
1 

Analysis of velocity and acceleration trends using slope 

stability radar to identify failure ‘signatures’ to better 

inform deformation trigger action response plans 

R Shellam SRK Consulting, UK 

J Coggan University of Exeter (or CSM?), UK 

Abstract 

Ground strata failure is a major hazard for open pit mines as it has the potential to cause damage to 
property and can result in multiple fatalities. Recently, Slope Stability Radar (SSR) systems have been used to 
continuously monitor pit walls and they can detect slope deformation to sub-millimetre scales. However, 
geotechnical engineers typically have limited prior data to set the required trigger action response plan 
(TARP) thresholds. As a result, arbitrary values or data from other sites are often used to signify dangerous 
deformation rates which can ineffectively trigger alarms.  

Therefore, the primary aim of this investigation was to identify the failure factors which best inform TARP 
thresholds at a particular mine site. Data from 8 open pit failures from the same mine were analysed and 
then compared with data from other published failures. A secondary aim was to a develop a database of 
combined failure events that could be used as a reference to set meaningful TARP levels at other mine sites 
with similar mining conditions.  

The study site failure events ranged in size from 200 to 200,00 tonnes, with most failures occurring in the 
upper part of the slopes within highly to completely weathered rock. Geological and geotechnical 
characteristics of the rock mass for the observed failure modes were also included in the analysis. Multiple 
peak-acceleration and peak-velocity plots were used to determine clustering for the different characteristics 
investigated. It was shown that as the failure size increased so did the peak velocity, suggesting that larger 
failures can accommodate higher total displacement rates. Analysis of the combined dataset showed a clear 
relationship between failure size and failure mode up to approximately 3,000t. However, failure events 
greater than 3,000t do not appear to have clear grouping by failure size, suggesting that other factors may 
control the peak acceleration and velocity rates. This suggests that TARP should consider different trigger 
thresholds based on the expected failure mode and size. However, the accurate recording of all failure data 
across sites with additional characteristics such as, RMR, GSI, weathering and lithology would enable 
improved analysis of velocity trends to provide further insights into factors influencing potential failure. 

It is concluded, that back analysis of slope instability events using log-acceleration and log-velocity plots can 
refine TARP plans for specific sites. However, the consistent collection, processing and filtering of failure 
data across sites is required to improve analysis and implementation of findings. 

Keywords: SSR, TARP, Open Pit, Slope Failure 

1 Introduction 

Many open pit mines now implement SSR monitoring systems as part of the hazard management plan to 
mitigate the risk of slope failure. Over time slope monitoring has progressed significantly. The technology 
has advanced with contemporary systems able to collect data automatically and from multiple sources (e.g. 
SSR and InSAR). This has vastly improved the quality and quantity of information available for monitoring 
and subsequent analysis. However, a robust geotechnical monitoring program is still required to confirm 
the data is being effectively analysed and communicated for safe day-to-day mining operations (Read & 
Stacey, 2009; Osasan & Afeni, 2010; Bar et al. 2016). 

The aim of the project was to identify failure signatures which could help inform TARP thresholds for a 
particular mine site and assess whether this could be applied to other mine sites with similar mining 
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conditions. To achieve this, 8 open pit instability events monitored by SSR were analysed. In addition to the 
SSR data, geological and geotechnical descriptions of the rock mass characteristics were included within the 
database to identify smaller subsets that may be present within the case examples investigated. Finally, the 
results from this study were compared with published results to provide a larger data set for interpretation.   

1.1 Trigger action response plans 

The TARP is a work-flow procedure that comprises of trigger thresholds for different sensors based on the 
system measurement type or geographical location. Typically, TARPs have ‘green’, ‘orange’ and ‘red’ trigger 
levels related to changes in deformation, velocity or water levels indicating increased likelihood of slope 
failure and the associated risk. The TARP is a critical part of the slope monitoring program, as it clearly 
details when monitoring results should be deemed dangerous and appropriate actions taken for 
remediation (Maton, 2002; Read & Stacey, 2009; Bar et al. 2016).  

It is widely accepted that a TARP needs to be tailored to the conditions at a specific mine site (Read & 
Stacey, 2009). The most effective method for calibrating a TARP is to analyse monitoring results from past 
failure events (Carla et al. 2017b). Therefore, implementing an effective TARP can be difficult for onsite 
geotechnical engineers when there is an absence of historical data. As a result, arbitrary values or data 
from other sites are used to signify dangerous deformation rates which can ineffectively trigger alarms. A 
key objective of this project is to present a number of past slope failures monitored by SSR units that can 
provide reference values and help select rational trigger levels for mines sites with similar ground 
conditions.  

1.2 Previous work 

The analysis of slope failures developed from fundamental geotechnical concepts which were identified 
from small scale laboratory testing in the 1950’s (Terzaghi, 1950; Saito, 1965; Fukuzono, 1985). The 
evolution of modern monitoring systems (e.g. SSR), which are able to detect surface displacement at a sub-
millimetre scale with a high sampling rate, has validated many of these concepts. However, this has also 
provided a vast scope for additional research into failure mechanisms and associated deformation. 

Initially, research associated with radar systems was focused on refining time of failure (TOF) prediction 
methods for specific slope failures (Sarunic & Lilly, 2006; Rose & Hungr, 2007; Arosio & Harries, 2010; 
Venter et al. 2013; Dick et al. 2015; Harries et al. 2016). Two eminent methods of analysis were used: 
inverse velocity and slope gradient (SLO). Subsequently, the research focus shifted to identifying ‘signature’ 
parameters across multiple events with the aim of providing TARP thresholds (Carla et al. 2017b; Crosta et 
al. 2017; Farina et al. 2018).  

1.2.1  Failure prediction methods 

Mufundirwa et al. (2010) developed the slope gradient (SLO) method to predict the “life expectancy” of 
failure events by plotting the displacement velocity, multiplied by time on the y-axis and the displacement 
velocity on the x-axis. TOF is obtained by calculating the slope of the resulting graph (Mufundirwa et al. 
2010; Venter et al. 2013). The SLO method was used by Venter et al. (2013) on a number of failure 
examples, showing that the results were sensitive to data averaging for the velocity calculation, in addition 
to the data period used in the slope calculation. Also, Venter et al. (2013) noted that the abstract nature of 
the SLO graphs was difficult for practitioners to easily use, particularly during a failure event. As a result, 
the SLO method has not been widely adopted by the mining industry.  

Rose and Hungr (2007) comprehensively applied the inverse velocity method of Fukuzono (1985) to 4 open 
pit failures using data collected from RTS. They concluded that the method was a powerful tool which 
significantly improved the ability to interpret monitoring data and estimate the TOF.  

Dick et al. (2015) effectively applied SSR data from 8 slope failures to predict TOF using the inverse-velocity 
(Fukuzono, 1985) and slope gradient (Mufundirwa et al. 2010) methods. Dick et al. (2015) proposed new 
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techniques for data filtering, as opposed to traditional data (e.g. prisms) due to the high spatial and 
sampling rate of SSR data. A single and multi-pixel selection procedure, named the ‘percent deformation 
method’ was shown to improve the TOF predictions. In addition, Dick et al. (2015) highlighted the necessity 
to incorporate systematic data filtering and analysing procedures into TARP plans to ensure TOF analysis 
was consistent.  

Carla et al. (2017b) presented 9 slope instability events in a brittle hard rock mine. The brittle rock mass 
resulted in rapid accelerations just prior to failure. Therefore, the short tertiary creep phase was making 
failure prediction challenging. Carla et al. (2017b) highlighted that the onset of slope creep stages (primary, 
secondary, tertiary) were significantly different depending on the failure size, rock type and/or failure 
mode.  

There are many other successful examples of TOF predictions implemented at study sites providing validity 
to the methods presented above (e.g. Harries et al. 2006; Harries et al. 2009; Arosio & Harries, 2010; Carla 
et al. 2017b). The inverse velocity technique is the most widely used method in the mining industry due to 
the relatively simple analysis and interpretation of data (Cabrejo-Lievano, 2013). However, it is widely 
accepted that an early warning failure prediction is only effective if calibrated and contextualised to the on-
site slope characteristics and deformation behaviour. As a result, recent research has been focused towards 
identifying failure ‘signatures’, some of which are outlined below. 

1.2.2  Failure signature identification 

Identifying failure signatures was initially proposed by Federico et al. (2012) when analysing the 
relationship between peak velocity and peak acceleration at the point of failure for 38 events. Federico et 
al. (2012) proposed a linear relationship between the log-acceleration and log-velocity just prior to failure. 
They also outlined the practical use of the chart when historical slope displacement data was not available.  

Newcomen and Dick (2015) expanded the velocity-acceleration analysis by including 5 additional failure 
examples to the Federico et al. (2012) data set. Clustering of results by rock type (volcanic vs sedimentary) 
along the linear trend was observed with volcanic rocks failing at higher velocity and acceleration. Thus, 
Newcomen and Dick (2015) additionally recommended sorting results by failure mode and rock type to 
identify smaller subsets and underlying signatures for different failure events.  

Carla et al. (2017b) used the velocity-acceleration method to analyse 9 open pit slope instability events in 
hard rock, structurally controlled examples analysing failure and non-failures events. Higher velocity and 
acceleration rates were observed for failures compared to non-failure events. In addition, smaller failures 
associated with a single pre-defined discontinuity (i.e. planar) had lower velocity and acceleration rates 
compared to larger events with multiple discontinuities (i.e. more complex failures mechanisms involving 
interaction of several discontinuities). Carla et al. (2017b) suggested that large instabilities are likely to 
consist of numerous interacting blocks moving along a number of different surfaces. This enables the slope 
to accommodate large velocity and acceleration rates with a greater likelihood of block-interlocking 
resulting in eventual stability. Whereas, a single rock block moving on a predefined discontinuity (or pair of 
discontinuities in the case of wedge failures) would only accommodate a small amount of deformation. 
Therefore, it would be more likely to have lower velocity and acceleration rates. In conclusion, Carla et al. 
(2017b) recommended all TARP thresholds need to be calibrated to on-site events, where different alarm 
thresholds are required depending on geometry, size and failure mode properties.  

The above research highlights the need for continual updating of databases to learn from previous events 
and to utilise the recent improvements in data collection and analysis techniques. Therefore, the analysis of 
new failure events will not only improve the identification of failure signatures, but also aid the 
improvement of mine safety.  
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1.3 Study site location 

The open pit mine study site is located within the African Copperbelt, in the south-eastern part of the 
Democratic Republic of Congo and has been operating since 2006. At the time of writing the site operated 
three open pits (Central-North West, Central and East Pit). Figure 1 outlines the general layout of the study 
site indicating the location of the respective open pits, SSR’s and slope instability events.  

 

Figure 1. General layout of the open pits at the site with the locations of the SSR units and slope instability 

events.  

In total, the strike length of the open pits is approximately 3000m and  Table 1 outlines the approximate 
geometry of the three pits. All the benches were 10m high with varying inter-ramp and overall slope angle 
based on the combination of geological rock type, weathering classification and structural domain. 
Typically, inter-ramp angles ranged from 30° to 45° depending on the geotechnical sector.  

Table 1. Approximate geometry of the open pits 

Pit Length (m) Width (m) Depth (m) 

Central North West 900 800 250 
Central Pit 600 400 110 

East Pit 1500 500 140 

2 Methodology 

The aim of this investigation was to identify the failure factors which best inform TARP thresholds at the 
study mine site. Quantitative (SSR deformation data) and qualitative (e.g. geological descriptions failure 
mode) data from 8 open pit failures from the same mine were analysed. A Pearson’s correlation matrix was 
developed using 6 variables (peak velocity, peak acceleration, failure size, start of tertiary phase, 
weathering and RMR) to identify relationships that may exist across the failure case examples. In addition, 
multiple peak-acceleration and peak-velocity plots were used to determine clustering for the different 
characteristics. This method has been utilised by previous researchers and is one technique for identifying 
failure signatures (Federico et al. 2012; Newcomen & Dick, 2015; Carla et al. 2017b).  

Following this, data from the study site was compared with data from other published failures to develop a 
larger dataset for analysis using peak-acceleration and peak-velocity plots. A secondary aim was to a 
develop a database of combined failure events that could be used as a reference to set meaningful TARP 
levels at other mine sites with similar mining conditions.  
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The impact of SSR sampling frequency, line-ofsight (LOS) sensitivity and velocity calculation period are 
critical when deploying SSR units in the field to ensure the system will trigger alarms effectively. Processing 
steps are required to correct SSR data when completing back analysis and are described below. 

2.1 Sampling frequency 

The sampling frequency is defined as the rate at which the SSR can scan the target slope. Vaziri et al. (2016) 
notes that shorter sampling frequency rates aid in the analysis of monitoring data, particularly when 
attempting failure predictions, thus they suggest scan frequencies of a few minutes. The sampling 
frequency is important for three reasons: 

○ Acceleration rates above the maximum detection rate per scan will cause phase ambiguity and phase 
wrapping resulting in erroneous results being generated (Crosta et al. 2017). Therefore, shorter scan 
times will enable a wider range of velocity rates to be detected. 

○ Rockfall, wedge and planar failures in hard rock are characterised by a short acceleration phase prior 
to the collapse (Dick et al. 2015; Carla et al. 2017b). Therefore, if the sampling rate is greater than the 
acceleration phase, deformation may not be detected. 

○ In the late stages of slope instability events, high frequency monitoring data aids failure forecasting 
by identifying acceleration. In addition, accurate time of failure predictions require constant re-
evaluation as new data becomes available (Rose & Hungr 2007; Carla et al. 2017c). During critical 
acceleration events it is recommended to reduce scan time to 2 minutes (Crosta et al. 2017). 
Furthermore, with higher sampling frequency more predictions can be performed (Dick et al. 2014). 

2.2 Line of sight (LOS) sensitivity 

The location of the SSR relative to the slope and failure direction will determine the quantity or magnitude 
of deformation recorded by the system (Carla et al. 2017b). When the SSR is perpendicular to the slope and 
direction of failure 100% of the total deformation vector will be recorded. However, as the scan angle 
increases smaller amounts of the total deformation will be detected. Therefore, the LOS is a data 
processing stage that is required to account for the component of movement not perpendicular to the SSR. 

Carla et al. (2017b) recommended kinematic analysis is undertaken to determine the likely direction of 
failures relative the SSR. Once this is estimated the alarm thresholds can be modified to account for the LOS 
correction required.  

2.3 Velocity calculation period (VCP) 

The VCP is the time period used to calculate the rate of deformation (i.e. velocity). Typically, 1, 5 and 24-
hour calculation periods are used during a failure event to calculate the velocity. Shorter calculation periods 
will provide instantaneous velocity rates. However, they may also introduce noise due to instrumental or 
environmental deformation rates which are similar to the real movement on the wall (Cabrejo-Lievano 
2013). Longer calculation periods have a smoothing effect and provide cleaner data for analysing long term 
trends. As the velocity increases prior to collapse the averaging effect can providing little forewarning to 
the event. 

Failure 8 from the study site examples has been used to highlight the effect of the VCP when attempting to 
predict failures based on Fukuzono (1985) method of linear inverse velocity trends. Figure  outlines three 
VCP (1, 5 and 24-hour) used to predict the TOF 12, 4 and 2 hours prior to the collapse (red star indicating 
the actual failure time). Chart A shows analysis 12-hours prior to collapse while deformation rates were still 
relatively small. The 24-hour calculation period provides a coherent failure estimation time due to the 
longer averaging period. The shorter VCP introduced excessive noise and as a result no discernible trend 
extrapolated from to predict failure. However, in Chart C, 2-hours prior to failure, velocity rates rapidly 
increased and the 1-hour calculation period predicts the TOF to within 20 minutes. Chart B, 4 hours prior to 
failure, vastly under and over predicts the failure time depending on velocity calculation period and is 
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therefore of little use to the practitioner. This provides an example of the difficulty encountered when 
attempting to predict failures at different stages during the event. 

 

Figure 2. Effect of varying velocity calculation periods to predict time of failure at 12, 4 and 2 hours prior 

to collapse. Data from failure 8 at the study site.  

No prescriptive method has been developed for determining the VCP due to the variability in failure 
deformation rates. However, it is a critical data processing step for reliable failure predictions. Cabrejo-
Lievano (2013) noted that generally longer VCP allow early detection of deformation trends. Whereas, 
shorter VCP’s are affected by the most recent deformation state of the rock mass and will provide better 
TOF predictions close to collapse.   

3 Data 

Eight open pit failures occurring at the study site between 2016-2019 form the primary data set for 
analysis. These range in size from 200t to 200,00 tonnes with most of the failures occurring in the upper 
part of the slopes.  Four of the events have been classified as hybrid failures as one limb of the failure 
developed at a fault or stratigraphical contact introducing a structural control to the event (examples 1, 2, 5 
& 7). Three were rotational failures through weak rock masses (examples 4, 6 and 8) and one event was a 
secondary slip within a pre-existing failure (example 3). The results from example 3 highlight the difficulty 
when monitoring post-failure deformation trends. These results have been included in the study to 
understand the deformation behaviour of unconsolidated soil material.  



7 

Table 2. Summary of the open pit instability events at the study site.

Failure 
number 

Failure 
mode 

Date 
Elevation 

(mRL) 
Pit Mass (t) Geology Weathering Structural 

SSR scan 
frequency 

(min) 

SSR LOS 
sensitivity 

Failure 1 Hybrid 
December 

2016 
1380-1350 East 85,000 R3/Ng 1.1 W5/W4 

Fault 
contact 

4 0.98 

Failure 2 Hybrid July 2017 1350-1300 East 200,000 
Terre 
Rouge 

W6 
2nd fault 

structures 
3 0.94 

Failure 3 
Secondary 

slip 
August 
2017 

1350-1300 East - 
Terre 
Rouge 

W6 - 3 0.94 

Failure 4 Rock mass 
November 

2018 
1330-1310 East 3,000 

Terre 
Rouge 

W6 - 4 0.87 

Failure 5 Hybrid 
December 

2018 
1300-1290 Central 750 R3/Ng1.1 W4 

Fault 
contact 

11 0.94 

Failure 6 Rock mass 
December 

2018 
1320-1310 Central 200 R3 W4 - 11 0.98 

Failure 7 Hybrid May 2018 1380-1320 CNW 165,000 
R3/Terre 

Rouge 
W5/W4 

Fault 
contact 

12 0.77 

Failure 8 Rock mass 
February 

2019 
1370-1350 Central 12,500 Fault Zone W5 - 13 0.34 
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Accompanying the geological and visual description, all the failures were monitored by SSR (Ground Probe 
SSR-XT) which provides highly accurate and frequent surface displacement measurements. All the 
measurements recorded by the SSR were corrected for LOS effect (Carla et al. 2017b). A 1-hour velocity 
calculation period was used in the analysis. 

Failure number 
Corrected 

deformation 
(mm) 

Corrected Peak 
Velocity  
(mm/h) 

Corrected Peak 
Acceleration 

(mm/h2) 

Failure 1 270 60 23.7 
Failure 2 1635 141.4 45.3 
Failure 3 99 26 15.3 
Failure 4 207 30.3 32.2 
Failure 5 52 7.5 6.7 
Failure 6 205 8.7 6.7 
Failure 7 999 35.8 16 
Failure 8 114 32.7 14.4 

4 Results 

A Pearson’s correlation matrix with p significance values was developed using six variables to identify 
relationships that may exist across the failure case examples (Table 3). The geological description and 
failure mode were removed from the data set as they are nominal variables without a quantitative value.  

Peak acceleration and peak velocity have a strong positive correlation (r >0.7) with a statistically significant 
result (p< 0.05). This validates the deformation time series charts, showing that continued velocity 
increases up to the point of failure and supports the accelerating creep theory. 

Peak velocity has a strong positive and statistically significant (r >0.7 and p< 0.05) correlation to failure size, 
suggesting that as the failure size increases so does the peak velocity. A similar result was observed by Carla 
et al. (2017b) that suggested larger failures can accommodate higher total displacements and velocity rates 
due to multiple planes interacting and interlocking. 

No significant correlation was observed in the current data set between failure size and onset of tertiary 
creep. This could be due to the limited historical record in a number of failures where SSR monitoring was 
started shortly before collapse.  

Weathering has a strong correlation to acceleration and to a lesser extent velocity. The results for 
weathering should be used with caution as the values are ordinal. However, a basic interpretation may 
suggest that as the degree of weathering increases (i.e. becoming more soil like) the acceleration and 
velocity rates increase. This is broadly expected as soils are more likely to exhibit ductile behaviour which 
would result in higher strain rates (i.e. velocity). 

Overall confidence in the statistical analysis may be reduced due to the small data set (n=7). In addition, it 
was assumed all the variables were independent, although may have a high interrelationship between 
variables. For example, the intensity of weathering will be related to a lower RMR value.  

The statistical analysis concluded the variables with the strongest correlation were peak acceleration, peak 
velocity, failure size and weathering.  
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Table 3. Pearson’s correlation matrix with p significant values for 6 variables for the 7 failure events.  

  
Peak 

Acceleration 
Peak 

Velocity 
Failure 

Size 
Tertiary 
Phase 

Weathering RMR 

Peak Acceleration (r) 1      

P-Value -      

Peak Velocity (r) 0.88 1     

P-Value 0.01 -     

Failure Size (r) 0.6 0.81 1    

P-Value 0.16 0.03 -    

Tertiary Phase(r) -0.07 -0.07 0.48 1   

P-Value 0.88 0.88 0.28 -   

Weathering (r) 0.93 0.68 0.48 0.12 1  

P-Value 0.003 0.09 0.27 0.8 -  

RMR (r) 0.44 0.34 0.15 -0.12 0.27 1 

P-Value 0.32 0.46 0.75 0.8 0.56 - 

Six log-velocity and log-acceleration plots were created to identify trends for the individual variables of; 
weathering, RMR, rock type, failure mode, duration of the final increment of displacement leading to 
failure (i.e. tertiary creep phase) and failure mass. Log-log plots were used to minimise the effect of the 
skewed result of failure 2 which has a high peak-velocity rate. 

Weathering is clustered by the degree of weathering with higher values resulting in higher peak 
accelerations and peak velocity rates (Figure 3A). This indicates that soil like material fails at higher total 
acceleration and velocity rates when compared to rock. Rock material is likely to be brittle and structurally 
controlled, therefore not able to accommodate large deformation rates (Carla et al. 2017b).  

It was expected that RMR results would exhibit a similar trend to weathering with higher RMR material 
failing at lower acceleration and velocity rates indicating a stronger and more brittle rock mass. However, 
no clear trends were observed in the RMR plot (Figure  B). This may be due to the narrow range and low 
RMR values (range of 15 and maximum value 30) in the case examples that did not provide a sufficiently 
broad data set to identify differences.  

Weaker rock types such as Terre Rouge (soil) and contact zones failed at higher velocity and acceleration 
rates as opposed to the R3 rock (Figure  C). This result supports a similar observation from weathering and 
highlights the interrelationship between variables that may exist. 

The two different failure modes recorded (hybrid and rock mass) appear to be grouped separately (Figure  
D). A straight line was fitted between the peak velocity and peak acceleration values for rock mass failures 
indicating a power relationship may exist.  Whereas, hybrid events fit a convex curve indicating increasing 
peak acceleration rates compared to peak velocity rates. The effect of a discrete weak plane as part of the 
failure mode may potentially enable rapid sliding to occur once the yield point is exceeded resulting in 
higher acceleration rates.  

No clear trend was observed for the start of tertiary creep for the different events (Figure  E). Possibly, the 
late deployment of the SSR system in a number of examples resulted in a small time series of data collected 
before collapse. As a result, only the tertiary creep phase was recorded which may provide erroneous 
results.  

Failure size is clustered, with larger events have higher peak velocity and acceleration rates (Figure  F). This 
observation mirrors the statistical analysis presented above and supports the assumption that larger 
failures are able to accommodate higher total displacement rates.  
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Figure 3. Analysis of log-velocity vs log-acceleration for study site examples for weathering, RMR, rock 

type, failure mode, start of tertiary creep and failure mass. NB, the trend lines indicated in 

Figure 4 D are approximations 

Based on the log plots and statistical analysis a TARP was developed for the study site with the aim of 
triggering alarms 12–24 hours prior to collapse (Figure 4). The TARP compares two variables, velocity and 
estimated failure size to ensure mitigating actions are implemented proportional to the risk posed by the 
potential failure. The two variables were selected as they have a positive correlation, visual analysis 
grouping and both can be practically implemented. Weathering was omitted from the TARP as the slopes 
were all moderately to completely weathered and therefore expected to behave similarly. However, as the 
pit progresses it is recommended that areas of the slopes which are less weathered have separate 
thresholds developed. Since the implementation of the TARP all failures successfully triggered alarms at an 
early stage and progressed through the risk matrix as the velocity rates increased. Appropriate and 
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proportional actions were implemented, mitigating the risk to equipment and personnel. It is 
recommended that the TARP is continually reviewed after every failure event to verify alarms are triggering 
effectively. 

 

Figure 4. The slope deformation trigger action response plan implemented based on the failures that 

occurred at the study site  

The single variable analysis completed was adequate in providing basic observations between the seven 
study site examples. However, it was unable to identify the relative importance of each variable which 
would help in setting TARP thresholds based on observations of the slope (e.g. weathering, RMR or failure 
size).   Further the analysis completed assumed each variable was independent. However, it is likely a 
strong interrelationship exists between many of the variables. For example, a rock slope with a high RMR is 
likely to be less weathered. Therefore, it is recommended future analysis accounts for interrelationship.  
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4.1 Comparison to other failures 

To understand inter-site failure trends the study site examples were compared to other published failure 
events from open pit mining examples (Carla et al. 2017b) and landslide events (Mazzanti et al. 2014) 
monitored by terrestrial SSR. Figure 1 outlines 19 events plotted by peak velocity and peak acceleration. 
The size of the circles represent the failure tonnage and colours indicating failure mode.  

Small failures (<1,000t) have the highest clustering in the bottom left hand corner of the figure occurring 
with a peak velocity less than 20mm/h and peak acceleration less than 15mm/h2. However, four events 
occurred outside this range with one extreme anomalous event failing with a velocity of 33mm/h and 
acceleration of 82mm/h2. 

Planar and wedge type failures had a peak velocity rate between 30mm/h to 80mm/h and peak 
acceleration between 25mm/h2 to 45mm/h2. The three large hybrid events appear to overlap the range of 
velocity and acceleration rate observed for the planar and wedge failure modes. Notable the hybrid events 
are on average 50 times larger in mass (average tonnage for hybrid 150,000t v average tonnage planar and 
wedge 3,000t). However, these events have broadly similar velocity and acceleration rates. Carla et al. 
(2017b) suggested that larger failures can accommodate higher total displacements and velocity rates due 
to multiple planes interacting and interlocking in larger events and the results presented here would 
support that statement up to approximately 3,000t. Failure events greater than 3,000t do not appear to 
have clear grouping by failure size, thus other factors associated with failures are likely to be controlling the 
peak acceleration and velocity rates. This conclusion excludes the anomalously high velocity of 141mm/h 
for one event.   

In general, grouping of results was observed as a combination of failure mode and failure size (less than 
1,000t and greater than 3,000t).  The visual grouping observed in this study supports the suggestion by 
Newcomen and Dick (2016) that sorting data by failure mode would potentially identify subsets which exist 
within the examples. It is recommended that additional variables (e.g. RMR, GSI, weathering and lithology) 
are included in later studies to provide further insights into factors that affect the peak velocity and 
acceleration rates.  
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Figure 1. Comparison of peak velocity, acceleration rates, failure size and mode for case study examples 

and additional published sources (Mazzanti et al., 2014; Carla et al., 2017b).  

5 Conclusions and recommendations 

The inverse velocity method has been proven on multiple occasions to predict the TOF. Appropriate 
assessment of SSR scan times, LOS sensitive and VCP can aid in improving the TOF predictions. However, 
the current challenge facing practitioners is setting SSR alarm thresholds that trigger 12-24 hour prior to 
failure to enable failure forecasting. This study has utilised the methods suggested by Carla et al. (2017) to 
identify broader signatures that can be used in TARP plans using velocity-acceleration plots.  

The results from the study site examples show that peak acceleration and peak velocity rates of failures are 
grouped by multiple characteristics. Specifically, the strongest grouping was observed by the degree of 
weathering and failure sizes for the different events. The study site TARP is presented that combines 
actions based on velocity and failure size. To date the TARP has worked effectively with all slope instability 
events identified at an early stage with mitigating actions implemented to provide minimum practical time 
required for safe evacuation. It is recommended that every time a failure event occurs the analysis is 
updated and TARP thresholds revised.  
 
The dataset of 19 failure events showed grouping as a combination of failure size and failure mode up to 
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approximately 3,000 t. Failure events greater than 3,000 t do not appear to have clear grouping by failure 
size or failure mode suggesting other factors are controlling the peak acceleration and velocity rates. 
Therefore, the results from this study suggest the TARP should first consider different trigger thresholds 
based on the expected failure mode. Following this trigger levels can be refined considering failure size 
estimated on either small (<1,000 t) or large (>3,000 t) events.  
 
The main limitation of the present study was the small data set available from the study site and other 
published events. This suggests the need for the development of a larger database incorporating failures 
monitored using SSR data. Farina et al. (2018) also made a similar recommendation and provided a 
workflow for the collection of data so a more reliable analysis method could be developed.  

More broadly, future research is required to keep pace with the increased adoption of automated 
monitoring systems collecting larger quantities of temporal data. For example, a comparison of the failure 
signatures identified from multiple monitoring systems (e.g. SSR, RTS, piezometer and InSAR) for different 
failure events may provide larger, more robust databases for for further analysis (Carla et al. 2018; Farina et 
al. 2018) in order to inform TARP and provide safe operational environments.  
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