An Approach to Assess Swarm Intelligence Algorithms Based on Complex Networks

Clodomir Santana
University of Exeter
Exeter, Devon
cj413@exeter.ac.uk

Edward Keedwell
University of Exeter
Exeter, Devon
e.c.keedwell@exeter.ac.uk

Ronaldo Menezes
University of Exeter
Exeter, Devon
r.menezes@exeter.ac.uk

ABSTRACT
The growing number of novel swarm-based meta-heuristics has been raising debates regarding their novelty. These algorithms often claim to be inspired by different concepts from nature but the proponents of these seldom demonstrate whether the novelty goes beyond the natural inspiration. In this work, we employed the concept of Interaction Networks to capture the interaction patterns that take place in the algorithms during the optimisation process. The analyses of these networks reveal aspects of the algorithm such as the tendency to achieve premature convergence, population diversity, and stability. Furthermore, we propose the usage of Portrait Divergence, a state-of-the-art metric to assess the structural similarities between networks. Using this approach to analyse the Cat Swarm Optimisation algorithm, we were able to identify some of the algorithm’s characteristics, assess the impact of one of its parameters, and compare it to two other well-known methods (Particle Swarm Optimisation and Artificial Bee Colony). Lastly, we discuss the relationship between the interaction network and the performance of the algorithm and demonstrate the similarities between Cat Swarms and Particle Swarms.

CCS CONCEPTS
• Theory of computation → Bio-inspired optimization; • Mathematics of computing → Evolutionary algorithms. Network flows;

KEYWORDS
Swarm Intelligence, Complex Networks, Interaction Networks, Cat Swarm Optimisation

ACM Reference Format:

1 INTRODUCTION
Several published studies indicate that the number of proposals of “novel” optimisation methods has been increasing in recent years [12, 22]. This is mostly related to the proposal of methods claiming to have a different source of inspiration but that in reality have only this inspiration as novelty given that they can behave like (or be a particular case of) another existing method [28]. In fact, many authors have pointed out that several new methods can use inaccurate or unconvincing metaphors to justify the proposal of algorithms which often can be considered a simplification/variation of another method [5, 8, 20, 21].

As a sub-class of nature-inspired algorithms, Swarm Intelligence (SI) methods also are susceptible to this issue. Part of this problem comes from the fact that, currently, there is no comprehensive method to explain, assess, classify or compare those algorithms. In fact, the most common type of comparison between SI algorithms relies on the fitness results. Moreover, despite the rich literature in the field, the complex behaviour that emerges from the interactions in swarm-based algorithms is still not well understood.

When it comes to SI algorithms, regardless of their source of inspiration they all share the premise that the elements which constitute the population present some degree of information exchange among them. In fact, the intelligence of the swarm emerges from these interactions. For example, in the Particle Swarm Optimisation (PSO) [4], the particles exchange positional information of the global/local best particle in the swarm. In the Artificial Bee Colony (ABC) [10] the onlooker bees select a food source to explore based on the information obtained from the employed bees.

The existence of such common feature can be used to develop tools to assess, classify and compare SI algorithms from the interaction level. One possible way of analysing the information flow and interaction patterns in a swarm algorithm is to model the interaction between the elements as a network and use it to obtain information about the algorithm.

This idea of creating a network to capture the flow of information or interactions patterns in a swarm-based algorithm was introduced in 2013 by Oliveira et al. [17]. This initial concept, known as the Influence Graph (later renamed to Interaction Network), was applied the assess particle swarm optimisers from a network science perspective. At each iteration, a graph was created by connecting the particles which shared information (e.g. a connection would be created between all particles in the swarm and the best particle in a PSO with global topology). The authors examined the characteristics of the influence network for the PSO with global, ring and dynamic topologies and analysed the Laplacian Matrix, R-value and Density Spectrum of the networks. The experiments conducted indicates that the influence graph could be used to analyse the search behaviour of the particles and diagnose stagnation.

In 2014 the authors introduced the concept of Influence Graph with History [14]. The main motivation for the introduction of
the concept of history was to have a method to record all the
information exchange that occurred in a given time window and
assess the whole history of interactions. This was achieved by
summing the adjacency matrix of the networks generated at each
iteration within the time window. This approach was also tested in
the PSO with global, ring and dynamic topologies and they analysed
the distribution of node degrees and the impact of edge removal on
the network structure.

A new metric which could be applied over the influence graph
to obtain information on the behaviour of the algorithm was intro-
duced in 2016 [15]. This metric, called Communication Diversity,
measures the existence of different information flows within the
swarm during the optimisation process. The experiments performed
with the PSO indicated that communication diversity can be used
to predict the stagnation of the algorithm. Furthermore, a further
study from 2017 showed how this metric could be applied to exam-
ine the exploration/exploitation capabilities of the PSO [16].

Besides the applications of the influence graph to analyse PSO, in
2019 this method, which was renamed to Interaction Network and
applied on the Artificial Bee Colony (ABC) [24] and Ant Colony
Optimisation (ACO) [9]. These examples showed that the influence
graph/interaction network could be used to assess other swarm-
based algorithms.

Among all the swarm-based algorithms which were not assessed
using the interaction networks, the Cat Swarm Optimisation (CSO)
[6, 7] figures as a promising candidate since it is a fairly new
algorithm which shares similarities with the PSO and has been
applied to tackle a wide list of real-world optimisation problems
[11, 18, 19, 25, 27].

In this work, we present a model for the interaction network
of the CSO algorithm and the experiments performed allowed us
to identify important characteristics of the algorithm regarding
the flow of information, convergence capabilities and the influence
of one of its parameters. More importantly, this is the first work
which looks more deeply into variations that take place within
the interaction network by adopting a recently-proposed metric to
estimate structural similarities between networks [1]. Using this
metric we were able to perform a stability analysis of the algorithm
and compare it to the PSO indicated that communication diversity can be used

2 THEORETICAL BACKGROUND

This section is devoted to explain the theoretical background of
this work. It describes the Cat Swarm Optimisation algorithm, the
Interaction Networks and the Portrait Divergence metric.

2.1 Cat Swarm Optimisation

The Cat Swarm Optimisation (CSO) is a bio-inspired meta-heuristic
which was proposed in 2006 by Chu et al. [6, 7]. As in the PSO, the
cat (akin to a particle in the PSO) is comprised of a position within
the search space (candidates solution), velocity, and a fitness value
which quantifies the quality of its current solution.

The main feature of this algorithm is that the cats have two types
of behaviour named seeking and tracing. In the seeking, mode the
cats perform a local search around their current position using

a mutation operation applied to some of the dimensions of the
cat’s current position, given by a parameter called CDC (Seeking
Memory Pool). However, the first step in the seeking mode is to
make several copies of itself and apply the mutation to all but one
of these copies; the number of copies is a system parameter called
SMP (Seeking Memory Pool). Note that one of the copies is left
intact to represent the original cat. The mutation is described by

\[
\tilde{c}_{i,d}(t + 1) = \begin{cases}
(1 + \text{SRD})\tilde{x}_{i,d}(t) & \text{if } \text{rand} < 0.5 \\
(1 - \text{SRD})\tilde{x}_{i,d}(t) & \text{otherwise},
\end{cases}
\] (1)

where \(\tilde{c}_{i,d}\) is the position of the \(i^{th}\) copy in the \(d^{th}\) dimension of
the problem, \(t\) is the current iteration, \(\text{rand}\) is a random number in
the interval \([0, 1]\) drawn using a uniform distribution, and \(\text{SRD}\)
is a parameter which controls the radius of the local search. After
performing the mutations, the fitness of all (new) cats is calculated
and a roulette wheel based on such fitness used to select one cat to
replace the original cat.

In the tracing mode, the cats have a position update rule similar
to the PSO with a global best topology. Hence, this mode is guided
by the current best cat in the swarm and the position is updated
according to Equation 2:

\[
\tilde{x}_i(t + 1) = \tilde{x}_i(t) + \tilde{v}_i(t + 1)
\] (2)

where \(\tilde{x}_i\) is the position of the \(i^{th}\) cat and \(\tilde{v}_i(t + 1)\) is the velocity
of this cat calculated as described by Equation 3.

\[
\tilde{v}_i(t + 1) = \omega\tilde{x}_i(t) + r_1 c_1 [\tilde{x}_{\text{best}}(t) - \tilde{x}_i(t)]
\] (3)

in which \(\omega\) is the inertia factor, \(r_1\) is a random number in
the interval \([0, 1]\) drawn using a uniform distribution, \(c_1\) is a constant
defined by the user, and \(\tilde{x}_{\text{best}}\) is the position of the current best
cat in the swarm. It is worth mentioning that at the beginning of
each iteration the swarm is divided into the group of cats that will
perform the seeking mode and the ones who will have the tracing
mode. The percentage of cats in each mode is determined by the
\(\text{MR}\) parameter. The CSO is summarised in Algorithm 1.

2.2 Interaction Networks

The interactions among elements within swarm is a key factor
for swarm-based algorithm and the Interaction Networks emerged
from the strategy of capturing these interactions into a network
structure. In this network, the nodes represent the elements in
the swarm and the edges indicate some interaction (i.e. information
exchange) between the two nodes. Note that at each iteration a new
network is created. The analyses of these structures can be made
based on the network of each iteration or by combining several
networks using the sum of all the networks in a given interval
(time window). Equation 4 shows the definition of the interaction

\[
I_t^w = \sum_{t'=t-w+1}^t I(t')
\] (4)

where \(t\) is a given iteration, \(w\) is the size of the time window and \(t \geq
w \geq 1\). Figure 1 illustrates the procedure to create the interaction
Algorithm 1: CSO Algorithm

1. Initialise all cats positions and velocity randomly;
2. while stop criterion is not reached do
3. Evaluate each cat and update \bar{x}_{best};
4. Choose randomly $MR\%$ of the cats to perform the tracing and the seeking mode;
5. for each cat do
6. if $\bar{x}_i(t)$ is in seeking mode then
7. Make SMP copies of the current cat;
8. for each of the SMP – 1 copies do
9. Select CDC dimensions and update them according to Equation 1;
10. end
11. Evaluate the fitness of the SMP – 1 copies;
12. Apply roulette wheel method using the SMP copies to select the candidate to replace the original cat;
13. end
14. if $\bar{x}_i(t)$ is in tracing mode then
15. Update cat’s velocity with Equation 3;
16. Apply Equation 2 to update the cat’s position;
17. end
18. end
19. Return the \bar{x}_{best} as the final solution.

networks from the algorithm’s interactions. Note that, for $w = 1$ the set of networks in 2 is equal to the networks on 3.

Figure 1: The process to create the interaction network. Where 1 represents the iterations of the algorithms, 2 illustrates the networks generated for each iteration and 3 is the networks which result from the application of the time window w.

Previous works [9, 14–17, 24] used the interaction networks to assess several aspects of SI algorithms such as the influence of parameters and operators in the performance of the algorithm, exploration/exploitation balance, premature convergence analysis, and communication diversity.

In this work, we intend to expand the set of applications of the interaction networks by measuring the similarities between the networks generated. This approach can be useful to perform a stability analysis of the algorithm (comparing the similarity between the network of multiple executions of the same algorithm) and to quantify the degree of similarity between two different algorithms.

To be able to measure the degree of similarity between networks we used the idea of Portrait Divergence (PD) [1]. According to a study comparing various metrics to compare networks [23], the PD figures as a graph invariant metric suitable to measure structural similarities between networks regardless of them being directed or undirected.

2.3 Portrait Divergence

Portrait Divergence is a metric which quantifies the structural similarities of networks [1]. It was proposed by Bagrow and Bollt and performs the comparisons based on the idea of portraits of complex networks. A Network Portrait is the name given to a matrix (B-matrix) that encodes the structural information of a given network [2]. The B-matrix is calculated as indicated by Equation 5:

$$B_{\ell,k} = NP_F(k)$$ (5)

where $B_{\ell,k}$ is the ℓ row of the B-matrix and represents the number of nodes which have k neighbours at a distance ℓ. It is worth noting that the network portrait independent of the network labels which means that networks with the same structure will have the same matrix. Also, for weighted networks, the matrix is calculated using a binning strategy to estimate the distance ℓ.

Portrait Divergence is defined based on the portraits of two networks. It uses the Jensen-Shannon divergence to calculate the distance between the two portraits. Moreover, the computational cost of this method is low for small and medium-sized networks [23]. It produces values between zero and one, where zero means that the two networks are identical and one means that they are completely different.

To illustrate the effectiveness of the Portrait Divergence to measure the structural distance between networks, we applied the proposed approach to networks generated from three different models: Erdős–Rényi (ER), Random Regular (RND) and Barabási–Albert (BA) Networks. To determine if there will be a connection between nodes in a Erdős–Rényi network, a random number is drawn from a uniform distribution and if it is greater than a probability p, a link will be created. The Random Regular is a type of the random networks where all the nodes have the same number of connections d. Lastly, the Barabási–Albert model generates networks in which nodes are connected to k other nodes and have a tendency to create connections with nodes that are highly connected. For each type of network, 30 networks were generated and the results are depicted in Figure 2.

As can be noticed, when comparing the networks generated from the same model (Figure 2 (A) and (B)) the Portrait Divergence value was less than 0.5; however, the comparison between networks generated from different models presented $PD > 0.5$. These results indicate that Portrait Divergence seems to capture the differences between networks.

3 EXPERIMENTS AND RESULTS

The first step to model the interaction network of a swarm-based meta-heuristic is to identify in the algorithm the locations in which information is directly or indirectly exchanged among elements in
the swarm. For the CSO, because in the seeking mode the cats only perform a mutation which is not influenced by other cats, all the interactions take place in the tracing mode. In this case, since the tracing mode is similar to the update rule of particles in the PSO with global best topology, we can adopt a strategy similar to the one used to model the network of the PSO in previous works [14, 15]. This strategy consists of creating a link between the elements in the swarm and the best element of the current iteration. The main difference is that for the CSO the link is established between the best cat and the other cats in the tracing mode.

3.1 Analysis of the CSO Network

In order to execute CSO we selected the parameters so that $MR = 20\%$, $SMP = 5$, $CDC = 0.8$, $PMO = 0.2$, $C_4 = 2.0$, and ω decreases linearly from 0.9 to 0.4. The population size was set to 100 and the stopping criteria was a limitation of 500 iterations. The benchmark problem selected was the Sphere function with 100 dimensions and we performed 30 independent simulations of the algorithm. These values were defined based on previous works in the literature [6, 26].

Figure 3 presents the adjacency matrix (i.e. representation of the graph’s connections as a matrix) and the degree histogram of the network created combining the last 10 iterations of the CSO executions. These plots give us information related to the structural characteristics of the network. For instance, if one column of the adjacency matrix has more red colour than the other, it means that the cat represented by that column guided the swarm in most of the iterations (e.g. a uniform degree distribution in the interaction network can be an indication of swarm convergence).

As can be noticed, the network is not fully connected due to the fact that the connections are concentrated around the best cat. Also, the degree histogram indicates the distribution of the number of connection that the cats have during the optimisation. Furthermore, there is no guarantee that all cats will have tracing behaviour during the iterations. In fact, the degree histogram shows that a few cats comprise most of the connections. Notice, however, that the connections are not focused on one single element of the swarm. This indicates that during the optimisation process the best solution, which guides the search process in the tracing mode, is represented by different cats. The changing of the best cat can be important to reduce the chances of getting trapped in a local optimum.

In order to measure the impact of the stochastic components of the algorithm on the interaction network, we applied the network portrait metric to compare thirty different executions of the CSO and the result is presented in Figure 4 (A). As can be noticed, in most of the executions, the PD value was less than 0.5 which indicates a moderated degree of similarity between the networks. In other words, the algorithm tends to converge to networks that share similarities in their structure. This is result could be an indication that there is some type of “signature” of the algorithm which is encoded in the network and does not change drastically regardless of the random components of the meta-heuristic. The existence of such a signature could be useful to create methods to classify and compare different SI methods.

Figure 4 (B) depicts the application of the PD to compare the networks generated throughout the iterations. This experiment has the objective to identify if the networks of the algorithm change during the optimisation process. The results illustrated by 4 (B) reviews that the characteristic of the network changes significantly during the optimisation. The initial networks are considerably different ($PD > 0.8$) to the final ones. One possible explanation is that events, such as the convergence of the algorithm, can modify the structural characteristics of the network.
3.2 Comparison of CSO with other Swarm Algorithms

To test the hypothesis that we can use this approach to compare two different algorithms, we implemented the networks for the Artificial Bee Colony (ABC) [10] and the Particle Swarm Optimization (PSO) with local best or ring topology (LPSO) and global best topology (GPSO) [4]. The network for the ABC was modelled as described in [24] and the PSO follow the same modelling as the one adopted for the CSO. The trials limit for the ABC was set as 100 and the colony has 100 bees. For the PSO, we employed \(C_1 = C_2 = 1.49 \) and 100 particles. We used the same fitness function and these two algorithms were executed 30 times with stop criteria of 500 iterations.

Figure 5 shows the adjacency matrix and the degree histogram of the networks of the CSO (A)(E), GPSO (B)(F), LPSO (C)(G) and ABC (D)(H), respectively. As in the previous case, the network was created combining the last 10 iterations \((w = 10)\) of the algorithms’ executions. As can be seen in Figure 5 (A) to (D), the network of the CSO is similar to the GPSO since they both share the interactions based on the spread of a global best information. The difference between them is mainly because not all cats perform the position update based on the global best (tracing mode). In fact, the network degree histogram of the CSO is also similar to the GPSO, supporting the argument that both networks have a similar structure.

On the other hand, the network for the ABC presents a more chaotic pattern, which can be explained by the characteristics of the operators in this method. In this algorithm, the interactions occur when the employee bees randomly select a food source, and when the onlooker bees select a food source based on a roulette wheel mechanism. For the LPSO with the ring topology, the network does not experience much change and the interactions are limited to the particle’s neighbours. For both LPSO and ABC we can see that the degree distribution is more even (the majority of the nodes possess a similar number of connections).

Concerning how the networks of these algorithms change from one execution to another due to the influence of the stochastic operators, Figure 6 shows that the LPSO is the one with less variation due to its fixed communication topology. The ABC and the GPSO presents a similar degree of variation, while the CSO falls between the them.

Figure 7 depicts the network comparison over the optimisation process. As can be observed, the pattern displayed on the CSO x GPSO comparison (Figure 7 (B)) is similar to the one displayed for the CSO x CSO (Figure 7 (A)) but with some shift in the results. In fact, the results presented in Table 1 shows that excluding the first and last time windows, the network of the CSO for a Network\(_{9} \) will have an equivalent GPSO network at Network\(_{i-d} \), where the value of \(d \) increases over the iterations. Again, this can be associated to the fact that only 20% of the cats displays a behaviour akin to what happens in the GPSO at each iteration.

Table 1: Best interaction network match between the CSO and the GPSO for a \(w = 10 \).

<table>
<thead>
<tr>
<th>CSO Network</th>
<th>Best GPSO Network Match</th>
<th>PD Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.4039</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.0825</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.1458</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.0752</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.1221</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0.0750</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0.1273</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>0.0714</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0.1807</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>0.3237</td>
</tr>
</tbody>
</table>

Regarding the comparison to the LPSO (Figure 7 (C)), we can observe that these algorithms start with a network structure relatively similar to each other and, but as the iterations progress, their structure becomes increasingly different. The highest degree of similarity \((PD = 0.2959)\), was achieved between the first time window of CSO and the fourth of the LPSO.

For the ABC, Figure 7 (D) indicates that during all the optimisation process, the degree of similarity between the networks of CSO and ABC was low. In fact, the minimum Portrait Divergence value comparing these algorithms was 0.9862.

From what we have seen so far, the Cat Swarm algorithm is considerably similar to the Particle Swarm Optimisation with global best topology. It was stated that the main difference between the interaction patterns of these algorithms is that in the CSO, a percentage of the cats is selected randomly each iteration to perform the position update based on the global best information. There could be other factors which could also contribute to these differences such as the absence of the \(p\text{Best} \) on the CSO and the usage of the mutation operator. However, since the interaction network, at this stage, do not capture auto-loop patterns, we will focus the next analysis on the number of cats performing the PSO-based position update rule.

The \(MR \) parameter controls the percentage of the swarm which performs the tracing mode and Figure 8 presents the network produced from CSO executions with values of \(MR \) equals to 10%, 40%, 60%, and 100%. As can be noticed, as the value of \(MR \) increases the adjacency matrix of the CSO (Figure 8 (A) – (D)) becomes more
Figure 5: Comparison between the adjacency matrix and degree distribution of the final networks of the CSO (A) and (E), GPSO (B) and (F), CSO (C) and (G) and ABC (D) and (H).

Figure 6: Comparison between the 30 different executions of the CSO (A), GPSO (B), LPSO (D), and ABC (E).

Figure 7: Network comparison over the optimisation process for CSO x CSO (A), CSO x GPSO (B), CSO x LPSO (C), CSO x ABC (D).

similar to the GPSO matrix. Nonetheless, for 100% the degree histogram (Figure 8 (E) – (H)) displays a different characteristic. A possible explanation for this difference is that for $MR = 100\%$ the seeking mode the swarm only explores regions around the global best location and this could lead to premature convergence of the swarm. This premature convergence makes the fitness of the cats more similar to each other, this could make the alternation of the global best more frequent and, as a result, the degree of the nodes in the network become more similar as in the ABC or the LPSO. The PD divergence comparison (Figure 8 (I) – (L)) also displays this behaviour where the network for $MR = 100\%$ presents fewer similarity points to the GPSO than the network for the other values of this parameter.
3.3 Relation between the Interaction Networks and the Performance of the Algorithms

The last experiments made aim to identify possible relationships between the characteristics of the interaction network of a given algorithm and its performance in terms of fitness results. Figure 9 shows the results of the Pearson correlation between the PD value and the fitness difference for $w = 10$. The autocorrelation analysis of the CSO, Figure 9 (A), indicates that similar networks ($PD < 0.5)$ have a similar fitness value. However, different networks can have similar fitness. Moreover, for this algorithm high difference in the fitness implies that the networks are different ($PD > 0.5$).

Comparing the CSO with the GPSO (Figure 9 (B)) we can see that for $PD < 0.5$ the CSO presented results similar (fitness difference close to zero) or superior (negative fitness difference) to the GPSO. Nevertheless, given that $R = 0.18$ we can say that there is no linear correlation between these two metrics of the correlation is week.

However, for LPSO we can observe a moderate negative correlation. There is also an indication that the bigger is the difference between the networks, the better is the CSO in terms of fitness value when compared to the LPSO. Concerning the ABC, we cannot say that there is a correlation between the PD value and the fitness difference. It is worth mentioning that, among all the algorithms, positive values for R were just observed when comparing the CSO to the GPSO.

4 CONCLUSIONS

The lack of widely-adopted methods to classify and compare algorithms within the swarm intelligence field is one of the main causes behind the increasing number of proposals of algorithms with a questionable level of novelty. Furthermore, despite the effort made by researchers to better understand these algorithms, there is still a gap in this area.

In this paper, we applied the interaction network to assess the Cat Swarm Optimisation. Using the networks we were able to assess the influence of the MR parameter, convergence capabilities, information flow in the swarm and, using the Portrait Divergence to compare the structural similarities between the networks, we were able to analyse the stability of the CSO and the evolution of its networks over the iterations.

Furthermore, the usage of the Portrait Divergence also allowed us to perform comparisons between the CSO and ABC and the Particle Swarm Optimisation. The comparison results indicated an
As future directions we plan the following activities:

- Investigate how other parameters (population size and SRD) influence the structure of the network;
- Analyse the impact of external factors on the network characteristics. For example, how the number of dimensions of the problem and multi-modal functions can affect the network;
- Further assess the relation between the performance of the algorithm and the network structure;
- Experiments with other swarm-based algorithms such as the Fish School Search [3], Grey Wolf Optimiser [13] and The Firefly Algorithm [29];
- Investigate the similarities between variations of the same algorithm;
- Try to adapt the idea of interaction networks for genetic algorithms.

ACKNOWLEDGEMENTS

This work is partially supported by a scholarship provided by the College of Engineering, Mathematics and Physical Sciences (CEMPS) at the University of Exeter. The authors would like to thank James Bagrow for providing us with his implementation for the portrait divergence [1].

REFERENCES

