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ABSTRACT
Many data structures have been developed over the last two decades
for the storage and efficient update of unconstrained sets of mu-
tually non-dominating solutions. Typically, analysis has been pro-
vided in the original works for these data structures in terms of
worst/average case complexity performance. Often, however, other
aspects such as rebalancing costs of underlying data structures,
cache sizes, etc., can also significantly affect behaviour. Empirical
performance comparison has often (but not always) been limited
to run-time comparison with a basic linear list. No comprehensive
comparison between the different specialised data structures pro-
posed in the last two decades has thus far been undertaken. We
take significant strides in addressing this here. Eight data structures
from the literature are implemented within the same overarching
open source Java framework. We additionally highlight and rectify
some errors in published work — and offer additional efficiency
gains. Run-time performances are compared and contrasted, using
data sequences embodying a number of different characteristics.
We show that in different scenarios different data structures are
preferable, and that those with the lowest big O complexity are
not always the best performing. We also find that performance
profiles can vary drastically with computational architecture, in a
non-linear fashion.

CCS CONCEPTS
• Theory of computation → Computational geometry; • In-
formation systems→ Data structures; • Applied computing
→Multi-criterion optimization and decision-making; •Gen-
eral and reference→ Estimation; Performance; •Mathemat-
ics of computing → Evolutionary algorithms.
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1 INTRODUCTION
Building on initial work by researchers from the Multi-Criterion
Decision Making (MCDM) community, numerous data structures
have been developed by Evolutionary Multi-criterion Optimisation
(EMO) researchers over the last two decades specifically for the
storage and efficient update of sets of mutually non-dominating
solutions. These sets of solutions, which approximate the Pareto
set of designs for a problem, are used to maintain designs during
during an optimisation run, and can be queried for e.g. online
quality statistics. Data structures proposed over the last two decades
include:

(1) Linear Lists (effectively since EMO commenced).
(2) Dominated and Non-Dominated Trees (2002-2003) [9, 11].
(3) QuadTrees 1-3 (2002-2003) [19, 20].
(4) Dominance Decision Trees (2003) [21].
(5) Bi-objective Trees (Mak_Trees) (2006) [2]1.
(6) M-front (2015) [7].
(7) BSPTree (2017) [13].
(8) ND-Tree (2018) [16].
In 2012 there was an entire review paper dedicated to describing

work on data structures in this domain [1]. Work on related prob-
lems of non-dominated sorting have also mentioned data structures
for archive maintenance, for instance [17] discusses the compu-
tational complexity of a solution based on Dynamic Range Trees
(but does not implement them). It is worth emphasising at this
point we are only concerned here with those data structures specif-
ically developed for non-dominated sets, and do not consider those
developed in the EMO community to store sets with general domi-
nance relationships between solutions (e.g. [4, 10, 22]). We also do
not consider data structures from the literature which can store
non-dominated sets, but which don’t have methods described to
determine using the structure if a new solution is non-dominated
with members and/or automatically remove dominated members
(e.g. [25]).

Although there is a substantial body of work in this area now
spanning two decades, nearly all published comparisons between
these data structures that we could find have been limited to big O
complexity analysis. Empirical assessment of each newly proposed
data structure is typically limited to the linear list baseline (bar
[16], which is more extensive, if not exhaustive). This is outlined in
Table 1, which shows which data structures have been empirically
compared to which others in the corresponding works from the
literature.

Often realised performance of a data structure is significantly
affected by rebalancing costs, and how regularly these occur (which

1Limited to two-objectives.
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Table 1: Empirical comparisons in previous work, chronologically ordered. A cross indicates that the algorithm in the row
was not compared empirically to the algorithm in the column in the paper(s) referenced in the row. A tick indicates that the
algorithm in the row was compared empirically to the algorithm in the column in the published work. A hyphen indicates
the algorithm in the row was published after (or in parallel to) the algorithm in the column.

LL D&NDT QT1 QT2 QT3 DDT BBT M-Front BSPT NDT
Dominated and non-dominated trees

(D&NDT), 2002 & 2003 [9, 11] ✓ - - - - - - - - -
Quad-Tree 1 (QT1), 2002 & 2003 [19, 20] ✓ - - ✓ ✓ - - - - -
Quad-Tree 2 (QT2), 2002 & 2003 [19, 20] ✓ - ✓ - ✓ - - - - -
Quad-Tree 3 (QT3), 2002 & 2003 [19, 20] ✓ - ✓ ✓ - - - - - -

Dominance Decision Trees (DDT), 2003 [21] ✓ × × × × - - - - -
(𝑚 = 2) Balanced Binary Trees (BBT), 2006 [2] ✓ × × × × × - - - -

M-Front (MFront), 2015 [7] ✓ × × × × × × - - -
BSPTree (BSPT), 2017 [13] ✓ × × × × × × × - -
ND-Tree (NDT), 2018 [16] ✓ × × ✓ × × ✓ ✓ × -

This work, 2020 ✓ × ✓ ✓ ✓ ✓ ✓ × ✓ ✓

are amortised in big O analysis), along with machine-specific lim-
itations (cache sizes, memory speeds, etc.). As such, a rigorous
empirical comparison of these competing data structures covering
some of these aspects would undoubtedly be useful. Furthermore,
an easily usable framework in which all are implemented, where a
data structure may be selected that is best suited to the combina-
tion of problem and the particular computational architecture at
hand, and which may readily extended with implementations of
new approaches, is also lacking. We confront these points in this
work.

Although the BSPTree of [13] is integrated into the black box opti-
mization competition (BBComp) framework2, none of the advanced
data structures appear to be integrated into the widely used general
purpose packages for multi-objective optimisation, e.g. jMETAL
[8]3, MOEA [14]4 and DEAP [12]5, which instead all rely on po-
tentially costly sequential list processing for non-dominated set
maintenance. Recent work on EMO comparison has identified that
contrasting optimiser algorithm performance in terms the non-
dominated set of all solutions visited during a search can lead to
different conclusions than comparing the final populations [23], and
is a better reflection of an optimiser’s performance. Such compari-
son necessitates the storing of a potentially large passive archive,
which these advanced data structures are much better suited to
(especially if an anytime performance analysis is required). Fur-
thermore, as such data structures are independent of the search
algorithm — their inclusion in these optimisation frameworks has
the potential to reduce the computational cost across optimiser
types. The main contributions of this work are:

2https://bbcomp.ini.rub.de
3Version 5.6, https://github.com/jMetal/jMetal uses ArrayLists in the algorithm
archive implementations.
4The NondominatedPopulation class in release 2.13, http://moeaframework.org, uses
an ArrayList.
5deap.tools.ParetoFront in version 1.2.2 uses a linear list https://github.com/DEAP/
deap/blob/master/deap/tools/support.py

• Alongside high-level descriptions of published data structures,
we highlight errata in these work. These errata have been repro-
duced in later papers — e.g. [1], and tend not to be obvious until
implementation.

• We highlight efficiency improvements for some data structures.
• We provide an empirical comparison between data structures
on a range of scenarios. This is the broadest such comparison
conducted thus far in the literature, with nearly twice as many
data structures compared than in any other published work.

• We provide reference implementations for eight data structures
in a single extendable framework — providing a base for the com-
munity to work in this area, and which is open to integration into
optimisation platforms and researchers’ optimisation pipelines.

Our Java package also provides a platform for researchers in the
future to develop their own data structures for this task, and which
will be easily comparable to the implementations we provide.

The rest of the paper proceeds as follows. In Section 2 the Pareto
archive updating problem is formally described, and high-level
descriptions of a range of data structures developed in the EMO
community for this task is presented. Due to space limitations these
are necessarily short and omit a considerable number of technical
details — however we crucially highlight where there are errata we
have identified in these works, which should aid other researchers
wishing to implement them in alternative languages. For more
technical details, please refer to the original cited works. In Section
3 we detail an empirical comparison of these implementations
on a range of problems. The paper concludes in Section 4 with
a discussion and highlights of future work directions in this area.

2 DATA STRUCTURES FOR PARETO
ARCHIVE UPDATING

Given a feasible search space X, a design x from this space is said
to dominate another design x′, denoted x ≺ x′, if it is no worse on
all assessment criteria, 𝑓𝑖 (x), and better on at least one. x is said
to weakly dominate another design x′, denoted x ⪯ x′, if it is no
worse on all assessment criteria. The set of Pareto optimal solutions
(the Pareto set) is defined as P = {x ∈ X | � x′ ≺ x, x′ ∈ X}. As

https://github.com/jMetal/jMetal
http://moeaframework.org
https://github.com/DEAP/deap/blob/master/deap/tools/support.py
https://github.com/DEAP/deap/blob/master/deap/tools/support.py
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Algorithm 1 Updating non-dominated archive 𝐴 with x

Require: 𝐴 ⊲ Current non-dominated set of solutions
Require: x ⊲ New solution to check against
1: if � x′ ∈ 𝐴 | x′ ⪯ x then ⊲ If x not dominated
2: 𝐴 := 𝐴 \ {x′ ∈ 𝐴 | x ⪯ x′} ⊲ Remove dominated members
3: 𝐴 := 𝐴 ∪ {x} ⊲ Add x to non-dominated set
4: return 𝐴

a multi-objective optimiser explores X it commonly maintains an
approximation to P, called its Pareto archive. As described in [21]
as the dynamic non-dominance problem, the task of maintaining
and updating an unconstrained Pareto archive is summarised in
Algorithm 1.

Early work in the EMO field identified the various issues caused
by truncating an approximation archive [11, 15], and more recent
research has highlighted the change in relative performance of
algorithms that is observed when unconstrained approximation
sets are tracked [23]. It is best practice to at least keep a passive
unconstrained archive [24] — as from a practical point of view
even if a restricted set will be considered for presentation to the
problem owner, these solutions should still be selected from the
best approximation discovered to the Pareto set.

We now give a high-level overview of the various data struc-
tures employed and developed in the last two decades for the task
described in Algorithm 1. Although we eschew deep algorithmic
details here, we highlight any errata in the original works that
may cause issues when undertaking an implementation, which
unavoidably includes some technical details. We also highlight any
efficiency gains that we have noted may be achieved beyond those
described in the original works.

2.1 Linear list
The linear list (LL) is a basic data structure, and the most widely
used in the EMO community due to its ease of implementation.

The idea: Non-dominated solutions are stored in a linear list,
arbitrarily ordered, and new solutions are compared sequentially
to the list members. A new solution x is compared until a current
list member is found which weakly dominates it (i.e. the ‘if’ check
in Algorithm 1 returns false) and 𝐴 is returned unchanged. If no
member dominates x the new solution must be non-dominated.
Prior to its insertion the list is again processed sequentially for any
dominated solutions to be checked and marked for removal, with
the new solution added at the end. Insertion and deletion are O(𝑛)
domination comparisons — where 𝑛 is the length of the list — i.e.
the number of elements of the current approximation to the Pareto
front. This is commonly stored in an array.

2.2 Dominated and Non-dominated Trees
The idea: In theDominated andNon-dominated Trees (D&NDT)

dual data structures of Everson et al. [9] and Fieldsend et al. [11]
each node in a tree is a composite point defined by 𝑚 solutions,
each solution providing one of the𝑚 objectives represented by the
composite point. The main two trees are effectively a chain of such
composite points, ordered by the weak dominance relation, with
the minimal chain length therefore being ⌈𝑛/𝑚⌉. The two trees are

constructed and maintained such that, when a new solution x is
sequentially compared to the non-dominated tree from its head,
when a node is reached which does not weakly dominate x, then
no solutions contributing to the composite points of all subsequent
nodes can possibly dominated x. Similarly, when processing from
the tail of the dominated tree, when a node is reached that is not
weakly dominated by x, then no solutions contributing to nodes
further toward the head can possibly be dominated by x. The pro-
cess of insertion/removal means the trees may grow significantly
beyond the ⌈𝑛/𝑚⌉ minimum length, and therefore are periodically
reconstructed. This is enabled by also maintaining𝑚 sorted-lists of
the 𝑛 solutions — each list ordered by a different objective.

Efficiency improvements: In the work described in [11] solu-
tions may appear in more than one composite point when the trees
grow through insertion and copying a composite point’s contents
lower down. This can mean the same solution is queried multi-
ple times when these trees are traversed at later time points. A
more efficient implementation would be still to employ the objec-
tive value required at that dimension in a composite point, but
have the reference solution null in all but the lowest composite
point, and therefore skipped over for any subsequent domination
comparisons.

2.3 Quad-trees
Mostaghim et al. [20] and Mostaghim and Teich [19] introduce
three quad-tree based approaches, named Quad-Tree1, Quad-Tree2
and Quad-Tree3 (QT1–3). A quad-tree [5] is a tree-based structure
each of whose nodes store an item whose quality is defined by
vectors of elements.

The idea: Each node in a quad tree has up to 2𝑚 children. These
children are labelled by the unique bit-strings of length𝑚, where
a 0 at a particular index indicates the child holds a better value at
that index than the parent. When storing mutually non-dominated
solutions there can be at most 2𝑚 − 2 children, as the child with
bit-string of all zeroes will dominate its parent, and the child with
bit-string of all ones will by dominated by its parent. There are some
necessary definitions to understand the properties of a quad-tree.

k-successor: A node u is a k-successor of a root node v where

𝑘 =

𝑚∑
𝑖=1

𝐼 (𝑢𝑖 ≥ 𝑣𝑖 )2𝑚−𝑖 (1)

where 𝐼 () is the Kronecker delta or identity function. 𝑘 therefore
handily serves as an index into the children of a node.

k-child: u is 𝑘-child of v if it is a 𝑘-successor of v and stored in
a direct child node.

k-set: A 𝑘-set is a set of all possible indices derived from (1),
who match a mask derived from the binary successor vector used
to generate 𝑘 . The 𝑆0 (𝑘) set holds all those indices who originating
successor vectors have zeros at least in all the same locations as
𝑘 . The 𝑆1 (𝑘) set holds all those indices who originating successor
vectors have ones at least in all the same locations as 𝑘 .

Errata: There are a few errors in the algorithms presented in
[19], which we list below.
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• Quad-Tree1 algorithm, error in Step 2: “If 𝑘 = 2𝑚 or if 𝑥𝑖 =

𝑦𝑖 ,∀𝑖 ∈ 𝑆0 (𝑘) STOP, x is dominated by y" — in the first condition
an index of 2𝑚 is not possible, as the algorithms are defined with
0 as the first index rather than 1, so 2𝑚 − 1 is actually meant (this
error is also repeated in the text below (5) in the work). In the
second condition x is not dominated by y, the reverse is true (as
x is equal on all criteria that contribute to the 𝑘 value, and better
on the others), and needs to be compared on 𝑖 ∈ 𝑆1 (𝑘).

• In TEST2 of Quad-Tree1, before attempting to reinsert subtree
of dominating node, all its elements need to be compared against
the newly proposed point for domination, otherwise dominated
elements may be reinserted (as the point which dominated the
subtree root is not inserted until algorithm step 5).

• In Quad-Tree2, the else if Flag = 1 check in Step 2 – here flag
should always be 1 as root of tree is dominated in Step 2 if k =
0 – a non-dominated z must always be marked to be reinserted
as its relationship (successor index) may not match that of the
original (now -dominated) root, which is being replaced.

• In Step 2 of Quad-Tree2, if a node has been identified as domi-
nated, all successors need to be checked subsequently, not just
the l-children.

• In Step 2 of Quad-Tree2 not all flagged nodes should be inserted
from x, as some may have been flagged from higher nodes in the
tree being checked/of on different paths (as step 4 can loop back
to step 2) and these ones should be inserted from the root of the
tree.

• The statement regarding DELETE in Quad-Tree3 and the REINSERT
guarantee of non-dominated is false.

2.4 Dominance Decision Tree
The idea: In the Dominance Decision Tree (DDT) of Schütze

[21] each node contains a design, and has up to𝑚 children. The
𝑖th child of a parent is always better or equal on the 1, . . . , 𝑖 − 1th
objectives, and worse on the 𝑖, . . . ,𝑚th objectives. New solutions
query down paths where they are better on the corresponding
objective to ascertain if they are dominated. Similarly the structure
property is used to guide search down branches where dominated
solutions may be stored.

Errata: in [21].

• The call to TreeInsert in DeleteDominated is given one ar-
gument, however the TreeInsert routine is defined for two
arguments.

2.5 Bi-objective case: balanced binary
tree/Mak_Tree

The idea: In the case where there are only two objectives the
observation that sorting the set in terms of one criterion is equiv-
alent to reverse sorting by the other my be exploited to obtain
performance levels not achievable with 𝑚 > 2. By storing in a
balanced binary tree (BBT), e.g. a red-black tree, the check for in-
sertion is O(1 + log𝑛) objective comparisons, and each deletion
is O(1 + log𝑛). This is a special case, but given the wide range
real-world bi-objective problems encountered in practice, it should
not be ignored. It was highlighted by Berry and Vamplew [2] in
developing their Mak_Tree data structure.

2.6 M-front
The idea: Like the data structure in [11], theM-fronts of Drozdik

et al. [7] utilise𝑚 sorted lists of solutions on each objective. These
are employed in the M-fronts structure to answer interval queries,
which correspond to range queries converted based on a near-
est neighbour search. To conduct approximate nearest neighbour
search a K-d tree is also employed (see, e.g. [5]). Reference points
enable the identification of sub-ranges of each sorted list that need
to be enumerated.

Errata: There is a small error in [7]:
• The Insert algorithm (on page 666 of [7]) uses dominance rather
thanweak-dominance checks, meaning duplicates can be inserted
(weak-dominance should be used).

2.7 Binary Space Partitioning Tree
The idea: In the Binary Space Partitioning Tree (BSPT) approach

developed by Galsmachers [13], each leaf holds a list of solutions
(the maximum list size being a user-defined argument). The interior
nodes hold a threshold (\ ) and an objective index 𝑖 . Solutions that
reach a node are compared to this threshold value on objective 𝑖 ,
and pass left if better and right otherwise. This process continues
until a leaf is reached for comparison, or until it can be identified
as dominating or dominated before reaching a leaf (by tracking the
performance against thresholds for each objective). As an approxi-
mation set’s front moves forwards in objective space over time the
tree can get quite imbalanced. Interior nodes keep count of the total
number of solutions covered under their left and right branches.
When a user-defined factor is exceeded the more densely populated
subtree replaces the node, and the less densely populated branch
contents are reinserted into the tree.

Efficiency improvements: [13] contains relatively few details
on the rebalancing process, apart from at a high level. When rein-
serting the solutions in a subtree to be rebalanced, this may be most
efficiently achieved if it is started from the node that was moved
up to replace its parent, rather than inserting from the root (as the
reinserted subtree members will always pass through this node on
insertion from the root).

2.8 Non Dominance Tree
Each node in the Non Dominance Tree (NDT) of Jaszkiewcz and
Lust [16] represents a subset of the non-dominated front which
lies within a hyperrectangle defined by the subset’s approximate
nadir and ideal point. These nadir and ideal locations are used to
identify whether new solutions need be compared to any of the
designs covered by the node. A new solution x dominated by the
nadir point will be dominated by all members represented by a
node. Conversely, if x dominates the ideal point it will dominate all
members represented by the node. If x is mutually non-dominating
with respect to both the ideal and the nadir points, it is also mutu-
ally non-dominating with respect to all solutions covered by the
corresponding node. Traversing down the tree the volumes cov-
ered by the internal nodes decrease, and the corresponding ideal
and nadir locations shift, until a leaf is reach containing a list of
solutions residing in the objective space volume defined by the
corresponding hyperrectangle.
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Table 2: Parameterised data structures.

Parameter list
D&NDT (i) threshold-factor for rebalancing.
M-front (i) 𝛼 threshold for K-d imbalance and rebuilding.

BSPT (i) max list size at leaf.
(ii) threshold-factor for rebalancing.

NDT (i) max list size per node.

2.9 Implementations
We have implemented eight of the ten extant data structures so
far in our Java package: LL, QT1, QT2, QT3, DDT, BBT, BSPT and
NDT. The open source package, along with unit tests and code to
reproduce the empirical work below is available at https://github.
com/fieldsend/multiobjective_data_structures.

In the empirical section below we employ the default data struc-
ture parameters defined in the original works (the parameters re-
quired for each data structure are given in Table 2).

3 EMPIRICAL RESULTS
We conduct our empirical work on two machines: these are a high-
performance Linux server, and a laptop running O/S X. This affords
us a preliminary insight into how the performance of the data
structures vary with architecture.6 The machine specifications are:
Server 16-core 2.10GHz CPU. L1d cache: 32KB, L1i cache: 32KB,

L2 cache: 256KB, L3 cache: 20MB. 128GBRAM@2400MHz.
Laptop Dual-core 2.66 GHz CPU. L1d cache: 32KB, L1i cache:

32KB, L2 cache: 3MB, 8GB Ram @ 1067MHz.

3.1 Simulation runs
In our first set of experiments we use just the server machine,
and employ the protocol used in [13] for generation of objective
vectors from controlled analytical distributions, which removes the
stochastic element of the optimiser from the results. Archives are
constructed from a sequence of 𝑁 normally distributed objective
vectors. 𝑁𝑑 of these are dominated, and 𝑁𝑛𝑑 are non-dominated
(𝑁 = 𝑁𝑑 + 𝑁𝑛𝑑 ). The 𝑡 th objective vector y𝑡 is drawn from:

y𝑡 ∼ N
(
𝑑𝑡𝑁

𝑡
1, I − 1

𝑚
11⊤

)
(2)

where I ∈ R𝑚×𝑚 is the identity matrix and 1 = (1, 1, . . . , 1)⊤ ∈ R𝑚
is the vector of all ones. The variable 𝑑𝑡 controls the systematic
improvement of points. It is assigned a value of 0 with a probability
of 𝑐𝑁 ′𝑡

𝑑
/(𝑁 −𝑘), where 𝑁 ′𝑡

𝑑
is the number of dominated points still

to draw in the sequence, otherwise 𝑑𝑡 is assigned a value > 0. For
𝑐 > 1 there is a preference for seeing more dominated points earlier
in the sequence, and for 𝑐 < 1 there is a preference for seeing more
dominated points later in the sequence.

We investigate 𝑐 = {0.9, 1.1} here. [13] used 𝑐 = {1, 1.1}, but we
are also interested in the situation where an archive rapidly moves
forward, then slows down (lots of non-dominated points earlier in
a sequence, then proportionally more dominated points later). The

6The Java run-time environmentwas initialisedwith the -Xss4Mflag to ensure the stack
was large enough for the recursion depth experienced by the quad tree data structures,
as the default -Xss512k resulted in stack overflow for some problem instances.

non-zero value employed for 𝑑 is omitted from [13]. We use 1/𝑁
here. We measure the CPU time dedicated to the execution thread
when interacting with the data structure, but exclude all other time
costs (e.g., the cost of sampling from the analytical distribution).
The panels in Figure 1 show the run-time characteristics of the
different data structures for 𝑐 = 0.9. When𝑚 = 2, and when the
number of dominated solutions is relatively small (i.e. 210 and 214)
the three QT data structures perform the best, even better than the
theoretical optimum structure, the BBT. However, when the number
of dominated points in the sequence is large, the QT variants are the
worse performing (orders of magnitude so). For𝑚 = 3 and𝑚 = 5
NDT is the best performing by the end of the sequence, though
BSPT is better for the two larger 𝑁𝑑 sizes earlier in the sequence.
For𝑚 = 10, NDT, DT variants and BSPT are all performing similarly
by the end.

The panels in Figure 2 show the run-time characteristics of the
different data structures for 𝑐 = 1.1. These are largely similar to
those for 𝑐 = 0.9, though for𝑚 = 2 and 𝑁 18

𝑑
the run-time costs of

the worse performing data structures are even poorer than their
comparable performance at 𝑐 = 0.9.

3.2 Optimiser runs
To illustrate the performance of the data structures in an optimisa-
tion environment, we employ a simple (1+1)–Evolution Strategy
(ES). These results are therefore for an algorithm which proposes
and evaluates only a single new design at each iteration. These
results are however generalisable to population-based approaches
—which would likewise be processed in a sequence on single-thread
data-structure. The optimiser is based on the PAES algorithm of
[18], but rather than using a gridded constrained archive, an un-
constrained archive is used, which is stored in one of the data
structures. The parent has a single design variable mutated with
Gaussian noise, with width 0.1. Rejection sampling is used on mu-
tations which lead to boundary violations. If the child is not weakly
dominated by A, the child replaces the parent at the next generation.
In these experiments we run the ES with each data structure on a
problem 10 times, plotting the average.

We use the test problems DTLZ1 and DTLZ2 from [6] here,
as they exemplify two distinct profiles of convergence. In DTIZ1,
the objective values of random design vectors are many orders of
magnitude worse than those of the Pareto set. Additionally, as there
are many deceptive fronts in this problem, the approximation set
tends to converge, expand, and then rapidly contract once a better
local front is identified — repeatedly. In DTLZ2 random solutions
are only a couple of times worse than Pareto optimal ones on the
quality criteria. Additionally, there is a single multi-objective basin
of attraction in the problem, so the approximation set tends to
steadily grow over time, rather than violently changing size. In
both cases we set the number of design parameters as𝑚 − 1 + 9.

Figure 3 shows how the data structures compare for the various
number of objectives on both server and laptop machine on DTLZ1
— with significant outperformance highlighted on the abscissa. For
2–5 objectives the average time cost is seen to fall for all approaches
initially, before rising again later in the optimisation run (except for
NDT and BBT in𝑚 = 2, where it is still decreasing at generation
200 000). For 𝑚 = 10 there is a much shorter period of decrease

https://github.com/fieldsend/multiobjective_data_structures
https://github.com/fieldsend/multiobjective_data_structures
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Figure 1: Mean time taken to update data structure per sample. Results on analytical function, 𝑐 = 0.9.
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Figure 2: Mean time taken to update data structure per sample. Results on analytical function, 𝑐 = 1.1.
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Figure 3: Mean time taken to update data structure up to marked (1+1)–ES generation. Averaged over 10 repetitions (paired).
DTLZ1. We highlight on the abscissa when the data structure with the lowest average is significantly better than all others (all
paired runs having lower average at the corresponding generation than all other competing data structures) Top: experiments
run on server. Bottom: identical experiments run on laptop.
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Figure 4: DTLZ2 data structure timing results. Details as in caption of Figure 3.

in average time cost before the uptick for the majority of data
structures. This is likely to be due to the initial building cost at the
start as the data structures gain depth, before a period of churn as
the fronts move forward, the large uptick at the end corresponding
to the approximation set expansion at it converges in the region of
the Pareto front. As initially expected, BBT outperforms the other
approaches by the end of the𝑚 = 2 runs, however interestingly on
both architectures it is performing worse than the other approaches
until around 10 000 generations. Excluding the special case of BBT,
NDT is better than all other approaches from 10 000 generations
onwards – though in earlier generations it can be relatively more
costly. The ranking of other data structures varies with number of
objectives and with platform architecture.

Figure 4 shows how the data structures compare for the various
number of objective selected onDTLZ2. AswithDTLZ1, the average
time cost is seen to fall and then rise as the number of generations
increases. The trend of BBT (𝑚 = 2) is again similar on a gross level
to DTLZ1. Again, excluding the special case of BBT, NDT is better
than all other approaches from 10 000 generations onwards, and on
some occasions as early as 1 000 generations. As before though, in
earlier generations it is relatively more costly than e.g. BSPT and
LL. Again, the ranking of other data structures varies with number
of objectives and with platform architecture.

Figure 5 underlines the effect of system architecture on relative
data structure performance, and illustrates why this may lead to
contradictory empirical results being published in the literature
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Figure 5: Mean time taken to update data structure up to marked (1+1)–ES generation on laptop divided by the corresponding
time to generate the server results (i.e. the multiple the laptop is slower than server for this cumulative task).

when comparing data structures. Each panel shows the average
CPU time expended by a data structure on the laptop machine,
divided by the corresponding time on the server. As the draws
are paired with the same random seed across the two platforms,
the same 10 sequences of solutions are being summarised in the
averages in Figures 3 and 4, so we might expect the plots in Figure 5
to consist of constant horizontal lines corresponding to a constant
performance factor the server provides. However, it is clear that
the complex interaction of processor speed, memory speed, relative
cache sizes, and run-time environment on the particular operating
system, along with the state of particular data structures at different
generations, means that there can be a large variation in relative
timings between the machines on different problems, and between
different data structures on the same problem. For instance, on
DTLZ2,𝑚 = 3, QT1 is actually quicker on the laptop to begin with
(driven by the slightly faster processor on the laptop), but ends up
being twice as slow by generation 200 000 (memory speed, cache
sizes, etc., having a larger effect). On the other hand, on DTLZ1,
𝑚 = 2, NDT starts twice as slow on the laptop, and by generation
200 000 is eight times slower. In many other instances there is even
more complex behaviour, with striking changes in direction of the
ratio curve and magnitudes varying back and forth over time.

4 DISCUSSION AND FUTUREWORK
We find that the most recently proposed data structure, NDT, gen-
erally performs best by the end of a sequence — but this is not
a universal finding. Furthermore we find that data structure per-
formance can vary considerably between architectures, and in a
non-constant fashion. We have not tuned the data structures which
are parameterised — using the author-recommended values. All
these factors mean that there is a potential to optimise, via both se-
lection and tuning, the data structure to the task and computational

architecture. This is excessive for short runs and small problems –
however for tasks with relatively cheap to evaluate objective func-
tions and long optimisation run (like, for instance, many practical
network optimisation tasks), or for batches of algorithm compar-
isons on test functions, significant computational cost reductions
are possible.

Beyond this work, there are two remaining data structures to be
implemented in the package: those described in [11] and [7] (which
are composites of a number of different data structures). We look
forward to implementing these also.

Very little has been discussed in the literature regarding paral-
lelisation capabilities of these various data structures. [7] provides
a small section on this, and the authors note that they are not sure
if a significant speedup is possible for M-Fronts, but that other data
structures may be more amenable to parallelisation. Certainly with
the prevalence of multi-core computational resources in modern
computing infrastructure, the performance of parallelised versions
of these structures is an area we are keen to explore.

In this study we recognise a number of different factors inter-
play in the relative performance of the data structures on the two
example architectures. It would be useful to be able to isolate and
identify which particular component(s) are having different effects
— this will require access to easily re-configurable hardware, and
close interaction with researchers in the high-performance comput-
ing and profiling community, where work on performance counter
measurements looks to more precisely characterise performance
dependencies. Preliminary work in this area may be found in [3].
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