plant growth, a critical research 536 

priority will be to understand what proportion of the increased efflux is short-term root 537 

respiration, and how much is the decomposition of soil organic matter in response to 538 

rhizosphere inputs. 539 
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 763 

Table 1:  Average (± 1 standard error) vegetation and soil characteristics in control and 764 

girdled plots of birch (n = 6 pairs) and willow (n = 5 pairs). Soil respiration values are for 765 

measurement days prior to implementation of the girdling treatment.  766 

 Birch  Willow 

 Control Girdled   Control Girdled 

Trees (Trees ha-1) 573 ± 72.1 600 ± 83.6              
Stems (Stems m-2) 0.27 ± 0.03 0.20 ± 0.01  5.98 ± 0.45 5.52 ± 0.43 
Canopy height (cm)        82.7 ± 9.26 76.7 ± 8.57 
Organic horizon SOC (kg m-2) 2.80 ± 0.17 2.57 ± 0.20  3.07 ± 0.46 2.50 ± 0.35 
Soil C:N ratio 29.6 ± 1.02 28.7 ± 1.33  25.0 ± 0.38 25.6 ± 1.09 
Soil CO2 efflux (µmol m-2 s-1) 2.80 ± 0.15 2.59 ± 0.18   2.48 ± 0.34 2.37 ± 0.10 

 767 



Table 2: Mean (± 1 SE) root and hyphae production over full growing seasons, canopy LAI, and understorey Normalised Difference Vegetation 768 

Index (NDVI) in late July in birch and willow, girdled and control plots (Birch = 6 paired plots, Willow = 5 paired plots) in 2017 and 2018. Root 769 

production values are from the top 6 cm of soil, hyphae production from the top 3.5 cm of soil. Test statistics from linear mixed effects models 770 

for fixed effects (species, treatment, and the interaction, if present) for each response variable in each year are provided in line. 771 

 Birch Forest  Willow Shrub             

 Control Girdled  Control Girdled  Species  Treatment  Species x Treatment 

2017                            d.f. F P   d.f. F P   d.f. F P 

Roots (mg C bag-1) 11.5 ± 3.79 2.75 ± 0.83  6.30 ± 1.15 4.37 ± 1.27  1,9 0.05 0.829  1,9 11.1 0.009  1,9 2.50 0.148 

Birch ITS copies (bag-1) 6032 ± 3678 180 ± 116             1,3 6.87 0.079     

Hyphae (mg C bag-1) 1.07 ± 0.39 0.19 ± 0.07  0.11 ± 0.03 0.24 ± 0.13  1,9 4.64 0.060  1,9 1.35 0.275  1,9 0.95 0.356 

Canopy LAI (m2 m-2) 0.50 ± 0.21 0.58 ± 0.23  1.51 ± 0.50 0.56 ± 0.15  1,9 0.41 0.537  1,9 3.87 0.081  1,9 3.93 0.079 

Canopy NDVI 0.87 ± 0.01 0.85 ± 0.01  0.83 ± 0.01 0.77 ± 0.01  1,9 47.41 < 0.001  1,9 122 < 0.001  1,9 32.94 < 0.001 

Understorey NDVI 0.81 ± 0.02 0.81 ± 0.01             1,5 0.14 0.724     

                          
2018                          

Roots (mg C bag-1) 8.84 ± 2.19 7.15 ± 1.55  17.41 ± 5.79 7.68 ± 2.48  1,9 1.48 0.255  1,9 2.90 0.123  1,9 0.84 0.383 

Birch ITS copies (bag-1) 30000 ± 25317 18 ± 17             1,5 24.72 0.004     

Hyphae (mg C bag-1) 2.43 ± 0.87 0.02 ± 0.01  0.32 ± 0.18 0.18 ± 0.06  1,9 1.30 0.284  1,9 28.86 < 0.001  1,9 21.58 0.001 

LAI (m2 m-2) 0.92 ± 0.10 0.65 ± 0.07             1,5 10.33 0.024     
Canopy NDVI 0.81 ± 0.01 0.74 ± 0.01  0.72 ± 0.01 0.65 ± 0.02  1,9 39.92 < 0.001  1,9 68.33 < 0.001  1,9 0.29 0.606 

Understorey NDVI 0.74 ± 0.02 0.74 ± 0.02                         1,5 0.00 0.964         
 772 



 773 

Figure 1: (a) Location of paired girdled and control plots of birch (blue circles) and willow 774 

(orange circles) at field sites south of Abisko (note that 1 birch pair and 1 willow pair are 200 775 

m south, out-with the image). (b) Birch pair 6 with plot perimeters superimposed (b1), false 776 

colour imagery of NDVI values and trees within the experiment marked (b2) and 777 

experimental and central study tree only marked (b3). (c) Examples of stem girdling in birch 778 

plots (c1) and willow plots (c2).779 

 780 



 781 

Figure 2: Soil CO2 efflux from Mountain birch in 2017 (a) and 2018 (b), and Willow shrub in 782 

2017 (c) and 2018 (d) in control (filled circles) and girdled plots (open circles). Points 783 

represent mean values at each sampling date (± 1 standard error). Arrows (red) indicate the 784 

date of girdling in the respective communities. In 2017 there were significant effects of 785 

species (F(1,9) = 14.0,  P = 0.005), girdling treatment (F(1,10) = 24.3, P < 0.001) and season 786 

(F(1,186) =130, P < 0.001) and no interactions between species and treatment (F(1,9) = 0.59,  P = 787 

0.46). In 2018 there was no significant effect of species (F(1,9) = 3.24,  P = 0.11) but effects of 788 

girdling treatment (F(1,10) = 36.7, P < 0.001) and season (F(2,196) =168, P < 0.001); there was no 789 

interaction between species and treatment (F(1,9) = 2.00,  P = 0.19). The percentage 790 

contributions of the canopy to soil CO2 efflux over the over the whole growing season and at 791 

its seasonal maximum (in brackets) are reported in the top right of each panel.792 



793 

 794 

Figure 3: Root production (mass of C into ingrowth bag) in paired (denoted by dashed 795 

connecting lines) control and girdled plots in 2017 and 2018 in birch (green) and willow 796 

(blue) plots. The results of statistical analyses are shown in Table 2.797 
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 799 

Figure 4: Hyphal production (mass of C into ingrowth bag) in paired (denoted by dashed 800 

connecting lines) control and girdled plots in 2017 and 2018 in birch (green) and willow 801 

(blue) plots. The results of statistical analyses are shown in Table 2. 802 



 803 

Figure 5: Birch ITS copy numbers in ingrowth bags in paired (denoted by dashed connecting 804 

lines) birch girdled and control plots in 2017 and 2018. The results of statistical analyses are 805 

shown in Table 2. 806 
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