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Abstract 10 

1) Social environments influence important ecological processes and can determine how 11 

selection acts on traits. Cognitive abilities can shape these social environments and in turn, 12 

affect individuals’ fitness. 13 

2) To understand how cognitive abilities evolve, we need to understand the complex interplay 14 

between an individual’s cognitive abilities, the social environment that they inhabit and the 15 

fitness consequences of these relationships.  16 

3) We measured the associative learning ability of pheasant chicks, Phasianus colchicus, then 17 

released them into the wild where we quantified their social position by observing their 18 

associations at feeding stations and monitored the number of days survived. 19 

4) We observed disassortative mixing by learning performance at the population level, and 20 

poor learners had more associates than good learners. Learning was beneficial for survival 21 

when focal individuals had fewer than four associates, but survival probability across 22 

learning abilities equalised for individuals with more than four associates.  23 

5) While the mechanisms underlying these relationships remain to be determined, the patterns 24 

of association exhibited by pheasants at feeders can be predicted by individual variation in 25 

cognitive performances and we suspect these patterns are related to differences in 26 

information use. Critically, these resulting patterns of association have fitness consequences 27 

for individuals that cannot be explained directly by their cognitive ability, but which could 28 

mediate selection on cognition.   29 
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Introduction 30 

Cognitive abilities are critical to how animals behave, yet we understand little about the selective 31 

pressures contributing to their evolution. Reported relationships between individual variation in 32 

performance in cognitive tasks and subsequent (proxy) fitness outcomes are generally straightforward 33 

and positive (Shohet & Watt 2009; Boogert et al. 2011; Maille et al. 2016; Pasquier & Grüter 2016; 34 

Ashton et al. 2018a; Sonnenberg et al. 2019), but see for no (Isden et al. 2013) or negative (Sewall et 35 

al. 2013; Madden et al. 2018) relationships. There is growing evidence that an individual’s 36 

performance in cognitive tasks and perhaps their ability, is contingent on the social environment in 37 

which they have grown (Ashton, Thornton & Ridley 2018b; Ashton et al. 2018a), or currently live 38 

(Langley et al. 2018b). Simultaneously, the social environment in which an individual lives, or at least 39 

their position within it, may also depend on their cognitive abilities (Wascher et al. 2018). For example, 40 

individuals demonstrating good learning abilities are more favourable social (Kulahci, Ghazanfar & 41 

Rubenstein 2018), sexual (Chen et al. 2019) or foraging partners (Katsnelson et al. 2011). This is 42 

important because the structure of the network and the individual’s position within it may affect the 43 

fitness of individuals, with well-connected individuals having greater reproductive success (Silk 2007; 44 

Cameron, Setsaas & Linklater 2009) and longer survival (Stanton & Mann 2012; Ellis et al. 2017). 45 

Therefore, if an individual’s cognitive abilities determine their social position and this has fitness 46 

consequences, then selection on cognitive traits may be mediated by the social environment and be 47 

frequency-dependent according to the cognitive abilities of others in the population. 48 

 49 

The importance of particular cognitive abilities to an individual’s fitness may be dependent on the 50 

structure of the social network that an individual inhabits because social partners influence the 51 

information available to individuals (phenotypic assortment leads to increased information 52 

transmission (Aplin, Farine, Morand-Ferron, & Sheldon, 2012; Jones, Aplin, Devost, & Morand-Ferron, 53 

2017; Kulahci et al., 2016) and phenotypic disassortment reduces information transmission, (Carter et 54 
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al. 2015)). Thus, individuals may occupy social positions according to their cognitive abilities and so 55 

enhance their access to favourable partners (i.e. the good independent learner if the focal individual 56 

has poor independent learning ability) and/or the number of partners (Aplin & Morand-Ferron, 2017) 57 

to maximise access to the quality and amount of social information. Consequently, the relative 58 

contribution that cognitive abilities make to an individual’s fitness may be dependent upon the social 59 

environment that a focal individual inhabits. Therefore, in order to understand how selection acts on 60 

cognition it is necessary to consider both the role that an individual’s cognitive ability has in placing 61 

them within their social network and the fitness outcomes accruing to them because of this social 62 

position. Critically, because learning performance can both influence (Wascher et al. 2018) and be 63 

influenced by social structure (Langley et al. 2018b), a system in which these processes can be 64 

separated is needed.  65 

 66 

Pheasants (Phasianus colchicus) are a gregarious species that exhibit variation in learning performance 67 

relating to the social environment. An individual’s performance in learning tasks varies depending on 68 

the social environment in which they are tested (Langley et al. 2018b) and is related to their social 69 

position, such that higher ranking males exhibit more accurate (Langley et al. 2018c) and faster 70 

(Langley et al. 2018a) learning performances. The pheasants’ social environment is structured with 71 

individuals exhibiting non-random preferential assortment based on sex (Whiteside et al., 2018; 72 

Whiteside et al., 2017). An individual pheasant’s cognitive ability can have consequences for their 73 

fitness with individuals that were slow to reverse a learned association being likely to survive for 74 

longer after their release in to the wild (Madden et al. 2018). In the UK, pheasants are reared in 75 

captivity prior to release into the wild where they face natural hazards, thus, they can be assayed for 76 

cognitive performance under standardised social group conditions early in life (van Horik et al. 2017) 77 

before having the opportunity to interact and develop social ties naturally. This allows us to determine 78 

the role that variation in cognitive ability measured in early life has on shaping later life social position 79 
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and follow the fate of free-living birds to investigate how these two factors predict survival. We 80 

investigated whether pheasants’ social associations at feeding stations in the wild in an area without 81 

any hunting were structured according to learning ability on a visual discrimination foraging task, 82 

assayed during early life. Specifically, we first tested whether individuals assorted (Farine, 2014; 83 

Newman, 2003) according to their early-life learning ability. Learning performances predict later 84 

behavioural strategy (Katsnelson et al. 2011) and differences in behavioural strategies lead to mixing 85 

of behavioural phenotypes (Kurvers et al. 2010). In the case of pheasants visiting feeders, we expected 86 

that individuals who were poor learners and hence slow to accumulate accurate personal information 87 

may seek to associate with good learners that accumulated information about the location and 88 

profitability of feeding sites. Therefore, we predicted that there would be disassortment by learning 89 

performances at the population level. Second, we tested whether early life learning ability predicted 90 

an individual’s later position (individual level assortment and social centrality) within their social 91 

environment. We expected that poor learners would be more disassorted as they would generally 92 

favour knowledgeable individuals (Kulahci et al. 2018), whereas for good learners, the extent of 93 

disassortment would not be as strong because they would be more ambivalent in their choice of 94 

partner based on learning ability. We also expected poor learners to have higher social centrality in 95 

order to maximise their access to social information from multiple informed learners regarding 96 

resources, similarly to that observed in great tits (Aplin & Morand-Ferron, 2017). Finally, we tested 97 

whether an individual’s cognitive performance or their social position better predicted their chances 98 

of survival. In other gregarious species, individuals most central in their social network survive for 99 

longer (Ellis et al. 2017), purportedly because they have access to social information about resources 100 

facilitated by social position. Hence, we’d expect that individuals that are more central in their 101 

networks would survive for longer as pheasants are a gregarious species and more central individuals 102 

will have access to the most social information about feeders. We’ve previously shown that learning 103 

performance did not directly predict the probability of survival in pheasants (Madden et al. 2018), but 104 
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in that study, we did not consider social position. Therefore, we tested whether the influence that 105 

early life learning performance made to survival was mediated by the social environment.     106 
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Methods 107 

Subjects and housing 108 

This study was conducted from May 2014 – February 2015 at North Wyke Rothamsted Research Farm, 109 

Devon (50°77’N, 3°9’W). Two hundred pheasant chicks were purchased from a commercial game 110 

dealer and placed into one of four identical pens (50 individuals per pen). Each indoor pen (2m x 2m) 111 

consisted of a holding area that was heated and contained perches and saw-dust bedding. This area 112 

was separated from an unheated but sheltered outdoor area (1m x 4m) by a guillotine partition door. 113 

Adjacent to the holding area was a visually isolated testing arena (0.75 m x 0.75 m), divided from the 114 

holding area by a sliding entrance door and connected to the outdoor area by an exit door. At three 115 

weeks old, chicks also had access to an outdoor enclosure (4m x 12m) connected to the sheltered run, 116 

containing perches and branch shelters. Chicks were provided with age-specific chick crumb 117 

(Sportsman game feed) and water ad libitum throughout all areas of the pen, except in the testing 118 

arena. Chicks were identifiable by numbered patagial wing tags (Roxan Ltd, Selkirk, U.K). Chicks were 119 

reared in these conditions for 10 weeks while we assayed their cognitive performances. 120 

 121 

Cognitive testing procedures 122 

Chicks were trained to enter the testing arena individually upon hearing an auditory cue (observer 123 

humming/whistling) from ~2 weeks old. Testing began when chicks were 4 weeks old. During a testing 124 

session, after entering the testing arena the sliding door was closed and individuals could retrieve a 125 

freely available mealworm located on the centre of the task apparatus, thus standardising their 126 

approach to the task. An observer then recorded the chick’s interactions with the task. Upon 127 

completion of the task, or if individuals did not participate within 2 minutes, or exhibited signs of stress 128 

(lost-calling, pacing, flapping), they were released into the outside area of the pen via the exit door. 129 

Hence, while each chick entered the testing arena once during a testing session, we could not control 130 

the number of choices they made in each session. There were two testing sessions per day; one in the 131 
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morning and another in the afternoon on five consecutive days. Birds were tested when they were 132 

five weeks old, having previously all experienced an identical set of tests (see (van Horik & Madden 133 

2016) for details). 134 

 135 

Learning ability 136 

Learning ability was assessed by measuring visual discrimination performances. Foraging grids 137 

containing wells marked with different colour cues are a commonly used paradigm to assess visual 138 

discrimination performances of avian subjects (Boogert et al. 2011; Shaw et al. 2015; Ashton et al. 139 

2018a). Individual pheasants were presented with a square apparatus (20 cm L x 20 cm W x 5cm D), 140 

containing 24 circular wells. A layer of opaque crepe paper covered each well. Chicks had been trained 141 

to peck through the crepe paper that covered wells on the testing apparatus. During testing, half the 142 

wells were encircled with a red ‘#’ shape and contained mealworm food rewards, the other half of the 143 

wells were encircled with a black hexagon and were blocked by a bung, so that the paper could not 144 

be pecked through. The locations of rewarded and unrewarded wells were random and differed 145 

between sessions. A choice was denoted as when a bird pecked at the crepe paper of a well. This 146 

choice was scored as ‘correct’ if the peck was to a rewarded well and scored as ‘incorrect’ if the peck 147 

was to an unrewarded well. Revisits to opened previously rewarded wells were not recorded reliably 148 

and were ignored. We allowed birds to revisit unrewarded wells. We used the number of correct 149 

choices and revisits to unrewarded wells to derive our learning measures for each individual. Once 150 

birds had emptied all rewarded wells or reached two minutes in the testing arena (whichever came 151 

first), the exit door was opened and the test apparatus was removed. We considered an individual’s 152 

first 100 choices (made over 3 to 5 testing sessions) to reflect their learning performance. One 153 

hundred choices provided a balance between improving our estimate of learning performance for an 154 

individual by collecting more choice data and the risk that birds ceasing interacting with the test 155 

apparatus and thus being excluded from the dataset because they did not complete the standardised 156 
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number of choices. Our learning performance score was the percentage of correct choices of the final 157 

15 choices of this series of 100; this represents how well individuals had learned the affordances of 158 

the task after a set number of choices. 159 

 160 

Of the 64 birds that completed at least 100 choices and were included in the network, individuals 161 

chose the unrewarded cue a median of seven times in their first 15 choices with all birds making at 162 

least one incorrect choice and only one bird making no correct choices during the first period, 163 

indicating that individuals had the opportunity to learn to discriminate between rewarded and 164 

unrewarded visual stimuli. Individuals chose an average of 47.9% (±1 SD = 15.0%) correct wells in their 165 

first 15 choices and this increased to an average of 76.1% (±1 SD = 14.8%) correct wells in the final 15 166 

choices, demonstrating a mean population improvement of 28% correct choices. Sixty one individuals 167 

performed above chance levels (50% correct) in their final task performances (median, IQR: 0.80, 0.67 168 

to 0.87), indicative of learning. There was no significant difference between female and male final 169 

performances (t62 = 0.03, P = 0.97). 170 

 171 

Observing social associations in the wild 172 

In July, when the pheasants were 10 weeks old, they were all released on to the site on the same day, 173 

being placed in an open-topped release-pen ~4000m2 situated near to the centre of the farm. The 174 

release-pen was surrounded by an electric fence, which excluded terrestrial predators but was 175 

exposed to aerial predation. Pheasants could disperse from the pen at will into the rest of the 250 176 

acre site which contains lowland deciduous woodland, grassland and fen meadow. The site is not 177 

subject to game shooting or predator control and we provided 40 feeders that dispensed wheat as 178 

feed (see Whiteside et al., 2018). 179 

 180 
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We used Bushnell Trophy motion-activated cameras to continuously monitor feeders (and 181 

surrounding areas) for use by released pheasants. All images were viewed manually. We recorded the 182 

identity of all birds at a feeder via their wing tag numbers and the time of their attendance from 183 

timestamps on the images. Untagged birds or those whose wing tags could not be seen were excluded 184 

from further analysis.  185 

 186 

We considered associations observed during October for our analyses of social structure because prior 187 

to this (August and September), associations were extremely dense and almost exclusively in the 188 

release pen where birds were predominantly living at unnaturally high densities. By October, birds 189 

had dispersed from the pen and so associated more naturally. By November, many birds were dead, 190 

resulting in low statistical power to investigate social structure but this high mortality also provided 191 

us with sufficient power to conduct survival analyses considering the fates of birds included in social 192 

networks in October. For completeness, we replicated all our analyses for social structures derived 193 

from monthly data collected between November 2014 to February 2015 and the qualitative pattern 194 

does not differ, although falling power made interpreting the effects problematic. In March, we began 195 

trapping adults and housing them in captivity as part of a separate experiment, therefore we ceased 196 

collecting association data.  197 

 198 

Determining survival of pheasants in the wild 199 

We investigated the fate of released pheasants using three methods. First, we observed their use of 200 

feeding stations. The final day that a pheasant was recorded at a feeder was deemed to be their day 201 

of death. We acknowledge that birds may have left the study site but highlight that of 30 birds which 202 

were radio tagged, only one individual was detected off of the site during the four months (see 203 

(Madden et al. 2018)). Generally, the majority of released pheasants remain within 1.6 km of their 204 

release pen (Wilson, Drobney & Hallett 1992). Second, we carried out regular searches of the site, 205 
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recording birds observed alive and retrieving any carcasses. We conservatively assigned the day of 206 

death as the day that the carcass was found. These searches were conducted twice a week until the 207 

end of the study. Third, in March, we started to catch pheasants, for a new experiment, using funnel 208 

traps baited with wheat. Birds caught were considered alive at the end of the study period.  209 

 210 

Statistical analysis 211 

Association networks 212 

Weighted association networks, based on co-occurrence at feeder sites, were constructed for October 213 

2014 using the asnipe package (Farine, 2017). We constructed three networks for this month; a mixed-214 

sex network containing female and male associations combined, as well as two same-sex networks 215 

(one for female-only associations and one for male-only associations). We considered sexes separately 216 

because at that time of year, they exhibit sexual segregation and this may skew their patterns of 217 

assortment (Whiteside et al., 2018). We used a fixed 600 second sliding time window such that all 218 

birds appearing at a feeder within 10 minutes of one another were considered to be in association 219 

with one another. This gambit of the group approach (assuming that all individuals could associate 220 

with all others in our marked population) was used to generate group by individual matrices 221 

(Whitehead & Dufault 1999), and the strength of association between two individuals was calculated 222 

based on simple ratio indices (Cairns & Schwager 1987). For each network, we calculated assortativity 223 

coefficients (Newman 2003) and their standard errors using a jackknife simulation, implemented by 224 

the assortnet package (Farine 2016). ‘Weighted assortativity’ (r) is a coefficient that depicts the 225 

proportion of associations that are between similar phenotypes and is deemed to be more robust to 226 

influential and rare events on perceived social structure than assortativity coefficients derived from 227 

binary networks (Farine 2014). The coefficient ranges from 1 (perfectly assorted, i.e. all edges connect 228 

two nodes of the same phenotype) to −1 (perfectly disassortative, i.e. all edges connect two nodes of 229 

different phenotype), whereby values of 0 are neutrally assorted. From each association network we 230 
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extracted three network metrics for individuals to quantify their social position. The first metric was 231 

an individual’s assortment score and the second two metrics were used to indicate social centrality: 232 

‘degree’, which is the number of associations an individual has, and ‘strength’ which is the frequency 233 

of associations. The individual assortment score indicates how similar or dissimilar an individual’s 234 

social partners are in terms of their cognitive performance. This was generated by deriving the 235 

absolute difference between the cognitive performance scores of each dyad and correlating this 236 

matrix of differences with the matrix of association strengths, using a Spearman’s rank correlation. 237 

Like population assortment values, positive values indicate assortment by cognitive performance and 238 

negative values indicate disassortment by cognitive performances. We used General Linear Models 239 

(LM) to investigate whether any of an individual’s three network metrics was predicted by their 240 

cognitive performance 241 

 242 

Survival analysis 243 

To assess whether cognitive performance and/or social position predicted the number of days a bird 244 

survives after release, we used a Cox’s proportional hazards model (Kleinbaum & Klein 2012) using 245 

the ‘survival’ package (Therneau 2015). This analysis copes well with instances in which we do not 246 

know the exact date of death, such as when we find a carcass but are unsure of exactly when the 247 

individual died, as well as unobserved deaths that occur when individuals ‘disappear’ or deaths that 248 

occur after the study has finished. These data can be censored based on the last sighting. Individuals 249 

that were found dead during the study period were given a censored value of 1 (n = 40) and we also 250 

recorded the number of days before they died. Individuals that were seen alive at the end of the 251 

study period were given a censored value of 0 (n = 61). To prevent overcomplicating our survival 252 

models we included only explanatory variables that were significantly related to each other in the 253 

previous analyses, i.e. degree and learning performance. We constructed a single mixed-sex model 254 

with sex included as an explanatory variable and we also included times observed to control for the 255 
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different number of times that individuals were seen during the observation period. To investigate 256 

whether social position was more or less important for individuals of different cognitive ability, an 257 

interaction term between learning performance and degree number was included. To ensure the 258 

collinearity between explanatory variables did not inflate the variance of estimated parameters, 259 

variance inflation factors (VIFs) were checked for all models to ensure these were < 2. For each 260 

model we report the estimated Hazard ratio in mortality risk per unit of each explanatory variable. 261 

We used the ‘survfit’ function to predict the median number of days survived for a poor (first 262 

quartile) and good (third quartile) learners.   263 

 264 

Generating null models 265 

Social network data represents relational data that is non-independent, thus violating assumptions of 266 

many statistical approaches. To generate appropriate null models and determine statistical 267 

significance of relationships between network metrics and cognitive performance, we compared the 268 

observed coefficients of each network, to a distribution of expected coefficients, generated from 269 

permutations. Coefficients from relationships involving individual assortment scores were compared 270 

to a distribution of coefficients generated from edge permutations of networks. These edge 271 

permutations maintained the centrality and trait relationship while testing the assortment by trait 272 

relationship. Coefficients from relationships between learning performance and centrality measures 273 

(degree and strength), as well as coefficients from survival models were compared to a distribution of 274 

coefficients generated from data stream permutations. Data stream permutations involve repeatedly 275 

swapping the observations of individuals between groups and this method accounts for potential 276 

sampling biases by keeping the number of observations per individual constant (Croft et al. 2011). We 277 

conducted 10000 permutations and 100 ‘swaps’ per permutation. Mixed-sex random networks were 278 

generated while restricting the permutations within day, sex and feeder location in order to maintain 279 

meaningful constraints on the structure of the network based on temporal, spatial or other ecological 280 

factors that potentially shape these structures. We restricted within day to control for death or 281 
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dispersal of individuals. We restricted within sex because pheasants assort according to sex during the 282 

months of this study (Whiteside et al., 2018). We restricted within location to control for intrinsic 283 

preferences from individuals for specific locations, independent of preferences for foraging partners. 284 

For the same-sex networks we generated random networks while restricting permutations within day 285 

and feeder location.  286 
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Results 287 

Do pheasants socially assort based on their learning performance? 288 

There was disassortative mixing by learning performances in both the mixed-sex and female-only 289 

networks. Pheasants that were more accurate on the visual discrimination task, hereby ‘good 290 

learners’, were more likely to associate with those that had been less accurate, hereby ‘poor learners’. 291 

This level of disassortment differed from a distribution of randomly generated coefficients (Table 1; 292 

Fig. 1). In male-only networks, the assortment coefficient for learning performances were again 293 

negative, suggesting disassortative mixing but these were not significantly different from random 294 

(Table 1). For details on visits to feeders from which the networks were constructed, see 295 

Supplementary Information X.  296 

 297 

Table 1: Weighted assortment (r) by learning performance within mixed-sex and single-sex 298 

networks calculated from associations at feeding stations in the wild by released female and male 299 

pheasants. Values in bold represent significant p-values (p < 0.05) deduced from comparison of 300 

observed coefficient to expected coefficients (generated from 10,000 data stream permutations) 301 

 Mixed-sex Female-only Male-only 

r 

 

p 

-0.304 ± 0.137 

[95% range = -0.300 - -0.241] 

0.001 

-0.497 ± 0.288 

[95% range = -0.490 - -0.359] 

0.001 

-0.154 ± 0.072 

[95% range = -0.203 - -0.127] 

0.311 

  302 
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 303 

Figure 1: Social associations at feeding stations in the wild for female (green, N = 27) and male (grey, 304 

N = 37) pheasants showing disassortative mixing by learning performance. Node size represents % 305 

of correct choices on a visual discrimination task, i.e. larger nodes represent higher % correct. Line 306 

thickness represents strength of association between nodes.   307 
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Do individuals with different learning performances occupy different social positions? 308 

There was a negative relationship between individual assortment score and learning performance, 309 

suggesting that good learners associated more with individuals less similar to themselves in terms of 310 

learning performance (disassorted), while poor learners were more assorted (mixed-sex and female-311 

only networks; Table 2, Fig. 1). However, this relationship was not significantly different from a 312 

distribution of randomly generated coefficients. Good and poor learners differed in how central they 313 

were in the mixed-sex network. There was a negative relationship between degree number and 314 

learning performance and this was significantly different from random suggesting that poor learners 315 

had more associates (i.e. higher degree) than good learners. The same negative relationships between 316 

individual assortment and the number of associates with learning performance were seen in male-317 

only and the female-only networks but were not different from random (Table 2, Fig. 1). The 318 

relationship between learning performance and the number of associates was positive in female-only 319 

networks but this was not different from random (Table 2, Fig. 1). Learning performance was not 320 

related to association strength in either of the single-sex or mixed-sex networks (Table 2).    321 
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Table 2: Regression coefficients for the relationship between learning performances and three 322 

measures of social position (individual assortment, degree and the strength of these associations) 323 

from pheasants’ associations at feeding stations. Negative relationships indicate that individuals 324 

that were less accurate by the end of testing were: more assorted and had more and stronger 325 

associations. Values in bold represent significant p-values (p < 0.05) deduced from comparison of 326 

observed coefficient to expected coefficients (generated from 10,000 data stream or edge 327 

permutations) 328 

 Mixed-sex Female only Male only 

 Assortment Degree Strength Assortment Degree Strength Assortment Degree Strength 

b -0.087 -2.420 -0.340 -0.032 1.719 -0.262 -0.542 -11.017 -0.980 

p 0.349* 0.030 0.397 0.463* 0.104 0.471 0.252* 0.317 0.144 

*Distribution of coefficients generated from edge permutations 329 

 330 

Does an individual’s social position or learning performance predict their survival? 331 

In mixed-sex networks there was a significant interaction between learning performance and the 332 

number of associates on the probability of survival, with good learners that had between one and four 333 

associates having a slightly lower risk of death than poor learners with the same number of associates, 334 

but this difference in risk was equalised when individuals had 0 or >4 associates (learning * degree: 335 

regression coefficient = -0.008, hazard ratio = 0.993, Lower 95% CI = 0.926, Upper 95% CI = 1.063, z = 336 

-0.215, n = 60, p = 0.040; Fig. 2). The predicted median survival time among pheasants with two 337 

associates was 87 and 105 days for poor and good learners, respectively. There was no difference in 338 

hazard risk between the sexes (sex (males): regression coefficient = 0.927, hazard ratio = 2.527, Lower 339 

95% CI = 1.110, Upper 95% CI = 5.678, z = 2.226, n = 60, p = 0.780). These results controlled for variation 340 
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in the amount of times that individuals were observed (times observed: regression coefficient = -0.04, 341 

hazard ratio = 0.960, Lower 95% CI = 0.934, Upper 95% CI = 0.983, z = -3.221, n = 60, p = 1.000).  342 

 343 

Figure 2: The relationship between degree number and learning performance on the hazard risk of 344 

pheasants (controlling for sex and the number of times observed). The first and third quartiles of the 345 

learning performance distribution represent good (black line) and poor (grey line) learners, 346 

respectively. A hazard ratio greater than 1 indicates an increased risk of death with a change in the 347 

explanatory variable; a hazard ratio of exactly 1 indicates no difference in risk with a change in 348 

explanatory variable; a hazard ratio of <1 indicates a decreasing risk in death with a change in 349 

explanatory variable.   350 
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Discussion 351 

Individual variation in learning ability predicts subsequent social structure and the complex interplay 352 

between these factors has consequent survival implications for pheasants. Generally, stronger 353 

associations were observed between individuals of less similar learning performances, indicative of 354 

mixing based on learning performances, and poor learners were more socially central in these 355 

networks. Among individuals with between one and four associates, good learners survived for longer 356 

than poor learners, however, among individuals with none or more than four associates, variation in 357 

learning performances did not influence survival. Our findings highlight that to understand how 358 

cognitive traits may be selected for and thus evolve, it is important to appreciate how these traits both 359 

structure and are distributed within the social environment because an individual’s social position 360 

commonly has fitness consequences.  361 

 362 

Our observations support the suggestion that an individual’s cognitive ability and their social 363 

environment are not independent (Ashton et al. 2018b; Wascher et al. 2018). We assessed cognitive 364 

performance under standardised social and environmental conditions, early in life when individuals 365 

had not encountered 75% of the population, and then observed social structures months later. An 366 

individual’s learning accuracy, assessed when they were five weeks old, predicted the (number and 367 

type of) individuals they associated with when they were five months old. Because our learning 368 

measure was collected from voluntarily participating birds and we did not exclude revisits to 369 

unrewarded wells, we could not control for inter-choice intervals, standardise the probability of an 370 

individual making a correct choice within or between sessions, or standardise the total number of 371 

rewarded wells presented to each individual (see SI 3). Despite these three issues adding noise to our 372 

learning measure, an individual’s learning accuracy, assessed when they were five weeks old, 373 

predicted the (number and type of) individuals they associated with when they were five months old. 374 

Thus, the social structure we observed was not formed prior to the assay of cognitive ability and was 375 
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unable to exert an influence on their early life cognitive performance. Instead, the social structure 376 

observed later in life may arise because individuals persistently exhibit different learning abilities that 377 

underpin variation in their behavioural strategy (Aplin & Morand-Ferron, 2017; Katsnelson et al., 378 

2011). Subsequently, these behavioural strategies may bias association patterns. We found support 379 

for our first prediction that there would be non-random mixing leading to disassortment by learning 380 

ability in the population. We suspect that poor learners may behave as ‘scroungers’, relying on social 381 

rather than personal information and accompanying good learners while foraging at feeders. Such 382 

negative assortment based on individual tendency to use personal or social information when locating 383 

food resources is seen in foraging aggregations of geese (Kurvers et al. 2010), but contrasts with the 384 

more usually observed positive assortment based on morphological or behavioural features (size: 385 

(Krause, Godin & Brown 1996); consistent behavioural traits (Aplin et al., 2013; Carter et al., 2015; 386 

Croft, Krause, & Darden, 2009; Massen & Koski, 2014). We found some support for our second 387 

prediction that these poor learners would also adopt a more socially central position to maximise their 388 

access to social information (as in (Aplin & Morand-Ferron, 2017)). Poor learners were more socially 389 

central in terms of the number of associates they had, but not in terms of their strength of 390 

associations. This suggests that poor learners associate with many different individuals, rather than 391 

maintain repeated associations with the same individuals. Our third prediction was that there would 392 

be a negative relationship between an individual’s learning ability and their assortment score. 393 

Specifically, we predicted that poor learners would actively choose to associate with good learners 394 

because of the benefits of scrounging available to them. In contrast, good learners would be less 395 

selective in their partners or indeed exert no preference over associates because they thrive using 396 

personal information and do not rely on associate to locate food resources. However, the relationship 397 

between an individual’s learning performance and their level of assortment was not significantly 398 

different from null models.    399 

 400 
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The fitness consequences of an individual’s social position, specifically the number of associates that 401 

they had, were mediated by the individual’s learning performance. Among individuals that had 402 

between one and four associates, those that were good independent learners benefitted more 403 

strongly than poor learners from increased survival chances, indicated by the interaction between 404 

learning performance and the number of associates being significantly different to null models. This 405 

suggests that for individuals with a low number of associates, a greater ability to collect and store 406 

personal information provides individuals with survival benefits. We suspect that when poor learners 407 

that opt to use social information have this few associates, they face the risk of decreased survival 408 

perhaps because the range of good learners that utilise personal information is limited. Why this 409 

pattern is not evident when individuals had no associates (i.e. risk of mortality was equal for learners) 410 

requires further investigation. We suspect that our ability to predict survival for those with no 411 

associates is imperfect because only two individuals had zero associates compared with 10 individuals 412 

with one associate. For individuals with more than four associates, variation in learning ability did not 413 

influence survival. For pheasants, individuals with more associates at feeders have a lowered 414 

predation risk, perhaps due to increased net vigilance by group members (Whiteside, Langley, & 415 

Madden, 2016). Subsequently, poor learners may lower their chances of predation and enhance their 416 

survival by associating with many others and paying the cost of decreased foraging efficiency for the 417 

benefit of improved survival via vigilance. It is unclear why the transition of fitness benefits occurs at 418 

four associates. Whiteside et al., (2016) showed that harems of nearly four individuals provided 419 

optimal benefits from balancing foraging and vigilance and that harems of this size were most 420 

commonly observed in the wild. The Whiteside et al. (2016) findings were derived during the breeding 421 

season, several months after the winter feeding associations that we used, and depended on sex 422 

differences in vigilance behaviour which were not considered in this current study. 423 

 424 
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The relationship between learning performance and social position were generally seen in the mixed-425 

sex and female-only networks, but not in male-only networks. This may be because, in pheasants, 426 

females are the more consistently gregarious sex. During the winter months, males compete for 427 

territories and associations between males at feeding stations are likely to be related to dominance 428 

interactions, such as displays and contests (Mateos & Carranza 1997) for the acquisition of a territory 429 

(Robertson 1997). In contrast, females may share feeding associations as a prelude to the formation 430 

of female groups which collectively visit and sample advertising males during the breeding season.  431 

 432 

Our observations demand further detail if we are to comprehensively understand the evolution of 433 

cognitive abilities within a social context. In order to understand the strength and direction of 434 

selection, we also need a better understanding of the consistency of an individual’s social network 435 

position (Aplin et al., 2015) over time and context. Our results are also specific to association networks 436 

at feeding stations, we are therefore unable to generalise our findings to other types of network or 437 

behaviours, such as associations during foraging in open landscapes or during roosting. Exploring how 438 

different types of networks are structured according to cognitive traits within the same individuals 439 

would be an interesting avenue for future research as this would highlight the contexts in which these 440 

traits are, or are not, important for shaping social behaviour and inducing differential fitness 441 

consequences. We have yet to demonstrate the mechanisms by which assortment based on early life 442 

cognitive performance arises. Social preferences (specifically preferences for same or different sex 443 

associates) may arise early in life for pheasants (Whiteside et al., 2017) and patterns of association 444 

vary over their lifetime (Whiteside et al., 2018). One productive approach would be to understand 445 

how learning ability manifests in individual’s foraging and social behaviour and the cues to others that 446 

this may provide.  447 

 448 



24 
 

Our findings demonstrate that an individual’s social position later in life is a consequence of their early 449 

life learning performance and that both factors affect their survival chances. In a previous study, our 450 

failure to incorporate social structure into analysis may explain why we did not find a significant 451 

relationship between learning performance and survival (Madden et al. 2018). Therefore, we suggest 452 

that the fitness consequences of an individual’s cognitive ability is modulated by the social 453 

environment that the individual constructs and lives in. This influences how selection acts on such 454 

individual differences in cognitive ability and means that simple relationships between cognitive 455 

ability and fitness may be confounded by the social environment. This can lead to frequency-456 

dependent mechanisms in which an individual’s fitness depends on its social environment (e.g. 457 

(Dubois, Giraldeau & Reale 2012)). Considering cognitive traits in the context of social structure is 458 

helpful because currently most studies suggest strong positive selection for specific (Smith et al. 2015; 459 

Maille et al. 2016; Sonnenberg et al. 2019) or general (Ashton et al. 2018a) cognitive abilities. Strong 460 

directional selection implies that traits should rapidly reach fixation or undergo continued 461 

exaggeration such that species might be expected to exhibit uniform/or extremely high specific or 462 

general cognitive abilities. This is seldom observed. The mediating effects of the social environment 463 

revealed in this study means that the direct relationship is perturbed and the fitness benefits and costs 464 

of particular cognitive abilities are contingent on the social context in which the individual lives.   465 
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             622 

SI 1 - Learning performances 623 

Of the 64 birds that completed at least 100 choices and were included in the association networks, 624 
individuals chose the unrewarded cue a median of seven times in their first 15 choices with all birds 625 
making at least one incorrect choice and only one bird making no correct choices during the first 626 
session, indicating that individuals had the opportunity to learn to discriminate between rewarded 627 
and unrewarded visual stimuli. Individuals chose an average of 47.9% (±1SD = 15.0%) correct wells in 628 
their first 15 choices and this increased to an average of 76.1% (±1SD = 14.8%) correct wells in the 629 
final 15 choices, demonstrating a mean population improvement of 28% correct choices. Sixty one 630 
individuals performed above chance levels (50% correct) in their final task performances (median, IQR: 631 
0.80, 0.67 to 0.87), indicative of learning. There was no significant difference between female and 632 
male final performances (t62 = 0.03, P = 0.97). 633 

  634 
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SI 2 - Descriptive statistics for association networks 635 

We recorded 3416 visits across 40 feeding stations from 101 marked pheasants during October 2014 636 
(Table S1). Individuals were observed a mean ± se 34.66 ± 9.15 times. In the mixed-sex network there 637 
was a mean association strength of 0.38 and a mean degree of 9. There was a significant correlation 638 
between the strength and degree of associations (Spearman’s correlation: rs = 0.787, n = 101, p < 639 
0.001).  640 

 641 

Table S1: Descriptive statistics for social networks generated from associations at feeding stations 642 
by female and male pheasants, in mixed-sex and same-sex networks. The table shows the total 643 
number of individuals per network, the number of groups (gambit-of-the-group approach), number 644 
of individuals within each network to complete the learning task and the number of individuals that 645 
we could obtain an individual assortment score for, based on the focal individual and their 646 
associates learning performances.  647 

 Mixed-sex Female-only Male-only 

Individuals n 101 53 48 

Groups n 3500 1262 2838 

Learning n 64 27 37 

Assortment n 60 19 34 

 648 

  649 
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SI 3 - Confounds of our learning measure 650 
We highlight two potential problems with our measure of learning ability. First, the probability of 651 
making successive correct choices in a given session was not standardised. Within a session, once a 652 
bird made a correct choice, this well was opened and was removed from the possible options. 653 
Therefore, with each successive correct choice, the probability of making the next correct choice was 654 
lowered. For example, the probability of making a correct first choice is 0.5 (12/24 wells) and this 655 
decreases to a probability of 0.48 (11/23 wells) of making the second correct choice, due to one 656 
opened correct well and 12 unchanged incorrect wells. Second, individuals differed in the number of 657 
sessions taken to reach 100 choices. Incorrect wells were blocked and visually unchanged if selected 658 
(i.e. not opened), this meant that birds could make multiple incorrect choices in a given session and 659 
therefore individuals varied in their experience with the apparatus. Birds included in this study made 660 
a median of 21 choices per pokebox apparatus (IQ range 12-28). Learning measures were derived from 661 
birds that experienced a median of 5 pokeboxes (IQ range 4-7). By not standardising the availability of 662 
rewarded wells within or between individuals from choice-to-choice or the inter-choice intervals 663 
within sessions, we suspect that our learning measure is noisy. Because we could not ensure 664 
standardisation, we were concerned that birds experiencing fewer pokeboxes would have less 665 
opportunity to learn and hence we expected them to exhibit lower learning performance. Therefore, 666 
we explicitly tested this relationship. Contrary to our expectations, we found that birds which 667 
experienced fewer poke boxes actually exhibited greater learning performance (Rs = -0.39, n = 62, P = 668 
0.0019). Because birds could have no prior knowledge of how many pokeboxes they would be able to 669 
experience, we cannot conceive of a mechanism by which our failure to standardise testing conditions 670 
introduced bias in learning performance, although we acknowledge that such imperfect testing 671 
conditions undoubtedly added noise to our measure. However, as all individuals had made incorrect 672 
choices by their second session (see SI 1 - Learning performances), we argue that individuals had the 673 
opportunity to learn the discrimination and the decreasing probability of correct choices reduces the 674 
influence that chance has on final learning performances. Nevertheless, we suggest that our measure 675 
of learning be interpreted with caution.  676 
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SI 3 - R code 677 

############################################ 678 

##### Population-level assortment coefficients ##### 679 

############################################ 680 

# P-value function # 681 

pval<-function(a,b){ 682 

  p<-(1-(sum(b<a)/length(b))) 683 

  bigger<-sum(b<a);smaller<-sum(b>a) 684 

  if(bigger>smaller)p<-(1-(bigger/length(b))) else{p<-(1-(smaller/length(b)))}  685 

  p} 686 

 687 

# Load in data 688 

data<-read.csv("Feeder photo data_asnipe.csv",header=T) # Mixed-sex network # 689 

data<-read.csv("Feeder photo data_asnipe_FEMALES ONLY.csv",header=T) # Female-only 690 
# 691 

data<-read.csv("Feeder photo data_asnipe_MALES ONLY.csv",header=T)  # Male-only # 692 

 693 

attach(data) 694 

summary(data) 695 

 696 

library("asnipe") 697 

 698 

# A time window approach to calculate group co-memberships 699 

Oct_group_by_ind<-get_associations_points_tw(data, time_window = 600, which_days = 700 
62:93, which_locations = NULL) 701 

 702 

# split the resulting list 703 

gbi <- Oct_group_by_ind[[1]] 704 

times <- Oct_group_by_ind[[2]] 705 

locations <- Oct_group_by_ind[[3]] 706 

 707 

# get network 708 

Oct_network<-get_network(gbi) 709 

 710 
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# Add attributes to network 711 

atts<-read.csv("Chick 2014 attributes.csv",header=T)  712 

Sex=as.character(atts$Sex[match(colnames(gbi),atts$Bird)]) # if using mixed-sex network 713 

Shapef=(atts$Shape.final[match(colnames(gbi),atts$Bird)]) 714 

Shapef = as.numeric(as.character(Shapef)) 715 

Oct_network = Oct_network[!is.na(Shapef),!is.na(Shapef)] 716 

Shapef_no.na = Shapef[!is.na(Shapef)] 717 

 718 

# Assortment coefficient ####  719 

library(assortnet) 720 

assort_obs = assortment.continuous(Oct_network, Shapef_no.na, weighted = TRUE, SE = 721 
TRUE, M = 1) 722 

assort_obs 723 

 724 

# Permutations - compare observed to null networks 725 

network <- get_network(gbi, data_format="GBI", association_index="SRI", times=times, 726 
locations=locations)  727 

 728 

# Permute the network, constricting within day, sex and location (remove sex if using same-729 
sex networks) 730 

network_perm <- network_permutation(gbi, data_format="GBI", association_matrix=network, 731 
times=times, days=floor(times/3600), identities = colnames(gbi), within_day=TRUE, 732 
permutations=10000, returns =100,classes = Sex, within_class = TRUE, locations = locations, 733 
within_location = T)  734 

network_perm = network_perm[,!is.na(Shapef),!is.na(Shapef)] #subset to individuals with 735 
score 736 

 737 

# Permuted coefficients 738 

coef.perm = apply(network_perm, 1, function(x) 739 
assortment.continuous(x,Shapef_no.na,weighted=T,SE=F)$r) 740 

coef.obs = assort_obs$r 741 

hist(coef.perm, breaks=100) 742 

abline(v=assort_obs$r,col="red") 743 

 744 

# p value 745 

pval(coef.obs,coef.perm) 746 

 747 
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################################################### 748 

##### Social position ~ Learning performances ##### 749 

################################################### 750 

# Individual assortment function #### 751 

get_ind_assortment = function(assoc_matrix, sim_matrix){  752 

  N = nrow(assoc_matrix) # no. of individuals 753 

  ind_assort = rep(NA,N) # empty vector to hold assortment values 754 

  for(i in 1:N){ 755 

    ind_assort[i] = cor(assoc_matrix[i,-i], sim_matrix[i,-i], method = "spearman") # correlation 756 
between association matrix (excluding themselves/ the diagonal)  757 

  }                                                                               # and their row of similarity matrix 758 

  return(ind_assort) 759 

} 760 

 761 

pval<-function(a,b){ 762 

  p<-(1-(sum(b<a)/length(b))) 763 

  bigger<-sum(b<a);smaller<-sum(b>a) 764 

  if(bigger>smaller)p<-(1-(bigger/length(b))) else{p<-(1-(smaller/length(b)))}  765 

  p} 766 

 767 

# Function for edge perm #### 768 

lrew.degcont<-function(am){ 769 

  a<-graph.adjacency(am,"undirected",weighted=T) 770 

  b<-rewire(a,keeping_degseq(niter=round(ecount(a)))) 771 

  E(b)$weight <- sample(E(a)$weight) 772 

  am.p<-as.matrix(as_adj(b,attr="weight")) 773 

  am.p} 774 

 775 

# get network 776 

Oct_network<-get_network(gbi) 777 

 778 

# Attach attributes 779 

atts<-read.csv("Chick 2014 attributes_all birds2.csv",header=T) 780 

Sex=as.character(atts$Sex[match(colnames(gbi),atts$Bird)]) 781 
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Bird=as.character(atts$Bird[match(colnames(gbi),atts$Bird)]) 782 

Shapef=as.numeric(atts$Shape.final[match(colnames(gbi),atts$Bird)]) #Learning 783 
performances 784 

 785 

# Remove/ignore NAs 786 

Oct_network = Oct_network[!is.na(Shapef),!is.na(Shapef)] 787 

Shapef_no.na = Shapef[!is.na(Shapef)] 788 

 789 

# Build similarity matrix of learning score (assortment scores) 790 

sim = -as.matrix(dist(Shapef_no.na)) 791 

 792 

# Get assortment scores and attach to network 793 

shapef_ass<-get_ind_assortment(Oct_network,sim) 794 

 795 

# Individual assortment ~ Learning: Observed #### 796 

coef.obs = lm(shapef_ass ~ Shapef_no.na)$coefficients[2] 797 

coef.obs 798 

model<-lm(shapef_ass ~ Shapef_no.na) 799 

 800 

# Randomization 801 

coef.r <- matrix(nrow = 1000, ncol = 2) 802 

for(i in 1:1000){ 803 

  e.perm<-lrew.degcont(Oct_network) #do permutation 804 

  shapef_ass.r<-get_ind_assortment(e.perm,sim) #recalculate individual assortment 805 

  coef.r[i,] <- coef(lm(shapef_ass.r ~ Shapef_no.na)) #get the randomized coefficient 806 

} 807 

 808 

# Plot 809 

par(mfrow = c(1,1)) 810 

plot(shapef_ass ~ Shapef_no.na, pch = 16, ylab = "Individual Assortment Score", xlab = 811 
"Learning Score") 812 

abline(lm(shapef_ass ~ Shapef_no.na)) 813 

hist(coef.r[,2],col="black",breaks=100, xlab = "Coefficient Value", main = "") 814 

abline(v = coef.obs, col = "red") 815 
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 816 

# p value 817 

pval(coef.obs,coef.r) 818 

 819 

# Strength and degree #### 820 

# Correlation between degree and strength 821 

strength = rowSums(network) 822 

degree = rowSums(ifelse(network>0,1,0)) 823 

cor.test(strength,degree,method="spearman") 824 

 825 

# Permute the network  826 

network_perm <- network_permutation(gbi, data_format="GBI", association_matrix=network, 827 
times=times, days=floor(times/3600), identities = colnames(gbi),within_day=TRUE, 828 
permutations=10000, returns =100,locations = locations, within_location = T,classes = 829 
Sex,within_class = TRUE)  830 

 831 

# Attach learning performances 832 

Shapef=(atts$Shape.final[match(colnames(gbi),atts$Bird)]) 833 

Shapef = as.numeric(as.character(Shapef)) 834 

 835 

# Degree strength ~ Learning #### 836 

coef.obs = lm(colSums(network) ~ Shapef)$coefficients[2] 837 

coef.obs 838 

 839 

# Extract coeffs from permuted networks and plot 840 

coef.perm = apply(network_perm, 1, function(x)lm(colSums(x) ~ Shapef)$coefficients[2]) 841 

 842 

# Plot  843 

hist(coef.perm,breaks=100,main="Strength~Learning",xlab="Coefficients") 844 

abline(v = coef.obs, col = "red") 845 

 846 

# p value 847 

pval(coef.obs,coef.perm) 848 

plot(coef.perm,type="l") 849 

 850 
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# Degree number ~ Learning #### 851 

coef.obs = lm(colSums(ifelse(network>0,1,0)) ~ Shapef)$coefficients[2] 852 

coef.obs 853 

 854 

coef.perm = apply(network_perm, 1, function(x)lm(colSums(ifelse(x>0,1,0)) ~ 855 
Shapef)$coefficients[2]) 856 

 857 

# Plot 858 

hist(coef.perm,breaks=100,main=" Degree~Learning",xlab="Coefficients") 859 

abline(v = coef.obs, col = "red") 860 

 861 

# p value 862 

pval(coef.obs,coef.perm) 863 

 864 

######################## 865 

##### Survival models ##### 866 

######################## 867 

library(asnipe) 868 

library(survival) 869 

 870 

# Association (feeder) data and survival data 871 

feeder_data<-read.csv("Feeder photo data_asnipe.csv",header=T) 872 

dframe1<-read.csv("Oct_Survival_SN_CP_mixedsex network.csv",header=T) 873 

dframe1 <- dframe1[!is.na(dframe1$Bird),] #get rid of NA rows 874 

head(feeder_data) 875 

 876 

Oct_group_by_ind<-get_associations_points_tw(feeder_data, time_window = 600, 877 
which_days = 62:93, which_locations = NULL) 878 

 879 

gbi <- Oct_group_by_ind[[1]] #the group-by-individual matrix 880 

dates <- Oct_group_by_ind[[2]] #the dates (now properly returned by the asnipe function) 881 

locations <- Oct_group_by_ind[[3]] #the locations (also now correct) 882 

 883 

id <- colnames(gbi) #the IDs in the gbi 884 
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net <-get_network(gbi) #final SRI network 885 

id <- colnames(net) #the IDs in the network 886 

sex <- dframe1$Sex[match(id,dframe1$Bird)] #get the sexes of birds in the network 887 

 888 

dframe1$learning <- scale (dframe1$Shape.final, scale=TRUE, center=TRUE) 889 

dframe1$num <- colSums(net>0)[match(as.character(dframe1$Bird),id)] #get the degree from 890 
the original network, matching bird ID to the names in the network 891 

dframe1$str <- colSums(net)[match(as.character(dframe1$Bird),id)] #get the strength from 892 
the original network, matching bird ID to the names in the network 893 

 894 

# Control for number of days observed  895 

alldays = feeder_data[feeder_data$Date>=62&feeder_data$Date<=93,] 896 

dframe1<-subset(dframe1, (!is.na(dframe1$Shape.final))) 897 

nrow(alldays) 898 

 899 

R= nrow(dframe1) 900 

dframe1$days.obsd = numeric(R) 901 

dframe1$times.observed = numeric(R) 902 

for(i in 1:R){ 903 

  bird = dframe1$Bird[i] 904 

  bird.october = alldays[alldays$ID == bird,] 905 

  october.bird.days = unique(bird.october$Date) 906 

  dframe1$days.obsd[i] = length(october.bird.days) 907 

  dframe1$times.observed[i] = nrow(bird.october) 908 

} 909 

dframe1$days.obsd  910 

dframe1$times.observed 911 

head(dframe1) 912 

 913 

dframe1$Sex <- ifelse(dframe1$Sex == "m",1,0) #change this to numeric (female is intercept, 914 
male = 1) 915 

 916 

# Survival model: Observed coefficients 917 

orig_model <- coxph(Surv(Death,Censored) ~ learning * num + Sex + times.observed, data = 918 
dframe1) #fit your original survival model. This can change however you want, but needs to 919 
match the structure of the model you fit to the permutations 920 
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orig_coef <- coef(orig_model) #save the coefficients 921 

summary(orig_model) 922 

 923 

# Survival model: Permuted coefficients 924 

net_perm <- 925 
network_permutation(gbi,within_day=T,days=dates,within_location=T,locations=locations,ret926 
urns = 100, permutations = 10000) #10,000 permutations, 100 flips per permutation, 927 
constrained within day and location 928 

 929 

#for each permuted network, recalculate degree and re-run the survival model, and then pull 930 
out the coefficients 931 

perm_coef <- apply(net_perm,1,function(x){ 932 

   933 

  dframe1$num.p <- colSums(x>0)[match(as.character(dframe1$Bird),id)] #save the 934 
permuted degree values and line them up with your bird IDs 935 

  perm_model <- coxph(Surv(Death,Censored) ~ learning * num.p + Sex + times.observed, 936 
data = dframe1) #fit a permuted model (same as original but with permuted degree) 937 

  coef(perm_model) 938 

   939 

}) 940 

 941 

# p value 942 

permutation_pval <- sapply(1:length(coef(orig_model)),function(x){ 943 

   944 

  min( c(mean(perm_coef[x,] >= orig_coef[x]), mean(perm_coef[x,] <= orig_coef[x]))  )*2 945 

   946 

}) 947 

 948 

# Put in a table 949 

surv_table <- as.data.frame(summary(orig_model)$coefficients) 950 

surv_table$P_Perm <- permutation_pval 951 

surv_table 952 

 953 

# Hazard plot #### 954 

names(dframe1)   955 
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orig_model <- coxph(Surv(Death,Censored) ~ Shape.final * num + Sex + times.observed, data 956 
= dframe1) #fit your original survival model. 957 

summary(orig_model) 958 

orig_coef <- coef(orig_model) #save the coefficients 959 

orig_coef 960 

poor_learn <- quantile(dframe1$Shape.final,0.25,na.rm=T)  961 

good_learn <- quantile(dframe1$Shape.final,0.75,na.rm=T)  962 

hist(dframe1$num) 963 

curve(exp(orig_coef[5]*x + good_learn*orig_coef[1]*x + good_learn*orig_coef[2] + 964 
good_learn*orig_coef[3] + good_learn*orig_coef[4]),xlim=c(0,6), ylab = "Hazard", xlab = 965 
"Degree", ylim = c(0,2.2), col = "black", lwd = 2) #plot the first curve 966 

curve(exp(orig_coef[5]*x + poor_learn*orig_coef[1]*x + poor_learn*orig_coef[2]+ 967 
good_learn*orig_coef[3] + good_learn*orig_coef[4]),add=T, col = "grey",lwd=2) #second 968 
curve 969 

  970 


