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ABSTRACT 

 

Driving is a necessary, but inherently risky, daily activity. One behaviour 

exacerbating these risks occurs when drivers illegally cross amber traffic lights, 

and an improved ability to inhibit this behaviour would promote safer driving. 

This type of inhibitory control has previously been conceptualised as being itself 

under conscious control, and therefore requiring deliberate thought and 

intention. However, driving is cognitively demanding, and this is likely to reduce 

the ability to maintain the intention to inhibit the amber-crossing response. 

Recent research has demonstrated that response inhibition can become 

associatively-mediated with the right type of training and is thus not exclusively 

reliant on control processes. This finding has led to the development of 

inhibition training techniques to develop associatively-mediated inhibitory 

responses to cues that might lead to an incorrect behaviour. However, it is 

unclear to what extent this work could be generalised to driving. The first 

question addressed in this thesis centres on what kind of behaviour at traffic 

lights might be primed as a result of experiencing the contingencies produced at 

traffic light-controlled junctions. The second focuses on how training could be 

developed to change the products of this learning so that it primes safer 

behaviours. 

Chapter One introduces the theoretical background to the thesis and includes a 

discussion of dual-process models of associative learning and associatively-

mediated inhibition. Chapters Two and Three ask what is learnt at an 

associative level at traffic lights. Chapter Two begins the development of a 

laboratory paradigm that aims to capture the contingencies linked to traffic 

lights, and Chapter Three continues this by introducing sequences into the 

paradigm. Chapter Four investigates the importance of task set for associative 

learning and begins the development of a training task to change the learnt 

associative behaviour towards amber traffic lights. This work is continued in 

Chapter Five where the task is taken out of a pure associative learning context 

and applied in a real-world intervention. Finally, Chapter Six summarises the 

empirical work and links it to the theories and issues introduced in Chapter One.  
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1          CHAPTER 1 

Introduction 

n 2017 there were 1,793 deaths on roads in the United Kingdom (UK) despite 

years of highway safety improvements and campaigns (Department of 

Transport, 2018). Road traffic collisions are estimated to cost the UK economy 

£35 billion a year (Department of Transport, 2018). Given that some estimates 

put driver error as a critical factor in 94% of road accidents (U.S. Department of 

Transportation, 2015), interventions to address the cognitive characteristics of 

drivers would seemingly be of considerable utility (Cheng, Ng, & Lee, 2012).  

One cause of road accidents is people contravening traffic light signals. 

Specifically, with 22% of urban road incidents caused by drivers ignoring a stop 

signal at traffic lights (Retting, Williams, Preusser, & Weinstein, 1995), and 38% 

of drivers rarely stopping at amber traffic lights (Thrifty, 2011), there is a need to 

reduce the crossing of amber and red traffic lights on the part of drivers (Polders 

et al., 2015). A potential solution that has been adopted in some cases is the 

use of cameras to enforce red traffic lights. While these cameras can lead to 

safer driving and increased compliance (Baratian-Ghorghi, Zhou, & Franco-

Watkins, 2017) such a reactive approach does not address the root causes of 

the behaviour.  

So, what causes this behaviour? How does one decide to stop (or not) at traffic 

lights? Such a process relies on the human ability to adjust behaviour in 

response to environmental cues, and an important component of this ability is 

an activity termed response inhibition. While this process has been studied from 

many different perspectives for a long time (Verbruggen, McLaren, & 

Chambers, 2014) this thesis explores the control of human behaviour by 

appealing to current cognitive psychology theories, that is through the use of 

executive control processes. Crucially, while these processes have historically 

been ascribed to top-down conscious thought, recent research has highlighted 

how this is not necessarily the case, demonstrating that control can become 

mediated through bottom-up associatively-mediated processes. The thesis goes 

on to explore how techniques to change cognitive behaviour might help 

ameliorate dangerous driving at traffic lights. Specifically, the work explores how 

behaviour at traffic lights might be, in part, associatively-mediated, and 

I 
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investigates the implications of this possibility for the development of behaviour 

change techniques. 

To begin, the role of executive control in human behaviour (with a focus on 

motor control) is outlined, with an emphasis on how this can be voluntary or 

automatic. I will then highlight the current role of behaviour change techniques 

in the domain of driving, addressing the shortcomings of these approaches, and 

how more appropriate techniques could be developed by using frameworks 

already established in cognitive psychology. 

 EXECUTIVE CONTROL 

The term executive control is an umbrella term covering a variety of systems 

that allow people to modify their behaviour in response to environmental 

changes. It includes planning and monitoring as well as response inhibition 

(Baumeister & Heatherton, 1996; Miyake et al., 2000; Hofmann, Schmeichel, & 

Baddeley, 2012; Diamond, 2013) and is important to many aspects of human 

life, such as school success (Blair & Razza, 2007). A review of the whole 

executive control literature is beyond the scope of this thesis (for a review see 

Monsell and Driver (2000)); the focus here is on response inhibition and how 

this is important in motor control.  

 A brief history of inhibition 

Scientists and philosophers have long studied the nature of human control. As 

Bari and Robbins (2013) note, Plato's allegory of the chariot, where the human 

soul is a charioteer being driven by two horses having opposite characters, is 

symbolic of the operation of inhibition, whereby to reach the intended 

destination (in this case heaven) the horses have to be controlled with the 

opposing forces successfully balanced. Similar ideas come from Descartes 

(trans. 1989) and Diamond, Balvin, and Diamond (1963). 

In the 19th century, the study of inhibition shifted from a philosophical to a 

scientific perspective (Smith, 1992). These approaches were rooted in the field 

of psychiatry. As early as 1843 the German psychiatrist Wilhelm Griesinger was 

arguing that, in the terminology of the day, insanity was due to impaired 

inhibition (as reported by Macmillan, 1996). Sechenov (1863) and Ferrier (1886) 

began the search for a neural basis of inhibition. Such work often involved 
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patients with lesions to the frontal cortex. These patients tended to be 

unimpaired on most mental functions (e.g., vision and hearing), but had deficits 

in goal-directed behaviour and were distracted by salient but irrelevant stimuli 

(Milner, 1963; Perret, 1974; Milner & Petrides, 1984).  

A famous demonstration of the effects of lesions to the frontal cortex comes 

from Shallice and Burgess (1991). In this study three individuals with prefrontal 

brain damage were set a number of simple but open-ended tasks to complete in 

a shopping centre whilst also obeying a number of rules. For example, one of 

the tasks was to “buy a packet of throat pastilles” (p. 733), and a rule was “no 

shop can be entered other than to buy something” (p. 734). The patients were 

told to complete the task quickly. All three patients made more errors in the task 

than controls matched for age and IQ. The types of mistakes demonstrate the 

deficits in goal-direction. For example, one participant made an error when she 

entered a chemist shop to buy soap (one of the task items) but did not buy 

anything (and thus broke a rule) as she did not like the soap on sale, even 

though personal preference was irrelevant to the task at hand. In fact, all three 

patients displayed inefficiencies in the task and broke at least five rules each. 

This study demonstrates that patients with prefrontal lobe damage can 

complete basic tasks (such as remembering instructions), but that the efficient 

coordination of behaviour to do so proves difficult. These findings led to the 

development of the idea that the prefrontal cortex is not involved in a particular 

faculty (such as language) but rather is central to control and goal-directed 

behaviour (Miller & Cohen, 2001). Such work was key in the development of 

influential theories such as that of the supervisory attentional system by Norman 

and Shallice (1986) and the concept of the ‘central executive’ in Baddeley and 

Hitch's (1996, 2003) model of working memory. 

 Fractioning the executive 

With the development of the concept of an ‘executive controller’, control was 

conceived as being located in a unitary homunculus that was responsible for 

pulling the levers to regulate low-level systems (Baddeley, 1996). However, it 

has become clear that this concept is untenable as it relies on circular 

reasoning, and begs the questions Quis custodiet ipsos custodes? (Juvenal, 

trans. 2014 from Watson & Watson, 2014). If the homunculus is in control, what 
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(or ‘who’, see the doctrine of divine universal causality, Grant, 2010) is 

controlling the homunculus?  

In an attempt to move beyond explaining what is controlled to how control is 

exercised, Monsell and Driver (2000) proposed the slogan “Dissolve, 

deconstruct, or fractionate, the executive! Let a hundred idiots flourish!” (p. 7). 

They argued that to fully explain executive control, the processes (“idiots”) that 

underlie the homunculus need to be defined. There is evidence against the 

concept of a unitary homunculus. While Shallice and Burgess’ (1991) patients 

all showed deficits in the task, each patient had differing impairments. For 

example, Patient 1 showed no task failures, while Patient 2 did. This suggests 

that different parts of executive control are impaired following damage to 

specific parts of the prefrontal cortex. Further examples of the existence of 

multiple control processes comes from work by Godefroy, Cabaret, Petit-

Chenal, Pruvo, and Rousseaux (1999) who showed that some individuals with 

frontal brain damage were impaired on one cognitive task but not another; while  

the opposing pattern of results were found in other patients with posterior brain 

damage, a double-dissociation implying separable processes.  

These results led to the fractioning of the executive controller into 

subcomponents. Focusing on individual differences, Miyake et al. (2000) 

developed three distinct functions of executive control: updating and monitoring 

information, switching between responses and task sets, and inhibiting 

irrelevant actions. Thus, the current prevailing view is that ‘executive control’ 

contains separate specialised components, though see Verbruggen, McLaren, 

et al. (2014) for a commentary on how the homunculus has not yet been fully 

banished. The focus of this thesis now turns to the third component of executive 

control from the Miyake et al. (2000) taxonomy: inhibition.  

 RESPONSE INHIBITION  

Inhibition is often considered to be a key facet of executive control (Baddeley, 

1996; Aron, 2007; Aron, Robbins, & Poldrack, 2014; Nigg, 2017). While its role 

in some processes such as memory and attention is debated (MacLeod, Dodd, 

Sheard, Wilson, & Bibi, 2003; Aron, 2007), there is a large body of evidence 

suggesting that inhibition is used in motor control, specifically the ability to 

cancel an already actioned motor response (Nigg, 2000; Coxon, Stinear, & 
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Byblow, 2006; Verbruggen & Logan, 2008a; Majid, Cai, George, Verbruggen, & 

Aron, 2011; Bari & Robbins, 2013). 

One issue in assessing response inhibition is task purity. By definition, response 

inhibition is a component of a wider network of executive control, and as such 

these other processes (e.g., attention) are likely to impact task performance. A 

solution around this is to focus on the inhibition of observable motor behaviours. 

Such an approach enables an objective measure of inhibition, either via a 

button press (Verbruggen & Logan, 2009a) or through the direct investigation of 

motor cortex via Transcranial Magnetic Stimulation (Pascual-Leone, Valls-Solé, 

Wassermann, & Hallett, 1994; Cirillo, Cowie, MacDonald, & Byblow, 2017). 

Thus, for present purposes, response inhibition, or just inhibition, will be defined 

as the “ability to supress a motor response that is no longer appropriate or 

required” (Bowditch, 2016, p. 5; adapted from Chambers, Garavan, & Bellgrove, 

2009). Accordingly, response inhibition can be studied in the laboratory by 

encouraging the development of prepotent, dominant, responses to a cue, and 

then introducing the need to suddenly inhibit this set response in reaction to a 

rarely seen stop signal (Logan, 1994).  

It is worth noting that motor response inhibition (the stopping of an action, e.g., 

not pressing a key in a laboratory experiment) and cognitive inhibition, which 

can be seen as the stopping of a mental process (MacLeod, 2007), e.g., the 

suppression of a task irrelevant memory (Anderson & Green, 2001), might not 

be distinct processes but rather represent similar constructs. For example, brain 

imaging studies have found overlapping areas of neural activity in both cognitive 

and response inhibition (Cohen & Lieberman, 2010). Further support comes 

from studies which show that deficits in response inhibition and cognition 

inhibition can be comorbid, e.g., in those suffering from Obsessive Compulsive 

Disorder (Chamberlain, Fineberg, Blackwell, Robbins, & Sahakian, 2006; for 

review see Bari & Robbins, 2013). Indeed, response inhibition has been found 

to be important for normal and healthy functioning, which suggests a wider, 

more complex network of processes is at play than just the inhibition of motor 

responses. For example, poor response inhibition (and poor executive control 

more generally) has been linked to attention deficit/hyperactivity disorder (Nigg, 

2001; Berryessa, 2017), the development of anti-social and criminal behaviour 

(Tremblay, Pihl, Vitaro, & Dobkin, 1994; Moffitt, 2017), and to drug use (Moffitt 
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et al., 2011). Of interest for the present thesis, poor response inhibition has also 

been linked to risky driving (Bachoo, Bhagwanjee, & Govender, 2013; O’Brien & 

Gormley, 2013; Bıçaksız & Özkan, 2016; Sani, Tabibi, Fadardi, & Stavrinos, 

2017), and those with attention deficit/hyperactivity disorder have been shown 

to have an increased tendency to commit traffic violations (Groom, van Loon, 

Daley, Chapman, & Hollis, 2015). Furthermore, performing motor inhibition 

tasks has been shown to lead to a change in actual behaviour, with this type of 

training being used to reduce alcohol consumption (Houben, Nederkoorn, 

Wiers, & Jansen, 2011) and unhealthy food intake (Veling, van 

Koningsbruggen, Aarts, & Stroebe, 2014). These applications of inhibition are 

explored further in section 1.3.3. As an aside, it is worth noting that while a lack 

of inhibition certainly has negative consequences, it is not entirely without 

benefits. Dickman’s (1990) construct of functional impulsivity implies that in 

some situations lack of control is beneficial. For example, Dickman and Meyer 

(1988) found that when under time pressure individuals with high impulsivity 

were more accurate in a visual-comparison task than those with low impulsivity. 

Overall, inhibition is key for healthy functioning; yet depending on the context 

low inhibition is not necessarily bad.  

 Paradigms  

As described above, motor inhibition fundamentally reflects a person’s ability to 

stop a prepotent motor response. Attention now turns to the paradigms used to 

investigate inhibition of motor responses. The three main paradigms used in the 

literature, and that are the primary methodologies employed in subsequent 

empirical chapters of this thesis, are the go/no-go, stop-signal, and stop-change 

paradigms.  

1.2.1.1.1 GO/NO-GO 

In this paradigm, first developed by Donders (1868), participants are presented 

with stimuli and told to respond (e.g., press a key) when a go stimulus is 

presented, but to withhold their response when a no-go stimulus is presented. 

In Figure 1.1 participants would have to respond to the letter Y and withhold a 

response to letter B. Typically, trials are presented rapidly and there is a low 

probability of no-go. This design leads to a go response becoming the default, 

‘prepotent’, response and ensures that participants are withholding a response 

rather than merely deciding not to make a response (Aron, 2011). This issue is 
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discussed further in section 1.2.3. These paradigms often use mapping to visual 

cues, such as responding to different coloured circles (Nicholson, Verbruggen, 

& McLaren, 2018), or to categories of stimuli, such as responding to words 

describing living rather than non-living objects (Verbruggen & Logan, 2008b). 

Experiments have also used two different auditory tones as go and no-go cues 

(Steinmann et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.1.1.2 Stop-signal task 

The stop-signal task was developed by Lappin and Eriksen (1966) and Logan 

and Cowan (1984). In the task, participants have to make a choice 

discrimination (e.g., in Figure 1.2, left key response for letter A and right key 

response for letter W). If a stop signal is presented (which can be another visual 

stimulus or auditory cue) then participants must withhold their response.  

 

 

 

 

Fixation 

cross  

Respond 

 

X 
 

Y 
 

X 
 

B 

Stop 

Figure 1.1. Schematic of a typical go/no-go task. In this task participants have 

to respond to the letter ‘Y’ and withhold a response to the letter ‘B’. 
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The delay between the presentation of a stimulus and the stop signal is varied 

and called the stop signal delay. The duration of this delay directly affects the 

probability of correct inhibition of response. If the delay is short it is likely that 

participants will be able to withhold their response, but if the delay is long then 

participants tend to be unable to cancel their response and make a commission 

error (Matzke, Verbruggen, & Logan, 2018). By linking the length of the delay to 

participants’ performance (called a staircase design) the differences between 

participants and within-participants across the experiment can be controlled for ( 

Verbruggen & Logan, 2009a; Coulacoglou & Saklofske, 2017). For example, the 

delay could increase by 50ms if correct inhibition occurred and decrease by 

50ms if a commission error occurred. Such a one-up/one-down tracking 
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Press 
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Stop signal  

Figure 1.2. Schematic of a typical stop signal task. In this task participants have 

to respond to letter ‘A’ with a left key press and respond to letter ‘W’ with a right 

key press. However, when the stop signal is presented (the star) participants 

must withhold their response. The SSD is the Stop Signal Delay, the time 

between stimulus presentation and the stop signal occurring. 
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procedure would result in a 50% chance of inhibiting a response. An additional 

benefit of varying the delay in this way is that it becomes hard for participants to 

develop a strategy to increase the chance of correctly stopping (Logan, 1994). 

Regarding the required response in the task, while key presses are the most 

frequently used responses that participants are required to inhibit, researchers 

have also explored other modalities. These include requiring participants to 

interrupt their own speech (Ladefoged, Silverstein, & Papçun, 1973) or eye 

movements (Logan & Irwin, 2000). As Bari and Robbins (2013) note, each 

modularity has its advantages and disadvantages, with a key feature being 

experience in the primary task, for example an actor might have more difficulty 

interrupting their own speech than a normal person due to the automatic nature 

of the task and practiced behavioural sequences. Similarly to the go/no-go task, 

discrimination can be between a variety of visual (Senderecka, Grabowska, 

Szewczyk, Gerc, & Chmylak, 2012) and auditory stimuli (Manuel, Bernasconi, & 

Spierer, 2013). Naturally, stimuli that are easier to detect will result in better 

performance than stimuli that are harder to detect (Palmer, Huk, & Shadlen, 

2005), and as noted above there are likely to be individual differences in task 

difficulty. Interference from the stimulus can also affect performance, with 

emotional stimuli leading to worse performance compared to neutral stimuli 

(Verbruggen & De Houwer, 2007). Both visual (Verbruggen & Logan, 2008a) 

and auditory stop signals (Van Der Schoot, Licht, Horsley, & Sergeant, 2005) 

are commonly used. The ease with which the stop signal is detected has a 

direct effect on performance in the task. For example, louder stop signal tones 

produce better inhibition than quieter tones (Van Der Schoot et al., 2005). To 

help minimise such issues, the experiments in this thesis will build upon the 

work of Bowditch, Verbruggen, and McLaren (2016) and Verbruggen and Logan 

(2008a) to use simple visual discriminations involving novel stimuli which 

require key presses as a response, a task that it is reasonable to assume that 

all participants will be equally (un)familiar with. 

1.2.1.1.3 Stop-change paradigm  

The final paradigm used in this thesis is the stop-change paradigm. Here, 

participants are told to stop their response to a go cue and make a ‘change’ 

response when an appropriate cue appears (Verbruggen, Schneider, & Logan, 

2008; Verbruggen & Logan, 2009a). In Figure 1.3, participants must respond to 
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letter A with a left-hand response and to the letter W with a right-hand response, 

but if this changes to a red W then it requires a left-hand response. The delay 

between the letter W appearing and changing red is called the stop-change 

signal delay and is equivalent to the stop signal delay in stop signal paradigms. 

The most typical change response is to press a different key from that of the 

first response (Logan & Burkell, 1986) or to make an opposite response, such 

as in Nachev, Wydell, O’Neill, Husain, and Kennard (2007) where participants 

pressed the key opposite to that primed by the first cue. However, studies have 

also required participants to respond depending on the identity of the stop-

change signal, e.g., word descrimintaion based on whether the signal was a 

high or low tone (Verbruggen & Logan, 2008c). The paradiagm has also been 

used in animal experiments, including with rats (Beuk, Beninger, & Paré, 2014) 

and pheasants (Meier et al., 2017). 

One issue regarding the stop-change paradigm is whether participants inhibit 

their first response before changing to the second.  In other words, is inhibition 

required to complete the task? To explore this question, Verbruggen, 

Schneider, and Logan (2008) introduced a variable delay between the stop 

signal and the second go response to distinguish between two models of 

performance. The first, the GO1-GO2 model, assumes that inhibition is not 

required for successful completion of stop-change tasks, with participants 

replacing their goal to respond to GO1 with the goal to respond to GO2 when 

instructed. In a sense STOP is achieved by the replacement of GO1 with the 

GO2 goal. The second, the GO1-STOP-GO2 model, assumes that when 

instructed to change responses, participants first stop GO1 responses and then 

make GO2 responses, with a STOP goal being required to inhibit GO1 

responses before GO2 responses can be made. Interestingly, the two models 

would predict different effects of increasing the delay between the stop signal 

and the second go response. Model 1 would predict that increasing delays 

would not impact upon performance, with reaction times to the second GO cue 

not varying with delay. This is because the GO2 processing happens 

immediately when the change signal is presented. However, model 2 would 

predict that reaction times to the GO2 cue are linked to the delay, with a longer 

delay period leading to faster GO2 reaction times. This is because the STOP 

process must be finished before a GO2 response can be made, and so a longer 

delay will increase the chance that this STOP process is completed. In their 
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experiments, Verbruggen et al. (2008) found evidence to support the model 2 

account of stop-change performance, with reaction times to the GO2 cue 

decreasing when the delay between the change signal and GO2 increased. 

This demonstrates that successful performance within stop-change tasks 

involves the use of inhibition. Such conclusions are supported by computational 

(Camalier et al., 2007) and neuroimaging (Boecker, Gauggel, & Drueke, 2013; 

Jha et al., 2015) experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Models of inhibition 

Performance on the above response inhibition tasks is often modelled as a 

‘horse race’ between two independent processes; a go process triggered by the 
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Figure 1.3. Schematic of a typical stop change task. In this task participants 

must respond to letter ‘A’ with a left key press and respond to letter ‘W’ with a 

right key press. However, when the change signal is presented (W turns red), 

participants must change their response to a left key press. The SCSD refers to 

the Stop Change Signal Delay, the time between the stimulus presentation and 

the stop change signal occurring. 
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presentation of a go stimulus, and a stop process triggered by the presentation 

of a stop stimulus (Logan & Cowan, 1984; Logan, Van Zandt, Verbruggen, & 

Wagenmakers, 2014). On any trial, performance (that is, responding or not 

responding) depends on the relative finishing times of the two processes. If the 

stop process finishes before the go process then participants will withhold a 

response, but if the go process finishes first then participants will respond. By 

definition, the independent race model assumes that the two processes operate 

completely separately, with behavioural (Lea, Chow, Meier, McLaren, & 

Verbruggen, 2019) and neurological evidence (Schmidt, Leventhal, Mallet, 

Chen, & Berke, 2013) supporting this view. However this assumption has not 

been accepted by all, with some studies suggesting that the two processes are 

more interrelated (Özyurt, Colonius, & Arndt, 2003; Gulberti, Arndt, & Colonius, 

2014). 

 Proactive or reactive inhibition 

A key distinction in response inhibition research is between proactive inhibition 

(also referred to as action restraint) and reactive inhibition (also termed action 

cancellation). Proactive inhibition (Whitely & Blankfort, 1933) refers to the 

inhibition of motor control prior to a response being made, while reactive 

inhibition describes the inhibition of a motor response during its execution (Hull, 

1943). Braver (2012) characterised reactive inhibition as being triggered by 

contextual cues in the environment, with proactive inhibition entailing 

processing of goal-relevant information to bias behavioural responses. 

Recently this distinction has been applied to inhibition training paradigms (Aron, 

2011). It has been suggested that the go/no-go paradigm measures proactive 

inhibition, whereas the stop signal task measures the ability to cancel an 

ongoing motor response, that is reactive inhibition (Schachar et al., 2007; 

Littman & Takács, 2017). The argument is that for go/no-tasks participants must 

make response decisions based on the trial: that is, they must first select a 

response before initiating it. In comparison, in stop-signal tasks the go signal is 

presented first, and as such activates the go process, with any subsequent stop 

signal requiring the inhibition of the already active go pathway. Such a 

characterisation has found support in partially dissociable neural networks 

(Eagle, Bari, & Robbins, 2008; Swick, Ashley, & Turken, 2011).  
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However, as discussed earlier, go/no-go experiments are often designed so that 

go is the prepotent response, either by having more go than stop trials, for 

example in Adams, Lawrence, Verbruggen, and Chambers (2017) 75% of trials 

were go, or by having short response windows, as seen in Leiva, Parmentier, 

Elchlepp, and Verbruggen (2015). Given this, the argument is that as go is the 

default response, the go process is activated immediately on the presentation of 

a stimulus. Evidence from Leocani, Cohen, Wassermann, Ikoma, and Hallett 

(2000) supports this case. The study used a go/no-go task to investigate 

corticospinal excitability (by using the proxy of motor-evoked potentials induced 

by Transcranial Magnetic Stimulation). Results showed that there was inhibition 

of excitability around 200-300ms following presentation of no-go trials. This 

suggests that the prepotent response was go, and that participants inhibited a 

response rather than merely not making a response. Crucially, this effect was 

found even when there was an even ratio of stop to go trials (50:50) and the 

response window was long for such a task (6-8 seconds). Participants were 

instructed to respond “as quickly as possible” (p. 1163) to stimuli, indicating that 

this simple instruction alone can be enough to enable the formation of prepotent 

responses in go/no-go paradigms.  

While proactive control is an important facet of inhibition, it does seem clear that 

reactive inhibition is often involved in not responding during these tasks, and 

that certain design features can lead to a greater role for reactive inhibition. The 

use of instructions emphasising going, high go ratios, and quick response 

windows are likely to push participants to use reactive inhibition in both stop-

signal and go/no-go tasks. Saying this, successful performance on inhibition 

tasks requires a balance between responding to go trials but also withholding 

responses on stop trials (Verbruggen & Logan, 2009b). It is likely that both 

processes are running concurrently (Duque, Lew, Mazzocchio, Olivier, & Ivry, 

2010). For example, reaction times are typically longer in blocks where there 

are stop trials, compared to blocks where there are no stop trials (Ramautar, 

Kok, & Ridderinkhof, 2004; Verbruggen, Best, Bowditch, Stevens, & McLaren, 

2014). Moreover, this effect can happen on a trial-by-trial basis when 

participants are informed about the likelihood of a stop signal occurring 

(Chikazoe et al., 2009; Jahfari, Stinear, Claffey, Verbruggen, & Aron, 2010; 

Jahfari et al., 2012; Zandbelt, Bloemendaal, Neggers, Kahn, & Vink, 2013). 
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To summarise, when participants receive instructions promoting going, and are 

responding at speed, in tasks designed with relatively high go ratios, then one 

can be confident that action cancellation is occurring, with the involvement of 

proactive inhibition being limited. With this in mind, the empirical work in this 

thesis will use the above strategies to minimise the role of proactive inhibition. 

In the next section I highlight another aspect of inhibition: how, over time, 

inhibition can become associatively-mediated rather than relying on top-down 

conscious control.  

 ASSOCIATIVELY-MEDIATED RESPONSE INHIBITION 

As discussed earlier, inhibition is often assumed to be part of a suite of 

executive control processes that are under conscious control, so that behaviour 

in stop-signal and go/no-go tasks results from goal-directed and deliberate 

actions (Diamond, 2013). Indeed, it has been argued that inhibition by its very 

nature requires conscious processing. As Parkinson and Haggard (2014) note, 

to curb a prepotent action one needs to consciously resist it and to know that 

this is the case. Furthermore, throughout history there are accounts of the 

intensity of feelings when trying to overcome prepotent urges (Augustine, trans. 

2006; Dostoevsky, trans. 2018). This can be contrasted with the position taken 

by learning theorists, who argue that with sufficient practice, responses can be 

automated (Dickinson, 1985; McLaren, Green, & Mackintosh, 1994; McLaren et 

al., 2014). Indeed, there is now converging evidence that inhibition is influenced 

by bottom-up processing and that, with appropriate training, inhibition itself can 

become driven by bottom-up rather than top-down processes.  

 Primed inhibition  

Priming effects have a long history in psychology and occur when exposure to 

one stimulus affects the response to another. For example the word ‘Mug’ is 

recognised more quickly if preceded by the word ‘Hot’ than by the word ‘Car’ 

(for review see Neely, 1991). Subliminal priming is when the priming stimuli are 

presented too quickly to be noticed so that they fall below the threshold of 

perception and so are not consciously processed (Elgendi et al., 2018). 

Work conducted by van Gaal et al. (van Gaal, Ridderinkhof, Fahrenfort, Scholte, 

& Lamme, 2008; van Gaal, Ridderinkhof, van den Wildenberg, & Lamme, 2009; 

van Gaal, Ridderinkhof, Scholte, & Lamme, 2010; van Gaal, Lamme, 
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Fahrenfort, & Ridderinkhof, 2011) has been key in showing how inhibition can 

be triggered by subliminal primes. In a series of experiments participants were 

presented with subliminal primes in both go/no-go and stop signal tasks (van 

Gaal et al., 2008; van Gaal et al., 2011). Behavioural results showed that the 

presentation of masked no-go stimulus or stop-signals before a go or no-signal 

trial led to slower reaction times and increased the likelihood of omission errors. 

These findings were supported by functional magnetic resonance imaging 

recordings which showed that the presentation of the primes led to neural 

activity similar to that linked to top-down inhibition, indicating that inhibitory 

control functions in the brain can be triggered subconsciously (van Gaal et al., 

2010). Furthermore, the magnitude of electroencephalographic components N2 

and P3 (typically associated with response inhibition in standard go/no-go 

(Lavric, Pizzagalli, & Forstmeier, 2004) and stop signal task (Ramautar et al., 

2004)) correlated with the slowing of behavioural responses to subliminal no-go 

and stop signals (van Gaal et al., 2008; van Gaal et al., 2011). However, though 

the authors (van Gaal, De Lange, & Cohen, 2012) attribute the pattern of results 

to subconscious activation of the inhibition-related neural networks, this remains 

controversial as one cannot be sure that participants were entirely unaware of 

the subliminal stimuli, with such priming methods being shown to underestimate 

conscious perception (Newell & Shanks, 2014). 

Further evidence for the role of priming, and thus automation, in response 

inhibition comes from Verbruggen and Logan (2009c). In a series of studies, the 

role of irrelevant (but visible) primes upon stopping in a stop-signal task was 

investigated. In the experiments the words GO or STOP were superimposed 

over simple shapes (circles or squares) with participants being told to ignore the 

words and respond to the shapes unless an auditory tone was presented. 

Despite the words being irrelevant to the task they had a clear effect on 

performance, with slower responding for go trials when STOP appeared over 

the shapes compared to GO. The results were replicated in a go/no-go variant 

with the finding that the effect was dependent upon task context. That is, the 

STOP word only impacted performance when stopping was an outcome, having 

no effect when presented in a go-only condition.  

Considering these experiments in combination, it seems that inhibitory control, 

typically considered to be exclusively delivered through top-down processes, 
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can be influenced by stimulus driven processes. Indeed, it seems possible that 

awareness is not required. However, the context effects seen in Verbruggen 

and Logan (2009c) demonstrate that such priming does not necessarily override 

top-down processes and suggests that bottom-up and top-down processes 

interact (an issue I will return to in section 1.4.3). 

 Learnt inhibition: bottom-up inhibition 

In the previous section it was demonstrated how priming effects can increase 

stopping effects in response inhibition tasks. Given the evidence that shows 

how practice at responding to a cue can lead to the learnt response becoming 

automatised over time, through a process of forming stimulus–response 

mappings (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977; Dickinson, 

1985; Logan, 1988), it is natural to ask if the effect works the other way. Does 

repeatedly stopping (via response inhibition) to a cue lead to an associatively-

mediated stop response?  

The first experiment to explore this idea was by Verbruggen and Logan (2008b). 

In one of their experiments, participants were presented with living or non-living 

words where the category determined the required response, e.g., GO for the 

word ‘apple’ (living) but STOP for the word ‘glass’ (non-living). Following 

training, these contingencies were reversed for the test phase. If pairing stimuli 

(in this case category of words) with specific responses leads to associatively-

mediated stopping, then one would expect words that were previously paired 

with stopping to have slower reaction times than novel stimuli. Consistent with 

this hypothesis, it was found that responses were slower in the test phase to 

stimuli previously associated with stopping, compared to stimuli associated with 

going or to novel stimuli. The authors concluded that the slowing witnessed in 

the test phase was caused by the retrieval of stimulus–stop associations that 

automatically inhibited responding. Similar results were found by Noel et al. 

(2016) who paired words with consistently going or consistently stopping, and 

then at test reversed the mappings. At test, in line with Verbruggen and Logan 

(2008b), go performance was impaired for old stop stimuli. Further work by 

Verbruggen, Best, et al. (2014) confirmed the findings were not driven by 

sequential learning after-effects (repetition priming effects).  

Further support for the notion of associatively-mediated stopping comes from 

Best, Lawrence, Logan, McLaren, and Verbruggen (2016). In the experiment 
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participants had to respond to vowels or consonants superimposed on top of 

images (e.g., a bucket) for some blocks and respond to numbers bigger or 

smaller than five superimposed on top of the same images in other blocks. The 

design meant that though the go/stop signals changed over the experiment, 

participants always responded to some images (e.g., a bucket) and always 

stopped to others (e.g., a hat). At test the contingences were reversed. Analysis 

at test showed a significant difference between responding to old-go and old-

stop images such that responding was slower to old-stop compared to old-go. 

These results suggest that participants can acquire direct stimulus-stop 

associations. 

Such work led to the development of the associatively-mediated inhibition 

hypothesis (Verbruggen & Logan, 2008b; Verbruggen, Best, et al., 2014; 

Verbruggen, McLaren, et al., 2014), namely that inhibitory control can be 

triggered automatically via the retrieval of stimulus-stop associations. This 

process relies on the consistent presentation of stimulus-stop trials (Logan, 

1988), or more accurately with practice of these consistent mappings, with A. 

Jones et al. (2016) showing that it is the proportion of successful stimulus-

inhibition responses that is important rather than the total number of stimulus-

stop trials. In a relevant study for the current thesis, Hochman, Henik, and 

Kalanthroff (2018) explored the effect of images of traffic lights upon going and 

stopping. The experiment used a stop-signal task, in which participants had to 

respond to a picture of either a red or a green traffic light and withhold a 

response if they heard an auditory tone. Given the ubiquitous nature of red and 

green traffic lights to mean ‘stop’ and ‘go’ respectively (which extends outside 

traffic management, for example, the use of the traffic light rating system for 

food labels (Department of Health, 2016)), the associatively-mediated inhibition 

hypothesis would predict that reaction times to going at green traffic light 

images would be faster than going to red traffic light pictures. As predicted, 

reaction times in go trials were significantly faster when paired with a green 

traffic light than a red traffic light.  

The work on priming and learnt inhibition shows how inhibition can become 

associatively-mediated through the pairing of a stimulus and a response. Such 

findings can be seen in the wider context of the associative learning literature, 
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which is mentioned in section 1.4, but now the focus of this introduction turns to 

the applications of the associatively-mediated inhibition hypothesis. 

 Applied response inhibition  

The evidence that associatively-mediated response inhibition can result from 

simple computerised tasks offers a tantalising practical application: that tasks 

could be developed to pair images (e.g., red traffic lights) to a certain response 

(e.g., stop) and so result in increased real-world braking to red traffic lights. As 

discussed previously there is some debate in the literature as to whether motor 

inhibition can bring about more general inhibition of thoughts and other mental 

processes (MacLeod et al., 2003; Berkman, Burklund, & Lieberman, 2009). 

However, the promise of the associatively-mediated inhibition hypothesis has 

led to a number of studies demonstrating that pairing images of alcohol 

(Houben et al., 2011; Houben, Havermans, Nederkoorn, & Jansen, 2012; A. 

Jones & Field, 2013) or food (Veling, Aarts, & Papies, 2011; Houben & Jansen, 

2011, 2015; Veling, Aarts, & Stroebe, 2013a, 2013b; Veling et al., 2014; N. S. 

Lawrence, O'Sullivan, et al., 2015; N. S. Lawrence, Verbruggen, Morrison, 

Adams, & Chambers, 2015; Poppelaars et al., 2018; Camp & Lawrence, 2019; 

Forman et al., 2019) with stopping (through go/no-go or stop-signal tasks) can 

lead to a subsequent reduction in consumption. Trials have also investigated 

using such training to reduce cocaine use (Alcorn III, Pike, Stoops, Lile, & Rush, 

2017) and to see if the training can be used in military contexts, such as using 

go/no-go tasks to reduce civilian casualties caused by a failure to inhibit shooter 

performance (Biggs, Cain, & Mitroff, 2015). 

A striking example of the beneficial impact such training could have is provided 

by N. S. Lawrence, O'Sullivan, et al. (2015). The study examined the ability of 

online inhibition training, in this case a go/no-go task, to lead to a reduction in 

food intake. In the study, adult participants were randomly assigned to either a 

control or active condition. The active condition had to inhibit motor responses 

to images of high-calorie food, while the control condition had to withhold 

responses to non-food items (such as socks). After four 10-minute sessions 

over a one-week period, those in the active group showed significant weight 

loss and reduced calorific intake, compared to the control group at a two-week 

follow-up. Furthermore, at the six months follow-up the self-reported weight loss 

was maintained for the active group. This study demonstrates the substantial 
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positive impact such training could have upon lifestyles. Yet, Carbine and 

Larson (2019) performed a p-curve analysis (where the distributions of 

significant p-values are plotted against different expected distributions, see 

Simonsohn, Nelson, and Simmons (2014)) to assess the overall evidential value 

of research using inhibition training to reduce food consumption. The authors 

performed four curve analyses and consistently found a ‘U’-shape distribution, 

arguing that this was evidence for a true underlying effect of the training but 

also evidence of selective reporting in the literature. Analysis also showed that 

the effect of training was not as robust as tests initially revealed and that the 

effect was dependent on a single small p-value. However, since the analysis 

was published, the first pre-registered inhibition training experiment on food 

choice has been published. Z. Chen, Holland, Quandt, Dijksterhuis, and Veling 

(2019) found clear evidence of training leading to increased preference for go 

foods compared to stop foods. An update to the p-curve analysis by Veling, 

Chen, Huaiyu, Quandt, and Holland (2019) showed that, with the addition of the 

experiments in the Z. Chen et al. (2019) paper, the p-curve now suggests that 

response inhibition training is effective in bringing about behaviour change. 

However, in some domains research has been less successful. For example, in 

a randomised controlled trial using online go/no-go training, where images of 

smoking were paired with stopping, Bos et al. (2019) found no evidence of the 

effectiveness of the training. Indeed, smoking cessation rates reduced in line 

with a control group. Additionally, research investigating the use of inhibition 

training to reduce alcohol consumption has met with mixed success, with some 

empirical work not finding any difference in alcohol intake between training and 

control groups (Smith, Dash, Johnstone, Houben, & Field, 2017; A. Jones et al., 

2018). Conversely, one recent trial by Strickland, Hill, Stoops, and Rush (2019) 

did find real-world reductions in drinking following go/no-go inhibition training. 

There is also a variable picture in the use of inhibition training to target problem 

gambling. Initial work showed how a short task that promoted cautious motor 

responses led to a reduction in betting scores in a gambling task conducted at 

least two hours after training compared to controls (Verbruggen, Adams, & 

Chambers, 2012). However, a follow-up study where the delay between training 

task and gambling was 24 hours found strong support for the null hypothesis, 

that is, there was no difference between controls and those who received the 

training (Verbruggen et al., 2013). Subsequent studies again found an effect, 
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with stop-signal training leading to people placing lower monetary bets in a 

subsequent gambling task (Stevens et al., 2015), although the effect was small. 

These mixed effects have been confirmed in several meta-analyses and 

reviews. For example, a meta-analysis by Allom, Mullan, and Hagger (2016) 

found that whilst go/no-go training was effective its effects did not seem to 

persist over time (see also Turton, Bruidegom, Cardi, Hirsch, and Treasure, 

2016). A. Jones et al. (2016) found that inhibition training led to a significant 

decrease in food and alcohol consumption compared to controls, although the 

overall effect size was small. Further analysis showed that the effect size was 

dependent on the training paradigm used, with the effect size being medium if 

only go/no-go training was included. It is worth reflecting on these results 

further. Research has found stop-signal training to be less effective than go/no-

go training (Adams et al., 2017). However, the reasons behind this difference 

are not clear. It could be that due to the inherently lower successful inhibition in 

stop-signal tasks (resulting from failures to stop), such tasks provide a lower 

amount of inhibition training and thus produce lower effects; or perhaps stop-

signal tasks, with less consistent stimulus-signal mappings (due to the delay in 

presentation of the stimuli and stop signal), encourage learning towards the 

stop cue, rather than the stimuli. Thus, without the stop cue being present in 

real-life inhibition is less successful (Veling, Lawrence, Chen, van 

Koningsbruggen, & Holland, 2017). One important factor of the go/no-go 

paradigms used in such work is that they tend to be incidental versions. By this I 

mean, that while participants categorise the images (for example as appearing 

on the left- or right-hand of the screen), stopping is signalled by another cue. 

For example in N. S. Lawrence, O'Sullivan, et al. (2015), participants had to 

stop responding when a rectangle surrounding the image turned bold. This 

differs from traditional go/no-go tasks where the images themselves determine 

the appropriate response (see Figure 1.1).  

One outstanding issue surrounds the mechanisms that enable inhibition training 

to affect behaviour change. Though a full review of this question is outside the 

scope of this thesis, broadly there are two distinct pathways. One pathway 

suggests that training strengthens top-down inhibitory control towards no-go 

foods (Guerrieri, Nederkoorn, & Jansen, 2012), while another argues that the 

training creates associations between stopping and no-go foods (Verbruggen, 
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Best, et al., 2014; Stice, Lawrence, Kemps, & Veling, 2016). In addition, 

research also supports the notion that pairing stimuli with stopping responses 

leads to devaluation of strongly reward-associated cues that drive go responses 

( N. S. Lawrence, O'Sullivan, et al., 2015; Camp & Lawrence, 2019). Indeed, it 

may be that devaluation and bottom-up processes work together at different 

stages of the training to effect behaviour change, e.g., initial training creates 

response conflict (resulting from stopping to go foods) followed by the 

development of associatively-mediated inhibition (for a discussion see Veling et 

al., 2017). As a separate issue, it is important to distinguish between the effects 

of stimulus-specific response inhibition training (i.e. such as is the case in food 

and alcohol studies) and non-cue specific inhibition training effects which are 

more applicable to gambling research. A. Jones, Hardman, Lawrence, and Field 

(2017) in their review clearly distinguish between tasks that train top-down 

general inhibition (where participants must withhold responses to arbitrary cues) 

and tasks that train bottom-up stimulus-response associations (such as the food 

literature reviewed above). Overall, non-cue specific inhibition training has 

shown minimal effects in effecting behaviour change (Verbruggen et al., 2013; 

Bartsch, Kothe, Allom, Mullan, & Houben, 2016; yet see A. Jones et al., 2018).  

To summarise, research supports the idea that pairing a stimulus with a 

stopping response can lead to slower reaction times (Verbruggen & Logan, 

2008b) when these images are subsequently presented. These effects have 

been used to improve inhibition in the real-world and have been shown to be 

effective (though with small effect sizes) in a range of behaviours. The idea of 

applied response inhibition will be explored further in Chapter 5, but I shall now 

set the associatively-mediated inhibition hypothesis into a wider research 

context that can be used to further investigate human learning and which is key 

for the early empirical chapters of this thesis.  

 DUAL PROCESS THEORIES OF HUMAN BEHAVIOUR  

A popular form of theorising about human cognition is the notion of duality, that 

cognition can be divided into two distinct systems (Deutsch, 2016). One system 

is characterised as slow, effortful and deliberate, while the other is fast, 

automatic and effortless (Evans, 2008; Stacy & Wiers, 2010; Kahneman, 2011; 

McLaren et al., 2014; Sherman, Gawronski, & Trope, 2014; Strack & Deutsch, 
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2015). While some suggest that learning arises as result of a single, effortful, 

propositional process (Lovibond & Shanks, 2002; Mitchell, De Houwer, & 

Lovibond, 2009; Shanks, 2009), others (Stanovich & West, 2000; McLaren et 

al., 2014) argue that an additional, associative, system exists. This system is 

mechanical in nature and develops through detecting the frequency of events 

and the contingencies between them (McLaren et al., 2014). The general view 

in the field of learning is that humans (and other animals) are capable of 

learning using rules and reasoning, with the existence of a purely associative 

learning route being more contentious. In this section I review the evidence for 

the role of propositional learning in human behaviour, and then the research 

that demonstrates that associative learning can operate in humans 

independently of propositional knowledge. 

 Propositional learning in humans 

Mitchell et al. (2009; see also De Houwer, 2009) argue that associative learning 

results from the operation of a single controlled reasoning process. This system 

captures the nature of the relationships between events and as such contains 

both ‘truth value’ (Strack & Deutsch, 2004) and causality. Therefore, the 

resulting hypotheses can be proved true or false, and as such this leads to 

further learning. Support for the propositional approach rests on four strands of 

evidence: 1) that verbal instructions should be sufficient to produce learning 

even in the absence of an event (and thus the absence of the formation of 

associative links); 2) awareness is key to learning, and learning should only 

occur with awareness; 3) learning will be impaired with cognitive load; and 4) 

learning should be rational and rule-based. Of course, the point here is that all 

these things can be true at various times. So, simply demonstrating that these 

principles hold, at least some of the time, is not enough to rule out a dual-

process theory.  

In support of the first claim, studies have found that verbal instructions on their 

own have been sufficient to produce learning similar to that gained through 

experience of the actual contingency. For example, in Cook and Harris (1937) 

when participants were informed that a shock would always follow a tone, 

subsequent presentations of a tone lead to increased skin conductance even 

though a shock and tone were never presented together (see Smyth, Barnes-
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Holmes, & Barnes-Holmes, 2008). The effect of verbal instructions holds for 

complex learning such as retrospective revaluation (Lovibond, 2003). 

The second point, on the importance of awareness, finds support in work by 

Lovibond and Shanks (2002) showing that while there are many examples of 

work claiming unaware conditioning, in most cases the measures used to check 

for awareness were much more sensitive tests of learning than those used to 

assay awareness, and as such there is little evidence for learning without 

awareness.  

The third point is that learning is affected by cognitive load. The propositional 

account argues that cognitive resources are required to attend, learn, and 

deploy appropriate rules. Therefore, under conditions where resources are low, 

either through secondary tasks or diverted attention, learning should be 

impaired. For example, the work by Dawson and colleagues (Dawson, 1970; 

Dawson & Biferno, 1973) showed that the presence of a masking task could 

impair conditional learning. In the experiments a classical conditioning design, 

where tones were or were not paired with shocks, was embedded within an 

auditory perception task, whereby participants were asked questions about the 

pitch of preceding tones. As is the case in conditioning designs, one tone 

predicted a shock, and another was never paired with a shock. Awareness was 

manipulated, with one group being told that tones predicted the probability of a 

shock and another receiving no such instructions. Galvanic skin response 

measures were taken as the dependent measure and knowledge of the 

contingencies was assessed by questionnaires and online expectancy ratings. If 

learning of the contingencies arises due to a resource intensive propositional 

system those in the unaware group should have impaired learning, with the 

masking task interfering with their ability to learn the contingencies. Of course, 

those in the aware group should be able to learn the contingencies as they have 

been informed about them. As predicted by the propositional account the 

imposition of the masking tasked impaired learning of the tone-shock 

contingencies. Participants classed as unaware of the conditioning 

contingencies did not to show any difference in galvanic skin response between 

the tone paired with a shock and the tone never paired with a shock. This 

suggests that load is important to learning about contingencies, with the fact 

that an increased cognitive load impaired contingency learning suggesting that 
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learning within this task relied on propositional, rather than associative, 

processes (also see De Houwer & Beckers, 2003).  

Yet, recent work paints a more complex picture. Seabrooke, Wills, Hogarth, and 

Mitchell (2019) found that while cognitive load affected performance in a 

complex outcome-response priming task, performance was unaffected in a 

simple task. This dissociation points to two separate routes. The fact that 

performance in a simple task was unaffected by cognitive load suggests that 

control processes were not key for this task, whilst impairment of performance 

in the complex task under cognitive load indicates that here controlled 

reasoning was required. However, the results from the simple task could occur 

through, as the authors’ note, the deployment of a very simple rule. If the rule 

was very simple then it would be easily deployed and, if requiring only relatively 

little cognitive capacity, would be unaffected by the imposed cognitive load.  

The final strand of support for the propositional account of learning comes from 

evidence that learning is always rational. For example, Shanks and Darby 

(1998) found that participants learnt rules in an allergy prediction paradigm 

rationally and acted in a manner inconsistent with associative learning 

accounts. In the experiment, participants were presented with various cues and 

outcomes. Crucially the design followed a rule whereby a compound cue (e.g., 

AB-) was the reverse of the outcome of its constituent parts (A+ and B+). To 

assay learning, in training, participants were presented with cues I+, J+, M-, and 

N- and at test shown their compounds, IJ and MN, having to predict the 

likelihood of cues leading to an allergic reaction. Crucially, the propositional and 

associative accounts would predict differing learning of these unseen 

compounds. If participants had learnt the rule, then one would predict that 

participants would rate MN over IJ as more likely to induce an allergic reaction 

(as the compounds’ constituent parts did not result in a reaction). However, if 

associative learning was guiding learning, then participants should rate IJ, not 

MN, as more likely to induce a reaction, as the compounds constituent parts 

also led to a reaction. That is, seeing the cue IJ should activate representations 

of I+ and J+ summing to IJ++. Thus, the associative account would predict that 

unseen compounds would lead to the same outcome as the constituent parts, 

while propositional learning would predict the opposite outcome. In support of 

the propositional account, participants judged that the allergic reaction was 
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more likely to occur for cue MN than IJ. Therefore, there is evidence that 

participants had seemingly learnt and deployed the appropriate rule. Yet, Wills, 

Graham, Koh, McLaren, and Rolland (2011) found that learning depended on 

cognitive load; specifically when participants were under heavy cognitive load in 

a set-up similar to  Shanks and Darby (1998), participants displayed learning 

consistent with surface similarity rather than the application of the rule (also see 

continued discussion in section 1.4.2).  

 Associative learning in humans  

The dual-process route as posited by McLaren et al. (2014) does not seek to 

dismiss the existence of a propositional account for human learning. It accepts 

that people can solve problems by rational hypothesis testing and using rules, 

but argues that a simpler, associative based, system can also influence 

behaviour. Furthermore, as McLaren et al. (2014) note, in some circumstances 

one would expect the two systems to operate in parallel and both to contribute 

to behaviour. 

Before discussing examples of human learning that cannot be easily explained 

by propositional knowledge, and thus support a dual-process account, it is 

worth noting the occurrence of associative learning in other animals. For 

example, there is wide ranging evidence that the sea slug Aplysia californica 

learns by the development of increasing or decreasing strength in synaptic 

connections between neurons (Kandel, 1976; Hawkins, Clark, & Kandel, 2006) 

and can produce behaviour predicted by learning theories, such as classical 

conditioning and conditional discrimination (Jami, Wright, & Glanzman, 2007). 

Whilst it is clear that making strong claims about human learning on the 

evidence from work with sea slugs would be dangerous, if we move closer to 

our own genetic heritage there is evidence that the activity of dopamine neurons 

in primates codes for prediction-error (Schultz, 1998), and that this signal is 

similar to a teaching signal as predicted by reinforcement learning theories such 

as the Rescorla–Wagner model (Rescorla & Wagner, 1972). Indeed, it has 

been argued that the development of associative learning marked the beginning 

of a new stage in the development of life on earth approximately 541 million 

years ago, the Cambrian explosion (Ginsburg & Jablonka, 2010). Therefore, to 

argue that human learning is solely propositional is to suggest that, despite 

common evolutionary ancestors, humans developed a separate system of 
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learning – which in evolutionary biology terms is highly improbable. It is more 

parsimonious to assume that both associate and propositional systems could 

have developed in humans.  

As well as theoretical arguments there are also examples of learning in humans 

that cannot be explained by propositional learning accounts. One such example 

is the Perruchet effect (Perruchet, 1985). In the original experiment, participants 

were presented with a partial reinforcement schedule in which a tone (the 

conditioned stimulus, CS) was played on every trial, and on 50% of trials was 

followed by a puff of air (the unconditioned stimulus, US). This schedule 

resulted in a conditioned response (CR) of an eye-blink on presentation of the 

tone. The order of trials was pseudo-randomised which led to the creation of 

varying lengths of runs. These consisted of either CS-US pairings or just CS 

trials. Thus, trials were either followed by the same type of trials (CS-US, CS-

US) or followed by the other trial type (CS-US, CS). After each presentation of 

the trials participants were asked to rate their expectancy of receiving the US 

(the air-puff) in the following trial. Whilst the chance of receiving an air puff was 

constant throughout the experiment at 50%, participants’ prediction of the 

chance of receiving the US decreased as the number of consecutive CS-US 

trials increased. Thus, participants displayed the gamblers fallacy (Burns & 

Corpus, 2004), i.e. the erroneous belief that an outcome is less likely to occur in 

the future if it has already occurred. However, their conditioned responding (in 

effect another measure of learning) displayed the opposite pattern, with more 

consecutive presentations of the CS-US leading to greater predicted probability 

of a CR. That is, participants showed an increase in CR and a decrease in 

reported predictions of the US following a run of CS-US presentations, with the 

opposite pattern being seen on non-reinforced trials, i.e. CR reducing but 

expectancies for the US increasing. Thus, there are two directly opposing 

results; one measure shows a decrease following reinforcement, while another 

shows an increase. The effect has been found using other measures of learning 

such as reaction times (Perruchet, Cleeremans, & Destrebecqz, 2006; yet see 

critique by Mitchell, Wardle, Lovibond, Weidemann, & Chang, 2010; with a 

response by Barrett & Livesey, 2010) and galvanic skin response (McAndrew, 

Jones, McLaren, & McLaren, 2012). As Mitchell et al. (2009) concede this 

double dissociation between awareness and automatic conditioning is hard to 

explain within a single learning system but is exactly the pattern predicted by 
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associative learning theory (McLaren et al., 2014). Such a model would argue 

that autonomic measures (such as the eye-blink) are governed by the strength 

of the associations between the CS and the US, while the expectancy 

predictions are a product of conscious processes falling to the gamblers fallacy 

(see Tversky & Kahneman, 1974). Despite close scrutiny (Weidemann, Tangen, 

Lovibond, & Mitchell, 2009; Weidemann, Broderick, Lovibond, & Mitchell, 2012)  

and greater understanding of the contribution of non-associative processes 

(Livesey & Costa, 2014; Weidemann, McAndrew, Livesey, & McLaren, 2016) 

the effect still provides robust evidence in support of a dual-process account of 

behaviour (Perruchet, 2015), suggesting a separation between awareness and 

conditioning that cannot be easily explained via a single propositional system. 

Research reviewed earlier also provides support for the notion that associative 

learning processes can influence behaviour. Previously I discussed work by  

Shanks and Darby (1998) who found evidence of rule-based learning in humans 

that cannot be readily explained by dual-process accounts. However, this was 

not the whole picture. Within the study there were a subset of participants 

whose performance was comparatively poor suggesting that they had not learnt 

the rule. In fact, the participants in question displayed performance consistent 

with an associative learning account, and at complete odds to behaviour 

predicted if one was using the task rule. Therefore, there seems to be a 

dissociation between participants who use rule-based learning and those whose 

behaviour supports an associative learning account. These results support the 

idea that once they have been learnt, rules are easy to apply to related 

problems (e.g., the novel MN compound seen in the test phase), but that in their 

absence participants fall back on associative learning processes. This is of 

course not to say that all participants would not have learnt the rules with 

enough training, nor does it dismiss rule-based learning. Indeed, the fact that 

most participants (by a 2:1 ratio) were able to learn the rules is a strong 

indication that conscious processes dominate behaviour. I return to this idea of 

a unitary account below but to summarise the current section it is my view that a 

single, propositional model cannot account for all the effects I have described 

so far, particularly the research on response inhibition. Furthermore, a dual-

process framework offers the flexibility to explain not only the research outlined 

but offers a clear theoretical anchor from which to investigate how associative 

learning underpins human learning. 
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 Association and Cognition 

In this section so far, I have presented the evidence for each pathway as if they 

worked independently. However, there is good reason to believe they operate in 

an interrelated fashion, with the associative system providing the basis for 

propositional behaviour (McLaren et al., 2014; Verbruggen, McLaren, et al., 

2014; later developed in McLaren et al., 2019; similarly see Abrahamse, Braem, 

Notebaert, & Verguts, 2016, and Evans & Stanovich, 2013). This view argues 

that rather than there being two separate and competing theories of human 

learning, both processes feed into one system which mostly acts through 

propositional processes but can act via associative processes. To put this 

theory into context, as McLaren et al. (2019) p.16 state: 

“We are convinced that cognitive processes can prevent the expression of any 

associative learning. They don’t have to, but they can do so, and this is the 

default. Otherwise, we would be at the mercy of events and our environment. 

As an example of what might happen if this were not the case, if you saw a 

chair, you would inevitably sit in it because of the long-standing association 

between stimulus and response. If this is not to be the outcome, then the 

expression of associative learning has to be inhibited by cognitive control in 

most circumstances. However, associative processes do support learning in the 

background. This learning might not inevitably be expressed, but it does 

automatically take place.” 

Therefore, this account argues that behaviour is mostly consciously driven, but 

that this cognition is built on top of associative learning, which provides the 

basic building blocks for propositional learning to occur. Importantly, the 

associative learning takes place automatically in the background and can 

influence behaviour when explicit processes are weak (McLaren et al., 2019), a 

point I will return to later with regards to driving.   

A piece of evidence in support of this theory comes from a task switching 

experiment in McLaren et al. (2019). The authors wished to investigate if 

participants could change from one mode of learning to another and what 

learning would transfer. The experiment was a typical bi-conditioning design in 

which two tasks were cued by certain shapes: either categorising digits as odd 

or even, or categorising digits as higher or lower than five. Typical with these 

experiments’ participants were informed about the rules of the task. However, 
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without the rules, the design becomes more akin to associative learning 

experiments where participants must learn the cue+stimuli – response (CSR) 

mappings by trial and error. Thus, in the experiment, participants either started 

with rule based (TASK group) or associative learning (CSR group) instructions 

and then, half-way though, switched to the other type of instructions. Results 

showed that for participants in the CSR-TASK group, performance after switch 

worsened and was similar to performance in the first block for a control TASK-

TASK group. However, for those in the TASK-CSR group, performance was 

somewhat protected, and at switch their learning matched that of the second 

block of a CSR-CSR control group. Thus, those in the CSR-TASK had to ‘start 

again’ in terms of performance, while those in the TASK-CSR group did not. 

The fact that performance in the TASK-CSR group did not collapse suggests 

that whilst under task instructions participants were able to learn about the CSR 

mappings, with such learning taking place ‘in the background’, and that once 

cognition had been surrendered by the switch of instructions, such learning 

came to the fore. The results of the CSR-TASK group suggest that once 

propositional learning is engaged then the behaviour arising from associative 

learning is suppressed. It should be noted that for this group the results are 

unexpected in traditional dual-processing accounts as one would predict to see 

some effect of the learning of the CSR mappings in the CSR-TASK manifest 

itself in performance in the second block. Overall, these results support the 

notion of a ‘two processes, one system’ model.  

One consequence of the argument that associative learning is at least partly the 

basis of all behaviour is that it would be expected that the basic ability to inhibit 

a response could be associatively driven. Evidence in support of this notion 

comes from task-switching experiments. Here, participants are exposed to 

stimuli and required to categorise them based on some feature of the stimulus. 

Humans often show switch costs, longer reaction times to a stimulus when the 

feature or dimension they are asked to use is switched rather than repeated 

across trials (Vandierendonck, Liefooghe, & Verbruggen, 2010). This is often 

ascribed to the use of rules to complete the task, with the switch costs 

representing the time required to recall a new set of rules (task set) into working 

memory (Monsell, 2003). However, there is evidence that humans can solve 

these tasks without the use of rules (Dreisbach, Goschke, & Haider, 2007; 

Dreisbach, 2012), particularly with relatively small stimulus sets (Forrest, 
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Monsell, & McLaren, 2014), with participants who complete the tasks without 

rules showing no, or relatively little, switch costs. Furthermore, even pigeons, 

who have generally been found to lack executive control functions (Lea & Wills, 

2008, but see Rose & Colombo, 2005 and Castro & Wasserman, 2016), have 

been found to complete task-switching paradigms (Meier, Lea, & McLaren, 

2016). Though, like the human participants, they show no switch costs. Similar 

findings have been found in monkeys (Smith & Beran, 2018). Thus, 

performance for pigeons, monkeys, and humans on these tasks indicate that 

response inhibition could be to be, in part, a product of associative learning. 

 BEHAVIOUR CHANGE IN DRIVING  

Having reviewed the wider literature relating to executive control, inhibition, and 

the idea of dual-processes in learning, I now turn to the applied aspect of this 

thesis, driving behaviour. Here the state of behaviour change is reviewed with a 

focus on the role that associatively-mediated processes play in driving 

behaviour. 

One of the most well-known models in road safety is Ajzen’s (1991) Theory of 

Planned Behaviour (itself an extension of the Theory of Reasoned Action; Ajzen 

& Fishbein, 1980). A core component of the theory is intention; the more intent 

an individual has to commit an action, the more likely it is that an individual will 

engage in that behaviour. The theory argues that three factors determine the 

strength of an intention (see Figure 1.4); belief about the likely consequences of 

the behaviour (attitude), perceived expectation of others (subjective norms), and 

perceived ability to perform the behaviour (perceived behaviour control). These 

three factors form an overall behavioural intention which is the immediate 

antecedent to behaviour. Taking them in reverse order, perceived behaviour 

control refers to an individual’s perception of their ability to undertake a 

behaviour. It can be seen as a superordinate construct (Ajzen, 2002a) that 

contains two separate and individual components which both impact the 

strength of the overall construct: self-efficacy (an individual’s view of the 

difficulty or not of a behaviour) and controllability (the extent to which the 

behaviour is up to an individual). However, this construct is not universally 

accepted (Kiriakidis, 2017), with some researchers adding self-efficacy as a 

separate construct to the Theory of Planned Behaviour model (Terry & O'Leary, 
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1995; Tolma, Reininger, Evans, & Ureda, 2006). The next element of the model 

is subjective norms, which refers to the societal norms around an action; the 

pressure to conform, or not, to a behaviour. The more favourable the norms to 

completing an action, the stronger the intention to carry it out will be. The final 

factor in the model is attitude toward the behaviour. This refers to a person’s 

appraisal of a behaviour. This is driven by the consequences of an action, with 

positive consequences leading to more positive appraisals, and thus a higher 

chance that the behaviour will be performed. The model also suggests that 

perceived behaviour control can be used to directly predict real behaviour.  

 

 

 

 

 

 

 

 

 

 

 

 

The model has been found to successfully predict a range of real-world driving 

violations. For example, Nemme and White (2010) found that the model 

predicted 35% of the total variance in sending texts while driving, and Elliott et 

al (Elliott, Armitage, & Baughan, 2003; Elliott, Armitage, & Baughan, 2007) 

reported that the model explained 31-39% of the variance in observed speeding 

in a driving simulator. The model has also been used to account for 33% of the 

variance in driving over the alcohol limit (Castanier, Deroche, & Woodman, 

2013) and can predict red light jumping in motorcyclists (Satiennam, Satiennam, 

Triyabutra, & Rujopakarn, 2018).  

Figure 1.4. Schematic of the Theory of Planned Behaviour. Original drawing. 
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However, despite the success of the Theory of Planned Behaviour in predicting 

behavioural outcomes, there has been less success in using the theory to 

change behaviour. Poulter and McKenna (2010) evaluated a road safety course 

used in UK schools aimed at pre-drivers based on the Theory of Planned 

Behaviour. They found that the course only produced a short-term increase in 

safer driving attitudes. Glendon, McNally, Jarvis, Chalmers, and Salisbury 

(2014) found that compared to a matched control group, novice drivers reported 

riskier driving attitudes over the course of a driver education course and at a 

six-week follow-up. The authors argued that such unexpected results might be a 

result of participants using defence mechanisms (e.g., optimism bias, Weinstein 

& Klein, 1996) to help allay fears of mortality caused by the use of crash 

statistics in the driving course. Furthermore, many reviews and meta-analyses 

have found limited evidence that driver improvement courses benefit road 

safety. For example a recent meta-analysis by Steinmetz, Knappstein, Ajzen, 

Schmidt, and Kabst (2016) found an effect size of 0.26 for interventions using 

the Theory of Planned Behaviour to change traffic behaviour. For contrast, the 

effect size for interventions aimed at physical activity was 0.54 (also see 

Roberts & Kwan, 2001; Ker et al., 2005; Peck, 2011). However, some research 

has found benefits of using Theory of Planned Behaviour-based interventions, 

with Quine, Rutter, and Arnold (2001) finding that such an intervention 

increased wearing of cycle helmets and Stead, Tagg, MacKintosh, and Eadie 

(2004) finding sizeable effects resulting from an intervention aimed at reducing 

speeding. Others have argued that the effects of such education programmes 

have been underestimated in meta-analyses (af Wåhlberg, 2018). There is 

general agreement that more well-controlled studies are required to fully 

understand the benefits of such educational interventions (Beanland, Goode, 

Salmon, & Lenné, 2013). 

 Associatively-mediated behaviour in driving  

It seems that focusing on the constructs in the Theory of Planned Behaviour to 

effect behaviour change does not capture all aspects of human cognition that 

influence risky driving behaviour (Conner & Sparks, 2005). It is worth 

highlighting that the Theory of Planned Behaviour relies on an actor’s behaviour 

arising from conscious, rational decisions (the ‘economist’s perspective’ on 

decision-making) rather than behaviour that stems from automatic or routinised 
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processes (for further see Kahneman, 2011). As reviewed earlier there is 

evidence that human behaviour can be associatively-mediated, and, in part, 

cued by environmental stimuli. This next section reviews the evidence for such 

learning in a driving context.  

Before proceeding further, it should be noted that the research communities of 

road safety and associative learning are distinct from one another with relatively 

little theoretical overlap. This has led to differing language to describe similar 

constructs. In the road safety literature, behaviour which the associative 

learning literature might describe as associatively-mediated is termed habitual. 

Habits are argued to be formed through associative learning resulting from the 

regular pairing of actions and events (Wood, Quinn, & Kashy, 2002), and thus 

the activation of a habit leads to the enactment of a specific, well-defined, 

response (Wood & Rünger, 2016). However, of course, not all frequently 

enacted behaviour is habitual (Verplanken & Wood, 2006). Additionally, once 

developed, habits are held to be activated in response to an environmental 

stimuli without mediation by conscious goals (Wood & Neal, 2007; Gardner, 

2012) and are in some sense the ‘default’ setting for behaviour (Evans & 

Stanovich, 2013), though this viewpoint is not without critique (De Houwer, 

Tanaka, Moors, & Tibboel, 2018). Akin to the associative learning literature, the 

prevention of habitual behaviour is dependent on cognition control (Wood & 

Rünger, 2016). A wider review of habits is outside the scope of this review, and 

rather the focus here is to highlight the conceptual overlaps between the two 

research fields relevant for this thesis.  

In support of the role of automatic behaviours in driving, Verplanken, Aarts, 

Knippenberg, and Moonen (1998) found that car use was predicted by both 

habits and the Theory of Planned Behaviour. However, the relationship between 

the Theory of Planned Behaviour and actual behaviour was moderated by habit; 

intention only significantly predicted behaviour when habit was weak. Other 

research by Lheureux, Auzoult, Charlois, Hardy‐Massard, and Minary (2016) 

explored the separate influences of habits and planned behaviour on drink 

driving. Controlling for the constructs in the Theory of Planned Behaviour, habit 

was still found to significantly predict behaviour. However, in all model’s 

intention was found to be the greatest predictor of behaviour. This led the 

authors to conclude that behaviour is a result of both intentional and habitual 
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processes. A similar conclusion was reached by Elliott and Thomson (2010) 

who found that though intent was the largest predictor of speeding behaviour 

(explaining 47% of the behaviour), habit was a significant predictor, explaining 

an additional 4% of the variance. One issue regarding the above three studies 

is that they measure real-world behaviour via self‐report measures; these have 

been found to overestimate the variance explained by the Theory of Planned 

Behaviour (McEachan, Conner, Taylor, & Lawton, 2011). This is likely to explain 

the differing conclusions, as issues around social desirability are more likely to 

affect sensitive topics such as drink driving and speeding than car use. Overall, 

the research demonstrates the importance of both rational decision making and 

automatic processes in governing behaviour related to driving (see reviews by 

Ouellette & Wood, 1998 and Wood & Rünger, 2016). 

 Measuring automaticity in driving  

Characterising habitual behaviours as a distinct construct from planned 

behaviours has not been without its critics (Ajzen, 2002b; de Wit et al., 2018). 

One of the main measures of habit is the Self‐Report Habit Index, a 12-item 

index developed by Verplanken and Orbell (2003). Though popular, various 

methodological concerns have been raised. For instance, there have been 

questions surrounding the operationalisation of habit in the scale (Sniehotta & 

Presseau, 2011; Gardner & Tang, 2014) and the difficulty in asking individuals 

to assess awareness of supposedly automatic processes (Hagger, Rebar, 

Mullan, Lipp, & Chatzisarantis, 2015). Labrecque and Wood (2015) suggest 

future research should use cue–response association tests (that address the 

relationship between a context, goals, and a behaviour) rather than self-report 

measures to provide more valid measures of automaticity. As Gardner (2015a) 

notes, more work is required to develop reliable measures of automatic 

behaviours.  

 Controlling associatively-mediated behaviours 

The research reviewed thus far supports the argument that ‘habits’ are a key 

predictor in driving behaviour, and that they can promote unsafe practices. 

Given the notion that habits are the default behaviour option it is likely that the 

behaviours primed by driving habits will dominate driving, unless cognitive 

control can be brought to bear. Unfortunately, research has shown that driving 

is a cognitively demanding activity. For example, Wadley et al. (2009) found that 



51 
 

those with cognitive impairments, that effected executive control, showed lower 

driving performance, such as poor lane control, compared to healthy controls. 

Briggs, Hole, and Turner (2017) compared behaviour on a hazard perception 

test between one group who had to complete the task (low load condition) and 

another who simultaneously had a conversation with the experimenter on a 

hands-free mobile phone (high load condition). Findings showed those in the 

high load condition detected fewer unexpected events and took longer to react 

to events than those in the low load condition. 

Given the nature of driving interventions that rely on cognition control are 

unlikely to be successful. For example, Elliott and Armitage (2006) explored the 

use of implementation intentions (an if-then plan, Gollwitzer, Sheeran, 

Trotschel, & Webb, 2011), to increase compliance with speed limits. Comparing 

self-reported compliance at a one-month follow-up, participants in the 

experimental condition, who had formed implementation intentions, showed 

significantly increased compliance with speed limits compared to a control 

condition who did not form implementation intentions. However, further analysis 

found that the intervention was only effective for participants who had a goal not 

to speed. Additionally, there is evidence that these implementation intentions 

are not completely automatised and that the deployment of such intentions is 

impaired under heavy cognitive load (McDaniel & Scullin, 2010). 

There have been growing calls for a greater focus on ‘habits’ when designing 

health interventions (Marteau, Hollands, & Fletcher, 2012; Sheeran, Gollwitzer, 

& Bargh, 2013). In his review Gardner (2015b) found only 38% of interventions 

directly addressed habitual behaviour, and in a recent review of behaviour 

change techniques in road safety and Fylan (2017) emphasised the need to 

establish ‘good’ habits. Changing associatively-mediated processes is arguably 

the Holy Grail in designing an intervention that will deliver a new behavioural 

‘default’. Earlier evidence highlighted the fact that there had been some success 

in using associatively-mediated inhibition training with regards to food and 

drinking consumption – could such approaches benefit driving behaviours? 

 Inhibition in driving  

Given that driving frequently involves cancelling an already actioned motor 

response, e.g., the traffic light suddenly turns red, this suggests that inhibition 

training that targets the prepotent response to a cue could lead to safer driving. 



52 
 

Supporting the importance of inhibition in driving, studies have found that poor 

impulse control leads to more risky driving (Jongen, Brijs, Komlos, Brijs, & 

Wets, 2011; Bachoo et al., 2013; O’Brien & Gormley, 2013; Bıçaksız & Özkan, 

2016; Sani et al., 2017), and that those with attention deficit/hyperactivity 

disorder (Barkley & Cox, 2007; Groom et al., 2015) are more likely to commit 

traffic violations. Results inconsistent with these findings have also been found. 

For example, Mäntylä, Karlsson, and Marklund (2009) explored the role of 

cognitive control in driving behaviour (also see Renner & Anderle, 2000). They 

measured participant’s performance on tasks requiring mental shifting, working 

memory updating, and response inhibition, as well as behaviour in a simulated 

driving scenario. Only the correlation between driving performance and working 

memory updating was found to be significant. However, compared to other 

studies, the participants in Mäntylä et al. (2009) had minimal driving experience, 

with only 4% of the sample holding a driving licence compared to 100% in Sani 

et al. (2017). 

To date there has only been one experiment investigating whether inhibition 

training could improve risky driving. Hatfield et al. (2018) compared 

performance (e.g., average speed) in a driving simulator scenario pre- and post-

training between a control group and a group that received inhibition training. 

The experimental group received five consecutive days of go/no-go training 

against a control group who received a filler task for the same amount of time.  

The inhibition task required participants to respond to images of computer-

generated junctions. In the experimental group, participants had to respond if it 

would be safe to turn right, and withhold a response if not safe to do so, while 

those in the control group had to press SAFE if they felt it would be safe to turn 

right, and to press ‘UNSAFE’ if they did not. Compared to the pre-training 

driving, the results showed there was little evidence of transfer, with no 

significant difference in driving behaviour between groups. However, there was 

a tendency for increase stopping at red traffic lights in the experimental group 

following training, relative to a control group. I shall return to this research in 

Chapter 5. 
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 CONCLUSIONS AND NEXT STEPS 

This introduction began by highlighting the dangers inherent in driving, 

specifically behaviour at traffic lights. We have seen how associatively-mediated 

behaviours play an important part in driving, and how traditional education-

based interventions have not addressed such associative processes. In terms 

of developing road safety-related interventions it is essential to explore the role 

of associative processes in the target behaviour. If associative learning supports 

the development of safe driving, then efforts should be made to enhance 

existing interventions. If, on the other hand, associative processes promote 

risky driving then a new type of intervention will be needed. Therefore, the initial 

focus of this thesis will be to develop a laboratory paradigm that allows for the 

exploration of associative learning based on the contingencies at UK traffic 

lights. Chapter 2 will build on the work of Bowditch et al. (2016) in doing this, 

with Chapters 3 and 4 developing the paradigm further to take into account the 

role of sequences and task sets experienced at traffic lights.  

The last empirical chapter of this thesis will consider the application of inhibition 

training to driving. The evidence presented here suggests that by changing the 

response associated with a cue (e.g., from go to stop) one can change 

behaviour (e.g., a reduction in eating of chocolate). In a similar vein as Hatfield 

et al. (2018), I wish to test if the associatively-mediated inhibition hypothesis 

can be applied to traffic lights: could response inhibition training reduce crossing 

of amber traffic lights? The development of this training will be informed by the 

results from the early chapters. Thus Chapter 5 will apply the associatively-

mediated inhibition hypothesis to a novel domain of human behaviour (driving) 

and so help establish further evidence of the effectiveness of such training.  
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2 CHAPTER 2 

ASSOCIATIVE PROCESSES I: BASIC CONTINGENCIES 

EXPERIENCED AT TRAFFIC LIGHTS 

s outlined in Chapter 1 there is a need to develop interventions that  

address what might be termed associatively learnt behaviours at traffic 

lights. However, exactly what is learnt at an associative level is yet to be 

established. This chapter explores the learning of contingencies experienced at 

traffic lights and what effect they might have on behaviour. Additionally, the final 

two experiments in the chapter investigate the influence of the effective 

outcome on the learning, both as an issue in its' own right, and as evidence that 

associative processes are producing the effects. 

 CONTINGENCIES AT TRAFFIC LIGHTS  

The UK traffic light signal changes from green to amber to indicate drivers 

should prepare to stop; then to red meaning stop; then to a conjunction of red 

and amber to tell drivers to get ready to start, and finally back to green (which, 

of course, means go). The rules governing the responses that should follow at 

each stage of this sequence are clearly laid out in the Highway Code, yet they 

are not always observed in practice. One possible reason for this not a 

deliberate lack of compliance on the part of the driver, but rather the effect that 

the experience of the contingencies which occur at traffic lights whilst driving 

will, in time, have on the individual. Could it be that the experience leads to 

learning that captures these contingencies via association, and this then leads 

to behaviour that does not respect the explicit rules that apply to these 

situations? In other words, does the combination of rules, signals and typical 

driving behaviour lead people to learn stimulus-response reactions that then 

quite naturally predispose them to break those same rules? Previous research 

exploring the contingencies between traffic lights and behaviour has focused on 

engineering solutions to bring about safer driving, from altering the timings of 

the light pattern (Jason, Neal, & Marinakis, 1985) to adding countdown timers to 

the traffic light sequence (Felicio, Grepo, Reyes, & Yupingkun, 2015). Other 

research has looked from the perspective of understanding how personal 

factors (e.g., time and social context) are predictive of behaviour around traffic 

A 
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lights (Palat & Delhomme, 2016), rather than how experience of the 

contingencies between lights and responses may come to cue a certain 

behaviour. 

 LEARNING ABOUT AN OUTCOME 

Bowditch et al. (2016) provides a framework to explore the learning of 

contingencies. They developed an incidental go/no-go task, whereby shapes 

appeared in the middle of the screen followed by a circle on the left or right. If 

this circle was white participants had to respond, and if it was coloured 

participants had to withhold a response. While the shapes in the middle were 

predictive of the response required this was not revealed to participants, and as 

such, any learning about the shapes was hypothesised to be associatively 

driven (see Yeates, Jones, Wills, Aitken, & McLaren, 2013). In the training 

phase one shape was paired with stopping (75% stop) and another with going 

(25% stop), while at test all shapes were 50% stop. If participants were 

developing stimulus–response associations during training it would be expected 

that performance at test would differ for the two shapes, with the 75% stop 

shape having longer reaction times and less commission errors compared to 

the 25% go shape. Results supported this hypothesis, with significantly longer 

reaction times and marginally significantly less commission errors for the 75% 

stop shape than the 25% go shape. Thus, the study demonstrates how 

participants can learn the contingencies between shapes and stopping in a 

relatively quick and practicable experiment.  

Another feature of the experiment was the use of multiple stop signals. 

Analyses comparing performance with shapes paired with just one stop signal 

(that is one colour) against shapes paired with more than one coloured stop 

signal found enhanced learning in the multiple-signal group. That is, reducing 

the contingences between cues and specific signals resulted in more robust 

slowing of reaction times between stop and go cues. The authors argue that this 

enhancement was due to the development of cue–stop associations, rather 

than cue–signal associations, with the use of multiple-signals causing learning 

to shift to the consistent cue, rather than the inconsistent stop signal. The exact 

nature of the learning and the balance between a direct cue–stop association or 

an indirect cue-signal pathway is not the focus of this thesis (see Verbruggen, 
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McLaren, et al., 2014; Best et al., 2016). It is sufficient to note that the 

experiments in this, and subsequent, chapters will use multiple stop signals 

simply as a way of creating more effective learning, and thus clearer results (in 

terms of reaction times) between shapes with different contingencies.  

 PRESENT EXPERIMENTS 

The work by Bowditch et al. (2016) provides the departure point for this chapter. 

Their results showed that the incidental go/no-go task enabled the development 

of associative learning of the contingencies between cues and responses and, 

as such, is ideal for the exploration of contingency learning at traffic lights. As 

seen in Chapter 1, the framework by McLaren et al. (2019) hypothesises that 

when control is weak, underlying associative processes come to affect 

behaviour. Whilst, other work has shown that driving is cognitively demanding 

(Wadley et al., 2009). Therefore, it seems sensible to begin to understand the 

nature of associative learning at traffic lights. In the three experiments in this 

chapter I present an adapted version of the incidental go/no-go task, where 

arbitrary shapes are paired with various degrees of stopping to reflect the 

contingencies experienced at traffic lights. The experiments aimed to capture 

the contingencies between traffic light signals and the typical responses made 

to them in a task that superficially was quite unlike driving so as to be able to 

study them in a pure form, without the deployment of the rules used in driving. 

In summary, in this chapter I will investigate the effect that the contingencies 

experienced between traffic lights and permitted responses (stopping/starting) 

have upon driving behaviour.  

 EXPERIMENT 1 

To begin, it is necessary to decide what the contingencies experienced at UK 

traffic lights are. While a singleton green light (G) always means go and red (R) 

always means stop, the contingencies around red and amber (RA) and amber 

(A) are less clear. Taking amber first, while the Highway Code specifies that 

drivers should stop when they see this light, it is not always the case that a stop 

is required 100% of the time. The Highway Code allows drivers to go at amber 

lights if the stop line has already been crossed or if the driver is too near the 

stop line to stop safely. In practice, these provisions have afforded drivers some 

leeway and a solo amber light is not seen as a strong stop cue, with eight out of 
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ten drivers admitting to crossing amber lights, and nearly four out of ten drivers 

saying they rarely stop at amber lights (Thrifty, 2011). Accordingly, it could be 

argued that the Highway Code affords amber a fairly neutral contingency (and it 

is certainly experienced as such on the road), thus A will be treated as a 50% 

stop cue. In terms of red and amber lights in combination, while the Highway 

Code states that drivers should not cross the stop line while this light is 

showing, it is acceptable to get ready to move away, e.g., drivers might release 

their handbrake in order to move away when the green light shows. Therefore, 

to encompass this, RA will be a go cue rather than a stop cue. These 

contingencies mean that whilst red on its own signals stop, in conjunction with 

amber it cues readiness to start, while amber on its own is a neutral cue. 

Overall, ignoring the sequence information inherent in the typical experience of 

UK traffic lights, this leads to the following set of contingencies, where ‘+’ 

denotes ‘stop’, ‘±’ indicates ‘50/50 stop’, and ‘-’ denotes ‘go’, and R, A, and G 

stand for red, amber and green respectively: R+, G-, A±, RA-. 

As well as deciding the appropriate responses to each of the cues, the 

experiment needs to capture the task set drivers are experiencing at traffic 

lights. When approaching lights, drivers could be in either a ‘go’ task set - that 

is, looking for signals that indicate permission to continue - or in a ‘stop’ task 

set, looking for signals to stop. In line with the work by Bowditch (2016), 

Experiment 1 used a procedure that should cause stopping to be the effective 

outcome from what is learnt. It was felt that making the outcome stop rather 

than go better reflected drivers’ decision-making when approaching traffic lights, 

where one is looking for a stop signal in case the brake needs to be applied. 

Therefore, given that stop is the outcome and ‘+’ is typically used to denote the 

outcome of a task this means that ‘+’ will indicate a stop response and ‘-’ a go 

response. 

What would one expect to be learnt? Based on standard associative theories 

(for review see Pearce & Bouton, 2001) clearly cue R will become associated 

with stopping to some extent, and cue G with not stopping. The RA- 

contingency may tend to cause A± to become a go cue, while the A± 

contingency itself might promote a weak stop or go association to amber. 

Therefore, one question for Experiment 1 is: does experience of the 
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contingencies experienced at traffic lights while under a stop task set lead to 

amber becoming a stop or a go cue? 

 Method 

 Participants 

Fifty participants participated in exchange for payment of £5 or one course 

credit (see Results section for details on the outlier removal process). Of these 

50 participants, 41 were female with an overall mean age (with one missing 

data point) of 21.02 (SD = 5.43). The inclusion criteria were that participants 

had to be 18-65 years old, have normal or corrected vision, and not be colour 

blind. Given the use of mixed-effects models analysis, traditional power 

techniques were inappropriate (Johnson, Barry, Ferguson, & Müller, 2015). 

Therefore, the decision was made to use a sample size of 50 in line with similar 

past research (Bowditch et al., 2016). A post hoc power analysis using the R 

package SIMR (Green & MacLeod, 2016) found the study had a power of 

91.40% to detect a difference of 18ms between a go vs. stop cue, where a priori 

one would expect to find an effect. Specifically, this test was run on G vs. B, see 

section 2.4.1.2 for details.  

 Design 

The experiment used a within-participants design to compare performance to 

cues over time (see Table 2.1 for design1). Overall, there was 1 calibration 

block, 8 training blocks, and 2 test blocks with a 10 second break between each 

block.  

 

1 A comment on the notation used in Table 2.1 and throughout. The tables use 
+ and - to denote what type of response (go or stop) participants are most likely 
to make to a cue. Other notations were considered, such as subscript ‘g’ and ‘s’ 
or ‘go’ and 'stop’. However it was decided that using + and - to denote the 
required response best suited this work, given that + and - not only help to 
convey the appropriate response but also the task set of the experiment (as + is 
used to denote that the response to the cue is the desired outcome). As will be 
clear later, the task set and changes to it form a key part of the experimental 
design. Whilst the use of + and - means that in some experiments - represents 
going counter to normal expectations, this usefully serves to highlight the 
change in task set between experiments. 
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The task was designed to mimic the contingencies around traffic lights with cue 

G being a go cue (analogous to a green traffic light) and cue R being a stop cue 

(corresponding to a red traffic light). However, to reduce the likelihood of 

participants explicitly realising the relationship between cues and required 

responses (as I was interested in the associative learning arising from  

experience rather than rule-based performance), and to obtain commission 

data, cues G and R were not 100% go and stop respectively but rather set at 

75%. Cue A was designed to have contingencies equivalent to an amber traffic 

light and cue RA equalled a red/amber traffic light (i.e. a 75% go cue). Of 

course, this partial reinforcement, while helping to keep learning incidental, 

does affect the mapping of the task onto traffic lights as there are no instances 

where green traffic lights signal stop or red signals go (this issue is addressed in 

later chapters). Cues B, I, P, IP were control cues for G, R, A, RA respectively 

and were set at 50% stop. These cues were designed to provide a baseline to 

compare learning to the traffic light cues against. It is important to note that 

while the cue G was capturing the contingences experienced at a green traffic 

light, it did not in not in any way physically resemble a green traffic light (see 

Figure 2.1 for examples of this).   

Table 2.1. Summary of Experiment 1 design. Letters represent coloured cues. 

Trials were go 75% of the time (-), stop 75% of the time (+), or stop 50% of the 

time (±). At test all trials were 50% stop and so the cues were now non-

predictive. 

 

Phase Blocks 

Trials 

per 

block 

N per 

type 
Design   

Calibration 1 48 48 
 

 
J±  

Training 8 144 16 

 

G-, R+, A±, RA-, B±, I±, P±, 

IP± 

 

J± 
 

Test 2 144 16 G, R, A, RA, B, I, P, IP J±  
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Figure 2.1. Traffic lights to cues in Experiment 1. This figure illustrates how 

each cue (and thus shape) represented a different traffic light but were not 

related visually to the traffic light in question. It also shows how RA combined 

both the cues R and A to form a compound cue. Traffic light images taken from 

The Highway Code. Contains public sector information licensed under the Open 

Government Licence v3.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Procedure  

The task required participants to press a key or to withhold a response 

depending on the colour of a presented circle stimulus (see Figure 2.2 for a trial 

schematic). Each trial started with two coloured shape cues being presented, 

one above the other, for 250ms, on a 50% grey background. Participants were 

informed that these cues indicated that the trial was beginning but, in fact, some 

of them were stochastically predictive of whether or not a response was 

required. Throughout the task a white horizontal bar measuring 19mm by 4mm 

was displayed in the centre of the screen. Coloured shape cues measuring 

19mm were presented in vertical alignment above and below and equidistant 

from this horizontal bar. The same seven coloured shape cues were used 

throughout the experiment and were randomly assigned to a cue for each 

participant. On single cue trials (e.g., G-) the cue appeared in both the top and 

bottom positions, while on compound trials (e.g., RA-) each cue was 

randomised to appear in either the top or bottom position. Following 

presentation of the cues on go trials, a 19mm diameter white circle appeared to 

the left or right of the central bar (separated by 22m edge-to-edge). This 
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indicated to participants that they needed to make a spatially congruent 

response, e.g., a left side response (‘x’ on a standard QWERTY keyboard) if a 

left-side circle was displayed (right-hand circles will require a ‘.>’ key press). On 

no-go trials the circle displayed was coloured, informing participants that they 

needed to withhold their response. For both singleton and compound cues the 

white circle appeared equally often on either side of the screen as did the four 

coloured circles used as stop signals. The colour of each cue and stop signal 

was randomised for each participant and sampled from the HSB colour-space 

(Joblove & Greenberg, 1978) by selecting equally spaced hues whilst 

constraining saturation (75-100%) and brightness (50-100%). The colour of the 

stop signals differed from those used in the cues.  

 

Figure 2.2. Schematic of a single cue stop trial for Experiment 1.  

Cue J was used for tracking purposes only, i.e. performance to this cue was 

used to set the response window duration. This tracking procedure for the task 

applied to both go and no-go trials involving the cue J and was a 3-down/1-up 

procedure (for similar procedures see Leiva et al., 2015; Elchlepp & 

Verbruggen, 2017), so that for every three correct trials the maximum response 

window (from signal onset, i.e. when a circle appeared) shortened by 50ms, 

whilst an error resulted in the window being increased by 50ms. The window 

started at 750ms and the calibration phase helped determine a reasonable 

starting window for each participant, with the maximum response window 
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capped at 2000ms, and the minimum 100ms. The tracking was applied to all 

blocks of the experiment. The idea was to ensure speeded responses 

throughout the experiment, and prevent people being too cautious because of 

the possibility of a no-go signal appearing. 

Participants received on-screen feedback to errors. For commission errors, 

regardless of congruency of response or incorrect keypress, the feedback was 

‘No response required!’. For omission errors participants received feedback of 

‘You should have responded’. On go trials participants received feedback on 

incorrect key presses (‘'Incorrect key pressed, use X or .>’) and wrong direction 

key presses (‘'Press the key that matches the side the white circle appears on'). 

All feedback was displayed for 500ms and accompanied with a 400Hz tone for 

150ms delivered through closed headphones. Participants received no 

feedback at the end of each block. There was a variable inter-trial interval of 

250ms to 500ms, throughout which the white bar remained on screen. As in 

Bowditch (2016) the experiment was designed so that participants’ focus was 

on stopping. This was achieved in two ways. Firstly, coloured circles were stop 

trials, with white (in some way the default colour) being go. Secondly, the 

instructions promoted going as the default by mentioning it first. These 

manipulations were designed to encourage people to be looking for coloured 

circles as a signal to stop, that is, to employ a stop task set (this is further 

discussed in Chapter 4). 

 Analysis 

Data was processed and analysed using R v.3.5.1 (R Core Team, 2018). Due 

to the need for participants to respond at least once per cue to obtain reaction 

time measurements, data was averaged for each cue by each block (data from 

the calibration block was not analysed) with reaction times on error trials being 

excluded. To prevent excessive data loss, trials immediately following an error 

trial were retained. As the focus of the experiment was on performance to each 

cue, rather than the development of learning over training, training data was 

further summarised into grand means per cue per participant. For test data, only 

the first test block was analysed following Bowditch et al.'s (2016) observation 

that extinction can be a problem if testing is overly prolonged. 

To take into account individual differences in reaction times and error rates, 

linear mixed-effects models were developed using lme4 (Bates, Mächler, 
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Bolker, & Walker, 2015). I used the Akaike Information Criterion Corrected 

(AICc; Akaike, 1974; Burnham & Anderson, 2002) to compare the models. The 

corrected criterion was used due to small sample size and so prevents 

overfitting of models. Model selection was undertaken by comparing the 

difference between AIC score of model i against the best model (the model with 

the lowest absolute AIC score), with a difference score greater than 2 indicating 

that difference was meaningful, and that the best model was the most 

appropriate (Burnham & Anderson, 2004). 

Homoscedasticity and normality of the residuals were explored using a 

graphical approach. Contrasts were corrected using a Bonferroni procedure 

(where the standard alpha level of .05 was divided by the number of test run; 

see Frane, 2015). Contrasts were undertaken by changing the baseline 

category of the chosen models. Using mixed-effects models, as opposed to 

standard pairwise comparisons, allows for data from all groups to be pooled and 

used to estimate the global variance, this can lead to be more powerful tests 

(reflected in the higher degrees of freedom; Harrison et al., 2018). To confirm 

that variances between cues were similar, and thus pooling variances was 

justified, I used the (conservative) criterion outlined in Fox (2008), where a ratio 

of less than 1:4 between the largest and smallest variance indicates 

comparable variance. In instances where the variance ratio for a measure was 

greater than 1:4 standard t-tests were conducted. It should be noted that due to 

the use of inverse gamma models for the analysis of commission errors the 

variances for these models are in fact the negative reciprocal of the original 

values (−1/μ) rather than the data presented in the descriptive statistics tables.  

Confidence intervals were calculated using the Wald method (for details see 

Pek & Wu, 2015). Conditional R2 values were estimated using the Nakagawa 

approach (Nakagawa & Schielzeth, 2013; Nakagawa, Johnson, & Schielzeth, 

2017). The significance of effects was assessed using through the lmerTest 

package (Kuznetsova, Brockhoff, & Christensen, 2016).  

Outlier replacement was undertaken with a view to removing atypical responses 

while maximising power and efficient use of resources. To this end, the process 

for identifying outliers for reaction times and commission and omission errors 

was different. For commission and omission errors (which represent failures to 

perform the task) participants with errors greater than two whiskers (i.e. 
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1.5IQR*2 = an IQR of 3) from the upper and lower quartiles were replaced. This 

process was undertaken until there were no outliers for these two measures. In 

Experiment 1 six participants were replaced, five for having high omission 

errors, and one for having high commission errors. For reaction times a more 

nuanced approach was undertaken, using a combination of a priori screening 

followed by model criticism of the mixed-effect models (see Baayen & Milin, 

2010). This approach was used because long reaction times do not necessarily 

indicate lack of engagement with the task, or failure to understand the task, but 

could be due other factors such as age (Der & Deary, 2006). Furthermore, the 

experiments here are concerned with differences between cues rather than 

overall reaction times. Initially, reaction time data was screened for participants 

with response times greater than two whiskers (i.e. 1.5IQR*2 = an IQR of 3) 

from the upper and lower quartiles with these participants being replaced. Box-

and-whisker plots were then run on this new sample. Any participants that 

would have also been outliers in the original sample were replaced, while 

participants that were outliers in the new sample but would have not been in the 

original sample were retained. Next, I used the sigtest function in the 

influence.ME package (Nieuwenhuis, te Grotenhuis, & Pelzer, 2012) to assess 

if the presence of these ‘sub’ outliers influenced the results of the mixed effects 

models. In this case the single ‘sub’ outlier present in reaction time data did not 

significantly influence the results and so full models are reported for Experiment 

1. 

Due to non-normal data, commission errors were analysed using a Gamma 

model through the glmmTMB package (Brooks et al., 2017). These models 

were performed using the standard inverse links and model the negative 

reciprocal of the mean, i.e. −1/μ (where μ is the expected mean). As the data 

included 0, prior to analysis the data transformation (y * (n − 1) + 0.5)/n was 

applied, where y was commission errors and n the sample size (Smithson & 

Verkuilen, 2006; Cribari-Neto & Zeileis, 2010). Transformed data is reported 

throughout. For reaction times, Cohen’s d was calculated using the lme.dscore 

function in the EMAtools package (Kleiman, 2017). Due to the models used it 

was not possible to calculate confidence intervals or effect sizes for commission 

data.  
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I first present a model comparing G vs. B performance to show that the task is 

experienced as expected (i.e. as a manipulation check), followed by the key 

‘traffic light’ contrasts: A vs. an average of I and P (hence-forth referred to as 

I/P), R vs. I/P, and RA vs IP. Omission data is presented but not analysed as 

due to the low error rate any conclusions drawn are likely to be spurious. As the 

G vs. B contrast was the manipulation check, the standard alpha level was 

used. For the other contrasts, to control for multiple comparisons, the alpha 

level was corrected to 0.017 (for means see Table 2.2). As I averaged cue’s I 

and P this meant that the models I ran included the variance of cue I, cue P and 

cue I/P. To correct for this, cues I and P were removed from the models and 

only I/P left in.  
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Phase Reaction Time p(respond) p(miss) 

Training Mean SD Mean SD Mean SD 

A-/+ 371.75 54.22 0.02 0.01 0.01 0.01 

B-/+ 372.24 51.66 0.02 0.01 0.01 0.01 

G- 367.85 53.20 0.02 0.02 0.01 0.01 

I-/+ 372.75 51.17 0.02 0.01 0.01 0.00 

IP-/+ 376.50 54.66 0.02 0.01 0.01 0.01 

J± 370.82 51.39 0.02 0.01 0.01 0.01 

P-/+ 375.23 55.96 0.01 0.01 0.01 0.01 

R+ 370.10 46.34 0.02 0.01 0.01 0.01 

RA- 373.29 50.87 0.02 0.01 0.01 0.01 

       

Test       

A 375.99 68.61 0.01 0.02 0.01 0.03 

B 383.94 68.26 0.02 0.04 0.01 0.02 

G 366.38 62.28 0.01 0.02 0.01 0.02 

I 384.59 71.30 0.02 0.03 0.01 0.00 

IP 390.36 79.90 0.02 0.03 0.01 0.02 

J 374.19 54.71 0.02 0.03 0.01 0.00 

P 383.25 88.06 0.01 0.02 0.01 0.02 

R 375.36 57.20 0.02 0.05 0.01 0.02 

RA 378.58 64.97 0.01 0.02 0.01 0.02 

Table 2.2. Descriptive statistics for Experiment 1. Reaction time means are 

calculated using raw data, but mean p(respond) and p(miss) use transformed 

data.  

 Reaction times  

For the training data, the best fitting model (see Table 2.3) was a model that 

included the main effects of cue with random intercepts (conditional R2 = 0.95). 

The G vs. B contrast approached significance, t(343) = 1.91, p = .057, 95% CI [-

0.12, 8.90], d = 0.21. The difference between R vs. I/P was marginally 

significant at a standard alpha level, t(343) = 1.69, p = .092, 95% CI [-0.62, 

8.41], d = 0.18, hinting at a trend for R to have faster responses to than I/P, 

suggesting R was a go cue. The A vs. I/P contrast was not significant, t(343) = 

0.97, p = .330, 95% CI [-2.27, 6.76], d = 0.11. The contrast between RA and IP 
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was non-significant, t(343) = 1.39, p = .164, 95% CI [-1.30, 7.72], d = 0.15. The 

results suggest that participants were not particularly successful at learning the 

contingencies related to the cues, but there is some evidence of learning as the 

G vs. B contrast would be significant using a one-tailed test.  

At test, the best fitting model was the main effects of cue with random intercepts 

(conditional R2 = 0.78). The G vs. B contrast was now significant, t(343) = 2.77, 

p = .006, 95% CI [5.14, 29.98], d  = 0.30, with faster reaction times to G 

suggesting that by the end of training some learning of the contingencies had 

taken place. The A vs. I/P contrast was not significant, t(343) = 1.25, p = .212, 

95% CI [-4.49, 20.35], d = 0.14. The R vs. I/P contrast was also not significant, 

t(343) = 1.35, p = .178, 95% CI [-3.86, 20.98], d = 0.15. The contrast between 

RA and IP was marginally significant at the standard alpha level, t(343) = 1.86, 

p = .064, 95% CI [-0.64, 24.20], d = 0.20, with faster reaction times to RA than 

IP, suggesting that RA was a go cue at test.  

 p(respond) 

Training data models were run with a Gamma family to better fit the shape of 

the data. The final model (see Table 2.3) was a model with a Gamma family 

and inverse link and included the main effects of cue with random intercepts. 

Currently, it is not possible to calculate R2 for such models. The G vs. B 

contrast was marginally significant at the standard alpha level, z = 1.69, p = 

.091, suggesting that this difference was not learnt well during training. The A 

vs. I/P contrast was not significant, z = 0.37, p = .714. The R vs. I/P contrast 

was also not significant, z = 0.12, p = .901. The RA vs. IP contrast was not 

significant, z = 0.87, p = .383. Overall, it seems that learning was weak for this 

measure at training.  

At test, the G vs. B contrast was significant, z = -3.52, p = < .001. However, the 

results were not in the expected direction with significantly more errors for cue B 

(a 50% go cue) than cue G (a 75% go cue). The A vs. I/P contrast was not 

significant at the reduced alpha, z = -2.21, p = .027, though there was a trend 

for more errors for I/P than A, tentatively suggesting that A was something of a 

stop cue. The R vs. I/P contrast was also not significant at the corrected alpha 

level, z = 2.05, p = .040, though there was a trend for more commission errors 

to R than I/P, suggesting R was a go cue. The RA vs. IP contrast was not 

significant, z = -1.02, p = .309.  
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 Summary 

In summary, the reaction time data for Experiment 1 supports past work in 

demonstrating how pairing a stimulus to a go response (cue G) can lead to 

faster reaction times than to a stimulus associated with stopping (cue B), with 

significant differences at test for reaction times. However, for p(respond) at test 

the direction of the effect is unexpectedly reversed, with significantly more 

errors for B than G, suggesting that cue B primed a go response more than cue 

G for this measure. Given this, I cannot unequivocally say that I have 

demonstrated learning of the contingencies implemented in the design. This is 

an interesting finding in terms of the wider literature, yet, as discussed below, 

this finding is likely explained by reference to the experimental design as 

opposed to providing evidence against associatively-mediated learning in such 

tasks.   

The learning to the cues A and R is not overly clear. The fact that there were no 

significant reaction time contrasts does indicate that learning was weak with 

Model Training Test 

Reaction time models   

Main effects of cue 4305.68 4505.84 

Main effects of cue with random intercept 

 

3327.35 4037.82 

p(respond) 

 

  

Main effects of cue with Gamma family and 

inverse link 

 

-2737.61 -2512.04 

Main effects of cue with Gamma family and 

inverse link and random intercept 

-2769.68 -2631.96 

Table 2.3. AICc scores for models run for Experiment 1 on reaction time and 

p(respond) data at training and test. Bold are the models chosen. Note that for 

both DVs the models with main effects of cue with random intercept and 

random slope failed to converge for both test and training and so are not 

reported. 
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regards to response times, yet the marginally significant (at a standard alpha 

level) contrast for R vs. I/P does present a slight trend for participants 

expressing cue R was a go cue in training. For commission errors, only results 

at test suggested any (weak) learning to the cues, and at face value the 

marginally significant results suggest a weak trend for cue A to prime a stop 

response (having more errors than cue I/P), and for cue R to promote a go 

response (with R having more errors than I/P). On their own these results would 

be troubling, with people learning at an associative level that R is a go cue! 

However, there are strong reasons to assume that there are issues with the 

experimental design which question the internal validity of the experiment. 

There is a large body of evidence suggesting that participants can learn 

incidentally about the contingencies linked to cues (Best et al., 2016; Bowditch 

et al., 2016). However, this does not seem to be the case here, with cue B (a 

50% stop cue) having more errors at test than cue G (a 75% go cue). Appealing 

to Occam's razor it seems the experiment is not being experienced in the 

manner expected. One suggested reason behind these findings is that the 

design is flawed. While the design mimicked the contingences of traffic lights, 

the control cues (B, I, IP, P) did not balance the contingencies implemented by 

the traffic light cues, and so the overall experimental design means that 

participants were more likely to ‘go’ than to ‘stop’. While there were two go 

cues, there was only one outright stop cue with the rest being 50/50. This might 

have led people to feel the task was pushing them to respond, while the task 

outcome was in fact geared to stopping – this could explain the unusual results.  

 EXPERIMENT 2 

Experiment 1 was the first attempt, as far as I am aware, to investigate the 

learning that occurs incidentally at UK traffic lights. However, there are two 

issues to note. Firstly, as discussed above, there was the unbalanced design. In 

Experiment 2 a slight change to the contingencies associated with the control 

cues rectified this issue (see Table 2.4) so that the overall incidence of stopping 

was now 50%. The second issue to address is the assertion that participants 

are learning to stop with this being the outcome. This issue arises from the fact 

that when one describes a design as R+ and RA-, the designation of what is + 

and what is - is to some extent arbitrary. One may have a particular outcome in 
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mind that is labelled +, but is this the psychologically real outcome experienced 

by people doing the task? To investigate this, it is possible to make use of the 

feature-positive effect (Lotz, Uengoer, Koenig, Pearce, & Lachnit, 2012) to 

confirm that stopping was the outcome. This is the effect that learning is 

generally faster to excitatory than inhibitory cues. Thus, according to Rescorla 

and Wagner (1972), a discrimination between X and XY is easier to solve if XY 

denotes the presence of an outcome, i.e. X-, XY+; rather than if the compound 

denotes the absence of an outcome, X+, XY-. This is because the first, feature-

positive discrimination, requires the simultaneous excitatory learning to Y and 

the extinction of X, whereas the second, feature-negative discrimination 

requires a participant to first learn that X is an excitatory cue before learning 

that Y is an inhibitor, which takes longer. The feature-positive effect is robust, 

being found in pigeons (Jenkins & Sainsbury, 1970), rats (Reberg & Leclerc, 

1977), honey bees (Abramson et al., 2013) and humans (Newman, Wolff, & 

Hearst, 1980; Richardson & Massel, 1982). The effect can also be found when 

comparing a difference in magnitude of an outcome rather than its presence or 

absence (Todd, Winterbauer, & Bouton, 2010). 

A key piece of evidence for the feature-positive effect in humans comes from 

Lotz et al. (2012). This was the first experimental evidence that the effect could 

be found in humans using simple discriminations (i.e. similar to the current 

procedure) rather than complex discriminations used previously (see Newman 

et al., 1980). The Lotz experiments entailed participants completing a predictive 

learning task in which they were shown a letter or pairs of letters and asked to 

respond if they thought a green circle would follow, or not respond if they 

thought the circle would not be presented. In support of the feature-positive 

effect, participants were able to learn that the presence of another letter (AB) 

compared to a single letter (A) predicted the occurance of a green circle better 

than when the presence of another letter predicted the absence of the outcome.  

Crucially, it is possible to use this effect to learn what the outcome of a task is. If 

the outcome of a task is stop (+), then the discrimination between cues that 

signal an outcome X- vs. XY+ (a feature-positive discrimination) will be acquired 

more readily than a discrimination which signals absence of an outcome C+ vs. 

CD- (a feature-negative discrimination). If, instead, the effective outcome is 

going, then the C vs. CD discrimination should be learnt faster than X vs. XY, 
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because the former is now the feature-positive discrimination, i.e. C-, CD+, 

where + now denotes go. Using this logic, Bowditch (2016) was able to provide 

good evidence that using similar procedures to the ones presented here, 

participants were in fact looking for occasions when they needed to stop, with 

this being the outcome. The technique used by Bowditch was to compare the 

rate of acquisition of the two discriminations, and then use this to diagnose 

which was the feature positive discrimination, and hence deduce what was the 

effective outcome. Bowditch based his claim that stop was the effective 

outcome on the fact that a discrimination, X-, XY+, where + denotes stopping, 

was learnt significantly faster than another discrimination, C+, CD-, which, with 

this notation, is the standard feature-positive effect. 

Noting that in Experiment 1 + represented stop, the pair R+, RA- is a feature-

negative pair (if one ignores A±), thus in order to replicate the analysis 

implemented by Bowditch to assay the task outcome a feature-positive 

discrimination pair is needed, therefore I±, IP± becomes I-, IP+, a feature-

positive discrimination if the outcome is indeed stop. If stop is the outcome then 

this new pair should be learnt more readily than R+, RA-. To equate conditions 

more precisely, I also include P± to allow for A±. This helps the design to be 

more balanced and allows me to assay the effective outcome using these 

procedures. 

Of course, the discriminations present in the current design vary somewhat from 

the feature-positive discrimination described in Lotz et al. (2012). In the Lotz 

experiments (as is typical in the feature-positive literature) the compound cue is 

never seen separately, that is, participants never experience each part of the 

compound cue independently. In contrast, in the design employed here, the A in 

RA is experienced as a separate cue (as is cue R). The discrimination therefore 

is not R- RA+ but rather R- A± RA+, and thus is not a true feature-positive 

discrimination. Of course, it may be that cue A± (which is a 50/50 cue) does not 

convey any response tendency and is therefore irrelevant to the discrimination. 

In which case the discriminations become more like the traditional feature-

positive discrimination. 

However, given that the experiments (through the instructions) assume a 

certain task set it could be that cues come to be learnt as holding percentage 

outcomes. By this I mean that, if the outcome is stop, cue A will not be seen as 
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a 50/50 cue, but rather as a 50% stop cue. In these circumstances, the 

discriminations can be solved without reference to the feature-positive effect. 

The expected difficultly of learning a ‘feature-negative discrimination’ could arise 

from the fact that it requires configuration. Focusing on the R- RA+ 

discrimination, it involves cue R (a 75% stop cue), A (a 50% stop cue), and RA 

(a 25% stop cue). Therefore, combining R and A (both cues with moderate stop 

tendencies) leads to a cue (RA) that has weaker stop tendencies. In this 

instance the logic of Rescorla and Wagner (1972) does not hold, as R and A 

cannot easily summate to a weaker contingency. Therefore, to solve this 

discrimination participants would need to form a configural unit of RA. Such 

configuration is resource intensive and thus necessarily slow (Sutherland & 

Rudy, 1989). Conversely, the feature-positive discrimination does not require 

configuration. This is because the two stop cues summate to a greater stop cue, 

with cue I (a 25% stop cue) and cue P (a 50% stop cue) summating to IP (a 

75% stop cue). Therefore, the feature-positive discriminations can be learnt 

though the logic of Rescorla and Wagner (1972), a quicker process when 

compared to the ‘feature-negative discrimination’. 

Ultimately, the experiments were not designed to provide evidence for or 

against competing learning accounts. However, it is assumed that participants 

come to learn both excitatory and inhibitory responses in the experiments (see 

section 2.8.1 for further). In this case, 50% cues (e.g., cue A or cue P) will not 

be seen as cuing 50% of a specific outcome but will be seen as 50/50 neutral 

cues - being equally likely to cue either outcome. Such learning could result in 

the 50/50 cues being somewhat irrelevant to the discriminations and so the 

discriminations come to be experienced in the tradition of a feature-positive 

discrimination design. As such, language appropriate to the feature-positive 

model will be used throughout. Yet the discussion above should serve to 

highlight that that other explanations could be generated to explain the 

witnessed learning.  

 Method 

 Participants 

Fifty-five participants participated in exchange for payment of £5 or one course 

credit (see Results section for details on the outlier removal process). Of these 
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55 participants, 41 were female with an overall mean age of 19.84 (SD = 3.47). 

The inclusion criteria and outlier removal process were identical to those used 

in Experiment 1. A power analysis using SIMR (Green & MacLeod, 2016) 

indicated that a sample size of 55 would give sufficient power (96.80%) to 

detect a 18ms difference in reaction times between a go vs. stop cue in test 

block 1, where a priori one would expect to find an effect. Specifically, this test 

was run on G vs. B, see section 2.5.1.2 for details. 

 Design  

A number of changes were made to the design (see Table 2.4 for summary of 

the experimental design), 1) B± became B+ to reduce the tendency to go to this 

cue, and 2) I±, IP± became I-, IP+, and thus a feature-positive discrimination.  

  Procedure  

The procedure was identical to Experiment 1.   

 Analysis 

The data was processed and analysed as described in Experiment 1. Six 

participants were replaced for having high mean omission errors. There were no 

outliers for commission errors. As with Experiment 1 there was one ‘sub’ outlier 

in the reaction time data, but this did not significantly affect the results and so 

the participant was retained. Given that control cues were designed to balance 

Phase Blocks 

Trials 

per 

block 

N per 

type 
Design   

Calibration 1 48 48  J±  

Training 8 144 16 

 

G-, R+, A±, RA-, B+, I-, P±, IP+ 

 

J±  

Test 2 144 16 G, R, A, RA, B, I, P, IP J±  

Table 2.4. Summary of Experiment 2 design. Letters represent coloured cues. 

Trials were go 75% of the time (-), stop 75% of the time (+), or stop 50% of the 

time (±). At test all trials were 50% stop and so the cues were now non-

predictive. 
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out the overall design rather than act as baseline cues the previous analyses 

are no longer appropriate. Therefore, a different set of contrasts were 

conducted. I still conducted the G vs. B contrast (which is still the manipulation 

check, but I then performed contrasts aimed at understanding to what extent 

cues A and R primed going or stopping. Thus, the key ‘traffic light’ contrasts 

are: A vs. B, A vs. G, A vs. R, R vs. B and R vs. G. These will be presented in 

text if significant or informative. Once again, omission data is presented but not 

analysed due to the low error rate. This time the standard alpha level was used 

for the G vs. B contrast and a corrected alpha level of .010 was used for all 

other ‘traffic light’ contrasts (for means see Table 2.5). To analyse the feature 

positive effect, paired t-tests comparing the differences between the feature-

positive and feature-negative contrasts were also conducted. In this instance 

due to the assumed outcome being stop, R+ RA- is the feature negative 

contrast, with I- IP+ being the feature positive contrast. As these tests were 

also, in effect, a manipulation check, a standard alpha level was used. It should 

also be noted that t-tests rather than multilevel modelling were used for these 

analyses to enable more direct comparison to the earlier work by Bowditch 

(2016). 
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Phase Reaction Time p(respond) p(miss) 

Training Mean SD Mean SD Mean SD 

A-/+ 385.95 42.79 0.01 0.01 0.01 0.01 

B+ 392.57 43.26 0.01 0.01 0.01 0.01 

G- 378.19 38.38 0.02 0.02 0.01 0.00 

I- 383.47 41.52 0.02 0.02 0.01 0.01 

IP+ 394.27 48.1 0.01 0.01 0.01 0.01 

J± 385.01 40.00 0.01 0.01 0.01 0.01 

P-/+ 389.99 40.28 0.01 0.01 0.01 0.01 

R+ 389.77 42.94 0.01 0.01 0.01 0.01 

RA- 390.91 39.9 0.02 0.02 0.01 0.00 

       

Test       

A 392.47 70.06 0.02 0.03 0.01 0.02 

B 412.14 65.79 0.01 0.02 0.01 0.00 

G 394.40 61.35 0.01 0.02 0.01 0.02 

I 382.25 55.88 0.01 0.02 0.01 0.00 

IP 401.15 54.7 0.02 0.04 0.01 0.00 

J 400.04 59.46 0.01 0.02 0.01 0.02 

P 404.69 73.9 0.02 0.03 0.01 0.00 

R 401.45 62.91 0.02 0.04 0.02 0.03 

RA 400.45 54.4 0.01 0.02 0.01 0.02 

Table 2.5. Descriptive statistics for Experiment 2. Reaction time means are 

calculated using raw data, but mean p(respond) and p(miss) use transformed 

data.  

 Reaction times  

For training data, the best fitting model (see Table 2.6) was one that included 

the main effects of cue with random intercepts (conditional R2 = 0.91). The G vs. 

B contrast was highly significant, t(432) = 5.86, p = < .001, 95% CI [9.57, 

19.19], d = 0.56, with G being faster than B, thus confirming that participants 

were learning the contingencies present in the design. In terms of the 

experimental contrasts, A vs. B was significant, t(432) = 2.70, p = .007, 95% CI 

[1.81, 11.43], d = 0.26, with faster responses to cue A. The contrast A vs. G 

was also significant, t(432) = -3.16, p = .002, 95% CI [-12.57, -2.95], d = -0.30, 
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with slower responses to cue A. These results suggest that while cue A was 

more of a go cue than B, it was not such a strong go cue as G and thus neutral 

overall. The contrast for A vs. R was non-significant, t(432) = 1.56, p = .120, 

95% CI [-0.99, 8.64], d = 0.15. In terms of the R contrasts, the R vs. B contrast 

was not significant, t(432) = 1.14, p = .255, 95% CI [-2.01, 7.61], d = 0.11, 

though the R vs. G contrast was significant, t(432) = -4.72, p = < .001, 95% CI [-

16.39, -6.77], d = -0.45, with responding in the presence of R being slower. This 

pattern of results suggests that cue R was overall a stop cue, or at least 

certainly not a go cue. There was a significant positive difference between the 

differences of IP+ vs. I- (M = 10.80, SD = 19.65) and R+ vs. RA- (M = -1.14, SD 

= 18.20), t(54) = 3.23, p = .002, 95% CI [4.54, 19.35], d = 0.44, confirming that 

the feature-positive discrimination was easier to acquire than the feature-

negative discrimination, if the effective outcome of the task is taken to be stop. 

To put this another way, the significant feature-positive effect in the data 

confirms that the effective outcome was stop. 

At test, the best model was one that included the main effects of cue with 

random intercepts (conditional R2 = 0.66). The G vs. B contrast was again 

significant, t(432) = 2.54, p = .011, 95% CI [4.05, 31.45], d = 0.24, confirming 

that the participants had learnt about the contingencies in the experiment. In 

terms of the experimental contrasts, A vs. B was significant, t(432) = 2.81, p = 

.005, 95% CI [5.98, 33.38], d = 0.27, with faster responses in the presence of 

cue A indicating that cue A primed a go response. The A vs. G contrast was not 

significant, t(432) = 0.28, p = .783, 95% CI [-11.77, 15.63], d = 0.03. The A vs. 

R contrast was non-significant, t(432) = 1.29, p = .200, 95% CI [-4.72, 22.69], d 

= 0.12. For the contrasts against R, R vs. B was not significant, t(432) = 1.53, p 

= .127, 95% CI [-3.01, 24.39], d = 0.15. The R vs. G contrast was also non-

significant, t(432) = -1.01, p = .313, 95% CI [-20.76, 6.64], d = -0.10. There was 

a marginally significant difference (at a standard alpha level) between the 

differences of IP+ vs. I- (M = 18.90, SD = 41.13) and R+ vs. RA- (M = 1.01, SD 

= 57.59), t(54) = 1.78, p = .081, 95% CI [-2.28, 38.08], d = 0.24, reinforcing the 

view that the feature-positive discrimination was easier to acquire than the 

feature-negative discrimination. 
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 p(respond) 

For commission data I used Gamma models to analyse the results (see Table 

2.6 for best fitting model). The G vs. B contrast was significant, z = 3.88, p = < 

.001, with more errors for cue G, thus confirming that participants were learning 

the contingencies present in the design (as they were more likely to go if G was 

presented). The A vs. B contrast was not significant, z = 1.37, p = .166, nor was 

the A vs. R contrast, z = 1.24, p = .215. However, the A vs. G contrast was 

significant, z = -2.60, p = .009, with more errors for cue G, suggesting that A 

was not a strong go cue. Focusing on the R contrast, R vs. B was not 

significant, z = 0.15, p = .881, yet the R vs. G contrast was, z = -3.75, p = < 

.001, with more errors for G than R, suggesting that R was not a go cue and 

overall seems to be rather like B on this measure. There was no significant 

difference between the differences of IP+ vs. I- (M = -0.003, SD = 0.02) and R+ 

vs. RA- (-0.004, SD = 0.02), t(54) = 0.29, p = .773, 95% CI [-0.01, 0.01], d = 

0.04, and the direction of the effect was not in line with the hypothesis. 

Model Training Test 

Reaction time models   

Main effects of cue 5116.26 5508.14 

Main effects of cue with random intercept 

 

4163.31 5094.88 

p(respond) 

 

  

Main effects of cue with Gamma family and 

inverse link 

 

-3476.56 -3293.62 

Main effects of cue with Gamma family and 

inverse link and random intercept 

-3545.54 -3447.99 

Table 2.6. AICc scores for models run for Experiment 2 on reaction time and 

p(respond) data at training and test. Bold are the models chosen. Note that for 

both DVs the models with main effects of cue with random intercept and 

random slope failed to converge for both test and training and so are not 

reported. 
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However, the difference was not significant, and the effect size was small. For 

clarity it should be noted that for p(respond) the contest IP+ vs. I- is expected to 

be negative (i.e. more errors for I than IP) as is R + vs. RA- (i.e. more errors for 

RA than R). Thus, if the difference, in terms of its absolute size, is bigger for IP+ 

vs. I-, then the t statistic will be negative. However, it was positive which means 

that the difference between R+ vs. RA was the bigger.  

For test, the G vs. B contrast was not significant, z = 1.34, p = .180. The A vs. B 

contrast was significant, z = 3.18, p = .002, with more errors for A than B, 

indicating that compared to B, cue A was a go cue. The A vs. G contrast was 

not significant at the reduced alpha, z = 1.97, p = .049, although there is a trend 

for more errors to cue A than G, suggesting that cue A was more of a go cue 

than G. The A vs. R contrast was not significant, z = -0.76, p = .446. Focusing 

on cue R, the R vs. B contrast was significant, z = 3.78, p = < .001, with more 

errors for R than B, suggesting that cue R was experienced as more of a go cue 

than B. The R vs. G contrast was also significant, z = 2.65, p = .008, with, 

unexpectedly, more errors for R than G. This suggests that cue R was a strong 

go cue, more so than the 75% go cue. There was no significant difference 

between the differences of IP+ vs. I- (M = 0.004, SD = 0.04) and R+ vs. RA- 

(0.007, SD = 0.04), t(54) = -0.28, p = .784, 95% CI [-0.02, 0.01], d = -0.04, with 

I- and R+ showing greater learning in their pairs.  

 Summary 

Experiment 2 found compelling evidence that participants were learning that G 

was a go cue and cue B a stop cue, giving confidence that participants were 

experiencing and learning from the incidental go/no-go task as expected. This 

contrasts with the mixed results in Experiment 1 and suggests that those 

findings were due to that particular experimental design. 

In terms of the learning of the traffic light contingencies, there is some evidence 

that cue A was priming a weak go response. During training for reaction times, it 

was significantly slower than G, but significantly faster than B. Regarding 

commission errors during training, there was a significant difference between A 

and G (with more errors for G) and a non-significant difference between cue A 

and B (though A had numerically more errors). At test, cue A had significantly 

faster responses than cue B, and there were also significantly more errors for A 

than for B, which is consistent with a tendency to want to respond to A rather 
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than withhold a response (indeed, the contrast for A vs. G was not significant at 

the correct alpha for each measure at test, with cue A having numerical faster 

reaction times and more errors than G). So, in training cue A seems to be less 

go than cue G, but certainly not stop, while at test cue A is numerically more go 

then G. Looking at cue R, at training it seemed rather like cue B. The cue was 

significantly slower than G (like B), and not significantly faster to B, though 

numerically cue B seemed to prime more of a stop response. There were 

significantly fewer errors for R than for G, and the mean errors were identical for 

R and B. At test, it did not differ from B (or G this time) in terms of response 

times, with a mean reaction time midway between the two, but there were 

significantly more errors made to R than to both B and G. There is evidence that 

cue R was promoting a going response to some extent in the p(respond) data 

for test, but otherwise it is best described as a weak stop cue. The contrasts 

between cues A and R were never significant, and that though cue A seemed to 

prime a go response and cue R stopping, it should be noted that going and 

stopping are relative terms. 

The results regarding cue R do suggest that in a stop task set red traffic lights 

only become associated with a weak stop response. Considering that the task 

has stopping as the effective outcome, this result is rather surprising. One might 

think that when the default is to go, and one is looking out for a stop signal this 

is when learning about red will be optimal, but the evidence suggests that this is 

not necessarily the case. This is certainly an avenue worth further exploration 

as it indicates that the contingences of UK traffic lights prevent strong learning 

of stop cues, at least in a stop task set. 

The significant feature-positive effect found in the reaction time training data 

(and the marginally significant result at test for reaction times) supports the idea 

that the effective outcome is stop as a result of the manipulation of task set. 

Following Bowditch (2016), it is believed that the task instructions and the use 

of a number of differing coloured stop signals are what promote this task set, 

and result in the feature-positive discrimination based on the outcome being 

stop being learnt more easily than the feature negative. The obvious test of this 

proposition is to change task set by changing these parameters, and that is one 

purpose of the next experiment. In both Experiments 1 and 2 stopping was the 

designated task outcome as this was felt to be the more plausible scenario in 
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modelling behaviour approaching traffic lights. However, there is a case to be 

made that the other task set which has going as the effective outcome also 

plays a role in driving behaviour. If the driver is stationary at the lights, then they 

will be looking for a go signal. Accordingly, this situation was explored in 

Experiment 3. 

 EXPERIMENT 3 

The purpose of this experiment was firstly to demonstrate that it was possible to 

manipulate the effective outcome during training, (i.e. go vs. stop), thus 

confirming that the technique used to achieve this was valid. Secondly, to see 

what effect this change of task set, to one where the effective outcome was 

going, had on learning based on experience. In order to change the focus of 

participants from a stop to a go task set two changes were made following 

Bowditch (2016): 

1) the go/no-go signals were reversed, with coloured circles now being go 

signals and white circles being stop signals, and 

2) the order of the instructions was changed so that stopping was mentioned 

first (making it the ‘default’ behaviour).  

The net effect of these changes should be to change the participant’s task set 

from learning when to stop, to learning when to respond.  

 Method 

 Participants 

The sample size, payment, and inclusion criteria and outlier removal process 

were the same as Experiment 2 (see Results section for details of those 

removed). Of the final sample, 38 were female, with an overall mean age of 

21.29 (SD = 6.38). 

 Design  

The design was similar to Experiment 2. However, as going was expected to be 

the effective outcome, + was now go rather than stop, and this is reflected in the 

summary of the design in Table 2.7. 
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Table 2.7. Summary of Experiment 3 design. Letters represent coloured cues. 

Trials were go 75% of the time (+), stop 75% of the time (-), or stop 50% of the 

time (±). At test all trials were 50% stop and so the cues were now non-

predictive. 

 Procedure  

The procedure was identical to that of Experiment 2, except for the two changes 

made to shift the demands of the task from looking to stop to looking to 

respond. Coloured circles now required a go response and white circles 

required a stop response – so that the singleton colour was now a stop 

response. The order of instructions was changed so that stopping was 

mentioned first (making it the default) and responding second.     

 Analysis 

The analysis followed the same approach as in Experiment 2. For Experiment 

3, four participants were replaced: three for having high mean omission errors 

and one for withdrawing from the experiment. There were no outliers for 

commission errors or reaction times. As in Experiment 2 paired t-tests were run 

to analyse the feature positive effect. In Experiment 3 due to the assumed 

outcome being go, R- RA+ is the feature positive contrast, with I+ IP- being the 

feature negative contrast (for means see Table 2.8). The standard alpha level 

was used for the G vs. B contrasts and for the feature-positive contrasts, with a 

corrected alpha level of .010 being applied to all other contrasts.  

 

 

Phase Blocks 

Trials 

per 

block 

N per 

type 
Design   

Calibration 1 48 48 
 

 
J±  

Training 8 144 16 G+, R-, A±, RA+, B-, I+, P±, 

IP- 

J±  

Test 2 144 16 G, R, A, RA, B, I, P, IP J±  
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Phase Reaction Time p(respond) p(miss) 

Training Mean SD Mean SD Mean SD 

A-/+ 405.61 39.87 0.02 0.01 0.01 0.01 

B- 411.47 39.56 0.02 0.01 0.01 0.01 

G+ 397.06 36.40 0.02 0.02 0.01 0.01 

I+ 403.00 39.22 0.02 0.02 0.01 0.01 

IP- 408.04 42.49 0.02 0.02 0.01 0.01 

J± 400.53 37.29 0.02 0.02 0.01 0.01 

P-/+ 407.73 38.44 0.02 0.02 0.01 0.01 

R- 408.64 42.68 0.02 0.01 0.01 0.01 

RA+ 401.95 40.11 0.02 0.02 0.01 0.01 

       

Test       

A 408.79 58.66 0.02 0.04 0.01 0.02 

B 414.91 74.26 0.02 0.03 0.01 0.00 

G 409.33 70.58 0.02 0.04 0.01 0.02 

I 399.43 55.56 0.01 0.02 0.02 0.04 

IP 412.37 69.64 0.02 0.03 0.02 0.03 

J 404.22 54.51 0.01 0.02 0.01 0.03 

P 401.03 58.81 0.02 0.04 0.02 0.03 

R 407.09 60.84 0.02 0.04 0.01 0.00 

RA 407.55 63.62 0.03 0.05 0.01 0.02 

Table 2.8. Descriptive statistics for Experiment 3. Reaction time means are 

calculated using raw data, but mean p(respond) and p(miss) use transformed 

data.  

 Reaction times 

For the training data, the best fitting model (see Table 2.9) had a conditional R2 

of 0.88. The G vs. B contrast was highly significant, t(432) = 5.44, p = < .001, 

95% CI [9.22, 19.59], d = 0.52, with faster responses for cue G, thus confirming 

that participants were learning the contingencies present in the design. In terms 

of the experimental contrasts, A vs. B was not significant at the reduced alpha, 

t(432) = 2.21, p = .027, 95% CI [0.67, 11.05], d = 0.21, but hints at participants 

experiencing cue A as distinct from cue B, i.e. not a strong stop cue. The 

contrast A vs. G was significant, t(432) = -3.23, p = .001, 95% CI [-13.73, -3.36], 
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d = -0.31, with faster responses for cue G, indicating that cue A was not 

experienced as a strong go cue. The A vs. R contrast was not significant, t(432) 

= 1.15, p = .218, 95% CI [-2.15, 8.22], d = 0.11. In terms of the R contrasts, the 

R vs. B contrast was not significant, t(432) = 1.07, p = .286, 95% CI [-2.36, 

8.01], d = 0.10, and the R vs. G contrast was significant, t(432) = -4.38, p = < 

.001, 95% CI [-16.77, -6.40], d = -0.42. This indicates that cue R was not seen 

as a go cue, with slower responses than cue G (a 75% cue go). The difference 

between R- vs. RA+ (M = 6.70, SD = 24.37) and IP- vs. I+ (M = 5.04, SD = 

21.39) was non-significant (but numerically in the right direction for a feature-

positive advantage), t(54) = 0.38, p = .707, 95% CI [-7.16, 10.47], d = 0.05.  

At test, the best model was one that included the main effects of cue with 

random intercepts (conditional R2 = 0.64). The G vs. B contrast was not 

significant, t(432) = 0.77, p = .439, 95% CI [-8.53, 19.68], d = 0.07. None of the 

other contrasts were significant either (see Appendix A for full results).  

 p(respond) 

In the best fitting Gamma model (see Table 2.9), the G vs. B contrast was on 

the threshold of significance, z = 2.56, p = .010, suggesting that learning was 

occurring as expected, with more errors for cue G than cue B. The A vs. G 

contrast was marginally significant at the standard alpha level, z = -1.85, p = 

.064, and hints at a trend for more errors to G than A, suggesting that A was not 

a strong go cue and supports the findings in response times. The A vs. B 

contrast was not significant, z = 0.75, p = .453, nor was the A vs. R contrast, z = 

1.05, p = .293. Focusing on the R cues, the R vs. B contrast was not significant, 

z = -0.30, p = .763. Yet, the R vs. G contrast was significant, z = -2.84, p = .004, 

with more errors for cue G than R indicating that cue R was not experienced as 

a go cue. The difference between R- vs. RA+ (M = -0.01, SD = 0.02) and IP- vs. 

I+ (M = 0.0004, SD = 0.02) was significant, t(54) = -2.08, p = .043, 95% CI [-

0.01, -0.0002], d = -0.28, demonstrating that participants were able to learn the 

feature-positive contrast more readily than the feature-negative, consistent with 

the effective outcome being go. For clarity, it should be noted that the negative 

mean score for the R- vs. RA contrast indicates more commission errors for 

RA+ than R, which is in the right direction to learn this discrimination. Thus, the 

negative t statistics means that the feature-positive discrimination was better 

learnt than the feature-negative. 
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At test the G vs. B contrast was not significant, z = 0.00, p = 1.00. The 

difference between R- vs. RA+ and IP- vs. I+ was also non-significant, t(54) = -

1.15, p = .255, 95% CI [-0.03, -0.01], d = -0.16, supporting the notion that 

learning at test was weak. The rest of the contrasts were also not significant 

(see Appendix B for full results).  

Table 2.9. AICc scores for models run for Experiment 3 on reaction time and 

p(respond) data at training and test. Bold are the models chosen. Note that for 

both DVs the models with main effects of cue with random intercept and 

random slope failed to converge.  

 Summary 

Experiment 3 aimed to investigate the learning of traffic light contingences when 

go was the effective task set. The changes made between Experiments 2 and 3 

appear to have affected the task set, with the feature-positive effect for 

commission errors during training providing some evidence that ‘go’ was now 

the task outcome. There was also good evidence that participants learnt that 

cue G was a go cue and cue B a stop cue during training, indicating that the 

participants were still learning about the task as expected, despite the changes 

made. There can be little doubt though that learning was somewhat weaker in 

this experiment, and hence the generally non-significant results at test. 

Model Training Test 

Reaction time models   

Main effects of cue 5058.42 5522.40 

Main effects of cue with random intercept 4219.96 5120.98 

p(respond)   

Main effects of cue with Gamma family and 

inverse link 

-3056.96 -3002.98 

Main effects of cue with Gamma family and 

inverse link and random intercept 

-3201.52 -3187.23 
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The change in task set has affected the learning of traffic light contingencies. 

While Experiment 2 suggested that A primed a weak go cue, the results for 

Experiment 3 are somewhat different. Here A has significantly slower reaction 

times against G in the training phase, and is numerically closer to B, but the 

contrast does indicate it is not the same as cue B (being significantly faster at a 

standard alpha level). On test, none of the contrasts are significant, though 

numerically cue G and A are similar. Looking at errors, during training 

numerically there is a tendency to commit more errors for G than A (with the 

difference being marginally significant at a standard alpha level), whilst the 

difference between A and B is small. At test there is no significant difference, 

yet numerically cue A does have more errors than either B or G. The overall 

impression is that A has become a bit less like G and a bit more like B and was 

experienced as a neutral to weak stop cue in Experiment 3. For cue R, as in 

Experiment 2, during training it seems to be a stop cue, being significantly 

slower to G and numerically like B on both measures, in fact error rates were 

lowest in R than B. However, at test performance seems to have collapsed for 

all cues, with reaction times and commission error rates being similar for cues 

G, B and R. Indeed, it is notable that in contrast to Experiment 2 there is not the 

large difference in p(respond) between cue R and cue G or B. Overall, the result 

suggest that R seems to be a stop cue.  

 JOINT ANALYSIS OF EXPERIMENT 2 AND EXPERIMENT 3 

As Experiments 2 and 3 are opposites (in the sense they use the same cue 

contingencies but with opposite outcomes) it is possible to combine the two 

experiments and undertake a between-participants analysis to investigate 

changes across the studies. First, I present an analysis that demonstrates that 

the changes between Experiment 2 and 3 were successful in swapping round 

the feature-positive effect between the two experiments. This analysis was 

conducted on training data where this effect should be most obvious and is 

where Bowditch (2016) observed the effect.  

The second analysis is an attempt to address an issue in the design of 

Experiments 2 and 3 in that while they investigated a single task set, traffic 

lights are likely to be experienced in different task sets. For example, a red 

traffic light is clearly not going to lead to the same effective outcome as a green 
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traffic light. Combining the two experiments allowed for the effect of both tasks 

sets together to be explored. Though it should be noted that the effects in 

Experiment 2 are bigger and this task set is likely to influence results to a 

greater extent than the go task set in Experiment 3. The analysis was 

undertaken on the test data as this is where learning about the cues is likely to 

be clearest, i.e. following acquisition, and therefore gives an indication of what 

learning has developed. Of course, this analysis is imperfect as the task set 

changes between, rather than within, traffic lights. By this I mean that the while 

the joint analysis allows me to see what sort of behaviour cue G (the cue 

representative of a green traffic light) might promote in a combined task set 

situation, green lights are likely to be mostly experience in a go task set (where 

the effective outcome is stop). This line of reasoning is continued and 

developed further in Experiment 6 in Chapter 4. The standard alpha level was 

used for the G vs. B contrasts (the go vs. stop manipulation check) and for the 

feature-positive contrasts, with a corrected alpha level of .010 being applied to 

all other contrasts. 

 Joint feature-positive analysis 

An analysis comparing Experiments 2 and 3 found that the outcome of the tasks 

had been successfully manipulated as far as the training reaction times were 

concerned, with the feature-positive effect swapping round from Experiment 2 to 

Experiment 3. There was a significant difference for the ‘difference between the 

differences’, that is, taking the difference for (IP-I) and (R-RA) for each 

experiment and comparing these difference, t(108) = 2.37, p = .019, 95% CI 

[2.22, 24.99], d = 0.45. This demonstrates that the changes made between the 

two experiments successfully changed the nature of the discriminations 

experienced by participants, such that the effective outcome changed from 

stopping to going. Though the effect was stronger in Experiment 2 than 3: 

Experiment 2 difference is M = 11.95, SD = 27.41, Experiment 3 difference is M 

= -1.66, SD = 32.61. The same analysis for training commission errors was non-

significant, t(108) = -1.06, p = .291, 95% CI [-0.02, 0.01], d = -0.20. 

 Joint traffic light cues analysis 

Adding ‘experiment’ as a between participant factor to the models allowed me to 

investigate overall learning for the key contrasts in the test phase. Otherwise 

analysis was conducted as described in Experiment 2 (see Table 2.10 for AICs 
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and Table 2.11 for descriptive statistics). For reaction time data, while the 

interaction with random intercept model had the lowest AICc (see Table 2.10), 

these interaction effects merely reflect the results found individually for the two 

experiments and do not represent overall effects. Therefore, the analysis 

reported is the model with the main effects of cue with random intercepts 

(conditional R2 = 0.65). In this model there was a main effect of G vs. B across 

the experiments, t(872) = 2.32, p = .020, 95% CI [1.83, 21.49], d = 0.15, with 

faster response times for G compared to B. This indicates that participants were 

able to learn the contingencies present in the designs. There was a just 

significant (right on the threshold) difference between A and B, t(872) = 2.57, p 

= .010, 95% CI [3.07, 22.73], d = 0.17, with faster responses for cue A, 

indicating that cue A was not as much of a stop cue overall as B. The A vs G 

contrast was not significant, t(872) = 0.25, p = .805, 95% CI [-8.60, 11.07], d = 

0.02, nor was the A vs R contrast, t(872) = 0.73, p = .468, 95% CI [-6.19, 

13.48], d = 0.05. In terms of R, the contrast against B was marginally significant 

at the standard alpha level, t(872) = 1.84, p = .065, 95% CI [-0.58, 19.09], d = 

0.12, suggesting a weak trend for faster responses to cue R than B. The 

contrast against G was non-significant, t(872) = -0.48, p = .631, 95% CI [-12.24, 

7.42], d = -0.03. 

For p(respond), as with reaction times, the interaction with random intercept 

model had the lowest AICc (see Table 2.10), yet for the reasons noted above I 

used a main effect of cue with random intercepts model. The G vs. B contrast 

was not significant, z = 0.68, p = .499. The A vs. B contrast was significant, z = 

2.74, p = .006, with more errors for A than for B, indicating that A was not a 

strong stop cue. The A vs. G contrast was not significant at the reduced alpha 

level, z = 2.11, p = .035, with more errors for A than G tentatively suggesting A 

was a go cue. The A vs. R contrast was not significant, z = 0.00, p = 1.00. The 

contrast for R vs. B was significant, z = 2.74, p = .006, with more errors for R 

than B, demonstrating that R was not a strong stop cue. The R vs. G contrast 

was significant at a standard alpha level, z = 2.11, p = .035, with more errors for 

R than G. The results indicate that cues B and G primed similar responses, 

while cues R and A primed responses that were more error prone.  
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Table 2.10. AICc scores for models run for joint analysis on test reaction time 

and p(respond) data. Bold indicates the chosen model. 

 

 

 

 

 

 

 

 

Model Training 

Reaction time models  

Main effects of cue and experiment 11014.80 

Interaction effects of cue and experiment 11028.52 

Main effects of cue and experiment with random intercept 

 

10251.55 

Interaction of cue and experiment with random intercept 

 

10212.01 

p(respond)  

Main effects of cue with Gamma family and inverse link - 6229.28 

Interaction effects of cue with Gamma family and inverse link 

 

-6281.57 

Main effects of cue with Gamma family and inverse link and 

random intercept 

 

-6581.25 

Interaction effects of cue with Gamma family and inverse link 

and random intercept 

-6628.49 
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Cue Reaction Time p(respond) p(miss) 

 Mean SD Mean SD Mean SD 

A 400.63 64.84 0.02 0.04 0.01 0.02 

B 413.53 69.84 0.01 0.03 0.01 0.00 

G 401.86 66.25 0.02 0.03 0.01 0.02 

I 390.84 56.13 0.01 0.02 0.01 0.03 

IP 406.76 62.59 0.02 0.03 0.01 0.02 

J 402.13 56.82 0.01 0.02 0.01 0.03 

P 402.86 66.50 0.02 0.04 0.01 0.02 

R 404.27 61.66 0.02 0.04 0.01 0.02 

RA 404.00 59.03 0.02 0.04 0.01 0.02 

Table 2.11. Descriptive statistics for the joint analysis. Reaction time means are 

calculated using raw data, but mean p(respond) and p(miss) use transformed 

data.  

 Summary 

The joint analysis confirms that participants were learning about the task in the 

expected manner with G having significantly faster response times than B. The 

analysis also clearly showed the change in relative acquisition of the R vs. RA 

and I vs. IP discriminations across the two experiments at training for reaction 

times, indicating that the task set manipulations were successful. This 

demonstrates that the changes in the experimental design changed the 

effective outcome (an issue I will return to in Chapter 4).  

In terms of the traffic light contingencies, the just significant difference for A vs. 

B for response time indicates that cue A (a 50% cue) primed a significantly 

faster go response than a 75% stop cue (cue B), suggesting that this was not a 

stop cue. The reaction time data suggests that cue A primed a similar response 

as cue G. Indeed, the p(respond) data indicates that it was more of a go cue 

than cue G, though the difference was only significant at a standard alpha level. 

This leads to the conclusion that cue A is a go cue. For cue R, the evidence 

suggests overall it was a weak go cue. The cue was marginally significant at a 

standard alpha level to cue B (with faster response to R), and while not 

significantly slower than cues G and A did have numerically slightly slower 

response times. For error rates, Cue R had significantly more errors than cue B, 

and significantly more errors at a standard alpha level than cue G. The fact that 
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R is not a stop cue is surprising. It may be the case that RA is such a strong go 

cue that some of the go association transfers to the singleton R cue. However, 

looking at the descriptive statistics, RA does not seem to be a strong go cue. 

This suggest a more complex interaction between cues A, R, and RA, one that 

results in both cue A and cue R becoming go.  

 GENERAL DISCUSSION 

Experiment 1 aimed to provide initial evidence that the contingencies learnt 

under a stop task set at traffic lights might not be in line with the rules of the 

Highway Code. However, the experimental design meant it was not possible to 

reach conclusions about learning towards key cues. Fortunately, Experiment 2 

was able to provide evidence of learning, finding that cue A was experienced as 

a weak go cue and cue R as a weak stop cue. Experiment 2 made use of the 

feature-positive effect to confirm that the design was indeed inducing a stop 

task set with the feature-positive contrast (I- vs. IP+) being more readily learnt 

than the feature-negative discrimination (R+ vs. RA-) during training. This 

suggests that participants were looking to successfully withhold rather than 

respond. Experiment 3 demonstrated how swapping the response signal colour 

and changing the instructions can affect task outcome, in this case from stop to 

go. There was support for a feature-positive effect in commission errors during 

training, providing limited evidence of the feature-positive contrast being better 

learnt than the feature-negative contrast, suggesting that participants were now 

learning to respond. Under a go task set it seems that cue A primed a 

neutral/weak stop cue, and cue R a stronger stop response. Joint feature-

positive analysis of Experiment 2 and Experiment 3 found that the outcome of 

the tasks had been successfully manipulated as far as training reaction time 

measures were concerned. The analysis showed that the feature-positive effect 

swapped around from Experiment 2 to Experiment 3, with a significant 

difference between the differences capturing this effect in each experiment (i.e. 

(R-RA)-(IP-I)), though the magnitude of the effect was higher in Experiment 2 

than in Experiment 3. 

In terms of the traffic light contrasts, the joint analysis suggests that, in a 

situation when both go and stops task sets are in play, cue A promotes going 

(faster and more errors than B), while cue R is best described as a weak go 
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cue, though it should be noted that there is relatively little difference between 

these cues. The findings will now be considered in terms of implications for the 

associatively-mediated stopping theory, the feature-positive effect, as well in 

terms of future experimental designs. 

 Implications for the associatively-mediated stopping 

hypothesis 

Firstly, it should be noted that across Experiments 2 and 3 I found good 

evidence that participants learnt to discriminate between a go and a stop cue, 

with the G vs. B contrast being significant at test for reaction times in 

Experiment 2 and the joint analysis. This indicates that participants were able to 

learn about the contingencies for the cues at an associative level. The results 

also suggest that, in line with the associatively-mediated inhibition hypothesis 

(Verbruggen, Best, et al., 2014; McLaren & Verbruggen, 2016), pairing an 

arbitrary stimulus with withholding a response leads to the stimuli having slower 

reaction times when a response to it is required (the reasons why I believe cue 

B to be a stop cue are explored below). 

As discussed in Chapter 1, there is good reason to ask if go/no-go paradigms 

require action cancellation. If go/no-go tasks are measuring strength of action 

initiation this undermines the claim that, using such tasks, inhibition can be 

developed through pairing stimuli to stop responses. To increase the likelihood 

of action cancellation occurring within go/no-go tasks they are typically 

designed so that go is the prepotent response. The assumption is that with go 

being the default response the go process is activated immediately on the 

presentation of a stimulus. However, this approach is not suitable for studies 

investigating human learning which, like Experiment 2 and 3, require an overall 

50:50 go likelihood ratio so as not to bias overall learning. Does this in fact 

mean that the tasks here are simply measuring action initiation? One aspect of 

the design suggests this is not the case: the adaptive staircase ensures that 

participants are always responding as quickly as they can and keeps response 

times under 2000ms. The reaction time means for the experiments reported 

here were mostly around 400ms. This is a short latency, especially when 

considering that reaction times are unlikely to be quicker than 150ms, therefore 

I am reasonably confident that action cancellation is being measured by the 

go/no-go task in these experiments. This is, because the sheer speed of 
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responding suggests that the go response is initiated very rapidly, implying that 

responding would then have to be modulated by inhibition. This argument is 

further bolstered by the low omission errors seen across the experiments. This 

indicates that go responses are prepotent, as one would expect high omission 

errors if cues caused the absence of an action rather than inhibition of action. 

One feature of the experiments presented here is the mix of 25%, 50%, and 

75% cues. Throughout that chapter it has been held that cue B (75% stop) 

represents stopping and cue G (75% go) represents going. But can a 75% stop 

cue be used as evidence for associatively-mediated inhibition? Might it rather 

be called a weak go cue? If the terms of the experiments are reframed from 

inhibition to excitation, then the results could be phrased as the 25% cue 

becoming an excitatory cue, leading to more commission errors and faster 

reaction times. A similar concern was raised by Bowditch et al. (2016), who 

made the case that it is possible to use the 50% cues as a baseline as these 

cues are neither associated with going or stopping. This logic does not fully hold 

for the experiments presented here, as the 50/50 cues (ignoring Experiment 1) 

are either involved in other compounds (e.g., cue A is also seen in cue RA) or 

involved in tracking (cue J). While the contingency for J is 50/50 the cue 

receives additional training on its own at the start of the experiments and so is 

treated differently. Furthermore, due to the tracking procedure there is a positive 

feedback loop on cue J, with responses to J directly affecting the outcome of 

the next response. Yet, analysis by Bowditch et al. (2016) found evidence of 

differences between 25% stop and 50% stop cues and 50% stop and 75% stop 

cues, indicating that 75% stop cues can lead to inhibition and that 25% stop 

cues can become excitatory, suggesting that both excitatory and inhibitory 

effects can occur. Other research also supports the notion that cues requiring 

stop responses can become associated with inhibition. For example, imaging 

studies have found increased activation in areas linked to inhibition on 

presentation of cues previously linked to stopping even when a go response 

was required (Lenartowicz, Verbruggen, Logan, & Poldrack, 2011). 

Furthermore, Leocani et al. (2000) found that on presentation of no/go cues 

motor output fell below resting levels, suggesting that performance on no/go 

trials cannot just be inaction but rather involve active action cancellation.  
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 The Feature-positive effect 

The research presented here further supports the notion that not all 

discriminations between singletons and compounds are equal, and that those 

that signal the absence of an outcome (R+ RA-) are, in some instances, harder 

to learn than compounds that signal the presence of an outcome (R- RA+). 

Building on the work of Bowditch (2016) the research reaffirmed that this can be 

learnt in an incidental procedure and, that depending on the task at hand, what 

would be the traditional feature-negative discrimination can have an advantage 

– quite at odds with past work in this field (Lotz et al., 2012) – but easily 

explained in terms of the effective outcome interpretation. 

 Variability of the effect 

The findings suggest that the feature-positive effect is not consistent. This could 

be because the effect itself is relatively weak or that overall learning is weak. In 

Experiment 2, the results from training reaction times indicated that the feature-

positive discrimination was easier to learn than the feature-negative. However, 

the effect was only marginally significant at test and the difference was not 

found in the commission error data. While in Experiment 3, none of the critical 

differences in reaction time data were significant (although the training contrast 

was in the right direction), and only the discrimination for commission errors 

during training supported the feature-positive effect.  

It is worth noting the commission error results might reflect the induced 

changing task priorities for participants. When participants are looking to stop 

(Experiment 2) then the measures that relate to ‘going’ seem to be less 

sensitive than when participants are looking to go (Experiment 3). Similar 

results were found by Bowditch (2016), and past work (Verbruggen, Stevens, & 

Chambers, 2014) suggests that stimulus detection is a limited resource with a 

balance needed to be struck between ignoring irrelevant information and 

monitoring for occasional but highly relevant signals. Thus, when participants 

are in a stop task set, more attention is directed to focusing on stop cues and 

therefore they are less likely to respond incorrectly, whilst when in a go task set 

attention is shifted to focusing on responding and so more commission errors 

occur.  
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 The effect of task set  

The results do suggest that a participant’s task set is key to the learning that 

takes place at traffic lights. When participants are in a ‘go’ task set (perhaps 

when waiting at traffic lights) then they are in a better position to learn that red 

traffic lights means stop, but when participants are in a ‘stop’ task set (perhaps 

when approaching traffic lights) learning is modified and red traffic lights are 

seen as a more neutral cue and now amber lights may even come to signal go. 

This has a number of implications. First, and counter-intuitively, it appears that 

drivers may learn that red and amber cues mean ‘stop’ best when the effective 

outcome is going. I can re-phrase this to say that it is when they are looking for 

signals that allow them to make progress, but the default is to stop, or at least 

proceed with caution, that red and amber lights will act as stop cues. This is 

rather surprising, as one might have thought that when the default is to go, and 

one is looking out for a stop signal, then this is when learning about stop will be 

optimal, but the evidence suggests that this is not the case. Instead, it may be 

that establishing a task-set in drivers that has the default as stopping coupled 

with and an active search for signals that denote permission to proceed will be 

most effective in curbing running red lights and jumping amber ones. Secondly, 

the current model of contingency learning at traffic lights used in the three 

experiments reported here is inadequate. Task set seems to be a key factor in 

participant’s learning. However, when driving it is likely that different task-sets, 

and hence outcomes, are effectively in play for different contingencies. By this I 

mean that some lights are experienced by their very nature in a stop task set 

(when approaching lights; Green, Amber, and Red lights) and some lights will 

be experienced in a go task set (when stationary at lights; Red, Red and Amber, 

and Green), thus the approach taken thus far is, at best, incomplete. I will return 

to this idea in Chapter 4 where I design a task that more accurately captures the 

contingencies in play in these scenarios.  

 Modelling the contingencies  

It has been argued that the incidental go/no-go task provides a model for 

exploring the learning of contingencies experienced at traffic lights. However, 

the model needs refinement. Firstly, the model does not contain the sequential 

information that traffic lights provide. That is, in the real-world a red traffic light is 

always preceded by an amber, yet in the experiments here it could be preceded 
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by a ‘green’ light. Secondly, the contingencies used in the designs did not 

match exactly those of traffic lights in the real-world, for example cue G was 

predicting of going 75% of the time, whereas in the real-world green always 

signals go. Thirdly, traffic light changes are timed, e.g., red and amber is only 

displayed for a short while before being followed by green, whereas in the 

current design the ‘lights’ are not participant to any intentional timing effects. 

These design issues are all addressed in further chapters, but it is worth 

highlighting here how substantial the jump from the current design to actual 

experience of the contingencies at traffic lights is.  

Additionally, this chapter started with the aim of exploring what learning is 

primed by associatively-mediated processes in order to inform development of 

later interventions. However, while the data suggests what is being learnt, the 

expression of this learning is less clear. It might be the case that the 

contingences highlighted in the task are not reflective of the decision-making 

processes drivers make in the real-world. A driver's response to traffic lights is 

likely heavily influenced by context, prior experience, and initially explicit 

instruction. Therefore, while it seems that at an associative level learning in this 

task does not support the rules in the Highway Code, the expression of this 

learning, and thus its effect on behaviour, will be tempered by a variety of 

factors.  

 Conclusion 

To conclude, the experiments presented here mark the initial development of a 

laboratory-based paradigm that tries to capture the experience of contingencies 

at UK traffic lights and its impact on associative learning of those contingencies. 

Caveats about the design limitations aside, the experiments demonstrated that 

cue A was experienced as weak go cue in a stop task set and a neutral or weak 

stop cue in a go task set. The joint analysis which was intended to capture more 

realistic experience of task set at traffic lights indicated that amber was 

experienced as a go cue. Thus, in situations when control processes are weak, 

the evidence suggests that associative processes could lead people to commit 

traffic violations. These findings also suggest that the development of 

interventions to target these stimulus-response associations could be useful in 

addressing dangerous behaviour at traffic lights. Finally, the results also 

demonstrate how small changes in the experimental design can lead to shifts in 
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task demands, and how task set could be an important factor in what is learnt at 

traffic lights.  

So far, the task has presented each cue independently (i.e. cue G could be 

followed by cue R), but within UK traffic lights there is a set sequence and it 

possible that this sequence impacts upon learning. Therefore, the following 

chapter explores the role of sequences by adding them to the design already 

employed.  
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3 CHAPTER 3 

ASSOCIATIVE PROCESSES II: THE EFFECT OF SEQUENCES 

UPON CONTINGENCY LEARNING  

his chapter discusses the effects of sequences upon the learning of cues. 

Chapter 2 highlighted how the learning that takes place in response to 

cues at traffic lights does not necessarily mirror the rules of the road. However, 

the experiments did not incorporate the sequences experienced at traffic lights. 

This chapter rectifies this and shows the effect sequences have upon the 

associative learning resulting from the contingencies experienced at traffic 

lights. 

 THE IMPORTANCE OF SEQUENCES 

The importance of sequences in human cognition cannot be overstated. As 

Ashe, Lungu, Basford, and Lu (2006) note, sequences are key to language, 

episodic memory, and motor movements. A sequence is a list of cues, events, 

or digits that follow an order, e.g., an area code for a telephone number such as 

01392. Sequences may be rule based, but these rules can operate at a specific 

level (such as ‘1’ must be the second digit within the sequence for the above 

example) or the rule can be more abstract, with a particular set of items 

preceding a different class of items. For example, in the telephone number 

01392 661000 the first set of digits would be the area code, with the succeeding 

digits being the specific number for the person you wish to call (in this case the 

University of Exeter main switchboard). Crucially, the area code needs to be 

entered first for the call to connect.  

Research on sequence learning in humans has focused heavily on the study of 

motor sequences due to the ease in which learning effects can be found in a 

short period of time (Ashe et al., 2006). Many of these experiments use the 

serial reaction time task by Nissen and Bullemer (1987). In this task a single 

visual cue can appear in any one of four locations within a trial. When the cue 

appears, participants must press the appropriate key for the location of the cue; 

the reaction time between the appearance of the cue and the participant’s 

response to it is the primary measure of performance. Unbeknown to the 

participant, the position of the cue is controlled by a sequence, e.g., positions 1-

T 
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2-4-2-1-3-3-2-1 occur in that order. These sequence trials are then followed by 

random trials where the cue is presented on the screen but without the 

sequence. Typically it is found that learning to the cue becomes enhanced, that 

is faster reaction times and fewer errors, when it is presented within sequence, 

compared to learning in the random order blocks (Willingham, Nissen, & 

Bullemer, 1989; for a review see Robertson, 2007). 

While there are several types of sequences (for a review see Conway and 

Christiansen, 2001) this chapter will concern itself with fixed sequences. These 

are sequences where the pattern is pre-set. For example, the phrase ‘It was a 

dark and stormy night’ is a fixed sequence. The operation of traffic lights is 

another example. These sequences are generally easy to learn, with young 

human children (aged between two and 4 years old), capuchin monkeys, and 

chimpanzees all being shown to be able to learn them (Custance, Whiten, & 

Fredman, 1999; Whiten, Custance, Gomez, Teixidor, & Bard, 1996). Indeed, the 

chimpanzee Ai, who received training in numbers and symbols has been found 

to be able to learn a sequence of up to five numbers in line with young human 

children (Kawai & Matsuzawa, 2000). In general, the main point from this brief 

discussion of sequences is that they are important to human daily life and easy 

to learn (Clegg, DiGirolamo, & Keele, 1998), with cues in sequences showing 

enhanced learning compared to randomly ordered stimuli.  

 ASSOCIATIVE LEARNING OF SEQUENCES 

One area of contention in the field of sequence learning, especially relevant to 

this thesis, is the question of whether sequences can be learned through 

associative systems. Early evidence in support of this argument came from 

work by Nissen and Bullemer (1987) who found patients with amnesia were still 

able to learn the sequence contained within a serial reaction time task. Using a 

similar approach Cohen, Ivry, and Keele (1990) asked participants to complete 

a serial reaction time task while also reporting on the pitch of a presented tone. 

The idea here is that if sequence learning is not reliant on propositional learning 

then learning in the experimental group should be better than in the control 

group who received random sequences, despite the cognitive load induced by 

the tone task. Results demonstrated that those in the sequence group showed 

an improvement in performance (as measured by a reduction in reaction times) 
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compared to the control group. In order to assess awareness, participants 

completed a generation task at the end of the experiment. In this task 

participants were required to press the key indicating where the position of the 

next cue would be, rather than responding to the position of the current key. 

The results showed a non-significant difference in accuracy of predictions 

between the two groups. Thus, there was a dissociation between response 

times and awareness which was claimed to indicate that participants were 

learning the sequence associatively (Willingham et al., 1989; Reed & Johnson, 

1994) 

Work in the mid-1990’s cast doubt on the appropriateness of the generation 

task to assess awareness. The seminal work of Shanks and St. John (1994) 

argued that such tests failed to establish that learning is occurring outside 

propositional routes. The authors argued that such awareness tests often do not 

provide feedback thus running the risks that participants might be forgetting the 

sequence and therefore be unable to report it. The authors also argued that lack 

of awareness could be due to participants not transferring knowledge from one 

task to another, that is, participants could have seen the two tasks as distinctly 

separate and so not apply knowledge learnt in the reaction time task to the 

awareness task. In support of this transference argument Perruchet and 

Amorim (1992) used an adapted generation task whereby participants were 

directly instructed to form sequences similar to those they had seen in the 

training blocks. The authors found evidence that successful reporting of the 

sequences matched the enhanced response times to these sequences. That is, 

participants were able to report explicit knowledge of the sequences and this 

corresponded to shorter response times, indicating a shared process for 

performance and conscious knowledge (but see Cohen & Curran, 1993; 

Willingham, Greeley, & Bardone, 1993). 

However, there are two strands of evidence that suggest learning of sequences 

can occur separately from explicit processes. The first strand comes from the 

field of clinical psychology, while the second derives from laboratory-based 

experiments. It has been argued that reading deficits associated with dyslexia 

are, in part, caused by impairment in incidental learning of sequences (Lum, 

Ullman, & Conti-Ramsden, 2013). Therefore, in tasks where sequences are not 

made explicit it would be expected that dyslexic individuals would learn the 
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sequence to a lesser extent than healthy controls. This is what Jiménez-

Fernández, Vaquero, Jiménez, and Defior (2011) found. The authors compared 

performance between dyslexic children and good readers in both intentional 

and incidental versions of a sequence learning task. Results showed that in the 

incidental version, normal controls exhibited typical learning patterns, with 

reaction times shortening over time, while dyslexic participants showed no such 

pattern. In contrast, when the task was intentional, in that participants were 

informed about the sequences, both controls and dyslexic participants showed 

the typical pattern of learning. 

The second strand of evidence supporting the notion that sequences can be 

learnt through associative process comes from work by McLaren and 

colleagues over several years. For example, F. Jones and McLaren (2009) 

conducted two experiments looking at the differences between incidental and 

intentional learning within a serial reaction time task. Experiment 1 explored 

learning under incidental conditions. The experimental group was exposed to 

four sub-sequences (XXX, XYY, YYX, and YXX) while the control group only 

saw pseudo-random sequences. In a subsequent test phase, both groups 

received the same trial order of pseudo-random sequences. Performance was 

measured on occurrences of the experimental sub-sequences within the 

pseudo-random test block. Overall, there was evidence that sequence learning 

had occurred, with better performance (less errors, faster response times) in the 

experimental group at test compared to the control. Further analysis revealed 

the effects were driven by differences in sub-sequences YYX and XYX. 

Strikingly, a structured interview conducted after the test phase found that the 

experimental group were not able to verbalise knowledge of the sequences to 

explain their performance on the task. In a separate experiment where 

participants were informed of the sequences, the XXX sequence showed the 

greatest evidence of learning. Therefore, it seems there is a dissociation of 

learning, with enhanced learning of sequences YXY and YYX under incidental 

conditions, while under intentional conditions learning is best to the XXX 

sequence. These results lend weight to the view that propositional knowledge is 

not necessarily key to sequence learning, and that learning can occur at an 

associative level (Spiegel & McLaren, 2006; McLaren, Jones, McLaren, & 

Yeates, 2013; Yeates, Jones, Wills, McLaren, & McLaren, 2013). However, it 

should be noted that associative learning and propositional learning are 
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perhaps more closely interlinked than the discussion here suggests (Spiegel & 

McLaren, 2001), and it is likely that sequence learning occurs under something 

like the framework proposed by McLaren et al. (2019). 

 PRESENT EXPERIMENTS 

So far in my research on associative learning at traffic lights no account has 

been taken of the role of sequences. That is, in the previous experiments, a 

green traffic light could be followed by a red traffic light whereas, in the UK at 

least, it is followed by an amber light. Research has shown the advantage that 

sequences confer to learning of cues (Willingham et al., 1989) and how 

sequences can be learnt at an associative level (F. Jones & McLaren, 2009). 

Therefore, it is fair to assume that the current experimental design is lacking a 

key source of learning that is not only in play in the real-world but is also likely 

to have a large effect on the learning of the cues. Thus, to ensure that the 

laboratory experiments reflect real-world learning, the design will need to 

employ the relevant sequences. 

 EXPERIMENT 4 

Experiment 4 is a replication and extension of Experiment 2, in that it uses a 

stop task set, but with the addition of (some of) the sequences experienced at 

traffic lights. I have already talked about the main sequence at UK traffic lights, 

which is green-amber-red-red and amber-green, and so it would be easy to 

imagine that simply having Experiment 4 follow this pattern would be sufficient. 

However, while this is the main sequence, a driver can enter this at any point 

and thus there are several sub-sequences that might be experienced. For 

example, red and amber together followed by green – with this sequence not 

containing a singleton red or amber. Therefore, it was important that the 

sequences employed in the experimental design captured the range of potential 

sequences experienced at traffic lights in the real-world. Table 3.1 outlines the 

sequences that participants experienced in the experiment. 

The sequences were chosen to not only reflect the various start points possible 

but also to capture some of the contextual experience of traffic lights. For 

example, in Green 1, G is go in both cases, mimicking the situation when the 

lights have recently changed to green, and thus it is likely a driver would have 
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time to cross the junction. Whereas in Green 2 G is stop, modelling the situation 

where a driver has not been able to cross a junction on a green light, or has 

entered the junction when the lights have been green for some time and so 

could be expecting them to change and hence might be more cautious. There is 

an argument for having a preceding go G before the stop G to mimic the shift in 

driver’s perception of G being a go cue to a prepare to stop cue, but there was a 

limit to the number of sequences that could be included in order to keep the 

experiment relatively quick. More generally, it is worth highlighting that it is 

evident that the sequences employed here are not going to capture all 

experiences in the real-world. The use of double G and double R served to 

model the fact that traffic lights often display red or green, with amber and 

red/amber being transitional signals.  

Table 3.1. Sequence runs for Experiment 4 ‘+’ is 100% stop, ‘-’ is 100% go. 
 

To balance the number of singleton ‘-’ and ‘+’ cues, the number of 50/50 cues, 

and compound ‘-’ and ‘+’ cues, a more complex array of filler cues were used 

than in previous experiments (see Table 3.2). Whereas the designs in Chapter 

2 used 75% going and stopping, in this chapter due to the wish to focus more 

on the experience at traffic lights the overall going or stopping to a cue is 

determined by the sequences, for example cue R has a go ratio of 1:6, and cue 

G a go ratio of 8:1 (for comparison in Experiment 2 the ratio for R was 1:3, and 

cue go was 3:1). Therefore, cue B is no longer a 75% cue but now directly 

Light type Sequence 

 

Green 1 

Green 2 

 

Amber 1 

Amber 2 

 

Red 1 

Red 2 

 

Red/Amber 

 

G- -> G- 

G+ -> A+ ->R+ ->R+ ->RA- ->G- 

 

A- ->A- 

A+ ->R+ ->R+ -> RA- ->G- 

 

R+ ->R+ ->RA- ->G- 

R- ->RA- ->G- 

 

RA- ->G- 
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balances out cue G (i.e. has a 8:1 stop ratio). I also introduced a new cue, YZ± 

which was a compound cue to balance the experience of other compound cues, 

RA and IP. Of course, these and other filler cues were not experienced 

identically to the experimental cues, as they are not themselves in a sequence. 

Given that learning to cues in sequences has been shown to be enhanced 

compared to cues not in sequences (Nissen & Bullemer, 1987), to ensure that 

any filler cues were of equal status (in terms of learning) to the traffic light cues 

it would have been necessary to have them in the same sequence runs as the 

traffic light cues, i.e. Blue 1 would have been the opposite of Green 1, so B+ -> 

B+. However, given the ubiquitous nature of the traffic light sequence, it was felt 

best to have single filler cues so as to break up the runs of sequences. This 

aimed at helping to prevent participants focusing too much on the sequences, 

and thus guess the nature of the task (this decision does influence the analysis 

undertaken which is discussed in the Results section). Furthermore, including 

the ideal control sequences in the design would have substantially increased 

the length of an already long experiment, exacerbating participant fatigue.  

Table 3.2. Filler sequences for Experiment 4. ‘+’ is 100% stop, ‘±’ is 50/50 go, ‘-’ 

is 100% go. Each letter in the cue column represents a shape drawn randomly 

from a set pool. 

This design does leave the experiment open to issues of repetition priming 

(which were not an issue in my earlier experiments). This is a separate issue 

from sequence learning and arises from the influence of past trials in the 

sequence on responses to the current trial, potentially producing shorter 

response times if the cue signals the same position/response previously 

Filler type Cue 
Occurrences per 

block 

Cue G filler 

 

Cue R filler 

 

Cue RA filler 

50:50 filler 

50:50 filler 

Tracking cue 

B- 

B+ 

I- 

I+ 

IP+ 

P± 

YZ± 

J± 

4   

32  

24  

4 

24 

16 

16 

8 



106 
 

experienced/required (Soetens, Boer, & Hueting, 1985). Therefore, differences 

in performance could be driven not only by sequence learning but also by 

repetition priming effects (F. Jones & McLaren, 2009). However, aspects of the 

design are likely to minimise any such effects. Firstly, the experiment is within-

participants. This means that all participants receive both filler cues and 

sequence cues helping to dilute repetition priming effects. Additionally, the 

direction of response and, to some extent, the colour of the cue, are 

randomised. Even so, there is evidence that repetition priming effects can still 

occur even in simple designs such as that employed here (M. Jones, Curran, 

Mozer, & Wilder, 2013). I will use specific analyses to check that there are the 

associative effects above and beyond any repetition priming effects in my 

results section, but note that the emphasis now is not so much on what the 

basis of a speeded or slow response is, but on how people perform on the task 

under the conditions that prevail during training. Put another way, the emphasis 

shifts from an interest in mechanism to an interest in the analogy with real-world 

performance in these experiments. 

In the introduction to this chapter, the issue of associative learning to 

sequences was raised. There is good reason to assume that the work 

presented here will support the view that sequence learning can occur 

associatively. Given that the basic design used here is similar to that of 

Experiment 1 in F. Jones and McLaren (2009), in that it is a two-choice reaction 

time task and participants will not be informed of the sequences beforehand, it 

is not a leap of logic to assume the lack of explicit knowledge found in that study 

will also hold true for the current work. As a check on this assumption, an 

awareness measure was introduced (see Procedure for details).  

 Method 

 Participants 

The inclusion criteria and outlier removal process were the same as Experiment 

2 (see Results section for details of those removed). A power analysis using the 

R package SIMR (Green & MacLeod, 2016) was conducted on detecting an 

effect between a go vs. stop cue (G vs. B, see section 3.4.1.2 for details) at test 

in reaction times. The effect size for this difference was set at 14.21ms 

(calculated by averaging the difference in the G vs. B contrast at test across 
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Experiments 1-3). Overall, the analysis indicated that a sample size of 80 would 

give sufficient power (82.30%) to detect the effect. However, in view of the 

stronger learning typically observed when sequences are involved it was 

decided to test 55 participants and run a new power analysis. The post-hoc 

power analysis for first sequence trial data at test (which is comparable to 

Experiments 2 and 3) gave the final sample size of 56 participants a power of 

56.30% to detect a difference of 14.21ms between the go vs stop cue (G vs. B) 

at test. Though, of course, given the use of sequences in the current study, it 

would be expected that the difference between G and B at test would be greater 

than in Experiments 2 and 3. This was the case, with the difference being 

22.35ms, with the study having a power of 89.30% to detect a 22ms difference. 

Participants received payment of £5 or one course credit. 

 Design  

Overall, there was one calibration block, six training blocks, and one test block 

(see Table 3.3 for summary of design) with a 10 second break between each 

block and a 10 second break halfway through each block (excluding the 

calibration block), with the proviso that these breaks did not disrupt a sequence. 

This was achieved by randomly setting the middle trial to be one of the filler 

cues, with the sequences being randomly ordered around this fixed point. As 

seen in Table 3.3 each sequence appeared more than once, e.g., the sequence 

Amber 2 appeared four times. This was in order to give participants enough 

experience of the sequences to encourage learning. In training, the 

contingencies for each sequence were those outlined in Table 3.1. For test, all 

contingencies were 50/50, for example Green 1 was no longer G- -> G- but 

rather G± -> G±. This 50/50 split was achieved by having half go and half stop 

sequences, so there were two G- -> G- and two G+ -> G+ in the test block 

which overall created the G± -> G± contingency. This mean that the sequences 

of responses over the block were no longer predictive. This approach enabled 

me to collect enough data on go and nogo trials to analyse both reaction time 

and commission errors. It should also be noted that due to the total length of the 

experiment the calibration block was halved to 24 trials. 
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Table 3.3. Summary of Experiment 4 design. Letters represent a sequence. The 

numbers in parentheses indicate how often the sequence will occur per block. 

At test the contingencies will all be ±. 

 Procedure  

The procedure was identical to that of Experiment 2 except that there was only 

one test block and there were breaks halfway through the training and test 

blocks. In the study any sequence randomly followed on from another, thus a 

run of trials could be RA- G-/ B-/ G+ A+ R+ R+ RA- G- which would be 

comprised of three sequences, ‘Red/Amber’, ‘Go singleton filler’ and ‘Green 1’. 

At the end of the experiment participants were asked to complete an awareness 

task.  

3.4.1.3.1 Awareness measures 

The awareness measure was taken from Bowditch (2016). In the task 

participants were shown the coloured shape cues used in the experiment and 

asked to rate on a scale of 1-9 (from ‘Definitely Not’ to ‘Definitely’) a) How much 

would you expect to RESPOND to this shape configuration? and b) How much 

would you expect to WITHOLD your response from this shape configuration? 

The order of questions was counterbalanced, and the cue order was 

randomised with the caveat that compound cues (e.g., RA) were always 

presented first followed by singleton cues (e.g., G). The shapes were presented 

at the same location and at the same size as in the previous blocks.  

Phase Blocks Individual 

trials per 

block 

Design  

Calibration 1 24  J 

Training 6 232 G1(4), G2(4), A1(4), A2(4), 

R1(4), R2(4), RA(8), B(36), 

I(28), IP(24), P(16), YZ(16) 

 

J(8) 

Test 1 232 G1(4), G2(4), A1(4), A2(4), 

R1(4), R2(4), RA(8), B(36), 

I(28), IP(24), P(16), YZ(16) 

J(8) 
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 Analysis and results 

In terms of the statistical approaches, Experiment 4 was conducted in much the 

same manner as the analysis of training for Experiment 2. In terms of outliers, 

three participants were removed and replaced for having high omission errors, 

while two participants were removed and replaced for having high commission 

errors. Two participants failed to complete the experiment. There were no 

outliers for reaction times. 

However, due to the complexity of the experimental design the analyses differ 

from that of Chapter 2. For ease the analysis of the training and test phases, as 

well as the awareness test will be discussed separately, with the results of each 

section following presentation of each analysis plan. 

 Training phase  

One issue with the experimental design was that comparisons between the 

cues in the sequences and filler cues are likely to be affected by sequence 

learning and repetition priming effects. As discussed in the introduction there is 

evidence to indicate that learning involving sequences is enhanced compared to 

learning without sequences (Nissen & Bullemer, 1987). Such effects mean it 

would be inappropriate to conduct tests exploring learning of the feature-

positive effect due to the fact that R vs. RA is a sequence contrast, while I vs. IP 

is not, and as such the feature-positive effect is explored separately in a later 

section. Furthermore, the effects might also impact the contrasts involving cues 

G, A and R against B, with the latter not being in the traffic light sequence. 

However, it was decided to retain these contrasts as the only way to provide 

contrasts against a clear stop cue, as there is no such cue in the experimental 

sequence (with R being also involved in RA, a go cue). This approach also fits 

with the need to try and capture more of the real-world behaviour when 

experiencing these contingencies at traffic lights, as they will be embedded in 

sequences like these. A further issue is the repetition priming effects in play for 

the traffic light sequences, thus findings between cues could be explained by 

referring to this effect, rather than an associative learning account. However, it 

is possible to run contrasts in the training phase that control for repetition 

priming and provide evidence that associative learning is taking place in this 

phase.   
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To summarise, contrasts were run on both training reaction time and 

commission error data to demonstrate that learning had taken place within the 

training phase. These contrasts were followed by the traffic light analysis (as in 

Experiment 2) to explore what responses cues might promote when the 

sequences experienced at traffic lights (and thus the inherent sequence 

learning and repetition priming) are considered (see descriptive statistics in 

Table 3.4). 

3.4.2.1.1 Reaction times  

For the training data, the best fitting model had a conditional R2 of 0.87 (see 

Table 3.5 for AICs).  

3.4.2.1.1.1  Evidence of associative learning 

To provide evidence of associative learning for reaction times at training it is 

possible to compare performance between R vs. I and R vs. B. In effect, these 

contrasts are a manipulation check (and separate from the main analysis), and 

thus the alpha level was only corrected to .025. In Table 3.1 the only occurrence 

of R- (a go R cue) is in the sequence Red 2. Therefore, given that reaction 

times are calculated by averaging correct responses times for a cue, the only 

data that will be considered for the average reaction time for cue R will come 

from this trial. Crucially, R- is the first trial of the Red 2 sequence, and thus will 

not be affected by repetition priming effects (assuming that the preceding cue 

was 50% stop across all participants). Cue I is the filler cue for cue R and so it 

is a natural comparison cue for this contrast. Noting that cue R is overall a stop 

cue, and cue I a go cue, if participants were learning about the contingencies it 

would be expected that cue R would have significantly slower reaction times 

than cue I. The R vs. I contrast was significant, t(440) = -3.22, p = .001, 95% CI 

[-15.27, -3.72], d = -0.31, with I being faster than R, confirming that participants 

were indeed learning the contingencies present in the design. The contrast R 

vs. B enables me to compare cue R to an out and out stop cue, with this 

contrast also being significant, t(440) = 3.74, p = < .001, 95% CI [5.23, 16.78], d 

= 0.36, with faster reaction times to cue R than B, suggesting cue R did not 

promote as much a stopping response as cue B.  
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3.4.2.1.1.2  Traffic light contrasts 

Noting the above, I can be confident that the following results arise as a 

consequence of associative learning as well as repetition priming. As G vs. B is 

no longer a pure manipulation check, the alpha level was corrected to .008. The 

G vs. B contrast was highly significant, t(440) = 11.64, p = < .001, 95% CI 

[28.52, 40.07], d = 1.11, with G being faster than B, thus confirming that 

participants were responding in accordance with the contingencies present in 

the design. In terms of the experimental contrasts, A vs. B was also highly 

significant, t(440) = 9.35, p = < .001, 95% CI [21.77, 33.32], d = 0.89, with faster 

responses to cue A. The contrast A vs. G was not significant at the reduced 

alpha, t(440) = -2.29, p = .023, 95% CI [-12.52, -0.97], d = -0.22, but there was 

a trend for slower responses to cue A than to cue G. The contrast for A vs. R 

was highly significant, t(440) = 5.61, p = < .001, 95% CI [10.76, 22.31], d = 0.54, 

with faster reaction times to cue A. In terms of the R contrasts, the R vs. B 

contrast was significant, t(440) = 3.74, p = < .001, 95% CI [5.23, 16.79], d = 

0.36, with cue R having faster responses, suggesting it was not as much of a 

stop cue as B. The R vs. G contrast was highly significant, t(440) = -7.90, p = < 

.001, 95% CI [-29.06, -17.51], d = -0.75, with responding in the presence of R 

being slower, indicating that R was not as go as cue G.  

3.4.2.1.2 p(respond)  

For this measure, the best model was a model that included the main effects of 

cue with a Gamma family and inverse link and random intercept (see Table 

3.5).  

3.4.2.1.2.1  Evidence of associative learning 

Using the same logic outlined for the training reaction time data, contrasts for 

commission errors for G vs. B and G vs. I were run to provide evidence of 

associative learning for this measure. Looking at Table 3.1, Cue G is the only 

traffic light cue that has a stop contingency that only occurs at the start of a 

sequence (Green 2). Given that cue B is a stop cue, from an associative 

learning perspective it would be expected that cue G would have more errors 

than cue B and this was the case, z = 4.84, p = < .001, with more errors for cue 

G, thus confirming that the participants were learning the contingencies present 

in the design. The G vs. I contrast was run to establish if cue G was a go cue of 

similar power to a filler go cue. The contrast was not significant, z = 0.88, p = 
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.379, indicating that learning was similar between these cues (supported by the 

numerical values in Table 3.4).  

3.4.2.1.2.2  Traffic light contrasts 

Given the result for G vs. B, I can be confident that the following results arise 

through associative learning as well as repetition priming. For this set of 

analyses, the alpha level was corrected to .008. The G vs. B contrast was 

significant, z = 4.84, p = < .001, with more errors for cue G, thus confirming that 

the participants were learning the contingencies present in the design. The A 

vs. B contrast was not significant, z = 0.85, p = .396. However, the A vs. R 

contrast was significant, z = 3.39, p = < .001, with more errors for A than R, 

suggesting that A was more of a go cue than R. The contrast for A vs. G was 

also significant, z = -4.16, p = < .001, with more errors for cue G suggesting that 

A was not as strong a go cue as G. Focusing on the R contrasts, the R vs. B 

contrast was nearly significant, z = -2.60, p = .009, with more errors for cue B 

than cue R, suggesting that cue R was a strong stop cue. The R vs. G contrast 

was highly significant, z = -6.69, p = < .001, with more errors for G than R, 

suggesting that R did not prime a go response in a similar fashion to G.  

Cue Reaction Time p(respond) p(miss) 

 Mean SD Mean SD Mean SD 

A-/+ 358.43 40.77 0.02 0.01 0.01 0.01 

B+ 385.98 42.93 0.01 0.01 0.02 0.02 

G- 351.69 38.57 0.03 0.03 0.01 0.01 

I- 365.48 39.54 0.03 0.03 0.01 0.01 

IP+ NA NA 0.02 0.01 NA NA 

J± 369.23 40.22 0.02 0.02 0.02 0.02 

P-/+ 381.92 43.85 0.01 0.01 0.02 0.02 

R+ 374.97 41.35 0.01 0.005 0.01 0.01 

RA- 377.26 41.78 NA NA 0.01 0.01 

YZ-/+ 379.59 45.39 0.02 0.01 0.01 0.01 

Table 3.4. Training descriptive statistics for Experiment 4. Reaction time means 

are calculated using raw data, but mean p(respond) and p(miss) use 

transformed data. 
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3.4.2.1.3 Training phase summary 

Overall, the training data for reaction time and p(respond) analysis suggest that 

when considering some of the sequences experienced at traffic lights, in 

addition to associative learning, cue G is a go cue, cue A is being experienced 

as a weak go cue (with the commission error result suggesting it promotes 

significantly less of a go response than G), and cue R is experienced as a weak 

stop cue, being significantly faster than cue B for reaction times, but almost 

prompting a significantly greater stopping response for p(respond). 

Of course, the fundamental question is whether associative learning is involved. 

For example, it is quite possible that the speeded reactions to G on go trials 

owe something to G being preceded by another go trial most of the time. This 

will not as often be the case for B, and so some of the advantage can be 

explained in terms of the facilitation in responding brought about by not having 

to stop on the preceding trial. However, the comparison of R vs B for reaction 

times is not susceptible to this explanation. The only go trials for R occur at the 

start of a sequence, and so the preceding trial for R and B are, on average, 

matched, and hence it can be trusted that R is actually faster than B (and 

slower than I), and so is not as good a stop cue when evaluated in this way. 

The point is, of course, that it may well do better when it is embedded in the 

sequences it is part of, and the p(respond) data hint at that, but it is impossible 

to disentangle the effects of sequence learning from the effects of repetition 

priming there. Turning now to G vs. B for p(respond), it is clear that there are 

more errors to G than to B (and about the same as to I) which establishes that it 

is a go cue, because once again stop trials for G only occur at the beginning of 

a sequence and so are not contaminated by repetition priming. Again, this is 

possibly underestimating how effective G is as a go cue when encountered ‘in 

sequence’. Nevertheless, the conclusion must be that the associatively-

mediated learning effects expected based on Experiments 2 and 3 are 

occurring here. 

 

 

 

 



114 
 

Table 3.5. AICc scores for models for Experiment 4 run on reaction time and 

p(respond) data at training and test. Bold are the models chosen. 

 Test analysis  

Due to the design of the test phase whereby, overall, the phase had 50/50 

contingencies, but this occurred through runs of certain responses, it is likely 

that repetition priming effects were having a sizeable impact upon performance. 

Therefore, it was not possible to undertake the analysis performed in 

Experiment 2. This is because repetition priming effects on their own could lead 

to cue G (almost always at the end of a sequence) being faster than R and A, 

which tend to occur at the start or middle of a sequence. The solution is to 

undertake two separate analyses. The first focuses on performance on the first 

trial of every sequence and as such is free from repetition priming effects (the 

trials just before these trials will, on average, have the same distribution of go 

and no-go responses). Given the lack of sequential information this is similar to 

the test analyses conducted in Experiments 2 and 3. The second will focus on 

performance to cues contained within a sequence (that is cues in any nth 

position bar the 1st), and allows for the benefit of learning arising from cues 

being embedded in sequences to be explored. Therefore, the first set of 

Model Training 1st Sequence Other sequence 

Reaction time models    

Main effects of cue 5200.76 6108.90 5987.15 

Main effects of cue with 

random intercept 

 

4404.53 5674.90 5453.67 

p(respond) 

 

   

Main effects of cue with 

Gamma family and inverse 

link 

 

-3283.32 -3417.62 NA 

Main effects of cue with 

Gamma family and inverse 

link and random intercept 

-3336.36 -3670.07 NA 
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analyses are immune from repetition priming effects, whilst the second will, 

inherently, be affected, but equally for each of the cues embedded in these 

sequences (see Table 3.6 for descriptive statistics).  

3.4.2.2.1 First trial analyses 

The analyses conducted on the first trial of each sequence were a G vs. B 

contrast (which is once again a manipulation check) and A vs. B, A vs. G, A vs. 

R, R vs. B and R vs. G. The alpha level for these analyses was corrected to 

.010 (see Table 3.5 for AICc’s).  

3.4.2.2.1.1  Reaction times 

The model chosen had a conditional R2 of 0.63. The G vs. B contrast was 

significant, t(495) = 3.44, p = .001, 95% CI [9.61, 35.09], d = 0.31 indicating that 

associative learning had taken place by the test phase. The A vs. B contrast 

was significant, t(495) = 3.12, p = .002, 95% CI [7.54, 33.03], d = 0.28 

suggesting that cue A was not a stop cue. The A vs. G contrast was not 

significant, t(495) = -0.32, p = .751, 95% CI [-14.81, 10.67], d = 0.03. The R vs. 

B contrast was not significant, t(495) = 0.36, p = .722, 95% CI [-10.43, 15.06], d 

= 0.03, and cue R had significantly slower reaction times than cue G, t(495) = -

3.08, p = .002, 95% CI [-32.78, -7.29], d = -0.28 suggesting that cue R was not 

a go cue. The contrast A vs. R was also significant, t(495) = 2.76, p = .006, 95% 

CI [5.22, 30.71], d = 0.25 suggesting that cue A primed more of a go response 

than cue R.  

3.4.2.2.1.2  p(respond) 

For commission errors there was a non-significant difference for G vs. B, z = 

0.67, p = .500. The contrast A vs. B was marginally significant at a standard 

alpha level, z = 1.78, p = .076, and hints at a trend for more errors to A than B. 

The difference between A vs. G was not significant, z = 1.15, p = .251. For cue 

R, the contrast against cue B was not significant, z = 0.67, p = .500, as was the 

contrast against G, z = 0.00, p = 1.00. The contrast for A vs. R was not 

significant, z = 1.15, p = .251. 

3.4.2.2.2 Other sequence trial analyses 

These focused on comparing the traffic light cues within the sequences. 

Therefore, contrasts undertaken were A vs. G, A vs. R, and R vs. G. The alpha 

level was corrected to .017. Due to unequal variances between cues for 
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commission errors the use of mixed-effects models was inappropriate and 

instead standard t-tests were run for this performance measure. However, to 

increase ease of comparability between experiments these contrasts were run 

on the transformed data.  

3.4.2.2.2.1  Reaction times 

The model chosen had a conditional R2 of 0.72. The A vs. G contrast was not 

significant, t(495) = 0.20, p = .839, 95% CI [-9.20, 11.32], d = 0.02, nor was the 

A vs. R contrast, t(495) = 0.77, p = .444, 95% CI [-6.25, 14.27], d = 0.07, and 

neither was the R vs. G contrast, t(495) = -0.56, p = .574, 95% CI [-13.21, 7.31], 

d = -0.05.  

3.4.2.2.2.2  p(respond) 

The A vs. G contrast was not significant, t(55) = -0.12, p = .903, 95% CI [-0.01, 

0.01], d = -0.02. Due to the variance of R being equal to 0 it was not possible to 

conduct the A vs. R or R vs. G contrasts. This lack of variance needs 

explaining, especially considering the data presented in Table 3.6. How can the 

mean error for R be 0.01 but the variance 0? This suggests that all participants 

made the same amount of error to cue R which seems unlikely. The strange 

results can be explained by reference to the transformation applied to the data 

to enable the mixed-effects models to be run. These models cannot deal with 

data of zero, and so as discussed in Chapter 2 I applied a transformation to the 

data to shift all data from zero. This has the effect of shifting all error rates by 

the same amount whilst leaving variance unaffected, and so leads to the ‘on 

paper’ results of cue R having an error rate of 0.01, when in fact the true error 

rate for the cue was 0 (and hence why zero variance). 

3.4.2.2.3 Test phase summary 

The first sequence trial analyses indicate that at a purely associative learning 

level, participants had learnt that G was a go cue (having significantly faster 

reaction times than cue B), cue A was a go cue (having similar reaction times to 

G and marginally significantly more commission errors than B) and that cue R 

was a stop cue, having similar reaction times to B and priming significantly less 

going behaviour for reaction times compared to G. The other sequence trial 

analyses indicate weaker effects overall and suggests that learnt behaviour for 

traffic light cues within sequences was weak. One explanation for this could be 
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that performance is being overwhelmed by repetition priming effects and 

expectancies generated by sequences of trials of a given type. By this I mean 

that if one experiences a run of go trials than one would learn to expect another 

go trial. Conversely if exposed to a run of stop trials then one would learn to 

expect another stop trial.  
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Type of cues Reaction Time p(respond) p(miss) 

Filler cues Mean SD Mean SD Mean SD 

B+ 384.06 51.09 0.02 0.02 0.02 0.03 

I- 368.22 47.19 0.02 0.02 0.02 0.02 

IP+ 388.23 60.23 0.02 0.04 0.02 0.03 

J± 364.88 50.80 0.03 0.06 0.02 0.05 

P-/+ 369.14 48.98 0.02 0.04 0.01 0.02 

YZ-/+ 375.09 50.37 0.01 0.02 0.01 0.02 

       

1st sequence 

trials 

experimental 

cues 

      

A 363.77 59.28 0.02 0.06 0.01 0.03 

G 361.71 63.90 0.02 0.05 0.02 0.06 

R 381.74 62.56 0.02 0.05 0.01 0.03 

RA 365.51 61.70 0.02 0.05 0.01 0.03 

       

Other sequence 

trials 

experimental 

cues 

      

A 342.25 51.58 0.01 0.03 0.01 0.00 

G 343.32 47.12 0.01 0.02 0.01 0.02 

R 346.26 50.19 0.01 0.00 0.01 0.02 

RA 335.85 42.45 0.02 0.03 0.02 0.04 

Table 3.6. Test descriptive statistics for Experiment 4. Reaction time means are 

calculated using raw data, but mean p(respond) and p(miss) use transformed 

data. 
 

 Expectancies 

Awareness scores were calculated by subtracting a participants’ expectancy to 

withhold a response from their expectancy to respond for each cue. Thus, 

scores ranged from -8 (highly likely to withhold a response) to +8 (highly likely 

to respond). 
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To assess evidence of awareness the analysis undertaken for the reaction time 

data was repeated on the awareness questionnaire (see Table 3.7 for summary 

statistics). For this analysis the alpha level was corrected to .008. The best 

fitting model included the main effects of cue with a random intercept of 

participant (R2 = 0.40). The G vs. B contrast was highly significant, t(605) = 

5.64, p = < .001, 95% CI [2.47, 5.10], d = 0.46, with participants more likely to 

rate G as a go cue than B. The A vs. B contrast was not significant, t(605) = 

1.17, p = .242, 95% CI [-0.53, 2.10], d = 0.10. The A vs. G contrast was 

significant, t(605) = -4.47, p = < .001, 95% CI [-4.31, -1.69], d = -0.46, with 

participants more likely to rate cue G as a go cue than cue A. The A vs. R 

contrast was not significant, t(605) = 0.64, p = .523, 95% CI [-0.89, 1.74], d = 

0.05. Focusing on cue R, the contrast for R vs. G was highly significant, t(605) = 

-5.11, p = < .001, 95% CI [-4.74, -2.11], d = -0.42, with participants more likely 

to rate cue G as go than cue R. The R vs. B contrast was not significant, t(605) 

= 0.53, p = .595, 95% CI [-0.96, 1.67], d = 0.04. Overall, this analysis shows 

that participants had some awareness of the required response for certain cues. 

This seems to focus on cue G, with participants showing consistent awareness 

that this cue was more likely to involve responding than others. 

Contrasting the two 50/50 filler cues that were completely neutral (that is, not 

involved with any other cues) against G and B enabled me to see if B was 

indeed a neutral cue as Table 3.7 would suggest, or if there was bias in the 

ratings. By this I mean the bias inherent in the use of scales, for example, the 

tendency of people to avoid giving extreme scores (Albaum, 1997) or 

differences between people in how they construe the scale. I contrasted J 

against G and B, and YZ against G and B. This analysis was separate from that 

conducted above and so an alpha level of .013 was applied. The J vs. B 

contrast was not significant, t(605) = 0.00, p = 1.00, 95% CI [-1.31, 1.31], d = -

0.00. The J vs. G contrast was highly significant, t(605) = -5.64, p = < .001, 95% 

CI [-5.10, -2.47], d = -0.46, with participants more likely to rate G as go than J. 

The contrast YZ vs. B, was not significant, t(605) = -0.45, p = .651, 95% CI [-

1.62, 1.01], d = -0.04. The YZ vs. G contrast was highly significant, t(605) = -

6.09, p = < .001, 95% CI [-5.40, -2.77], d = -0.50, with participants more likely to 

rate G as go than J. These results suggest that participants expected to make 

very similar responses to cue B (a stop cue) and cues J and YZ (neutral cues). 

This suggests that cue B seems to be somewhat neutral in terms of awareness. 
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This neutrality is dissociated from the response time results which indicate that 

B is certainly not a neutral cue, but is in fact a stop cue in comparison to a 

certain go cue, cue G. Of course, it might seem desirable to compare the 

reaction times for cue B against those of the neutral cues J and YZ, but such 

comparisons would be invalid. This is because YZ is a compound cue, and J 

the tracking cue and so receives special treatment during the learning phase. 

Cue Expectancy Rating 

 Mean SD 

A-/+ 1.16 4.32 

B+ 0.38 4.21 

G- 4.16 3.75 

I- 2.07 4.36 

IP+ -1.66 3.94 

J± 0.38 4.24 

P-/+ 0.32 4.1 

R+ 0.73 4.44 

RA- 2.2 4.01 

Y-/+ -2.16 4.26 

YZ-/+ 0.07 4.24 

Z-/+ -2.29 4.65 

Table 3.7. Descriptive statistics for expectancy ratings for Experiment 4. 

 Correlational analysis  

To investigate whether it is the awareness of cues that is causing the 

differences in performance, one can analyse the correlations between learning 

and expectancy scores (the zero correlation criterion, see Dienes, Altmann, 

Kwan, & Goode, 1995; Dienes & Scott, 2005). If awareness is impacting upon 

performance then I would expect a correlation between the two measures, such 

that cues rated with a higher likelihood to respond should have faster reaction 

times. However, if the correlation is zero this would indicate that awareness was 

not linked to performance.  

This analysis was undertaken using the expectancy and performance measure 

scores from each pair to create two difference scores. These were calculated by 

subtracting the score for the stimulus most often paired with stopping from that 



121 
 

most often paired with responding, e.g., RA-R. Thus, if a participant’s 

awareness of the contingencies and task performance were related, I would 

expect the degree of awareness to correlate with greater response time 

differences and greater commission error differences. This analysis was only 

performed where there was evidence from the expectation scores that 

participants were aware of the differences between the cue, so G vs. B, G vs. A, 

and G vs. R. For training the whole dataset was used, whilst for test only data 

from first sequence trials was included.  

Focusing on training correlations, as seen in the top three panels for Figure 3.1, 

all three correlations for reaction times and expectancy scores were not 

significant (even at the standard alpha level before correction). For commission 

errors, only the G - R correlation was significant, but this became non-significant 

when a Bonferroni correction was applied, although this result does hint at a 

trend for awareness to influence performance. The same analysis was 

performed for reaction times and p(respond) for first sequence trials (see Figure 

3.2), where once again there were no significant results (even at a standard 

alpha level).   

Generally, Figures 3.1 and 3.2 show that there was no relationship, or only a 

weak correlation, between awareness and performance measures at training 

and test. Although the result for G – R might be taken to indicate that 

awareness is likely to be involved at some level in performance, it is not reliable 

after adjustment for multiple comparisons. Overall, the results suggest that 

awareness did not play a significant role in creating the difference in 

performance between cues, and that learning was occurring though associative 

processes. Of course, one caveat is that perhaps there is a small causal link 

that the analysis lacks the power to detect. 
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 Summary 

Experiment 4 investigated associative learning at traffic lights under conditions 

when some of the sequences involved at traffic lights were in play. During 

training on both measures the data showed that cue G primed more of a go 

response than cue B. Additionally, there was evidence to suggest that the 

resulting effects were due to a combination of repetition priming effects and 

associative learning. 

For cue A the reaction time data at training suggests it primed a reasonably 

strong go response, being significantly faster than cue B and not significantly 

slower (at the corrected alpha level) than cue G. However, the result from the G 

vs. A contrast does suggest that cue A did not prime as much going as cue G 

and numerically this is borne out. The results for commission errors indicate that 

cue A was a stop cue. Errors were not significantly greater than cue B (though 

numerically it had more errors than B) and A had significantly less errors than 

cue G. Overall it seems that cue A was experienced as something of a weak go 

cue at training. Focusing on cue R, the fact that at training it was significantly 

slower and had significantly less commission errors compared to cue G 

indicates that R was not a go cue. For reaction times it does not seem to be that 

strong a stop cue either, having significantly faster reaction times than cue B. 

However, R had almost significantly fewer commission errors than B so it 

seems that R was a weak stop cue, being slightly more go than cue B based on 

the reaction time result.  

For the first sequence test trials, as expected the contrast G vs. B was 

significant for reaction times suggesting that learning had occurred. The results 

suggest that cue A primed a go response. Cue A was significantly faster than 

cue B at reaction times, but for commission errors cue A only primed marginally 

significantly more errors at the standard alpha level. Cue A was also similar in 

performance to cue G for reaction time data. For cue R, the data indicates it 

was somewhat of a stop cue. It had significantly slower response times than 

cue G but was similar in performance for cue B.  

In summary, when in a task set that has stopping as the effective outcome and 

sequences are in play cue A seemed to prime a weak go response, with cue R 

seeming to promote a weak stop response. At test, in an analysis where 



125 
 

repetition priming effects were controlled for, cue A seemed to be linked with a 

go response and cue R a stop response. 

The pattern of results is not dissimilar to those found in Experiment 2, where R 

was a weak stop cue and cue A a weak go cue. This suggests that the basic 

effects already established for stop task sets hold true, despite the slight 

change in go/stop ratio for the cues. Of course, overall R is now perhaps more 

of a stop cue, and A more of a go cue. This shift for both cues could arise 

because they were embedded within sequences at training. It could be that the 

exposure to traffic light sequences enhanced the learning to the cues that 

seemed to occur in the ‘base’ version of the design in Experiment 2. Another 

aspect of the results that should be highlighted is that the cues embedded in 

sequences have produced markedly enhanced effects compared to those 

observed in Experiment 2. This is evidenced by the bigger difference in reaction 

times between G and B, in fact the difference is more double that of Experiment 

2 for training. This confirms the well-known sequence learning effect (Nissen & 

Bullemer, 1987). The results here do not show the unexpected result seen in 

Experiment 2, where R had significantly more commission errors than G at test, 

suggesting that this was random noise rather than a true effect.  

One issue touched on in the discussion of the design of Experiment 4 is that of 

comparing cues within sequences to those outside (e.g., G vs. B). Cue G might 

be expected to be faster than B, both due to the beneficial nature of sequences 

to learning and because of repetition priming. While it is true that G is more of a 

go cue than it was in Experiment 2 (with faster reaction times to it) this logic 

would also hold for cue B, in that if it was in a sequence then one would expect 

it to become even more of a stop cue than it is now. Thus, the current contrasts 

between G vs. B (and more generally sequence cue vs. non-sequence cue) are, 

in some sense, likely to be conservative. Nevertheless, even with repetition 

priming effects controlled for, the comparison of G and B on p(respond) at 

training and the results for the first sequence trials analysis makes it clear that 

G is a strong go cue even without additional help from being tested within a 

sequence. 

While the experiment provides clear evidence of learning, it also speaks to the 

debate surrounding the nature of this effect and whether it can ever be 

associatively driven. The lack of significant correlations between awareness and 
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task performance satisfies the zero-correlation criterion of Dienes et al. (1995), 

suggesting that the observed performance derived from an associative system 

that captured the contingencies between cues and outcomes, rather than an 

explicit system. Of course, this conclusion is not uncontroversial (see Newell & 

Shanks, 2014) and will be considered further in the general discussion.   

 EXPERIMENT 5 

Having seen how the inclusion of sequences impacts the learning of traffic light 

cues under a stop task set, the question now becomes what is learnt under a go 

task set. Therefore, Experiment 5 introduces the sequences described above 

into the methodology of Experiment 3. That is, the task set was go, with 

participants responding to coloured circles, and the instructions changed as 

before.  

 Method 

 Participants 

The sample size, inclusion criteria and outlier removal process were the same 

as in Experiment 4 (see Results section for details of those removed). Of the 

final sample, 47 were female, with an overall mean age of 20.34 (SD = 3.19). 

 Design  

The design was identical to Experiment 4. However, as going is expected to be 

the effective outcome, + is now go and – stop. This means that the sequence 

Green 1 is now G+ -> G+, and the sequence Red 1 is now R- ->R- ->RA+ ->G+ 

(see Table 3.8 for the sequence runs used in Experiment 5).  
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The filler cues were also amended to reflect the change in task set between 

Experiment 4 and 5, e.g., IP is now IP- rather than IP+ (see Table 3.9 for full 

design of filler cues).  

Table 3.9. Filler sequences for Experiment 5. ‘-’ is 100% stop, ‘±’ is 50/50 go, ‘+’ 

is 100% go. Each letter in the cue column represents a shape drawn randomly 

from a set pool. 

 Procedure  

The procedure was identical to that of Experiment 4.   

Light type Sequence 

 

Green 1 

Green 2 

 

Amber 1 

Amber 2 

 

Red 1 

Red 2 

 

Red/Amber 

 

G+ -> G+ 

G- -> A- ->R- ->R- ->RA+ ->G+ 

 

A+ ->A+ 

A- ->R- ->R- -> RA+ ->G+ 

 

R- ->R- ->RA+- ->G+ 

R+ ->RA+ ->G+ 

 

RA+ ->G+ 

Table 3.8. Sequence runs for Experiment 5 ‘-’ is 100% stop, ‘+’ is 100% go.  

Filler type Cue 
Occurrences 

per block 

Cue G filler 

 

Cue R filler 

 

Cue RA filler 

50:50 filler 

50:50 filler 

Tracking cue 

B+ 

B- 

I+ 

I- 

IP- 

P± 

YZ± 

J± 

4   

32  

24  

4 

24 

16 

16 

8 
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 Analysis and results  

The analysis for Experiment 5 was conducted in the same manner as for 

Experiment 4. In terms of outliers, nine participants were removed and replaced 

for having high omission errors, while three participants were removed and 

replaced for having high commission errors. There were no outliers for reaction 

times.   

 Training phase  

Descriptive statistics for this phase are contained in Table 3.10. 

3.5.2.1.1 Reaction times  

For the training data, the best fitting model had a conditional R2 of 0.87 (see 

Table 3.11 for AICs).  

3.5.2.1.1.1  Evidence of associative learning 

As in Experiment 4 it was possible to provide evidence of associative learning 

by comparing performance between R vs. I and R vs. B. In effect, these 

contrasts are a manipulation check (and separate from the main analysis), and 

thus the alpha level was only corrected to .025. The R vs. I contrast was 

significant, t(440) = -2.41, p = .017, 95% CI [-12.23, -1.25], d = -0.23, with I 

being faster than R, confirming that participants were indeed learning the 

contingencies present in the design. The contrast R vs. B enables me to 

compare cue R to an out and out stop cue, with this contrast being significant,  

t(440) = 4.63, p = < .001, 95% CI [7.47, 18.45], d = 0.44, with cue R having 

faster responses, suggesting it was experienced as less of a stop cue than B.  

3.5.2.1.1.2  Traffic light contrasts 

Noting the above results, I can be confident that the following results arise 

because of associative learning as well as repetition priming effects. As G vs. B 

is no longer a pure manipulation check, the alpha level was corrected to .008. 

The G vs. B contrast was highly significant, t(440) = 11.01, p = < .001, 95% CI 

[25.34, 36.32], d = 1.05, with G being faster than B, thus confirming that 

participants were learning the contingencies present in the design. In terms of 

the experimental contrasts, A vs. B was highly significant, t(440) = 8.57, p = < 

.001, 95% CI [18.52, 29.50], d = 0.82, with faster responses to cue A. The 

contrast A vs. G was not significant at the reduced alpha, t(440) = -2.44, p = 

.015, 95% CI [-12.31, -1.33], d = -0.23 but there was a trend for slower 
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responses to cue A than to cue G. The contrast for A vs. R was significant, 

t(440) = 3.94, p = < .001, 95% CI [5.56, 16.54], d = 0.38, with faster reaction 

times to cue A. In terms of the R contrasts, the R vs. B contrast was significant, 

t(440) = 4.63, p = < .001, 95% CI [7.47, 18.45], d = 0.44, with cue R having 

faster responses, suggesting it was experienced as less of a stop cue than B. 

The R vs. G contrast was highly significant, t(440) = -6.38, p = < .001, 95% CI [-

23.36, -12.38], d = -0.61, with responding in the presence of R being slower, 

indicating that cue G was being seen as more of a go cue.  

3.5.2.1.2 p(respond)  

For this measure, the best model was a model that included the main effects of 

cue with a Gamma family and inverse link and random intercept (see Table 

3.11).  

3.5.2.1.2.1  Evidence of associative learning 

Using the same logic outlined in Experiment 4, contrasts for commission errors 

for G vs. B and G vs. I were run to provide evidence of associative learning for 

this measure. Given that cue B is a stop cue, from an associative learning 

perspective it would be expected that cue G would have more errors than cue B 

and this was the case, z = 4.98, p = < .001, confirming that the participants 

were learning the contingencies present in the design. The G vs. I contrast was 

run to establish if cue G was a go cue of similar power to a filler go cue. The 

contrast was almost significant, z = 2.23, p = .026, with more errors to cue G 

than cue I indicating that cue G was certainly a go cue.  

3.5.2.1.2.2  Traffic light contrasts 

Given the result for G vs. B, I can be confident that the following results arise 

through associative learning as well as repetition priming effects. For this 

analysis, the alpha level was corrected to .008. The G vs. B contrast was 

significant, z = 4.98, p = < .001, with more errors for cue G, thus confirming that 

participants were learning the contingencies present in the design. The A vs. B 

contrast was significant, z = 3.47, p = < .001, with more errors for A than B, 

indicating that A was not responded to as a stop cue. The contrast for A vs. G 

was not significant at the reduced alpha level, z = -2.04, p = .041, but 

numerically there were more errors for cue G than cue A, suggesting a 

tendency to experience cue A as not a strong go cue. The A vs. R contrast was 
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significant, z = 4.50, p = < .001, with more errors for A then R, suggesting that A 

prompted more of a go response than cue R. Focusing on R, the R vs. B 

contrast was not significant, z = -1.26, p = .208, but the R vs. G contrast was 

highly significant, z = -5.81, p = < .001, with more errors for G than R, 

suggesting that R is not a go cue.  

Cue Reaction Time p(respond) p(miss) 

 Mean SD Mean SD Mean SD 

A-/+ 377.00 38.83 0.03 0.02 0.01 0.01 

B- 401.01 43.49 0.02 0.01 0.01 0.02 

G+ 370.18 39.59 0.04 0.05 0.01 0.00 

I+ 381.31 41.53 0.03 0.03 0.01 0.01 

IP- NA NA 0.02 0.01 NA NA 

J± 388.07 43.42 0.03 0.04 0.01 0.02 

P-/+ 392.68 37.82 0.02 0.02 0.01 0.01 

R- 388.05 34.03 0.01 0.01 0.01 0.01 

RA+ 381.04 41.67 NA NA 0.01 0.00 

YZ-/+ 386.44 41.7 0.03 0.02 0.01 0.01 

Table 3.10. Training descriptive statistics for Experiment 5. Reaction time 

means are calculated using raw data, but mean p(respond) and p(miss) use 

transformed data. 

3.5.2.1.3 Training phase summary 

Experiment 5 allowed for the exploration of associative learning in an 

experiment that used a go task set and considered some of the sequences 

experienced at traffic lights. The analysis suggests that cue G primed a go 

response, cue A was somewhat of a go response (seemingly promoting more of 

a go response than cue B on both measures but not as strong a go response as 

cue G), and cue R somewhat of a stop cue, having slower reaction times and 

less errors than cue G but also faster reaction times than cue B. Additionally, 
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the results for the associative learning contrasts demonstrate that associative 

learning is occurring in this phase.  

 Test analysis  

Similarly, to Experiment 4, two separate analyses were undertaken for the test 

phase. The first focused on first trials of the sequences in conjunction with filler 

cues, while the second only focused on cues within sequences (see Table 3.12 

for descriptive statistics). 

3.5.2.2.1 First trial analyses 

The analyses conducted on the first trial of each sequence were a G vs. B 

contrast (which is now once again a manipulation check) and A vs. B, A vs. G, 

A vs. R, R vs. B and R vs. G. The alpha level for these analyses was corrected 

to .010 (see Table 3.11 for AICc’s).  

Model Training 1st Sequence Other 

sequence 

Reaction time    

Main effects of cue 5168.32 6050.18 6004.79 

Main effects of cue with 

random intercept 

 

4356.62 5704.71 5572.67 

p(respond)    

    

Main effects of cue with 

Gamma family and inverse 

link 

 

-2923.04 -3174.77 -3538.25 

Main effects of cue with 

Gamma family and inverse 

link and random intercept 

-3061.52 -3277.10 -3636.21 

Table 3.11. AICc scores for models run for Experiment 4 run on reaction time 

and p(respond) data at training and test. Bold are the models chosen. 
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3.5.2.2.1.1  Reaction times 

The model chosen had a conditional R2 of 0.56. The G vs. B contrast was 

significant, t(495) = 2.71, p = .007, 95% CI [5.09, 31.67], d = 0.24 indicating that 

learning had taken place by the test phase. The A vs. B contrast was significant, 

t(495) = 3.88 p = < .001, 95% CI [13.03, 39.62], d = 0.35, suggesting that cue A 

was not a stop cue. The A vs. G contrast was not significant, t(495) = 1.17, p = 

.242, 95% CI [-5.35, 21.24], d = 0.11. The R vs. B contrast was not significant, 

t(495) = -0.02, p = .982, 95% CI [-13.45, 13.14], d = -0.002, and cue R had 

significantly slower reaction times than cue G, t(495) = -2.73, p = .006, 95% CI 

[-31.83, -5.24], d = -0.25 suggesting that cue R was not a go cue. The contrast 

A vs. R was also significant, t(495) = 3.90, p = < .001, 95% CI [13.19, 39.78], d 

= 0.35 suggesting that cue A primed more of a go response than cue R.  

3.5.2.2.1.2  p(respond) 

For commission errors there was a significant difference for G vs. B, z = 3.16, p 

= .002, with more errors for G than B suggesting that learning had occurred for 

this measure. The contrast A vs. B was not significant, z = 0.63, p = .526. The A 

vs. G contrast was significant, z = -2.67, p = .008, with more errors for cue G 

than A indicating that cue A was not a go cue. For cue R, the contrast against 

cue B was marginally significant at a standard alpha level, z = 1.67, p = .077, 

with a trend for more errors to cue R than B. The contrast of R vs. G 

approached being marginally significant at a standard alpha level, z = -1.65, p = 

.100, with a trend for more errors to cue G than R. This suggests that cue R for 

commission errors was a neutral or weak go cue. The contrast for A vs. R was 

not significant, z = -1.17, p = .244. 

3.5.2.2.2 Other sequence trial analyses 

These focused on comparing the traffic light cues within the sequences. 

Therefore, contrasts undertaken were A vs. G, A vs. R, and R vs. G. The alpha 

level was corrected to .017 (see Table 3.11 for AICc’s). 

3.5.2.2.2.1  Reaction times 

The model chosen had a conditional R2 of 0.66. The A vs. G contrast was 

marginally significant at a standard alpha, t(495) = -1.71, p = .088, 95% CI [-

21.75, 1.47], d = -0.15, with faster reaction times to cue G than A. The contrast 

A vs. R was not significant, t(495) = -0.79, p = .432, 95% CI [-16.27, 6.96], d = -
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0.07. The comparison between R vs. G was also not significant, t(495) = -0.93, 

p = .355, 95% CI [-17.09, 6.13], d = -0.08.  

3.5.2.2.2.2  p(respond) 

The A vs. G contrast was not significant, z = -0.31, p = .760, as was the contrast 

between A and R, z = 1.47, p = .143. The R vs. G contrast was marginally 

significant at a standard alpha level, z = -1.76, p = .079, with a trend for more 

errors to cue G than cue R.  

3.5.2.2.3 Test phase summary 

The first sequence trial analyses indicate that at a purely associative learning 

level, participants had learnt that G was a go cue (having significantly faster 

reaction times and more errors to cue G than cue B). Cue A seemed to prime 

an overall neutral response, priming a go response for reaction times 

(significantly faster than B but similar to G) but a stop response for commission 

errors (significantly less errors than G and similar levels to B). Cue R seemed to 

prime a weak stop response overall, being roughly neutral for commission 

errors but significantly slower than cue G in terms of response times.  

The other sequence trial analyses show weaker effects overall. The limited 

evidence suggests that cues A and R promoted more of a stop response 

compared to cue G, with cue A having marginally significantly slower reaction 

times and cue R marginally significantly less errors.  
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Type of cues Reaction Time p(respond) p(miss) 

Filler cues Mean SD Mean SD Mean SD 

B+ 401.03 45.47 0.02 0.02 0.01 0.01 

I- 380.95 51.34 0.03 0.04 0.02 0.02 

IP+ 396.19 45.58 0.02 0.04 0.01 0.02 

J± 392.51 59.52 0.01 0.03 0.01 0.03 

P-/+ 402.58 61.21 0.02 0.04 0.01 0.00 

YZ-/+ 381.36 46.05 0.01 0.02 0.01 0.02 

       

1st sequence 

trials 

experimental 

cues 

      

A 374.70 43.75 0.02 0.05 0.01 0.00 

G 382.65 63.78 0.03 0.08 0.02 0.05 

R 401.18 55.08 0.02 0.06 0.02 0.05 

RA 371.73 54.55 0.07 0.11 0.01 0.03 

       

Other sequence 

trials 

experimental 

cues 

      

A 369.72 60.23 0.01 0.03 0.01 0.00 

G 359.58 42.79 0.01 0.02 0.02 0.05 

R 365.06 45.10 0.01 0.01 0.02 0.05 

RA 359.48 48.01 0.02 0.04 0.01 0.03 

Table 3.12. Test descriptive statistics for Experiment 5. Reaction time means 

are calculated using raw data, but mean p(respond) and p(miss) use 

transformed data. 

 

 Expectancies 

I conducted the expectancy analysis for Experiment 5 in the same manner as 

described in Experiment 4 (see Table 3.13 for descriptive statistics). The alpha 

level was corrected to .008. The best model fitted the main effects of cue with 

random intercept (R2 = 0.25). One participant did not provide any ratings and as 
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such the degrees of freedom are smaller for this analysis than for its companion 

in Experiment 4. The G vs. B contrast was significant, t(594) = 4.16, p = < .001, 

95% CI [1.39, 3.88], d = 0.34, with participants more likely to rate G as a go cue 

than B. The A vs. B contrast was not significant at the reduced alpha, t(594) = 

2.24, p = .026, 95% CI [0.18, 2.66], d = 0.18, though there was a trend for 

participants to rate A as more go than B. The A vs. G contrast was marginally 

significant at a standard alpha, t(594) = -1.92, p = .055, 95% CI [-2.46, 0.02,], d 

= -0.16 hinting at a trend for cue G to be rated as go over cue A. The A vs. R 

contrast was not significant, t(594) = 0.26, p = .796, 95% CI [-1.08, 1.41], d = 

0.02. Focusing on cue R, R vs. G was not significant at the reduced alpha, 

t(594) = -2.18, p = .030, 95% CI [-2.62, -0.14], d = -0.18, though there was a 

tendency for participants to rate cue G as more go than cue R. The R vs. B 

contrast was also not significant at the reduced alpha, t(594) = 1.98, p = .048, 

95% CI [0.01, 2.50], d = 0.16, though numerically participants did rate R as 

more go than B. Unlike in Experiment 4 the awareness ratings are less clear. 

Overall, it seems that awareness is centred on G vs. B, with perhaps the 

participant’s awareness of this contrast driving the rest of the pattern of results. 

There was some evidence that participants were aware that stopping was more 

likely in response to A and R than to G, and some awareness that stopping was 

even more likely to B. 

As in Experiment 4, comparing J and YZ against B and G allowed me to see if B 

was experienced as a relatively neutral cue or not. This analysis was separate 

from that conducted above and so an alpha level of .013 was applied. The 

contrast J vs. G was significant, t(594) = -2.90, p = .004, 95% CI [-3.08, -0.59], d 

= -0.24, with participants more likely to rate G as go over J. The contrast J vs. B 

was not significant, t(594) = 1.26, p = .207, 95% CI [-0.44, 2.04], d = 0.10. The 

contrast YZ vs G was significant, t(594) = -2.81, p = .005, 95% CI [-3.02, -0.54], 

b = -0.23 with cue G being rated as more go then cue YZ. The contrast for YZ 

vs. B was not significant, t(594) = 1.35, p = .179, 95% CI [-0.39, 2.10], b = 0.11. 

These results suggest that participants expected to make very similar 

responses to cue B (a stop cue) and cues J and YZ (neutral cues). Overall, the 

analysis for B vs. J and YZ suggests that the ratings are very close, and that B 

seems to be somewhat neutral in terms of awareness. This neutrality is 
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dissociated from the response time results which indicate that B is certainly not 

a neutral cue, but is in fact a stop cue in comparison to the go cue, cue G. 

 

 Correlational analysis 

As in Experiment 4 it is possible to undertake a correlational analysis to explore 

if awareness is driving performance. For this experiment I will only report the 

correlation for G vs. B, as this is the contrast that expectancies significantly 

differed on. Thus, the analyses performed were for reaction times and 

commission errors at training and for the first sequence trial data. As seen in 

Figure 3.3 correlations were close to zero, indicating that awareness did not 

drive performance. This suggests that the behaviour was caused by 

associatively-mediated learning, rather than propositional processes, though 

with some caveats which will be discussed later.  

 

 

 

 

Cue Expectancy Rating 

 Mean SD 

A-/+ 0.84 3.54 

B- -0.58 4.04 

G+ 2.05 3.71 

I+ 0.87 3.52 

IP- -0.09 3.54 

J± 0.22 3.99 

P-/+ 0.02 3.88 

R- 0.67 3.15 

RA+ 0.84 3.48 

Y-/+ -1.25 4.01 

YZ-/+ 0.27 3.62 

Z-/+ -1.31 4.19 

Table 3.13. Descriptive statistics for expectancy ratings for Experiment 5. 
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 Summary 

Experiment 5 explored how the sequences added in Experiment 4 would affect 

learning in a design that has go as the effective outcome. During training on 

both measures the data showed that cue G primed more of a go response than 

cue B – thus learning was occurring as expected. Additionally, there was 

evidence of behaviour occurring through learning, as well as through repetition 

priming effects.  

For cue A the reaction time data at training suggests it primed a weak go 

response. The cue was significantly faster than cue B yet, while not significant 

at the corrected alpha, there was a strong trend for faster reaction times to cue 

G than A. The results for commission errors indicate that cue A was again a 

weak go cue. Errors were greater than cue B, but errors were also significantly 

less than cue G at a standard alpha level. Overall, it seems that cue A was 

experienced as something of a weak go cue at training. Focusing on cue R, the 

fact that at training it was significantly slower and had significantly less 

commission errors compared to cue G indicates that R was not a go cue. For 

reaction times it does not seem to be that strong a stop cue either having 

significantly faster reaction times than cue B. However, R had similar levels of 

errors compared to B. Overall, it would be fair to describe cue R as a weak stop 

cue.  

For the first sequence test trials, as expected the contrast G vs. B was 

significant for both performance measures suggesting that learning had 

occurred. The results indicate that cue A primed a fairly neutral response. It was 

significantly different for cue B at reaction times but not different for commission 

errors. This pattern was reversed when compared to cue G; the two cues were 

similar in reaction time speeds, but for p(respond) cue A had significantly fewer 

errors. For cue R, the data indicates it was somewhat of a stop cue. It had 

significantly slower response times than cue G, and the difference at p(respond) 

was marginally significant at a standard alpha level (with more errors for G). 

Compared to cue B, response times were similar, but cue R did have marginally 

significantly more errors than cue B at a standard alpha level. In summary, 

when in a task set that has going as the effective outcome and sequences are 

in play cue A seemed to prime a weak go response, with cue R seeming to 

promote a weak stop response. At test, in an analysis where repetition priming 
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effects were controlled for, cue A seemed to be linked with a neutral response 

and cue R a stop response. 

The pattern of results is similar to the companion study Experiment 3. In 

Experiment 3 cue R primed a stop response and cue A a neutral to weak stop 

response. While comparatively cue R is perhaps less of a stop cue, and A more 

of a go cue the rough pattern for the placement of the cues along a go/stop 

continuum in a go task set holds. It should be noted that the pattern of results is 

easier to interpret in Experiment 4 (especially for commission errors), with this 

likely being a product of the enhanced learning generated by sequential 

learning. 

Finally, the results again support the proposition that sequence learning can 

occur through associatively-mediated processes. 

 JOINT ANALYSIS OF EXPERIMENT 4 AND EXPERIMENT 5 

As Experiments 4 and 5 are mirror opposites in much the way that Experiments 

2 and 3 were, it is possible to combine the two and undertake a between-

participants analysis to investigate changes across the studies. While in 

Chapter 2 I presented a joint analysis of the traffic light cues, to begin to capture 

a more complete understanding of task set, given the similarity of the 

experiments presented here to their comparison experiments in Chapter 2 such 

an analysis will not be undertaken. However, I do report an analysis of the 

feature-positive effect between Experiments 4 and 5. As these analyses are 

manipulation checks a standard alpha level was applied. 

 Joint feature-positive analysis 

In Chapter 2 I conducted a t-test looking at R vs. RA against IP vs. I, i.e. of the 

feature-positive vs feature-negative across Experiments 2 and 3. However, an 

equivalent analysis is not possible here. This is because IP vs. I is a non-

sequence contrast, while R vs. RA is. Instead, the approach used here is to 

compare the difference in R vs. RA across the two experiments. This approach 

also controls for repetition priming effects, as both experiments were exposed to 

the same sequence runs but with opposite task sets. In Experiment 5, R vs. RA 

is the feature-positive contrast (R- RA+), while in Experiment 4 it is the feature-

negative pair (R+, RA-). Based on my past findings, I would expect learning of 



140 
 

these discriminations to be better in Experiment 5 than 4. As I was not able to 

perform such an analysis within experiments, and the evidence from 

Experiments 2 and 3 was that the effect was fairly difficult to detect, the contrast 

was undertaken for both dependent measures at training and test. 

The result from response times at training were significant, t(110) = -2.32, p = 

.022, 95% CI [-17.25, -1.35], d = -0.44, with enhanced learning to RA compared 

to R in Experiment 5 (mean difference of 7.01, SD = 22.43) compared to 

Experiment 4 (M = -2.29, SD = 19.93). This demonstrates that the changes 

made between the two experiments successfully altered the nature of the 

discriminations experienced by participants in that the effective outcome 

changed from stopping to going. However, the results from test were not 

significant, t(110) = -1.12, p = .266, 95% CI [-36.67, 10.22], d = -0.21. It was not 

possible to conduct this analysis on p(respond) in training since there were no 

errors of commission for RA in either experiment because RA was 100% go. 

However, at test this contrast was significant, t(110) = 2.32, p = .023, 95% CI 

[0.007, 0.08], d = 0.44, with once again better learning of the R vs. RA contrast 

in Experiment 5 (M = -0.04, SD = 0.12) compared to Experiment 4 (0.00, SD = 

0.07). 

Therefore, these analyses provide good evidence that the contrast R-RA was 

significantly different between Experiment 4 (outcome is stop) and Experiment 5 

(outcome is go) at both training for the response time data and in commission 

errors at test. These findings support my results from Chapter 2 and those of 

Bowditch (2016), and provide further evidence that the manipulations employed 

in the paradigm are effective in changing task set.   

 GENERAL DISCUSSION 

Fundamentally, the results presented here support those of Chapter 2 and a 

wider body of literature (Best et al., 2016; Bowditch et al., 2016) which 

demonstrate that a cue that is paired consistently with a particular outcome 

promotes that outcome, even when the primed action is no longer required. 

Such support was found in reaction time performance for the first sequential 

trials analysis for both experiments, and for commission errors in Experiment 5. 

The key aspect of this chapter was the addition of sequences and the 

subsequent discussion will explore the effects of sequences.  
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 Sequence learning  

At the introduction to this chapter I discussed how sequences can enhance the 

learning of cues. Given this, it might be assumed that the inclusion of 

sequences would lead to quantitatively different results from those reported in 

Chapter 2 (bigger effect sizes for example), but that qualitatively the actual 

pattern of the results would resemble the companion experiments in Chapter 2. 

There is work consistent with this notion. For example, Gotler, Meiran, and 

Tzelgov (2003) used a task-switching paradigm with two task sets; task 1 

required participants to respond if the target was up or down, while task 2 

required participants to respond if the target was right or left. These tasks were 

presented in sequence blocks and random blocks. Of note for the current 

discussion, the results demonstrated that the type of block (sequence or 

random) did not interact with switching costs (the loss in performance caused 

by the switch from one task to another; Rogers & Monsell, 1995). That is, 

though sequences did enhance learning overall, with faster reaction times in 

sequence blocks compared to random blocks, this effect was separate from 

task-switching costs, with the enhanced learning granted by sequences being 

equal for switch and non-switch trials. Broadly, the results here support this 

position, with the two experiments in this chapter having similar findings to their 

companion experiments in Chapter 2. This of course raises the question as to 

the need for Experiments 4 and 5. However, as highlighted in the introduction 

sequences are a key part of human and learning, and as discussed in Chapter 

1 the traffic light sequence is a ubiquitous feature of life. Therefore, to design a 

paradigm with the express aim of capturing the contingencies experienced at 

UK traffic lights without including the sequences involved would be to ignore a 

key feature of what makes traffic lights, traffic lights. 

 Feature-positive effect 

To my knowledge the work presented here is the first to explore learning of the 

feature-positive effect in the context of sequence learning. A priori, one would 

expect that sequences would enhance rather than diminish the feature-positive 

effect. However, the contrasts undertaken in Chapter 2 and 3 are not identical 

and do not allow for direct testing of this assumption. Yet it is possible to 

undertake the feature-positive analysis performed in this Chapter using the data 

in Chapter 2. This analysis (presented in Appendix C) supports the argument 
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that sequences enhance learning of the feature-positive effect, with bigger 

effect sizes for the sequence versions of the contrasts. 

 Learning and awareness  

Both the experiments conducted in this chapter indicated that awareness of the 

contingencies was not significantly correlated with task performance. However, 

some of the correlations were non-zero. This could be taken to indicate the 

presence of some conscious content (Seth, Dienes, Cleeremans, Overgaard, & 

Pessoa, 2008), but these correlations were never significant. It seems that cues 

within sequences can be learnt about associatively, as well as via conscious 

processes. The lack of correlation seen between performance and awareness 

would be difficult to explain through a single learning system and so supports 

the notion of dual-route models (McLaren et al., 2014). However, it must be 

noted that there are caveats to this claim. The first is that the awareness test 

was given at the end of the experiment and so falls prey to the ‘immediacy’ 

criterion for assessing awareness by Newell and Shanks (2014). The authors 

argue that assessments should be made online (as in the Perruchet 

experiments) to prevent forgetting or interference from subsequent trials. 

Indeed, as the 50/50 test phase is, in effect, an extinction phase, it is likely that 

it would have degraded the contingencies with participants perhaps forgetting 

the contingencies from training. As it stands it is not possible to say that those 

who made more accurate ratings (i.e. rated cue G as a go cue) were simply 

better at remembering cues, compared to those who were less accurate, or if 

the ratings measure true awareness. In defence of the awareness measure 

used it does meet the sensitivity criterion, as the same cues were used to 

assess awareness as seen in the task.  

Another issue with the awareness test used is that there are other forms of 

meta-knowledge it does not measure. For example it does not measure what 

Dienes and Perner (1996, 1999) refer to as ‘content explicitness’, defined as 

knowing that one is in possession of knowledge. This is distinct from the meta-

knowledge assessed in the expectancy rating task which requires participants 

to represent content towards a cue as knowledge about that cue rather than 

confabulation (Dienes & Altmann, 1997), so called ‘attitude explicitness’ (Dienes 

& Perner, 1996). As Reber (as cited in Dienes & Altmann, 1997) posited, 

participants “may know that they know something, even though they may not 
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know what it was that they know” (p.136). Therefore, to provide a more 

definitive case for associative learning it would be necessary to design an 

awareness test that addresses both these forms of metacognition. 

 Conclusion 

To conclude, the experiments presented here continue the development of a 

paradigm exploring contingency learning at UK traffic lights. The addition of the 

sequences seems to be a key enhancer of task performance, and results in 

larger learning effects. Crucially, the pattern of results in both stopping and 

going task sets matches that already established in Chapter 2. With cue A being 

a weak go cue in a stop task set, and a neutral/weak stop cue in a go task set. 

This suggest that, depending on the task set in play, associative learning at 

traffic lights could be such as to encourage dangerous driving. This supports the 

idea raised in Chapter 1 of the need to develop interventions to target these 

maladaptive consequences of associative processes. Having seen how 

sequences can enhance the learning experienced at traffic lights, the next 

question is whether the between-experiment manipulation of task set used so 

far captures the fullest experience of traffic lights. In real-world driving, task set 

will change depending on the light shown. To reflect this, the next experiment 

aims to incorporate both task sets into one experimental design to complete my 

investigation of the associative consequences of experiencing the contingencies 

between traffic light signals and response outcomes. 
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4 CHAPTER 4 

ASSOCIATIVE PROCESSES III: THE ROLE OF TASK SET IN 

CONTINGENCY LEARNING  

hroughout this thesis I have highlighted the importance of ‘task set’. This 

chapter defines exactly what I mean by this and summarises the relevant 

research, before discussing how the existing literature could inform the design 

of a within-participants experiment manipulating task set based on the traffic 

light paradigm developed thus far. 

 TASK SET 

A ‘task set’ is a configuration of cognitive resources that are required and 

maintained to complete a task (Monsell, 1996, 2003). In many experiments, 

including the ones presented in this thesis, task set is established through 

instructions. As Sakai (2008) p. 219, notes “participants heed the instructions 

and prepare for the experiment. The participants may remember the instructions 

by verbally rehearsing them, but after practice for several trials, the task 

information is maintained as a configuration of perceptual, attentional, 

mnemonic, and motor processes necessary to perform the task”. In 

understanding how task sets come to affect behaviour, Meiran (2000) argues 

this happens through four steps. Firstly, the task set must be configured (e.g., 

through instructions). Secondly, the information is applied as a mental 

representation. Next, a process the author refers to as ‘similarity matching’ 

occurs, whereby the target stimuli facing a participant are compared with the 

representation of the responses. Through this process each response (e.g., two 

different button presses in a 2-choice reaction time task) acquires ‘potency’, 

which is determined by the degree of similarity between the task set response 

and the stimulus. The final stage is called ‘response decision’. Here the 

potencies between each response are compared and the response with the 

highest potency is selected. More generally, the formation of a task set can be 

seen as two distinct processes. Firstly, there is a preparation stage where the 

rules of a task set need to be activated, and secondly interference from 

competing task sets needs to be inhibited (Mayr, Diedrichsen, Ivry, & Keele, 

2006; Kiesel et al., 2010). 

T 
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 THE TASK-CUEING PARADIGM  

A full review of the many paradigms used in the task set literature is outside the 

scope of this thesis. Rather, the discussion focuses on the task-cueing 

paradigm (Sudevan & Taylor, 1987; Meiran, 1996; Monsell & Mizon, 2006) 

given the parallels with the issues this chapter wishes to address. In 

experiments based on this paradigm, participants are informed at the start 

about the rules of the task and the cues that signal the need to implement these 

rules. Then each trial is preceded by a cue which indicates the type of response 

required by participants to the subsequent stimulus. Participants must respond 

quickly and accurately, as in a typical reaction time task. The task continues in 

this manner with cues preceding stimuli. Typically, there are two tasks to 

perform with a different cue indicating a different task set, with participants 

having to switch task sets throughout the experiment. Performance is 

dependent on participants applying the correct task set based on the cue to the 

stimuli presented on that trial (Li, Li, Liu, Lages, & Stoet, 2019; McLaren et al., 

2019). The exact nature of the task set can vary amongst experiments, from 

requiring participants to classify rectangles by height or width depending on 

whether the preceding cue was h or w respectively (Altmann, 2004), or to 

classify a single digit as either odd or even depending on the colour of a 

preceding disk (Monsell, Sumner, & Waters, 2003). 

One design of a task-cueing experiment that provides a starting point for the 

discussion of Experiment 6 can be found in the work by Meier, Lea, Forrest, 

Angerer, and McLaren (2013). Because the authors wanted to compare the 

behaviour of human participants against that of pigeons, they used different 

colours to indicate task set rather than language-based cues. Thus, in the 

experiment a blue or yellow circle in the centre of the display required 

participants to respond with task A, while red or green circles required 

participants to respond with task B. In this way, the colour of the circle informed 

participants of the correct response towards the subsequent stimuli. The results 

and exact purpose of the work by Meier et al. (2013) are not relevant to this 

discussion. It is sufficient to say that the human participants were able to 

perform the task - highlighting how simple coloured shapes are enough to cue 

task-sets.  



147 
 

 PRESENT EXPERIMENTS 

Throughout this thesis task set has been an important factor in the design of the 

experiments. Indeed, given that different traffic lights are likely to be 

experienced within different task sets, this factor is fundamental to the 

experience of traffic lights. Yet, the designs employed thus far have only 

enabled comparisons of task set at between participants’ levels. Experiment 6 

explores task set using a within-participants design. As seen in the introduction, 

the task-cueing paradigm can allow the changing of task set within an 

experiment using only simple shapes. To my knowledge, these experiments will 

be the first to apply such a paradigm to the learning environment experienced at 

UK traffic lights. Note that the experiments reported so far in this thesis did 

prepare the ground for the development of the paradigm to capture more real-

world learning; in Experiments 4 and 5, there were two sequences per traffic 

light. For example, in Green 1, G was + mimicking the situation when the lights 

have recently changed to green, and thus it is likely a driver would have time to 

cross the junction. Whereas in Green 2, G was -, modelling the situation when 

the lights have been green for some time and so a driver could be expecting 

them to change to amber and so might be more cautious around them.  

 EXPERIMENT 6 

Capturing the task set used for each individual traffic light is an important step in 

obtaining a fuller picture of contingency learning at UK traffic lights. If a driver is 

approaching traffic lights which are currently on green, they will know they have 

some (unpredictable) time to cross the junction, thus their default will be go and 

their task set (that is, the signalled response they are looking for) will be stop. 

However, if the driver is waiting at a red light then they will expect the light to 

change to red and amber soon, and so their default will be stop (with a task set 

of go). The challenge for Experiment 6 was to capture this combination of traffic 

light changes and the appropriate task set in the laboratory. My previous 

experiments have demonstrated how switching the required response to the 

coloured circles can lead to a change in task set, so this manipulation was 

indicated. Informed by the design of Meier et al. (2013), a cued conditional 

feature was added to indicate the appropriate response to coloured circles. 

While using the approach taken by Meier et al. (2013) and having coloured 
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circles appear in the middle of the screen would build upon this past work, it 

would not be consistent with the design of the paradigm developed thus far, as 

it would disrupt presentation of the fixation bar and the shapes. Therefore, the 

approach taken here was to add another signal on the screen to let participants 

know the correct response whilst not interfering with the existing display. A 

square outline around the centre display was used to cue the task. A dark grey 

square (RGB code 64, 64, 64) surrounding the cue and circle indicated a go 

task (respond to coloured circles) whereas a light grey square (RBG code 191, 

191, 191) designated a stop task (do not respond to coloured circles). 

Therefore, in Figure 4.1 participants were required to respond to the right-hand 

image and withhold a response to the left- hand image. 

 

 

 

 

 

As well as task set, Chapter 3 showed that the sequence of stimuli experienced 

at traffic lights was itself an important source of learning, and therefore 

Experiment 6 used the same sequences, but with the addition of the 

aforementioned conditional cue. Therefore, the response to each trial depended 

on the colour of the enclosing square, which correlated with the sequence. 

Table 4.1 represents the same sequences as Table 3.1 in Chapter 3, except 

that the cues are now colour coded to reflect the colour of the square that will 

appear with them. In addition, now that task set is decoupled from response, + 

equals go and - stop. In Table 4.1, bold dark grey means that participants will 

see a dark grey square (and thus will respond to coloured circles, which means 

the default will be stop and task set is go) while bold light grey means that 

participants will see a light grey square (and thus will be in a stop task set as 

participants will have to not respond to coloured circles and respond to white 

circles). 

Figure 4.1. Conditional cues used in Experiment 6. 
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Table 4.1. Sequence runs for Experiment 6 ‘-’ is 100% stop, ‘+’ is 100% go. 

 

As can be seen in Table 4.1, green traffic lights are always accompanied by a 

light grey square (default go, task set stop). This is because it is assumed that 

initially green traffic lights will always induce a default go response, and thus 

drivers will be looking for stop signs. This helps to correct an issue with the 

design of the experiments in Chapter 3, whereby the sequence Green 2 did not 

have a preceding green cue before the green stop cue to mimic the shift in 

driver’s perception of G being a go cue to a stop cue. However, the interaction 

between task set and go/no-go response sets up a situation where participants 

see a green cue with the default to respond but in fact are required to withhold 

their response. The opposite holds true for R+ in the Red 2 sequence. In this 

sequence R+ is designed to mimic the situation where a driver has come 

around a corner, seen the lights are on red and approached while the lights are 

still red. The driver knows the lights must change to red and amber shortly and 

might be assumed not to brake in the approach towards the light. In this 

instance R acts a go cue. However, red is likely to still engage a default stop 

response and so is accompanied by a dark grey square. 

As before the filler cues need to balance out the above design. The addition of 

the conditional cueing means that this also needs to be controlled. This raises 

another issue for the experimental design: is it more important that the 

experiment mimics real-life or that it is a balanced design? If the former is key, 

the filler cues would need to have the opposite conditional cueing to cues in the 

Light type Sequence 

Green 1 

Green 2 

 

Amber 1 

Amber 2  

 

Red 1 

Red 2 

 

Red/Amber 

G+ -> G+  

G- -> A- -> R- -> R- -> RA+ -> G+ 

A+ -> A+  

A- -> R- -> R- -> RA+ ->G+ 

R- -> R- -> RA+ ->G+ 

R+ -> RA+ -> G+ 

RA+ -> G+ 
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sequence, e.g., cue B would have a dark grey square cue. This would mean 

that the conditional cue (grey outline square) would also signal what type of trial 

(+ or -) was likely to happen, with the light grey square (that cue linked to G) 

indicating that a trial is very likely to be a go trial. This design would create a 

situation where one is being cued for situations where one is mostly likely to go, 

or to stop – which is what traffic lights in some way do. If on the other hand a 

balanced design is most important, then cue B would need to be accompanied 

by a light grey square. In other words, each filler cue has the same conditional 

cue as its main counterpart. The conditionality then cannot indicate the 

response that is likely to be needed. To ensure that Experiment 6 was 

consistent with my previous experiments, it was decided to use a design that 

was balanced (see Table 4.2). It will be noted that cues J and YZ appear 

equally in a stop and go task set. This was to prevent a cue becoming linked to 

a specific colour circle. For example, if cue J was not split by the conditionality 

feature and response as shown, then a feasible design would be J- 

accompanied by a dark grey conditional cue, and J+ accompanied by a light 

grey conditional cue. In this case, while the overall response would be balanced 

(4 go and 4 stop), participants would only see white circles when this cue 

appeared. This would be because with J- (stop trials) white circles would be the 

stop cue, while for J+ (change in task set) white circles would require a go 

response (the same would also hold true for YZ). 
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Table 4.2. Filler sequences runs for Experiment 6. ‘-’ is 100% stop, ‘+’ is 100% 

go. 

 Method 

 Participants 

The inclusion criteria and outlier removal process were the same as Experiment 

2 (see Results section for details of those removed). A power analysis using the 

R package SIMR (Green & MacLeod, 2016) and the data from Experiments 4 

and 5 suggested that 50 participants would give a 84.30% chance of detecting a 

20.37ms difference between a go vs. stop cue (G vs. B, see section 4.4.1.2 for 

details) for the first sequence trial analysis for response times (the average 

difference from G vs B for those two experiments). This sample size is also in 

line with other recent similar experiments, such as Forrest et al. (2014). Of the 

final sample, 44 were female with an overall mean age of 20.00 (SD = 3.09). 

Participants received payment of £5 or one course credit. 

 Design  

The design (see Table 4.3) was similar to that of Experiment 4 and 5 except for 

conditionality, as discussed above, and the calibration block. In past 

Cue type Cue Occurrences per block 

Cue G filler 

 

Cue R filler 

 

Cue RA filler 

50:50 filler 

 

50:50 filler 

 

 

 

Tracking cue 

B+ 

B- 

I+ 

I- 

IP- 

P- 

P+ 

YZ- 

YZ+ 

YZ- 

YZ+ 

J- 

J+ 

J- 

J+ 

4 

32 

24 

2 

24 

8 

8 

4 

4 

4 

4 

2 

2 

2 

2 
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experiments the calibration block comprised 24 trials. However, in order to allow 

participants practice at the conditional nature of the current task the calibration 

block was extended to include 36 trials, split into three runs of six trials for each 

task set with these runs ordered randomly. To reflect the new nature of the first 

block in Table 4.3 it is renamed as a Learning Phase. The decision to split J by 

conditionality and response for training and test blocks also meshes with the 

change to the calibration block. If the cue had not been modulated by these 

factors, then participants would have experienced a split design in the learning 

phase but not for the training or test phases. This could have led to participants 

changing their performance to cue J in the subsequent blocks, which in turn 

could have disrupted the tracking procedure. Another feature of the design 

worth highlighting is that in more traditional cued task-switching designs, trials 

(and therefore responses) are randomly ordered. However, in the design 

employed for Experiment 6 the order in each sequence is fixed, but the order of 

the sequences was random.  

 

Table 4.3. Summary of Experiment 6 design. Letters represent a sequence. The 

numbers in parentheses indicate how often the sequence will occur per block. At 

test the contingencies were ±. 

Phase Blocks Individual 

trials per 

block 

Design  

Learning 

phase 

 

1 36  J 

Training 6 232 G1(4), G2(4), A1(4), A2(4), R1(4), 

R2(4), RA(8), B(36), I(28), IP(24), 

P(16), YZ(16) 

 

J(8) 

Test 1 232 G1(4), G2(4), A1(4), A2(4), R1(4), 

R2(4), RA(8), B(36), I(28), IP(24), 

P(16), YZ(16) 

J(8) 
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 Procedure  

The procedure was identical to that of Experiments 4 and 5 apart from changes 

to the instructions and the addition of the cueing square. The task was designed 

so that a cueing square was always on screen, appearing with the fixation bar 

for that trial and then changing (or not) with presentation of the next fixation bar 

(see Figure 4.2 for schematic).  

 

 

 

The instructions were amended to reflect the addition of the conditional feature. 

Instructions for responses to a dark grey square (respond to coloured circles, 

withhold to white circles) were presented first, followed by the instructions for 

the light grey square (withhold to coloured circles, respond to white). This was 

then reinforced with the final instructions screen telling participants “if you see a 

dark grey rectangle then respond to coloured circles. If you see a light grey 

rectangle do not respond to coloured circles.” The instructions were written with 

a focus on a response to the coloured circles in order to reinforce the change in 

task requirements and to ensure that participants were in the correct task set. 

Figure 4.2. Schematic of a trial for Experiment 6. As the cueing square is dark 

grey this would indicate to participants that they need to respond to coloured 

circles (go is the task set), so the correct response would be to respond. 

 



154 
 

By starting with responses to white circles (as in past experiments) it might have 

led to participants not fully appreciating the change in the task (as the response 

to colour is the more salient of responses). One potential issue with this is that 

the second line is an example of a reversed instruction, telling participants what 

not to do, which can be harder to interpret. Additionally, the fact that the go task 

set instructions were presented first might lead participants to assume this is the 

default task and so shift performance to trials with the stop task set. One 

approach could have been to counterbalance the order of the instructions 

across participants. However, this would have meant that instructions would 

have focused on not responding to coloured circles first. It was felt this might 

have been difficult for participants to understand, given that instructions in most 

psychological experiments prime what to do first. 

4.4.1.3.1 Awareness measures 

As with Experiments 4 and 5 an awareness measure was included. 

 Analysis and results 

The analysis for Experiment 6 was conducted in a similar manner to that for 

Experiments 4 and 5 and so the particulars will not be repeated here. In terms 

of outliers, two participants were removed and replaced for having high 

omission errors, while one participant was removed and replaced for having 

high commission errors. Two participants failed to complete the experiment. 

There were no outliers for reaction times. One change is that due to the 

variation of task set there is no longer a basis for undertaking the feature-

positive effect analysis. Additionally, although this chapter has discussed the 

task switching literature, the analysis still focuses on the learning that takes 

place to the cues, and so analyses that one would normally see with some task 

set paradigms (e.g., switch costs) were not investigated here. 

 Training phase  

As with the analyses reported in Chapter 3, performance is likely to be affected 

by repetition priming effects and so contrasts were undertaken to demonstrate 

learning in situations where such effects were not in play. I then present the 

traffic light analysis to explore performance to the cues of interest (Table 4.4 

contains the relevant descriptive statistics). 
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Cue Reaction Time p(respond) p(miss) 

 Mean SD Mean SD Mean SD 

A-/+ 504.08 76.55 0.07 0.04 0.02 0.02 

B- 537.24 84.81 0.05 0.02 0.04 0.04 

G+ 477.56 87.32 0.05 0.04 0.02 0.01 

I+ 540.07 75.61 0.05 0.04 0.03 0.02 

IP- NA NA 0.04 0.02 NA NA 

J± 546.52 76.05 0.08 0.06 0.03 0.03 

P-/+ 530.46 84.73 0.06 0.03 0.03 0.03 

R- 564.59 87.22 0.03 0.01 0.04 0.04 

RA+ 542.7 82.35 NA NA 0.02 0.02 

YZ-/+ 558.39 71.68 0.06 0.04 0.04 0.04 

Table 4.4. Training descriptive statistics for Experiment 6. Reaction times 

means are calculated using are raw data, but mean p(respond) and p(miss) use 

transformed data. 

4.4.2.1.1 Reaction times  

For the training data, the best fitting model had a conditional R2 of 0.86 (see 

Table 4.5 for AICs).  

4.4.2.1.1.1  Evidence of associative learning 

As with Chapter 3, the contrasts that provide evidence of associative learning in 

isolation are R vs. I and R vs. B. Importantly, the contrast R vs. I also controls 

for the effect of task set (as they both have the same conditional response). The 

alpha level was corrected to .025. The contrast R vs. I was significant, t(392) = -

3.86, p = < .001, 95% CI [-36.97, -12.07], d = -0.39, with slower responses to R 

than I indicating that cue R was not a go cue. The comparison R vs. B was also 

significant, t(392) = -4.31, p = < .001, 95% CI [-39.80, -14.90], d = -0.43, with 

faster reaction times to cue B than R suggesting that participants learnt that cue 

R was a stop cue. Of course, it must be noted that B and R have different 

conditional cues. This, then, may in part be why R is coming out as a stronger 

stop cue than B. But that is not to in any way minimise the result. Under these 

conditions, and the assumed conditions experienced at UK traffic lights, R is a 

strong stop cue. 
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4.4.2.1.1.2  Traffic light contrasts 

Noting the above results, I can be confident that the following results arise 

because of associative learning as well as repetition priming. As G vs. B is no 

longer a pure manipulation check, the alpha level was corrected to .008. The G 

vs. B contrast was highly significant, t(392) = 9.40, p = < .001, 95% CI [47.24, 

72.14], d = 0.95, with G having faster response times than B indicating that 

learning was occurring. The A vs. B contrast was also highly significant, t(392) = 

5.22, p = < .001, 95% CI [20.71, 45.61], d = 0.53, with cue A being faster than 

B, indicating that A was not experienced as a stop cue. The A vs. G contrast 

was significant, t(392) = -4.18, p = < .001, 95% CI [-38.97, -14.07], d = -0.42, 

with faster response for G than A, indicating that while A primed responding 

more than B it was not as much a go cue as G. Cue R was significantly slower 

than B, t(392) = -4.31, p = < .001, 95% CI [-39.80, -14.90], d = -0.43 suggesting 

that it was more of a stop cue than B. Cue R was also highly significantly slower 

than cue G, t(392) = -13.70, p = < .001, 95% CI [-99.49, -74.59], d = -1.38, 

suggesting that R was not a go cue. The A vs. R contrast was highly significant, 

t(392) = 9.73, p = < .001, 95% CI [48.06, 72.96], d = 0.96, suggesting that A 

was more of a go cue than R. 

4.4.2.1.2 p(respond)  

For this measure, the best model was a model that included the main effects of 

cue with a Gamma family and inverse link and random intercept (see Table 

4.5).  

4.4.2.1.2.1  Evidence of associative learning 

For this measure the contrasts G vs. B and G vs. I provide the conditions to 

assess for the occurrence of associative learning, with the contrast G vs. B 

controlling for the effect of task set. The G vs. B contrast was not significant, z = 

-0.28, p = .781, nor was the G vs. I contrast, z = -072, p = .473. Overall, these 

two contrasts demonstrate that associative learning was weak for this measure 

and leads to the conclusion that this measure is less sensitive than reaction 

times, probably because of the low error rate. It is worth noting that cue B has 

the same conditional cue as G, and so that is the most important comparison.  
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4.4.2.1.2.2 Traffic light contrasts 

Given the above results it is likely that performance for commission errors is 

driven more by repetition priming effects than associative learning. For this 

analysis, the alpha level was corrected to .008. The G vs. B contrast was not 

significant, z = -0.28, p = .781. The A vs. B contrast was not significant at the 

corrected alpha, z = 2.44, p = .015, although this does suggest a trend for more 

errors to A than B which would be consistent with A priming go responses. 

Looking at Table 4.1 it could be that cue A is not overly affected by repetition 

priming. This is because when the cue does appear in a sequence trial position 

greater than 1 it is equally balanced to appear after a go or a stop cue (in Green 

2 it occurs after a stop cue and itself is stop, while in Amber 1 the second cue is 

a go cue A and is proceeded by another go cue A). The nearly significant result 

for A vs. B could be indicative of some associative learning. The A vs. G 

contrast was highly significant, z = 6.24, p = .007, with surprisingly more errors 

for A than G, indicating that cue A was also more likely to prime errors of 

commission than cue G. Given that cue G is more often than not proceeded by 

another go cue (see Red 1 for example), one would expect repetition priming 

effects to push cue G to become a go cue on this measure. The fact it does not 

suggests that cue A is a strong go cue. The contrast R vs. B was significant, z = 

-3.08, p = .002, with unexpectedly more errors for cue B than R, which supports 

the contrasts for reaction times that suggested cue R was a stronger stop cue 

than B. However, noting the results in section 4.4.2.1.2.1 the role of repetition 

priming cannot be ignored. This is especially the case for this contrast where 

cue R is often embedded in a run of stop trials which is likely to enhance the 

stopping behaviour exhibited to this cue. The subsequent analysis on test data 

will help determine if this is the case. The R vs. G contrast was significant, z = -

2.83, p = .005, with more errors for G than R, again suggesting that R was not a 

go cue, yet for the reasons discussed above this difference is not unexpected. 

The A vs. R contrast was highly significant, z = 5.10, p = < .001, demonstrating 

that cue A was more of a go cue than cue R, and matching the results for 

reaction times. Nevertheless, these results could also be a consequence of 

repetition priming.  
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4.4.2.1.3 Training phase summary 

Overall, the reaction time data provides evidence that associative learning was 

occurring. However, given the lack of such evidence for commission errors it 

seems prudent to assume that performance on p(respond) could be, in a large 

part, driven by repetition priming effects. In summary it seems that, in an 

experiment that combines go and stop task sets and some of the sequences 

experienced at traffic lights, cue G is a go cue, cue A is slower than G (and 

faster than B) but leads to more errors so is perhaps similar to G, and cue R a 

strong stop cue.  

Table 4.5. AICc scores for models for Experiment 6 run on reaction time and 

p(respond) data at training and test. Bold are the models chosen.  

 Test analysis  

The same issues within the test phase highlighted in Chapter 3 are also 

relevant for Experiment 6. Thus, the same two separate analyses will be 

undertaken as in Chapter 3. The first analysis focuses on filler trials and first 

trial in a sequence, while the second explores performance on trials embedded 

within sequences. See Table 4.6 for descriptive statistics.   

Model Training 1st Sequence Other sequence 

Reaction time models    

Main effects of cue 5242.19 6045.60 6024.71 

Main effects of cue with 

random intercept 

 

4551.45 5624.26 5529.98 

p(respond) 

 

   

Main effects of cue with 

Gamma family and inverse 

link 

 

-1856.54 -2165.71 -2297.90 

Main effects of cue with 

Gamma family and inverse 

link and random intercept 

-1871.31 -2181.90 -2322.91 
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4.4.2.2.1 First trial analyses 

The analyses conducted on the first trial of each sequence were a G vs. B 

contrast (which is now once again a manipulation check) and A vs. B, A vs. G, 

A vs. R, R vs. B and R vs. G. The alpha level for these analyses was corrected 

to .010 (see Table 4.5 for AICc’s).  

4.4.2.2.1.1  Reaction times 

The model chosen had a conditional R2 of 0.66. The G vs. B contrast was 

significant, t(441) = 4.95, p = < .001, 95% CI [36.48, 84.23], d = 0.47 indicating 

that learning had taken place by the test phase. The A vs. B contrast 

approached significance at a standard alpha level, t(441) = 1.88, p = .061, 95% 

CI [-1.02, 46.72], d = 0.18, suggesting a weak trend for participants to make 

faster responses to cue A than B. The A vs. G contrast was significant, t(441) = 

-3.08, p = .002, 95% CI [-61.38, -13.64], d = -0.29, suggesting that cue G 

primed more of a go response than cue A. The R vs. B contrast was not 

significant, t(441) = -1.18, p = .241, 95% CI [-38.19, 9.56], d = 0.11, and cue R 

had significantly slower reaction times than cue G, t(441) = -6.13, p = < .001, 

95% CI [-98.54, -50.79], d = -0.58 suggesting that cue R was not a go cue. The 

contrast A vs. R was also significant, t(441) = 3.05, p = .002, 95% CI [13.28, 

61.03], d = 0.29 suggesting that cue A primed more of a go response than cue 

R. These results clearly indicate that G is a go cue, R a stop cue, and A 

somewhere in between. 

4.4.2.2.1.2  p(respond) 

For commission errors there was a non-significant difference for G vs. B, z = -

0.19, p = .848, suggesting that performance was not strong for this contrast. 

The contrast A vs. B was significant at a standard alpha level, z = 2.13, p = 

.033, and hints at a trend for more errors to A than B. The difference between A 

vs. G was significant at a standard alpha level, z = 2.29, p = .022, suggesting an 

unexpected trend for more errors to cue A than G. For cue R, the contrast 

against cue B was not significant, z = -0.82, p = .410 (this suggest that the 

significant difference in training was largely due to repetition priming), nor was 

the contrast against G, z = -0.64, p = .525. The contrast for A vs. R was 

significant, z = 2.77, p = .006, with more errors to cue A than R. These results 

suggest that A is as much of a go cue (perhaps more so) than G and confirm 

that R is a stop cue. 
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4.4.2.2.2 Other sequence trial analyses 

This analysis focused on comparing the traffic light cues within the sequences. 

Therefore, contrasts undertaken were A vs. G, A vs. R, and R vs. G. The alpha 

level was corrected to .017.  

4.4.2.2.2.1  Reaction times 

The model chosen had a conditional R2 of 0.73. The A vs. G contrast was 

significant, t(441) = -3.93, p = < .001, 95% CI [-64.39, -21.56], d = -0.37, with 

faster responses to cue G than A suggesting G primed a greater go response. 

The A vs. R contrast was significant, t(441) = 3.85, p = < .001, 95% CI [20.61, 

63.43], d = 0.37, with faster responses to cue A than R. Lastly, the R vs. G 

contrast was highly significant, t(441) = -7.78, p = < .001, 95% CI [-106.40, -

63.58], d = -0.74, with faster reaction times to cue G than R indicating that R 

was not a go cue. Once again, the reaction time data suggest that G is a strong 

go cue, R a strong stop cue and A is in between. 

4.4.2.2.2.2  p(respond) 

The A vs. G contrast was not significant, z = 1.24, p = .215. The A vs. R 

contrast was significant at a standard alpha level, z = 2.34, p = .019, suggesting 

a weak trend for cue A to promote more of a go response than cue R. The R vs. 

G contrast was not significant, z = -1.23, p = .219. I note that the analysis of the 

sequence trials is now producing useful results. Yet this is qualified by the 

change in task set that will occur during sequences. 

4.4.2.2.3 Test phase summary 

The first sequence trial analyses indicates that at a purely associative learning 

level participants had learnt that G was a go cue, with this having significantly 

faster reaction times than cue B. Cue A seems to be a fairly weak go cue, with 

hints at being more going than cue B for both reaction times and commission 

errors, and having significantly more errors than G but slower reaction times. 

The cue was also significantly more go on both measures when compared to 

cue R. For cue R learning suggests it primed a stop response, having 

significantly slower reaction times than cue G but similar performance on both 

measures to B (and similar levels of error rates to G).  

This general pattern is supported by the other sequence trial analyses. Once 

again cue A seemed to be a fairly weak go cue. The cue had significantly 
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slower reaction times than cue G but similar commission errors, and it primed 

significantly more going behaviour than cue R for both measures. For reaction 

times cue R promoted significantly more stopping behaviour than cue G, 

suggesting it was a stop cue.  

Type of cues Reaction Time p(respond) p(miss) 

Filler cues Mean SD Mean SD Mean SD 

B+ 539.21 84.33 0.04 0.04 0.02 0.04 

I- 537.72 96.37 0.04 0.05 0.03 0.04 

IP+ 571.41 109.1 0.04 0.06 0.03 0.04 

J± 556.54 108.24 0.06 0.12 0.03 0.07 

P-/+ 527.29 88.52 0.05 0.08 0.04 0.07 

YZ-/+ 562.16 104.44 0.06 0.08 0.03 0.06 

       

1st sequence 

trials 

experimental 

cues 

      

A 516.37 91.62 0.06 0.11 0.01 0.03 

G 478.86 109.77 0.03 0.07 0.01 0.00 

R 553.53 117.28 0.03 0.07 0.05 0.11 

RA 531.39 94.17 0.04 0.09 0.02 0.05 

       

Other sequence 

trials 

experimental 

cues 

      

A 488.02 107.21 0.05 0.09 0.01 0.03 

G 445.05 92.87 0.04 0.05 0.01 0.02 

R 530.04 97.54 0.03 0.05 0.01 0.02 

RA 498.02 96.26 0.02 0.03 0.01 0.00 

Table 4.6. Test descriptive statistics for Experiment 6. Reaction time means are 

calculated using raw data, but mean p(respond) and p(miss) use transformed 

data. 
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 Expectancies 

As in Chapter 3 it was possible to contrast expectancy scores between cues to 

assess the evidence of awareness. This analysis was undertaken in the same 

manner as the reaction time data (see Table 4.7 for descriptive statistics). An 

alpha level of .008 was applied to this analysis. The best model fitted the main 

effects of cue with random intercept (R2 = 0.74). The G vs. B contrast was 

highly significant, t(539) = 6.34, p = < .001, 95% CI [3.03, 5.73], b = 0.55, with 

participants more likely to classify G as a go cue than B. The A vs. B contrast 

was not significant at the reduced alpha, t(539) = 2.00, p = .046, 95% CI [0.03, 

2.73], d = 0.17, although there was a trend for participants to rate cue A as 

more go than cue B. The A vs. G contrast was significant, t(539) = -4.34, p = < 

.001, 95% CI [-4.35, -1.65], d = -0.37, with participants more likely to rate G as a 

go cue than cue A. The A vs. R contrast was marginally significant at a standard 

alpha, t(539) = 1.68, p = .094, 95% CI [-0.19, 2.51], d = 0.14, with a slight trend 

for higher go ratings for A than R. Focusing on cue R, R vs. G was highly 

significant, t(539) = -6.03, p = < .001, 95% CI [-5.51, -2.81], d = -0.52, with 

participants more likely to rate cue G as go than cue R. The R vs. B contrast 

was not significant, t(539) = 0.32, p = .750, 95% CI [-1.13, 1.57], d = 0.03.  

As in Chapter 3 it was possible to use J and YZ as baseline cues to see if 

awareness for B was neutral or biased in some way. This analysis was separate 

from that reported above and so an alpha level of .013 was applied. The J vs. G 

contrast was significant, t(539) = -4.95, p = < .001, 95% CI [-4.77, -2.07], d = -

0.43, with participants more likely to classify G as a go cue than J. The YZ vs. G 

contrast was highly significant, t(539) = -6.08, p = < .001, 95% CI [-5.55, -2.85], 

d = -0.52, again with participants more likely to see G as a go cue than YZ. 

Thus, participants seem to have been aware that cue G was a go cue 

compared to neutral cues. Against B, the contrast for J was not significant, 

t(539) = 1.39, p = .164, 95% CI [-0.39, 2.31], d = 0.12, nor was the contrast for 

YZ vs. B, t(539) = 0.26, p = .794, 95% CI [-1.17, 1.53], d = 0.02. This indicates 

that participants expected to make very similar responses to cue B (a stop cue) 

and cues J and YZ (neutral 50:50 cues). Of course, contrasts against cue R 

might support the argument regarding participant’s lack of awareness best 

given that R is now a strong stop cue. Indeed, neither the J vs. R contrast, 

t(539) = 1.07, p = .284, 95% CI [-0.61, 2.09], d = 0.09, nor the YZ vs. R 



163 
 

contrast, t(539) = -0.06, p = .954, 95% CI [-1.39, 1.31], d = -0.00 was significant. 

Thus, though cue R seems to be a strong stop cue behaviourally, it is 

numerically similar to J and YZ in terms of expectancy. 

Overall, the analysis shows that for some cue’s participants were aware of the 

required response. This awareness seems to focus on cue G, with participants 

showing consistent awareness of this cue relative to others.  

Cue Expectancy Rating 

 Mean SD 

A-/+ 1.98 3.35 

B- 0.60 4.69 

G+ 4.98 3.40 

I+ 2.66 3.49 

IP- -0.92 3.92 

J± 1.56 4.26 

P-/+ 1.86 3.73 

R- 0.82 4.09 

RA+ -0.52 3.60 

Y-/+ -0.28 4.11 

YZ-/+ 0.78 3.65 

Z-/+ -0.28 4.53 

Table 4.7. Descriptive statistics for expectancy ratings for Experiment 6. 

 Correlational analysis  

As in Chapter 3 it is possible to compare performance scores and expectancy 

ratings to see if there is a correlation between them. Therefore, correlations 

comparing the significant contrasts from the expectancy ratings are presented, 

that is, G vs. B, G vs. A, and G vs. R. For training the whole dataset was used, 

whilst for test only data from first sequence trials was included. Looking at 

Figure 4.3, once the alpha level correction is applied (to p = .017), it seems that 

awareness did not affect performance at training – though the result for G vs. B 

for response times might be taken to indicate that awareness did have some 

influence upon performance. Regarding the test data (Figure 4.4) it seems 

performance and awareness were not correlated. Thus, although participants 

appear to notice cue G, and to be able to articulate this knowledge in their 



164 
 

ratings at training, the correlation between the advantage of G over B and the 

difference in awareness ratings never becomes significant after correction. Of 

course, one caveat is that perhaps there is a small causal influence that this 

analysis lacks the power to detect.  
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 Summary 

Experiment 6 was an attempt to combine two factors highlighted in preceding 

chapters that seem to influence learning of the contingencies experienced at UK 

traffic lights, or more accurately, within the paradigm developed here to capture 

learning at UK traffic lights. Using a within-participants design, Experiment 6 

exposed participants to both the task sets and sequences likely to be 

experienced at traffic lights.  

Firstly, it is worth noting that participants were able to cope with this paradigm. 

The (by now) typical finding of G being significantly different from B was 

obtained, with significantly faster response times to G than to B in both the 

training phase and in the first sequence trials analysis, though cue G did not 

produce significantly more errors for p(respond) in either phase. This illustrates 

that at a fundamental level learning to Experiment 6 was still occurring as 

expected despite the substantial changes that had been made.  

Turning to the two key traffic light cues of A and R, at training there is evidence 

that cue A was not a stop cue, having significantly faster response times than B 

and a strong trend (though not significant at the corrected alpha level) for more 

commission errors than B. Of course, caveats apply for the A vs. B contrast for 

commission error as there was little evidence that associative learning was 

driving performance for this measure. Compared to G, cue A was significantly 

slower at training but had significantly more commission errors. The 

commission contrast is intriguing, being contrary to expected performance 

based on repetition priming effects and indicating a role for associative learning. 

Overall, focusing on the reaction times (where I can be confident performance 

is, in part, an outcome of associative learning) it seems that cue A is a neutral 

cue. However, the results for p(respond) do hint that cue A may be more of a 

weak go cue than a neutral cue. In the case of R, it was significantly slower in 

terms of reaction times for both cue G and cue B, indicating that cue R is a 

strong stop cue. For p(respond), cue R also had significantly less errors than B 

or G, supporting the argument that cue R was a stop cue. However, it must be 

highlighted that for both contrasts for errors there is a clear logic supporting the 

effects of repetition priming upon performance.  
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For the first sequence test trials the results suggest that cue A primed a quite 

weak go response. Reaction times were faster for A than B, but this difference 

only approached significance at a standard alpha level, and cue A had 

significantly slower response times compared to G. Yet, for error rates cue A 

had significantly more errors at a standard alpha level than both B and G, 

suggesting that for errors there was a trend for cue A to promote a go response. 

For cue R, the data indicates it was a stop cue. The cue had significantly slower 

response times than cue G but was similar in performance for cue B. For 

commission errors learning seemed to be weak, with error rates not being 

significantly difference between B, G or R. Overall, the results suggest that on a 

stop-go continuum, cue G was a go cue, cue A was quite a weak go cue, cue B 

a stop cue, and cue R a stop cue, slightly more so than cue B based on the 

reaction time data.  

In terms of the results for cue A, Experiment 6 is consistent with other results 

presented in this thesis and shows how an amber light could become linked to a 

go response, albeit a weak one. For cue R, this experiment contrasts quite 

sharply with the general conclusion of the previous experiments that suggested 

R to be a weak stop cue. However, R has been consistently found to promote 

stopping (to varying degrees) and so the shift is not quite as marked as might at 

first appear. The difference could well be due to the different task sets in play. 

Looking back to the experiments in Chapters 2 (and ignoring the enhanced 

learning generated by sequences) it would seem that what I have called a stop 

task set (where the default is go) is one that potentiates learning to go to cue A. 

Whereas, in a go task set (where the default is stop) learning potentiates 

stopping to R. In some sense, then, the labelling of these task sets can be seen 

as giving the wrong impression (even though logically they are labelled entirely 

correctly). Of course, the task sets themselves are confounded with particular 

sequences and cues that have different contingent relationships to responding, 

so it is difficult to be unequivocally sure about this conclusion. The take home 

message is that whilst one may now have more confidence that a red traffic 

light will indeed be learnt as a stop cue due to driver's experience at traffic 

lights, it still remains the case that an amber light might promote something of a 

go response, and certainly not the relatively stop cue envisaged in the Highway 

Code. 
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The results for the awareness correlations continue to support the view that 

participants are learning about the task through associatively-mediated 

processes, with correlations not being significant after corrections. However, the 

fact that the G vs. B correlation was significant at a standard alpha level for 

training does suggest that awareness might have some role to play in 

performance, and that these null results could partly be due to a lack of power. 

It might be fairer to acknowledge that participants do seem to pick up on G 

more often than not, realising that a response will be required to this cue, but 

that the other cues all seem to be similar in regard to the expectancy ratings. 

In past chapters the first experiment has been replicated, but with a switch in 

task set. This approach is not appropriate here, but Experiment 7 does replicate 

the training phase of Experiment 6, and begins the process of development of a 

paradigm that will allow us to change the learnt contingencies to cue A.  

 EXPERIMENT 7  

Throughout the experiments presented in this thesis, it has become clear that 

amber traffic lights may not be associated with the weak stop/stop contingency 

that the Highway Code prescribes, but rather seem to be associated with a 

weak go response (at least in the task developed here). This suggests that the 

associative system is cueing people for a go response at amber traffic lights, 

and that either in tandem with more conscious decision making (e.g., If I jump 

the light I could get home early), or, worse, without the input of conscious 

control (McLaren et al., 2019) could lead to people crossing amber lights. Given 

the role associative learning might have in motivating people to jump amber 

traffic lights, the next question becomes: is it possible to address this behaviour 

by retraining learning, so that amber is associated with stop rather than go? 

This brings to mind the work on associatively-mediated inhibition such as that 

by N. S. Lawrence, O'Sullivan, et al. (2015) reviewed in Chapter 1, and I will 

return to this in the discussion. Experiment 7 begins the development of this 

inhibition training, but it is also a direct replication of Experiment 6 (the inhibition 

training aspect will be discussed in more detail in Chapter 6).  

The existing paradigm has two parts; in the training phase participants learn the 

contingencies of the task (which reflect some of the contingencies at play in UK 

traffic lights) and then in the test phase I investigate what learning has taken 
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place. By the end of the training phase, but before the test phase, participants 

seem to learn that A is a fairly weak go cue. Therefore, placing an inhibition task 

whereby cue A is linked to stopping before the test phase should retrain 

participants to exhibit a stop response to cue A. In the subsequent test phase 

one would expect those who had this training to have slower responses and 

less commission errors to cue A than those who received a similar task.  

In terms of the participant’s experience of the inhibition phase, it needed to be 

similar to the existing design for learning to transfer, therefore a warning cue 

(the shape) had to appear on the screen followed by another signal denoting 

the response required. The responses used so far have been go or stop and 

these responses were used again. In addition, go signals have previously 

appeared on either side of the shape and so this will be another constraint on 

the inhibition task. As task set was not manipulated during this phase, the 

cueing square was removed. Given the intervention is about learning to stop, 

this phase only had two cues, a prepotent go cue and a less frequently seen 

stop cue. Therefore there was no tracking cue, with the experiment having a set 

response window of 1000ms in line with similar work (Bowditch, 2016). 

Regarding the cues used in this inhibition phase, clearly A has to be the stop 

cue for the experimental group. While it would seem sensible at face value to 

use cue G as the go cue, the extra exposure to cue G might affect learning at 

the test phase. Additionally, the inhibition task will not use sequences, and so 

using a novel go cue was felt best in order to leave comparisons of G vs. B at 

test unaltered. Therefore, a new cue, cue X, was employed as the go cue for 

the inhibition phase. For the control condition, in order to match learning as 

closely as possible, participants were exposed to the go cue X but for the 

stopping response saw another novel cue, cue O, instead of cue A. 

One last change was made: rather than respond (or not) to white or coloured 

circles participants had to respond (or not) to black arrows. This change was 

made to ensure that the phase was not too similar to the past blocks, as if it was 

identical then the phase would not be inhibition per se, but rather additional 

training, with admittedly changed contingencies. However, to ensure that 

learning from the inhibition phase did transfer to test it was important to ensure 

that the phase did not feel too dissimilar either, and so responding to arrows 

rather than circles was felt to strike the optimum balance. Black was chosen as 
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the colour for the arrows to ensure that any learning to colours resulting from 

the training phase did not impact learning for the inhibition phase, with 

participants never responding (or not) to black circles.   

Figure 4.5 shows a go trial for the inhibition phase. What should be obvious is 

how similar it is to the designs already used (especially to the designs used in 

Experiment 1-5). In fact, the only visual change from those experiments is the 

replacement of the signal circle with an arrow pointing to which side key needed 

pressing (these keys remained the same throughout experiments).  

Figure 4.6 shows a no-go trial. Several other adjustments were made for these 

trials, primarily to maintain task engagement. This was a concern as the phase 

was relatively slow in the absence of a tracking cue. Also, the phase was 

relatively straightforward, with only two cues, and came towards the end of the 

overall experiment when enthusiasm might be flagging. To address this, instead 

of having a coloured or white arrow to denote no-go, firstly a black go arrow 

appeared followed at one of three intervals by a black X superimposed on the 

arrow to indicate no-go. In effect this is a stop rather than a no-go trial. Finally, 

to reinforce learning to the stop cue, commission errors led to a two second 

timeout screen displaying the message “Error! Timeout!” 

Figure 4.5. Schematic of a go trial for the inhibition phase of Experiment 7. 
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 Method 

 Participants 

The inclusion criteria and outlier removal process were the same as Experiment 

2 (see Results section for details of outliers). Experiment 7 had a similar sample 

size as Experiment 6 but was split into two groups (26 in each). In the final 

sample, 8 in the experimental group and 17 in the control group were female, 

with a mean age of 19.81 (SD = 1.60) and 20.69 (SD = 2.07) respectively. 

Participants received payment of £10 or one and a half course credits. 

 Design  

Although Experiment 7 had a between participant’s feature (the type of 

inhibition training), this was only introduced in the inhibition phase, and all 

participants experienced the learning and training phases identically; in fact, 

these phases were a direct replication of Experiment 6. The design of 

Experiment 7 can be seen in Table 4.8. Here, another feature of the design is 

made clear. While the importance of prepotent responses for the inhibition task 

Figure 4.6. Schematic of a stop trial for the inhibition phase of Experiment 7. 



173 
 

has been noted, it is still important to have data regarding commission errors, 

and so each cue had eight trials that were the opposite of its majority response 

(this also served to keep participants focused on the task). One issue with this 

approach was that while there were three possible stop delays for the stop cue 

in the inhibition task, there were 22 go trials. To square this mathematical circle, 

each participant received 7 of each of the delays with the extra delay being 

chosen from the three groups at random. While there was a 10 second break 

half-way through each block in the training and test phase, this was not the 

case for the inhibition block and participants only received 10 second breaks at 

the end of each block. No awareness measures were taken. 

 Procedure  

The only change in procedure from that of Experiment 6 were the instructions 

participants received. Participants received the same instructions as in 

Experiment 6 at the start of the experiment and at the start of the test phase. In 

the case of the inhibition task there was only one way of presenting the 

instructions, with participants first being informed how to respond to the arrows 

and then being instructed not to respond if you see a black cross. To some 

extent this can be seen as promoting a stop task set. Additionally, the final set 

of instructions for the inhibition phase instructed participants to “not respond if 

you see a cross appear on the black arrow”.  
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Table 4.8. Summary of Experiment 7 design. Letters represent a sequence. The 

numbers in parentheses indicate how often the sequence will occur per block. At 

test the contingencies were ±. 

 Analysis and results 

The analysis for Experiment 7 is split into three sections. As the training phase 

was experienced in the same manner for all participants, this was analysed in 

the same way as Experiment 6 (to enable assessment of the replication of that 

experiment). The inhibition phase was analysed in a way that would determine 

whether participants were learning about the cues contained therein. The test 

phase was analysed in a similar manner as in Experiment 6, except for the 

addition of a between-participants factor based on the inhibition task that 

participants experienced. Two participants were replaced to due to withdrawing 

from the experiment; two were replaced for being commission outliers, and two 

for being omission outliers. There were no reaction time outliers.  

Phase Blocks Trials 

per 

block 

Design  

Learning 

Phase 

1 36  J 

 

Training 

 

 

 

Inhibition 

training 

6 

 

 

 

2 

232 

 

 

 

100 

 

 

G1(4), G2(4), A1(4), A2(4), R1(4), 

R2(4), RA(8), B(36), I(28), IP(24), 

P(16), YZ(16) 

 

Experimental group: X (70, 8 STOP, 

62 GO), A (30 STOP, 8 GO). 

 

Control group:  X (70, 8 STOP, 62 

GO), O (30 STOP, 8 GO). 

 

J(8) 

 

 

Test 1 232 G1(4), G2(4), A1(4), A2(4), R1(4), 

R2(4), RA(8), B(36), I(28), IP(24), 

P(16), YZ(16) 

J(8) 
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 Training phase  

As with the analysis of Chapter 3 performance is likely to be affected by 

repetition priming effects and so contrasts were undertaken to demonstrate 

learning in situations where such effects were not in play. I then present the 

traffic light analysis to explore performance to the cues of interest (Table 4.9 

contains the relevant descriptive statistics). 

4.5.2.1.1 Reaction times  

For the training data, the best fitting model had a conditional R2 of 0.88 (see 

Table 4.10 for AICs).  

4.5.2.1.1.1  Evidence of associative learning 

As with Experiment 6 the contrasts that provide evidence of associative learning 

in isolation are R vs. I and R vs. B. Importantly, the contrast R vs. I also controls 

for the effect of task set (as they both have the same conditional response). The 

alpha level was corrected to .025. The contrast R vs. I was significant, t(408) = -

3.61, p = < .001, 95% CI [-36.92, -10.94], d = -0.36, with slower responses to R 

than I indicating that cue R was not a go cue. The comparison R vs. B was also 

significant, t(408) = -3.27, p = .012, 95% CI [-34.64, -8.66], d = -0.32, with faster 

reaction times to cue B than R suggesting that participants learnt that cue R 

was a stop cue. 

4.5.2.1.1.2  Traffic light contrasts 

Noting the above results, I can be confident that the following results arise as a 

consequence of associative learning as well as repetition priming. As G vs. B is 

no longer a pure manipulation check, the alpha level was corrected to .008. The 

G vs. B contrast was highly significant, t(408) = 11.32, p = < .001, 95% CI 

[62.04, 88.03], d = 1.12, with G having faster response times than B, indicating 

that learning was occurring and replicating the effect seen in Experiment 6. The 

A vs. B contrast was also highly significant, t(408) = 8.06, p = < .001, 95% CI 

[40.43, 66.42], d = 0.80, with A being faster than cue B, indicating that cue A 

was not experienced as a stop cue. The A vs. G contrast was significant, t(408) 

= -3.26, p = .001, 95% CI [-34.60, -8.61], d = -0.32, with faster response for G 

than A, indicating that while A was more go than B it was not as strong at 

priming responding as G. Cue R was significantly slower than cue B, t(408) = -

3.27, p =  .001, 95% CI [-34.64, -8.66], d = -0.32, suggesting that it was more of 
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a stop cue than B. Cue R was highly significantly slower than cue G, t(408) = -

14.58, p = < .001, 95% CI [-109.68, -83.69], d = -1.44, indicating it was not a go 

cue. The A vs. R contrast was highly significant, t(408) = 11.33, p = < .001, 95%  

CI [62.08, 88.07], d = 1.12, suggesting that A was more of a go cue than R. 

Cue Reaction Time p(respond) p(miss) 

 Mean SD Mean SD Mean SD 

A-/+ 483.67 84.14 0.07 0.05 0.02 0.02 

B- 537.09 97.71 0.05 0.03 0.03 0.03 

G+ 462.06 96.6 0.06 0.06 0.02 0.01 

I+ 534.82 92.9 0.09 0.06 0.03 0.02 

IP- NA NA 0.05 0.03 NA NA 

J± 548.13 93.6 0.08 0.06 0.03 0.04 

P-/+ 527.05 92.83 0.07 0.04 0.03 0.02 

R- 558.75 90.74 0.04 0.03 0.03 0.03 

RA+ 533.35 93.82 NA NA 0.02 0.02 

YZ-/+ 554.23 91.77 0.07 0.04 0.04 0.03 

Table 4.9. Descriptive statistics for the training phase of Experiment 7. Reaction 

times means are calculated using are raw data, but mean p(respond) and 

p(miss) use transformed data. 

4.5.2.1.2 p(respond)  

For this measure, the best model was a model that included the main effects of 

cue with a Gamma family and inverse link and random intercept (see Table 4.10 

for AICs).  

4.5.2.1.2.1  Evidence of associative learning 

For this measure the contrasts G vs. B and G vs. I provide the conditions to 

assess for the occurrence of associative learning, with the contrast G vs. B 

controlling for the effect of task set. The alpha level was corrected to .025. The 

G vs. B contrast was not significant, z = 1.43, p = .154, but, the G vs. I contrast 

was, z = -2.39, p = .017, with more errors to I than G indicating that for this 

measure G did not promote going to the same extent as I. 

4.5.2.1.2.2  Traffic light contrasts 

Given the above results it is likely that performance for commission errors is 

driven more by repetition priming effects than by associative learning. For this 
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analysis, the alpha level was corrected to .008. The G vs. B contrast was not 

significant, z = 1.43, p = .154. The A vs. B contrast was not significant at the 

corrected alpha, z = 2.37, p = .018, although this suggests a trend for more 

errors to A than B. As discussed in Experiment 6 this provides some evidence 

for associative learning impacting performance as repetition priming should act 

to prevent errors to A ‘in sequence’. The A vs. G contrast was not significant, z 

= 0.98, p = .326. The R vs. B contrast was not significant, z = -1.35, p = .176. 

However, the R vs. G contrast was significant, z = -2.72, p = .007, with more 

errors for G than R suggesting that G was a go cue compared to R. This 

contrast can be explained by reference to the repetition priming effects likely to 

be in play within sequences. The A vs. R contrast was significant, z = 3.59, p = 

< .001, demonstrating that cue A was more of a go cue than cue R. 

Nevertheless, these results could also be a consequence of repetition priming. 

4.5.2.1.3 Training phase summary 

Overall, what is striking about these results is how similar they are to those of 

Experiment 6. In fact, the reaction time results are only quantitatively different. 

There is a slight difference for the p(respond) data where A is not significantly 

different from G, whereas in Experiment 6 cue A had significantly more errors. 

The R vs. B contrast is also not significant, where in Experiment 6 it was (with 

more errors for B than R). However, the general picture of results for p(respond) 

do not suggest different conclusions to those drawn for Experiment 6. To sum, 

for Experiment 7 at training it seems that cue G is a go cue, cue A quite a weak 

go cue, cue R a stop cue and cue B a stop cue. 
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Table 4.10. AICc scores for training models for Experiment 7 run on reaction 

time and p(respond) data. Bold are the models chosen. 

 Inhibition phase 

In order to explore learning for the inhibition phase within each condition, 

contrasts comparing cue GO (cue X) to cue STOP (cue A or O in the 

experimental and control conditions respectively) were run in order to assay 

evidence for this discrimination. I also ran a between-participants analysis to 

see if the difference between cue GO vs cue STOP was different between 

conditions. Due to the lack of sequences for this phase, repetition priming 

effects will not impact performance, and based on findings in Chapter 2 it is 

assumed performance is largely due to associative learning (see Table 4.11 for 

descriptive statistics). 

 

 

 

 

 

 

 

Model Training 

Reaction time models  

Main effects of cue 5579.53 

Main effects of cue with random intercept 4801.18 

p(respond) 

 

 

Main effects of cue with Gamma family 

and inverse link 

 

-1719.24 

Main effects of cue with Gamma family 

and inverse link and random intercept 

-1760.74 
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Cue Reaction Time p(respond) p(miss) 

Experimental Mean SD Mean SD Mean SD 

X 487.46 48.71 0.21 0.16 0.03 0.02 

A 493.60 51.46 0.23 0.14 0.04 0.04 

       

Control        

X 477.43 47.34 0.23 0.14 0.03 0.02 

O 497.59 46.25 0.18 0.09 0.05 0.06 

Table 4.11. Descriptive statistics for the inhibition phase of Experiment 7. 

Reaction times means are calculated using are raw data, but mean p(respond) 

and p(miss) use transformed data. 

 

The reaction time contrasts were run using a mixed effects model with 

participant as a random intercept (see Table 4.12 for AICs). An alpha level of 

.025 was applied to this analysis. The X vs. A contrast (conditional R2 of 0.84) 

was not significant, t(25) = 1.12, p = .274, 95% CI [-4.61, 16.89], d = 0.05, 

indicating that participants in the experimental condition did not learn the 

contingencies. However, the same contrast (X vs. O) for the control condition 

(conditional R2 of 0.80) was significant, t(25) = 3.42, p = .002, 95% CI [8.61, 

31.71], d = 1.37, suggesting that participants in the control inhibition contrast 

had learnt the discrimination with faster response times to the go cue.  

In terms of commission errors, the best fitting model was a model that included 

a gamma link but no random terms (see Table 4.12 for AICs). An alpha level of 

.025 was applied to this analysis. In this model, the contrast X vs. A was not 

significant, z = 0.45, p = .651. The X vs. O contrast was also not significant, z = 

1.60, p = .109. This suggests that for both conditions the discriminations were 

not well learnt for this measure.  
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Table 4.12. AICc scores for inhibition models for Experiment 7 run on reaction 

time and p(respond) data. Bold are the models chosen. 

 

Given the null findings for p(respond) I did not run a between-participant’s 

analysis for this measure, but I did for the response times. A t-test found a 

marginally significant difference (at a standard alpha level) between the 

differences for the go cue minus the stop cue between the two conditions for 

response times, t(50) = 1.74, p = .089, 95% CI [-2.15, 30.19], d = 0.48, with a 

greater difference between GO vs. STOP in the control condition (M = -20.15, 

SD = 30.05) compared to the experimental condition (M = -6.14, SD = 27.97). 

This indicates that there was a weak trend for differences between the two 

conditions. It should be noted that the learning experience between the 

conditions was not equal. This was because participants in the control condition 

were exposed to two novel stimuli, while cue A was a familiar cue for the 

experimental condition participants. The marginally significant difference in 

favour of controls could be caused by differences in learning occurring through 

the different designs, e.g., better learning for the control condition due to the 

new, and more salient, cues. Moreover, for the experimental condition cue A 

already seems to be a weak go cue, so that for it to prime stopping it first needs 

to prime not going, whereas for the control condition cue O is a novel cue and 

so has no prior learning attached to it. Overall, the results show that learning 

Model Experimental 

condition 

Control condition 

Reaction time models   

Main effects of cue 559.09 552.00 

Main effects of cue with random intercept 

 

517.50 516.97 

p(respond) 

 

  

Main effects of cue with Gamma family 

and inverse link 

 

-69.03 -83.73 

Main effects of cue with Gamma family 

and inverse link and random intercept 

-68.96 -82.81 
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was generally poor, though the contrast for reaction times indicates that those in 

the control condition were learning the discrimination between a go and a stop 

cue.  

 Test phase 

The analyses conducted for this test phase differ from those undertaken for 

Experiments 4 – 6. Whereas in these experiments two sets of analyses were 

conducted, in this experiment the focus is subtly different. The focus is now not 

on understanding what learning occurs generally or exploring the effect of 

sequences, but rather seeing if cue A is more go or stop between groups. 

However, given that the test phase for Experiment 7 was identical to 

Experiment 4 – 6 repetition priming effects are still an issue. As such, the 

analysis for Experiment 7 at test used data from cues that were the first trial of a 

sequence to investigate differences in behaviour towards cue A between 

groups.  

It was important to ascertain that learning had occurred in this phase, and so 

the G vs. B contrasts are reported first. Next, contrasts were undertaken to 

explore the effect of the inhibition training upon learning to cue A. These 

compared A against G and against B. If the training was effective, then it would 

be expected that the experimental group would see cue A as more stop than 

those in the control group. As before a standard alpha level was used for the G 

vs. B contrast, but other contrasts used a corrected alpha level of .017 (see 

Table 4.13 for descriptive statistics). Separate models were run for each 

condition for each performance measure (see Table 4.14 for AICs). 

4.5.2.3.1 Contrasts for G vs. B  

4.5.2.3.2 Reaction times  

For the experimental condition the contrast for G vs. B (conditional R2 = 0.72) 

was highly significant, t(225) = 4.80, p = < .001, 95% CI [43.57, 103.64], d = 

0.64, with faster response times to cue G than B. For the control condition 

(conditional R2 = 0.70) the contrast was also significant, t(225) = 2.38, p = .018, 

95% CI [7.17, 74.15], d = 0.32, again with faster responses to G than B. These 

contrasts indicate that for both conditions associative learning had taken place 

by the test phase. An interaction model (conditional R2 = 0.71) including both 
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conditions found a non-significant difference between G vs. B between groups, 

t(450) = -1.44, p = .152, 95% CI [-77.93, 12.04], d = -0.14.  

4.5.2.3.3 p(respond)  

For p(respond), the contrast in the experimental condition was not significant, z 

= -0.14, p = .160. However, the same contrast for the control condition was 

significant, z = 2.45, p = .014, with more errors in the presence of cue G than B. 

The interaction model was significant, z = 2.81, p = .005, indicating better 

learning of the G vs. B contrast in the control condition against that of the 

experimental condition.  

4.5.2.3.4 Contrasts for G vs. A 

4.5.2.3.5 Reaction times  

For the experimental condition the G vs. A contrast was significant, t(225) = 

3.12, p = < .002, 95% CI [17.83, 77.90], d = 0.42, with faster response times to 

cue G than A, suggesting A was not as much a go cue as G. For the control 

condition the contrast was also significant, t(225) = 3.28, p = .001, 95% CI 

[22.56, 89.55], d = 0.44, again with faster response to G than A. If the training 

had been effective, then it would be expected that the difference between G vs. 

A would be greater in the experimental condition than the control condition, yet 

an interaction model found no significant differences between groups, t(450) = 

0.36, p = .721, 95% CI [-36.79, 53.18], d = 0.04.  

4.5.2.3.6 p(respond)  

For the experimental condition the contrast G vs. A was significant, z = -2.53, p 

= .011, with more errors to A than G. However, for the control condition the 

contrast was not significant, z = -1.11, p = .266. The interaction between the two 

conditions was significant, z = 1.49, p = .016, with a greater difference between 

G vs. A in the experimental condition compared to the control condition. 

However, this difference was in the opposite than expected direction (based on 

the assumption that the inhibition training would cause A to become a stop cue 

in the experimental group), with cue A being more of a go cue than cue G.  
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Condition Reaction Time p(respond) p(miss) 

Training Mean SD Mean SD Mean SD 

A 492.56 114.49 0.08 0.11 0.02 0.00 

G 444.7 95.03 0.04 0.07 0.03 0.05 

R 520.67 112.59 0.05 0.08 0.02 0.00 

RA 494.62 96.27 0.06 0.09 0.02 0.00 

B 518.3 105.44 0.05 0.05 0.02 0.01 

I 513.35 91.89 0.04 0.04 0.02 0.02 

IP 532.86 114.11 0.03 0.03 0.03 0.04 

J 538.97 107.56 0.04 0.07 0.03 0.05 

P 483.54 83.89 0.05 0.09 0.02 0.02 

YZ 540.94 87.66 0.04 0.05 0.03 0.04 

       

Control       

A 517.31 116.78 0.09 0.13 0.02 0.00 

G 461.25 121.28 0.07 0.12 0.03 0.05 

R 527.08 102.97 0.07 0.12 0.02 0.00 

RA 512.38 124.44 0.07 0.10 0.03 0.05 

B 501.92 109.53 0.03 0.03 0.02 0.01 

I 511.54 106.79 0.06 0.07 0.04 0.04 

IP 541.3 93.13 0.03 0.03 0.04 0.04 

J 511.66 122.86 0.07 0.10 0.03 0.05 

P 506.6 94.13 0.06 0.06 0.02 0.02 

YZ 531.79 102.94 0.07 0.07 0.03 0.03 

Table 4.13. Descriptive statistics for test by condition for Experiment 7. Reaction 

times means are calculated using are raw data, but mean p(respond) and p(miss) 

use transformed data. All data is from first sequence trials. 

4.5.2.3.7 Contrasts for A vs. B  

4.5.2.3.8 Reaction times  

The difference between A and B for the experimental group was marginally 

significant at a standard alpha level, t(225) = 1.68, p = .094, 95% CI [-4.29, 

55.78], d = 0.22, with faster response times to A hinting at a trend for cue A not 

to promote a stopping response. For the control condition the difference was not 

significant, t(225) = -0.90, p = .369, 95% CI [-48.88, 18.10], d = -0.12. If the 
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training was effective the difference between A vs. B would be expected to be 

significantly smaller in the experimental condition compared to the control 

condition. The difference was only marginally significant at a standard alpha 

level, t(450) = -1.79, p = .074, 95% CI [-86.12, 3.85], d = -0.17, with the 

difference between A and B being greater in the experimental condition then the 

control condition - with faster responses to cue A than cue B.  

4.5.2.3.9 p(respond)  

For commission errors, in the experimental condition the contrast was not 

significant, z = 1.43, p = .153, with little difference in error rates between the two 

cues. However, the control condition had a significant difference between A and 

B, z = 3.10, p = .002, with more errors for cue A than B suggesting that in the 

control condition A was a go cue. The interaction was significant (but only at the 

standard alpha), z = 2.16, p = .031, with a greater difference between A vs. B in 

the control condition compared to the experimental condition. This could be 

taken as evidence of those in the control condition having less inhibition to cue 

A. However, the means show that cue A was experienced in a similar fashion 

for both groups, and rather, the difference lies in cue B. Those in the control 

condition have lower errors than those in the experimental condition. Thus, the 

interaction effect is seemingly caused by cue B prompting more stopping in the 

control condition, rather than less stopping to cue A.  

 Test phase summary 

In conclusion, with regards to the test phase there is clear evidence (in the 

response times) that both conditions were learning the discrimination G vs. B 

and that this was in the expected direction. However, the commission error data 

indicates that those in the control condition learnt the discrimination better than 

the experimental group. The data suggests that inhibition training did not affect 

learning to cue A. For the G vs. A contrast both conditions had significantly 

slower responses to A than G, suggesting that A was not a strong go cue. For 

commission errors, the results suggest that those in the experimental condition 

had learnt more about the difference between G vs. A than the control condition 

(perhaps expected due to the increased exposure to cue A from the inhibition 

training). However, the direction of the effect indicated that cue A promoted 

more going than cue G. For the A vs. B contrast, the experimental condition had 

marginally faster responses to A than B, giving a hint of a trend for cue A to 
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promote going over B for this group. The difference for the control condition was 

not significant, with the interaction model supporting the view that those in the 

experimental condition had learnt more about A vs. B than the control condition, 

with this learning, albeit only marginally significant at a standard alpha level, 

priming going to A rather than B. Interestingly the pattern was reversed for 

commission errors, with the control condition showing significantly greater 

errors to A than B (suggesting A was more of a go cue), with the experimental 

contrast being non-significant. However, while the interaction was significant, 

the means indicated that the difference could be accounted for by the greater 

stopping witnessed to cue B in the control condition compared to the 

experimental condition. Overall, there is no evidence to support the conclusion 

that inhibition training was effective. 

Table 4.14. AICc scores for test models for Experiment 7 run on reaction time 

and p(respond) data. Bold are the models chosen. 

 Summary 

Experiment 7 served to replicate the findings of Experiment 6 in the training 

phase and began to investigate the merits of using inhibition training to change 

learnt behaviour towards amber traffic lights, or in this context, cue A. On the 

Model Experimental 

condition 

Control condition 

Reaction time models   

Main effects of cue  3152.98 3195.10 

Main effects of cue with random intercept 

 

2853.45 2906.01 

p(respond) 

 

  

Main effects of cue with Gamma family 

and inverse link 

 

-1102.97 -980.18 

Main effects of cue with Gamma family 

and inverse link and random intercept 

-1164.66 -1021.74 
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first objective Experiment 7 was successful, but it was unsuccessful for the 

second.  

In terms of replicating Experiment 6, the experiment found broadly similar 

findings for the training phase. This gives confidence that the findings of 

Experiment 6 (notably the strong stop response to cue R) are in fact due to the 

experimental manipulation rather than error variance. It is clear that the most 

complete design of the paradigm presented in this thesis, in terms of capturing 

several aspects of the contingencies experienced at UK traffic lights, suggests 

that cue A is a weak go cue and R a strong stop cue.  

Regarding the inhibition training the picture is less positive. The results from the 

inhibition phase itself suggest that participants did not learn much during this 

task, with only the control condition for the GO vs. STOP contrast for response 

times suggesting any learning had taken place. This could be due to the phase 

only having two blocks. While increasing the number of blocks is an obvious 

suggestion to increase the chance of learning occurring, it must be balanced 

against the overall length of the experiment - it would be undesirable for it to 

become too long. Given these results, the outcome of the test phase was 

perhaps a foregone conclusion. Overall, there is little evidence to suggest that 

those in the experimental group had shifted their response to cue A towards 

stopping. Indeed, the evidence seems to suggest that, compared to the control 

group, the experimental group was more inclined to treat cue A as a go cue. 

Following the trend in the inhibition phase, the control condition seems to be 

better learners of a basic Go vs Stop contrast, seemingly learning the G vs. B 

contrast better than the experimental group.  

At test, there is evidence of the expected significant G vs. B contrast - with both 

conditions having faster responses to cue G than B. It is worth reflecting on this. 

The results show that despite completing a five-minute filler task (the inhibition 

phase), where participants did not see cue G or B, participants were still 

retaining the earlier learning about G and B. These results show the strength of 

learning to the cues resulting from training. They also speak to the null findings 

resulting from the inhibition phase and indicate that more, or a different version 

of, inhibition training would be needed to overcome learnt responding arising 

from the training phase.  
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 GENERAL DISCUSSION 

This chapter has presented research where the ideas from Chapters 2 and 3 

were combined in an experimental design that captured both some of the 

sequence information and (assumed) task sets in operation at UK traffic lights. 

The results from the two experiments presented here support my past work and 

those of others (Verbruggen & Logan, 2008b) in showing how pairing a certain 

response with a cue can lead to that cue priming the response even when the 

contingencies no longer support this learning. These results should not be 

dismissed as a foregone conclusion. The designs were complex, with task set 

(and thus responses) changing frequently. Additionally, the fact that the G vs. B 

contrasts at test for reaction times were significant in both experiments clearly 

demonstrates that participants were learning about the cues within the task. 

This strengthens the validity of the experiment. It also gives confidence in the 

conclusion that participants are truly learning about the contingencies in play, 

and that the results are not a product of participants guessing the responses, or 

applying some arbitrary rule, such as “I’ll respond to every fourth trial” in order 

to complete the task. At the same time, it must be acknowledged that another 

consistent finding is weaker (though still reliable) learning overall at test. This 

may well be due to the fact that it is, in essence, an extinction phase. 

 Learning of traffic light cues 

While the work discussed prior to this chapter can be generally summarised as 

indicating that cue R is a neutral/weak stop cue, in the work presented here cue 

R seems to have become a strong stop cue. This is a notable shift from the past 

work and has at least two possible explanations. The first is that the 

combination of task set and the embedding of cues in a sequence enabled 

more effective learning, resulting in cue R coming to effectively prime stopping. 

The second is that the finding is a result of some unknown issue with the 

internal validity of both Experiments 6 and 7. Given the results found so far in 

the thesis it might be tempting to dismiss the findings presented in this chapter 

as perhaps arising due to participants not understanding the task, or just 

chance variation in responding. However, they do fit into the research narrative. 

In Chapter 2, R was a weak stop cue when the task set was stop but was a 

stronger stop cue when in a go task set. In Experiment 6 and the training phase 

of Experiment 7, R was also presented in a go task set and seems to be a very 



188 
 

strong stop cue. This line of argument does ignore the results of Experiment 5, 

where R was fairly weak stop cue, but this could be a consequence of chance 

fluctuations rather than anything systematic. Overall, if one holds the 

assumption that Experiment 6 represents a design that is most true to the 

contingencies experienced at UK traffic lights, then it seems clear that a red 

traffic light will prime a stopping response, and an amber traffic light a weak go 

response. In other words, the associative learning for red traffic lights in the 

designed paradigm conforms to the rules of the Highway Code but that for 

amber lights does not. This suggests that in addition to training focusing on 

conscious control, training that targets the associatively-mediated ‘amber – 

weak go’ link needs to be developed. This was the motivation for the 

intervention used in Experiment 7.  

 Inhibition training  

The inhibition training was not successful, and as discussed earlier, this is likely 

to be partly due to not enough training to retrain amber as stop. What does this 

initial foray into inhibition training tell us? Firstly, training needs to be longer to 

encourage more learning. Secondly, transfer effects might be an issue. This is 

whether training on one task will generalise to performance on other tasks. In 

the inhibition task participants responded, or not, to black arrows, while in the 

test phase they responded to white or coloured circles. Therefore, the tasks are 

not quite the same, particularly in terms of their surface features, and it may be 

the case that, even if learning did occur in the inhibition phase, it would not 

transfer to performance on the test phase. This argument is more formally 

explored by Simons et al. (2016) who summarises research into inhibition and 

transfer effects by concluding that inhibition training can improve performance 

for a practiced task or near identical one, but that the range of transfer is limited, 

even for related tasks (see also Noack, Lövdén, Schmiedek, & Lindenberger, 

2009). These issues will be key considerations for my design of an inhibition 

intervention aimed at increasing stopping to amber in the next chapter.  

 Conclusion 

To conclude, the experiments presented in this chapter mark the final 

development of the laboratory-based paradigm designed to capture contingency 

learning at UK traffic lights. Overall, this final iteration, one assumed to be the 
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truest to life, suggests that a red traffic light (or at least the cue that has the 

same contingencies) develops an associatively based stop response, while an 

amber traffic light becomes linked to a weak go response. So far, the thesis has 

focused on exploring what is learnt at an associative level. However, 

Experiment 7 also marked a shift from exploring learning of the contingencies 

experienced at UK traffic lights to investigating if these learnt, associatively-

mediated, contingencies can be changed. Although this attempt at intervention 

was ultimately unsuccessful, it provides a starting point for ideas further 

explored in the next chapter, where I present three experiments that used the 

concept of response inhibition training in a bid to bring about behaviour change 

to amber traffic lights in a more realistic setting.  
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5 CHAPTER 5 

Inhibition Training I: The STOP-CHANGE Paradigm 

hapter 4 introduced the initial testbed for using inhibition training to shift 

learning of the cue representing amber from go to stop. It was clear that 

the training needed improving. In this chapter I work towards a design of an 

inhibition task that shows some promise in changing people’s driving behaviour.  

 COGNITIVE CONTROL IN DRIVING  

As discussed in Chapter 1, there have been calls for interventions aimed at 

improving driving behaviour to consider associatively-mediated, as well as 

conscious processes. Decision making is often conceptualised as an interaction 

between goal-directed deliberate processing and more automatic processes 

(see the concepts of cold and hot cognition by Kahneman, 2011), and 

departures from rational decision making have been attributed to cognitive 

(Tversky & Kahneman, 1973), affective (De Martino, Kumaran, Seymour, & 

Dolan, 2006) and learnt associatively-mediated processes shared between 

humans and monkeys (M. K. Chen, Lakshminarayanan, & Santos, 2006; 

Lakshminaryanan, Keith Chen, & Santos, 2008).  

Driving is a complex activity that requires the intermixing and appropriate 

deployment of sensory, motor, and cognitive abilities (Anstey, Wood, Lord, & 

Walker, 2005). It is of no surprise that there is considerable evidence to suggest 

that cognitive control is needed to maintain safe driving, with poorer cognitive 

abilities being associated with riskier driving (Walshe, Ward McIntosh, Romer, & 

Winston, 2017). Of relevance to this thesis is the link between poor response 

inhibition and risky driving. For example, low levels of inhibition have been 

shown to be strongly correlated with self-reported driving violations (Tabibi, 

Borzabadi, Stavrinos, & Mashhadi, 2015). Fischer, Barkley, Smallish, and 

Fletcher (2007) found that those with attention deficit/hyperactivity disorder 

have significantly more real-world traffic violations compared to matched normal 

controls, while O’Brien and Gormley (2013) showed that traffic offenders had 

worse response inhibition compared to non-offenders, though the results in this 

study were not completely conclusive. Additionally, Brown et al. (2016) found 

that, compared to drivers without driving convictions, those convicted for 

C 
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speeding had significantly impaired performance on a task measuring inhibitory 

control (and see Hatfield, Williamson, Kehoe, & Prabhakharan, 2017). To 

summarise, the research indicates that poor response inhibition can contribute 

to dangerous driving, suggesting that targeting inhibition could lead to safer 

driving. 

 TRAINING CONTROL  

Given that executive control seems to be important to safe driving it is logical to 

ask whether improving control, namely inhibition, can bring about safer driving. 

Such training involves pairing arbitrary cues with stop responses to increase 

overall inhibition, and thus can be characterised as strengthening the inhibition 

‘muscle’ to bring about global improvements. As noted in Chapter 1 such 

training has generally been ineffective. For example, N. S. Lawrence, 

Verbruggen, et al. (2015) found no effects of such training upon food 

consumption after training in a student population. The study consisted of three 

groups. Two groups received non-cue specific training whereby participants 

inhibited responses to random images, or to specific categories of non-food 

images. In the third condition participants had to make double responses to 

specific categories of non-food images. This training was designed to increase 

impulsivity, and thus result in increased consumption, see Guerrieri et al. 

(2012). Food intake was strikingly similar across all conditions, suggesting that 

non-cue specific training did not decrease food consumption compared to a 

group primed for general disinhibition. Yet, work by Berkman, Graham, and 

Fisher (2012) suggests that such general inhibitory training might work better in 

children than adults by supporting the development of abstract rule use 

(Munakata, Snyder, & Chatham, 2012). Overall, it seems that training non-cue 

specific inhibition would be an unsuccessful route to improving driving 

behaviour. However, behaviour change has been more successful in an 

associative context.  

 LEARNT CONTROL 

As discussed throughout this thesis there is strong evidence that pairing a cue 

with a certain response leads this cue to become able to prime that response. 

Furthermore, there is evidence that associative learning within the task 
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designed in this thesis to mirror the contingencies at UK traffic lights promotes a 

go response to amber lights, whereas the Highway Code dictates a stop 

response. Combining these two ideas, Experiment 7 explored whether it would 

be possible to train an associatively-mediated stop response to amber lights. 

The evidence supporting this idea has already been covered in Chapters 1 and 

Chapter 4 and so will not be repeated here. Generally, the research has shown 

limited promise in training learnt responses to specific cues – though the work in 

reducing food consumption has shown more success (N. S. Lawrence, 

O'Sullivan, et al., 2015). Yet, there is good reason to support the application of 

specific inhibition training to driving. The work by Briggs et al. (2017) mentioned 

in Chapter 1 showed that whilst under a cognitive load drivers' behaviour was 

impaired (and see House of Commons Transport Committee, 2019), with 

drivers seemingly relying on past experiences and schemas. The notion here is 

that control processes are disrupted by heavy demands, while associatively-

mediated processes are relatively unaffected, and that for most people driving is 

relatively automated (Shinar, Meir, & Ben-Shoham, 1998). Therefore, 

addressing these processes could result in desirable behaviour change.  

 PRESENT EXPERIMENTS 

The work presented in this chapter aims to go beyond the traffic light paradigm 

designed thus far, and rather than investigate what participants learnt at UK 

traffic lights at an associative level, start to change this learning. Due to this shift 

in motivation the designs are substantially different from preceding experiments 

in this thesis. However, the fundamental task of training a cue to become linked 

to a certain response, and then exploring learning in a test phase, remains the 

same. 

One change from past experiments is that those reported in this chapter will not 

use go/no-go training to train responses, but rather make use of another 

paradigm, the STOP-CHANGE task. As outlined in Chapter 1 this is where the 

required response changes mid-trial, rather than being set at the start as in 

go/no-training. The paradigm requires participants to inhibit an ongoing go 

response and replace it with an alternative response. This paradigm was 

chosen for the important reason that it is more realistic in the context of driving. 

The work here aims to develop a training task that could be used in the real-
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world and therefore to increase the likelihood of the training transferring to real-

world driving it needs to match as best as possible to motor responses used in 

driving. So far, I have written about participants stopping or going at traffic 

lights, yet this does not capture the full range of motor responses required to 

stop. To actually stop a car, one needs to stop accelerating (one response) and 

move the foot to depress the brake pedal (another response). Therefore, while 

going and stopping are perfectly adequate ways to describe the macro actions 

at traffic lights, the STOP-CHANGE paradigm is more analogous to the micro 

actions involved in stopping at traffic lights. Regarding the specific mechanisms 

tapped by the paradigm, as noted in Chapter 1, there is evidence that inhibition 

does occur in these types of task (Verbruggen & Logan, 2009a). Indeed, 

pigeons are capable of performing the task with similar performance to a stop-

signal task (Meier, Lea, & McLaren, 2018) I am therefore confident that the 

switch in task will not, by itself, impact learning about the contingencies in the 

experiment (though note inhibition training has been found to be less effective 

when using stop signal, from which the STOP-CHANGE task is adapted from, 

rather than go/no-go tasks, Veling et al., 2017). 

 EXPERIMENT 8 

This experiment aimed to provide initial evidence of the benefits of inhibition 

training to promote stopping at amber traffic lights. The work built upon that of 

Experiment 7 by specifically addressing the transfer issues discussed in relation 

to that experiment.  

One important change is that while the experiments presented in this thesis so 

far have focused on behaviour in a simple laboratory task, to assay evidence of 

behaviour change (and in line with other inhibition work, e.g., N. S. Lawrence, 

O'Sullivan, et al., 2015), a more real-world measure was used. Therefore, 

behaviour change was measured using performance on a driving computer 

game where participants ‘drive’ through a series of junctions and must decide 

whether or not to stop at the lights (see section 5.5.1.3.2 for further details). 
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 Method 

 Design 

A mixed-measures 4 x 2 design was used with two independent variables: 

condition (experimental vs. control 1 vs. control 2 vs. control 3) and time (pre- 

and post-training performance).  

In terms of the groups for the experiment, the desired outcome is that the group 

that receives inhibition training should develop an amber-stop associative link, 

and, following the analysis just given, this group will receive cue specific 

inhibition training. That is, participants will see amber circles in the change trials 

(requiring participants to change motor response mid-trial, see section 5.5.1.3.1 

for details). However, the control conditions are more complicated. Simons et al. 

(2016) argues that one issue in the inhibition field is the use of passive control 

groups, with any differences between this control and the experimental group 

not necessarily being due to the training but rather other factors, such as 

motivation. To avoid this issue, the first control group will be an active control 

group, with the task closely matched to that of the experimental group. 

Therefore, control 1 will receive STOP-CHANGE training to purple circles, with 

the cue still being specific but irrelevant (as purple circles are not linked to any 

rules regarding UK traffic lights). This design opens up the issue that rather than 

the training per se, it is exposure to amber circles, through a process of 

directing attention towards these cues, which could account for any behaviour 

change. To counter this, control 2 will not receive inhibition training and instead 

the STOP-CHANGE trials will be replaced by simple presentation of amber 

circles, that is a relevant cue in a driving context. Control 3 will receive purple 

circles instead of the inhibition trials, which can be deemed irrelevant with 

respect to driving. In a sense, control 2 is a control for the experimental group 

and control 3 a control for the control 1 group. If the inhibition training is the key 

determinant of behaviour change then the greatest improvement should be 

seen in the experimental group, followed by control 1 (non-specific inhibition 

training effect), then control 2 and control 3 (which would be expected to be 

roughly equal). However, if exposure to amber lights is also a factor then the 

order could be experimental group (both effects contributing), control 1 and 

control 2, then finally control 3. By improvement I mean the biggest uplift in 

stops to amber traffic lights after training compared to pre-training performance.  
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Thus, the four conditions were: cue-specific inhibition training (experimental 

group), cue irrelevant inhibition training (control 1), relevant single trials (control 

2), and irrelevant single trials (control 3). Condition was manipulated between-

participants and time was manipulated within-participants. Participants were 

randomly allocated to one of the four conditions. Responses were obtained on 

one dependent measure: number of stops at amber traffic lights in the driving 

game. 

 Participants 

At the time of recruitment, this experiment was the first to undertake inhibition 

training to change driving behaviour (now see Hatfield et al., 2018). Due to this I 

felt it would be inappropriate to assume an effect size, therefore I decided to 

test 30 in each group, a total of 120 participants. This sample size is similar to 

other intervention studies (e.g., Porter et al., 2018). One-hundred and thirty-

eight participants participated in exchange for payment of £5 or one course 

credit (see Results section for details on the outlier removal process). The 

inclusion criteria were that participants had to be 18-65 years old, hold a full or 

learners driving licence (of any nationality), have normal or corrected vision, and 

not be colour blind.  

 Materials  

5.5.1.3.1 Inhibition task 

The STOP-CHANGE task was designed to train an associatively-mediated 

stop-and-change response to amber traffic lights. The task involved participants 

having to stop their primary task response and replace it with a secondary task 

response (see Figure 5.1). Throughout the task there were only two responses, 

either a left-hand response (the left-ctrl key) or a right-hand response (the right- 

ctrl key) which participants were instructed to make with their left or right index 

fingers respectively on a standard QWERTY keyboard.  

The primary task was to respond with the right key when a green circle (70% of 

trials) was presented, and with a left key response when a red circle (15% of 

trials) was displayed. The remaining 15% of trials introduced the experimental 

manipulations. For those in the experimental and control 1 conditions these 

trials were STOP-CHANGE trials in which a green circle was displayed but 

changed to amber for the experimental condition or to purple for those in control 
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1, with participants in both conditions being required to supress their initial 

green right hand response and instead execute the appropriate secondary left 

hand response. For the control 2 and 3 these trials were not stop-change but 

either displayed a single amber (control 2) or purple (control 3) circle, requiring 

a left-hand response. Thus, the main difference with the other conditions is that 

the amber/purple appeared immediately, and the task became a simple 3-

choice task because no change in response was required.    

 

The direction of the responses mapped onto the pedals used whilst driving. The 

green circle which required a right-arrow response mapped onto the accelerator 

pedal, while the other colours required a left-key response mapping onto the 

brake pedal. The task was designed so that experimental STOP-CHANGE trials 

simulated UK traffic light signals changing from green to amber, with the 

required response of changing from a right hand to a left hand response 

imitating the motor actions needed to stop at such traffic lights, i.e. lift the right 

foot off the accelerator pedal and depress the left brake pedal. The resulting 

learning should be that participants learn an amber = inhibit right pedal, change 

to left pedal response, which should transfer to the real-world as amber – stop 

acerbating and brake. Thus, the task is training participants to make a certain 

Figure 5.1. Schematic of the inhibition training task for Experiment 8. All groups 

received two blocks of 100 trials. Participants saw 70 green trials and 15 red 

trials per block. The remaining 15 trials depended on the condition (see right-

hand side of the Figure). 
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response to amber cues that is the opposite (in some sense) to that made to 

green cues, and this should result in braking whilst driving.  

The colours of the red, green and amber circles corresponded to the RGB 

codes of UK traffic lights, measured 6.7cm2 and were presented in the centre of 

a 19-inch PC monitor on a white background. The task required participants to 

press and hold their response for 500ms and would only continue when the 

correct response was made. The task consisted of two blocks of 100 trials, with 

a 15 second break between each block. While Experiment 7 did indicate the 

importance of having lengthy training, in order to keep training as short as 

possible, given the desire to implement it in the real-world, it was decided to 

retain the same length of training as in Experiment 7.   

Trial order was randomised within each block and there was a fixed 1500ms 

inter-trial-interval. The change feature of STOP-CHANGE trials happened after 

a random delay of 100ms, 150ms or 200ms following the presentation of the 

green circle, with these timings being randomised across the trials but occurring 

equally within blocks. Participants received no feedback during the task.  

In one sense the inhibition task for this experiment is similar to that of 

Experiment 7, in that participants respond (or not) to shapes. However, one 

change is that now the task has cue and signal combined, unlike Experiment 7 

where participants saw a cue and then responded to the signal. This change 

was made to better reflect traffic lights, where a driver only sees one stimulus 

(the light) which acts as both cue and signal.  

5.5.1.3.2 Driving task 

Participants completed a driving computer game before and after the training. 

The Stop Light Task (adapted from Chein, Albert, O’Brien, Uckert, & Steinberg, 

2011) involved participants ‘driving’ a car from the first person point of view 

along a straight road at a set speed with the goal of reaching the destination 

within the time limit (8 minutes). Participants were instructed to press and hold 

the right-ctrl key when they wanted to accelerate the car and to release that key 

and press the space bar when they wished to brake. The right-ctrl key had no 

impact upon the game but was used to create the same motor responses 

required when driving and braking that is of stopping one response and 

changing to another (and to match motor responses in the inhibition task). In the 



199 
 

game participants crossed 30 traffic light-controlled junctions. For nineteen of 

the junctions the lights turned from green to amber as the car approached. 

Participants then had to decide whether to brake the car (by pressing the space 

bar) and wait three seconds for the traffic light to turn green, or to cross on the 

amber light (make no response) and risk a crash, which incurred a six second 

penalty. However, unbeknown to participants, the game was programmed so 

that it was impossible to crash (this was to avoid any emotive reactions 

influencing task performance). The remaining ten junctions displayed an equal 

mix of red and green traffic lights.  

The distance between junctions varied from between 10 and 16 seconds. For 

amber light trials, the light turned amber between 2 and 4 seconds before the 

participant reached the junction, and 8 seconds for red trials. The order of traffic 

lights displaying red, green and amber was randomised, and thus were 

unpredictable to participants, replicating a natural driving experience. A vehicle 

sometimes crossed the junction ahead to create the feeling of a busy highway. 

The type of vehicle was randomised to prevent one vehicle type being 

associated with a specific colour traffic light. Performance on this task was 

measured by the number of stops at amber traffic lights. 

 Questionnaires 

To ensure that the four groups were well matched on characteristics that could 

have influenced task performance, participants completed two questionnaires 

following the second driving task (at the end of the experiment).  

5.5.1.4.1 Driving experience 

Participants were asked what type of licence they had and if they had either 

been involved in a road traffic collision either as a passenger or a driver. 

Participants with learner licences were asked if they had any driving experience. 

This questionnaire was of my own design.  

5.5.1.4.2 Impulsivity and sensation-seeking 

High scores on these traits have been linked to an increased propensity to 

engage in red traffic light-jumping (Burgess, 2003) and commit other traffic 

violations (Curran, Fuertes, Alfonso, & Hennessy, 2010). Therefore to account 

for individual differences in this regard, participants completed the Impulsive 

Sensation Seeking Scale from the Zuckerman-Kuhlman Personality 
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Questionnaire (Zuckerman, Kuhlman, Joireman, Teta, & Kraft, 1993; 

Questionaire taken from Zuckerman and Aluak, 2014). 

 Procedure  

Participants first performed the driving game which lasted up to eight minutes. 

Participants received instructions telling them to drive normally and to imagine 

that they were driving to a party (to help create a more naturalistic scenario). 

They were told to arrive as quickly as possible, within the eight-minute time 

limit, but also safely. It should be noted that the time was more than adequate to 

complete the task and that all participants did complete it within the timeframe. 

Next, participants were randomly assigned to a training condition and 

completed the inhibition training task (which lasted around 15 minutes). 

Participants then completed another driving game. Following this, participants 

completed the questionnaires. 

 Analysis and results 

Data was processed and analysed using R (R Core Team, 2018). Data was 

analysed using, at least in cognitive psychology, the more traditional 

generalized linear models (computed through the R package Ez; M. A. 

Lawrence, 2016) rather than the mixed effects models used up to now. This 

was to allow for more appropriate, in a statistical sense, comparisons between 

the results reported here and those of past intervention studies. In terms of 

reported effect sizes, Cohen’s D value has been corrected in line with the 

formulas provided in Lakens (2013) and, when reporting ANOVAs, generalised 

eta squared have been provided, rather than partial eta squared, as they 

provide greater comparability between within- and between-participants designs 

(Bakeman, 2005). 

Prior to analysis, the data of the 138 participants from Experiment 8 were 

combined with the 80 participants from my masters’ experiment (which had the 

same design as this experiment, this allowed for increased power) and the 

exclusion criteria applied to this combined dataset. Eighteen participants were 

removed due to experimental issues which meant that they could not complete 

the study. No participants were removed for having less than 60% accuracy for 

green trials. The 60% accuracy threshold is a standard threshold in inhibition 

studies and ensures that participants are responding above chance to the go 
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stimuli. Two participants were removed for having response times to green trials 

of greater than 3 IQRs (i.e. 2*1.5IQR; the same exclusion criteria as applied in 

the other work in this thesis). Eight participants were removed due to having 

greater than 10% of a trial type in the training task with response times under 

150ms (this threshold was chosen as responses faster than 150ms suggest 

participants were responding before the cue appeared on screen). Nine 

participants were removed for having no driving experience and 85 participants 

were removed for not stopping at all red traffic lights in the first driving game. 

There is an argument to be made that removing those who did not stop at all 

red traffic lights is akin to removing those who most need the training, and 

where it might be expected to deliver the largest effects. However, it can be 

assumed that most drivers do stop at red traffic lights in the real-world, and so 

those who did not stop at these lights are likely not to be obeying the task 

instructions in the driving game (this also supports the issue of ecological 

validity raised later in the discussion of this experiment). The final sample was 

96 participants, 38 from my Masters work and 58 from Experiment 8. Conditions 

were similar sizes, with 27, 24, 20, and 25 participants for the experimental 

condition, control 1, control 2, and control 3 respectively. Post-hoc analysis 

using G*Power 3.1.9.2 (Faul, Erdfelder, Lang, & Buchner, 2007) indicated that 

the experiment had a 91% chance of detecting an effect size of f = 0.20 for the 

interaction between time and group at an alpha level of 0.05. The effect size of 

0.20 was chosen as it represents a small to medium effect size, which was 

deemed appropriate for such training to have practically implications for real life.   

 Subject characteristics 

As with many surveys, missing data was an issue. Upon inspection, the missing 

data was confined to a few participants. Given that answers were opt in, the 

non-answering is perhaps more likely to be caused by participants skipping 

questions due to time demands rather than not wishing to give answers due to 

sensitivity reasons. Missing data was replaced where possible through a by-

participant mean replacement strategy. In these cases, the mean for a 

participant on a particular scale without the missing data was calculated and 

this mean was then entered into the empty cell(s). In cases where this was not 

possible, e.g., age, the missing data was removed from analysis as long as the 

total percent of missing data was not more than 20% of the overall sample (See 
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Appendix D more detail on the particulars for each scale). What is clear is that 

missing data overall was relatively low, and therefore is unlikely to materially 

impact upon conclusions. Randomisation checks revealed that the four 

conditions were well matched (see Appendix E). There was a significant 

difference between the four conditions in crash history, yet given the small 

sample size, especially across the four conditions this is likely to be a result of 

chance variation, and thus can be taken as a spurious finding (Button et al., 

2013). Indeed, applying a Bonferroni correction meant that none of the 

contrasts were significant. One issue to note is that due to a bug in the driving 

game it was possible to crash the car at red traffic lights if a participant pressed 

the spacebar too late resulting in the car stopping across the junction. 

Removing these participants and running the main analysis only produced a 

quantitative difference and so these participants were retained, with only the full 

model being reported.  

The analysis is split into two sections. Firstly, analysis to assess behaviour in 

the training task is presented, followed by the analysis of behaviour change 

between the two driving games.  

 Response inhibition task  

5.5.2.2.1 First reaction times to correct GO trials 

Mean responses to GO trials were calculated by excluding trials where an 

incorrect key was pressed and trials that had response times under 150ms. A 

mixed measures ANOVA with condition as the between participants factor and 

the two blocks as the repeated measure found no significant effect of block, F(1, 

92) = 0.34, p = .561, ηG
2 = 0.0003, indicating that response times were similar 

across the two blocks, with block 1 having a mean of 409.91ms (SD = 80.39) 

and block 2 a mean reaction time of 407.42ms (SD = 76.58). The main effect of 

condition was also not significant, F(3, 92) = 0.17, p = .919, ηG
2 = 0.005, 

showing that response times were similar across conditions (see Table 5.1 for 

condition by block descriptive statistics). The interaction term in the ANOVA 

was not significant, F(3, 92) = 0.25, p = .862, ηG
2 = 0.0006.  

5.5.2.2.2 First response accuracy rates to correct GO trials  

Accuracy rates to GO trials were calculated by excluding trials where an 

incorrect key was pressed and for trials that had response times under 150ms. 
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A mixed measures ANOVA with condition as the between participants factor 

and the two blocks as the repeated measure found no significant effect of block, 

F(1, 92) = 2.68, p = .105, ηG
2 = 0.008, indicating that accuracy did not differ 

across blocks. This was possibly due to ceiling effects as accuracy was high 

across both blocks, with block 1 having an accuracy rate of 94.38% (SD = 2.77) 

and block 2 a rate of 94.97% (SD = 2.27). The main effect of condition was also 

not significant, F(3, 92) = 1.37, p = .257, ηG
2 = 0.031, showing that accuracy 

was similar across conditions (see Table 5.1 for condition by block descriptive 

statistics). The interaction term in the ANOVA was not significant, F(3, 92) = 

0.545, p = .653, ηG
2 = 0.005.  

 GO trials block 1 GO trials block2 

Condition RT A% RT A% 

Experimental 417.56 

(85.53) 

93.97 

(2.90) 

416.13 

(75.55) 

93.97 

(2.37) 

Control 1 408.70 

(85.49) 

93.33 

(3.02) 

408.74 

(78.87) 

94.36 

(2.18) 

Control 2 404.45 

(71.38) 

94.43 

(2.45) 

405.08 

(72.62) 

95.71 

(2.19) 

Control 3 407.17 

(80.75) 

95.43 

(2.58) 

398.60 

(82.00) 

95.29 

(2.29) 

5.5.2.2.3 First reaction times to correct CHANGE trials 

Response times to CHANGE trials were defined as the difference between the 

time for a response on a trial and the change delay for the change signal 

(including any computer lag time, often around 17ms). Error trials, trials where a 

response was made before the change signal or where an incorrect key was 

pressed in response to the change signal, and trials with response times under 

150ms were removed. Participants with missing values in either blocks were 

Table 5.1. Descriptive statistics for GO trials for Experiment 8. SD given in 

parenthesis. RT = response times. A% = percentage accuracy. 
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removed for the analysis (nine in total). As only the experimental and control 1 

groups experienced CHANGE trials this analysis was limited to these groups. I 

ran a mixed-measures ANOVA on these data with condition as the between 

factor variable and the two blocks as the repeated measure component. The 

main effect of block was not significant F(1, 40) = 2.16, p = 0.150, ηG
2 = 0.013 

with similar response times between blocks (M = 530.94, SD = 273.76 for block 

1, and M = 482.14, SD = 140.45 for block 2). The effect of condition was also 

non-significant, F(1, 40) = 1.44, p = .237, ηG
2 = 0.03, indicating that response 

times were similar between conditions (see Table 5.2 for condition by block 

descriptive statistics). The interaction term was also not significant, F(1,40) = 

1.164, p = .208, ηG
2 = 0.010. 

5.5.2.2.4 First response accuracy rates to correct CHANGE trials  

For this measure accuracy is defined as participants making their first response 

to the change trial. As in the case of the GO cue analysis, incorrect key presses 

and trials with response times under 150ms were removed. Given that 0% (i.e. 

no accurate responses) is a possible outcome, there were no missing values for 

this analysis. I ran a mixed-measures ANOVA on these data with condition as 

the between factor variable and the two blocks as the repeated measure 

component. The main effect of block was not significant F(1, 49) = 0.21, p = 

0.652, ηG
2 = 0.0005 with similar accuracy rates between blocks (M = 40.13%, 

SD = 3.89 for block 1, and M = 41.33%, SD = 4.35 for block 2). The effect of 

condition was not significant, F(1, 49) = 0.32, p = .564, ηG
2 = 0.006 (see Table 

5.2 for condition by block descriptive statistics). The interaction term was also 

not significant, F(1, 49) = 0.08, p = .781, ηG
2 = 0.0002.  

Overall, the results suggest that training was experienced in a similar manner 

for all participants. However, it seems that learning was weak without the 

expected improvement (faster and more accurate responses) over time. The 

fact that there were non-significant differences between both blocks of GO trials 

for response times and accuracy might suggest learning was limited, but 

certainly for accuracy there might be a ceiling effect with accuracy in the first 

block already being high. In terms of the CHANGE trials, both measures 

suggest that both conditions were similar, which is reassuring given I wished to 

have an active control.  
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 CHANGE trials block 1 CHANGE trials block2 

Condition RT A% RT A% 

Experimental 579.46 

(346.69) 

38.53 

(3.64) 

493.82 

(164.91) 

39.00 

(5.85) 

Control 1 466.26 

(101.91) 

41.93 

(4.22) 

466.57 

(101.66) 

43.87 

(4.60) 

Table 5.2. Descriptive statistics for CHANGE trials for Experiment 8. SD given 

in parenthesis. RT = response times. A% = percentage accuracy. 

 Driving game analysis 

5.5.2.3.1 Effect of training on stopping at amber traffic lights 

The data was analysed with a mixed 4 x 2 (condition x amber stops) ANOVA, 

with condition as the between-participant factor and the number of amber lights 

stopped at in each of the two driving task sessions as the dependent variable. 

The analysis revealed a non-significant main effect of condition on the number 

of stops at amber traffic lights, F(3, 92) = 1.80, p = .152, ηG
2 = 0.05. A significant 

effect of time was found, F(1, 92) = 10.67, p = .002, ηG
2 = 0.01, with participants 

stopping at more amber traffic lights pre-training (M = 10.22, SD = 5.68) than 

post-training (M = 8.99, SD = 7.22). The interaction between time and condition 

was not significant F(3, 92) = 0.02, p = .964, ηG
2 = 0.0003, indicating that the 

training had no effect upon behaviour at amber traffic lights (see Table 5.3 for 

descriptive statistics). Overall, these results suggest that the training did not 

impact upon stopping at amber traffic lights. Further planned analysis revealed 

that pre-training there was a marginally significant difference in the number of 

stops across conditions, F(3, 92) = 2.37, p = .076, ηG
2 = 0.072, suggesting that 

before training there were already differences in the groups. It is likely that 

these differences would have weakened any training effect and thus make it 

hard to come to a clear conclusion about the effectiveness of the inhibition task. 

At test there were no significant differences between groups, F(3, 92) = 1.20, p 

= .314, ηG
2 = 0.038, and suggesting that the training did not positively impact 

upon task performance.  
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Table 5.3. Descriptive statistics for stops at amber lights for Experiment 8. 

Stops out of 19.  

 Summary 

Experiment 8 investigated whether inhibition training could encourage stopping 

at amber traffic lights within a computerised driving game. However, no 

evidence was found to support the effectiveness of the training. In fact, all 

conditions recorded a decline in stopping at amber traffic lights in the second 

driving game. This might suggest the training was affecting behaviour, but that it 

reduced rather than increased stopping. However, it is more likely that the 

decline in stopping occurs because of experience of the driving game. Over the 

course of the two games, participants are likely to have learnt that it was not 

possible to crash at amber lights. Therefore, the most efficient behaviour, 

especially given the notional time constraints, was to cross all traffic lights. In a 

sense this learning arguably mimics the development of real-world behaviour. If 

a driver crosses an amber light and suffers no costs (i.e. does not crash) then 

they are likely to repeat this behaviour subsequently (as the behaviour is 

positively reinforced by time saved). Through repeated pairing of accelerating or 

taking no action when faced with amber lights, the behaviour becomes 

Game Condition Mean SE 
    

Pre-training 

Game 

Experimental 10.22 1.11 

 
Control 1 7.83 

 

1.09 

 

 
Control 2 10.95 

 

1.21 

 

 
Control 3 11.92 

 

1.13 

 

Post-training 

Game 

Experimental 9.15 

 

1.35 

 

 
Control 1 6.58 

 

1.38 

 

 
Control 2 

 

9.52 

 

1.76 

 

 Control 3 10.28 1.45 
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associatively-mediated: the prepotent response to amber lights becomes to go, 

rather than stop. Such a decline indicates that in its current form the training 

was unable to counteract the association between amber traffic lights and go 

that may have been learnt in the driving game. The decline could also indicate 

that participants were not engaging fully with the task for the duration of the 

experiment. The fact that so many participants failed to meet the inclusion 

criteria relating to stopping at red traffic lights does suggests task engagement 

was an issue from the first driving game. Additionally, the driving game does not 

realistically portray driving (having no sound, ability to steer, or control of the 

speed of the car beyond braking) and therefore participants’ driving behaviour 

may not be indicative of real-life.  

In terms of the inhibition task the overall non-significant effects for blocks is 

unexpected and goes against the normal improvement in performance (faster 

responses, better accuracy) with practice. Focusing on go trials, it is likely this 

lack of improvement over time is due to ceiling effects. Yet, performance for the 

STOP-CHANGE trials does indicate weak learning (an issue discussed in the 

general discussion) with the low accuracy (less than 50%) indicating that 

inhibition was not often successfully employed. Increasing the length of the 

training, and thus the chance of learning to occur, could lead to more successful 

inhibition; this has been shown to be important for inhibition training tasks to be 

effective (A. Jones et al., 2016). 

Another issue to consider is transfer. For learning in the inhibition task to 

transfer, and thus affect behaviour in the second driving task, the two tasks 

need to be similar. However, this is not obviously the case. For one, the cues 

were completely different. In the driving game participants’ saw traffic light 

shapes while in the inhibition task they responded to simple circles in the middle 

of the screen. Secondly, the response keys did not match up, with participants 

using left- and right-Ctrl keys in the inhibition task and spacebar and right-Ctrl in 

the driving game. In fact, if one assumes that participants learnt that the right-

Ctrl key had no impact upon driving (and stopped using it as instructed), then 

the driving game requires participants to make an active response (press the 

spacebar) to stop the car, rather than stopping and changing a response. 

Therefore, the driving and inhibition tasks are not motorically or cognitively 
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similar. To improve transfer, it will be necessary to reduce the transference gap 

between the two tasks.  

A final issue is the limited sample. Given that the experiment was investigating 

driving behaviour it would be beneficial to have a range of driving experience. 

Indeed, it could be argued that those with a longer driving history would be 

more likely to see amber as a go cue (through years of developing amber – go 

links), therefore the task might be more effective for more experienced drivers.  

In summary, Experiment 8 did not successfully bring about behaviour change. 

However, several improvements are possible, and Experiment 9 was designed 

with these changes in mind.  

 EXPERIMENT 9 

Experiment 9 made several substantial changes to the design above, both in 

terms of the driving game and the inhibition task. In terms of the driving game, 

rather than a simple computer game, the experiment used a more realistic 

simulator. Such simulators have been found to have more validity in 

correspondence to real-world driving (Aksan et al., 2016; Fors, Ahlstrom, & 

Anund, 2018), and can predict behaviour at a five year follow up (Hoffman & 

McDowd, 2010). Regarding the inhibition task, an important change was now 

that cues were traffic light images rather than coloured circles. This was done to 

make the task more ecologically valid and thus reduce the transfer gap between 

the inhibition training and driving games. It should be noted that while the 

experimental condition in Experiment 8 was designated as cue-specific, this is 

rather a misnomer as the cues were substantially different in the two tasks. 

Furthermore, responses were made on a foot pedal response box rather than a 

keyboard to increase the motor response match between the driving game and 

the inhibition task. In addition, an extra block of training was added to the 

inhibition task to improve learning. To speed up recruitment, conditions were 

collapsed to two groups. 

 Method 

 Participants 

Given the null findings for Experiment 8 it was again hard to pick an appropriate 

effect size. An a priori power calculation using G*Power 3.1.9.2 (Faul et al., 
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2007) indicated that a total sample of 84 participants would have a 95% chance 

of detecting an effect size of f = 0.20 for the interaction between time and group 

at an alpha level of 0.05. Additionally, recruitment was aimed at older students 

and staff members. This was to increase the range of driving experience. The 

recruitment media placed an emphasis on having several years of driving 

history. Furthermore, the decision was made to limit recruitment to UK drivers 

only. This was because not all countries use the same traffic light sequences 

and so it could be the case that non-UK drivers experienced the task in a 

different manner to those UK drivers. 

 Design 

A mixed-measures 2 x 2 design was used with two independent variables: 

condition (experimental vs. control) and time (pre- and post-training 

performance). Condition was manipulated between-participants and time was 

manipulated within-participants. The two conditions were cue-specific inhibition 

training (the experimental group) and cue irrelevant but specific inhibition 

training (the control group). Participants were randomly allocated to one of the 

two conditions. Responses were obtained on one dependent measure: number 

of stops at amber traffic lights in the driving game. 

 Materials  

5.6.1.3.1 Inhibition task 

The same basic paradigm was used from Experiment 8. However, there were 

several changes (see Figure 5.2). Rather than respond to images of coloured 

circles participants responded to images of traffic lights. These images were 

taken from the simulator and so there was a direct match between the inhibition 

task and the driving task. Participants also responded with foot pedals, though 

the direction remained the same, e.g., green still required a right-side response. 

The number of trials per block were the same but with an additional block (total 

of three blocks). Instead of responding to a purple CHANGE cue, participants in 

the control condition responded to a blue traffic light – this change was made as 

it was felt that purple was too near red and blue was a more neutral colour, 

while still being an irrelevant cue in a driving context. In addition, the response 

for the CHANGE cue for controls was modified from a left-hand response to a 

space bar press. This was felt to minimise any rule learning on the part of 
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control participants around changing response when green lights change, as 

this could lead participants to change their response (i.e. brake) in the simulator 

when the traffic lights changed from green to amber. Thus, those in the 

experimental group had to make a left foot pedal response to CHANGE trials, 

whilst those in the control group had to press the spacebar. However, many of 

the features of the training were still controlled for in the control condition. For 

example, control participants still needed to attend to a change in signal and 

alter their response accordingly. Finally, the change delay for CHANGE trials 

was amended to 50ms, 150ms, or 250ms to encourage faster responding to GO 

trials and to prevent participants guessing the switch times.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.6.1.3.2 Driving task 

The simulator comprised a single PC equipped with three 19-inch LED backlit 

monitors, each with a 1280x1024 screen resolution, a frame rate of 60Hz and 

an aspect ratio of 5:4, two Logitech speakers, a G27 Logitech steering wheel 

with force feedback and pedals, and a standard office chair without wheels. The 

Figure 5.2. Schematic of the inhibition training task for Experiments 9. All 

groups received three blocks of 100 trials. Participants saw 70 green trials and 

15 red trials per block. The remaining 15 trials depended on the condition (see 

right-hand side of the Figure). Arrows indicate direction of foot response. 
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system was designed by XPI Simulation and included realistic sounds, including 

braking and accelerating. All participants completed two driving scenarios. The 

first was a practice scenario designed to familiarise participants with the 

simulator controls. The task involved participants driving a car from the first-

person point of view in a city environment. Halfway through the scenario the car 

in front of the participants stopped and turned right. At this point participants 

had to brake and come to a complete halt (if not, then they crashed and the 

scenario ended), moving away once the car ahead had fully turned. In total this 

scenario lasted 1.40 minutes. No data was recorded for this scenario.  

The second scenario was the main driving task and involved participants driving 

a car from the first-person point of view along a straight 5.1km road with 30 

traffic light-controlled junctions. For twenty of the junctions the traffic light turned 

from green to amber as the car approached. Participants then had to decide 

whether to stop the car, by releasing the accelerator pedal and depressing the 

brake pedal, or to cross the junction by keeping the accelerator depressed. As 

in real-life, braking would be the safest option but would also result in a time 

penalty. If a crash did occur the game ended, although the game was designed 

so that it was impossible to crash if a participant crossed an amber light (but it 

was possible to crash if participants crossed at red traffic lights). The remaining 

ten junctions displayed an equal mix of red and green traffic lights. The amber 

traffic lights were set so that they changed from green to amber at different 

distances as the car approached the junction - either 10m away from the 

junction, 20m, 30m, 40m, or 50m, four for each distance. Importantly, as there 

were no vehicles behind the participants’ car (the ‘road’ was clear in the mirrors) 

it would be suitable (and possible) to brake at all amber traffic lights if travelling 

at the speed limit. The game also featured other vehicles, both crossing at 

junctions but also approaching on the other side of the road. Data was collected 

from this scenario. Forward, side and rear views (see Figure 5.3) were 

displayed. Participants were not given any feedback or score for their 

performance in the scenarios. The fact that the game was designed so that it 

was impossible to crash if a participant crossed an amber light may have given 

rise to learning effects, with participants realising there was no penalty for not 

stopping at amber traffic lights and, as a result, stopping less in the post-training 

driving game (as seen in Experiment 8). I would argue that this learning effect 
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reflects the development of similar real-world behaviour and so, if anything, 

increases the ecological validity of the scenario. Participants’ overall average 

speed and lane position were taken as a measure of the realism of the 

simulator, with the expectation that participants would drive within the speed 

limit and maintain a central lane position.  

 Questionnaires 

A wider battery of behavioural characteristics was explored compared to 

Experiment 8, focused on real-world driving and experience of the simulator.  

5.6.1.4.1 Driving experience 

Participants were asked what type of licence they had and if they had been 

involved in a road traffic collision either as a passenger or a driver. Participants 

with learner licences were asked if they had any driving experience. This 

questionnaire was of my own design. 

5.6.1.4.2 Driving behaviour  

To assess if participants differ in their real-world driving styles they were asked 

to complete the extended Manchester Driver Behaviour Questionnaire (Lajunen, 

Parker, & Summala, 2004). This measures four driving behaviours: ordinary 

violations, aggressive driving, lapses, and errors.  

5.6.1.4.3 Impulsivity and sensation-seeking 

These scores were collected in the same manner as Experiment 8. 

Figure 5.3. Photo of the driving simulator used for Experiment 9. Task displayed 

is the first trial of the main driving game.  
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5.6.1.4.4 Motion sickness 

Nausea and motion sickness can occur when using simulators and so it was 

important to ensure that the experience of the simulator was equal for the two 

conditions. Therefore, participants completed the simulator sickness 

questionnaire (Kennedy, Lane, Berbaum, & Lilienthal, 1993; Questionaire taken 

from Stone III, 2017). 

 Procedure  

The procedure was undertaken as described in Experiment 8 with the addition 

of the practice scenario before the main phase of the experiment.  

 Analysis and results  

Data was analysed in the manner described in Experiment 8. For Experiment 9 

a total of 98 participants were tested. Two participants were unable to complete 

the experiment due to technical issues. Three participants withdrew due to 

suffering motion sickness. Finally, one participant met the exclusion criteria of 

not having stopped at all red traffic lights pre-training. This compares to the 85 

participants in Experiment 8 and indicates that the changes to the driving 

simulator had improved task engagement. The final sample size was 46 

participants per condition. Post-hoc analysis using G*Power 3.1.9.2 (Faul et al., 

2007) indicated that the experiment had a 97% chance of detecting an effect 

size of f = 0.20 for the interaction between time and group at an alpha level of 

0.05.   

Due to the nature of the driving task where participants were always in control 

of stopping and starting, the stop data was noisier than that of Experiment 8 and 

defining a specific event as a stop or go was more complicated. For red traffic 

light junctions, in addition to crossing on red which represents a clear failure to 

stop, there was the potential for participants to cross when the traffic light 

displayed red and amber. In these instances, participants may have come to a 

halt but then have been too quick in accelerating away from the junction. Given 

that participants would have stopped, these instances were coded as a stop 

when calculating frequency of crosses at red traffic lights. Of course, crosses on 

green traffic lights, whereby the participant would had to have waited for the 

entire sequence were counted as stops at red lights. For amber traffic light trials 

the possible events were: a participant crossed while the light was on amber; 
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misjudged the light and by the time the car was crossing the junction the light 

had changed to red; braked and waited for the light to cycle round to green; or 

came to a halt and then crossed before the light displayed green, instead of 

going on a red light or a red and amber light. Crosses on either a green or red 

and amber light indicated that the participant had stopped at the lights and 

waited for the cycle of traffic lights, and as such these two events were coded 

as stop. Crosses on amber were coded as go. Crosses on red could mean that 

the participant tried to cross when the light displayed amber but was not quick 

enough and therefore actually crossed the stop line on a red light, or the 

participant could have crossed on a red light regardless. Due to the nature of 

the game if participants did wait at a red light and then crossed, they would 

have crashed into other cars entering the junction, thus ending the game. Given 

this, crosses on a red light at amber trials indicated that participants did not stop 

(see Table 5.4 for tabular version of the coding decisions).  
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Traffic light Coding Reasoning 

Amber Go As amber will only appear at the start of the 

sequence any recorded amber cross is a failure to 

stop. 

 

Red Go Recording a red cross on an amber trial means 

participants will have to 1) misjudge the light and 

cross the junction on red or 2) brake, wait, but 

cross the junction while the red light is still on. 

However, if participants do this then they would 

crash into the path of oncoming vehicles. In the 

case of 1) even if participants stop, they will have 

crossed the stop line on an amber traffic light and 

so this will count as a cross.  

 

Red and 

Amber 

Stop To record this event participants must stop at the 

amber traffic light but accelerate too quickly, 

crossing the junction on red and amber rather than 

green. In these cases, while not correct driving, 

participants did stop at the amber traffic light. 

 

Green Stop It is not possible to record a green cross without 

waiting for the full traffic light cycle because on 

amber trials the light will always change to amber 

before participants cross the junction. 

 

Table 5.4. Coding of crosses at traffic lights experienced at amber trials for 

Experiment 9. 

 Participants characteristics 

As with Experiment 8 there was some missing data for the questionnaires in 

Experiment 9. The missing data seemed to be non-systematic and seemingly 

occurred due to participants missing a question by accident rather than 

deliberate non-answer. The specific instances and methods taken to deal with 

the missing data are displayed in Appendix F. For most questionnaires a mean 

replacement strategy was used, but for the Simulator Sickness questionnaire 

missing values were replaced with 0, as advised by the scale author’s (Kennedy 
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et al., 1993). Overall, missing data was low and therefore unlikely to affect the 

conclusions drawn about the sample. Randomisation checks revealed that the 

two conditions were well matched across variables (see Appendix G).   

 Response inhibition task  

5.6.2.2.1 First reaction times to correct GO trials 

Mean responses to GO trials were calculated as in Experiment 8. A mixed 

measures ANOVA with condition as the between participants factor and the 

three blocks as the repeated measure found no effect of condition F(1, 90) = 

0.002, p = . 957, ηG
2 = 0.00003, showing that response times were similar 

between the two conditions (experimental condition: M = 717.55, SD = 161.78, 

control condition: M = 719.46, SD = 172.88. See Table 5.5 for condition by 

block descriptive statistics). There was a main effect of block, F(2, 180) = 28.69, 

p = < .001 (Huynd-Feldt corrected), ηG
2 = 0.064, with mean reaction times 

decreasing over the course of the experiment (M = 779.44 SD = 175.58, for 

block 1, M = 716.03, SD = 220.73 for block 2, and M = 660.08, SD = 162.60 for 

block 3). Thus, participants displayed the expected learning. The interaction 

term in the ANOVA was not significant, F(2, 180) = 0.797, p = .452, ηG
2 = 0.002. 

5.6.2.2.2 First response accuracy rates to correct GO trials  

Accuracy rates to GO trials were calculated as in Experiment 8. A mixed 

measures ANOVA with condition as the between participants factor and the 

three blocks as the repeated measure found no significant effect of block, F(2, 

180) = 1.70, p = .171, ηG
2 = 0.01, suggesting that accuracy rates did not change 

over the course of the training. This is likely to be due to ceiling effects as 

accuracy rates were high (M = 99.26% SD = 0.82, for block 1, M = 99.36%, SD 

= 0.73 for block 2, and M = 99.50%, SD = 0.64 for block 3; Table 5.5 for 

descriptive statistics). There was a significant effect of condition, F(1, 90) = 

5.07, p = .027, ηG
2 = 0.027, with accuracy being higher in the experimental 

condition (M = 99.54%, SD = 0.39) than in the control condition (M = 99.20%, 

SD = 0.60) .The interaction between condition and block was not significant F(2, 

180) = 2.69, p = .070, ηG
2 = 0.015. 
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5.6.2.2.3 First reaction times to correct CHANGE trials 

Response times to CHANGE trials were calculated as in Experiment 8. 

Participants with no data in a block were removed, with two participants 

excluded on this basis. I ran a mixed-measures ANOVA on the data with 

condition as the between factor variable and the three blocks as the repeated 

measure component. The main effect of condition was significant, F(1, 88) = 

23.98, p = < .001, ηG
2 = 0.158, with response times being slower in the 

experimental group (M = 850.87, SD = 196.82) than in the control condition (M 

= 672.11, SD = 145.70. See Table 5.6 for condition by block descriptive 

statistics). There was a significant effect of block, F(2, 176) = 5.71, p = .006 

(Huynd-Feldt corrected), ηG
2 = 0.02, with mean response times decreasing but 

then increasing slightly over the blocks (M = 802.55, SD = 262.56 for block 1, M 

= 734.56, SD = 193.82 for block 2, and M = 747.36, SD = 217.78 for block 3). 

Further analysis revealed that the difference between block 1 and 2 was 

significant, t(89) = 3.36, p = .001, 95% CI [27.83, 108.15], d = 0.35, with faster 

reaction times in block 2 than 1. The difference between 1 and 3 was also 

significant (at a uncorrected alpha level), t(89) = 2.19, p = .031, 95% CI [5.19, 

105.19], d = 0.23, with faster reaction times to block 3 than 1, while the 

difference between block 2 and 3 was not significant, t(89) = -0.72, p = .474, 

95% CI [-48.16, 22.57], d = -0.08. This indicates that whilst initially participants 

learnt about the task such learning plateaued. The interaction between block 

and condition was not significant, F(2, 176) = 0.12, p = .891, ηG
2 = 0.0004. 

 GO trials block 1 GO trials block 2 GO trials block 

3 

Condition RT A% RT A% RT A% 

Experimental 768.06 

(164.40) 

99.60 

(0.62) 

716.07 

(192.91) 

99.41 

(0.78) 

668.53 

(170.71) 

99.63 

(0.65) 

Control  790.81 

(187.22) 

98.91 

(0.92) 

715.94 

(247.62) 

99.31 

(0.78) 

651.62 

(155.50) 

99.39 

(0.62) 

Table 5.5. Descriptive statistics for GO trials for Experiment 9. SD given in 

parenthesis. RT = response times. A% = percentage accuracy. 
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5.6.2.2.4 First response accuracy rates to correct CHANGE trials  

Accuracy rates were calculated as in Experiment 8. I ran a mixed-measures 

ANOVA on this data with condition as the between factor variable and the three 

blocks as the repeated measure component. There was a non-significant effect 

of condition, F(1, 90) = 0.345, p = .557, ηG
2 = 0.003, with accuracy rates being 

similar in the experimental condition (M = 73.87%, SD = 3.52) and in the control 

condition (M =  71.13%, SD = 3.07). There was a significant effect of block, F(2, 

180) = 4.62, p = .012 (Huynd-Feldt corrected), ηG
2 = 0.005, with accuracy 

decreasing over time (M = 74.47% SD = 3.26 for block 1, M = 72.67%, SD = 

3.61 for block 2, and M = 70.33%, SD = 3.55 for block 3). The interaction term 

was not significant, F(2, 180) = 1.20 p = .303 ηG
2 = 0.001 (see Table 5.6 for 

condition by block descriptive statistics). 

 

The results for the inhibition training phase are less clear than Experiment 8. In 

terms of GO trials, the significant decrease in response times between blocks 

shows that participants were learning about the task. However, due to the fact 

that response times were slower to begin with, compared to Experiment 8, it is 

hard to state if this learning effect was driven by the additional training block, or 

if it was always present and that the lack of ceiling effects gives more scope to 

detect such learning. As seen in Experiment 8 accuracy for GO trials was high. 

There was a significant effect of condition, yet in both groups’ accuracy was still 

very high for GO trials.  

Regarding the CHANGE trials the pattern of response times over the 

experiment demonstrates that, though learning was occurring, it was variable. 

 CHANGE trials 

block 1 

CHANGE trials 

block 2 

CHANGE trials 

block 3 

Condition RT A% RT A% RT A% 

Experimental 891.89 

(296.51) 

74.60 

(3.65) 

829.10 

(200.54) 

74.80 

(3.70) 

831.63 

(229.20) 

72.20 

(3.66) 

Control  713.21 

(187.25) 

74.33 

(2.86) 

640.03 

(132.23) 

70.60 

(3.54) 

663.08 

(169.92) 

68.53 

(3.46) 

Table 5.6. Descriptive statistics for CHANGE trials Experiment 9. SD given in 

parenthesis. RT = response times. A% = percentage accuracy. 
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One issue is that there was a significant effect of condition for reaction times, 

with those in the experimental group having slower reaction times. Clearly there 

is an effect of the cues (amber vs blue traffic lights). The fact that accuracy 

rates were similar between the groups suggest that changing to an amber light 

was much more difficult for the experimental participants. This type of behaviour 

would be expected if amber lights were indeed priming a going response. 

However, the two conditions differ in terms of response requirements for the 

CHANGE trials and it is likely that these differences are behind the effect. In the 

experimental condition, participants must move their right foot to the left-pedal, 

while those in the control bar just needed to press the spacebar with their right 

index finger. Thus, the response required for the control condition in change 

trials would be, prima facie, easier than that in the experimental condition.  

Focusing on the accuracy rates for CHANGE trials, the decreasing rates across 

blocks shows that participants were displaying less inhibition as the training 

progressed. This could either be due to fatigue, with participants responding 

with the most likely response (the GO response) in order to complete the task 

quickly. The effect could also be explained by reference to the task design. Due 

to the task being designed to assess reactive inhibition, the declining accuracy 

rates could indicate that, across the experiment, GO trials were eliciting a strong 

default go response, supported by the reducing reaction times to GO trials, and 

that participants were unable to inhibit responding. Another interesting feature 

of the accuracy rates in Experiment 9 is that they are much higher than those in 

Experiment 8. This could be evidence of a speed-accuracy trade-off (note the 

slower responses time in Experiment 9 than Experiment 8 for these trials), 

perhaps arising as an artefact of the changed delay times for the CHANGE 

trials. 

 Driving game analysis 

In this section I present the analysis of the driving game data. First, I present 

data showing that within the driving simulator both groups maintained safe 

driving throughout the experiment. These analyses were in effect manipulation 

checks to ensure that the experience of the simulator did not differ between 

groups. Next, I present a mixed-measures ANOVA to show the omnibus effects 

of the training. If the training was effective it would be expected that the 

interaction would be significant, with more stops post-training than pre- for the 
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experimental group. Finally, I present a more focused analysis on the pre- and 

post-training performance.  

5.6.2.3.1 Performance within the driving simulator  

The average z-axis (perpendicular to the road) lane position was -47.94 (SD = 

0.18) and -47.85 (SD = 0.42) for pre- and post-training scenarios respectively 

indicating that participants maintained a safe left-hand lane position, with values 

between -46 and -50 denoting a safe lane position. The average speed for the 

task was 15.48mph for the pre-training scenario (SD = 0.98) and 16.35mph for 

the post-training scenario (SD = 1.28), this increase in speed was significant, 

F(1, 90) = 13.21, p = < .001, ηG
2= 0.03. Those in the experimental condition 

recorded a significant difference in speed between the two driving games, t(45) 

= -2.55, p = .014, 95% CI [-0.64, -0.07], d = -0.38, increasing from a mean of 

15.15mph (SD = 0.91) to 15.95mph (SD = 0.97). The same effect was 

witnessed in the control condition, t(45) = -2.61, p = .012, 95% CI [-0.76, -0.10], 

d = -0.38, increasing from a mean of 15.82mph (SD = 1.03) to 16.78mph (SD = 

1.52). There was no effect of condition upon speed, F(1, 90), 2.61, p = .109, ηG
2 

= 0.023.  

5.6.2.3.2 Effect of training on stopping at amber traffic lights 

The data was analysed with a mixed 2 x 2 (condition x amber stops) ANOVA, 

with condition as the between-participant factor and the ‘number of stops at 

amber traffic lights’ as the dependent variable. There was a significant effect of 

time, F(1, 90) = 57.00, p = < .001, ηG
2 = 0.08, with participants stopping at more 

amber traffic lights post-training (M = 12.54, SD = 2.65) than pre-training (M = 

11.13, SD = 2.32). There was a marginally significant main effect of condition, 

F(1, 90) = 3.67, p = .058, ηG
2 = 0.03, with those in the experimental condition 

stopping at significantly more traffic lights than controls (see Table 5.7 for 

descriptive statistics). The interaction between time and condition was not 

significant F(1, 90) = 1.94, p = 0.166, ηG
2 = 0.003. 

Further planned analysis showed that both conditions recorded a significant 

increase in stops at amber traffic lights, for the experimental group, t(45) = -

6.43, p = < .001, 95% CI[-2.20, -1.15], d = -0.95 and for the control condition, 

t(45) = -4.28, p = < .001, 95% CI[-1.69, -0.61], d = -0.63. As can be seen in 

Table 5.7, irrespective of type of training received, stops at amber traffic lights 
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increased in the second driving game compared to the first. Analysis found a 

non-significant difference between the experimental and control conditions for 

pre-training amber stops, t(90) = 1.35, p = .179, 95% CI[-0.31, 1.61], d = 0.28, 

but the difference was significant post-training, t(90) = 2.17, p = .033, 95% 

CI[0.10, 2.25], d = 0.45, where those in the experimental condition stopped 

more often compared to controls. This suggests that there was some effect of 

training, with the experimental group recording a greater increase in stopping 

than the control condition.  

Table 5.7. Descriptive statistics for stops at amber lights for Experiment 9. 

Stops out of 20.  

 Summary 

Experiment 9 found some rather weak evidence to suggest that inhibition 

training can increase stopping at amber traffic lights. Of course, the training was 

not completely successful with the interaction between condition and time not 

being significant. However, it is possible to argue that the results from 

Experiment 9 do show promise, particularly given the post-training results. 

Compared to the pattern of stopping seen in Experiment 8 the present results 

are quite different. In Experiment 8 all groups recorded a decline, but in the 

current study all groups witnessed an increase in stopping at amber traffic 

lights. The decline in Experiment 8 was hypothesised to occur as a result of 

participants learning that there was no penalty for crossing amber traffic lights, 

and so having less reason to stop in the second driving scenario. It seems 

reasonable to assume that participants did learn about this contingency in 

Experiment 9; after all, it was still impossible to crash if a participant crossed an 

amber traffic light. The fact that this learning was not witnessed in task 

Game Condition Mean SE 

Pre-training 

Game 

Experimental 11.46 

 

0.39 

 
Control 10.80 

 

0.29 

Post-training 

Game 

Experimental 13.13 

 

0.38 

 Control 11.96 0.38 
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performance (i.e. as a decrease in stops at amber lights at test) indicates that 

there were factors in the experiment that had a stronger influence upon 

behaviour than the in-game learning of amber = go. 

The lack of a decline suggests that the both versions of the training were able to 

counteract the learning in the game. This speaks to the general vs. specific 

inhibition training debate discussed in the Chapter 1 and the introduction to this 

chapter. Both groups received response inhibition training (as a component of 

the overall stop-change response), but for the experimental group this was cue-

specific, while for the control condition it was not specific. It may be the case 

that both forms of training had some effect e.g., priming ‘cautious behaviour’ (in 

a similar fashion to the gambling training of Stevens et al., 2015) but that the 

effects were greater in the cue-specific experimental group. Of course, it must 

be acknowledged that other accounts, that do not rely on learnt inhibition, could 

contribute to the witnessed effects. For example, it could be that the training 

task was priming rule-based knowledge of traffic lights. This argument would 

explain the significant post-training difference, with participants who received 

amber CHANGE trials having increased activation of the rules around amber 

lights than those who received blue CHANGE trials. Additionally, the difference 

post-training could be explained through demand characteristics, with those 

who saw amber CHANGE trials assuming that the experiment was focused on 

behaviour at amber traffic lights and so adjusted their behaviour accordingly. 

However, it can be questioned how different the amber CHANGE and blue 

CHANGE trials are. Given the ubiquitous nature of the traffic light sequence, 

even participants who saw blue CHANGE trials are likely to guess the nature of 

the task and to have rule-based knowledge primed. Thus, the difference 

between conditions post-training might reflect the small bonus granted by the 

cue-specific inhibition training to amber lights specifically, i.e. the retrieval of 

specific stimulus-response associations at test in addition to general rule 

priming. Overall, while it is likely that other factors confounded the results, the 

involvement of amber-specific response inhibition training cannot be entirely 

dismissed.   

In terms of the response times for the CHANGE trials the results do indicate 

some learning did occur. However, it was variable and the significant difference 

between conditions suggests task artefacts were influencing performance. The 
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accuracy rates for CHANGE trials are still low and this could explain the limited 

behaviour change (see discussion in section 5.7.3). Indeed, the results 

demonstrate that participants were displaying less inhibition over time. 

However, it is unclear if this was due to fatigue or arose from GO trials eliciting 

a strong go response. Of course, it could be a combination of both factors.  

One issue with the task is the driving simulator. While the results suggest that 

participants were engaging with the driving task, supported by the fact that one 

participant failed to stop at all red lights pre-training, it is clearly not the same as 

driving, and it might not be the most ecologically valid measure of driving 

behaviour. It could be the case that while the inhibition task has changed 

responses to amber traffic lights, such learning is not being expressed in the 

driving task. Given that the idea is to train associatively-mediated inhibition, for 

any behaviour change to be witnessed the behaviour measure must allow for 

the expression of such learning. It could be that due to the relative ease of the 

simulator participants are deploying propositional learning and thus preventing 

the expression of the associative learning (see McLaren et al., 2019). 

Therefore, to address this issue Experiment 10 is a replication of Experiment 9 

but with an improved driving simulator that takes the experiment closer to real-

world driving. 

 EXPERIMENT 10 

To increase the validity and to authentically recreate the ‘feel’ of driving, 

simulators need to encode multiple senses in a natural manner (Chalmers, 

Howard, & Moir, 2009). Specifically to increase the experiential validity of a 

simulator (Pinto, Cavallo, & Ohlmann, 2008) it is important to use large screens 

(Kemeny & Panerai, 2003) and to have participants in a natural body position 

(Melo, Rocha, Barbosa, & Bessa, 2016). Therefore, for Experiment 10 the 

simulator was updated to include larger screens and a car seat allowing the 

participant to assume a normal driving position in the scenarios.  

 Method 

 Participants 

As Experiment 10 was effectively a replication of Experiment 9 the same 

sample size was used. Again, recruitment focused on drivers, but rather than 
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staff this experiment was aimed at students who had driven in the last two 

weeks. This decision was made to overcome recruitment issues but also to see 

if the training was appropriate for younger drivers (who arguably would be of 

greater need of such interventions given their higher chance of being involved in 

a traffic collision; International Transport Forum, 2018). Recruitment was still 

limited to UK drivers only. 

 Design 

The design of Experiment 10 was identical to that of Experiment 9.   

 Materials  

5.7.1.3.1 Inhibition task 

The inhibition task was the same as in Experiment 9.  

5.7.1.3.2 Driving task 

All aspects of the driving task remained the same between Experiment 9 and 10 

bar the changes outlined below. The simulator now comprised of three 28-inch 

LED backlit monitors, each with a 1920x1080 screen resolution, a frame rate of 

60hz and an aspect ratio of 16:9. The same two Logitech speakers, G27 

Logitech steering wheel with force feedback and pedals where used as in 

Experiment 9. The simulator now included a RS driving rig that enabled 

participants to adopt a driving position with the distance between the seat and 

the pedals being adjustable (see Figure 5.4).  

 

 

 

 

 

 

 

Figure 5.4. Photograph of the driving simulator used in Experiment 10.  
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 Questionnaires 

The same questionnaires outlined in Experiment 9 were used in the experiment. 

 Procedure  

The procedure was undertaken as described in Experiment 9.  

 Analysis and results 

Data was analysed in the manner described in Experiment 9. For Experiment 

10, a total of 108 participants were tested. Fifteen participants were unable to 

complete the experiment due to technical issues. Three participants withdrew 

due to motion sickness. Three participants jumped red traffic lights in the pre-

training driving task. Finally, two participants were outliers for mean GO trial 

response times. The final sample consisted of 43 participants in the control 

condition and 42 in the experimental condition. While the experiment had aimed 

for 46 per condition, recruitment difficulties meant it was decided to end the 

experiment early, and the sample size is still near to that of Experiment 9. Post-

hoc analysis using G*Power 3.1.9.2 (Faul et al., 2007) indicated that the 

experiment had a 95% chance of detecting an effect size of f = 0.20 for the 

interaction between time and group at an alpha level of 0.05.   

 Subject characteristics 

Missing data appeared to be non-systematic and seemingly occurred due to 

participants missing a question by accident rather than being the product of a 

deliberate non-answer. The specific instances and methods taken to deal with 

the missing data are displayed in Appendix H. Overall, missing data was low 

and therefore unlikely to affect the conclusions drawn about the sample. 

Randomisation checks revealed that two conditions were well matched across a 

range of variables (see Appendix I). 

 Response inhibition task  

5.7.2.2.1 First reaction times to correct GO trials 

Mean responses to GO trials were calculated as in Experiment 8. A mixed 

measures ANOVA with condition as the between participants factor and the 

three blocks as the repeated measure found no effect of condition F(1, 83) = 

0.34, p = . 562, ηG
2 = 0.003, showing that response times were similar between 

the two conditions (experimental condition: M = 657.26, SD = 161.14, control 
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condition: M = 676.46, SD = 142.62. See Table 5.8 for condition by block 

descriptive statistics). There was a main effect of block, F(2, 166) = 25.81, p = < 

.001 (Huynd-Feldt corrected), ηG
2 = 0.045, with mean reaction times decreasing 

over the course of the experiment (M = 713.91, SD = 188.90 for block 1, M = 

657.93, SD = 155.18 for block 2, and M = 629.08, SD = 146.60 for Block 3). 

Thus, participants displayed the expected learning. The interaction term in the 

ANOVA was not significant, F(2, 166) = 2.30, p = .103, ηG
2 = 0.004. 

5.7.2.2.2 First response accuracy rates to correct GO trials  

Accuracy rates to GO trials were calculated as in Experiment 8. A mixed 

measures ANOVA with condition as the between participants factor and the 

three blocks as the repeated measure found no significant effect of condition, 

F(1, 83) = 0.61, p = .438, ηG
2 = 0.003, showing that accuracy rates were similar 

across conditions (experimental condition: M = 98.77%, SD = 0.89, control 

condition: M = 98.54%, SD = 0.98). There was a significant main effect of block, 

F(1, 83) = 3.11, p = .047, ηG
2 = 0.020, with accuracy varying across time (M = 

98.36%, SD = 1.49 for block 1, M = 99.04, SD = 1.02 for block 2, and M = 

98.57%, SD = 1.63 for block 3). The interaction term was significant, F(2, 166) = 

3.11 , p = .047, ηG
2 = 0.020, with accuracy changing as a function of condition. 

Those in the control condition displayed an increase in accuracy between block 

1 and 2 and then levelled off for block 3, while those in the experimental 

condition had an increase in accuracy between blocks 1 and 2, but then 

recorded a decline in accuracy rates for block 3 (see Table 5.8 for condition by 

block descriptive statistics). As accuracy was still high overall no further 

analyses were run on this interaction. 
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Table 5.8. Descriptive statistics for GO trials for Experiment 10. SD given in 

parenthesis. RT = response times. A% = percentage accuracy. 

5.7.2.2.3 First reaction times to correct CHANGE trials 

Response times to CHANGE trials were calculated in the same manner as 

Experiment 8. Participants with no data in a block were removed, which resulted 

in five participants being removed. A mixed-measures ANOVA was performed 

on this data with condition as the between factor variable and the three blocks 

as the repeated measure component. As in Experiment 9, there was a 

significant effect of condition, F(1, 78) = 7.14, p = .009, ηG
2 = 0.06, with faster 

responses in the control condition (M = 629.43, SD = 157.73) then in the 

experimental condition (M = 743.81, SD = 221.22), which, as before, is likely 

due to the different task requirements for the two conditions. The effect of block 

was marginally significant, F(2, 156) = 2.40, p = .094, ηG
2 = 0.009, with a trend 

for faster responses over time (M = 707.79, SD = 229.44 for block 1, M = 

692.52, SD = 278.24 for block 2, and M = 655.26, SD = 194.51 for block 3). The 

interaction was also marginally significant, F(2, 156) = 2.59, p = .078, ηG
2 = 

0.01, with the control condition showing a U-shape pattern of mean response 

times across the blocks, while the experimental condition had similar levels for 

blocks 1 and 2 and then a decline for block 3 (see Table 5.9 for condition by 

block descriptive statistics).  

5.7.2.2.4 First response accuracy rates to correct CHANGE trials  

Accuracy rates to CHANGE trials were calculated in the same manner as 

Experiment 8. I ran a mixed-measures ANOVA on these data with condition as 

 GO trials block 1 GO trials block2 GO trials block3 

Condition RT A% RT A% RT A% 

Experimental 693.01 

(186.48) 

98.77 

(1.28) 

645.10 

(163.33) 

99.26 

(0.86) 

633.67 

(163.99) 

98.30 

(1.78) 

Control  733.33 

(191.19) 

97.97 

(1.64) 

670.45 

(147.64) 

98.84 

(1.14) 

624.60 

(129.19) 

98.84 

(1.45) 
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the between factor variable and the three blocks as the repeated measure 

component. There was a marginally significant effect of condition, F(1, 83) = 

3.06, p = .084, ηG
2 = 0.030, with a trend for greater accuracy in the control 

condition (M = 72.87%, SD = 2.81) than in the experimental condition (M = 

64.47%, SD = 3.79). There was a significant effect of block, F(2, 166) = 11.72, p 

= < .001 (Huynd-Feldt corrected), ηG
2 = 0.02, with accuracy increasing over time 

(M = 63.73%, SD = 4.19 for block 1, M = 70.13%, SD = 3.49 for block 2, and M 

= 72.27%, SD = 3.26 for block 3). The interaction between block and condition 

was not significant, F(2, 166) = 0.09, p = .911, ηG
2 = 0.0002.  

Table 5.9. Descriptive statistics for CHANGE trials for Experiment 10. SD given 

in parenthesis. RT = response times. A% = percentage accuracy. 

 

Overall, the results suggest that the task was learnt by participants, but 

performance was somewhat variable. The response times for GO trials indicate 

that both conditions learnt the task equally well. The results for GO accuracy 

suggest that learning was variable, with accuracy not consistently improving 

over time as expected, and the significant interaction term reinforces this 

conclusion. However, it is worth noting that accuracy was still high overall. For 

the CHANGE trials, the significantly faster response times for the control 

condition compared to the experimental condition matches that found in 

Experiment 9 and is likely to be due to task differences. The fact that there was 

only a marginally significant difference in blocks suggests that learning was not 

strong. The interaction term also suggests that learning was variable. For 

accuracy rates the trend for higher accuracy in control conditions compared to 

 CHANGE trials 

block 1 

CHANGE trials 

block 2 

CHANGE trials 

block 3 

Condition RT A% RT A% RT A% 

Experimental 773.59 

(253.63) 

59.07 

(4.71) 

775.60 

(351.28) 

66.00 

(3.94) 

682.23 

(193.49) 

68.27 

(3.63) 

Control  645.19 

(186.07) 

68.40 

(3.53) 

613.50 

(150.12) 

74.13 

(2.90) 

629.61 

(193.35) 

76.13 

(2.77) 
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the experimental condition is also likely to be a task artefact, as it is easier to 

accurately press a spacebar one can see than move a foot between pedals 

under a desk. Unlike Experiment 9 accuracy significantly improved over time, 

suggesting inhibition was improving over time. However, accuracy rates were 

lower than in Experiment 9.  

 Driving game analysis 

The analysis presented here was undertaken in the manner described in 

Experiment 9.  

5.7.2.3.1 Performance within the driving simulator  

The average z-axis (perpendicular to the road) lane position was -47.99 (SD = 

0.18) and -48.00 (SD = 0.36) for pre- and post-training scenarios respectively; 

indicating that participants maintained a safe left-hand lane position. The 

average speed for the task was 15.77mph for the pre-training scenario (SD = 

1.13) and 16.51mph for the post-training scenario (SD = 0.95), this increase in 

speed was significant, F(1, 83) = 1.29, p = < .001, ηG
2 = 0.03. Those in the 

experimental condition recorded a marginally significant difference in speed 

between the two driving games, t(41) = -1.87, p = .068, 95% CI [-0.61, 0.02] d = 

-0.29, increasing from a mean of 15.79mph (SD = 1.34) to 16.46mph (SD = 

1.08). Those in the control condition witnessed a significant increase in speed, 

t(42) = -3.67, p = < .001, 95% CI [-0.58, -0.17], d = -0.56, increasing from a 

mean of 15.73mph (SD = 0.88) to 16.55mph (SD = 0.81). There was no effect 

of condition upon speed, F(1, 83) = 0.0006, p = .981, ηG
2 = < .0001.  

5.7.2.3.2 Effect of training on stopping at amber traffic lights 

The data were analysed with a mixed 2 x 2 (condition x amber stops) ANOVA, 

with condition as the between-participant factor and ‘the number of amber lights 

stopped at’ as the dependent variable. The interaction between time and 

condition was not significant F(1, 83), = 1.52, p = .224, ηG
2 = 0.002, indicating 

that the training had a non-significant effect upon behaviour at amber traffic 

lights (see Table 5.10 for descriptive statistics). The analysis revealed a non-

significant main effect of condition on the number of stops at amber traffic lights, 

F(1, 90) = 0.11, p = .738, ηG
2 = 0.001, suggesting that the groups were similar. 

A significant effect of time was found, F(1, 83) = 31.22, p = < .0001, ηG
2 = 0.04, 
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with participants stopping at more amber traffic lights post-training (M = 12.38, 

SD = 3.11) than pre-training (M = 11.13, SD = 2.88). 

Further planned analysis revealed that both conditions recorded a significant 

increase in stops at amber traffic lights, for the experimental group, t(41) = -

4.51, p = < .001, 95% CI [-2.21, -0.84], d = -0.70, and for the control condition, 

t(42) = -3.33, p = .002, 95% CI [-1.57, -0.39], d = -0.51. As shown in Table 5.10, 

irrespective of type of training received, stops at amber traffic lights increased in 

the second driving game compared to the first. Analysis found a non-significant 

difference between conditions for pre training amber stops, t(83) = -0.11, p = 

.915, 95% CI [-1.32, 1.18], d = -0.02 and a non-significant difference at post 

training as well, t(83) = 0.71, p = .480, 95% CI [-0.87, 1.83], d = 0.15.  

 Summary 

Unlike Experiment 9, the results for Experiment 10 do not demonstrate anything 

that can be termed a significant improvement in stopping at amber traffic lights 

as a result of the training. However, numerically, there is weak evidence for the 

direction of effect supporting that in Experiment 9. Given that the training was 

identical between Experiment 9 and 10 the lack of a stronger effect is puzzling. 

One reason might be due to the type of participants. Experiment 9 used older 

more experienced drivers, whereas Experiment 10 used a student sample. 

Perhaps the training is more effective for those with more driving experience. 

With more driving experience the link between left-pedal and stop would be 

assumed to be stronger and this may have helped to increase transference 

between the inhibition training and the driving game. It could also be that the 

Game Condition Mean SE 

Pre-training 

Game 

Experimental 11.10 0.44 

 
Control 11.16 0.45 

 

Post-training 

Game 

Experimental 12.62 0.40 

 Control 12.14 0.54 

Table 5.10. Descriptive statistics for stops at amber lights for Experiment 9. 

Stops out of 20. 
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existing associative learning of amber=GO is stronger in more experienced 

drivers, leading to greater effects of training (i.e. as there is a stronger response 

to change). It would not be possible to tease out any effects from the samples 

here, but it is a thought for future research (see general discussion for further). 

In terms of the CHANGE trials performance the results suggests learning was 

more variable than in Experiment 9 and this could explain the poor training 

effects, with A. Jones et al. (2016) showing that for training to be effective 

learning must occur. Additionally, another cause of the lack of strong training 

effects might be because the CHANGE success was low, ranging between 60-

75% in Experiment 10. In the food inhibition literature successful inhibition is 

often around 90% or more, and A. Jones et al. (2016) has shown that tasks that 

have higher successful inhibition rates have stronger training effects. Indeed, 

Jones et al. argued that training needs to be highly accurate and employ 

consistent stopping for cue-specific training to be effective. It could be the case 

that the STOP-CHANGE task is too difficult for learning to occur sufficiently to 

affect behaviour change. 

 Bayesian meta-analysis 

Given that the three experiments used similar conditions in terms of the 

experimental and control 1 group it is possible to combine the experiments and 

undertake a Bayesian meta-analysis to assay the overall evidence for the effect 

of inhibition training. To enable comparisons between the experiments, I 

focused on performance between the experimental group and the first control 

group. I used the process by Zoltan Dienes on his website (see here: 

http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm) to 

create the prior for the Bayes analysis. This involved working out the mean 

difference score, and associated standard error of this mean, for the 

experimental and control 1 condition for the three experiments. Using a meta-

analytical approach, I computed a prior based on performance in Experiments 9 

and 10. I then undertook a Bayes analysis whereby I compared this posterior to 

the results from Experiment 8 (I used the calculator by Anupam Singh: 

https://medstats.github.io/bayesfactor.html). This analysis resulted in a Bayes 

Factor of 2.28. Bayes Factors range from 0 to infinity, with Factors above 3 

indicating support for a theory and Factors under 0.33 representing support for 

the null (Dienes, 2011). Thus, the meta Bayes Factor demonstrates only weak 

http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm
https://medstats.github.io/bayesfactor.html
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evidence in favour of the theory in this case, i.e. that inhibition training increases 

the tendency to stop at amber traffic lights. This approach compares two 

experiments against the first experiment, another way to calculate the Bayes 

factor would be to calculate a Bayes Factor between each experiment (so 

Experiment 8 vs. 9, and Experiment 9 vs. 10) and multiply the two outputs to 

compute a combined Bayes Factor. Such an approach generated a Bayes 

Factor of 2.58.  

 GENERAL DISCUSSION 

Inhibition training designed to train associatively-mediated stopping to amber 

traffic lights was assayed across three experiments. Experiment 8 found no 

evidence of an effect, with all conditions being numerically similar. Experiments 

9 and 10 showed some promise, with the experimental condition having 

numerically (though rarely significant) positive improvements in stopping at 

amber lights following training relative to the control condition. Combining the 

studies into a meta Bayes analysis indicated that overall, the training only had a 

weak effect.  

 Inhibition training in driving 

As mentioned in Chapter 1 there is only one other study looking at inhibition 

within driving, that of Hatfield et al. (2018). So far, discussion of this work has 

been conspicuous by its absence in this thesis. This was because the work 

reported here was developed separately from that of Hatfield et al. (2018) and 

therefore it felt logical to present my findings here before placing them into the 

context of the (limited) literature. Compared to the work here Hatfield et al found 

weaker effects of the training, but there are two key differences between their 

work and mine.  

Firstly, the inhibition training used images from the driving simulator to help 

overcome issues of transference between the training task and the simulator in 

Experiments 9 and 10. Hatfield et al. (2018) argued against such a design given 

their aim (and mine) of developing a task to address real-world driving. 

However, this approach is setting oneself up to fail as the experiment does not 

take place in the real-world but rather in a laboratory. Therefore, deliberately not 

matching the inhibition training as closely as possible to the simulated driving is 
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akin to showing computerised images in the inhibition task and then assessing 

real-world driving. Of course, once one moves to assessing real-world driving 

then it would be appropriate to use real-world images. On a related concept, in 

Experiments 9 and 10 participants used foot pedals in both the driving and 

inhibition tasks (though only those in the experimental condition used the foot 

pedal for CHANGE trials). This was to increase the likelihood of transfer 

between the two tasks. However, if one wishes to design a training task to be 

used in the real-world then it must be questioned how likely is it that people 

have access to foot pedals. Using keyboard (or even touchscreen) responses 

would more readily fit into people’s daily interactions with technology and might 

not be such a transference barrier as first thought. The use of such motor 

responses in online training has led to real-world reduced food intake and 

weight loss, indicating some transfer of a button-press or touchscreen response 

to the rather different act of picking up and buying or eating a food item (N. S. 

Lawrence, O'Sullivan, et al., 2015; Beurden, Smith, Lawrence, Abraham, & 

Greaves Van Beurden, 2019). However, specific motor responses are more 

important in driving, and it would be interesting to compare the effectiveness of 

the training developed here against similar training using keyboard presses.   

Secondly, as in Experiment 8 and 10, Hartfield et al. (2018) used a student 

sample. However, the results from Experiment 9 hint at stronger effects for 

participants that represent the wider driving population. While inhibition work in 

food has found success in students (N. S. Lawrence, O'Sullivan, et al., 2015) it 

can be argued that these populations already have a strong approach tendency 

to cake (that is, most people like to eat cake). Young drivers might not have 

such a strong amber – go link. Therefore, testing more experienced drivers 

(who one assumes have a strong go prime to amber) would bring the driving 

domain of inhibition training into line with the wider literature and might lead to 

strong effects, though of course ultimately any intervention would ideally 

improve driving of young people. Such an argument has support from work 

which has found stronger effects of go/no-go training in those with stronger 

impulses to go to food (Houben & Jansen, 2011; Veling et al., 2013a; yet see Z. 

Chen, Veling, Dijksterhuis, & Holland, 2018). 
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 Inhibition training across domains 

The experiments presented here indicate that response inhibition techniques 

might not fulfil the promise of easy and effective behaviour change. The fact 

that the Bayes Factor provided only weak evidence in favour of the alternative 

hypothesis despite including three large studies does sit at odds with the work 

into food and alcohol which suggest that, to varying degrees, the training is 

effective. However, the results do tie into recent findings by Bos et al. (2019). 

This study was a randomised control trial investigating the use inhibition training 

to reduce smoking. Those in the experimental condition were trained to no-go to 

smoking images, whilst those in the control condition saw control images. 

Similar to the findings reported here, both groups had a reduction in smoking 

and the differences between groups at each time point (post intervention, 1 

month, 3 months follow ups) were not significant. This suggests that there is 

some difference between tasks within the inhibition literature, in that either the 

mechanism underlying the effects, or the measurements used to assess 

behaviour change, are more valid/sensitive in the consumption research.  

 Future directions  

While the measure of driving behaviour, the simulator, was refined across the 

experiments it is still far from capturing the experience of real-world driving. It 

might be the case that the training did bring about changes in driving behaviour, 

but that the simulator did not give participants the correct environment to deploy 

the learning. That is, the training might be effective in the real-world but not in 

the simulator. As already discussed, driving is cognitively demanding and so is 

a rich environment for associatively-mediated processes to guide behaviour. 

Whereas in the laboratory the effort required to ‘drive’ is likely to be less than 

that for real-world driving (in a sense this is a similar argument to that of 

McLaren et al., 2019 on the need for the appropriate procedure to detect 

associative learning). Informally, one could compare driving in the simulator and 

driving in the real-world as being equivalent to, on the one hand, driving along 

an empty motorway and on the other, driving on your own in the middle of 

London. It's easy to see that in each condition the resources required are likely 

to be markedly different. Thus, performance in the simulator might be influenced 

by propositional rather than associatively-mediated processes. Furthermore, in 

the real-world there are genuine reasons (at least in the eyes of the driver) for 
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committing traffic violations and strong motivations to drive within the law (e.g., 

to avoid a fine). This behaviour algebra was missing from the experiments 

presented here undermining the realism of the simulator environment. 

Therefore, an obvious next step would be to explore the effects of the training in 

the real-world.    

Although participants seemed to learn about the inhibition task over time there 

are at least two ways the task could be improved. Firstly, the task could include 

multiple images of traffic lights to improve generalisation. Many inhibition 

experiments use multiple training images, e.g., Camp and Lawrence (2019) 

used eight different images of meat as no/go cues in their training task. 

Therefore, would seem sensible to redesign the current inhibition task to display 

multiple different images of traffic lights. Of course, given that traffic lights can 

be seen from many angles, in all lighting/weather conditions and in a myriad of 

physical contexts, this does suggest another avenue of enquiry surrounding 

how close to the real-world context would these images need to be. The second 

change would be to make the task adaptive. While many experiments in this 

field use fixed timing, including a tracking procedure such as that used in 

Experiments 1-7 would help tailor the inhibition training to each participant’s 

subjective level of task difficulty. An example of such a tracking procedure being 

applied to inhibition training comes from Johnstone et al. (2012), who used a 

tracking procedure in a go/no-go task with children with attention 

deficit/hyperactivity disorder. Of course, as noted earlier, success on inhibition 

trials predicts effect size of training and therefore it would be important to 

ensure that the tracking procedure was one that did not make the task harder.  

The task was developed in order to tackle associatively-mediated learning at 

UK traffic lights. It is also likely that there are instances where propositional 

learning guides behaviour (e.g., if there is a police car besides you at the lights). 

Therefore, it would be useful to combine such training as presented here with 

more traditional educational interventions to tackle both routes. Such an 

approach was taken by Veling et al. (2014) who in their research into food 

consumption combined go/no-go training and implementation intention (if-then 

planning) training; finding no added benefit of combining the interventions. Still, 

implementation intentions have been shown to have some success in changing 

real-world driving behaviour (Elliott & Armitage, 2006), and designing a program 
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that addresses both propositional and associatively-mediated learning could 

prove fruitful.  

 Conclusions 

From the perspective of developing an intervention to address real-world driving 

the experiments here do not indicate strong enough evidence to be of 

significance to road safety bodies. However, the discussion has highlighted 

several lines of enquiry that need to be explored before the use of inhibition in a 

driving context can be dismissed entirely. Therefore, it seems worthwhile for 

future research to explore ways to increase the effectiveness of the training – 

until driverless cars become common place that is.  
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6 CHAPTER 6 

Conclusions 

he experiments in this thesis have implications for the study of associative 

learning, response inhibition, and most crucially, the development of 

driving safety programmes. In this final chapter I briefly summarise the 

preceding work and then draw out conclusions relating to the theories 

discussed in Chapter 1 and make suggestions for directions of future research.  

 THE EXPERIMENTAL WORK  

 Chapter 2: Associative learning at traffic lights  

In the first trio of experiments I sought to begin to understand the role of 

associative learning at UK traffic lights. Human factors have been found to play 

a significant role in road traffic incidents (U.S. Department of Transportation, 

2015), with non-compliance at traffic light signals making up a large segment of 

these incidents (Retting et al., 1995). Research has shown that associative 

learning happens in the background and can influence behaviour when control 

processes are weak (McLaren et al., 2019), and work in the driving literature 

has shown how cognitively taxing driving is (Walshe et al., 2017). This 

increases the likelihood that the associative learning that takes place in 

response to traffic lights will manifest itself upon driving behaviour. Therefore, it 

was important to explore the behaviour that associative learning might prime. 

The experiments in Chapter 2 also introduced the notion of the feature-positive 

effect and applied this to investigate how learning at lights was affected by task 

set. At a fundamental level, the act of driving can be seen as a dichotomy 

between going and stopping, and so it was important for the experiments to 

capture this aspect of the activity. A between experiments analysis confirmed 

that the change in task set between Experiments 2 and 3 had been successful, 

with the difference in the R vs. RA and I vs. IP discriminations shifting in line 

with the feature-positive effect. The effect on task set was also to modulate the 

learning of cue A. In circumstances where participants were using a stop task 

set, cue A seemed to be a go cue, yet when a go task set was in force, cue A 

was more of a stop cue. However, setting aside Experiment 1 (due to its poor 

T 
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design), a between experiment analysis, that was a first step in capturing the 

effects of both task sets, showed that overall cue A was a go cue. This runs 

counter to the rules of driving in the UK which dictate that amber is a neutral to 

stop cue. 

 Chapter 3: The role of sequences 

The experiments in Chapter 2 were designed in the style typical of cognitive 

psychology experiments in associative learning, rather than within a framework 

focussed on capturing the essence of the experience of UK traffic lights. 

Chapter 2 marked a shift towards to a greater focus on drivers' experience at 

traffic lights, specifically with regards to the role of sequences. The importance 

of sequences in learning is well documented (Ashe et al., 2006), and indeed, 

they are crucial to the traffic light system in the UK. Having found evidence to 

suggest that the contingency learning for amber lights might be inappropriate in 

a relatively simple design, the next step was to explore learning in a design that 

more closely matched that experienced in the real-world. The two experiments 

in Chapter 2 still retained the necessary cues to enable analysis of the feature-

positive effect, again finding good evidence to support the notion that the 

between experiment manipulations was having the desired shift in effective task 

outcome. Regarding the addition of sequences upon learning, while learning 

itself was noticeably stronger, the overall pattern of results was similar to that of 

Chapter 2. These results confirmed that associative learning at traffic lights 

could well be such as to encourage dangerous driving. The experiments also 

gave credence to the claim that the paradigm was addressing associative rather 

than propositional learning, with no evidence of participants’ ratings correlating 

significantly with learning about the cues. Though of course, the issues raised 

by Shanks and St. John (1994) and others apply to such claims. 

 Chapter 4: The effect of task set  

Until Chapter 4 the learning for each task set, that is if participants (and thus 

drivers) were looking for go or stop cues, was addressed at a between 

participants’ level. However, drivers are likely to shift task set depending on the 

signal the traffic light is displaying. Therefore, Experiment 6 implemented a 

design that embedded task set switching in a within participant’s design, 

enabling the experience of real-life traffic lights to be factored into the paradigm. 
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Overall, the results for Experiment 6 (and the training phase of Experiment 7) 

suggested that cue A was again a weak go cue and that, reassuringly (both in 

terms of road safety and the validation of the paradigm) cue R, which 

represented the contingences of a red traffic light, was a strong stop cue.  

With these results in mind, Experiment 7 introduced a form of inhibition training 

aimed to shift learnt responses to cue A from go to stop. However, the training 

did not prove successful, with the experimental group not showing the 

hypothesised shift compared to a control group.  

 Chapter 5: Effecting behaviour change  

Chapter 5 marked another transition in the focus of the thesis. Rather than 

exploring learning at traffic lights, this chapter focused on continuing the work of 

Experiment 7 and investigated whether any such pre-existing associative links 

could be changed. Given that my experiments undertaken so far indicated that 

amber lights primed a go response, and that driving seems to be a rich 

environment for such associative learning to take place, it seemed only natural 

to explore whether an intervention could be designed to amend the associative 

learning at amber traffic lights.  

While this chapter continued to draw upon associative theories, it adapted the 

experimental design to take into account the findings from applied work into 

reducing alcohol and food consumption and to better fit the real-life 

circumstances of driving. Across three experiments the inhibition task was 

developed and refined, along with the driving simulator used to assay evidence 

of behaviour change. Bayesian analyses found that across the three 

experiments there was weak evidence for the effectiveness of the training. As a 

result, future developments of the paradigm were suggested that might elicit 

strong behavioural shifts.  

 Summary 

To summarise the empirical work undertaken within this thesis; across a series 

of experiments I developed a paradigm that sought to capture an increasingly 

complete picture of the factors influencing contingency learning at UK traffic 

lights. These results suggest that associative processes are likely to prime a go 

response to amber traffic lights. With this knowledge, my attention then focused 

on investigating if a response inhibition training task could be developed to 
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adjust this associative learning to be less go and more stop. In this I was only 

partially successful, with further development clearly required. Having 

summarised the experiments in this thesis, this chapter now concerns itself with 

the broader theoretical and applied implications of the work.  

 ASSOCIATIVELY-MEDIATED LEARNING  

One clear outcome from the experiments in Chapters 2 and 4 is that evidence 

of associatively-mediated learning was observed to some extent. The go/no-go 

training resulted in slower reaction times and less probability of committing 

commission errors for stimuli paired with a stop response compared to those 

stimuli linked to a go response. Of course, what the experiments cannot do, nor 

were they designed to, is speak to the mechanisms that underpin this learning. 

However, they do speak to the ongoing debate in Psychology on the nature of 

human learning. 

 Dual process theories of human behaviour  

The findings from the test phases sit in direct contrast to the single propositional 

account of human learning (e.g., Mitchell et al., 2009), and the thesis can be 

seen as further evidence for a dual-process account of human learning. The 

50/50 test blocks allowed for the decoupling of associatively-mediated and 

propositional learning that could have developed in the training blocks. In 

training it is entirely possible that subjects had developed propositional rules 

regarding cues and responses in addition to associatively-mediated learning. 

Yet, at test, given that the blocks used 50/50 contingencies, performance based 

on previous learning would be uncertain, and so it is unlikely that participants 

were able to deploy any propositional learning. On this basis, the test blocks 

allow for the assessment of raw associative learning (similar logic was posited 

by McLaren et al., 2019). Therefore, the findings at test where cue G was often 

significantly faster than cue B suggests that associatively-mediated learning 

was affecting participant responses. Of course, results at test were often 

weaker than at training, with this likely arising as a fact that the test blocks were 

essentially extinction phases. Over time both associative learning and any 

propositional learning would lead to participants responding to cues uniformly 

given the 50/50 nature of the blocks.  
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I mention that propositional learning could develop through the paradigm and 

influence performance, and while this is true little evidence was found to 

suggest such learning did develop. Looking at the results for the awareness 

tests conducted in Experiments 4, 5 and 6 it is clear that while participants were 

able to learn that some cues denoted a go response more often than other 

cues, the correlational analysis demonstrated little evidence for participants 

using this knowledge to influence responding. Of course, such tests have many 

issues (see discussion in Chapter 3 7.3).  

One final comment on the nature of learning within the experiments.  Though I 

would argue that the results support an associative account of human learning, 

whether this occurs in the traditional sense of the phrase as used by McLaren et 

al. (2014), or through the two processes, one system of McLaren et al. (2019) 

cannot be fully ascertained. 

 Applying associatively-mediated learning paradigms 

One implication of the experiments in Chapters 2, 3 and 4 is that they 

demonstrate how it is possible to use existing learning paradigms and apply 

them to begin to understand associatively-mediated learning in a real-life 

setting. Though it is clear that the paradigm developed in this thesis does not 

capture all facets of the experience of traffic lights, the thesis shows how it is 

possible to use a relatively simple experimental design to start to highlight the 

role of associatively-mediated learning in specific human behaviours. The 

design could be applied to explore other traffic behaviours. For example, it is 

likely that there is a large associatively-mediated learning component in the 

response to the National Speed Limit sign in the UK. This sign indicates to 

drivers they are leaving an environment where speed restrictions were in place 

and can now drive up to 60 m.p.h. Given the strong GO response often made to 

this sign (placing one’s foot on the accelerator) it is likely that over time the sign 

could come to automatically cue a strong go response, even in circumstances 

when such a response would be inappropriate (such as traffic up ahead). 

Further insights into the strength or otherwise of associatively-mediated learning 

for a particular behaviour is likely to aid the development of more effective 

interventions through addressing those facets of learning that lead to the 

behaviour.  
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 IMPLICATIONS FOR ROAD SAFETY  

The evidence presented in this thesis indicates that associative learning at 

amber traffic lights is contrary to that expected by the Highway Code. This has 

several implications for road safety practitioners. Firstly, it suggests that a focus 

on using the Theory of Planned Behaviour (Ajzen, 1992; see section 1.5) as a 

model to bring about behaviour change in the driving domain is not likely to be 

the most effective choice, given its focus on conscious thought processes to the 

exclusion of associatively-mediated learning. This conclusion is supported by 

work discussed earlier, such as Steinmetz et al. (2016), who found only small 

effect sizes for interventions using the Theory of Planned Behaviour to change 

traffic behaviour. Therefore, it is recommended that work is undertaken to 

develop new models that can address both associative and conscious routes to 

change driving behaviour.  

Secondly, the work highlights how associative learning can prime dangerous 

responses and thus the need for the road safety literature to consider the role of 

associative learning in other driving contexts. Indeed, this thesis demonstrates 

the need for interventions to be rooted to scientific work and the importance of 

using laboratory research to support and develop more effective interventions. 

More work aimed at uncovering the impact of associative learning on driving 

behaviours is needed to develop more holistic interventions. One aspect worth 

noting is that learning is specific to the contingencies in play within a particular 

system. For example, in New South Wales, Australia, the traffic light sequence 

is green – amber – red – green and therefore any associatively-mediated 

learning arising from experience of this sequence is likely to be quite different to 

that at UK traffic lights. Furthermore, the paradigm designed in Chapter 2 

through to Chapter 5 focused on traffic lights, and the learning to Pelican 

crossings (in which a flashing amber light replaces the Red and Amber signal) 

could be quite different. Arguably the flashing amber light is a strong stop signal 

and so the solo amber light at these crossings might be associated with stop to 

a greater extent than a solo amber at traffic lights. The point here is that it is not 

a simple case of exploring associative learning in one context and then 

assuming such learning holds true for conceptually-related situations.  

Lastly, as well as illustrating the likely role of associative learning in driving 

behaviour, this thesis provides a springboard to illustrate how interventions 
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could be developed to address dangerous driving. The thesis supports calls by 

Lheureux et al. (2016) and Fylan (2017) to include features in interventions that 

address associative learning in a driving environment. Associatively-mediated 

learning principles are often used in real-life for training, for example positive 

reinforcement techniques are a key part of the training programme for Guide 

Dogs in the UK (Dopson, 2018), but are largely ignored in driving interventions 

(Gardner, 2015b).  

One aspect of the real-world use of the response inhibition intervention 

developed here (and similar designs) is that it only targets the specific go 

response to amber traffic lights. While training amber to become a stop cue is 

an obvious step in reducing road traffic incidents at traffic lights, if a driver is 

going too fast, even if they do brake in response to an amber light, they might 

not be able to stop and so cross through the junction illegally. The point here is 

that a whole system approach is needed to successfully change behaviour. 

Successful behaviour change is likely to involve targeting a range of behaviours 

that form part of a ‘behaviour link’ that precedes the specific action of interest in 

a particular study. Therefore, in the driving domain this might entail using a 

combination of several theories and research domains to target all links in the 

chain. For traffic lights, in addition to the development of the intervention 

presented here, work could focus on speed reduction media campaigns or 

exploring the effects of road calming measures, such as narrowing of roads, or 

even how different colour tarmac might help reduce drivers speed and increase 

their preparedness to stop. Such a focus on both the individual, wider societal 

factors, and the environment, is likely to bring about the greatest behaviour 

change.  

 INHIBITION TRAINING 

As well as implications for the road safety domain this thesis also speaks to the 

response inhibition training literature. The results from Chapter 5 counter the 

notion in the popular press of the success and effectiveness of ‘brain training’ 

apps. The finding that the behaviour change resulting from the training was 

small suggests that more robust training paradigms are needed to bring about 

real-world change. The results from Chapter 5 lead to several practical 
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suggestions for those wishing to use inhibition training to deliver behaviour 

change. 

Firstly, the research in Chapter 5 indicated how the STOP-CHANGE task could 

be used within an intervention. This task is rarely used in the applied literature. 

However, it could be more appropriate than the oft used go/no-go training 

where the focus is on changing, rather than stopping, behaviour. For example, 

with regards to drug taking, to encourage individuals to take methadone rather 

than heroin. It could be the case that use of the STOP-CHANGE task rather 

than the go/no-go task would reduce the transfer gap between the training task 

and the real-world behavioural responses, and so increase the effectiveness of 

the intervention. One issue with the use of the STOP-CHANGE task in the 

current intervention was the low successful inhibition rates, with these likely 

being a key reason behind the limited success of the intervention developed in 

this thesis. Using a staircase design to tailor the intervention to individuals could 

help increase inhibition rates by reducing the difficulty of the task.  

Secondly, the experiments in Chapter 5 demonstrated the need to consider the 

length of training. While it is all too easy to focus on the benefits of shortening 

training tasks in order to increase their acceptability, this needs to be balanced 

against the impact on their effectiveness. The results in Chapter 5 

demonstrated that learning within the training task was variable, and it is 

suggested that increasing training length would be beneficial, despite the costs. 

Of course, it might not be simply the duration of the training that increases its 

effectiveness (by which I mean participants demonstrating learning within the 

task). The number and length of breaks, or the number of days over which the 

training is conducted, are all likely to be factors that can influence the success 

of the training (see Bakkour et al., 2018 for further).  

Thirdly, the importance of using ecologically valid measurements of behaviour 

change cannot be understated. The changes to the driving simulator introduced 

for Experiment 9 correlated with improved effectiveness of the intervention. 

Given the ultimate desire of all inhibition tasks to change behaviour in the real-

world it is crucial that the experiments reflect their real-life counterparts as 

closely as possible. A related issue is the idea discussed in Chapter 5, that the 

simulator did not give participants the appropriate environment to display the 

behaviour change. As McLaren el al. (2019) note, procedure is key. Given the 
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focus of inhibition training to change associatively-mediated learning it is crucial 

that the methods used to asses behaviour change enable the behaviours 

arising from associative learning to be expressed.  

Lastly, the work in Chapter 5 highlights how elusive the effects of inhibition can 

be. The fact that across the three experiments varying degrees of (limited) 

successful behaviour change was found demonstrates that a range of factors 

beyond the specific training design implemented play a role. In the case of 

driving, age, experience, past driving history are likely to be key determinants 

on behaviour. Therefore, it is not merely enough to design the training task, but 

rather researchers need to consider the characteristics of participants as well. 

Such a focus is especially important for meta-analysis or review papers where 

the effects of inhibition training across studies could be explained by differing 

sample pools. The limited effects of the inhibition task developed in this thesis 

also speak to a wider issue in the field, that of weak effects. Throughout this 

thesis one narrative arc has been the uncertainty surrounding the effectiveness 

of inhibition training, with training seemingly effective for one domain but not 

another. For example, while research (N. S. Lawrence, O'Sullivan, et al., 2015) 

has supported the real-world effectiveness of response inhibition upon food 

consumption, this has not been consistently found for alcohol (A. Jones et al., 

2018; yet see Strickland et al., 2019). The work in Chapter 5 can be seen as a 

microcosm of this issue, with the meta Bayes Factor suggesting the training had 

some effect, but that this was weak. This conclusion is certainly consistent with 

the work discussed in Chapter 1.  It suggests that as a whole inhibition training 

is entering a new phase where the focus should be on marginal gains to 

improve and understand mechanisms behind current training tasks. 

 CONCLUSIONS 

This thesis has clearly demonstrated the need to consider the role of 

associative learning within a driving context. Importantly, the thesis takes 

associative theories and applies them to a novel domain. The thesis also makes 

an important contribution to developing a paradigm that could help address the 

maladaptive behaviour that associative learning at traffic lights primes, but 

clearly these are first steps and much more by way of development is needed. 

The exact nature of the role of associative learning at UK traffic lights, and how 
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exactly this manifest itself in the expression of driving behaviour is still unclear; 

and this is a challenge for future research.  
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7 APPENDICES 

 

Appendix A: Non-Significant Reaction Time Contrasts 

for Test for Experiment 3  

In terms of the experimental contrasts, A vs. B was non-significant, t(432) = 

0.85, p = .396, 95% CI [-7.99, 20.23], d = 0.08. The A vs. G contrast was not 

significant, t(432) = 0.08, p = .940, 95% CI [-13.56, 14.65], d = 0.01. The A vs. 

R contrast was also non-significant, t(432) = -0.24, p = .814, 95% CI [-15.80, 

12.41], d = -0.02. For the contrasts against R, R vs. B was not significant, t(432) 

= 1.09, p = .278, 95% CI [-6.29, 21.93], d = 0.10. The R vs. G was also non-

significant, t(432) = 0.31, p = .756, 95% CI [-11.87, 16.35], d = 0.03. The 

difference between R- vs. RA+ and IP- vs. I+ was non-significant, t(54) = -1.44, 

p = .156, 95% CI [-32.06, 5.26], d = -0.19. 
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Appendix B: Non-Significant Commission Error 

Contrasts for Test for Experiment 3 

The A vs. B was not significant, z = 1.23, p = .217. The A vs. G contrast was not 

significant, z = 1.23, p = .217. The A vs. R contrast was not significant, z = 0.58, 

p = .564. Focusing on the R cues, the R vs. B contrast was not significant, z = 

0.67, p = .500, nor was the R vs. G contrast, z = 0.67, p = .500. 
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Appendix C: R-RA Contrast on Data from Experiments 

2 and 3 

In Chapter 3 I performed a contrast looking at the difference between R and RA 

to assess for evidence of a feature-positive effect. This was because in 

Experiment 5 R vs. RA was the feature-positive contrast (R- RA+), while in 

Experiment 4 it was the feature-negative pair (R+, RA-). The same logic holds 

for Experiments 2 and 3 in Chapter 2, were in Experiment 2 the R RA contrast 

was the feature-negative pair (R+, RA-), while in Experiment 3 the R vs. RA was 

the feature-positive contrast (R- RA+). Therefore, it is possible to undertake the 

same analysis presented in Chapter 3 upon the data in Chapter 2. A standard 

alpha level was applied to this set of analysis.  

The result from response times at training were marginally significant at the 

standard alpha level, t(108) = -1.91, p = .006, 95% CI [-15.97, 0.29], d = -0.37, 

with enhanced learning to RA compared to R in Experiment 3 (mean difference 

of 6.70, SD = 24.37) compared to Experiment 2 (M = -1.14, SD = 18.20). This 

demonstrates that the changes made between the Experiments 3 and 3 

successfully changed the nature of the discriminations experienced by 

participants, that is the effective outcome changed from stopping to going. 

However, the results from test were not significant, t(108) = 0.14, p = .886, 95% 

CI [-18.70, 21.62], d = 0.03.  

As it was not possible to conduct the R RA contrast for training commission 

errors in Chapter 3, I did not undertake it for Chapter 2 data, but I did perform 

the analysis for test data. This contrast was not significant, t(108) = 1.34, p = 

.183, 95% CI [-0.006, 0.033], d = 0.26. 
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Appendix D: Tables of Missing Data Decisions for 

Experiment 8 

Scale/ question Total number of 

missing cells 

% missing cells of 

group mean 

Replacement 

strategy 

Gender                                No missing data    
 

Age 2; 1 control 2, 1 

control 3 

5% for control 2 

and 4% for 

control 3 

Took mean of 

sample for both 

conditions with 

missing data 

dropped 

 

Crash history 2; 1 control 2, 1 

control 3 

5% for control 2 

and 4% for 

control 3 

Missing data 

dropped from 

analysis 

 

 

Type of driving 

licence 

3; 1 control 2, 2 

for control 3 

5% for control 2 

and 8% for 

control 3 

Data included as a 

third category in 

the analysis 

 

 

Length of time 

full driving 

licence held 

5; 1 control 1, 2 

control 2 

5.26% for control 

1, and 6.67% for 

control 2.  

Missing data 

dropped from 

sample. 
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Scale/ question Total number of 

missing cells 

% missing cells of 

group mean 

Replacement 

strategy 

Impulsivity 4; 1 

experimental, 2 

control 2, 1 

control 3 

3.70% for the 

experimental 

group, 10% for 

the control 2, and 

4% for control 3  

Two participants 

did not complete 

any questions in 

the scale and so 

were removed 

from the analysis. 

The other two had 

missing data 

replaced with their 

mean.  

 

Sensation-

seeking 

2; 1 control 2, 1 

control 3  

5% for control 2 

and 4% for 

control 3 

These participants 

did not complete 

any questions in 

the scale and so 

were removed 

from the analysis.  
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Appendix E: Group Characteristics Comparisons for 

Experiment 8 

Means are presented with standard deviations in parentheses. p values in bold 

represented fisher exact test values. Those with missing values for a particular 

characteristic are not included in the descriptive or inferential statistics. 

Variable Experimental 

condition 

Control 

1 

Control 

2 

Control 

3 

Statistical 

test 

Length of time 

full driving 

licence held 

< 3 months 

< 6 months 

< 1 year 

> 1 year  

 

 

 

2 

1 

0 

20 

 

 

 

0 

0 

4 

14 

 

 

 

0 

0 

3 

12 

 

 

 

0 

1 

1 

17 

 

 

χ²(9) = 

12.78, p 

= .092 

Impulsivity 

score 

 

 

Sensation-

seeking score 

17.96 

 (5.45) 

 

 

35.22  

(8.48) 

18.63 

(5.73) 

 

 

34.50 

(8.36) 

17.53 

(4.50) 

 

 

31.84 

(11.12) 

18.04 

(3.64) 

 

 

32.17 

(7.93) 

F(3, 90) = 

0.18, p = 

.908 

 

F(3, 90) = 

0.83, p = 

.479 
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Variable Experimental 

condition 

Control 

1 

Control 

2 

Control 

3 

Statistical test 

Gender 

   Female 

   Male 

 

 

16 

11 

 

18 

6 

 

13 

7 

 

21 

4 

 

F(3, 92) = 

1.47, p = .229 

 

Age 21.14 

(3.21) 

20.67 

(2.39) 

22.90 

(7.44) 

21.42 

(3.89) 

F(3, 90) = 

1.17, p = .326 

 

Crash history 

   Yes 

   No 

 

 

12 

15 

 

16 

8 

 

5 

14 

 

7 

17 

 

F(3, 90) = 

3.40, p = .021 

 

Type of driving 

licence 

   Full 

   Provisional 

   Not specified 

 

 

23 

4 

0 

 

 

19 

5 

0 

 

 

16 

3 

1 

 

 

19 

4 

2 

 

 

χ²(6) = 4.21,  

p = .772 
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Appendix F: Tables of Missing Data Decisions for 

Experiment 9 

Scale/ question Total number of 

missing cells 

% missing cells 

of group mean 

Replacement 

strategy 

Gender                                No missing data    
 

Age                                No missing data    

 

Type of driving 

licence 

 

                               No missing data    

 

Length of time 

full driving 

licence held 

 

                               No missing data    

 

Impulsivity score                                No missing data    

 

Simulator 

sickness 

 

 

  

jjjjjjOculomotor 

 

1; control 

 

2.17% 0 replacement 

jjjjjjDisorientation  11; 5 

experimental, 6 

control. 

 

10.87% for 

experimental, 

13.04% for 

control 

 

0 replacement  

jjjjjjNausea  4; 1 

experimental, 3, 

control  

experimental 

2.17% for 

experimental, 

6.52% for control  

0 replacement 
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Scale/ question Total number of 

missing cells 

% missing cells 

of group mean 

Replacement 

strategy 

Driver Behaviour    

jjjjjjAggressive                       

jjjjjjviolations 

5; 2 experimental 

3, control  

 

4.34% for 

experimental, 

6.52% for control 

Two in the control 

condition dropped. 

Others mean 

replaced. 

 

     “Ordinary” 

jjjjjjviolations 

6; 2 

experimental, 4 

control 

4.34% for 

experimental, 

8.70% for control 

Three in the control 

condition dropped, 

Others mean 

replaced. 

 

jjjjjjErrors 7; 3 

experimental, 4 

control  

6.52% for 

experimental, 

8.70% for control 

Three in the control 

condition dropped, 

Others mean 

replaced. 

 

jjjjjjLapses 9; 5 

experimental, 4 

control 

10.90% for 

experimental, 

8.70% for control 

Three in the control 

condition dropped, 

Others mean 

replaced. 
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Appendix G: Group Characteristics Comparisons for 

Experiment 9 

Means are presented with standard deviations in parentheses. p values in bold 

represented fisher exact test values. Those with missing values for a particular 

characteristic are not included in the descriptive or inferential statistics. 

 

Variable Experimental 

condition 

Control 

condition 

Statistical test 

Gender 

    Female 

    Male 

 

28 

18 

 

31 

15 

 

t(90) = -0.65, p 

= .520 

    

Type of driving licence 

    Full 

    Provisional  

 

 

43 

3 

 

41 

5 

t(90) = 0.73, p = 

.465 

If a full licence how long 

have you been driving for? 

    Less than one year 

    1-2 years 

    3-5 years 

    6-8 years 

    9-10 years 

    10 or more years 

 

 

1 

5 

6 

6 

1 

24 

 

 

2 

3 

9 

6 

1 

20  

 

 

 

 

χ²(5) = 1.75, p 

= .890 
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Variable Experimental 

condition 

Control 

condition 

Statistical test 

Age 

 

Manchester Driver 

Behaviour Questionnaire  

    Aggressive violations 

     “Ordinary” violations 

    Errors 

    Lapses 

 

Impulsivity score 

 

Sensation-seeking score 

 

Simulator Sickness  

    Oculomotor 

    Disorientation 

    Nausea 

    Total Severity  

32.24 

(10.58) 

 

 

4.63 (1.60) 

14.93 (4.82) 

11.67 (2.98) 

16.00 (4.04) 

 

17.98 (5.54) 

 

33.26 (9.41) 

 

 

 

26.37 (19.09) 

26.33 (29.23) 

23.85 (22.37) 

29.43 (22.14) 

31.74  

(10.77) 

 

 

4.55 (1.55) 

15.47 (4.23) 

11.88 (2.59) 

16.93 (4.80) 

 

18.28 (6.12) 

 

33.89 (7.66) 

 

 

33.29 (24.83) 

33.29 (35.03) 

25.92 (27.03) 

35.53 (29.91) 

t(90) = -0.22, p = .823 

 

 

 

t(88) = -0.26,  p = .798 

t(87) = 0.55,  p = .584 

t(87) = 0.35,  p = .725 

t(87) = 0.99,  p = .325 

 

t(90) = 0.25,  p = .803 

 

t(90) = 0.35,  p = .725 

 

 

t(90) = 1.50,  p = .138 

t(90) = 1.03,  p = .304 

t(90) = 0.41,  p = .690 

t(90) = 1.11,  p = .269 
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Appendix H: Tables of Missing Data Decisions for 

Experiment 10 

Scale/ question Total number of 

missing cells 

% missing cells 

of group mean 

Replacement 

strategy 

Gender                                No missing data    
 

Age                                No missing data    

 

Type of driving 

licence 

 

                               No missing data    

 

Length of time 

full driving 

licence held 

 

1 in the 

Experimental 

condition 

2.38% Missing data 

dropped from 

analysis 

Impulsivity score 4; 1 experimental, 

3 control 

2.38% in the 

experimental 

group, 6.98% in 

the control group 

Mean 

replacement 

    

Sensation-

seeking scale 

6; all control 13.95%  Mean 

replacement  
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Scale/ question Total number of 

missing cells 

% missing cells 

of group mean 

Replacement 

strategy 

Driver Behaviour     

jjjjjjAggressive                       

jjjjjjviolations 

                               No missing data    

 

 

     “Ordinary” 

jjjjjjviolations 

5; 2 

experimental, 3 

control 

4.76% for 

experimental, 

6.98% for control  

 

Mean replacement  

 

 

 

jjjjjjErrors 3; all control  6.98% Mean replacement  

 

JjjjjjLapses 

 

 

 

 

3; 1 

experimental, 2 

control 

2.38% in the 

experimental 

group, 4.65% for 

control 

Mean replacement  

 

Simulator 

sickness 

 

 

  

jjjjjjOculomotor 

 

4: 1 experimental, 

3 control 

 

2.38% in the 

experimental 

group, 6.98% for 

control  

 

0 replacement 

jjjjjjDisorientation  6; 3 in each 

group 

 

7.14% for 

experimental, 

6.98% for control 

 

0 replacement  

jjjjjjNausea  2; both 

experimental 

4.76% 0 replacement 
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Appendix I: Group Characteristics Comparisons for 

Experiment 10 

Means are presented with standard deviations in parentheses. p values in bold 

represented fisher exact test values. Those with missing values for a particular 

characteristic are not included in the descriptive or inferential statistics. 

 

Variable Experimental 

condition 

Control 

condition 

Statistical test 

Age 

 

Manchester Driver 

Behaviour Questionnaire  

    Aggressive violations 

     “Ordinary” violations 

    Errors 

    Lapses 

 

Impulsivity score 

 

Sensation-seeking score 

 

Simulator Sickness  

    Oculomotor 

    Disorientation 

    Nausea 

    Total Severity  

22.38 

(7.81) 

 

 

4.93 (1.94) 

16.24 (5.42) 

12.00 (2.30) 

17.67 (4.03) 

 

19.90 (5.75) 

 

34.64 (9.29) 

 

 

29.24 (23.77) 

29.17 (30.25) 

21.12 (22.65) 

30.54 (25.47) 

21.79 

(6.54) 

 

 

4.58 (2.06) 

16.12 (5.33) 

12.58 (3.01) 

18.56 (4.12) 

 

19.23 (5.51) 

 

34.60 (8.82) 

 

 

27.32 (19.65) 

27.19 (30.37) 

20.41 (18.69) 

28.79 (22.76) 

t(83) = -0.38, p = .706 

 

 

 

t(83) = -0.80,  p = .427 

t(83) = -0.10,  p = .917 

t(83) = 1.00,  p = .320 

t(83) = 1.01,  p = .317 

 

t(83) = -0.55,  p = .583 

 

t(83) = -0.02,  p = .985 

 

 

t(83) = -0.41,  p = .874 

t(83) = -0.30,  p = .765 

t(83) = -0.16,  p = .874 

t(83) = -0.34,  p = .739 
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Variable Experimental 

condition 

Control 

condition 

Statistical test 

Gender 

    Female 

    Male 

 

31 

11 

 

34 

9 

 

t(83) = -0.57, p 

= .573 

    

Type of driving licence 

    Full 

    Provisional  

 

 

42 

0 

 

42 

1 
N/A 

If a full licence how long 

have you been driving for? 

    Less than one year 

    1-2 years 

    3-5 years 

    6-8 years 

    9-10 years 

    10 or more years 

 

 

5 

22 

8 

1 

1 

4 

 

 

5 

22 

10 

1 

0 

4 

 

 

 

 

χ²(5) = 1.21, p 

= .992 
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