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ABSTRACT  

The supply of drinking water in sufficient quantity and required quality is a 
challenging task for water companies. Tackling this task successfully depends 
largely on ensuring a continuous high quality level of water treatment at Water 
Treatment Works (WTW). Therefore, processes at WTWs are highly automated 
and controlled. A reliable and rapid detection of faulty sensor data and failure 
events at WTWs processes is of prime importance for its efficient and effective 
operation. Therefore, the vast majority of WTWs operated in the UK make use of 
event detection systems that automatically generate alarms after the detection of 
abnormal behaviour on observed signals to ensure an early detection of WTW’s 
process failures. Event detection systems usually deployed at WTWs apply 
thresholds to the monitored signals for the recognition of WTW’s faulty processes. 

The research work described in this thesis investigates new methods for near 
real-time event detection at WTWs by the implementation of statistical process 
control and machine learning techniques applied for an automated near real-time 
recognition of failure events at WTWs processes. The resulting novel Hybrid 
CUSUM Event Recognition System (HC-ERS) makes use of new online sensor 
data validation and pre-processing techniques and utilises two distinct detection 
methodologies: first for fault detection on individual signals and second for the 
recognition of faulty processes and events at WTWs. 

The fault detection methodology automatically detects abnormal behaviour of 
observed water quality parameters in near real-time using the data of the 
corresponding sensors that is online validated and pre-processed. The 
methodology utilises CUSUM control charts to predict the presence of faults by 
tracking the variation of each signal individually to identify abnormal shifts in its 
mean. The basic CUSUM methodology was refined by investigating optimised 
interdependent parameters for each signal individually. The combined predictions 
of CUSUM fault detection on individual signals serves the basis for application of 
the second event detection methodology. The second event detection 
methodology automatically identifies faults at WTW’s processes respectively 
failure events at WTWs in near real-time, utilising the faults detected by CUSUM 
fault detection on individual signals beforehand. The method applies Random 
Forest classifiers to predict the presence of an event at WTW’s processes. 

All methods have been developed to be generic and generalising well across 
different drinking water treatment processes at WTWs. HC-ERS has proved to 
be effective in the detection of failure events at WTWs demonstrated by the 
application on real data of water quality signals with historical events from a UK’s 
WTWs. The methodology achieved a peak F1 value of 0.84 and generates 0.3 
false alarms per week. These results demonstrate the ability of method to 
automatically and reliably detect failure events at WTW’s processes in near real-
time and also show promise for practical application of the HC-ERS in industry. 
The combination of both methodologies presents a unique contribution to the field 
of near real-time event detection at WTW. 
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1 INTRODUCTION 

1.1 Motivation 

Water as source of life is crucial for all development and progressing on earth. 

For this reason, a safe drinking water supply is essential not only for human 

health and well-being, but also for the sake of economic and social development 

of the whole mankind. However, for a safe drinking water supply, producing water 

in the required quality and quantity has to be ensured. Nowadays, with a world 

population of over 7 billion people, water is scare and in many parts of the world 

considerable polluted. In 2015 around 660 million people lack access to clean 

water (WHO/UNICEF, 2015) and the World Health Organization estimated that 

in 2008 worldwide 2.5 million people died from water-related diseases (WHO, 

2012). In order to ensure that drinking water can be consumed safely with a high 

level of health protection, certain standards, based on World Health 

Organisation’s guidelines for Drinking-Water Quality, have been defined by 

several authorities in Europe and the UK.  

The Drinking Water Directive (Council Directive 98/83/EC on the quality of water 

intended for human consumption with recently revised Annex II ‘Monitoring’ and 

Annex III ‘Specifications for the analysis of parameters’) aims to protect human 

health from different effects of any contamination of water by monitoring and 

frequently testing of 48 microbiological, chemical and indicator parameters. The 

requirements of the Drinking Water Directive have been transferred into the 

Water Supply (Water Quality) Regulations 2010 in England and Wales, recently 

revoked and replaced by the Water Supply (Water Quality) Regulations 2018.  

However, it is always a great challenge for water utilities to produce safe drinking 

water in an efficient and effective way. In addition to the issue of water scarcity, 

that makes major changes in the use, management and distribution of water 

necessary (United Nations, 2015), many factors can affect the quality of drinking 

water. For example, natural events such as heavy rainfalls, storms, hurricanes, 

droughts, flooding, earthquakes or manmade threats like accidents, operation or 

maintenance errors, point or non-point pollution to water sources and related 

infrastructure, but also threats of terrorist attacks or chemical, biological, and 

radiological contamination pose potential risks for the drinking water quality. 
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Moreover, the realisation that the impact of climate change will lead to a rise in 

major natural disasters and hydrological variability, evinced by an increased 

frequency and amplitude of droughts, floods and hurricanes raised the 

awareness of water industry in this regard. 

The growing concern over water pollution has triggered regulatory action by the 

revision of the mentioned Drinking Water Directive with the focus on establishing 

specifications for the controlling of water quality parameters as well as on 

monitoring of microbiological and chemical parameters. Since the legislation 

always lag behind the recent technological developments, online monitoring 

technologies currently play a limited role here, although future developments may 

lead to technologies which can adequately and cost-effectively monitor these 

parameters (EIP Water Action Group, 2015). It is expected that online monitoring 

technologies will be enshrined in law in near future, latest by the next review of 

the European Drinking Water Directive in 2020. 

Although early detection of water contamination and pollution events is the most 

important, but it is not the only reason that motivates water companies to pursue 

a reliable and timely detection of failure events at their WTWs. Water companies 

are not only challenged with the day by day task to produce water in required 

quantity and quality by WTW’s operation at minimum costs but also by the 

handling of exceptional situations, e.g. in case of WTWs processes need to be 

shut down to prevent failures before affecting customers and/or environment. 

Especially in these situations, ultimate attention is demanded from water 

companies, because they will be judged by their customers and the regulative 

authority how well they manage such adverse situations. Frequent interruptions 

in water supply will cause not only a rise in operational costs, but also will lead to 

fines from the regulator (i.e., DWI) and a bad image in customer’s eyes. Precisely 

these aspects, i.e. the increase of WTW’s operational efficiency, improvement of 

customer service and avoidance of regulatory fines are the main drivers that the 

research work described in this thesis was conducted. 

Early detections of failure events at WTWs processes offer water companies the 

opportunity to reduce the number of unplanned WTW’s shutdowns and 

corresponding interruptions in water supply to customers and enable them to 
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carry out proactive interventions, e.g. to address issues before they reach a 

critical point where the WTWs may need to be shut down. 

The mentioned increase of WTW’s operational efficiency, improved customer 

service associated with less fines from the regulator will likely result in significant 

financial savings for water companies. But apart from the monetary aspects of 

cost savings, water companies will encourage and speeding up the cultural 

change in the water sector required for the implementation of smart water 

technologies. Furthermore, the new technology will give water companies a 

technology lead on UK’s and worldwide water engineering markets. The latter 

aspects are also very important drivers for the research carried out in this thesis, 

since the benefits from a positive image in the public resulting from company’s 

promotion to be ‘innovative’ counts maybe more than any monetary benefits. 

1.2 Background 

Near real time detection of faulty sensors or processes at WTWs is of greatest 

significance for water supply companies. Due to several factors, such as 

frequently varying water demand, changing influent conditions, dynamics in water 

treatment processes and imperfect, missing or incorrect sensor data, controlling 

of WTWs is a difficult task for water companies to manage. 

The importance of controlling WTWs processes in a timely manner can be 

illustrated by following example. Rapidly changing influent conditions, e.g. 

caused by a sudden rainstorm event, have instantaneous impact on WTW’s 

processes. Once a rainstorm appears, a fundamental increase of influent raw 

turbidity will follow, combined with a raise of Dissolved Organic Carbon (DOC) 

compounds as shown in Figure 1-1. These changing conditions have significant 

impact on WTW’s treatment processes (Parsons and Jefferson, 2006) and 

therefore for WTW’s operation. Coagulation and flocculation processes need to 

be adjusted rapidly by elevating the dosage of chemical coagulants and thus 

reduce turbidity levels to finally meet compliance with the standards on drinking 

water quality. 
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Figure 1-1 Raw water quality changes during rainstorm event (Parsons and 

Jefferson, 2006). 

 

This example illustrates one of the challenges water companies have to face in 

their day by day operation to produce water in the required quantity and quality 

at lowest expenditure. To achieve this, WTWs are already heavily monitored and 

automated with a high level of process optimisation and are therefore heavily 

dependent on reliable and accurate sensor data. Usually, Supervisory Control 

and Data Acquisition Systems (SCADA) are used to control treatment processes 

by monitoring of the critical water quality and flow parameters in near real-time, 

but the data is often imperfect collected by SCADA systems (Romano, Kapelan 

and Savic, 2014). 

In UK, most systems used for the recognition of failure events at WTWs usually 

apply thresholds to generate alarms after detecting abnormal behaviour on 

observed signals. However, similar to various near real-time applications 

threshold-based event detection systems have this major drawback that they are 

either frequently robust to minor degree or sensitive to high frequency influences 

associated with a high level of false alarms, since quick fault detection and 

robustness of the system are two conflictive goals (Venkatasubramanian et al., 

2003a). Results of the ‘Water quality event detection system challenge’ report 

published by U.S. Environmental Protection Agency (EPA) (EPA, 2013) have 

shown that event detection performances of the participating detection systems 

vary greatly, and the number of false alarms produced be these systems is 
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generally still high. New and more efficient technologies need to be designed to 

address this issue. 

A broad range of fault detection techniques have been already developed 

(Venkatasubramanian et al., 2003a,b,c) (Miljkovic, 2011) (Maiti and Banerjee, 

2012) (Sin et al., 2012), but only a few were applied for event detection at WTWS 

in industry. This first generation of applications suffers from a range of 

shortcomings (Bernard et al., 2015), i.e. none of these methods is optimal and 

therefore only a limited number is practiced by water companies. In consequence 

- and also motivated by recently occurred events, e.g. Cryptosporidium 

contamination in 2015 - an increased interest on improved event detection 

technologies has induced the need of further research with the focus set on 

innovative, cost-effective near real-time event recognition systems for water 

treatment processes. For this reason, the development of a new technology for 

event recognition at WTWs is a strategic priority for water utilities. 

Several methods already exist with great potential to address above issues. 

Statistical Process Control (SPC) and Artificial Intelligence (AI), especially 

machine learning techniques seem to be particularly suitable for promising 

improvements, since they can extract information useful for operational decisions 

and are usually able to deal efficiently with imperfect sensor data collected by 

SCADA (Romano, Kapelan and Savic, 2014). Although first investigations of 

Artificial Neural Networks (ANNs) for monitoring and controlling WTWs filtration 

processes started already in 2001 (Lennox et al., 2001), most of machine learning 

techniques applied for event detection in the water sector began only recently to 

appear (Oliker and Ostfeld, 2014) (Liu, Smith and Che, 2015a) (Liu et al., 2015) 

with demonstrating continuously promising results.  

Therefore, the focus of the research work that is conducted in this thesis is set on 

the development of a new technology for improved near real-time recognition of 

faulty sensor data and faulty processes at WTWs which combines well-

established SPC methods for fault detection with new machine learning 

techniques for event classification with the aim to address particularly following 

key research questions: 

1) What is the best way to identify faulty WTW sensor data and how and 

when this data can be trusted? 
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2) How reliably and how quickly can degradations in effluent quality, 

abnormal variations in effluent quality and faulty processes at WTW be 

detected?  

3) Is it possible and how best to distinguish a faulty sensor from a faulty 

process? 

4) What are the likely benefits of the new technology and can the new 

technology easily and efficiently be integrated with current industry 

practices? 

1.3 Scope and Objectives 

The overall aim of this work is to develop and validate new methodology and a 

near real-time event recognition system to detect faulty sensor data and faulty 

processes at Water Treatment Works (WTWs). The new technology will enable 

water companies to carry out more proactive interventions in operation the WTWs 

with the potential to prevent failures before they impact customers or environment 

and will lead to an increased efficiency in WTW’s operation, safe money and 

improved customer service as consequence from reduced water supply 

interruptions.  

The developed methodology should be able to identify faulty WTWs sensor data 

and distinguish between faulty sensor data and faulty WTW processes in a timely 

and reliable manner. Furthermore, the new technology has to be cheap in 

implementation and operation.  

The specific objectives are as follows: 

1) To investigate the quality and adequacy of historical data collected from 

various sensors deployed at different WTWs treatment stages, observing 

water quality parameters, such as, pH, turbidity, iron and Chlorine. This will 

be done to define normal and abnormal WTW’s process conditions and 

identify data streams that will be used in the thesis In addition, the objective 

is to use the processed data to define a set of minor and major failure type 

events that will be used for the development and testing of a new detection 

method; 
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2) To establish the baseline by assessing the performance of the existing, 

threshold-based event detection system by using selected WTW’s historical 

sensor data and events. 

3) To develop new methodology capable for WTW’s sensor data validation in 

near real-time by checking, detecting and rectifying erroneous sensor 

readings, missing data and unusual spikes (outliers) as well as by identifying 

sequenced constant sensor measurements (flat line faults). 

4) To develop methodology for the automated near real-time recognition (i.e. 

detection) of failure events at WTWs processes. The new technology should 

detect faulty events at WTWs processes in a reliable and timely manner 

associated with low false alarm rates. 

5) To test, validate and demonstrate the above methodologies on unseen 

historical data and failure events. These demonstrations should display the 

effectivity and efficiency of each technique by the assessment of its detection 

performance. 

1.4 Thesis Structure 

The remainder of this thesis is structured as follows: 

Chapter 2: Literature Review 

The literature review on fault detection methods in general and on specific fault 

detection approaches in the water sector explores key gaps in knowledge in the 

field of detection of faulty events at water treatment works. 

 

Chapter 3: Case Study Description and Data 

Introduces the demonstration site and datasets used throughout this thesis. The 

chapter describes the methods applied for investigating the quality and adequacy 

of historical data collected from various sensors deployed at different WTWs 

treatment stages and the data streams identified this way used for defining a set 

of minor and major failure type events utilised for the development and testing of 

a new detection method. 
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Chapter 4: Event Recognition Methodology 

The chapter outlines the methodologies used for (a) establishing the baseline of 

the existing, threshold-based event detection system, (b) developing the new 

WTW’s sensor data validation methodology in near real-time and (c) developing 

the novel Hybrid CUSUM ERS (HC-ERS). 

Chapter 5: Case Study Applications 

In the fifth chapter, the event detection capabilities resulting from the testing and 

validation of threshold based, modified and novel hybrid CUSUM detection 

systems are demonstrated on corresponding case studies. This chapter also 

describes the assessment of the detection performance of the Hybrid CUSUM 

method by comparing the results with those of the well-established CANARY 

event detection method. 

Chapter 6: Conclusion 

The final chapter summarises the developments and results obtained in the 

course of the research and presents the main conclusions and contributions of 

this work to the research field. Finally, this final chapter outlines the potential for 

recommended further research.  
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2 LITERATURE REVIEW  

2.1 Introduction 

This review of literature introduces fault detection methods in general and outlines 

previous work done in the area of fault detection in the water sector aiming to 

identify key gaps in knowledge in detection of faulty events at water treatment 

works. 

Against the background of a long experience in the field of process control, 

automated fault detection has become of increasing interest to water industry 

since the past 20 years. Various techniques for fault detection at water treatment 

works have been developed and presented (see, e.g., Lennox et al., 2001; 

George, Chen and Shaw, 2009; Housh and Ostfeld, 2015). Fault detection 

methodologies have constantly been evolved, in particular by the application of 

machine learning techniques. This chapter provides a broad overview of general 

fault detection methodologies and specific developments for the water sector. 

However, before continuing with the fault detection methodologies it is important 

to point out some general definitions used in the remainder of this thesis and their 

specific interpretation for fault detection in the water sector. 

The term fault is generally defined as a departure from an acceptable range of an 

observed variable or a calculated parameter associated with a process 

(Himmelblau, 1978). By transferring this fault definition to water treatment 

processes, a fault is defined in this context as abnormal deviation of a water 

quality parameter from its normal process condition. Since various water quality 

parameters, such as pH, turbidity, Iron, etc. undergo significant value changes 

during the treatment processes influenced by diverse factors, e.g. retention times 

after dosing, the occurrence of abnormal process conditions within the water 

treatment processes is very likely. Water quality parameters desired to be 

observed for fault detection at different WTWs processes/stages are provided in 

Table 2-1.  
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Table 2-1 Water quality parameters desired to be observed. 

  

 

Faults are caused by certain events related to errors, malfunctions, failures and 

disturbances or perturbations in the system. Typical faults arising in water 

treatment processes are sensor data errors, sensor or actuator malfunctions, 

equipment faults, e.g. pump failures, and contamination events. Fault detection 

means that a problem occurred in the system has been identified, even the event 

or cause of the problem is not known. Faults can be detected either by model-

based methods, where a priori quantitative or qualitative knowledge about the 

process is needed or by process history based methods, also referred to as data 

driven methods which require a large amount on historical process data 

(Venkatasubramanian et al., 2003a). Based on commonly accepted definitions 

agreed by the SAFEPROCESS Technical Committee (Isermann and Balle, 1997) 

supervisory functions can be determined as follows: 

Fault isolation is pinpointing the type, location and time of a fault, whereas Fault 

identification is determining the size and time-dependent behaviour of the fault. 

Fault diagnosis comprises both fault isolation and fault identification and leads 

generally to the root cause(s) of the problem. 

Monitoring is been defined as a continuous real-time task of determining the 

conditions of a physical system, by recording information, recognizing and 

indicating anomalies in the behaviour. 

In the specific literature the term Fault Detection and Isolation (FDI) is often used, 

whilst by isolation usually fault diagnosis is meant. For better distinction between 

fault isolation and fault diagnosis, the terminology Fault Detection and Diagnosis 

(FDD) is preferred and used in the subsequent sections of this review. 

The overall processes including fault detection, diagnosis and correction of faults 

including the return to normal process operations is determined as Abnormal 

Parameter Raw Water/Inlet Pre-Flocculation Post-Flocculation Post-Clarification Outlet

pH X X X X X

Temperature X X X X X

Turbidity X X X X

DOC X X X

Iron X X X X X

Conductivity X X

Chlorine X X
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Condition Management (ACM) or Abnormal Event Management (AEM). In the 

remainder of this thesis the term event management is used in this context. 

It should be noted that in the course of the work presented in this thesis, the term 

Event Recognition System (ERS) is used in addition to Fault Detection System. 

ERS in this context describes a framework to detect potential events/faults at 

WTW sensors and/or processes and to provide a basis for taking decisions and 

actions to bring back the faulty water treatment process to normal operation. A 

general schematic of an ERS for application at WTWs is shown in Figure 2-1. 

 

 

Figure 2-1 General ERS schematic for WTW application. 

 

The development of a new ERS for water treatment works requires that (i) the 

characteristics to be met by the new system are determined, (ii) a prioritisation of 

these characteristics is carried out, (iii) investigation of fault detection methods, 

reflecting the recent state of art in research and, (iv) the adaptation of the event 

recognition methodology to the requested WTW application.  

Essential characteristics desired for a successful application of a new ERS at 

WTWs have been identified as follows: 

1) Near real time detection – most crucial for fault detection in timely manner. 

2) Reliability - required functions need to be performed in a reliable and safe 

manner. 
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3) Adaptability of the system - the system needs to be adaptable to different 

water treatment processes and locations. 

4) Robustness - the system needs to perform effectively even in the presence 

of diverse process noise. 

5) Low computing time and storage capacity - to meet the requirement of the 

first point, the applied algorithms need to be performed quickly and the 

processed data volume should be manageable. 

6) Cost effectiveness - the system needs to be cheap in implementation and 

operation. 

Implementing all mentioned characteristics in one single system with acceptable 

functionality is a difficult task, since some of them are usually counteractive. For 

example, a system that is designed for a quick fault detection, i.e. near real-time, 

will be highly sensitive and tends to produce a high number of false alarms. 

Although all above characteristics will not usually be met by any single detection 

method, they are useful to benchmark different methods in terms of reliability, 

generality and efficiency in computing etc. (Venkatasubramanian et al., 2003a). 

The following literature review aims to provide a wide overview about the state of 

art fault detection methods and to explore their capabilities respective limitations 

as well as their potential to improve shortcomings of fault detection applications 

used to date at WTWs.  

The literature review report is organised as follows: After this introduction an 

overview of general fault detection methods is given in Section 2.2. This section 

provides a review about the various methodologies of model-based, process 

history based and hybrid fault detection techniques. Section 2.3 presents an 

overview of specific methods developed for fault detection in the water sector, 

structured according to approaches used at WTWs and techniques applied to 

water infrastructure followed by the review of latest developer independent and 

dependent software applications for fault detection at WTWs. Section 2.5 

contains a summary of previous publications and discusses capabilities and 

limitations of the main findings as well as key challenges for the achievement of 

further improvements. The final section 2.6 provides a concluding summary of 

this chapter and presents the key gaps in knowledge identified in detection of 

faulty events at water treatment works. 
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2.2 General Fault Detection and Diagnosis Approaches 

In literature, various fault detection techniques were presented and several 

reviews have been published over the last 20 years (Isermann and Balle, 1997; 

Frank and Ding, 1997; Russell and Braatz, 2000b; Venkatasubramanian et al., 

2003a,b,c; Quin, 2003; Isermann, 2005; Hwang et al., 2010; Alcala and Qin, 

2011; Maiti and Banerjee, 2012; Yin et al., 2012). The vast majority of developed 

methods have found their first application in mechanical and electrical processes 

at this time. Fault detection for chemical processes was only slightly developed, 

but the number of applications was growing (Isermann and Balle, 1997). 

Nowadays new technologies including hybrid systems, i.e. combinations of 

different methods to control even more complex systems and processes are 

favoured, but still need to be further developed. Therefore, general fault detection 

methods and strategies are briefly described in the course of the literature review 

focussing on main principles and fundamentals of the wide variety of fault 

detection techniques and strategies with no claim to completeness.  

The various methodologies reviewed are classified into three groups: model-

based, process history based and hybrid approaches. For the model-based 

techniques a distinction is made between qualitative and quantitative model-

based methods, in literature frequently also referred to as analytical and process 

knowledge-based methods (Frank, 1996). This distinction made between the 

different methodologies is based on the process knowledge and information 

required for each single method. In quantitative model-based approaches, where 

real process data are compared to calculated data from the model, an in-depth 

knowledge about the (usually dynamic) relationships in the process is required to 

describe the process behaviour in mathematical terms. Similar to the quantitative 

model-based methods, the qualitative model-based techniques demand 

knowledge about the physics or chemistry of the system as well as their 

relationships within the process, but in contrast to qualitative methods their 

process behaviour is expressed in qualitative terms by qualitative functions such 

as causalities or rules.  

Contrary to the model based approaches, where a priori knowledge is needed, 

process history based methods require only the availability of a large amount of 

historical process data (Venkatasubramanian et al., 2003c). Some 
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methodologies found in literature were developed as combination of several fault 

detection techniques. Such fault detection strategies, referred to as hybrid 

models are able to complement one another resulting in better performing 

systems. Integrating the complementary features of multiple methods into a 

single approach is one way to develop hybrid methods that could overcome the 

limitations of individual solution strategies (Sin et al., 2012). The hybrid approach, 

which is still at a nascent stage, is an amalgamation of data-based and/or model 

based approaches (Maiti and Banerjee, 2012).  

In general, above classification of fault detection methodologies provides a 

feasible and useful scheme where all reviewed fault detection methodologies, 

strategies and techniques can be categorised into. The classification of the 

different fault detection methodologies is illustrated by the scheme shown in 

Figure 2-2.  

 

 

Figure 2-2 Categorisation of fault detection and diagnosis methods. 
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2.2.1 Quantitative Model-based Methods 

Quantitative model-based techniques make use of static and dynamic 

relationships across system variables and parameters to describe system's 

behaviour in quantitative mathematical functions. The concept of model based 

methods is always the same, whilst in a first step inconsistences, i.e. residuals 

between measured values at the actual operating state and values obtained from 

the model at the expected operating state are generated, a decision rule for 

diagnosis is selected in the second step. This is achieved by comparing the signal 

that has been artificially generated by the analytical model to the real measured 

signal of the system, where a large difference between measured value and 

calculated prediction infers the existence of a fault. Several methods for residual 

generation have been presented in literature, such as observers, parity equations 

and parameter estimation.  

Diagnostic observers utilise ‘observable’ residuals generated by mathematical 

functions that enable the direct detection of faults in a system. Filtering is the 

most used observer technique, especially Kalman filters have been widely 

applied as observers for state estimation (Frank and Wuennenberg, 1989). Due 

to the their restrictive application to linear models, various non-linear observers 

approaches have been presented, including unknown input observers (Frank and 

Ding, 1997), sliding mode observers (Edwards, Spurgeon and Patton, 2000) and 

extended Kalman filters (An and Sepehri, 2005). 

Parity equations are rearranged and usually transformed variants of the input-

output or state-space models of a system (Gertler, 1991; Gertler and Singer, 

1990). In that case, where the generated residuals equal to zero or are 

correspondingly small, i.e. the output of the process matches with the model 

equations (parity), an error-free system is estimated, otherwise the occurrence of 

a fault is presumed. To diagnose multiple faults and to improve fault isolation in 

processes with more than one input and one output, it is possible to design a set 

of structured residuals, so that faults do not affect all residuals (Isermann, 2005).  

Parameter estimation was introduced by Filbert and Metzger (1982) as a fault 

detection strategy for technical systems, which is most frequently used for fault 

detection in mechanical and electrical processes (Isermann and Balle, 1997). The 

basic concept of this method is to construct a reference model that is designed 
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for fault-free operation using previously measured data. Fault detection is 

enabled by calculating the residuals from deviations of on-line estimated 

parameters from their corresponding reference values. 

2.2.2 Qualitative Model-based Methods 

While in quantitative model-based methods the behaviour of a system is 

expressed by mathematical relations between input and output variables, in 

qualitative model-based techniques these relations are described by qualitative 

functions across different variables in a process. A fundamental process 

knowledge is required to describe these qualitative relationships or causalities, 

by means of causal (cause-effect) modelling or rules, i.e. rule-based or fault-

symptom modelling. As shown in Figure 2-2, the qualitative fault detection models 

are divided into two types: causal models and abstraction hierarchies. Causal 

models are subdivided into signed digraphs, fault trees and qualitative physics. 

The idea applying signed digraphs (SDG) for fault detection was first introduced 

by (Iri et al., 1979). This method uses directed graphs (Digraphs), i.e. graphs with 

directed arcs by connecting nodes with positive or negative signs to express 

cause-effect relationships in a system. In this method, the connecting nodes 

represent variables or events, and the edges describe the relationship between 

the nodes, while the direction of change is indicated by the signs. SDG used as 

a rule-based method for fault diagnosis was introduced by Kramer and Palowitch 

(1987). Notable work was presented by Raghuraj, Bhushan and Rengaswamy 

(1999) with the introduction of a new algorithm for sensor network design in 

chemical plants. SDG models are suitable to be used in hybrid models, especially 

in conjunction with expert systems (Severson, Chaiwatanodom and Braatz, 

2015). 

Fault trees originally developed in 1962 by Bell Laboratories are logic diagrams 

(logic trees) representing causal relations by nodes as states and edges as 

relations between fault, events and symptoms. Causalities are expressed by 

condition–conclusion rules and operations (and-or) at each node whilst their 

conclusion extends to other events connected by logic nodes. After a framework 

of causalities is established a fault tree analysis (FTA) follows by determining the 

causal pathways in hierarchy from the faults over events to the symptoms 
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(Fussell, 1974). The inverse way of diagnosis from symptoms to faults, presented 

by Rasmussen in 1975, is known as event-tree analysis (ETA). Ulerich and 

Powers (1988) introduced a fault detection tree using real-time data to verify 

events in the fault tree.  

With Qualitative Physics, also known as common reasoning about physical 

systems, first a model is developed starting from the description of physical 

mechanisms in a system. Without precise knowledge of the parameters and 

functional relationships, an algorithm is used in a second step to determine the 

overall behaviour of the system (Venkatasubramanian et al., 2003b). Resulting 

qualitative behaviour, as source of knowledge, can be used for fault detection. 

Qualitative physics methods for fault detection are most commonly used in 

Qualitative Simulation (QSIM) and in Qualitative Process Theory (QPT) to build 

a prototype first-principles troubleshooting system (Grantham and Ungar, 1990, 

1991). 

Another technique to derive knowledge for qualitative models is the concept of 

abstraction hierarchies based on decomposition. Depending on how the system 

is decomposed into subsystems, structural and functional hierarchies are 

distinguished. (Rasmussen, 1986). Further details on abstraction hierarchies and 

their applications for fault detection can be found in Venkatasubramanian et al. 

(2003b).  

All model-based methodologies, whether quantitative or qualitative require a 

precise a priori knowledge of the modelled system. Therefore, designing a model 

for complex systems, e.g. non-linear chemical processes is a difficult task and 

often runs the risk to be incomplete or flawed. Furthermore, such models usually 

require an immense computational effort. 

2.2.3 Process History-based Methods 

While fundamental knowledge of the physical system is necessary for model-

based fault detection methods, the application of history-based fault detection 

methodologies only requires the availability of a large amount of previous process 

data. Therefore, process history-based methods are also referred to as data-

driven methods. In these methods, fault detection is carried out by identifying 

deviations in the behaviour of the observed processes in comparison to their 
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behaviour in normal or abnormal operating conditions explored from historical 

process data. According to their way of how the used historical data is provided 

and transformed (feature extraction), process history based detection methods 

can be classified into two groups: methods based on statistical techniques and 

those based on Artificial Intelligence (AI) techniques (see Figure 2-3). Statistical 

approaches are widespread particularly in the field of statistical process control 

(SPC), which covers univariate and multivariate methods (Corominas et al., 

2010). For large systems, where the generation of detailed reliable analytical 

models is difficult or not possible, the application of data driven detection models, 

which are mostly quantitative models based on rigorous statistical development 

of the process data is preferred (Verron, Tiplica and Kobi, 2008).  

Statistical methods for fault detection cover statistical classifiers and SPC 

techniques including dimension reduction methods and control charts. The 

following review presents most important developments and progress made in 

the application of those methods. 

2.2.3.1 Statistical Classifiers  

Statistical classifiers make use of pattern recognition methods to achieve fault 

classification. Initial work on the statistical classification of a two class problem 

was carried out by Fisher's linear discriminant function (Fisher, 1938) assuming 

multivariate normal distribution for values within each of the two classes. Bayes 

classifiers, based on the Bayes' theorem, assuming Gaussian distributions with 

equal covariance matrices are considered as optimum classifiers (Fukunaga, 

1972) if the classes are Gaussian distributed. Distance based classifiers, which 

calculate the distance of patterns from the means of various classes are 

frequently used as baseline classifiers for pattern recognition problems. The K-

Nearest Neighbour (k-NN) classifier (Cover and Hart, 1967) as probably the most 

popular distance-based classifier generally uses the Euclidean distance function. 

Similar to Bayes classifier, Euclidean distance based classifiers require Gaussian 

distributions. Quadratic or piecewise classifiers are other types of distribution-free 

classifiers using a quadric surface for the classification of two or more classes. 

2.2.3.2 Principal Component Analysis 

Principal Component Analysis (PCA), including its extension Independent 

Component Analysis (ICA) and Partial Least Squares (PLS) are the most 
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commonly used multivariate data analysis techniques for monitoring and 

modelling dynamic processes, based on dimension reduction of the process 

variables. PCA was invented in 1901 by Pearson (1901) and discovered as a 

basic SPC methodology to manage a large number of process and quality 

variables for continuous process (Kresta, MacGregor and Marlin, 1991) and at 

the same time the oldest multivariate method (Abdi and Williams, 2010). PCA for 

sensor fault detection was introduced by Dunia and Qin (1998) using the method 

for analysing the fault subspace via reconstruction. ICA introduced by (Hérault 

and Ans, 1994) as an extension of PCA is applicable to non-Gaussian 

multivariate processes and, therefore, ICA plays an important role in real-time 

monitoring and diagnosis for practical industrial processes (Zhiwei, Cecati and 

Ding, 2015). PLS developed by Wold (1966) made its breakthrough in the mid-

1980s in SPC applications for complex processes. The ability of handling two 

sets of data, namely predictor and response variables represent a major 

advantage compared to the PCA method. PLS is frequently used to date in the 

chemometrics field, where often a large number of process variables for both 

input and output have to be managed (Montgomery, 2009). 

2.2.3.3 Shewhart and Exponentially Weighted Moving Average Control Chats 

Control charts have been widely used to reduce deviations in manufacturing 

processes. The introduction of Shewhart control charts in 1932 (Shewhart, 1931) 

as first concept for quality control represents the origin in the field of SPC. With 

its variations, such as x-bar charts, s-charts and R-charts, SPC has evolved and 

made further progress with the introduction of the exponentially weighted moving 

average (EWMA) charts, invented by Roberts (1959). The main disadvantage of 

the above control charts is their limitation to control only one single parameter in 

a process. As a multivariate extension of the X-bar chart, the first multivariate 

control chart was introduced with the Hotelling control chart, also known as 

Hotelling's T2 control chart (Hotelling, 1947). Only much later followed the 

multivariate exponentially weighted moving average charts (MWMA) (Lowry et 

al., 1992) as a further development of the univariate EWMA variant. Due to a 

growing interest in measuring product quality and process reliability and 

especially because of their easy implementation, SPC charts have been 

extensively used until now.  
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2.2.3.4 Cumulative Sum (CUSUM) Control Charts 

Cumulative sum (CUSUM) charts monitor the drifts of cumulative sums of the 

observed quality characteristic against time to locate statistically significant 

abnormalities (‘out of control’ points or sequences). CUSUM control charts were 

first introduced by Page (1954) who developed the method to filter general 

changes from random noise and proposed a limit criterion from which to intervene 

in the process. CUSUM charts have been early studied by many authors, e.g. 

Barnard (1959), Johnson and Leone (1962), Ewan (1963) and, have been 

successfully applied especially in the chemical and process industry. There are 

two different ways of presenting CUSUM control charts, namely tabular 

(algorithmic) CUMSUM and V masks (Barnard, 1959). Tabular CUSUM, also 

known as two-sided CUSUM control charts, are preferable for monitoring the 

process mean either for an individual observation or rational subgroup. Rather 

than examining the mean of each subgroup independently as it done by other 

control charts, the CUSUM chart incorporates the information of the entire 

observations. Therefore, the CUSUM chart is more efficient in detecting small 

and moderate shifts in the mean of a process than other control charts, e.g. 

Shewhart charts, X-bar or Hotelling’s T2 charts which are better able to detect 

large process shifts. However, CUSUM control charts tend to respond only slowly 

to large process shifts. Furthermore, the identification and analysis of trend 

patterns is reasonable difficult.  

Lucas and Crosier (1982) have proposed important modifications to the CUSUM 

chart that allow early detection of process shifts using the Fast Initial Response 

(FIR) function for CUSUM quality control schemes. In their study, Lucas and 

Crosier have shown that if the process mean is not at the desired level, an out-

of-control signal will be given faster when the FIR feature is used. Multivariate 

cumulative sum methods have been introduced by Woodall and Ncube (1985), 

who proposed using a set of univariate CUSUMs on principle component to test 

shifts in the mean of a multivariate normal. This has the disadvantage that such 

diagrams would then be less effective in detecting shifts compared to the use of 

the original quality characteristics.  

Crosier (1988) suggested to replace the scalar values of a univariate CUSUM 

control chart by vectors. This multivariate CUSUM scheme, known as MCUSUM, 
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has demonstrated the ability to design CUSUM charts in such a way that it detects 

a specific shift in the mean vector and thus overcomes the disadvantage of 

multivariate Shewhart control charts. Pignatiello and Runger (1990) compared 

multiple univariate and multivariate CUSUM approaches using the average run 

length (ARL) to determine their performance and demonstrated that one-sided 

univariate CUSUM schemes using successive values do not show strong ARL 

characteristics. However, for multivariate control charts, a multivariate normal 

distribution is an important assumption that is used to describe the behaviour of 

the quality characteristics observed. This assumption cannot always be met in 

real situations, for example in systems such as water treatment processes with 

multiple signals, which are observed under harsh conditions and cause a large 

number of sensor errors and faulty sensor measurements.  

Nidsunkid, Borkowski and Budsaba (2017) examined the effect of violations of 

the multivariate normality assumption on the performance of MCUSUM control 

charts using the average run length (ARL) and the standard deviation of run 

length (SDRL). In this research, the authors emphasise the sensitivity (lack of 

robustness) of the MCUSUM control charts to multivariate non-normal 

distributions and consider this a pitfall for process engineers. When applied under 

these conditions, the level of false alarms is likely to increase. Therefore, 

multivariate CUSUM charts lose their practical use in cases where the 

assumption is violated. 

Based on the experience that CUSUM control chats used to monitor the process 

mean are sensitive to outliers, Yang, Pai and Wang (2010) presented a median-

based CUSUM control chart to overcome the sensitivity of usual CUSUM charts 

in response to slight deviations from normality and make the CUSUM scheme 

more robust against outliers. When comparing the performance of the median 

CUSUM charts with the performance of the CUSUM, Shewhart and EWMA 

control charts, it was found that the CUSUM median diagram performs best in 

terms of outlier resistance, whereas the EWMA-X diagram is able to detect 

process shifts faster. 

Recent approaches in the literature also move towards median CUSUM control 

schemes. Cheng and Wang (2018) investigated the effect of measurement errors 

to the performance of median based CUSUM control charts and EWMA median 
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charts. This study showed that both chart types are significantly influenced by 

existing measurement errors and demonstrated that the CUSUM median chart 

performs better for small deviations and EWMA for larger deviations. Rahman, 

Yahaya and Atta (2018) examined the impact of using median and median of 

pairwise averages as location estimators in combination with the median absolute 

deviation about the median (MADn) as scale estimator (denoted as duo median 

based CUSUM charts) on the performance of the CUSUM control schemes. The 

results presented in this work have demonstrated that, in contrast to the standard 

CUSUM control card, the performance of the two duo-median-based CUSUM 

cards remains stable even in the presence of outliers. The last two studies have 

clearly shown the better performance of robust univariate CUSUM control 

schemes compared to the multivariate CUSUM variants when used in non-normal 

environments. 

Compared to above methodologies, AI based fault detection is still an emerging 

technology, which made progressive progress in the mid-1980s with increasing 

computing resources for data acquisition, processing and storage. First attempts 

in this field were presented by Henley (1984) and Chester, Lamb and Dhurjati 

(1984) using expert systems for fault detection. Similar to above statistical fault 

detection methodologies, AI based strategies have found their primary 

applications in systems where an in-depth knowledge of the processes is not 

present or modelling of these processes/systems is too complex. But also, their 

potential to handle imperfect sensor readings make these technologies attractive 

for many fault detection applications. Most promising AI technologies, such as 

expert systems, neural networks (NN), fuzzy logic, Support Vector Machine 

(SVM) and Ensemble Classifiers (Bagged and Boosted Trees) are presented 

below, while knowing that other methods exist. 

2.2.3.5 Expert systems 

An expert system is an intelligent computer program that uses knowledge and 

inference procedures to solve problems that are difficult enough to require 

significant human expertise (Feigenbaum, 1982). Expert systems are widely used 

in fault detection applications since they are easy to develop, accurate, and have 

the ability to reason under uncertainties and provide explanations for decision 

systems (Venkatasubramanian et al., 2003c). But also, Expert Systems have a 
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number of shortcomings, for example the lack of generality, poor handling of 

novel situations, inability to represent time-varying phenomena and to learn from 

their errors as well as their sumptuous development and maintenance (Agneli, 

2010). However, by using expert knowledge, rules and training in conjunction with 

new techniques, i.e. soft computing, models for a broad class of nonlinear 

systems can be represented with arbitrary accuracy (Khoukhi et al., 2012).  

2.2.3.6 Artificial Neural Networks 

Artificial Neural Networks (ANN) are systems of interconnected nodes (i.e. 

artificial neurons) which act as computational elements exchanging data between 

each other arranged in layers. ANNs have been used with a variety of 

architectures, i.e. as single layer feedforward, multi-layer feedforward or recurrent 

networks (Haykin, 2009) for fault classification, fault isolation and fault diagnosis. 

In particular, complying above mentioned multiple approaches, the ANN requires 

data on all possible process conditions at residual generation stage for an 

accurate fault classification in order to learn from system’s behaviour. This can 

be a disadvantage if such required information is not available. On the other hand, 

ANNs are able to model nonlinear system behaviour and complex functional 

relationships across processes without deep knowledge of the physics of the 

system. Furthermore, ANNs are successfully used for classification and nonlinear 

function approximation problems (Sin et al., 2012). In the light of above, ANNs 

are very promising for fault detection and have been extensively applied to fault 

detection and diagnosis (Sobhani-Tehrani and Khorasani, 2009). 

2.2.3.7 Fuzzy Logic 

Fuzzy Logic techniques are widely used in AI for converting quantitative data into 

qualitative categories by segmenting them into fuzzy sets and applying rules of 

reasoning, that mimic comparatively human reasoning. Fuzzy logic approaches 

are widely used in the field of process control (Shaocheng, Bin and Yongfu, 

2005), but are rarely utilised as fault detection strategy, usually in conjunction 

with other qualitative models (Sokoowski, 2004).  

2.2.3.8 Support Vector Machine  

Although the original algorithm for the construction of a linear classifier was 

proposed by Vapnik already in 1963, SVM is a relatively new machine learning 

technique of pattern recognition. SVM is capable of classifying all kinds of data 
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sets with automated mathematical methods based on statistical learning theory, 

that is able to achieve a high degree of generalization and is suitable for dealing 

with problems with low samples and high input features (Zhiwei, Cecati and Ding, 

2015). SVM technique for non-linear classification was introduced in 1992 by 

Boser et al. (Boser, Guyon and Vapnik, 1992). Although the development of SVM 

for fault detection techniques started at the end of the 1990s, the first application 

can be found only in 2006 (Widodo and Yang, 2007). Both, the work on SVM 

based fault detection presented by Yin et al. (2014) that compares the fault 

detection performance of the SVM classifier to the performance of the PLS 

algorithm and the approach of Sahri and Yusof (2014) on the replacement of 

missing data using k-NN analysis prior to SVM learning applied to the data of a 

power transformer showed encouraging results.  

2.2.3.9 Decision Trees and Ensemble Classifiers 

Decision trees or classification trees, whose algorithm was introduced by Morgan 

and Sonquist in 1963, is also rather new in use as a machine learning 

classification technique. Decision Trees predict a response, i.e. 'true' or 'false', 

following the decisions in the tree from the root down to a leaf node. Ensemble 

Classifiers construct more than one decision tree by applying either bootstrapping 

(bagging) or boosting algorithms. Whilst bootstrapping generates replicas of the 

data set and grows decision trees on the replicas to let them vote for the most 

popular class, boosting generates iteratively new weak prediction rules and 

combines these rules into a single strong prediction rule. Prominent and powerful 

bootstrapped classifiers are, Bagged Trees (Breiman, 1999) and Random Forest 

(RT) (Breiman, 2001). AdaBoost (Freund and Schapire, 1997) in conjunction with 

decision trees as weak learners is one of the most popular boosting techniques. 

2.2.4 Hybrid Model-based Methods 

Each of the aforementioned fault detection methodologies feature different 

properties, depending on process knowledge and scale they require, and have 

their specific advantages or disadvantages. Frequently, specifications for a 

certain fault detection technique are not satisfactory served with any particular 

strategy. In these cases, an amalgamation of various techniques is reasonable, 

since certain methods can complement one another and integrating or combining 



Chapter 2 - Literature Review 

 

43 

their advantageous features. The development of a ‘hybrid detection system’ is 

an appropriate strategy to compensate the limitations of one particular system 

(Venkatasubramanian et al., 2003c). 

Hybrid methods for fault detection integrate more than one method within a single 

category (see Figure 2-2) or combine model-based and process history-based 

methods. Qualitative Trend Analysis (QTA) can be considered as most 

established hybrid fault detection methodology. QTA is performed in two stages: 

(i) interval-halving based trend extraction (Dash et al., 2004) and (ii) fuzzy trend 

matching (Dash, Rengaswamy and Venkatasubramanian, 2003). QTA 

techniques have been applied for fault detection, primarily in complex industrial 

and chemical processes. Several frameworks based on QTA technique 

combined with other methodologies were presented, e.g. QTA combined with 

SDG (Maurya, Rengaswamy and Venkatasubramanian, 2007). Reducing 

computational complexity using QTA in combination with a PCA model was 

proposed by Maurya, Rengaswamy and Venkatasubramanian (2005).  

Specific applications using soft computing techniques such as fuzzy logic, neural 

networks and evolutionary algorithms instead of complex model-based 

approaches have attracted increasing interest. For example, a fuzzy model 

instead of physical model has been used for the generation of the parity equations 

(Puig and Quevedo, 2002). A hybrid data-driven and model-based fault detection 

method using SVM for fault detection was presented (Sheibat-Othman et al., 

2014) for chemical reactors with highly nonlinear and dynamic processes and 

proofed its ability in isolating the faults. Several methods combining quantitative 

and qualitative system information for fault detection applying ANNs to minimize 

the probability of false-alarms and missed-alarms were discussed recently 

(Srivastava, Srivastava and Vashishtha, 2014). Although above applications 

display only a small section of the developments in the wide area of fault 

detection, the trend leads clearly towards hybrid models and AI approaches.  

2.3 Fault Detection and Diagnosis Approaches in Water 

Sector 

Detection of failure events at WTWs is gaining increasing importance in the eyes 

of water supply companies due to a raising concern about water contamination 
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by pollutants, water security issues, legal requirements, and not least because of 

the needs to operate processes, in particular water treatment processes more 

effectively. As a result, great attention from both research and industry is focused 

on the development of new technologies for failure detection at WTWs. 

In the water sector event recognition techniques have found their applications for 

the detection of faulty equipment, sensors and processes at treatment works 

(water and wastewater) and for the detection of faults in infrastructure, particularly 

in distribution systems and here mainly for the detection of leakages. Whilst the 

focus of the work presented in this thesis is on near real-time fault detection for 

WTWs, the review extends also to fault detection at water infrastructure, due to 

common features, e.g. detection of faulty sensors. Therefore, literature was 

reviewed in the field of fault detection at treatment works and infrastructure, 

including overlapping approaches, presented in the following sections. 

2.3.1 Fault Detection Methods for Water and Wastewater 

Treatment Works  

At this point, it has to be noted that, due to common principles of fault detection 

techniques for WTWs and Wastewater Treatment Works (WWTW), also fault 

detection methodologies applied to WWTWs are presented in this section. 

Failures at water treatment works can be classified into two types of faults: sensor 

faults and process faults. Sensor faults refer to measurement errors or incorrect 

raw data resulting from faults like drift, bias, precision degradation or even from 

a complete breakdown of the device (Alferes et al., 2013). In contrast to sensor 

faults, process faults relate to either failures of WTW’s equipment, e.g. pump 

breakdowns or operational faults, e.g. dosing faults. Process faults usually cause 

problems in water quality that is described by water properties in terms of 

physical, chemical, thermal, and/or biological characteristics (Ritchie, Zimba and 

Everitt, 2003) and depending on the concentrations of chemical and biological 

parameters present in water. Process faults are usually amenable to detection by 

laboratory-based analytical methods and rectified at the treatment stage 

(Spellman, 2003). But laboratory based detection methods have two major 

drawbacks: they are costly and too slow to develop quick operational response, 

that is necessary for the protection of public health and/or environment if a 
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present failure at WTW’s process reaches a critical point. There is a clear need 

for improved online monitoring systems at all treatment stages of the WTWs 

(Storey, van der Gaag and Burns, 2011; Rosen and Bertrand, 2013). The use of 

appropriate sensor technologies for near real-time monitoring of critical water 

quality parameters is required to comply with this need. 

Nowadays, a wide range of sensors able to monitor various water quality 

parameters in near real-time is commercially offered, but by far not all 

microbiological and chemical parameters can be measured directly by technically 

and economically feasible sensor products. Sensors deployed at WTWs aiming 

to observe the water quality usually measure “supporting” or “indicating” 

parameters including, among others, pH, turbidity, chlorine, electrical 

conductivity, nitrate, manganese and temperature. The responding behaviour of 

this surrogate parameters to different contamination events was investigated in 

the work of Hall and Szabo (2010) that demonstrated the ability of surrogate 

parameters to indicate rapid changes in water quality, caused, for example, by a 

deliberate or accidental contamination event, which in turn cannot be reliable 

detected in an adequate timely manner by conventional sampling and analytical 

methods (Banna et al., 2014). 

However, performing online monitoring in an optimal manner requires a huge 

number of measurement values that have continuously to be refreshed, plausible 

and of good quality (Edthofer et al., 2010). Low data quality will limit the 

meaningfulness of predictions and erroneous data will lead in the worst case to 

faulty conclusions (Rieger et al., 2010). The water quality monitoring report 

published in 2013 by the Government of Newfoundland and Labrador 

(Government of Newfoundland & Labrador, Department of Environment and 

Conservation, Water Resources Management Division, 2011; Pugh, 2013) has 

shown, that sensor data quality is regularly affected by sensor faults like fouling 

and calibration drifts and the utilised sensor technology which makes it difficult to 

reliable assess the quality of measured sensor data. This was also shown by the 

work of Praus (2005) on the assessment of water quality using SVD-based PCA. 

This study demonstrated that hydro chemical data is mostly not normally 

distributed and contains not only important information for treatment technology, 

but also confusing noise, outliers and erroneous or nonsense values. 
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Since the detection of faulty processes at WTWs in near real-time is heavily 

dependent from reliable and accurate sensor data, it is beneficial to monitor 

sensor’s data quality aiming to detect malfunctions or recalibration and 

maintenance intervals on the one hand and to raise the quality level of measured 

sensor data by validation and pre-processing procedures on the other. Several 

methods for validation of the data coming from sensors observing water quality 

parameters at WTW’s can be found in literature. In their work Edthofer et al. 

(2010) presented a number of statistical methods using average, average 

deviations, moving average functions and Holt-Winters algorithm (Holt, 1957; 

Winters, 1960) to detect outliers, discontinuous measurements, noise and drifts 

in measured sensor data. The cleaned data is then used for event detection by 

pattern recognition and spectral analysis techniques (see Section 2.4.2: 

Developer-specific Solutions – GuardianBlue and s::can). When applied to a time 

series of 18 days’ real data measured from sensors deployed at WTWs the 

sensor data validation methods demonstrated their abilities to detect outlier, 

discontinuous measurements, noise and drifts.  

Whilst most of the techniques presented in the literature focus only on the 

detection of water quality events (McKenna et al., 2007; George, Chen and Shaw, 

2009; Garcia-Alvarez et al., 2009; Chen and Huang, 2011) only a few, as above 

described method, apply sensor data validation procedures before carrying out 

event detection. In contrast to above, Talagala et al., (2019) developed a 

framework for the automated detection of outliers in water-quality data from in 

situ sensors caused by technical errors that make data unreliable and 

untrustworthy focussing solely on the identification of errors in the data due to 

issues unrelated to water events. Talagala et al. applied simple rules to filter out 

‘out-of-range’, negative and missing values first, followed by statistical one sided 

derivative transformation to identify outlying instances from typical behaviours. 

The outlier were then classified by the application of several outlier scoring 

techniques as, among others, HDoutliers algorithm (Wilkinson, 2018), KNN-SUM 

algorithms (Madsen, 2018) and the calculated scores compared to a outlier 

threshold determined by the use of Extreme Value Theory (EVT). When 

demonstrated on real water-quality data the methodology improved the 

performance of outlier detection algorithms while maintaining low false detection 

rates. As an initial sensor data validation technology, this appears to perform well, 
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demonstrated on different outlier detection algorithms. 

In the field of fault detection at WTWs history-based methods SPC methods have 

been investigated most frequently starting in the early 2000s. Although the 

research focussed on multivariate methods, predominantly based on PCA very 

few data driven AI and univariate control chart methods were presented.  

Schraa, Tole and Copp (2006) discussed the practical aspects of univariate 

Shewhart, Cumulative Sum (CUSUM), Exponentially Weighted Moving Average 

(EWMA) control charts for advanced fault detection at WWTWs. Due to 

autocorrelation, seasonality and non-constant variance of treatment plant 

measurements, EWMA control charts were evaluated as suitable control 

schemes. Shewhart and CUSUM control charts were assessed as difficult to 

apply. Although this assessment may well be correct for the application of 

standard univariate control charts, it seems to be highly appropriate to perform 

further experiments on these methods, in particular on CUSUM charts to 

investigate their possible adaptability to above features.  

Corominas et al. (2010) developed an objective index used for performance 

evaluation of fault detection methods for water treatment processes. This index 

makes use of penalisation points, which are allotted for false acceptance, 

intermittent fault detection within event duration and false alarms each time the 

fault detection method failed, i.e. as more penalty points are allotted as worse the 

method performs. The usefulness of the performance index was demonstrated 

by experiments utilising Shewhart and four EWMA control chart variants for fault 

detection at wastewater treatment processes. All tested models showed 

moderate and partly poor detection performances explained by their lack of 

adapting to the time-varying and non-linear behaviour of these processes. 

Although the tested models show moderate detection performances, further work 

should be conducted to investigate modifications on control charting methods 

and/or explore their feasibilities for possible combinations with other detection 

methods to possibly adopt desired features in a hybrid system. 

Unlike above univariate SPC techniques, Liu et al. (2015) developed a 

multivariate SPC classification method similar to CANARY (see Section 2.4.1.1) 

using a distance based classifier for detection of contamination events. Within a 

moving window Pearson correlation coefficients were calculated to determine the 
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relationship between signals from multiple sensors followed by the calculation of 

corresponding correlation indicators and Euclidean distance of the formed 

correlation indicator vector. In case that the Euclidean distance violates a default 

detection threshold an alarm is triggered. The method was tested on a dataset 

from a contaminant injection experiment and showed higher true detection and 

lower false alarm rates compared to Linear Prediction Coefficient filter (LPCF) 

method (Hart et al., 2007) and Multivariate Euclidean Distance (MED) method 

(Klise and McKenna, 2006) used as baseline.  

Rosen and Lennox (2001) presented a multivariate SPC method using PCA for 

fault detection at WWTW’s processes. In their work Rosen and Lennox discussed 

also extensions to basic PCA and developed five models from static PCA to 

multiscale PCA (MSPCA). The limitation of static PCA to stationary data, because 

of its inability to capture changing conditions of water treatment processes was 

demonstrated. It was also shown in the study that PCA only using adaptive 

scaling parameters is not able to fully capture these changes neither. It was 

shown that adaptive PCA that makes use of adaptive scaling parameters and 

adaptive co-variance structure as well as multiscale PCA models can solve the 

problem of non-stationary process data. Compared to adaptive PCA the MSPCA 

approaches provide information on one scale at which disturbances in the system 

occur but have the drawback to be more complex than adaptive PCAs, this makes 

the methodology impractical for application in industry. 

George, Chen and Shaw (2009) produced a very similar analytical approach to 

Rosen and Lennox (2001). George, Chen and Shaw applied PCA before using 

Hotelling’s T2 charts for fault detection analysis. However, in contrast to Rosen 

and Lennox, this method was applied for fault detection of multistage drinking 

water treatment processes. When applied to real time series data of 23 measured 

parameters collected from sensors deployed at the test site the method 

demonstrated feasibility to detect abnormal conditions within water treatment 

processes and was able to identify the parameters which contributed to 

disturbances in the process. Although a reasonable high number of parameters 

was used, only a short time period of 14 days was analysed. Due to this small-

scale demonstration, it is hard to tell if the method would adapt well to the 
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seasonality and non-constant variance of WTW’s processes across long time 

periods. 

Alferes et al. (2013) continued the work on PCA techniques and presented a PCA 

based method for real time monitoring of water systems and detection of sensor 

faults inspired by the monEAU vision (Rieger and Vanrolleghem, 2008) aiming to 

achieve an advanced monitoring system with automatic data collection, 

evaluation, correction and alarm triggering. In their study Alferes et al. used PCA 

in combination with T2 and Q-statistics for sensor data validation. Unlike prior PCA 

models, in this work sensor data pre-processing was utilised to remove outliers 

and perform auto-scaling (mean centring and variance scaling) prior to the 

application of the PCA model. Outlier detection is carried out using univariate 

autoregressive models. The pre-processed sensor data is projected to the PCA 

model and faults detected by comparing T2 and Q values against their thresholds. 

When demonstrated on a dataset using eight water quality variables from a 

WWTW’s inlet over a 3 days training period the method identified less than 1% 

of the samples to be abnormal and showed that the methodology enables the 

detection of different kinds of faults at individual sensors. Although this study 

show promise for the technology of sensor data validation, unfortunately, the work 

was tested on a relatively small test dataset with eight variables measured only 

at inlet stage of the WWTW.  

Based on the previous work done on PCA for fault detection Aguado and Rosen 

(2007) produced a new approach for diagnosis of abnormal events at WWTWs. 

Aguado and Rosen applied adaptive PCA combined with two complementary 

control charts (T2 and SPE) and introduced a static PCA model and fuzzy c-

means clustering for fault diagnosis. The tested adaptive PCA approaches have 

demonstrated valid process monitoring most of the time. The study also showed 

that faster adaption results in higher detection speeds but causes a higher false 

alarm rate. Monitoring the process simultaneously by several adaptive models 

was recommended as possible solution. However, this would increase the 

complexity and makes the methodology impractical for application in industry.  

Garcia-Alvarez et al. (2009) presented a very similar approach by combining PCA 

and Fisher discriminant analyses for fault detection and diagnosis at WWTWs. 

Garcia-Alvarez et al. used PCA and applied T2 and Q charts for fault detection 
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and utilised unlike the previous methodology Fisher discriminant analysis for fault 

diagnosis. Although the methodology applied to data of a simulated WWTW 

showed good results in detection and diagnosis of simulated events, the analysis 

of multiple charts necessary for fault diagnosis procedure makes the application 

impractical for daily use.  

Apart from above methods based on statistical techniques several approaches 

using AI were presented in literature. Ruiz, Colomer and Melendez (2007) were 

among the first to combine multivariate statistical process control (MSPC) with an 

AI method. In their work Ruiz, Colomer and Melendez (2007) present Multiway 

PCA (MPCA) and case-based reasoning (CBR) for the assessment of the actual 

state of the WWTW. In contrast to the previous methodology, this technique 

applies PCA to batch data (MPCA) and makes use of artificial intelligence, i.e. 

CBR to diagnose WWTW’s condition. Applied to a pilot plant the methodology 

demonstrated satisfactory diagnostic results and its feasibility of detecting 

abnormal process behaviour and classifying the state of WWTW’s processes in 

near real-time. A notable drawback could be the expert knowledge about 

historical faults necessary for the case reasoning application. 

A similar approach to the work of Ruiz, Colomer and Melendez (2007) for the 

assessment of WWTW’s state was presented by Padhee, Gupta and Kaur 

(2012). In their study Padhee, Gupta and Kaur combined PCA for fault detection 

in WWTW’s processes with a neural network based on backpropagation 

algorithm as classification technique, ascertaining healthy or faulty conditions of 

a multistage WWTW. Sensor data pre-processing by means of bicubic 

interpolation technique for reconstruction of missing data was conducted prior to 

the application of the PCA model. Applied to a reasonable large dataset, this 

methodology demonstrated to be efficient in detecting different faults in WWTW’s 

processes, but further studies are recommended by using ICA or hybrid PCA/ICA 

and comparing different algorithms in backpropagation. Due to a lack of 

information about the number of faults applied in this demonstration, it is hard to 

tell if the method would generalise for the application on WTW’s processes. 

Lennox et al. (2001) presented the first approach found in literature not utilising 

SPC as basis fault detection methodology, like all above techniques. Lennox et 

al. applied ANN to a rapid gravity filtration process in a WTW to optimise WTW’s 
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filtration process in terms of minimising coagulant and ozone dosing as well as 

maximising the output water quality and filter run length. An advisory system 

capable to determine the optimal coagulant and ozone dosing levels was 

constructed. When demonstrated on two years’ time period of data split into 

training, testing and validation periods the method showed to be capable of 

improving process monitoring and control. Although this promising methodology 

was not specifically used for fault detection it could possibly adapted for the 

detection of failure events at WTWs. 

Punal, Roca and Lema (2002) developed an expert system for monitoring and 

diagnosis of anaerobic WWTWs. The methodology applied pre-processed data 

of a pilot scale reactor for diagnosis of the rector’s state and classifies WWTW’s 

state into labels corresponding to the commonest situations in operation. In case 

of abnormal process condition the model provides recommendations for the 

operator. Demonstrated on a small-sized dataset, the methodology showed its 

capability for determining the current conditions of pilot plant’s processes and for 

classifying WWTW’s state into the defined labels. A major drawback of this 

methodology is the deep knowledge about historical process conditions required 

for the application of expert systems. 

Immune Feedforward Neural Network (IFNN) method using an ANN for fault 

detection in water quality monitoring was developed by Chen and Huang (2011). 

The IFNN was constructed with an eight dimensional vector as input (four 

measured water quality parameters at two time steps) and a 5 dimensional vector 

(five types of failure) as output of the network. The neural network’s structure and 

parameters were optimised by training the IFNN with Levenberg-Marquardt 

method followed by the application of an immune algorithm to improve fault 

detection accuracy of the system. This technique was demonstrated on a small-

sized dataset containing eight input and six output parameters and has shown 

feasibility for fault detection by detecting faults faster and more accurately than a 

feedforward NN. Due to the small-sized dataset used for the demonstration, it is 

difficult to say if the method would be capable for the application on WTWs 

processes.  

Lamrini, Lakhal and Le Lann (2014) developed an ANN combined with fuzzy logic 

as classification technique. Fault detection, data validation-reconstruction and 
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predictive control methods were utilised by the decision support tool to predict the 

optimal coagulant dosage to be used for coagulation process in WTWs. The 

decision support tool is built from a framework of four models, (i) classification 

model to identify the functional states of the treatment plant utilising learning 

algorithm for multivariate data analysis (fuzzy methodology) to detect this states; 

(ii) data validation model (NN model) developed by using self-organising maps of 

Kohonen (Kohonen, 1995) to validate invalid data; (iii) data reconstruction model 

(NN model) built by means of self-organising maps algorithm for reconstruction 

of missing data; (iv) coagulant dose prediction (NN model) using multilayer 

perceptron to predict the optimal coagulant dose. When demonstrated on a 

relatively small dataset (2311 samples) containing five water quality parameters 

collected at WTW’s inlet the method proofed its effectiveness and reliability with 

a prediction rate close to 93.6%. Apart from the small dataset used for testing, 

the only notable drawback could be the a priori knowledge necessary of raw water 

descriptors for flexible and reliable prediction.  

Page, Waldmann and Gahr (2017) introduced an adaptive technique for 

monitoring changes in water quality based on multivariate pattern analysis using 

multivariate analysis and artificial neural networks (ANN). The method applies 

self-organizing maps to calculate system states based on six online parameters 

and analyses identified patterns in complex system data, particularly to (i) reduce 

the dimension of the data set, (ii) calculate actual system states based on online 

time-series and (iii) lay emphasis on the similarities and dissimilarities between 

system states. Although the method captured actual changes in system’s state 

and makes them visible, it was shown only on small-sized data of a small-scale 

treatment plant (only one treatment stage) and seemed not have been tested on 

a validation dataset.  

A comprehensive event detection and event management solution was 

presented by (Bernard et al., 2017). The main developments presented in this 

approach are CBRN sensors, Event Detection System (EDS) and Event 

Management System (EMS). The EDS is based on several algorithms: (i) single 

sensor algorithms, which learn the statistical limits, trends and rates of change of 

each variable separately (threshold based), (ii) multi sensor algorithms using 

density functions of past combinations of sensor values, (iii) rule-violation 
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algorithms for testing sensor values with a set of predefined engineering rules, 

and (iv) hazard similarity detection to identify the critical state when water quality 

reaches a hazardous combination. The methodology was tested and evaluated 

in “real life” at three water utilities and has demonstrated to detect successfully 

single contamination events. Since alarms are triggered by each above algorithm 

separately this methodology possibly generates a high false positive rate. 

Piciaccia et al. (2018) developed a data-driven approach for learning the optimal 

control parameters using Support Vector Machine (SVM) algorithm to predict 

WWTWs’ process behaviour in terms of future plant states, estimation of optimal 

chemicals dosage and identification of the most influential parameters. A range 

of parameters, mainly water quality parameters served the input of the classifier 

in order to predict the final turbidity value at WWTWs’ end process that represents 

the water quality as well as WWTWs’ status. Additionally, the framework was 

adopted to address the prediction of chemicals dosage followed by ablative 

analysis for feature elimination (backward elimination) aiming to remove 

redundant parameters. When demonstrated on a reasonable large-sized dataset 

the model predicted 85% of times a correct plant status as well as at any given 

time the amount of chemicals to obtain a satisfactory status. This model showed 

very promising results and appears to be the most applicable and best 

demonstrated classification technique. 

A probabilistic outlier detector implemented by a Deep Neural Network (DNN) for 

anomaly detection at water treatment systems was proposed by Inoue et al. 

(2018). In their work Inoue et al. applied a DNN consisting of a Long Short-Term 

Memory (LSTM) layer followed by feedforward layers of multiple inputs and 

outputs to time series data of a testbed treatment plant for the prediction of 

engineered contamination events. The performance of the DNN was evaluated 

by the calculation of the F-measure and compared to the F-measure (F1 score) 

of a one-class SVM classifier used as baseline method applied to the same 

dataset. Both methods, DNN and SVM demonstrated good detection capabilities 

by generating similar F1 scores of 0.8 and 0.79 respectively. Whilst the SVM 

detects slightly more anomalies, the DNN showed fewer false positives than the 

one-class SVM.  
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Although by far not all fault detection approaches were presented at this point, 

the methods shown above should provide a comprehensive overall view of the 

current state of art in the field of fault detection for water treatment processes. In 

addition, several methods for fault detection at water infrastructure were 

presented in the following section with regard to their possible adaption for fault 

detection at WTWs processes. 

2.3.2 Fault Detection and Diagnosis Approaches for Water 

Infrastructure 

FDD at water infrastructure refers in this context mostly to approaches for drinking 

water distribution systems (WDS). Faults in WDS arise either from abnormal 

hydraulic events, caused by leakage or pipe burst or from water quality events 

caused by deliberate or accidental contamination, or related to water 

discolouration mainly caused by increased levels of manganese and iron (Tumula 

and Danso-Amoako, 2014). In the presence of these events a fast detection and 

localisation of faults within the WDS is most important to prevent significant water 

loss due to hydraulic failures or protect human health in case of contamination. 

In order to fulfil this task in an adequate reliable and timely manner the use of 

real-time sensors, their optimal local placement as well as the utilisation of 

reliable and high-performing event recognition systems is crucial.  

Numerous approaches have been presented in the past referred to sensor 

placement for fault detection in WDS e.g. to solve the problem of optimal sensor 

location for effective contamination detection (Weickgenannt et al., 2010) or to 

maximise the Isolability with a reasonable number of sensors for leakage 

detection (Sarrate, Nejjari and Rosich, 2012), but also to the detection of 

hydraulic sensor faults (Bouzid and Ramdani, 2013), pipe bursts and leakage in 

near real-time (Mounce, Boxall and Machell, 2010; Ye and Fenner, 2011; 

Romano, Kapelan and Savic, 2014). The mentioned approaches only exemplarily 

reflect a small part of the various methods developed in this field. 

However, the focus here is set on fault detection techniques of water quality 

events in WDS. To detect water quality events in WDS following three principal 

tasks have to be carried out: (i) selection of water quality parameters as indicators 

for contamination, (ii) determination of the optimal number and locations of 



Chapter 2 - Literature Review 

 

55 

sensors within the WDS, and, (iii) performing temporal data analysis for possible 

fault identification (Perelman et al., 2012), although in the following review of 

techniques the determination of sensor locations was not taken into 

consideration. 

Arad et al. (2013) developed an ANN model for analysing multivariate water 

quality time series combined with Bayesian sequential analysis for estimating the 

probability of a potential contamination event. The model was tested on real data 

from a water utility and demonstrated to be a powerful tool, although still a high 

number of false alarms was generated for certain scenarios. Further 

improvements on the model including the application of dynamic thresholds were 

proposed by the authors. This could either be achieved by using unequal water 

quality weights or by the integration of multiple sensor information into event 

detection methodology, which latter only can be achieved by multivariate 

analysis.  

With regard to the issue raised in Arad et al. (2013) about integrating multiple 

sensor information, Oliker and Ostfeld (2014) proposed a contamination event 

detection approach with an autonomic decision support system using a weighted 

SVM classifier that provides, in contrast to the model of Arad et al. (2013), a 

multivariate analysis for outlier detection followed by sequence analysis for the 

classification of events. This method was demonstrated on a small-sized dataset 

containing six water quality parameters analysed over a four weeks’ time period 

and has shown increased accuracy and detection ratio compared to the 

aforementioned model.  

Oliker and Ostfeld, 2015 expanded their previous method by combining multiple 

sensor with network hydraulic data. The method applies, in contrast to the 

previous methodology, a minimum volume ellipsoid classifier for outlier detection 

followed by sequence analysis and the extended local and spatial decision rules 

integrating hydraulic data for event classification. The model proposed by Oliker 

and Ostfeld (2015) contains an integrated single spatial warning system by 

parallel event classification incorporating data analysis of all sensors together 

with the hydraulic model of the network and therefore can be classified as hybrid 

model. Although the model demonstrated good true detection ability and clear 

advantages over single sensor approaches, the false positive rate is still very 



Chapter 2 - Literature Review 

 

56 

high. 

Housh and Ostfeld (2015) expanded the model of Arad et al. through the optimal 

integration of detection from all different water quality parameters into the event 

detection framework (ILD method). When applied on the same dataset as used 

by Arad et al enabling a valid comparison the method demonstrated a significant 

improvement in terms of detecting events with higher event probabilities in case 

of true events, but also training for the method is more complex, since the best 

threshold control variables have to be found for all water parameters 

simultaneously.  

Meyers, Kapelan and Keedwell (2017) developed a classification based data 

driven methodology for short-term forecasting of turbidity levels for early 

detection of discoloration events. The threshold based classification method 

applies Random Forest (RF) classifiers to forecast turbidity and the Extra Trees 

variant to reduce the chance of overfitting on used calibration data. When tested 

and verified on a reasonable large-sized dataset containing turbidity 

measurements of a real UK trunk main network, the methodology accurately 

forecasts up to 5 hours turbidity events and hence corresponding discoloration 

events. This model appears to perform well, in particular regarding the low false 

detection rate of around 25% within the 5 hours forecast. 

Zheng, Yekun and Qiao (2018) developed a new methodology for the detection 

of abnormal events in WDSs using a Deep Belief Neural network (DBN) 

integrated with Extended Kalman Filter (DBN-EKF). DBN-EKF makes use of data 

pre-processing by (i) missing data reconstruction, (ii) elimination of duplicated 

values, (iii) interpolation of irregular data, and (iv) removal of sensor failure 

stamps (extreme values and flat line faults) followed by Seasonal-Trend 

Decomposition Procedure based on Loess (STL) to remove the influence of the 

trend component and seasonality. For anomaly event detection the method 

applies a Deep Belief Network (DBN), which involves a two-step training including 

pre-training and fine-tuning by the use of Extended Kalman filter (EKF). When 

demonstrated on a reasonable large dataset of two years raw data and compared 

to several SPC techniques, the method showed ability to detect outliers and 

advantage over compared X-bar, EWMA, CUSUM, Seasonal Hybrid-Extreme 

Student Deviate SPC control chart methods. Since the method was only proofed 
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on a ‘few obvious events’ these results are difficult to interpret. 

Main findings of above reviewed event detection methodologies, which could be 

used favourably for the development of a reliable high performing ERS at WTWs 

are further discussed in section 2.5. Only a small number of fault detection 

methods have found their implementation in specialised software applications 

already used as ERS at WTWs by water utilities. In the following sections 

software applications structured by developer independent and developer 

dependent software solutions as well as promising ongoing ERS software 

developments are presented, starting with the developer independent products. 

2.4 Fault Detection and Diagnosis Software in Water 

Sector 

As presented in the preceding sections, a wide range of methodologies for the 

detection of failure events at water processes have been developed and are 

applicable to the specific requirements in water sector. Although several of these 

methods have shown their capability for reliable and high performing detection 

approaches and for the great need for real-time ERS applications, only a few 

applications have found their implementation in specialised software systems for 

practical use in industry and various of them have not proven their potential to 

reliably detect measurement or equipment failures (Rieger and Vanrolleghem, 

2008) or rather to distinguish between sensor faults and fault processes. In the 

following sections software systems are presented that are already used by 

industry or bearing the potential to be implemented by water utilities in the near 

future. The diverse software approaches presented in the following sections are 

subdivided into developer-independent solutions, which are compatible to 

different sensor types and manufacturers or developer-specific solutions, which 

only can be used with certain sensor brands and finally into ERS software under 

development. 
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2.4.1 Developer-independent Solutions – CANARY, optiEDS and 

BlueBox 

2.4.1.1 CANARY 

CANARY (Hart et al., 2007; Hart and McKenna, 2009) developed by Ensemble 

Vulnerability Assessment Research Team (TEVA), which is composed of 

researchers from EPA, Sandia National Laboratories, the University of Cincinnati, 

and Argonne National Laboratory (EPA, 2010) is an open source computer 

software, written in MATLAB® (MathWorks 2008), that is able to read water 

quality sensor data in real time and can be used by anyone free of charge. The 

software requires input data from water quality sensors coming usually from water 

utility’s SCADA1 system. CANARY is able to include and handle additional 

hydraulic data such as tank levels, flow rates and valve settings. CANARY 

includes several event detection algorithms and enables to identify abnormalities 

in the water quality offline (data supplied offline by the user) or online where the 

data is provided online by the SCADA system.  

The algorithms used in CANARY are (i) time series increments, which is an 

implicit estimation model to predict the value of a water quality parameter at the 

next time step based on the value measured at the previous time step and 

calculates then the difference between the estimated and the actual measured 

value, (ii) a linear filter, denoted as linear prediction-correction filter (LPCF) uses 

a linear predictor to estimate the current value of a time series based on a 

weighted sum of past values, and (iii) the multivariate nearest neighbour 

algorithm to define the background state of the water quality. To aggregate the 

event detection approaches over multiple time steps and to calculate the 

probability for an event a further algorithm is used, denoted as binomial event 

discriminator (BED). Although the algorithms are considered to be very effective 

at detecting water quality changes (Szabo and Hall, 2014) the CANARY platform 

allows to implement and use other fault detection algorithms.  

Training data sets can be used either online or offline before implementation, to 

identify optimal parameter settings (window length and threshold values) to be 

used in the event detection algorithms determining a pattern for normal operation 

 

1 SCADA (Supervisory Control and Data Acquisition): System for remote monitoring and control  
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on typical background water quality. Past applications of fault detection tools have 

shown that changes in water quality due to routine hydraulic operations of a utility 

causes a high false alarm rate (Allgeier and Umberg, 2008). A case study 

application of CANARY as part of the UK multidisciplinary “Pipe Dreams” to 

historic data from a UK distribution system demonstrated that the correlation of 

events to relevant network information, e.g. pipe bursts reduces the number of 

unexplained faults (ghosts) and decreases the false alarm rate (Mounce, Machel 

and Boxall, 2012). One way to overcome this problem is to incorporate improved 

algorithms, which are able to recognize normal changes in water quality due to 

hydraulic operations. The implementation of clustering techniques for identifying 

patterns within time series data and use of water quality template libraries was 

proposed (EPA, 2010). In the meantime, the software is extended by trajectory 

clustering pattern matching algorithms and composite signals capacity, but their 

application did not significantly improve the performance (EPA, 2013). As 

mentioned before online application of CANARY requires input data of online 

sensors and therefore the integration in water utility’s SCADA system, which is 

generally feasible, because CANARY’s implementation is not depending on 

specific sensor manufacturers.  

2.4.1.2 OptiEDS 

The optimal Event Detection System (optiEDS) designed by Elad Salomons 

(OptiWater, 2018) enables monitoring of measured and computed water quality 

parameters such as chlorine, TOC and pH as well as operational data to detect 

anomalous water quality conditions. The system is capable to define a normal 

dynamic baseline of parameters and to monitor large set of data in real-time. 

Furthermore, it allows customized adjustments to utility’s water network. In case 

of detected abnormal process conditions the system triggers an alarm and reports 

the “suspicious” parameters. The software is based on trend analysis to detect 

the deviations from water quality baseline and is able to incorporate the unique 

water network operation logic to provide engineers and operators of water utilities 

with additional knowledge to the conditions of the system. More detailed 

information about the used methodologies and algorithms has not been provided 

by the developer. OptiEDS was one of the systems tested in the EPA EDS 

challenge. EPA constituted OptiEDS a good performance in the detection of basic 

events (EPA, 2013). 
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2.4.1.3 BlueBox 

Since the participation in the EPA EDS challenge new features of the event 

detection system BlueBox (Whitewater Security, 2018) have been developed 

resulting in continuous improvements on the system, which has led to 

implementations and its utilisation by several water utilities in practice. The 

system is able to define and incorporate operational data, such as indication of 

pumps or changes in measurement of operational values, e.g. pressure or water 

flow and can therefore distinguish between suspected abnormal quality changes 

and deviations due to normal operations. Providing additional information about 

correlation between water network operation and changes of water quality to the 

system resulting in an increased accuracy in fault detection. BlueBox is able to 

differentiate whether a change in water quality is caused by an equipment fault, 

e.g. pump breakdown or by a water quality event. Furthermore, the system 

features a self-learning event classification approach enabling the user to 

categorise unknown events as “true” or “false” and establish an event 

classification library whose utilisation probably will result in an increased 

detection accuracy and decreased false alarm rate.  

The feasibility of BlueBox to incorporate time parameters (division into time 

periods) similarly enables the reduction of false alarm rate due to seasonal 

effects. An integrated reporting module allows utility’s operators to generate data 

analysis reports, e.g. alarm statistics or events history. More detailed information 

about the used methodologies and algorithms has not been provided by the 

developer. Further features and improvements including an auto calibration 

approach to configure the EDS automatically for each monitoring station, a 

planning tool for calculation the optimal sensor locations within the WDS and a 

spatial detection module for fault detection in WDS sub regions (EPA, 2013) are 

scheduled in early future.  

2.4.2 Developer-specific Solutions – GuardianBlue and s::can 

In this section two commercially available sensor developer-specific event 

detection systems, namely GuardianBlue and s::can are presented.  
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2.4.2.1 GuardianBlue 

GuardianBlue (Hach Homeland Security Technologies, 2007) developed by Hach 

Homeland Security Technologies monitors continuously total chlorine, 

conductivity, pH, turbidity, temperature and pressure by the water panel module 

and total organic carbon by the TOC analyser. GuardianBlue integrates the sensor 

data provided by the water panel and TOC analyser and analyses the data by the 

application of a proprietary algorithm to calculate the water quality baseline.  

The system analyses collected sensor data every 60 seconds and calculates the 

trigger signal indicating deviations from water quality baseline. If trigger signals 

violate the user defined thresholds the system raises alarms followed by an 

automatically triggered capture of a real-time sample at designated sensor 

locations. The system analyses then plant and agent libraries with containing 

event fingerprints of previous water quality changes to classify the abnormal 

condition. After event classification, the system reports a probability of a certain 

event to the utility’s operator. If no match is found the operator can define the 

event as “unknown event”. GuardianBlue is designed to work with water sensors 

developed by Hatch, which limits the choice of equipment that may be used and 

could be a hindrance to its implementation from water utility perspective (Szabo 

and Hall, 2014).  

2.4.2.2 s::can 

The software approach s::can (s:can, 2013) developed by s::can integrates three 

software modules: (i) sensor- and station management module (moni::tool), (ii) 

data validation module (vali::tool), and (iii) event detection module (ana::tool). All 

necessary operational information about measurement devices, such as 

maintenance, calibration etc. is provided to the user by the integrated sensor- 

and station management software. The real-time validation module ensures that 

only “clean” data are used for further analysis, training and alarms. Several 

statistical methods were applied to remove outliers, correct discontinuous 

measurements, and reduce noise from instruments or measured parameters 

using state estimation and residual classification techniques. Sensor drifts in the 

measurement of the observed parameters were identified by modelling sensor 

readings utilising the Holt-Winters method (Holt, 1957; Winters, 1960). 
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The software module for event detection establish the state of the system and 

triggers an alarm in case a significant deviation from normal state is detected. 

The methods used for calculating individual alarms are static thresholds, multiple 

values outside of tolerance band limits, pattern recognition using specific 

correlations between observed values and changes in the light absorbance 

spectrum of water, assumed that at least one spectrophotometer probe is 

installed. The results of individual alarms are combined to a cumulative alarm, 

which triggers automatically a final alarm if significant abnormal state conditions 

were detected, caused by any alarm individually or a combination of all individual 

alarm algorithms (Edthofer et al., 2010).  

Avoiding non-event-related data entering the detection module results in a 

decrease of the false alarm rate, which has been confirmed by the results in the 

EPA EDS challenge. With 0.9 false alarms per week ana::tool exhibit the lowest 

average false alarm rate of all tested tools (EPA, 2013). The software trains itself 

on the incoming data and after the training period it monitors conventional water 

quality parameters with the feasibility to detect exiguous deviation in water quality 

by tracking changes in the spectral fingerprint, i.e. simultaneous changes in the 

light absorbance spectrum of the water. The software accepts any type of 

developer-specific s::can sensors. A notable drawback of the system could be 

the use of spectrophotometers, since UV/Vis sensors are expensive and still not 

widely used for data analysis at WTWs. 

2.4.3 ERS Software under Development – SAFEWATER and H2O 

Sentinel  

2.4.3.1 SAFEWATER 

The SAFEWATER (SAFEWATER, 2015; Bernard et al., 2015) project funded by 

the EU is investigating a global water management model to detect and mitigate 

chemical, biological, radiological and nuclear drinking water contamination 

events. The aim of the project is the development of a comprehensive water 

management solution including spatial models for detection of abnormal water 

quality events within drinking water system and simulators for the determination 

of contamination sources as well as new water quality sensor technologies. 
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SAFWATER’s solution will be tested by integration into the SCADA systems of 

three water utilities participating in this project.  

The new water management system contains an event detection model based 

on an unsupervised machine learning technology to detect changes of water 

quality parameters and on a decision support tool to provide advice about the 

best mitigation measures in case of a water quality event. An analysis algorithm 

is applied on the data provided by the sensors respective by the SCADA system 

to estimate the location of the contamination source.  

The event detection module learns the normal behaviour of the system as well 

as arising abnormal occurrences and generates indications about its condition by 

using different methods, such as violation of limits, rare combinations of abnormal 

occurrences, similarities to past event situations and violation of rules. Each 

indication is based on one or multiple detectors, which are algorithms to detect 

specific abnormalities in data, e.g. exceeding a statistical limit of a variable. In 

this case the system generates an alert. An event is triggered if several detectors 

are alerting simultaneously. The classification of an event needs to be processed 

by the system’s user, whereat the system is capable to learn from the 

classification and improves its alerting policy.  

Provision is made to incorporate advanced simulations of the hydraulic behaviour 

in the system’s network and the dynamics of water quality parameters to support 

the decision making process of water utilities by utilising existing platforms, such 

as EPANET-MSX and SIR-3S after their enhancement through SAFEWATER. 

The project furthermore includes the development of two innovative water quality 

sensor technologies. For the detection of chemical contaminants a compact 

bacteria-based chemical online sensor based on measuring rapid light changes 

emitted by natural marine luminescent bacteria and for the detection of E.coli 

bacteria an antibody-based sensor will be provided. 

2.4.3.2 H2O Sentinel 

Regarding the event detection system H2O Sentinel under development by 

Frontier Technology, Inc., no valid information was provided as well as for several 

other ongoing approaches, reported by EPA (EPA, 2013) and for this reason it is 

only been given a brief mention here as a notable fault detection software system 
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under development. In addition to the above, the reviewed FDD methodologies 

and approaches in water sector are discussed in the following section. 

2.5 Discussion 

This literature review covers general fault detection methods and previous work 

in the field of event recognition in the water sector as well as specific software 

applications for the use in practice. A various number of methodologies were 

developed in the past years. In this section key findings are discussed and 

suggestions on the further work presented. 

In general terms, it can be noted that only a limited set of already available ERS 

technologies appear to be applicable and practical to be used by the water 

industry. As major drawback, the lack of reliability could be identified, since these 

state-of-art systems still generate a high number of false alarms. This insight was 

confirmed by the published EPA Water quality event detection system challenge 

report (EPA, 2013) whose results of testing five ERS facilities have outlined, that 

the event detection performance of the participant systems varies greatly and the 

number of invalid alerts (false alarm rate) is generally high. None of these 

systems is convincing and hence there is a clear need for the development of 

new technologies enabling the detection of failure events at WTWs in a reliable 

and timely manner. The recent research in this field is focussing to overcome this 

issue and therefore several new fault detection methodologies have been 

proposed in recent past. 

However, the vast majority of methodologies proposed in literature are history-

based fault detection techniques. This is not surprising, since no deep process 

knowledge is required for the application of these data-driven methods. Pure 

quantitative or qualitative model based models are very extensive to develop, 

since modelling of systems with permanently changing conditions such as water 

treatment processes is complex and adapting a model for modifications would be 

to too laborious and time-consuming. Given this context, it is an obvious 

requirement for a successful technique not to be dependent on deep a priori 

knowledge. Only data-driven methodologies meet this condition, but also some 

data-driven methodologies, such as Expert Systems (Punal, Roca and Lema, 

2002) and case-based reasoning techniques (Ruiz, Colomer and Melendez, 
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2007) require knowledge about historical process behaviour. Although it may not 

as extensive as for model-based systems, it is still a reasonable effort and 

frequently not easy to acquire all necessary process knowledge for the successful 

application of these methods, what makes Expert Systems and CBR applications 

impractical for use in industry.  

Most extensively investigated data-driven methodologies applied SPC 

techniques from which the overwhelming part combine multivariate PCA based 

on dimension reduction with diverse classification methods. Details of reviewed 

methods are all summarised in Table 2.2. at the end of this section. Although the 

presented PCA methods have shown promising results, most of them have been 

tested either on short-sized or simulated data, which makes it difficult to compare 

their performance. Furthermore, PCA or extended ICA applications are not easy 

to handle, since first the construction of the model is difficile regarding their 

feature selection and second the analysis of the classification results is 

impractical, because multiple chats have to be reviewed and evaluated by the 

user. The application of univariate SPC control charting methods would enable 

to offset these disadvantages.  

Unfortunately, univariate control charts have not been extensively investigated 

for their fault detection capabilities at WTWs. The moderate detection 

performances demonstrated by the experiments utilising Shewhart, EWMA and 

CUSUM control chart variants (Corominas et al., 2010; Zheng, Yekun and Qiao, 

2018) are difficult to interpret, because either no baseline method for a valid 

comparison was tested or methods were applied by using standard parameter 

settings. Although, or even because these methods have not been further 

investigated, the potential for combining them with appropriate other methods 

aiming to overcome the possible drawback of moderate detection performance 

and take advantage of their easy handling should be explored intensively, which 

was done and will be presented in the further course of this thesis. 

The most successful methodologies found in literature applied AI techniques 

such as artificial neural networks, but also other machine learning classifiers as 

support vector machines. The approach introduced by Piciaccia et al. (2018) has 

proven to be promising for event classification. Most machine learning techniques 

were applied for detection of contamination events and achieved accuracies 



Chapter 2 - Literature Review 

 

66 

between 80-90%. Although the majority of these results have been achieved by 

the application to synthesized datasets and engineered contamination events, 

which are assumed to be detected more easily than minor events, machine 

learning classifiers in combination with SPC techniques for fault detection are 

found to be most promising for the development of the new ERS for WTW. 

A successful application of detection techniques depends also on the quality of 

data used. Only a few approaches were presented in the literature that provide 

separate data validation methodologies. Improving the quality of measured data 

from sensors deployed at WTWs by applying procedures based on automated 

data validation and correction has promise to be beneficial to increase detection 

performance and thus the reliability of event detection methods (Talagala et al., 

2019). The application of simple rules and statistical transformations, as it was 

done by Talagala et al., has demonstrated to be efficient in the detection of 

technical sensor faults and outlier removal from real-world data collected by in 

situ sensors monitoring water-quality in a natural river system. Although these 

improvements have shown not to be tremendous, an appropriate sensor data 

validation methodology should be the first step in the development of a new ERS. 
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Table 2-2 Reference summary of fault detection approaches in water sector. 

 

No
Model Reference                                         

Author (Year)

Model 

Class
1

Model 

Type
2 Optimization Variant

3
Application

4
Fault Detection (FD) 

Method
5

Parameters 

analysed

Test  

Method      
Notes

6

1 Lennox et al. (2001) PHb ANN MV WTW ANN

NTU, flow rate, 

ozone/coagulant 

dosage, pressure

onsite
applied to water 

filtation process

2
Rosen and Lennox 

(2001)
PHb PCA

adaptive scaling 

paramerters;     

adaptive PCA;       

Multiscale PCA 

(MSPCA)

MV WWTW T
2
 / SPE Chart (FD) Flow rate, pH, NH3, T simulation

PCA not capable;   

adaptive PCA not 

fully capable

3
Punal, Roca and 

Lema (2002)
PHb

Expert 

System
MV WWTW rule-based (FD/FDi)

Flow rate, CH4, T, CO, 

pH
pilot plant

experimental 

events applied

4 Praus (2005) PHb SVD UV WTW FA

Colour, Ca, Cl2, NO3
-
, 

NO2
−
, Fe, pH, SO₄2−

, 

EC, TU, MnO4
−
-index

onsite     
No=253 drinking 

water samples

5
Aguado and Rosen 

(2007)
PHb PCA

PCA; adaptive 

scaling;  

adaptive 

Covariance 

Matrix 

MV WWTW
T

2
 / SPE Chart (FD)              

Fuzzy c-means (FDi)

Flow rate, NH4, T, KL, 

NO3
-
,NH4

simulation
BSM1                         

data-replacement   

6
Ruiz, Colomer and 

Melendez (2007)
PHb MPCA MV WWTW

MPCA (FD)               

CBR-AI-tool (FDi)
DO, T, pH, ORP pilot plant

batch process 

hybrid model

7
Garcia-Alvarez et al. 

(2009)
PHb PCA MV WWTW

T
2
 / Q Chart (FD)                     

FDA (FDi)

physical, chemical and 

biological parameters
simulation

synthetic model 

simulated for 14 

days

8
George, Chen and 

Shaw (2009)
PHb PCA MV WTW T

2
 / Q Chart (FD)

DOC, TU, T, pH, Cl2, 

CT, Al, Lime Unit, 

Colour, Flow Rate

onsite

applied to real 

data (14 d), not 

been validated on 

unseen data 

9
Chen and Huang 

(2011)
PHb ANN MV WDS

NN / immune algoriyhm 

(FD)
pH, EC, T, DO simulation

Sensor fault 

detection

10
Padhee, Gupta and 

Kaur (2012)
PHb PCA MV WWTW

backpropagation 

based  neural classifier 

(FD)

physical, chemical and 

biological parameters
simulation data pre-treated

11
Perelman et al. 

(2012)
PHb ANN UV/MV WDS

sequential Bayesian 

analysis; multivariate 

fuse information (FD)

TC, EC, pH, T, TOC, 

TU
simulation

applied to real 

data (4 month), 

split into 

calibration and 

validation period

12 Alferes et al. (2013) PHb PCA MV WWTW T
2
 / Q Chart (FD)

pH, EC, T, TU, DO, 

TOC, DOC, K, NH3, 

NO3
-

onsite

data pre-treated,   

auto-scaling, fault 

diagnosis: DB 

setup 

13
Lamrini, Lakhal and 

Le Lann (2013)
PHb ANN MV WTW

fuzzy-neural model 

(FD)
T, pH, TU simulation data pre-treated
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2.6 Summary and Conclusions 

This chapter has discussed previous work in the wide field of fault detection in 

general and for the water sector. In section 2.2 an overview of general FDD 

methods was presented which includes quantitative and qualitative model-based 

mythologies as well as process history-based, i.e. data-driven and hybrid model-

based techniques. Section 2.3 provided a survey of relevant work done so far in 

the water sector, including (i) fault detection methods for WTWs and WWTWs, 

(ii) fault detection methods for water infrastructure and, (iv) near real-time ERS 

software applications. Finally, main findings of the survey have been discussed.  

The key chapter conclusions are as follows: 

• At the present ERSs used in practice do not achieve great performances 

in the detection of failure events at WTWs and generate a high number of 

false alarms. The results of the Water Event Challenge (EPA, 2013) have 

not reported of ERSs achieving precision values (see Section 4.5) greater 

than 60%. 

• Proposed methodologies for the detection of failure events at WTWs found 

in literature have been applied either to data generated by pilot plants 

and/or engineered events, i.e. usually contamination events. 

Demonstration of the methods on real data of a comprehensive number of 

sensors deployed at demonstration sites and on real events identified by 

the analysis of signals used has not been shown in literature. 

• The application of hybrid models that combine SPC methods and AI 

machine learning techniques for the event detection at WTWs has not 

been studied in literature. 

• Sensor data validation and pre-processing methods proposed in literature 

have not elucidated their potential to reliably detect sensor failures or their 

capabilities to distinguish between faulty WTW sensor data and faulty 

processes at WTW in near real-time.  

• None of the presented sensor data validation and pre-processing 

methodologies has proven its effectivity on the detection of failure events 

at WTW’s processes by demonstrating resulting detection performance on 

real sensor data and real events (particularly minor events).  
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3 CASE STUDY DESCRIPTION AND DATA  

The methodologies presented in this thesis are established for general 

application to different water quality sensor signals of various water treatment 

processes. All development and validation have been performed using real 

sensor data taken from a selected WTW located in the north-west region of the 

UK. The application of data-driven statistical process control and machine 

learning techniques utilized for event detection procedures require the use of 

historical sensor data. The effective application of used supervised learning 

techniques requires a significant amount of data streams containing labelled 

events for the mapping of new events.  

This chapter presents the WTW and the utilised sensor data and failure events 

used throughout this thesis. The WTW description starts by briefly presenting the 

WTW’s water treatment processes followed by the description of the process for 

collection and identification of sensor signals (critical alarm points) utilised for the 

generation of the final dataset used throughout the thesis. The chapter continues 

with the description of the techniques used for the identification and labelling of 

both the major and minor failure events within the explored dataset. Finally, a 

brief summary of the chapter is given. 

3.1 Real-life WTW  

UK water companies supply water to domestic and industrial customers usually 

similar in principle. Water is fully treated before being supplied to a distribution 

system and delivered to customers. Water treatment processes are designed to 

remove microbiological organisms, physical and chemical substances, e.g. 

algae, suspended solids (turbidity), nitrate that affect health aspects and/or 

aesthetic acceptability. 

Adequate water treatment to provide the required drinking water quality is 

achieved by the physical removal of contaminants and usually consists of a 

number of stages. These stages typically include sedimentation frequently 

combined with coagulation processes by the addition of chemical agents, filtration 

and disinfection processes. Design and effectiveness of a treatment is heavily 

dependent not only on site conditions, but also on the chemical and 
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microbiological consistence of the water to be treated which determines the 

chemical dosing requirements (DWI, 2016).  

A real-life WTW operated by United Utilities is selected as a study site throughout 

this thesis. This WTW is situated in the North West of England and supplies water 

to around 200,000 domestic and industrial customers with 73.5 Ml/d flow 

capacity. The process flow scheme is shown in Figure 3-1. 
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Figure 3-1 Process flow diagram of a typical drinking water treatment works (Courtesy: United Utilities). 
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As it can be seen from Figure 3-1, raw water is abstracted from different water 

sources and enters the WTW at the inlet chamber, where it is mixed with 

supernatant recycled flow from dirty backwash water and afterwards split into two 

separate streams (stream A and B). After dosing for coagulation and pH 

adjustment, water of each stream is treated by Dissolved Air Flotation (DAF), first 

stage filtration and second stage filtration processes. After filtration, treated water 

enters the water holding tanks at the outlet works where both streams are 

combined and presented for the final disinfection procedure. Sludge produced by 

the filtering processes is thickened, pressed and discharged. At larger scale 

WTWs, water is frequently split into two (as pictured here) or more streams for 

separate treatment using similar treatment processes. 

To ensure the required drinking water quantity and quality the WTW is heavily 

automated and controlled. Usually, Supervisory Control and Data Acquisition 

Systems (SCADA) are used to control the water treatment processes by near 

real-time monitoring of water quality and flow parameters by sensors deployed at 

the WTW.  

3.2 WTW Sensor Data  

Historical data for 56 sensors over four and a half calendar years from 01/01/2012 

to 30/06/2015 and at a 5-minute resolution was collected as continuous time 

series data of the individual signals. For event detection relevant water quality 

signals of both streams (stream A and B) were identified within each single 

treatment stage and mapped to their corresponding sensors/tags and locations. 

Initial data screening resulted in 28 signals selected for further analysis. A basic 

schematic showing the sensor locations (continuously numbered from WTW’s 

inlet to the outlet stage) is presented in Figure 3-2. 
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Figure 3-2 Basic schematic of mapped sensor locations. 

 

Corresponding to their mapped locations shown in Figure 3-2, an overview of the 

collected signals is provided in the Table 3-1. The table presents both stream A 

and stream B signals and indicates their deployed locations and treatment 

stages, respectively. 

 

Table 3-1 Sensor signals and corresponding treatment stages. 

 

Sensor Signal Sensor (No.) Stream Treatment Stage (Location)

Raw Water Turbidity 1 Combined Inlet Works

Raw Water pH 2 Combined Inlet Works

Pre Flocculation pH 3,4 A,B Flocculation & Flotation

Post Flotation Turbidity 5,6 A,B Flocculation & Flotation

DAF Iron 7,8 A,B Flocculation & Flotation

Pre 1
st

 Stage pH 9,10 A,B 1st Stage Filtration11,12

Post 1
st

 Stage Turbidity 11,12 A,B 1st Stage Filtration

Post 1
st

 Stage Iron 13,14 A,B 1st Stage Filtration

Pre 2
nd

 StagepH 15,16 A,B 2nd Stage Filtration

Post 2
nd

 Stage Turbidity 17,18 A,B 2nd Stage Filtration

Post 2
nd

 Stage Chlorine 19,20 A,B 2nd Stage Filtration

Post 2
nd

 Stage Colour 21,22 A,B 2nd Stage Filtration

Treated Water pH 23,24 A,B 2nd Stage Filtration

Outlet Contact Tank Chlorine 25 Combined Outlet Works

Outlet Contact Tank pH 26 Combined Outlet Works#

Final Water pH 27 Combined Outlet Works

Final Water Chlorine Residual 28 Combined Outlet Works
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The quality of sensor data utilised is an important factor that affects the 

performance of any detection system. Low data quality will limit the 

meaningfulness of predictions and erroneous data will lead in the worst case to 

faulty conclusions (Rieger et al., 2010). For this reason, the quality of the 

collected data streams has been assessed aiming to extract final datasets only 

with signals of sufficient high data quality that are crucial for a robust event 

detection and therefore suitable to be utilised for further analysis. The valuation 

of data quality was geared into two directions. Single signal streams of poor data 

quality over considerable long time periods, i.e. more than one month were 

explored first, followed by the investigation of certain time periods in which 

multiple signals show low data quality aiming to exclude both unreliable signals 

and time periods from the datasets used for the following tasks. 

Availability and consistency of data were considered as major criteria for the data 

quality assessment. The valuation against the availability criterion was conducted 

by a missing data analysis applied to every single signal. If data was missing for 

more than one month continuously in some signal that signal was considered 

unreliable. This way, six signals, i.e. 1st stage iron (stream A and B), post 2nd 

stage colour (stream A and B), outlet contact tank chlorine and outlet contact tank 

pH signals were identified as unreliable and hence omitted from further analysis. 

The remaining 22 signals, hereinafter also referred to as critical alarm points, 

remained for the generation of the final datasets. 

Data consistency was used as criterion to evaluate time periods containing 

multiple signals of poor data quality. Statistical analysis was conducted to 

determine basic indicators, such as minimum, maximum and mean values on the 

one hand as well as additional parameters including range, variance and 

frequency measures to establish baseline values for the following data 

consistency’s assessment of the remaining 22 water quality signals on the other. 

Additional information of missing data (days/month) and flat line duration 

(days/month) on corresponding signals supplemented the analysis which was 

conducted on each signal individually. The parameters were derived for the whole 

time period (4.5 years) first and then for each month of that period separately. 

This way single months in which multiple signals showed striking abnormalities 

(inconsistencies) were explored and then judged as “unsuitable”, i.e. contains too 
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many inconsistent signals to be used within the final datasets if these 

inconsistencies apply to more than half of the analysed signals. Figure 3-3 shows 

as an exemplary the graphs of the selected pH value and turbidity in the time 

period from 20.03.2015 until 30.06.2015. The figure illustrates that all of the 12 

signals displayed, i.e. more than half of the total of 22 signals, show only flat lines 

from 27.05.2015 to 30.06.2015. Therefore, the time period from 01.05.20015 until 

30.06.2015 has been excluded from the final dataset used for further analysis. 

Figure 3-3 Example pH and turbidity signals showing striking anomalies during 
the time period from 27/05/2015 until 30/06/2015 

 

Figure 3-4 shows a selected range of pH and turbidity signals in the period from 

02/2015 to 06/2015 where the data quality of the pictured signals continues to 

decrease with progressing time from 09/03/2015 on (i.e. increasing number of 

missing data, unusual spikes and flat line faults marked with grey bars) until all 

signals show frozen values on 27/05/2015. 
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Figure 3-4 Example pH and turbidity signals showing striking anomalies during 
the time period from 09/03/2015 until 30/06/2015 

 

This way the time period between March 2015 until June 2015 was identified 

rather to be excluded from further analysis, since the data quality of the vast 

majority of individual signals within this period were judged to be poor.  

Additionally, to confirm the results obtained from the above described statistical 

analysis a spectral analysis was conducted on each individual signal across the 

whole time period of collected data. Example spectrogram plots of a selected 

range of signals is shown in Figure 3-5.  
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Figure 3-5 Example spectrogram plots. 

 

From these plots it can be seen that the presented signals have, in contrast to 

preceding periods, almost no frequency (dark blue colour) at the end of sample 

period. Similar observations were made on the vast majority of the remaining 

signals (not shown here to save space). These low frequency periods indicate 

significant data inconsistencies of multiple signals towards the end of the time 

period for which the data were collected.  

For this reason, only the time period from 01/01/2012 until 01/03/2015 including 

the 22 critical alarm points described above was used for further analyses. The 

data was then split into datasets for calibration of detection models (time period 

from 01/01/2012 until 28/02/2014, i.e. ~ 70% of total time period) and follow-on 
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validation on unseen data (time period from 01/03/2014 until 01/03/2015, i.e. 

~30% of total time period).  

Due to the reasonable large number of signals utilised, i.e. 22 water quality 

parameters measured throughout all five treatment stages and its high number 

of samples (i.e. 7,324,416 data points over all 22 signals) the new generated 

dataset seems to be well-suited for the development of a generic data-driven 

event detection method. This ensures that the methodologies described in the 

following can be transferred to other WTWs using different treatment processes 

and/or different water quality parameters. Additionally, within the reasonable 

large time period from 01/01/2012 until 01/03/2015 used in the dataset, there 

should be a sufficient number of faults (i.e. 5 major events and 158 possible minor 

events, see Section 3.3) to comprehensively train some machine learning 

algorithms. Details concerning the evaluation of these failure events can be found 

in the following section. 

3.3 Minor and Major Events  

Given that only a small number of mostly major events were confirmed or 

reported from the water company, failure events that have occurred at the WTW 

during the used time period had to be explored before an assessment of the 

deployed detection system could take place. To address this issue, a number of 

historical events were identified first followed by their classification either as 

major, minor or sensor fault events.  

The identification of events was carried out by visual inspection of the 22 water 

quality signals across the given time period of the used dataset. Here, major (or 

“zero-flow”) events were defined as events that caused an interruption of the 

production flow and led to an unplanned shutdown of the whole WTW. This way, 

5 zero-flow events were identified. Figure 3-6 shows a typical picture of a major 

event causing a shutdown of WTW’s stream A at 12:40 on 14/09/2013 as a result 

of an alarm triggered by the stream A post flotation turbidity signal. A partial 

shutdown was followed by a corresponding drop of the inlet flow from around 55 

ML/d to approx. 35 ML/d and its recovering to normal state after the restart of 

stream A at 16:45 on 14/09/2013.  
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Figure 3-6 Example major event - shutdown and restart of WTW’s stream. 

 

Minor events were identified by looking at simultaneous deviations of more than 

one signal from normal operating process conditions without causing any WTW’s 

shutdowns. Figure 3-7 shows a typical example of a minor event, where stream 

A post 2nd stage chlorine and stream B post 2nd stage chlorine signals together 

with the final water chlorine residual signal have dropped to zero almost 

simultaneously at 08:15 on 28/01/2014. 

 

Figure 3-7 Example of minor event. 
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To identify these kind of events, normal WTW’s operating conditions were 

analysed based on common statistical indicators for minimum, maximum, mean 

and range of the 22 selected signals. Bivariate correlations between parameters 

were then calculated using the Spearman’s correlation coefficient to derive 

possible related deviations of multiple signals from the corresponding normal 

values. Table 3-2 shows several examples of parameter combinations including 

the corresponding Spearman’s correlation coefficients. 

 

Table 3-2 Bivariate correlations between parameters and corresponding 
Spearman correlation coefficients. 

 

 

Abnormal conditions were then identified by visual inspection of the displayed 

deviations. All analysed signals were plotted below each other for the full time 

period analysed (01/01/2012 to 01/03/2015). Figure 3-8 shows exemplary a small 

section of the plot illustrating the method used for the identification and labelling 

of minor events (pictured by grey bars within the plot). Significant deviations from 

normal process condition were marked for each individual signal and compared 

to the behaviour of the remaining signals. In case of simultaneous deviations of 

two or more signals the presence of a minor event was assumed, as it was shown 

in the example pictured in Figure 3-7. Deviations of single signal values from 

normal process conditions were classified as sensor faults. Using this 

methodology 158 possible minor events were identified during the analysed time 

period.   

Signal 1 Signal 2
Spearman's Correlation 

Coefficient (rS)

Raw Water Turbidity Raw Water pH 0.75

Raw Water Turbidity Stream A Treated Water pH -0.71

Raw Water pH Stream B Treated Water pH -0.70

Stream B post flotation Turbidity Raw Water pH 0.64

Stream A Post 1
st
 Stage Turbidity Stream A Post 2

nd
 Stage Turbidity 0.76

Stream A Post 1
st
 Stage Turbidity Stream A Pre 2

nd
 Stage pH 0.61

Stream B Post 1
st
 Stage Turbidity Stream B Pre 2

nd
 Stage pH 0.61

Stream A Treated Water pH Final Water pH 0.75

Stream A Treated Water pH Raw Water pH -0.67

Stream B Treated Water pH Final Water pH 0.83

Final Water pH Raw Water pH -0.77
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Figure 3-8 Cut-out of the time period analysed and signals used illustrating the 
technique applied for the identification and labelling of minor events shown as 
grey bars. 

 

A limited number of selected minor events identified this way were reviewed by 

an expert from United Utilities to confirm the approach for the determination of 

minor events. Once the events were identified, major and minor events were 

labelled within the final dataset. The identification of events complemented all 

necessary information for the establishment of baseline by evaluating the 

performance of the currently used detection system described in the later course 

of the thesis. 

3.4 Summary 

This chapter has briefly detailed the WTW study site and the datasets used to 

develop and evaluate the work presented by this thesis, besides their methods of 

data collection and labelling of example events. After a brief overview of WTW’s 

treatment processes, this section has outlined the methods of data collection and 

validation applied for the identification of 22 water quality parameters (critical 

alarm points) and the exploration of suitable time periods that contain only signals 

of assessed data quality for the use within the final dataset. Finally, the procedure 

applied for the identification of different types of events and their classification 

into major and minor events including their labelling within the generated datasets 

has been described. 
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Chapter 4: Event Recognition Methodology 
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4 EVENT RECOGNITION METHODOLOGY 

4.1 Introduction 

WTWs operated by UK water companies are nowadays usually observed by 

threshold-based event detection systems utilising online sensors for the 

monitoring of water quality parameters in near-real time. The data streams 

provided by these sensors supply the required information for the identification of 

failure events and/or abnormal conditions within WTW’s processes. As discussed 

in Section 2.3.1, online water quality and quantity monitoring technologies for 

WTW’s operation have made significant progress in recent years, but still there 

is a clear need for improved online monitoring systems (Storey et al., 2011).  

Nevertheless, although several methods for event detection at WTWs have been 

recently developed, only a few, such as Canary (Hart et al., 2007; Hart and 

McKenna, 2009) or GuardianBlue from Hach Lange (Hach Homeland Security 

Technologies, 2007) have found their implementations in practice and were 

utilised by the water industry. Most of them still suffer from a range of 

shortcomings, such as insufficient true detection capability or too many false 

alarms (Bernard et al., 2015). Moreover, the results of the EPA Water quality 

event detection system challenge published by EPA (2013) have shown that 

event detection performances of the five tested event detection systems vary 

greatly and the number of invalid alerts (false alarms) generated by these 

systems is generally high. New and more efficient technologies need to be 

developed to address these issues. The focus of further research is set on 

innovative, cost-effective and wherever possible predictive near real-time event 

recognition systems. Therefore, it is no surprise that the development of new 

technologies for near-real time sensor data validation and recognition of failure 

events at WTWs has become an increasing priority for water companies. 

The work presented in this thesis shows the methodologies utilised to investigate 

possible improvements to existing, typically threshold-based event detection 

systems used to date by UK’s water companies to control their WTW and outlines 

a novel methodology for improved, near-real time recognition of failure events. 

The following Section 4.2 details the assessment of the currently used detection 
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system at the selected WTW to evaluate its performance. The result of the 

performance assessment established this way serves as a baseline for possible 

improvements and the development of the novel event recognition technology. 

Section 4.3 provides a description of the methods applied to achieve 

improvements on threshold-based detection systems utilising optimised 

threshold and persistence values and continues with the presentation of the 

methods utilised for sensor data validation and pre-processing. The development 

of the novel Hybrid CUSUM event recognition methodology is presented in 

Section 4.4 followed by Section 4.5 outlining the methods applied for the 

assessment of ERS’ performance. Finally, a concluding summary of this chapter 

is given in Section 4.7.  

4.2 Existing Event Recognition System (E-ERS) 

Water quality data from the sensors assembled at the WTW to monitor its 

treatment processes can be utilised for the analysis of the deployed event 

detection system aiming to evaluate its detection performances by quantifying 

detection statistics on the basis of observed data streams. For this assessment, 

the historical sensor data of the real-life WTW operated by United Utilities were 

used. This section outlines the threshold based event detection system currently 

in use - hereinafter referred to as E-ERS - by providing an overview of E-ERS, 

aiming to determine the basics for its assessment and performance evaluation, 

as described later in section 4.5 of the thesis. 

As mentioned in Section 3.1, water treatment processes are usually controlled by 

monitoring of crucial process parameters with sensors deployed at the different 

treatment stages of the WTWs in near real-time. Typical parameters monitored 

at WTWs are, e.g. turbidity, pH, temperature, dissolved organic carbon (DOC), 

conductivity and flow rates. Turbidity and pH are normally controlled continuously 

throughout all process stages (frequently multiple validated, i.e. two or more 

sensors measure the same signal at the same location). Other parameters such 

as chlorine and chlorine residual are usually monitored at the outlet of the WTW. 

Most WTWs in the UK make use of deployed event detection systems that 

automatically generate alarms after the detection of abnormal behaviour on 

observed signals to ensure an early detection of abnormal process conditions. 
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Commonly used event detection systems - as in the case of the WTW used as 

demonstration site - apply thresholds to the monitored signals for the identification 

of faulty processes, respectively failure events at their WTWs. In the following, 

the E-ERS is outlined and the exploration of how it is working in terms of rules 

applied by the system for triggering alarms is presented.  

The E-ERS applies pre-defined thresholds to the monitored signals and carries 

out default actions (alarm/no alarm) in case of limit violations. Every 5 minutes, 

each sensor signal is checked against the default low and/or high thresholds. In 

addition to the limits a “time dead-band”, i.e. persistence is used by the system. 

Persistence defines the time a signal has to be continuously above/below a 

threshold before triggering an alarm. In case of two threshold values are set on a 

single signal, i.e. low and high limit, which allow the signal to vary between those 

values without triggering an alarm the same persistence value is used for both 

default limits. Using an example, the operating principle of the E-ERS can be 

illustrated as follows: for pre 1st stage pH signals the E-ERS applies low and high 

limits of 5.8 pH and 7.5 pH respectively, both with a default persistence value of 

10 min. An alarm is raised (after exceeding of the default persistence given by 10 

min) if the pH value of the pre 1st stage pH signal goes below 5.8 pH or above 

7.5 pH and all subsequent measurements from this sensor remain below or 

above these limits within the next 10 min. Once an alarm is triggered it has to be 

checked and cleared by a human expert. In case of alarms triggered by auto-

shutdown water quality set points (i.e. critical alarm points, see Section 3.2) 

cannot be cleared within a default set time period (e.g. 30 min for post flotation 

turbidity signal) an automatic partial or a complete WTW’s shutdown is initiated 

by the system.  

All relevant information concerning the described WTW’s detection system 

including monitored parameters and configuration of the applied high/low 

thresholds and persistence was provided by the UU experts. Once the 

architecture of the detection system was identified, the E-ERS was simulated 

over the entire time period analysed using the data of the final dataset to assess 

its detection performance and establish the baseline for further improvements 

and developments. 
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4.3 Modified Event Detection System (M-ERS) 

After the performance of the E-ERS was evaluated and the baseline was 

established (see Section 5.2), it was clear that the existing ERS needs to be 

improved. This was done initially by developing the modified ERS (denoted as M-

ERS here). The M-ERS was developed by optimising the thresholds and 

persistence values of all water quality signals used in the E-ERS (Section 4.3.1). 

In addition, a methodology was developed to pre-process sensor signals with the 

aim to validate and if applicable to correct the sensor signal values in near real-

time (section 4.3.2). A brief summary of the work done is given in the section 

4.3.3.  

4.3.1 Optimised Thresholds 

A sensitivity analysis (Saltelli et al., 2004) was performed to investigate possible 

improvements to the E-ERS by changing the detection thresholds and 

persistence values. This was done on the calibration data set only (see Section 

3.2). Plausible ranges of high/low detection thresholds for the analysed 22 signals 

were identified first. This was done by analysing the extremes of historical values 

under different WTW operating conditions. Within these ranges, new detection 

thresholds were created by applying a gradual increase of the threshold values 

in increments of 0.05 (e.g. 2nd stage chlorine thresholds we allowed to vary 

between 0.5 and 1.6 in 0.05 mg/l increments). The gradual change of low and 

high thresholds in increments of 0.05 was applied for all signals, except for post 

flotation turbidity signals where increments of 0.01 NTU have been used for 

increasing the low limits, i.e. post flotation turbidity was allowed to vary between 

0.01 and 7 by gradually increasing low and high thresholds in 0.01 NTU and 0.05 

NTU increments, respectively. The value of 0.05 was considered to be suitable 

since for various signals the E-ERS uses thresholds with a 0.05 resolution, e.g. 

the high limit of final water chlorine residual which is set on 1.35 mg/l. The value 

of 0.01 NTU used for the gradual increase of low threshold values for post 

flotation turbidity signals has been selected to capture the threshold value of 0.01 

NTU set by E-ERS for these signals and to allow a finer tuning of this specific 

threshold value. Persistence values were changed from 0 to 12 time steps (i.e. 

from 0 to 60 minutes). The value of 60 min as maximum persistence was selected 
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since the same value was utilised by the E-ERS as highest persistence applied 

to individual signals, e.g. to post 1st stage iron signals. Therefore, the persistence 

value of 60 min was desired to be explored for the other signals as well. The 

threshold and persistence value ranges applied by the sensitivity analysis in 

comparison to current used limits are shown for all water quality parameters in 

Table 4-1.  

 

Table 4-1 Threshold settings and threshold ranges used by sensitivity analysis. 

  

 

This way a total of up to 7,540 sensitivity tests were conducted for each of the 22 

signals resulting in estimated corresponding true and false positive detection 

rates. The optimised new thresholds and persistence value combinations were 

then derived for each sensor signal by selecting the combination with the 

maximum value of the ratio of true positives to false positives (see Figure 4-6 in 

Signal Unit Low Limit High Limit Low Limit Range High Limit Range

Raw Water Turbidity NTU - 10.00 0.05 - 0.50 5.00 - 15.00

Raw Water pH pH 5.50 7.90 4.00 - 6.00 7.00 - 9.00

Pre Flocculation pH Stream A pH 4.0 4.80 4.00 - 4.40 4.50 - 4.80

Pre Flocculation pH Stream B pH 4.0 4.80 4.00 - 4.40 4.50 - 4.80

Post Flotation Turbidity Stream A NTU 0.01 6.50 0.01 - 0.50 5.50 - 7.00

Post Flotation Turbidity Stream B NTU 0.01 6.50 0.01 - 0.50 5.50 - 7.00

DAF Iron Stream A mg/l - 2.50 0.00 - 0.05 2.00 - 4.00

DAF Iron Stream B mg/l - 2.50 0.00 - 0.05 2.00 - 4.00

Pre 1
st
 Stage pH Stream A pH 5.80 7.50 5.00 - 6.95 7.00 - 9.00

Pre 1
st
 Stage pH Stream B pH 5.80 7.50 5.00 - 6.95 7.00 - 9.00

Post 1
st
 Stage Turbidity Stream A NTU - 0.50 0.00 - 0.10 0.15 - 0.60

Post 1
st
 Stage Turbidity Stream B NTU - 0.50 0.00 - 0.10 0.15 - 0.60

Pre 2
nd

 Stage pH Stream A pH 6.80 8.60 6.00 - 7.75 8.00 - 9.00

Pre 2
nd

 Stage pH Stream B pH 6.80 8.60 6.00 - 7.75 8.00 - 9.00

Post 2
nd

 Stage Turbidity Stream A NTU - 0.40 0.00 - 0.05 0.10 - 0.60

Post 2
nd

 Stage Turbidity Stream B NTU - 0.25 0.00 - 0.05 0.10 - 0.60

Post 2
nd 

Stage Chlorine Stream A mg/l 0.60 1.40 0.50 - 0.70 1.00 - 1.60

Post 2
nd

 Stage Chlorine Stream B mg/l 0.60 1.40 0.50 - 0.70 1.00 - 1.60

Treated Water pH Stream A pH 6.80 8.60 6.50 - 7.20 8.00 - 9.00

Treated Water pH Stream B pH 6.80 8.60 6.50 - 7.20 8.00 - 9.00

Final Water pH pH 7.00 9.00 6.50 - 7.00 9.00 - 9.50

Final Water Chlorine Residual mg/l 0.60 1.35 0.60 - 0.80 1.00 - 1.50

Current Detection System Modified Detection System
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Section 4.5). The flowchart shown in Figure 4.1 illustrates the workflow of above 

presented optimisation procedure. 

 

 

Figure 4-1 Flowchart outlining the procedure applied for the optimisation of 
threshold and persistence values. 

 

Once the optimised threshold and persistence values were identified, the M-ERS 

that makes use of optimised thresholds was simulated over the entire time period 

analysed using the same historical time series data (5 min intervals) of the 22 

critical alarm points with the same historical events as used before for the 

evaluation of the E-ERS. The results obtained this way were then compared to 

evaluate detection performance improvements. 

4.3.2 Sensor Data Validation and Pre-processing 

To carry out monitoring and control in an adequate manner requires a huge 

number of measured values that needs to be continuously refreshed (Edthofer et 

al., 2010). Due to various factors, such as frequently varying water demand, 

changing influent conditions, dynamics in water treatment processes and 

unreliable or missing sensor data WTWs monitoring and controlling is a 

challenging task for water supply companies.  

Low data quality will limit the meaningfulness of predictions and erroneous data 

will lead in the worst case to faulty conclusions (Rieger et al., 2010). On the other 

hand, sensor data validation methods used in water systems are often inefficient 

and frequently a systematic analysis is missing (Branisavljević, Prodanović and 

Pavlović, 2010) For this reason, it is beneficial for the performance of any 

detection system to raise the quality level of sensor data measured in such 
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systems. To achieve this higher level of data quality desired for more robust and 

reliable events detection, it is feasible to validate and pre-process the collected 

sensor data before its possible use for event detection. 

This section describes the methodologies established for near real-time 

validation and pre-processing of WTW’s measured sensor data with the aim to 

investigate whether this data can be trusted and used for further fault detection 

at the WTW. The methods presented in this section enable the identification of 

faulty sensor data including the detection of different kind of WTW sensor faults 

on the one hand and near real-time data pre-processing to lift the data quality 

used for event detection on the other. First, the philosophy of sensor data 

validation is outlined followed by the description of methodologies developed for 

sensor data validation and pre-processing. 

As mentioned before, a reliable, accurate and rapid detection of failure events 

(i.e. process faults and sensor faults) is of immense importance for the efficient 

and effective WTW’s operation. In contrast to process faults, that possibly 

adversely affect the quality of WTWs’ processes, sensor faults cause a decrease 

of accuracy and reliability in the measurements that may lead to erroneous 

control action and false perception (Yoo et al., 2008). For this reason, the 

capability to distinguish rapidly between sensor faults and genuine process 

failures is beneficial for any new ERS. This only can be achieved by the validation 

and if appropriate correction (pre-processing) of the measured data from sensors 

deployed at WTWs in near real-time. 

The philosophy of the data validation method developed is focussing on the 

validation of near real-time data coming from sensors that measure “indicating” 

parameters which are most relevant for event detection, i.e. critical alarm points. 

The method aims to verify water quality data observed by the WTWs sensors and 

to check whether the data can be trusted and reliably utilised for the detection of 

faulty WTWs processes. Furthermore, the method was developed to identify 

certain sensor faults. The focus was set on detection of the following sensor fault 

types: (i) erroneous data (i.e. negative values), (ii) missing data, (iii) unusual 

spikes (i.e. sharp change in measured value in a small number of successive 

samples), also referred to as an outlier and, (iv) flat line faults (i.e. constant values 



Chapter 4 – Event Recognition Methodology 

 

92 

across a larger number of successive data points). Examples of respective 

sensor faults are shown in Figure 4-2. 

 

a)  b) 

c)  d) 

 

 

  

 
 

Figure 4-2 Example sensor faults: (a) Erroneous data, (b) Missing data, (c) 
Spike fault, (d) Flat line faults. 

 

In addition to the presented sensor faults, there are other types of sensor faults 

such as noise, bias, drifts, but it was assumed that most of them will not have this 

great impact on detection system’s performance. Therefore, those types of 

sensor faults have not been considered in the development of the below 

described sensor data validation and pre-processing methodology. 

Therefore, the methodology developed here is focusing on the identification, 

marking and replacement of the following faults: (i) erroneous data points, (ii) 
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missing data, (iii) spike faults and, (iv) flat line faults. The data validation and pre-

processing procedure adopted consists of four statistical tests and can be 

described as follows. 

Data points of each individual signal coming from WTWs sensor are online 

checked at every 5 min time step against its validity by four subsequently applied 

statistical tests. 

In the first test, erroneous data, i.e. negative sensor measurements are identified, 

and in case of their presence the data point is marked as invalid data. Each 

negative value is then replaced by the preceding validated sensor measurement. 

The second test comprises the identification of missing data. Blank sensor 

readings were detected and subsequently marked as missing data point. The 

identified data point is then replaced by its preceding validated sensor 

measurement. 

In the third test, unusual spikes were detected by the identification of suddenly 

appearing sharp changes in the measured values. The recognition of these 

spikes was done by calculating the corresponding gradient values for every new 

data point and comparing its value to pre-defined thresholds. Suitable threshold 

values for both positive and negative slopes were determined by analysing the 

probability distribution of gradients over the calibration time period for each signal 

separately. This was done by means of histograms grouping the data into bins of 

equal size corresponding to the value of 0.1 for the gradient change per TS (5 

min). In the histogram a rectangle is erected over the bin whose height represents 

the proportion of data points in the bin. With normalization, the height of each bar 

is equal to the probability of selecting an observation within that bin interval, and 

the height of all bars sums to 1. Analysis of the histogram plots for each signal 

has shown that the shapes of the gradient distribution nearly follow gaussian 

distributions, except at the histograms’ edges where outliers have been pictured. 

The bins at these edges are representing the data points with extreme low 

(negative) or high (positive) gradient values considered as unusual spikes 

(outliers). The visual inspection has further shown that only a small fraction of the 

total amount of data points represent those outliers at each edge, i.e. usually less 

than 0.05%. Therefore, the value of 0.05% of the total number of analysed data 

points was considered as most suitable for the differentiation between gradient 
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values representing signal’s normal deviations and unusual spikes. This value 

was then utilised to calculate for each signal corresponding positive and negative 

gradient values used as thresholds for smoothing the unusual spikes. These 

thresholds were derived by sequentially grouping all bins at the edges of the 

histogram whose cumulated probability distribution do not exceed the anticipated 

threshold of 0.05% outliers. In each case the edge of the resulting bin represents 

the respective gradient threshold. The evaluation of the positive gradient 

threshold for the raw water pH signal is exemplary illustrated in Figure 4-3. The 

probability distribution plot of signal’s gradients pictures that the overwhelming 

number of gradients range between -0.2 and 0.2, while only for a small proportion, 

i.e. ~0.05% gradients between 0.2 to 7.1 are shown (illustrated by the data label 

of the right bin). Since the probability of the bin on the right edge of the plot 

representing the cumulated probability of gradient values between 0.2 to 7.1 is 

just below the outlier threshold of 0.05% all data points within this bin are 

considered to be outliers. The value of 0.2 on the left edge of the bin represents 

the positive gradient threshold value derived this way.  

 

Figure 4-3 Example distribution of gradients. 

 

Only in cases where the calculated gradient value of a new measured data point 

violates the default gradient threshold values an outlier is considered and the 

corresponding data point is marked as spike fault. The identified data point is then 

replaced by its preceding validated sensor measurement. Using the above 

generic calculation of gradient thresholds allows a high degree of automation 

regarding the process of spike removal. 
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The final, fourth validation test comprises the identification of flat line faults. At 

every time step, the actual sampled data value is compared to its last measured 

value. The number of consecutive duplicated values is counted and compared to 

a user set threshold. A threshold value of 2 hrs (i.e. 24 consecutive time stamps) 

was selected for this. By choosing this value it was aimed to use a single 

threshold value commonly applicable to all signals. The analysis of signal’s 

behaviour at normal WTWs operating conditions has revealed that several 

signals, in particular signals with small measured values such as 2nd stage 

turbidity (usually range between 0.005 and 0.1 NTU at normal process condition) 

frequently show constant values over a duration of one hour or more, but usually 

not longer than 2 hrs. Those cases were considered to be more related to 

sensor’s precision rather than sensor faults. For this reason, 2 hrs were selected 

as most suitable threshold value. Only if the counted number of consecutive 

duplicated values exceeds this threshold value the presence of a flat line fault is 

considered, and all following duplicated sensor readings marked as flat line faults. 

In case of sensor flat line faults, no further data pre-processing procedure is 

applied. 

All data readings from sensors that monitor the analysed 22 critical alarm points 

were treated by this procedure in the same way. The sensor data verified and/or 

pre-processed was then used for a further simulation of the system followed by 

the performance assessment of the modified event detection system that makes 

now use of validated and pre-processed sensor data. 

4.3.3 Section Summary 

In this section the methods applied for the development of the M-ERS have been 

presented. The section has outlined two strategies to achieve possible 

improvements on the performance of the E-ERS, first the use of optimised 

thresholds and persistence values and second the application of high quality 

sensor data by using sensor data validation and pre-processing. The procedure 

for the investigation of optimal threshold and persistence values using sensitivity 

analysis has been described first. After that, different types of sensor faults have 

been briefly described and the novel methods for the validation and pre-

processing of sensor data collected by the sensors deployed at the WTW outlined 
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by discussing the four simple statistical tests applied for the identification of 

erroneous data, missing data and unusual spikes in near real-time. All described 

methodologies have been developed to lift the detection performance of E-ERS.  

The following section 4.4 “Hybrid CUSUM Event Recognition System (HC-ERS)”, 

provides an overview of different sensor faults and describes the methodologies 

developed for sensor data validation and pre-processing followed by the 

evaluation of possible improvements on detection performance of the modified 

system after the utilisation of pre-processed sensor data. 

4.4 Hybrid CUSUM Event Recognition System (HC-ERS) 

4.4.1 Overview 

Threshold-based detection systems often lack the sensitivity and specificity 

needed for accurate classification whereas sensitivity is defined by the true 

positive rate (TPR) and specificity by the complement of the false positive rate 

(FPR) for a test (Pichumani, 1997). It is this very effect that was observed by the 

assessment of the threshold-based detection system’s performance, where both, 

E-ERS and M-ERS show moderate true positive rates and suffer from a high 

number of false positives (see Sections 5.2 and 5.3). The drawback of lacking 

specificity and sensitivity was only overcome by moving away from threshold 

based to more sophisticated event detection methods.  

This section describes the new methodology behind the Hybrid CUSUM Event 

Recognition System (HC-ERS). This detection system combines the classic SPC 

methodologies for fault detection with modern machine learning techniques for 

event classification. The first fault detection method identifies abnormal 

deviations of individual signals from their process means and generates labelled 

faults on each signal as binary output. This output is then used as input for the 

second event detection method (RF classifier) which estimates the probability of 

the presence of an event as ultimate output of the HC-ERS.  

The new hybrid CUSUM event recognition method that makes use of the near 

real sensor data validation and pre-processing technique already described in 

Section 4.3.2 comprises two principle stages: (1) CUSUM fault detection and (2) 

RF event detection. The process scheme of the event detection procedure is 



Chapter 4 – Event Recognition Methodology 

 

97 

pictured in Figure 4-4 highlighting the two integral event detection stages of the 

HC-ERS. 

 

 

Figure 4-4 Process scheme of Hybrid CUSUM ERS. 

 

This section is organised as follows. In section 4.4.2 the development of the fault 

detection method as an integral part of the new HC-ERS is described first. The 

development evolves the evaluation of several established detection methods 

including their testing and performance assessment. Section 4.4.3 presents the 

event classification methodology as second component of the HC-ERS as well 

as their optimisation methodologies carried out by an improved feature selection 

for the classifier input. Finally, a brief summary of the section is given in the 

Section 4.4.4. 

4.4.2 Fault Detection Method 

The first fault detection stage of the HC-ERS is described in this section. The fault 

detection methodology aims to detect the presence of process faults at WTWs 



Chapter 4 – Event Recognition Methodology 

 

98 

by identifying relevant deviations of individual water quality parameters from 

normal process conditions and is applied to continuous data of 22 observed 

signals (critical alarm points). The method was developed with respect to the 

objectives defined in Section 1.3. These premises involve the development of a 

generic methodology capable of fault detection for water treatment processes in 

a reliable and timely (near real-time) manner. As such, the methodology is 

stipulated to quickly detect small shifts from normal process conditions in near 

real-time, i.e. at best detecting faults on observed sensor data at once the data 

is measured. 

The detection method itself, utilises the data-driven Statistical Process Control 

(SPC) technique presented in Section 2.2.3. To establish the specific approach, 

that performs best for detection of faulty processes at WTWs, selected SPC 

control chart methods that have proven their ability to perform well for the use in 

fault detection of small shifts in the process mean (Montgomery, 2009) were 

chosen for further analysis. Control charts, in general, utilise sampled data of 

process variables taken over a period of time (in the following also referred to as 

window size) to represent the statistic of their quality measure (e.g., mean, range) 

aiming to investigate process changes over time. Control charts are constructed 

on the same principle as follows: the average of the statistic over all samples is 

calculated and represent the centre-line of the chart. The standard deviation (σ) 

of the statistic is calculated over all samples to define Upper Control Limit (UCL) 

and Lower Control Limit (LCL) which are used as thresholds at which the process 

is considered ‘out of control’. LCL and UCL are specified as number (n) of 

standard deviations, where n is an integer equal to or greater than 1 (n=3 is 

typically used) above and below the centre-line. Any observations outside LCL or 

ULC indicate that the process is out of control. In this work, particularly x̄ -, r- , s-

charts (Shewhart, 1931) and EWMA charts (Roberts, 1959), but also CUSUM 

control charts (Page, 1954) have been adapted and tested. Whilst for the 

construction of x̄ -, r- , s-charts that utilise averages, ranges and standard 

deviation of the samples as statistical quality measure only sample size and 

number of standard deviations utilised for the calculation of LCL and UCL have 

to be selected. EWMA and CUSUM control charts require additional parameters 

to be defined. EWMA charts that utilise exponentially weighted moving averages 

as statistical quality measure making use of information from observations 
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collected prior to the most recent data point. To address this task, EWMA charts 

apply the lambda (λ) value, where λ is greater than zero and less or equal than 

one (typically λ= 0.4 is used). This smoothing (weighting) parameter that controls 

how much the current prediction is influenced from past observations weights 

most recent samples more highly than older samples. Higher lambda values give 

less weight to past observations in favour of the current observation. 

Rather than examining the mean of the statistic independently, CUSUM charts 

represent the accumulation of information of current and previous samples. 

CUSUM control charts involve the cumulated sums of allowed deviations from a 

target value (average of the sampled variable) as statistical measure. The 

number of standard deviations the statistical measure is allowed to deviate from 

the target is represented by the reference value k (k value), where k is greater 

than zero standard deviations (typically used value k= σ). As greater the k value 

as larger the deviations the process is allowed to shift from its mean. 

Since all these methods are data driven, the same validated and pre-processed 

historical time series data (5 min intervals) of the 22 critical alarm points with 

labelled historical events already used for the assessment of the E-ERS were 

utilised to carry out the experiments on the SPS methods. The mentioned SPC 

techniques make use of standard parameter settings for window size, LCL, UCL, 

λ and k value, i.e. same values for those parameters were applied on each 

individual signal. A sensitivity analysis, described later in this section, was then 

performed to fine-tune these parameters for each signal individually. 

Using a sliding window technique, statistically significant abnormalities relative to 

the “normal pattern” were detected on each individual signal. Once a deviation 

from normal condition was detected by the applied SPC method, the 

corresponding time step is marked with the binary value ‘1’. In case normal 

condition of the signal the respective time step is labelled with ‘0’. This way, for 

each observed signal a vector containing ones or zeros at each observed data 

point was generated as output of the applied SPC fault detection methodology. 

All SPC methods were tested on different window sizes, i.e. 1 day (288 time steps 

of 5 min) and 1 week (2016 time steps). A range of standard parameters, 

particularly Upper/Lower Control Limits (ULC/LCL) were also applied for the 

testing. For EWMA charts a lambda (λ) value of 0.4 that is commonly used in 
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literature was utilised as default value for the experiments. The reference value 

required for the CUSUM charts, was set by with k=σ for the conducted tests. 

Utilised parameters applied for the assessment of different SPC methods are 

detailed in Table 4-2.  

 

Table 4-2 SPC parameters used for standard test. 

 

 

All above described SPC methods were tested by the use of the same dataset 

(22 critical alarm points) and historical events (see Section 3.3). Once the testing 

was done, the evaluation of detection performances was carried out for each SPC 

method separately in the same way as it was done in the case of E-ERS and M-

ERS separately for calibration time period and follow-on validation on unseen 

data. Among the tested SPC methods CUSUM has proven to perform best in fault 

detection (see section 5.4.2) and for this reason this method was chosen to be 

used in further analysis for investigating possible improvements of the event 

recognition method. CUSUM charts monitor the cumulative sums of deviations of 

observed values from a target value against time and uses the out of control 

signals to locate anomalous points or sequences (Farkas, 2016). CUSUM control 

charts display the cumulation of information of current and previous observations 

and therefore, they are generally able to detect small shifts in the mean of a 

process (Montgomery, 2009).  

Even though CUSUM charts are mostly automated, some parameter can be fine-

tuned for their optimised adaption to the specific fault detection application. In 

particular, CUSUM control charts require a precise definition of the mean shift 

parameter (k value). By changing the k value, the sensitivity of CUSUM method 

can be adjusted. As higher the k value as less sensitive the CUSUM charting 

method gets. Since results of the performance assessment of CUSUM fault 

detection using standard parameters presented in Section 5.4.2 show a high 

number of false positives, i.e. a high level of sensitivity the focus was set on the 

Parameter x̅ chart s chart R chart EMWA CUSUM
window size 1d/1week 1d/1week 1d/1week 1d/1week 1d/1week

k - - - - σ

λ - - - 0.4 -

ULC/LCL ±3σ/6σ/12σ ±3σ/6σ/12σ ±3σ/6σ/12σ ±3σ/6σ/12σ ±3σ/6σ/12σ
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reduce of false alarms by the testing of higher k values. Therefore, further fine 

tuning of the system was conducted by adjusting the CUSUM parameters on 

each individual signal to investigate possible improvements on detection 

system’s performance. 

To achieve this, a type of sensitivity analysis was performed by changing k values 

for different control limits and time windows aiming to define best possible 

CUSUM parameter settings for each individual signal. This was done on the 

calibration data set only. New mean shift arguments and control limits were 

created by applying a gradual increase of the k values from 1σ to 9σ in steps of 

1σ and control limit values were changed from 1σ to 3σ, 6σ and 12σ for the 

windows sizes of 1d (288 time steps) and 1 week (2016 time steps). This way a 

total of 1.584 sensitivity tests were conducted, i.e. 72 sensitivity tests for each of 

the 22 signals resulting in the estimated corresponding true and false positives. 

Parameters used for the CUSUM fine-tuning are shown in Table 4-3. 

 

Table 4-3 Parameters used for CUSUM finetuning, 

 

 

The optimal fine-tuned control limits and k value combinations were then derived 

for each individual signal and time window by selecting the combination with the 

maximum Performance Indicator (PI), introduced for the assessment of the 

results as ratio of true positives to false positives (see Figure 4-6 in Section 4.5). 

The performance indicator is calculated by PI = TP/FP. PIs of the single signals 

were then averaged to identify an overall PI rate for each window size. By 

comparing the PIs of each window size, that window size showing the highest PI 

was considered as representing the best performing window size and chosen for 

the further analysis. Once the optimal window size was derived, optimal 

parameters, i.e. k value and upper/lower control limits for each individual signal 

were derived in the same way as it was done for the investigation of optimal 

window size and the parameter combination showing highest PI was chosen as 

CUSUM 

fine-tuned 

Parameter

window size         

1d

window size 

1 week

k 1σ,2σ…9σ 1σ,2σ…9σ

ULC/LCL ±1σ/3σ/6σ/12σ ±1σ/3σ/6σ/12σ
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optimal finetuned parameter setting for the respective signal. Further fine-tuning 

of CUSUM parameters was conducted in the course of the classifier input data 

optimisation described in the following section. 

The CUSUM fault detection system that makes use of the optimised window size 

and individual finetuned parameter settings was then tested in the same way as 

it was done for the system using the standard parameter settings for each signal.  

4.4.3 Event Detection Method  

The objective of methodology described in this section is to investigate possible 

improvements on the fault CUSUM detection performance by moving away from 

the application of detection rules to individual sensor signals only. With the move 

away from treating these signals independently (i.e. univariate detection 

methods) towards a detection system that considers relevant relationships 

between multiple signals (i.e. multivariate detection method) a reduction in false 

alarms is expected. The second event classification stage of Hybrid CUSUM ERS 

method that aims to address this issue is described below. The second event 

classification stage of Hybrid CUSUM ERS method that aims to address this 

issue is described below. 

The event classification process makes use of the predictions on individual 

signals received by the preceding CUSUM fault detection procedure. Once the 

binary output for each signal is generated as result of CUSUM fault detection 

process, a prediction about the output’s contents can be made by a trained 

machine learning classifier. This classifier estimates from input data (CUSUM 

fault detection output) the probability of the presence of an event. The 

methodologies described below utilise specified thresholds to raise alarms if the 

probability of the event prediction is above the default threshold. Even though, 

the thresholds were set at a fixed value, those thresholds can be changed in order 

to generate Receiver Operating Characteristic (ROC) curves to evaluate the 

performance of the classification process at all threshold values (see Section 

5.4.3). The work presented in this section uses Artificial Neural Network (ANN), 

Support Vector Machine (SVM) and Bagged Trees (BT) classifiers trained on the 

dataset of previously labelled CUSUM outputs.  
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ANN was chosen for its prevalence in the literature, successfully using functional 

relationships between data patterns and fault classes without modelling the 

internal process states or structure (Sin et al., 2012) to classify processes into 

healthy or faulty conditions (Padhee, Gupta and Kaur, 2012) by minimising the 

probability of false and missed alarms (Srivastava, Srivastava and Vashishtha, 

2014). The SVM was selected for its recognition in the literature, to be applied in 

some of the most recent and successful methodologies (Yin et al., 2014; Sahri 

and Yusof, 2014). Furthermore, SVM is well suitable in treating problems with low 

samples and high input features (Zhiwei, Cecati and Ding, 2015). This ability can 

be beneficially used for rapid prediction of events in the near-real time. Moreover, 

SVM classifiers have already shown high accuracy and detection ratio in the 

classification of contamination events (Oliker and Ostfeld, 2014). Finally, a 

selected range of ensembled decision tree classifiers, using boosting and 

bagging algorithms were investigated, because both methods, bagging and 

boosting have demonstrated very successfully improvements on the accuracy of 

conventional classifiers (Bauer and Kohavi, 1999). The focus here was set on 

AdaBoost, short for Adaptive Boosting (Freund and Schapire, 1997) and 

Bootstrap Aggregation (bagging) utilised by Bagged Trees (BT) classifiers 

(Breiman, 1999). While AdaBoost (in conjunction with decision trees as weak 

learners) is often referred to one of the most successful techniques in large-scale 

classification (Chapelle, Chang and Liu, 2011) (Kégl, 2013). BT classifiers were 

also chosen, because the bagged decision trees as class probability estimation 

model often has shown to outperform other one-class classifier variants by a 

significant margin (Hempstalk, Frank and Witten, 2008). 

Similar to CUSUM fault detection, all above mentioned classification methods are 

data driven, learning relevant relations from a dataset of observed signals that 

contains pre-labelled events aiming to classify the condition of WTWs processes 

as normal or faulty, respectively to predict the presence of an event. For reliable 

predictions of the process states, suitable relations across candidate signals, i.e. 

multiple signals needed to be analysed by the classifier. To achieve this, 

CUSUM’s binary output (normal or faulty signal condition) of the analysed signals 

served as input dataset for the training of the respective classification procedure. 

This classification process results in the triggering of alarms if an abnormal 

condition at WTW’s processes respectively the presence of an event is predicted. 
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All classifiers described in this section were trained on data of the calibration time 

period using the CUSUM detection output of the 22 critical alarm point signals as 

predictor variables (input) with the labelled historical events as response variable 

(output). It was assumed that the training database contains a sufficient number 

of identified process faults and historical events. These requirements were met 

documented by the results of the case study (see Section 5.4.2), which have 

shown that 1.293 faults have been detected by CUSUM fault detection method 

across the used 22 critical alarm points and 102 historical events identified during 

calibration time period (i.e. training period for classifiers). After training, the 

classifier models were tested on the unseen data of validation time period and 

their respective performance assessed by quantifying detection statistics on 

observed, historical data and events in the same way as it was done in the 

previous experiments. 

First, the capability of an Artificial Neural Network (ANN) for the desired 

classification procedure was investigated. ANNs can be trained to solve problems 

that are too difficult to address with a simple algorithm and have been already 

successfully applied to classify data for fault detection and other fields (Lennox 

et al., 2001) (Dong, Cheng and Chan, 2009) (Chen and Huang, 2011). 

Particularly feedforward neural networks (the information moves only forward 

from input to output nodes) can be used to construct several types of classifiers 

(Huang, Chen and Babri, 2000). Therefore, a feedforward neural network was 

implemented to perform the mentioned classification task. The performance of 

any ANN is heavily dependent on its architecture that means it depends on the 

way of how the used computing elements are connected and on the strengths of 

these connections (weights). The weights are automatically adjusted by training 

the network according to a defined learning rule. To perform the classification 

task a two-layer ANN was built that is fed by the predictor variables (CUSUM 

output) as input which is transferred via a hidden layer by a sigmoid activation 

function into the output layer, that makes use of a softmax function to represent 

its prediction as probability distribution over the different classes (Goodfellow, 

Bengio and Courville, 2016).  

A two-layer feedforward ANN utilising above described transfer functions and 100 

neurons (see Appendix A) between input and output layer was trained to identify 
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particular patterns and classify them into one of the two classes: (i) normal 

condition (i.e. no event), and (ii) event taking place. To adjust weights properly, 

the Scaled Conjugate Gradient (SCG) backpropagation algorithm for non-linear 

optimization, developed by Moller was applied by training the ANN. Training the 

ANN on pattern recognition, the SCG is more effective and faster than most other 

learning algorithms, such as standard back propagation (Rumelhart, Hinton and 

Williams, 1986) or conjugate gradient (Johansson, Dowla and Goodman, 1991) 

algorithm (Moller, 1993). The trained ANN was then applied on the validation data 

set to predict for each observation the probability of an event. An alarm was 

raised if the predicted probability exceeded a threshold value of 0.5. 

In the second experiment the SVM classifier was explored. SVM is a well-

established classification method, popular for its high accuracy and ability to deal 

with high-dimensional data (Oliker and Ostfeld, 2014). The training data set is 

used to construct hyperplanes which separates a higher dimensional space into 

two classes. (Boser, Guyon and Vapnik, 1992). In this work several standard 

kernels were tested including the radial basis function (RBF) kernel, but also 

nonlinear polynomial and sigmoidal kernels (Schölkopf, Smola and Bach, 2002). 

Internal parameters such as kernel coefficient (γ) and regularisation constant (C) 

were automatically learnt during training using cross validation (Kohavi, 1995) 

that additionally prevents overfitting. SVM classifiers were trained on the above 

described dataset by maximising the separating area between the two defined 

classes and minimising the error of misclassified vector using kernel-based 

learning algorithms (Press et al., 2007). The SVM using a radial basis function 

(RBF) kernel with a γ of 3.1 and C of 1 was tested on the unseen data of validation 

time period. 

The third experiment was investigating the classification capabilities of the 

mentioned ensemble classifiers. Random Forest (RF) classifiers that makes use 

of ‘bagging’ in tandem with random feature selection growing a combined 

ensemble of decision trees to let them vote for the most popular class (Breiman, 

2001) were tested. Each tree utilised in an ensemble of 100 decision trees (see 

Appendix A) was trained on the calibration data set individually to generate the 

decision rules, after which for each observation of the validation time period each 

tree has generated its vote for the estimated class (event or no event). The 



Chapter 4 – Event Recognition Methodology 

 

106 

proportion (non-weighted average) of votes from all trees in the ensemble in 

favour of a class represents the estimated probability of the class membership. 

Finally, an alarm is risen if the estimated probability of an event is above threshold 

value of 0.5. The same procedure was followed for exploring the event detection 

capabilities of AdaBoost classifiers. 10 decision trees in ensemble (see Appendix 

A) have been utilised by the adaptive boosting technique. Unlike RF, the 

AdaBoost algorithm apply weights to represent the estimated class membership 

for each observation as weighted sum of the predictions made by each individual 

tree in the forest. An alarm was raised if the predicted classification value 

exceeded the threshold of zero. When evaluating each approach, speed and 

detection performance were considered. Among all tested classification methods 

RF classifier has shown best performance (see Section 5.4.3). 

Additional experiments were conducted on the classifier models to investigate 

possible improvements on detection performance by (i) optimisation of the 

classifier input data and (ii) feature selection to explore the importance of single 

signals aiming to remove redundant signals. The optimisation of the classifier 

input was conducted by a further refinement of the CUSUM detection. The output 

of CUSUM detection system was revised by utilising same windows sizes (1d 

and 1 week) and control limits (1σ, 3σ, 6σ, 12σ) as described in Section 4.4.2, 

but by the application of modified target and k values to the CUSUM detection 

system. Instead of using mean values and standard deviation of the mean, 

median and Median Absolute Deviation (MAD) was used as target and k value. 

Parameters used for the CUSUM refinement are shown in Table 4-4. 

 

Table 4-4 Parameters used for CUSUM refinement. 

 

 

A type of sensitivity analysis that makes use of the modified parameters was 

conducted in the same way as described in section 4.4.2. Optimised control limit 

and k value combinations for each sensor signal as well as the optimal window 

size were derived by evaluating the performance of the HC-ERS for each criterion 

Parameter window size         

(1d)

window size       

(1 week)

k 1MAD,2MAD…9MAD 1MAD,2MAD…9MAD

ULC/LCL ±1σ/3σ/6σ/12σ ±1σ/3σ/6σ/12σ
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and each signal separately. The following 3 criteria were applied the performance 

evaluation: 

1. Maximum value of the ratio of true positives rates to false positives (see 

Figure 4-4 in Section 4.5) 

2. Maximum regression value (linear regression between CUSUM output 

and historical events)  

3. Maximum number of true detections (sum of true positives and true 

negatives) 

Best performing CUSUM parameter settings of each individual signal were then 

derived for each criterion by the analysis of their CUSUM detection output data 

against the above criteria. After recalculation of the number of neurons for the 

ANN and decision tress for RF and AdaBoost classifiers (see Appendix B) the 

optimised output of each individual signal derived this way was then feed as input 

into above classifier models followed by the calculation of corresponding 

detection statistics. The results of these experiments have shown that best 

performance was achieved by the application of the CUSUM parameters derived 

by criterion 3 (see Appendix B) and therefore, these parameters were used as 

default values in the CUSUM fault detection system for each signal. The results 

have also demonstrated HC-ERS in combination of refined CUSUM with RF-

based classification (criterion 3) as best performing method as yet (see section 

5.4.3). For this reason, RF classifiers has been selected to set on further analysis.  

On basis of the system developed so far, additional improvements on the 

classification process were investigated. It is well known that RF performs well in 

presence of a small number of informative predictors among a greater number of 

noisy variables, it is impossible to distinguish the contributions of single predictors 

to the outcome of the RF classification process (Sandri and Zuccolotto, 2009). 

Therefore, further analysis was conducted by the optimisation of feature selection 

for the classification procedure aiming to remove redundant signals or signals 

that possibly adversely affect the performance of the classification process. 

Stepwise backward elimination using the wrapper method similar to the approach 

of Kohavi and John (Kohavi and John, 1997) was utilised to identify these 

redundant signals. Stepwise backward elimination comprises the step-by-step 

rejection of insignificant predictors from a model until all variables are significant 
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or eliminated. Once all input variables have been eliminated, they can be ranked 

according to their order of importance, i.e. significance for the model.  

This approach was conducted starting by utilising all 22 CUSUM output vectors 

as input for the RF classifier model. Sequentially one of each of the 22 signals 

was rejected followed by the evaluation of corresponding model’s performance 

on unseen data of validation time period and the re-training of the classifier. The 

performance of the model was assessed by comparing the stepwise calculated 

ratio of true positives to false positives (see Figure 4-6 in Section 4.5). The signal 

that showed the least influence on the performance was considered as 

insignificant for the model and therefore permanently eliminated for the following 

test. The testing was then repeated with the remaining 21 signals in the same 

way as it was done with 22 signals. This procedure was repeated until all 

significant signals were eliminated. 

The number of significant signals was identified by visual inspection of the 

graphed results. After each permanent elimination of a signal the performance of 

the model (TP/FP ratio) was graphed against the remaining number of signals 

(see Figure 5-11 in Section 5.4.3). By analysis of the graph the optimal number 

of signals was derived, respectively these signals itself were identified, which 

contribute significantly to model’s performance by selecting the model that has 

pictured the best overall detection performance, i.e. the best TP/FP ratio. Finally, 

the definitive model was built with the identified signals and its detection 

performance was evaluated in the same way as it was done for the previous tests. 

4.4.4 Section Summary 

This section has focussed on the presentation of the methodologies used for 

development of the novel Hybrid CUSUM ERS for WTWs processes based on 

their two process stages, fault detection and event classification. 

For the fault detection approach, a number of SPC strategies has been presented 

and CUSUM based fault detection identified as best performing and most suitable 

method. The CUSUM based fault detection utilises control charts applied to each 

observed signal individually and detects their out of control conditions. The output 

of CUSUM fault detection serves as input for the second event classification 

stage. For the evaluation of the most appropriate event classification 
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methodology, a collection of machine learning techniques has been applied to 

point out Random Forest classifier as best performing classification method for 

predicting the two response classes event or no event. In the following section 

methodologies and metrics applied for performance assessment of ERSs are 

outlined. 

4.5 ERS Performance Assessment 

Performance assessment was conducted by simulating the ERSs using the 

historical time series data (5 min intervals) of the 22 water quality signals with 

labelled events contained in the datasets (see Section 3.2). The performance of 

developed ERS methodologies was demonstrated on unseen data of the 

validation time period (see Chapter 5). To avoid double or multiple counting of 

sequenced alarms in the course of ERSs’ performance evaluation follow-on 

alarms raised by individual signals in rapid succession were supressed over a 

defined number of subsequent time steps.  

The time period used for this suppression, in the following referred as to 

suppression time, had to be investigated first. For this reason, a distribution 

analysis was conducted investigating the distribution of event durations and 

timely intervals between single events (see Figure 4-5). Figure 4-5(a) 

demonstrated that the duration for the largest fraction of events is less than 24 

hrs (first bar on the left hand side of the plot). Figure 4-5(b) illustrates that only 

for a small fraction of events (i.e., 13 minor events out of a total of 163 events) is 

shorter than 1d. Therefore, the period of one day (i.e. 288 time steps) was 

selected as most suitable suppression time to (a) minimise the risk that real 

events will not be detected (suppressed) and (b) reduce the number of multiple 

counts of subsequent alarms in rapid succession. The suppression time of 1d has 

been uniformly applied throughout the experiments conducted in this work. 
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 (a) 

 

(b) 

 

Figure 4-5 Analysis investigating the distribution of (a) Duration of events and 
(b) timely interval between events. 

 

Once the ERS’ were simulated, two-by-two confusion matrices with true/false 

positives/negatives, representing the distribution of possible outcomes for each 

signal, were generated and the corresponding true detection and false alarm 

rates calculated. The utilised confusion matrices scheme is shown in Figure 4-6 

followed by Figure 4-7 presenting the key metrics for the performance 

assessment and the formulas used for calculation of the corresponding 

parameters. 

 

Figure 4-6 Confusion Matrix. 
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Figure 4-7 Performance Metrics. 

 

It has to be noted that instead of the more common False Positive Rate (FPR) 

the False Discovery Rate (FDR) was used to display the rate of incorrect alarms 

raised by the detection system. The false discovery rate (hereafter also referred 

to as false alarm rate) is a method of conceptualising the rate of type I errors in 

null hypothesis testing when conducting multiple comparisons (Benjamini and 

Hochberg, 1995). 

The derived detection statistics contain the True Positive Rate (TPR), also 

referred to as recall or sensitivity calculated for total events (sum of major and 

minor) on the one hand and for major and minor events separately on the other. 

Additionally, the Positive Predictive Value (PPV) also called precision is shown in 

the assessment of the detection performance. Both, TPR and PPV describe the 

true detection capabilities of the system. Above described false discovery rate, 

the absolute number of false positives and finally the False Negative Rate (FNR) 

all shown in the detection performance tables (see Figure 4-7) refer to false 

detections and therefore they are a suitable measure of performance against 

faulty predictions of the system. Formulas used for the calculation of the detection 

metrics are as follows: 

  (1) 

 

  (2) 

 

  (3) 

 

    (4) 

Total Major Minor

True Detections False Detections

Performance Metrics

True Positive Rates (TPR)                                                                             
Positive predictive 

value (PPV)

False discovery 

rate (FDR)                 

False 

Positives 

(FP)                                               

False 

Negative 

Rate (FNR)                  
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    (5) 

 

In addition to above detection metrics for the comprehensive ERS’s performance 

evaluation the harmonic mean of precision and recall, i.e. the F measure also 

referred as to F1 score used in literature for the comparison of event detection 

methods (Inoue et al., 2017) and false alarms per week are calculated as follows: 

 

    (6) 

 

         (7) 

 

Finally, the above described detection rates of individual signals corresponding 

to a single treatment stage were then averaged to display detection statistics of 

the respective treatment stage. In the same way detection statistics were 

calculated for the overall system as averaged detection rates of all analysed 

signals. All this was done for calibration and validation time periods separately.  

Evaluating the performance of E-ERS this way, the baseline used for the 

evaluation of improvements was established by quantifying its detection statistics 

on observed, historical data and events. The same assessment procedure was 

applied for the evaluation of M-ERS’s and HC-ERS’s detection performances. 

The results obtained this way were then compared to assess the improvements 

of M-ERSs and HC-ERS against the E-ERS. 

It has to be noted, that in contrast to the E-ERS and M-ERS, for the evaluation of 

HC-ERS’s performance only a single confusion matrix with true/false 

positives/negatives is generated followed by the calculation of corresponding true 

detection and false alarm rates, since the output of its classification process 

based on the multivariate CUSUM predictor input serves for each time step only 

a single prediction for the condition (normal state or event) of the overall system. 

For the further assessment of the new Hybrid CUSUM ERS methodology its 

detection results were additionally compared to the detection results of the well-

established CANARY event detection software from U.S. Environmental 
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Protection Agency (EPA). CANARY was tested to serve as benchmark for the 

Hybrid CUSUM ERS. The simulation of CANARY was carried out by the use of 

default, respectively recommended parameter settings suggested by the 

software documentation (detailed results are shown in section 5.4.5).  

4.6 Implementation of HC-ERS Methodologies 

For the implementation of the methodologies used by the HC-ERS, coding was 

performed using the MATLAB environment and functions provided by MATLAB. 

In order to be able to integrate the sensor data validation and pre-processing 

method (see Section 4.3.2) with the fault and event detection methodologies of 

the HC-ERS (see Section 4.4.2 and 4.4.3) into a single software code, a modular 

approach was chosen for this purpose. Therefore, the final MATLAB code 

developed consists of three main sections for: (i) sensor data validation and pre-

processing, (ii) CUSUM fault detection, and (iii) Random Forest event detection 

procedures.  

In the course of this work, several types of codes have been developed. On the 

one hand as offline applications for calibration, training and testing the methods, 

and on the other hand for validation of the applied methodologies on unseen data. 

The latter is applicable for "online" implementation of HC-ERS’s methodologies 

and allows event recognition at WTWs in near real time. The “offline” codes are 

used to determine the parameters required to perform the CUSUM fault detection 

algorithm, i.e. size of the sliding widow, k and upper/lower control limits and the 

number of decision trees used by the RF classifier for event detection. For this 

purpose, multiple sensitivity tests were performed by the code to investigate the 

best possible parameter or parameter combinations for the respective 

application.  

The parameters obtained this way and the decision rules achieved from the 

trained classifier were used as default in the online code, which works as follows. 

After the initialisation of the required data (sensor readings from the observed 

signals) the online code performs the sensor data validation and pre-processing 

routine. The statistical tests described in Section 4.3.2 were conducted for each 

signal individually and each observation according to the following scheme. 



Chapter 4 – Event Recognition Methodology 

 

114 

1) Checking for erroneous data and if applicable replacement with the 

preceding validated sensor measurement. 

2) Identification of missing data and if applicable replacement with the 

preceding validated sensor measurement. 

3) Identification of unusual spikes if applicable replacement with the 

preceding validated sensor measurement. 

4) Identification of flat signals and if applicable labelling as “flat line fault”. 

The purpose of the subsequent fault detection section is to identify abnormal (“out 

of control”) conditions in the analysed signals. The code uses the default values 

in combination with the CUSUM function, which is applied to each observed water 

quality signal individually to detect their possible out of control conditions. This 

code section executes the following procedure. 

1) Within the applied historical window, the upper and lower cumulative sums 

of deviations are calculated for each water quality signal separately. 

2) For each signal and observation, a vector is created, filled with ones if 

upper/lower or both cumulative sums of deviations violated the applied 

control limit at the present data point (sample) and otherwise with zeros if 

the signal is “in control”. 

3) In the last step the code generates the CUSUM output matrix using for 

each observation the CUSUM output of individual signals. The CUSUM 

output matrix serves as input for the following event classification 

procedure. 

The task of the code in the final event detection section is to provide the prediction 

of an event occurring at WTW’s processes. The code uses the default number of 

trees and default decision rules provided from the “offline” code to calculate the 

probability of an event for each observation from the unseen data of the validation 

period. Finally, if the probability exceeds a default threshold value of 0.5 an alarm 

is risen.  
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4.7 Summary 

Online data of water quality parameters from sensors deployed in a sufficient 

number to monitor various processes at WTWs provide the necessary information 

for a reliable and robust event recognition in near real-time. The novel Hybrid 

CUSUM event recognition system that makes use of these data has been 

presented in this chapter.  

In this concluding section the methodologies and developments outlined in this 

chapter can be summarised as follows. After a brief introduction, the assessment 

of the E-ERS has been described, detailing its architecture as currently used in 

the real-live WTW. The chapter continues with the presentation of strategies used 

to achieve improvements on the performance of the E-ERS discussing the 

sensitivity analysis applied to investigate optimised thresholds and persistence 

values for each individual signal and the developed sensor data validation and 

pre-processing methods that make use of four simple statistical tests to improve 

the data quality in near real-time used for M-ERS. Furthermore, details have been 

given about the fundamentals of the HC-ERS and the implementation of 

methodologies used by the system. Procedures applied for the optimisation of 

the Hybrid CUSUM ERS have been described as well as the methods of how its 

event detection performance has been evaluated and assessed against E-ERS, 

M-ERS and CANARY detection systems. 
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5 CASE STUDY RESULTS AND DISCUSSION 

5.1 Introduction 

This chapter presents the results of application of the E-ERS’s, M-ERS’s and HC-

ERS’s detection methods on the WTW case study. For all cases presented in this 

chapter the dataset including water quality signals from sensors deployed at the 

above test site (see Section 3.1) was used with the labelled events as described 

in Section 3.3.  

The first case performed on the E-ERS is aimed to investigate, test and illustrate 

the capabilities of the existing detection system to establish a baseline for the 

performance of ERSs. The subsequent studies on M-ERS and HC-ERS were 

conducted aiming to test and demonstrate the event detection capabilities of new 

methodologies applied to M-ERS and HC-ERS and outline improvements 

achieved against the currently used E-ERS.  

This chapter is organised as follows. After this introduction, Section 5.2 details 

the results of E-ERS’s detection performance evaluation. The results achieved 

for the E-ERS serve as baseline for the assessment of possible improvements 

by the application of new methodologies to M-ERS and HC-ERS. Section 5.3 

provides the results of M-ERS’s performance evaluation and improvements 

achieved utilising the type of sensitivity analysis presented in Section 4.3.1 aiming 

to optimise the threshold and persistence values applied by M-ERS and 

continues with the illustration of the outcome and benefits accomplished using 

validated and Pre-processed Sensor Data (PSD) applied to the M-ERS - denoted 

as M-ERS (PSD) here - by utilising the methods described in Section 4.3.2. The 

results of the developed CUSUM based fault detection (see Section 4.4.2) and 

event detection (see Section 4.4.3) methodologies using Random Forest (RF) 

classifiers applied by the novel HC-ERS (see Section 4.4) including its 

performance evaluation and improvements achieved are presented in Section 

5.4. These results are outlined for the different development stages shown in 

Sections 5.4.2, 5.4.3. and 5.4.4. Finally, the detection performance of the HC-

ERS is compared to E-ERS, M-ERS, M-ERS (PSD) and the well know CANARY 

method shown in Section 5.4.5 followed by a concluding summary in Section 5.5. 
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5.2 E-ERS Results and Discussion 

This first case investigates the fault detection capabilities demonstrated on data 

from the WTW described in Section 3.1 and presents performance evaluation of 

E-ERS. The case demonstrates the application of the dataset described in 

Section 3.2 with labelled major and minor events (see Section 3.3) to the 

simulated detection system (E-ERS) of the test site. The analyses aimed to 

evaluate the performance of E-ERS according to the methods described at 

Section 4.5 focussing on the capabilities to correctly detect the labelled minor and 

major events in conjunction with corresponding false alarm rates generated by 

the system.  

The results of the analysis serve as baseline for the assessment of possible 

improvements achieved by M-ERS and HC-ERS. Once the E-ERS was calibrated 

using the same threshold and persistence values as currently utilised at the test 

site. The default parameters used for this case study are shown in Table 5.1. 

 

Table 5-1 E-ERS: Default parameters. 

 
 

For this analysis the observed data of the entire time period was split into datasets 

for re-calibration of existing detection thresholds (time period from 01/01/2012 

Signal Unit Low Limit High Limit

Persistence
[Time Step = 5min]

Raw Water Turbidity NTU - 10.00 0

Raw Water pH pH 5.50 7.90 1

Pre Flocculation pH Stream A pH 4.0 4.80 0

Pre Flocculation pH Stream B pH 4.0 4.80 0

Post Flotation Turbidity Stream A NTU 0.01 6.50 1

Post Flotation Turbidity Stream B NTU 0.01 6.50 1

DAF Iron Stream A mg/l - 2.50 6

DAF Iron Stream B mg/l - 2.50 6

Pre 1
st

 Stage pH Stream A pH 5.80 7.50 2

Pre 1
st

 Stage pH Stream B pH 5.80 7.50 2

Post 1
st

 Stage Turbidity Stream A NTU - 0.50 2

Post 1
st

 Stage Turbidity Stream B NTU - 0.50 1

Pre 2
nd

 Stage pH Stream A pH 6.80 8.60 1

Pre 2
nd

 Stage pH Stream B pH 6.80 8.60 2

Post 2
nd

 Stage Turbidity Stream A NTU - 0.40 3

Post 2
nd

 Stage Turbidity Stream B NTU - 0.25 3

Post 2
nd 

Stage Chlorine Stream A mg/l 0.60 1.40 1

Post 2
nd

 Stage Chlorine Stream B mg/l 0.60 1.40 1

Treated Water pH Stream A pH 6.80 8.60 0

Treated Water pH Stream B pH 6.80 8.60 0

Final Water pH pH 7.00 9.00 1

Final Water Chlorine Residual mg/l 0.60 1.35 0
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until 28/02/2014) and follow-on validation on unseen data (time period from 

01/03/2014 until 01/03/2015). The results obtained by testing the E-ERS on 

unseen data (i.e. validation dataset) are provided in this section.  

According to the formulas shown in Section 4.5 detection rates corresponding to 

the generated confusion matrices containing True Positive Rates (TPR), Positive 

Predictive Value (PPV), False Positive Rate (FPR) and False Discovery Rate 

(FDR) were calculated for each signal individually. These metrics are 

summarised in Table 5-2. It has to be noted that multiple detections of events are 

possible if an event last longer than the default suppression time (1 day here). 

Whilst multiple counts of TPs for these events have been neglected for the 

calculation of true positives, i.e. for the detection of a single event only a single 

TP was counted, multiple detections have been considered for the calculation of 

PPVs and FDRs. This way an adequate calculation of the detection metrics was 

achieved according to which (a) the number of possible TPs corresponds to the 

number of real events and (b) the number of alarms used in the metrics 

calculation corresponds to the number of total alarms raised by the ERS. 

 

Table 5-2 E-ERS: Detection statistics for individual signals. 

 

PPV FDR FP                                         FNR                  

Total Major Minor

Raw Water Turbidity 3% 0% 3% 50% 50% 2 97%

Raw Water pH 5% 0% 5% 57% 43% 3 95%0% 0% 0% 0% 0 0%

Pre Flocculation pH Stream A 34% 100% 33% 58% 42% 18 66%0% 0% 0% 0% 0% 0 0%

Pre Flocculation pH Stream B 33% 100% 32% 68% 32% 12 67%0% 0% 0% 0% 0% 0 0%

Post Flotation Turbidity Stream A 21% 100% 20% 89% 11% 2 79%0% 0% 0% 0% 0% 0 0%

Post Flotation Turbidity Stream B 8% 0% 8% 64% 36% 4 92%0% 0% 0% 0% 0% 0 0%

DAF Iron Stream A 25% 100% 23% 49% 51% 19 75%0% 0% 0% 0% 0% 0 0%

DAF Iron Stream B 21% 100% 20% 54% 46% 16 79%0% 0% 0% 0% 0% 0 0%

Pre 1
st
 Stage pH Stream A 28% 100% 27% 78% 22% 5 72%0% 0% 0% 0% 0% 0 0%

Pre 1
st
 Stage pH Stream B 13% 100% 12% 90% 10% 1 87%0% 0% 0% 0% 0% 0 0%

Post 1
st
 Stage Turbidity Stream A 25% 100% 23% 56% 44% 16 75%0% 0% 0% 0% 0% 0 0%

Post 1
st
 Stage Turbidity Stream B 34% 0% 35% 53% 47% 31 66%0% 0% 0% 0% 0% 0 0%

Pre 2
nd

 Stage pH Stream A 67% 100% 67% 53% 47% 51 33%0% 0% 0% 0% 0% 0 0%

Pre 2
nd

 Stage pH Stream B 44% 0% 45% 56% 44% 28 56%0% 0% 0% 0% 0% 0 0%

Post 2
nd

 Stage Turbidity Stream A 3% 100% 2% 40% 60% 3 97%0% 0% 0% 0% 0% 0 0%

Post 2
nd

 Stage Turbidity Stream B 8% 100% 7% 100% 0% 0 92%0% 0% 0% 0% 0% 0 0%

Post 2
nd 

Stage Chlorine Stream A 16% 100% 15% 80% 20% 3 84%0% 0% 0% 0% 0% 0 0%

Post 2
nd

 Stage Chlorine Stream B 20% 100% 18% 56% 44% 11 80%0% 0% 0% 0% 0% 0 0%

Treated Water pH Stream A 8% 0% 8% 43% 57% 8 92%0% 0% 0% 0% 0% 0 0%

Treated Water pH Stream B 44% 0% 45% 31% 69% 115 56%0% 0% 0% 0% 0% 0 0%

Final Water pH 7% 0% 7% 63% 38% 3 93%0% 0% 0% 0% 0% 0 0%

Final Water Chlorine Residual 10% 100% 8% 75% 25% 3 90%

E-ERS 

(22 critical alarm points)                                                                 TPR                                                                         

True Detections False Detections
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The following can be observed from Table 5-2: (a) the E-ERS has generated low 

TPRs between 3% and 45% for almost all signals, except for stream A pre 2nd 

stage pH signal where a significantly higher TPR of 67% was produced, which 

indicates that signals seem to react differently to process changes based on the 

pre-determined thresholds and persistence values used by the E-ERS, (b) the 

same effect applies to the FDRs illustrated by widely varying values between 0% 

to 69% which confirms the different sensitivity of signals to process changes, (c) 

the number of 115 false positives shown in the table for the treated water pH 

stream B signal is by far the largest value among the signals indicating that 

threshold and persistence values on this signal are not optimally set. 

The detection statistics for the overall E-ERS calculated by averaging the 

detection rates and summation of false positives over all observed signals is 

shown in Table 5-3. 

 

Table 5-3 E-ERS: Averaged overall detection statistics. 

 

 

As it can be seen from Table 5-3, the E-ERS is able to detect only 22% of total 

events, split into TPRs of 64% for major and 21% for minor events respectively. 

The significant higher true detection rate for major events was expected since 

these events are easier to detect than the minor ones. Although a large number 

of events were not detected as pictured in the table by the FNR of 78%, the E-

ERS generates a considerable high number of false alarms demonstrated by the 

FDR of 38% and the high number of 354 FPs produced within the tested one year 

validation time period. 

The assessment of E-ERS’s performance has resulted in estimated 6.8 false 

alarms per week (derived as ratio of 354 FP alarms and the 52 weeks). This 

additional measure is an important information regarding practical WTW’s 

operation, since an ERS that generate seven or more false alarms (invalid alerts) 

per week is considered as system of limited practical relevance (EPA, 2013) 

(s::can, 2013). With 6.8 false alarms per week the E-ERS is only just below this 

PPV FDR FP                                         FNR                  

Total Major MinorTotal Major Minor

Overall System 22% 64% 21% 62% 38% 354 78%

E-ERS                                                                  

True Detections False Detections

TPR                                                                         
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critical value. Given this and the low true detection rate of 22% it can be 

concluded that the E-ERS in not suited well for the detection of water quality 

events at WTWs.  

Whilst the results displayed in Table 5-3 already give a good overview about the 

detection capabilities of the E-ERS, the F1 score (see Section 4.5) was estimated 

here as well. This score is the harmonic mean of precision (PPV) and recall (TPR) 

and is widely considered as a suitable measure for the ERS performance 

assessment and the comparison of different detection systems. The F1 score 

ranges between 0 and 1 (as higher the F1 score as better the system performs), 

an ideal F1 score would achieve a value of 1. The calculated F1 score for the E-

ERS is only 0.31 further confirming a rather poor detection performance of this 

method.  

The evaluation of the E-ERS’s detection performance was complemented by 

calculating the detection matrices for each treatment stage by averaging the 

detection statistics of single signals across the corresponding treatment stage. 

The corresponding metrics of the detection statistics for the single treatment 

stages are presented in Table 5-4. 

 

Table 5-4 E-ERS: Detection statistics corresponding to single treatment stages. 

 

 

The results presented in Table 5-4 show that the E-ERS enables the true 

detection of 19% to 25% of the events already at WTW’s early treatment stages 

(WTW’s inlet to 1st stage filtering). The TPR increases only slightly (by 1%) at the 

2nd stage filtration, which indicates that most of the detected events seems to be 

manifesting at the early treatment stages and then propagating throughout the 

subsequent treatment stages.  

PPV FDR FP                                         FNR                  
Total Major Minor

Inlet 19% 50% 18% 58% 42% 9 81%

Flotation/Flocculation 19% 75% 18% 64% 36% 10 81%

1
st 

Stage Filtering 25% 75% 24% 69% 31% 13 75%0 0 0 0 0 0

2
nd

 Stage Filtering 27% 83% 26% 64% 36% 10 73%

Outlet 17% 25% 17% 53% 47% 32 83%

E-ERS                                            
(WTW's Treatment Stages)                           TPR                                                                         

True Detections False Detections
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This observation was confirmed by further analysis of signal’s behaviour for minor 

events. Selected examples presented in Figure 5-1 illustrate deviations of signals 

from normal condition in the presence of minor events and shows the propagation 

of these faults to signals of subsequent treatment stages.  

 
 

 

Figure 5-1 Example minor events – Propagation of turbidity faults to 
subsequent WTWs stages. 

 

From Figure 5-1 it can be seen that the water quality signals shown are starting 

to deviate from the normal values at the WTW’s inlet stage (see raw water 

turbidity signal) and this is then propagated further downstream, to the following 

treatment stages (see other signals). This propagation effect correlates with the 

observation that TP rates generated by the E-ERS from early treatment stages 

to downstream 2nd stage filtering do not differ much (i.e. 19% for the inlet stage, 

25% for flocculation/flotation stage and 27% for the 1st and 2nd filtration stages).  

The fact that a significant high number of events influence water quality signals’ 

behaviour already at the early treatment stages is beneficial for an early detection 

of these events. At outlet stage the lowest TPR (17%) combined with the highest 

number of 32 false positives over all treatment stages indicate that default limits 

set on signals at the outlet stage have not been selected in an optimal manner.  

This observation is confirmed by analysing the confusion matrices of single 

signals at this stage shown in Figure 5-2 which presents the confusion matrices 

(explained in Section 4.5, see Figure 4-6) generated for each of the 22 analysed 

signals. In addition to the numbers of true positives and false negatives 
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corresponding to all events (major and minor), the resulting confusion matrices 

show true positives and false negatives for major and minor events separately 

(values displayed in brackets, whereas first numbers shows the true/false 

detections for major and second the numbers for minor events). 

 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

2 59  3 58  21 40 
(0/2) (1/58)  (0/3) (1/57)  (1/20) (0/40) 

(True Class) 

NO 
2 63  3 64  18 79   

 
  

 
  

 Raw Water TU (a)  Raw Water pH (b)  Pre Flocculation pH (A) (c) 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

20 41  13 48  5 56 
(1/19) (0/41)  (1/12) (0/48)  (0/5) (1/55) 

(True Class) 

NO 
12 73  2 63  4 65   

 
  

 
  

 Pre Flocculation pH (B) (d)   Post Flotation TU (A) (e)  Post Flotation TU (B) (f) 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

15 46  13 48  17 44 
(1/14) (0/46)  (1/12) (0/48)  (1/16) (0/44) 

(True Class) 

NO 
19 80  16 77  5 66   

 
  

 
  

 DAF Iron (A) (g)  DAF Iron (B) (h)  Pre 1st Stage pH (A) (i) 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

8 53  15 46  21 40 
(1/7) (0/53)  (1/14) (0/46)  (0/21) (1/39) 

(True Class) 

NO 
1 62  16 77  31 92   

 
  

 
  

 Pre 1st Stage pH (B) (j)  Post 1st Stage TU (A) (k)  Post 1st Stage TU (B) (l) 
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 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

41 20  27 34  2 59 
(1/40) (0/20)  (0/27) (1/33)  (1/1) (0/59) 

(True Class) 

NO 
51 112  28 89  3 64   

 
  

 
  

 Pre 2nd Stage pH (A) (m)  Pre 2nd Stage pH (B) (n)  Post 2nd Stage TU (A) (o) 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

5 56  10 51  12 49 
(1/4) (0/56)  (1/9) (0/51)  (1/11) (0/49) 

(True Class) 

NO 
0 61  3 64  11 72   

 
  

 
  

 Post 2nd Stage TU (B) (p)  Post 2nd Stage Cl (A) (q)  Post 2nd Stage Cl (B) (r) 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

5 56  27 34  4 57 
(0/5) (1/55)  (0/27) (1/33)  (0/4) (1/56) 

(True Class) 

NO 
8 69  115 176  3 64   

 
  

 
  

 Treated Water pH (A) (s)  Treated Water pH (B) (t)  Final Water pH (u) 

 

 Alarm 
(Predicted class) 

 YES  NO 

 
 

YES 

Event 

6 55 
(1/5) (0/55) 

(True Class) 

NO 
3 64   

 Final Water Cl (v) 

Figure 5-2 Confusion matrices for E-ERS generated by the application to data 
of the observed signals. 

 

From this figure it can be seen (e.g. Figure 5-2t) that the number of 115 false 

positives generated by stream B treated water pH signal is significantly higher 

than the 3 to 8 false positives of the other signals at this treatment stage (e.g. 

Figure 5-2s, 5-2u and 5-2v). The single signals’ confusion matrices illustrate also 

that some signals are more sensitive in detection of true events than others. 

Whilst stream A and B pre 2nd stage pH signals (see Figure 5-2m and 5-2n) are 
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able to detect 41 and 27 events respectively, only two and five events are truly 

identified by post 2nd stage turbidity stream A and B signals (see Figure 5-2o and 

5-2p), respectively. The confusion matrices also demonstrate that some of the 

events are harder to detect than others. Figure 5-3 shows the distribution of 

events detected simultaneously by a number of signals.  

 

Figure 5-3 Distribution of events simultaneously detected by multiple signals. 

 

From this figure it can be seen that at least 7 minor events out of a total of 61 

events within the validation time period are harder to detect than the other ones 

since only one signal is triggering an alarm for these events.  

In order to detect more of those events that are difficult to spot, the thresholds 

used to define the presence of an event could be reduced, resulting in identifying 

more events at the cost of increasing the number of false alarms. Figure 5-3 

Distribution of events simultaneously detected by multiple signals. 

also shows that the overwhelming number of events, i.e. 54 of the total 61 events 

have been identified by two or more (up to 19) signals simultaneously. This high 

number of simultaneous detections illustrates that investigating signals 

simultaneously rather than analysing signals individually can be favourably used 
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for the development of an event detection methodology that is more sophisticated 

and robust against false alarms caused by individual signals. 

As already mentioned in Section 2.3.1 the detection success relies on the quality 

of data processed and adequate validation of input data can be used to improve 

the performance of any ERS. The E-ERS is lacking such a data validation 

procedure resulting in a certain amount of false predictions (mainly false alarms) 

related to sensor faults. These ‘outliers’ caused by erroneous sensor 

measurements or transmission failures will be counted and treated by the E-ERS 

as real events. Having said this, the E-ERS makes no distinction between faulty 

processes and faulty sensors/telemetry measurements. This will possibly 

influence the detection ability in this way that alarms are triggered by faulty sensor 

data which is one reason for the high number of false alarms generated by the E-

ERS. Figure 5-4 pictures two examples of alarms, both triggered by possible 

sensor faults that have led to false interpretations by the E-ERS. Whilst the alarm 

(false positive) shown on the left hand side of the plot illustrates a typical false 

alarm, i.e. E-ERS predicted an event although no event is present, the alarm (true 

positive) pictured at the right hand side shows an ‘incidentally’ detection of a true 

event caused by alarm triggering on faulty sensor data. 

 

 

Figure 5-4 Examples for E-ERS’ false interpretation of triggered alarms. 

 

Sensor data validation and data pre-processing procedures can be beneficially 

used for lowering the false alarm rate which is confirmed by the results achieved 

with the implementation of corresponding methods shown in the following 

section.  



Chapter 5 – Case Study Results and Discussion 

 

127 

5.3 M-ERS Results and Discussion 

This second case explores the event detection capabilities of M-ERS resulting 

from testing and validating of the methodologies described Sections 4.3.1 and 

4.3.2. First, the performance of M-ERS that makes use of optimised threshold 

and persistence values and second the performance of M-ERS (PSD) applied to 

validated and pre-processed sensor data was evaluated. Improvements were 

investigated by the comparison of M-ERS’ and M-ERS’ (PSD) detection statistics 

against the statistics obtained by the E-ERS method.  

Optimised threshold and persistence values were identified by performing the 

sensitivity type analysis described in Section 4.3.1. For each signal new 

thresholds and persistence values were created by gradually changing low and 

high thresholds for a defined range of persistence values (see Section 4.3.1 for 

further details). The optimised new thresholds and persistence value 

combinations were then derived for each sensor signal by selecting the 

combination with the maximum value of the ratio of true positives to false 

positives. The new optimised threshold and persistence values obtained this way 

are presented in Table 5-5. 

 
Table 5-5 Optimal thresholds/persistence values derived by sensitivity analysis. 

 

Signal Unit Low Limit High Limit

Persistence 

[Time Step = 5min]

Raw Water Turbidity NTU 0.05 14.05 0

Raw Water pH pH 5.10 7.70 0

Pre Flocculation pH Stream A pH 4.05 4.80 0

Pre Flocculation pH Stream B pH 4.00 4.80 0

Post Flotation Turbidity Stream A NTU 0.01 6.50 1

Post Flotation Turbidity Stream B NTU - 5.70 0

DAF Iron Stream A mg/l - 3.00 4

DAF Iron Stream B mg/l - 2.80 3

Pre 1
st
 Stage pH Stream A pH 5.80 7.50 2

Pre 1
st
 Stage pH Stream B pH 5.80 7.50 2

Post 1
st
 Stage Turbidity Stream A NTU - 0.45 2

Post 1
st
 Stage Turbidity Stream B NTU - 0.50 1

Pre 2
nd

 Stage pH Stream A pH 6.80 8.60 1

Pre 2
nd

 Stage pH Stream B pH 7.60 8.60 1

Post 2
nd

 Stage Turbidity Stream A NTU - 0.25 3

Post 2
nd

 Stage Turbidity Stream B NTU - 0.25 3

Post 2
nd 

Stage Chlorine Stream A mg/l 0.50 1.30 0

Post 2
nd

 Stage Chlorine Stream B mg/l 0.60 1.35 0

Treated Water pH Stream A pH 7.10 8.80 0

Treated Water pH Stream B pH 7.00 8.65 0

Final Water pH pH 6.90 9.00 0

Final Water Chlorine Residual mg/l 0.60 1.35 0
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M-ERS testing was carried out in the same way as it was done for the E-ERS but 

using the optimised thresholds and persistence values given in Table 5-5 instead 

of the default values utilised by the E-ERS.  

The detection metrics of each individual signal shown in Table 5-6 were 

calculated in the same way as it was done for the E-ERS. 

 

Table 5-6 M-ERS: Detection statistics of individual signals. 

 

 

In the same way as it was done for the E-ERS, detection statistics for the overall 

M-ERS presented in Table 5-7 was calculated by averaging the detection rates 

and summation of false positives over all observed signals. 

 

Table 5-7 M-ERS: Averaged overall detection statistics. 

 

 

PPV FDR FP                                         FNR                  

Total Major Minor

Raw Water Turbidity 7% 0% 7% 56% 44% 4 93%

Raw Water pH 5% 0% 5% 57% 43% 3 95%

Pre Flocculation pH Stream A 34% 100% 33% 58% 42% 18 66%

Pre Flocculation pH Stream B 33% 100% 32% 68% 32% 12 67%

Post Flotation Turbidity Stream A 21% 100% 20% 89% 11% 2 79%

Post Flotation Turbidity Stream B 8% 0% 8% 64% 36% 4 92%

DAF Iron Stream A 28% 100% 27% 50% 50% 20 72%

DAF Iron Stream B 33% 100% 32% 56% 44% 21 67%

Pre 1
st
 Stage pH Stream A 28% 100% 27% 78% 22% 5 72%

Pre 1
st
 Stage pH Stream B 13% 100% 12% 90% 10% 1 87%

Post 1
st
 Stage Turbidity Stream A 26% 100% 25% 58% 43% 17 74%

Post 1
st
 Stage Turbidity Stream B 34% 0% 35% 53% 47% 31 66%

Pre 2
nd

 Stage pH Stream A 67% 100% 67% 53% 47% 51 33%

Pre 2
nd

 Stage pH Stream B 53% 100% 52% 59% 41% 31 48%

Post 2
nd

 Stage Turbidity Stream A 5% 100% 3% 50% 50% 4 95%

Post 2
nd

 Stage Turbidity Stream B 8% 100% 7% 100% 0% 0 92%

Post 2
nd 

Stage Chlorine Stream A 18% 100% 17% 81% 19% 3 82%

Post 2
nd

 Stage Chlorine Stream B 21% 100% 20% 60% 40% 10 79%

Treated Water pH Stream A 12% 0% 12% 57% 43% 6 89%

Treated Water pH Stream B 25% 0% 25% 30% 70% 59 75%

Final Water pH 7% 0% 7% 63% 38% 3 93%

Final Water Chlorine Residual 10% 100% 8% 75% 25% 3 90%

M-ERS 

(22 critical alarm points)                                                                 TPR                                                                         

True Detections False Detections

Total Major Minor

Overall System 23% 68% 22% 64% 36% 308 77%

FNR                  
M-ERS                                            

(22 critical alarm points)                           

TPR                                                                         
PPV FDR FP                                         
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As it can be seen from Table 5-7 the M-ERS is able to detect 23% of total events 

with 68% major and 22% minor events detected by the system. When compared 

to the E-ERS method only minor improvements on TPRs are achieved, i.e. 4% 

for major and 1% of minor events, respectively. When comparing the M-ERS’s 

PPV of 64%, FDR of 36% and FNR of 77% the table also shows minor 

improvemets with increased rates for PPV of 2% and decreased values for FDR 

and FNR of 2% and 1% respectivey. Although the number of false alarms 

generated by the M-ERS is reduced by 46 FPs compared to 354 FPs produced 

by the E-ERS, the total number (308 FPs) is still very high. Similar to the E-ERS, 

the M-ERS’ FNR of 77% (non-detected events) is too still high. The calculated F1 

score of 0.32 for the M-ERS only increased by 0.1 towards the value of 0.31 for 

the E-ERS. Compared to 6.8 false alarms per week produced by the E-ERS, the 

value of 5.9 calculated for the M-ERS shows an improvement by 0.9 less false 

alarms per week.  

Altough the M-ERS shows slight improvements on all detection metrics, these 

improvements started from a low base. In particular the poor true detection rate 

of 22% for minor events and the high number of 5.9 false alarms per week 

illustrate the still moderate detection performance of M-ERS. The sigificant higher 

true detection rate of 68% for major events seems acceptable, but this can be 

expected for the same reason as already described for the E-ERS (see Section 

5.2).  

The same picture can be seen when looking at the detection statistics across the 

individual treatment stages that are presented in Table 5-8.  

 

Table 5-8 M-ERS: Averaged detection statistics of single treatment stages. 
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As it can be seen from this table, when compared to the E- ERS method, an 

increase of TPRs between 1% to 4% combined with a decrease of FDRs between 

1% to 3% is achieved by the M-ERS at inlet, flotation/flocculation and 2nd stage 

filtration processes. Only at WTW’s outlet stage the M-ERS displays a lower TPR 

(i.e. -4%) than the E-ERS at the same stage, but also the FDR is by 3% lower 

compared to the FDR generated by the E-ERS at this stage.  

Further analysis of single signals’ confusion matrices at outlet stage (see Figure 

5.2 and 5.5) explains the root cause for this observation.  

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

4 57  3 58  21 40 
(0/4) (1/56)  (0/3) (1/57)  (1/20) (0/40) 

(True Class) 

NO 
4 65  3 64  18 79   

 
  

 
  

 Raw Water TU (a)  Raw Water pH (b)  Pre Flocculation pH (A) (c) 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

20 41  13 48  5 56 
(1/19) (0/41)  (1/12 (0/48)  (0/5) (1/55) 

(True Class) 

NO 
12 73  2 63  4 65   

 
  

 
  

 Pre Flocculation pH (B) (d)   Post Flotation TU (A) (e)  Post Flotation TU (B) (f) 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

17 44  20 41  17 44 
(1/16) (0/44)  (1/19) (0/41)  (1/16) (0/44) 

(True Class) 

NO 
20 81  21 82  5 66   

 
  

 
  

 DAF Iron (A) (g)  DAF Iron (B) (h)  Pre 1st Stage pH (A) (i) 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

8 53  16 45  21 40 
(1/7) (0/53)  (1/15) (0/45)  (0/21 (1/39) 

(True Class) 

NO 
1 62  17 78  31 92   

 
  

 
  

 Pre 1st Stage pH (B) (j)  Post 1st Stage TU (A) (k)  Post 1st Stage TU (B) (l) 
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 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

41 20  32 29  3 58 
(1/40) (0/20)  (1/31) (0/29)  (1/2) (0/58) 

(True Class) 

NO 
51 112  31 92  4 65   

 
  

 
  

 Pre 2nd Stage pH (A) (m)  Pre 2nd Stage pH (B) (n)  Post 2nd Stage TU (A) (o) 
 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

5 56  11 50  13 48 
(1/4) (0/56)  (1/10) (0/50)  (1/12) (0/48) 

(True Class) 

NO 
0 61  3 64  10 71   

 
  

 
  

 Post 2nd Stage TU (B) (p)  Post 2nd Stage Cl (A) (q)  Post 2nd Stage Cl (B) (r) 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

7 54  15 46  4 57 
(0/7) (1/53)  (0/15) (1/45)  (0/4) (1/56) 

(True Class) 

NO 
6 67  59 120  3 64   

 
  

 
  

 Treated Water pH (A) (s)  Treated Water pH (B) (t)  Final Water pH (u) 
 

 Alarm 
(Predicted class) 

 YES  NO 

 
 

YES 

Event 

6 55 
(1/5) (0/55) 

(True Class) 

NO 
3 64   

 Final Water Cl (v) 

 

Figure 5-5 Confusion matrices for M-ERS generated by the application to data 
of the observed signals. 

 

Whilst stream A treated water pH, final water and final chlorine residual signals 

(see Figure 5-5s, 5-5u, 5-5v and Figure 5-2s, 5-2u, 5-2v) show identical or similar 

numbers between 4 and 7 TPs and between 3 and 8 FPs for E-ERS and M-ERS 

respectively. In particular, stream B treated water signal (see Figure 5-2t) applied 

to the E-ERS generates exceptionally high 27 TPs and 115 FPs at this treatment 

stage. Regarding the significantly higher values for both TPs and FPs it can be 

concluded that the thresholds applied on stream B treated water signal are set 

too thigh resulting in a high number of alarms triggered by the E-ERS. This 
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observation is confirmed by analysis of Figure 5-6 that pictures stream B treated 

water signal with the corresponding upper alarm thresholds applied by E-ERS. 

 

 

Figure 5-6 Stream B treated water signal including upper control limit applied 
by E-ERS. 

 

From this figure it can easily be seen that stream B treated water signal is 

generally very noisy and shows a high number of unusual spikes that causes 

frequently violations of the default thresholds used by E-ERS. Applying a wider 

upper threshold is beneficial to the reduce the number of the false alarms 

generated in this case. Although the number of alarms raised by the M-ERS is 

still very high compared to other signals, the application of the higher upper 

threshold utilised by the M-ERS significantly improves the number of false alarms 

produced by the stream B treated water signal (i.e. reduction from 115 to 59) but 

at the expense of a lower TPR (i.e. reduction from 44% to 25%). This example 

captures well the general limitation of threshold-based detection systems. The 

use of wider thresholds to make the system less sensitive results in lower level 

of false alarms but also to the decrease of true detection rates.  
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One approach that might at least partially help further reduce the high false alarm 

rate is an application of sensor data validation and pre-processing. This is done 

with the aim to avoid alarm triggering on faulty sensor data. For this reason, the 

M-ERS was tested on validated and pre-processed sensor data. Following the 

sensor data validation and pre-processing methodologies described in Section 

4.3.2, technical faults in sensors or sensor readings, i.e. (i) erroneous data points, 

(ii) missing data, (iii) spike faults and, (iv) flat line faults were identified and 

replaced (except flat line faults) before the M-ERS is applied to the data. The M-

ERS that makes use of Validated and Pre-processed Sensor Data (PSD) was 

then tested in the same way as it was done for the E-ERS and M-ERS and the 

resulting detection statistics calculated. The confusion matrices obtained for each 

individual signal are shown in Figure 5-7.  
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Figure 5-7 Confusion matrices for M-ERS (PSD) generated by the application 
to data of the observed signals. 

 

The corresponding detection metrics shown in Table 5-9 are calculated for each 

individual signal in the same way as it was done for the E-ERS and M-ERS. 
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Table 5-9 M-ERS (PSD): Detection statistics of individual signals. 

 

 

The results obtained for the performance evaluation of the overall M-ERS (PSD) 

by averaging the detection rates and accumulation of false positives across all 

individual signals are shown in Table 5-10. 

 

Table 5-10 M-ERS (PSD): Averaged detection statistics of across all signals. 

 

 

From Table 5-10 can be seen that the TPR for minor events generated by the M-

ERS (PSD) method has slightly fallen to 20% in comparison to the 22% and 23% 

values obtained for the E-ERS and M-ERS methods, respectively. Whilst M-ERS 

(PSD) generates the same TPR of 64% for major events as the E-ERS, the M-

PPV FDR FP                                         FNR                  

Total Major Minor

Raw Water Turbidity 3% 0% 3% 40% 60% 3 97%

Raw Water pH 0% 0% 0% 0% 0% 0 100%

Pre Flocculation pH Stream A 31% 100% 30% 58% 42% 15 69%

Pre Flocculation pH Stream B 30% 100% 28% 70% 30% 9 71%

Post Flotation Turbidity Stream A 21% 100% 20% 88% 12% 2 79%

Post Flotation Turbidity Stream B 8% 0% 8% 67% 33% 3 92%

DAF Iron Stream A 26% 100% 25% 49% 51% 19 74%

DAF Iron Stream B 30% 100% 28% 54% 47% 20 71%

Pre 1
st
 Stage pH Stream A 30% 100% 28% 82% 18% 4 71%

Pre 1
st
 Stage pH Stream B 15% 100% 13% 100% 0% 0 85%

Post 1
st
 Stage Turbidity Stream A 23% 100% 22% 66% 34% 11 77%

Post 1
st
 Stage Turbidity Stream B 34% 0% 35% 54% 46% 30 66%

Pre 2
nd

 Stage pH Stream A 61% 0% 62% 49% 52% 50 39%

Pre 2
nd

 Stage pH Stream B 53% 100% 52% 61% 39% 28 48%

Post 2
nd

 Stage Turbidity Stream A 5% 100% 3% 50% 50% 3 95%

Post 2
nd

 Stage Turbidity Stream B 8% 100% 7% 100% 0% 0 92%

Post 2
nd 

Stage Chlorine Stream A 13% 100% 12% 100% 0% 0 87%

Post 2
nd

 Stage Chlorine Stream B 16% 100% 15% 55% 45% 9 84%

Treated Water pH Stream A 10% 0% 10% 50% 50% 6 90%

Treated Water pH Stream B 25% 0% 25% 30% 70% 59 75%

Final Water pH 2% 0% 2% 100% 0% 0 98%

Final Water Chlorine Residual 7% 100% 5% 100% 0% 0 93%

M-ERS (PSD)

(22 critical alarm points)                                                                 TPR                                                                         

True Detections False Detections

PPV FDR FP                                         FNR                  

Total Major MinorTotal Major Minor

Overall System 20% 64% 20% 68% 32% 271 80%

M-ERS (PSD)                                                                 

True Detections False Detections

TPR                                                                         
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ERS has with a TPR of 68% a 4% higher value of true detections for major events. 

The PPV of 68% for M-ERS (PSD) also shown in the table has been raised 

against the PPVs of E-ERS and M-ERS by 6% and 4% respectively.  

When compared to the E-ERS and M-ERS methods the most notable 

improvement of the M-ERS (PSD) was achieved on the absolute number of false 

positives. With 271 false positives against the 354 and 308 generated by the E-

ERS and M-ERS methods respectively, the M-ERS (PSD) method was able to 

reduce the number of false positives by 83 and 37 respectively. The lower number 

of M-ERS’s false positives brought down the false alarms per week from 6.8 for 

E-ERS and 5.9 for M-ERS to 5.2 false alarms per week generated by the M-ERS 

(PSD). At the same time the F1 score of 0.31 calculated for the M-ERS (PSD) 

decreased by 0.1 only towards the value of M-ERS but is still equal to the value 

for E-ERS that indicates the M-ERS performs better than M-ERS (PSD).  

Digging deeper to explore possible root causes for the lower performance of M-

ERS (PDS) against M-ERS, the analysis of the TPRs across the different 

treatment stages are presented in Table 5-11. 

 

Table 5-11 M-ERS (PSD): Averaged detection statistics of single treatment 
stages. 

 

 

As it can be seen from this table, the M-ERS (PSD) has TPRs of 11%-26% of 

total events at different treatment stages, which represents a reduction in TPRs 

for inlet, 1st stage filtration, 2nd stage filtration and outlet stages between 2% to 

4% compared to the corresponding TPRs of the M-ERS shown in Table 5-8. Only 

at the 1st filtration stage the M-ERS (PSD) produced the same TPR as M-ERS. 

The greatest difference in TPRs of 4% is generated at the WTWs inlet stage.  
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Comparison of the detection statistics of individual signals for M-ERS and M-ERS 

(PSD) presented in Table 5-6 and Table 5-9 has identified raw water pH signal 

that is primary responsible for the fallen TPR produced by the M-ERS across this 

treatment stage. The corresponding confusion matrices of the raw water pH 

signal shown in Figure 5-5 and Figure 5-7 display values of three and zero true 

positives for the M-ERS and M-ERS (PSD), respectively. This indicates that the 

3 TPs generated by the M-ERS were (presumably) caused by unusual spikes or 

erroneous sensor data that are coinciding with the genuine events taking place. 

The identification of the faulty sensor data performed by the M-ERS (PSD) 

method ensures that no alarms were triggered on the raw water pH signal 

resulting in no events detected by this method on this signal. This is confirmed 

by visual inspection of the graphed signal and labelled events, as shown in Figure 

5-8. Part (a) of this figure shows the original sensor data for raw water pH for the 

October to December 2014 time period (which is part of the validation time 

period). From this figure it can be seen that the measured pH value of the 

analysed signal drops three times to zero or nearly zero causing alarms by 

violating its default low limit of 5.1 at same time when minor events are taking 

place. It is obvious that these alarms are caused by faulty sensor measurements 

since sudden drops of pH from 7.5 to 0 are unrealistic in real-life WTW’s 

operation. Therefore, the true positives generated by the M-ERS are most likely 

caused by the sensor faults. Figure 5-8(b) shows the pre-processed raw water 

pH sensor data resulting in no true positives generated be the M-ERS (PSD).  

 

a) b) 

 

 

Figure 5-8 Example of alarms raised by raw water pH signal with (a) origin 
sensor measurements and (b) pre-processed sensor data. 
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It is very likely that the lower TPRs produced by the M-ERS (PSD) compared to 

the higher TPRs generated by E-ERS and M-ERS is mainly caused by the above 

described effect that is also occurring at other signals.  

The above example indicates that the M-ERS (PSD) improves the quality of 

alarms raised. This is also confirmed by the higher PPV of 68% achieved by the 

M-ERS compared to the PPVs of 62% and 64% generated by the E-ERS and M-

ERS, respectively. Although the improvements achieved by the M-ERS and M-

ERS (PSD) are only of minor nature, the presented results have shown the 

beneficial use of optimised limit and persistence values for threshold-based event 

detection systems, the useful application of sensor data validation and pre-

processing procedures but also the limitations of threshold-based ERSs. 

5.4 HC-ERS Results and Discussion 

5.4.1 Introduction 

The final case focuses on the investigation of the event detection capabilities of 

the newly developed HC-ERS method described in Sections 4.4.2 and 4.4.3. The 

HC-ERS is applied to the same pre-processed dataset used for the M-ERS case 

(see preceding section) and using the same set of major and minor events (as 

used for all methods). The aim is to evaluate the performance of the HC-ERS 

method and assesses its capabilities for improvements in true detections and 

corresponding false alarm rates. This is done by comparing the HC-ERS 

detection statistics to those of E-ERS, M-ERS, M-ERS (PSD) and the well-

established CANARY event detection system. The results of the analysis 

demonstrate that major improvements can be achieved by the application of HC-

ERS’ methodologies to the real data of the described demonstration site.  

As mentioned in methodology section 4.4.1, the HC-ERS method consists of two 

principal stages: 

1. At the first stage the fault detection methodology is applied resulting in 

individual signal alarms, based on the identification of deviations of water 

quality signal values from their ‘normal’ values.  
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2. At the second stage the methodology for the classification of identified 

individual signal alarms is applied to identify actual events and raise overall 

alarms by analysing multiple signals simultaneously.  

5.4.2 First Stage Results 

This section starts with the analysis to evaluate the most suitable fault detection 

methodology to be used at the first stage. This was done by exploring different 

SPC methods (see Section 4.4.2). Each SPC method was tested using the pre-

processed data of the 22 observed sensor signals for the validation time period. 

After that the corresponding detection metrics were calculated in the same way 

as it was done for E-ERS and M-ERS methods. The detection capability of each 

method was then assessed by averaging the ratio between TPRs and FDRs for 

each signal and across all signals. The Performance Indicator (PI) derived this 

way is used to compare different SPC methods. The larger the value of PI the 

better. 

The resulting PI values obtained are summarised in Table 5-12. Confusion 

matrices and detection metrics of all tests conducted in this context are not shown 

here to save space. 

 

Table 5-12 Performance Indicator (PI) of the selected SPC methods tested for 
window sizes (a) 1d and (b) 1 week and different control limits. 

(a) (b) 

 
 

 

As it can be seen from Table 5-12, the CUSUM method outperformed all other 

tested SPC methods by generating the highest PIs (range between 1.665 and 

1.620) for both time windows and all thresholds used for upper and lower Control 

Limits (CL). Therefore, the CUSUM method has proven to be most promising 

stage one method. The performance of this methods was further optimised by 

CL = ±3σ CL = ±6σ CL = ±12σ

CUSUM 1.656 1.661 1.665

EMWA 1.651 1.626 1.505

X-bar 1.647 1.640 1.5771 0.983

r-chart 1.618 1.470 1.260

s-chart 1.580 1.541 1.489

SPC
PI 

CL = ±3σ CL = ±6σ CL = ±12σ

CUSUM 1.654 1.646 1.620

s-chart 1.616 1.523 1.192

X-bar 1.541 1.358 1.1230.581 1.51

r-chart 1.570 1.125 0.690

EMWA 1.480 1.278 1.008

PI
SPC
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moving away from standard (literature) parameters for this method by optimising 

the mean shift and thresholds values for each signal. This was done using the 

sensitivity type analysis described in Section 4.4.2. The resulting fine-tuned mean 

shift arguments and threshold limits are summarised in Table 5-13. 

 

Table 5-13 CUSUM fine-tuned parameters and PI values for 1d/1week window 
size. 

 

 

As it can be seen from Table 5-13, the PI of 1.63 for the window size of 1 week 

is higher than the corresponding value of 1.55 for the 1d time window. The higher 

PI value demonstrates that higher detection performances can be achieved using 

a window size of 1 week rather than a 1d time window. Therefore, the CUSUM 

fault detection method performance was further evaluated by using the fine-tuned 

parameters of each signal for the 1 week sliding time window. The resulting 

k ULC/LCL TPR/FDR k ULC/LCL TPR/FDR

Raw Water Turbidity 1 +/- 6 1.52 1 +/- 1 1.52

Raw Water pH 2 +/- 1 1.53 1 +/- 12 1.51

Pre Flocculation pH Stream A 3 +/- 1 1.54 1 +/- 6 1.54

Pre Flocculation pH Stream B 1 +/- 6 1.52 8 +/- 12 3.32

Post Flotation Turbidity Stream A 1 +/- 6 1.54 1 +/- 1 1.51

Post Flotation Turbidity Stream B 4 +/- 1 1.55 5 +/- 12 1.55

DAF Iron Stream A 1 +/- 12 1.51 1 +/- 12 1.49

DAF Iron Stream B 1 +/- 3 1.43 1 +/- 6 1.48

Pre 1
st

 Stage pH Stream A 2 +/- 1 1.53 1 +/- 3 1.45

Pre 1
st

 Stage pH Stream B 1 +/- 6 1.53 1 +/- 1 1.43

Post 1
st

 Stage Turbidity Stream A 2 +/- 6 1.56 1 +/- 12 1.49

Post 1
st

 Stage Turbidity Stream B 2 +/- 1 1.55 1 +/- 1 1.51

Pre 2
nd

 Stage pH Stream A 1 +/- 12 1.58 2 +/- 1 1.56

Pre 2
nd

 Stage pH Stream B 1 +/- 1 1.55 2 +/- 1 1.54

Post 2
nd

 Stage Turbidity Stream A 4 +/- 3 1.58 1 +/- 3 1.51

Post 2
nd

 Stage Turbidity Stream B 3 +/- 12 1.61 1 +/- 1 1.44

Post 2
nd 

Stage Chlorine Stream A 2 +/- 1 1.54 1 +/- 6 1.51

Post 2
nd

 Stage Chlorine Stream B 3 +/- 1 1.56 9 +/- 12 1.80

Treated Water pH Stream A 1 +/- 6 1.56 1 +/-1 1.48

Treated Water pH Stream B 5 +/- 6 1.69 1 +/- 1 1.51

Final Water pH 3 +/- 6 1.57 1 +/- 1 1.53

Final Water Chlorine Residual 3 +/- 6 1.58 9 +/- 3 2.11

PI 1.55 1.63

window size = 1d window size = 1week

Signal
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confusion matrices obtained for the validation time period are shown in Figure 

5-9. 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

59 2  60 1  61 0 
(1/58) (0/2)  (1/59) (0/1)  (1/60) (0/0) 

(True Class) 

NO 
190 251  218 279  206 267   

 
  

 
  

 Raw Water TU (a)  Raw Water pH (b)  Pre Flocculation pH (A (c) 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

8 53  61 0  25 36 
(1/7) (0/53)  (1/60) (0/0)  (1/24) (0/36) 

(True Class) 

NO 
1 62  207 268  7 68   

 
  

 
  

 Pre Flocculation pH (B) (d)   Post Flotation TU (A) (e)  Post Flotation TU (B) (f) 

 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

60 1  61 0  58 3 
(1/59) (0/1)  (1/60) (0/0)  (1/57) (0/3) 

(True Class) 

NO 
179 240  203 264  164 225   

 
  

 
  

 DAF Iron (A) (g)  DAF Iron (B) (h)  Pre 1st Stage pH (A (i) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

55 6  55 6  59 2 
(1/54) (0/6)  (1/54) (0/6)  (1/58) (0/2) 

(True Class) 

NO 
181 242  167 228  159 220   

 
  

 
  

 Pre 1st Stage pH (B) (j)  Post 1st Stage TU (A) (k)  Post 1st Stage TU (B) (l) 
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 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

61 0  60 1  59 2 
(1/60) (0/0)  (1/59) (0/1)  (1/58) (0/2) 

(True Class) 

NO 
183 244  189 250  191 252   

 
  

 
  

 Pre 2nd Stage pH (A) (m)  Pre 2nd Stage pH (B) (n)  Post 2nd Stage TU (A) (o) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

61 0  59 2  9 52 
(1/60) (0/0)  (1/58) (0/2)  (1/8) (0/52) 

(True Class) 

NO 
196 257  193 254  3 64   

 
  

 
  

 Post 2nd Stage TU (B) (p)  Post 2nd Stage Cl (A) (q)  Post 2nd Stage Cl (B) (r) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 Alarm 
(Predicted class) 

 YES  NO  YES  NO  YES NO 

 
 

YES 

Event 

50 11  54 7  61 0 
(1/49) (0/11)  (1/53) (0/7)  (1/60) (0/0) 

(True Class) 

NO 
160 221  166 227  207 268   

 
  

 
  

 Treated Water pH (A) (s)  Treated Water pH (B) (t)  Final Water pH (u) 

 Alarm 
(Predicted class) 

    

 YES  NO 

 
 

YES 

Event 

7 54 
(1/6) (0/54) 

(True Class) 

NO 
1 62   

 Final Water Cl (v) 

 

Figure 5-9 Confusion matrices for CUSUM fault detection using finetuned 
parameters generated by the application to data of the observed signals. 

 

Using Figure 5-9 results, the corresponding detection rates including True 

Positive Rates (TPR), Positive Predictive Value (PPV), False Discovery Rate 

(FDR), False Positives (FP) and False Negative Rate (FNR) were calculated for 
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each water quality signal. The resulting detection metrics are summarised in 

Table 5-14. 

 

Table 5-14 CUSUM (fine-tuned): Fault detection statistics of individual signals. 

 

 

The corresponding detection metrics are shown in Table 5-15. 

 

Table 5-15 CUSUM (fine-tuned): Averaged fault detection statistics. 

 

 

The analysis of the detection statistics presented in the Table 5-15 has shown 

that fine-tuned CUSUM fault detection method is far more sensitive to signals’ 

deviations from normal process condition than threshold-based ERSs presented 

in Section 5.2 and 5.3. CUSUM fault detection methodology enables the true 

PPV FDR FP                                         FNR                  

Total Major Minor

Raw Water Turbidity 97% 100% 97% 42% 58% 190 3%

Raw Water pH 98% 100% 98% 38% 62% 218 2%

Pre Flocculation pH Stream A 100% 100% 100% 40% 60% 206 0%

Pre Flocculation pH Stream B 13% 100% 12% 89% 11% 1 87%

Post Flotation Turbidity Stream A 100% 100% 100% 41% 59% 207 0%

Post Flotation Turbidity Stream B 41% 100% 40% 81% 19% 7 59%

DAF Iron Stream A 98% 100% 98% 42% 58% 179 2%

DAF Iron Stream B 100% 100% 100% 39% 61% 203 0%

Pre 1
st
 Stage pH Stream A 95% 100% 95% 40% 60% 164 5%

Pre 1
st
 Stage pH Stream B 90% 100% 90% 40% 60% 181 10%

Post 1
st
 Stage Turbidity Stream A 90% 100% 90% 40% 60% 167 10%

Post 1
st
 Stage Turbidity Stream B 97% 100% 97% 46% 55% 159 3%

Pre 2
nd

 Stage pH Stream A 100% 100% 100% 45% 55% 183 0%

Pre 2
nd

 Stage pH Stream B 98% 100% 98% 43% 57% 189 2%

Post 2
nd

 Stage Turbidity Stream A 97% 100% 97% 42% 58% 191 3%

Post 2
nd

 Stage Turbidity Stream B 100% 100% 100% 43% 57% 196 0%

Post 2
nd 

Stage Chlorine Stream A 97% 100% 97% 41% 59% 193 3%

Post 2
nd

 Stage Chlorine Stream B 15% 100% 13% 75% 25% 3 85%

Treated Water pH Stream A 82% 100% 82% 43% 57% 160 18%

Treated Water pH Stream B 89% 100% 88% 44% 56% 166 12%

Final Water pH 100% 100% 100% 42% 58% 207 0%

Final Water Chlorine Residual 12% 100% 10% 88% 13% 1 89%

CUSUM (finetuned)       

Fault Detection

(22 critical alarm points)                                                                 
TPR                                                                         

True Detections False Detections

Total Major Minor

Overall System 82% 100% 82% 49% 51% 3371 18%

FNR                  
CUSUM (finetuned)                                            
(22 critical alarm points)                           

TPR                                                                         
PPV FDR FP                                         
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detection of a great number of events displayed by a TPR of 82% but the system 

also shows a high FDR of 51% which is reflected by the vast number of 3371 

false positives. Compared to E-ERS and M-ERS the TPR and FDR increased by 

around 60% and by 13% to 19% respectively. The high number of false positives 

was expected since the CUSUM control charts are well known to be highly 

sensitive by detecting already small shift in the process mean. 

5.4.3  Second Stage Results 

Given the high number of false alarms generated by the CUSUM method, 

classification method was developed and used at the second stage. The aim of 

the classification method is to learn possible relationships across multiple water 

quality signals thus enable the multivariate based event detection. It is anticipated 

that this way the large number of false alarms generated by the CUSUM can be 

reduced.  

As mentioned in Section 4.4.3 several classification methods were tested. These 

include the NN, SVM, bagged (RF) and boosted (AdaBoost) decision trees. The 

aim was to evaluate and assess (a) event detection capabilities of different 

classification methods and (b) further fine tune the CUSUM method parameters.  

The resulting detection metrics of the experiments with different classifiers are 

presented in Table 5-16. 

 

Table 5-16 Comparison of tested classifiers’ detection statistics on CUSUM 
finetuned output data. 

 

 

From the table can be seen that all classifiers except SVM with a lower PI of 1.61 

display similar performance indices between 1.69 and 1.73, whereat RF 

classifiers have shown the highest value. Even though the table shows no great 

PPV FDR FP                                         FNR                  
Total Major Minor

Random Forest 90% 100% 90% 48% 52% 89 10% 1.73

AdaBoost 98% 100% 98% 43% 57% 158 2% 1.72

Artificial Neural Network 98% 100% 98% 42% 58% 151 2% 1.691 0.983 0.419 0.581 1.51

SVM (RBF) 90% 100% 90% 44% 56% 117 10% 1.61

PI     Classifier TPR                                                                         

True Detections False Detections
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differences between the classifiers in performance, it gives an indication that RF 

seems to be promising for the event detection task.  

However, further analysis is necessary to evaluate performance of the classifiers 

and the whole system, since the classifier models (a) are highly dependent on 

reliable input data and (b) estimate probabilities of event’s presence. The 

occurrence of an event in WTW’s processes is considered if the probability 

exceeded a threshold value of 0.5. Changing the threshold value will influence 

the detection results. Therefore, the performance of the classifier models was 

investigated over the full range of thresholds utilising Receiver Operating 

Characteristic (ROC) curves (Fawcett, 2006) combined with the calculated Area 

Under Curve (AUC) that is widely used for assessing and comparing classifier’s 

performances. The higher the AUC value, the better the classification model 

performs. Figure 5-10 shows the ROC curves picturing each classification 

technique applied to outputs generated by the CUSUM fine-tuned fault detection 

method. 

 

Figure 5-10 Receiver Operating Characteristic (ROC) curves for AdaBoost, 
feedforward Neural Network (NN), Random Forest (RF) and Support Vector 

Machine (SVM) classifiers generated by their application to CUSUM  
finetuned output data. 
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When analysing the detection metrics shown in Table 5-16 all systems 

demonstrated TPRs between 90% to 98%, i.e., high true detection rates. The 

number of false positives generated (between 89 to 158) are much lower 

compared to 354 and 271 false positives produced by the E-ERS and M-ERS 

(PSD) respectively. Although improvements of TPR and false positives were 

achieved the system shows FDRs between 52% and 58% which indicate that the 

models are not working satisfactory well. 

This is confirmed by the analysis of the ROC curves shown in Figure 5-10. All of 

the demonstrated curves show similar behaviour with only a flat increase from 

south west to north east. A ROC curve close to ideal would rapidly increase from 

origin to nearly 1 and become flat at the following. The AUC values between 0.56 

and 0.61 also shown for each technique separately in Figure 5-10 confirm the 

moderate performance of the models. The numbers demonstrated in the plot 

reflect a weak performance of the tested systems. When looking deeper into the 

CUSUM fine-tuned detection metrics of single signals (see Table 5-14) to explore 

the root cause for this issue it is obvious that the system produces exceptional 

high TPRs and FDRs for the vast majority of signals (e.g., TPR of 100% and FDR 

of 59% for post flotation turbidity stream A), whereas in contrast comparable 

signals show significant lower TPRs and FDRs, e.g. 41% and 19% for post 

flotation turbidity stream B signal respectively. This observation leads to the 

conclusion that the parameters utilised by the fine-tuned CUSUM fault detection 

method were not configured in an optimal manner to be used as suitable input for 

event classification. Therefore, further refinements on the CUSUM fault detection 

and parameter selection methodologies were necessary aiming to better capture 

the margins between signals’ normal background deviations and anomalous 

deviations from that background caused by an event. Parameters achieved by 

the CUSUM refinement utilising criteria 2 and 3 (see Section 4.4.3) are 

summarised in Table 5-17. 
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Table 5-17 CUSUM refined parameters for the respective criterion applied. 

 

 

After refinement and testing CUSUM fault detection methodology on pre-

processed data of the 22 signals for validation time period corresponding 

detection rates for both applied criteria were calculated and summarised in Table 

5-18. 

  

k [MAD] ULC / LCL k [MAD] ULC / LCL

Raw Water Turbidity 5 +/- 3σ Post 1st Stage Turbidity Stream B 4 +/- 12σ

Raw Water pH 6 +/- 12σ Pre 2nd Stage pH Stream A 4 +/- 12σ

Pre Flocculation pH Stream A 9 +/- 6σ Pre 2nd Stage pH Stream B 4 +/- 12σ

Pre Flocculation pH Stream B 5 +/- 6σ Post 2nd Stage Turbidity Stream A 6 +/- 12σ

Post Flotation Turbidity Stream A 5 +/- 6σ Post 2nd Stage Turbidity Stream B 6 +/- 12σ

Post Flotation Turbidity Stream B 5 +/- 6σ Post 2nd Stage Chlorine Stream A 3 +/- 12σ

DAF Iron Stream A 5 +/- 1σ Post 2nd Stage Chlorine Stream B 8 +/- 12σ

DAF Iron Stream B 6 +/- 6σ Treated Water pH Stream A 7 +/- 3σ

Pre 1st Stage pH Stream A 7 +/- 1σ Treated Water pH Stream B 3 +/- 12σ

Pre 1st Stage pH Stream B 5 +/- 1σ Final Water pH 9 +/- 1σ

Post 1st Stage Turbidity Stream A 5 +/- 12σ Final Water Chlorine Residual 7 +/- 12σ

k [MAD] ULC / LCL k [MAD] ULC / LCL

Raw Water Turbidity 9 +/- 12σ Post 1st Stage Turbidity Stream B 9 +/- 12σ

Raw Water pH 9 +/- 12σ Pre 2nd Stage pH Stream A 8 +/- 12σ

Pre Flocculation pH Stream A 9 +/- 12σ Pre 2nd Stage pH Stream B 9 +/- 12σ

Pre Flocculation pH Stream B 8 +/- 12σ Post 2nd Stage Turbidity Stream A 9 +/- 12σ

Post Flotation Turbidity Stream A 6 +/- 6σ Post 2nd Stage Turbidity Stream B 9 +/- 12σ

Post Flotation Turbidity Stream B 7 +/- 6σ Post 2nd Stage Chlorine Stream A 9 +/- 12σ

DAF Iron Stream A 9 +/- 12σ Post 2nd Stage Chlorine Stream B 9 +/- 12σ

DAF Iron Stream B 9 +/- 12σ Treated Water pH Stream A 9 +/- 12σ

Pre 1st Stage pH Stream A 9 +/- 12σ Treated Water pH Stream B 9 +/- 12σ

Pre 1st Stage pH Stream B 9 +/- 12σ Final Water pH 9 +/- 12σ

Post 1st Stage Turbidity Stream A 9 +/- 12σ Final Water Chlorine Residual 7 +/- 12σ

CUSUM (criterion 2) Signal

CUSUM (criterion 3) Signal
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Table 5-18 CUSUM (refined): Fault detection statistics of individual signals 
according to the respective criterion applied. 

 
 

Finally, the detection metrics for the overall systems shown in Table 5-19 were 

calculated as averaged detection rates and summation of false positives over all 

signals. 

PPV FDR FP                                         FNR                  

Total Major Minor

Raw Water Turbidity 62% 100% 62% 46% 54% 81 38%

Raw Water pH 30% 100% 28% 49% 51% 25 71%

Pre Flocculation pH Stream A 21% 100% 20% 81% 19% 3 79%

Pre Flocculation pH Stream B 64% 100% 63% 50% 51% 51 36%

Post Flotation Turbidity Stream A 61% 100% 60% 67% 33% 29 39%

Post Flotation Turbidity Stream B 72% 100% 72% 70% 31% 32 28%

DAF Iron Stream A 80% 100% 80% 46% 54% 109 20%

DAF Iron Stream B 64% 100% 63% 49% 51% 61 36%

Pre 1
st
 Stage pH Stream A 64% 100% 63% 59% 41% 43 36%

Pre 1
st
 Stage pH Stream B 64% 100% 63% 45% 55% 74 36%

Post 1
st
 Stage Turbidity Stream A 67% 100% 67% 48% 52% 81 33%

Post 1
st
 Stage Turbidity Stream B 77% 100% 77% 50% 50% 93 23%

Pre 2
nd

 Stage pH Stream A 74% 100% 73% 50% 50% 62 26%

Pre 2
nd

 Stage pH Stream B 72% 100% 72% 49% 51% 74 28%

Post 2
nd

 Stage Turbidity Stream A 69% 100% 68% 54% 47% 73 31%

Post 2
nd

 Stage Turbidity Stream B 74% 100% 73% 56% 44% 75 26%

Post 2
nd 

Stage Chlorine Stream A 85% 100% 85% 45% 56% 137 15%

Post 2
nd

 Stage Chlorine Stream B 38% 100% 37% 63% 37% 16 62%

Treated Water pH Stream A 49% 100% 48% 63% 37% 27 51%

Treated Water pH Stream B 57% 100% 57% 59% 41% 46 43%

Final Water pH 41% 0% 42% 67% 33% 17 59%

Final Water Chlorine Residual 28% 100% 27% 68% 32% 10 72%

CUSUM (criterion 3)     

Raw Water Turbidity 39% 100% 38% 52% 49% 33 61%

Raw Water pH 7% 100% 5% 56% 44% 4 93%

Pre Flocculation pH Stream A 18% 100% 17% 85% 15% 2 82%

Pre Flocculation pH Stream B 20% 100% 18% 60% 40% 8 80%

Post Flotation Turbidity Stream A 57% 100% 57% 75% 25% 17 43%

Post Flotation Turbidity Stream B 54% 100% 53% 79% 21% 12 46%

DAF Iron Stream A 51% 100% 50% 46% 54% 49 49%

DAF Iron Stream B 38% 100% 37% 54% 46% 22 62%

Pre 1
st
 Stage pH Stream A 53% 100% 52% 68% 32% 18 48%

Pre 1
st
 Stage pH Stream B 44% 100% 43% 71% 29% 13 56%

Post 1
st
 Stage Turbidity Stream A 56% 100% 55% 56% 44% 40 44%

Post 1
st
 Stage Turbidity Stream B 62% 100% 62% 58% 42% 49 38%

Pre 2
nd

 Stage pH Stream A 53% 100% 52% 70% 30% 16 48%

Pre 2
nd

 Stage pH Stream B 36% 100% 35% 71% 29% 12 64%

Post 2
nd

 Stage Turbidity Stream A 51% 100% 50% 56% 44% 40 49%

Post 2
nd

 Stage Turbidity Stream B 64% 100% 63% 57% 43% 48 36%

Post 2
nd 

Stage Chlorine Stream A 23% 100% 22% 54% 46% 16 77%

Post 2
nd

 Stage Chlorine Stream B 34% 100% 33% 69% 31% 11 66%

Treated Water pH Stream A 28% 100% 27% 85% 15% 4 72%

Treated Water pH Stream B 30% 0% 30% 75% 25% 8 71%

Final Water pH 25% 0% 25% 76% 24% 6 75%

Final Water Chlorine Residual 28% 100% 27% 68% 32% 10 72%

CUSUM (criterion 2)                                                  

TPR                                                                         

True Detections False Detections
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Table 5-19 CUSUM (refined): Averaged fault detection statistics according to 
the respective criterion applied. 

 

 

Comparing the detection results presented in Table 5-19 to the CUSUM fine-

tuned detection metrics (shown in Table 5-15) it can easily be seen that the 

refined CUSUM model is by far less sensitive in fault detection demonstrated by 

the TPRs that have fallen by 22% and 42% combined with decreased FDRs of  

7% and 16% for criterion 2 and criterion 3 respectively. The detection metrics of 

single signals presented in Table 5-18 show for comparable signals such as post 

flotation turbidity stream A and post flotation turbidity stream B now also similar 

TPRs, i.e. 57% and 54% and FDRs, i.e. 25% and 21% respectively (see criterion 

3). This demonstrates improvements that have been made in the way of 

parameter choice and selection utilised by the CUSUM refined fault detection 

methodology.  

TPRs of 40% and 60% as averaged rates across all signals generated by the 

CUSUM for criterion 2 and criterion 3 respectively should make a sufficient 

number of true detections available for an effective use of the classifier 

techniques.  

Based on above, the best performing HR-ERS method so far is the combination 

of fine-tuned CUSUM methods and RF-based classification (criterion 3). The 

performance of this method is shown in the following table: 

 

Table 5-20 HC-ERS: Event detection statistics. 

 

 

Total Major Minor

Overall System (Criterion 2) 60% 95% 59% 56% 44% 1219 40%

Overall System (Criterion 3) 40% 91% 39% 65% 35% 438 61%

FNR                  
CUSUM (refined)                                            

(22 critical alarm points)                           

TPR                                                                         
PPV FDR FP                                         

Total Major Minor

Overall System 87% 100% 87% 77% 23% 27 13%

FNR                  
HC-ERS                                          

(22 critical alarm points)                           

TPR                                                                         
PPV FDR FP                                         
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5.4.4 Final HC-ERS Method Optimisation 

Even though, great improvements in detection performance were already 

achieved by HC-ERS a final optimisation of the system was conducted by 

investigating those sensor signals that are redundant or negatively affecting the 

performance of the event detection aiming to remove them from the system. A 

stepwise backward elimination analysis as described in Section 4.4.3 was 

conducted for the investigation of those signals. Figure 5-11 pictures the results 

of stepwise elimination of sensor signals by the plot comparing TPR vs FDR for 

each signal that has been eliminated. 

 

Figure 5-11 Plot comparing TPR vs FDR for the stepwise elimination of sensor 
signals. 

 

When removing stepwise unfavourable signals starting initially with 22 signals 

(right hand side of the plot) the plot demonstrates a flat decrease of TPRs 

combined with a significant decrease of FDRs towards the labelled data point 

caused by the stepwise decreased number of signals used. From this point on 

more severe drops of TPRs are shown as more signals have been removed. The 

labelled point has been identified as optimal trade-off between TPR and FDR, 

where the system provides the most favourable event detection prediction. At this 

point the HC-ERS generates a TPR of 82% and FDR of 14%. These detection 
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rates were achieved with 16 sensor signals that have been identified as most 

important signals that perform the HC-ERS in an effective manner. Removed 

signals as well as the signals applied to the HC-ERS are presented in Table 5-21.  

 

Table 5-21 Signals identified as most important for the detection performance of 
HC-ERS. 

 

 

The final HC-ERS was tested using the remaining sensor signals shown in Table 

5-21 on the pre-processed data for validation time period. The resulting detection 

metrics calculated in the same way as it was done for E-ERS and M-ERS is 

presented in Table 5-22. 

 

Table 5-22 HC-ERS: Event detection statistics after stepwise elimination of 
unfavourable signals. 

 

 

Raw Water Turbidity Pre 1
st

 Stage pH Stream A

Raw Water pH Post 1
st

 Stage Turbidity Stream A

Pre Flocculation pH Stream A Pre 2
nd

 Stage pH Stream A

Pre Flocculation pH Stream B Pre 2
nd

 Stage pH Stream B

Post Flotation Turbidity Stream A Post 2
nd

 Stage Turbidity Stream B

Post Flotation Turbidity Stream B Treated Water pH Stream A

DAF Iron Stream A Final Water pH

DAF Iron Stream B Final Water Chlorine Residual

Pre 1
st

 Stage pH Stream B Post 2
nd

 Stage Turbidity Stream ARaw Water Turbidity

Post 2
nd

 Stage Turbidity Stream B Post 2
nd

 Stage Chlorine Stream A

Post 2
nd

 Stage Chlorine Stream B Treated Water pH Stream B

Pre Flocculation pH Stream A Pre 2
nd

 Stage pH Stream A

Signals removed by HC-ERS after optmisation 

Signals used by HC-ERS after optmisation 

Total Major Minor

Overall System 82% 100% 82% 86% 14% 13 18% 0.3 0.84

False 

alarms 

per wk

F1 

score
FNR                  

HC-ERS                                          
(16 signals)                           

TPR                                                                         
PPV FDR FP                                         
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5.4.5 Comparison of HC-ERS to Other Detection Methods 

To further assess the performance of HC-ERS, its detection performance was 

compared to the well know CANARY method (Hart et al., 2007) event detection 

system. CANARY is providing three event detection algorithms: the time series 

increment (INC), linear prediction coefficient filter (LPCF) and multivariate 

nearest-neighbour (MVNN) (Klise and McKenna, 2006). Since LPCF and MVNN 

algorithms have proven to be the most effective (USEPA, 2014), the INC 

algorithm was only preliminary tested and not further used in this work. Following 

the parameter optimisation procedure described in USEPA Canary was 

calibrated and tested conducting a kind of sensitivity analysis to explore the most 

suitable key parameters for the application of Canary’s LPCF and MVNN event 

detection algorithms. The evaluation of detection performances for both methods 

was done in the same way as it was done for HC-ERS by applying the same pre-

processed sensor data for validation time period.  

Canary event detection algorithms require five key parameters to be defined, in 

particular the following: (a) history window length in time steps used to calculate 

the baseline variability of water quality signals, (b) outlier threshold measured in 

units of standard deviations applied for the detection of outliers, (c) Binominal 

Event Discriminator (BED) window size in time steps used to provide the event 

probability for comparison against (d) the user defined number of required outliers 

(NRO) to determine an event, (e) the event threshold as value of probability used 

to declare a group of outliers as ultimate event. Both Canary algorithms were 

tested using the USEPA recommended configuration parameter values shown in 

Table 5-23. 

 

Table 5-23 Configuration parameter values used for the sensitivity analysis. 

 

Parameter Configuration Values

History window 2016 data points

Outlier threshold 0.5 - 3.0 standard deviations

BED window 12 data points

Number of outliers (NRO) 8, 9, 10

Event threshold1,2,3 0.927, 0.981, 0.997

BED, binomial event discriminator
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Since the performance of CANARY methods is particularly sensitive to the outlier 

threshold the sensitivity analysis is aimed to explore suitable threshold values for 

LPCF and MVNN algorithms. For this analysis only a large history window of 2016 

TS (7d) was selected because it has the same size as the window used for HC-

ERS and it was proven that increasing the history window results in fewer alarms, 

while lower values (lower than 1.5 days) will increase the number of alarms (EPA, 

2010). Corresponding to the experiments conducted by USEPA a window size of 

12 TS (1hr) was selected for the BED window because similar to above shorter 

BED sizes will raise the number of alarms, while with larger windows events of 

short duration (shorter than the BED) will not be detected. Since a limited number 

of historical events contained in the validation dataset having a duration of ~1hr 

only a BED window of 12 TS was used for the analysis. The number of outliers 

(NRO) required to define the event thresholds must be chosen as a number less 

than the BED window. The numbers of outliers used for the analyses were 

calculated as follows: 

 

      (8) 

 

NRO can then be used to calculate the event thresholds. The event thresholds 

utilised for the sensitivity analysis (see Table 5-23) were defined as follows: 

 

          (9) 

 

 

Following the recommendations of USEPA additional parameters were set on 

each individual signal. Setting these parameters lowers alarms caused by invalid 

data. Therefore, valid ranges for the sensor data were introduced to the analysis 

of both LPCF and MVNN Canary event detection algorithms. Any data outside 

this range is treated as having originated from a sensor fault (which presumably 

has not a great impact to methodologies’ performance since the data used for the 

analysis has already been pre-processed). The range of valid sensor values 
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provided from the water company is shown for each signal separately in Table 5-

24. 

 

Table 5-24 Engineering ranges of sensors. 

 

 

Once the configuration parameters were defined the sensitivity analysis was 

conducted by gradually increasing the outlier threshold in increments of 0.25 

standard deviations from 1 to 3 standard deviations and evaluating the test results 

for each event threshold value (see Table 5-23). This way the sensitivity tests 

were conducted for both detection algorithms resulting in corresponding detection 

metrics and F1 scores. The optimised outlier and event threshold combination for 

LPCF and MVNN algorithms was derived by selecting the combination with the 

maximum F1 score. Detection metrics and F1 score of both methods using 

optimised outlier and event thresholds are shown in Table 5-25. 

Raw Water Turbidity NTU -1.25 51.25

Raw Water pH pH 1.75 12.25

Pre Flocculation pH Stream A pH 1.75 12.25

Pre Flocculation pH Stream B pH 1.75 12.25

Post Flotation Turbidity Stream A NTU -0.25 10.25

Post Flotation Turbidity Stream B NTU -0.25 10.25

DAF Iron Stream A mg/l -0.13 5.13

DAF Iron Stream B mg/l -0.13 5.13

Pre 1
st

 Stage pH Stream A pH 1.75 12.25

Pre 1
st

 Stage pH Stream B pH 1.75 12.25

Post 1
st

 Stage Turbidity Stream A NTU -0.05 2.05

Post 1
st

 Stage Turbidity Stream B NTU -0.05 2.05

Pre 2
nd

 Stage pH Stream A pH 1.75 12.25

Pre 2
nd

 Stage pH Stream B pH 1.75 12.25

Post 2
nd

 Stage Turbidity Stream A NTU -0.05 2.05

Post 2
nd

 Stage Turbidity Stream B NTU -0.05 2.05

Post 2
nd 

Stage Chlorine Stream A mg/l -0.05 2.05

Post 2
nd

 Stage Chlorine Stream B mg/l -0.05 2.05

Treated Water pH Stream A pH 1.75 12.25

Treated Water pH Stream B pH 1.75 12.25

Final Water pH pH 1.75 12.25

Final Water Chlorine Residual mg/l -0.05 2.05

Signal
Engineering 

Range From

Engineering

 Range to
Units
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Table 5-25 Detection metrics of optimised LPCF and MVNN Canary event 
detection methods tested on validation time period. 

 

 

Canary’s LPCF algorithm using an outlier threshold of 2.75 standard deviations 

combined with an event threshold of 0.981 has demonstrated best detection 

performance among both algorithms and all tested configurations. The test 

results are in line with the studies conducted by USEPA testing both algorithms 

on WTW real-life data, whose results have shown that Canary’s LPCF usually 

outperformed the MVNN method. Therefore, the detection results of Canary’s 

system utilising LPCF detection algorithm have been used for comparison with 

E-ERS’, M-ERS’ and HC-ERS’ detection performances.  

For better comparison of all tested systems a summary of the detection metrics 

of each method supplemented by the number of false alarms per week and F1 

score is sown in Table 5-26 (sorted in order of highest to lowest F1 scores). 

 

Table 5-26 Detection metrics of analysed event detection systems tested on 
validation time period. 

  

 

From Table 5-26 it can be seen that the HC-ERS method outperforms the other 

ERSs in all key figures. The good performance of HC-ERS is illustrated by a 3% 

higher TPR for total events and more than halved FDR in contrast to the second 

best CANARY system. The table also demonstrates the limitations of threshold-

based fault detection systems displayed by the far lower F1 scores generated by 

E-ERS and M-ERSs.  

PPV FDR FP                                         FNR                  

Total Major Minor

Canary (LPCF) 79% 100% 78% 69% 31% 33 21% 0.6 0.730.73

Canary (MVNN) 100% 100% 100% 48% 52% 145 0% 2.8 0.65

F1 

score 

Detetion 

Method

True Detections False Detections False 

alarms 

per wk
TPR                                                                         

PPV FDR FP                                         FNR                  

Total Major Minor

HC-ERS 82% 100% 82% 86% 14% 13 18% 0.3 0.84

Canary (LPCF) 79% 100% 78% 69% 31% 33 21% 0.6 0.73

M-ERS 23% 68% 22% 64% 36% 308 77% 5.9 0.32

M-ERS (PSD) 20% 64% 20% 68% 32% 271 80% 5.2 0.310 0 0 0 0

E-ERS 22% 64% 21% 62% 38% 354 78% 6.8 0.31

F1 

score 
ERS

True Detections False Detections False 

alarms 

per wk
TPR                                                                         
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Moreover, considering the computational efficiency of HC-ERS including sensor 

data validation and pre-processing procedure the system is able to process 

approximately 300 observations per second, whereas CANARY processed 

around 100 observations per second. These results were achieved on a 

commercial laptop with i5 2.2 GHz processor having 12GB RAM, i.e. both, HC-

ERS and CANARY enable event detection in near-real time. 

Even though the removal of six redundant signals lead to a drop of the TPR by 

5% it also causes a decrease in FDR by 9% in contrast to the system using the 

initial 22 sensor signals. The lower TPR is the trade-off for the benefit of reduced 

false alarms resulting in only 13 false positives generated by the HC-ERS. The 

system shows the highest F1 score of 0.84 and produces with a value of 0.3 by 

far the least false alarms per week among all tested event detection systems. 

5.5 Summary  

In this section the results of the case studies described in this chapter can be 

summarised as follows. After a brief introduction, the results of the performance 

evaluation of E-ERS have been presented and discussed in Section 5.2. This first 

case study has demonstrated that the threshold-based E-ERS shows moderate 

event detection capabilities achieving a TPR of 22% combined with an FDR of 

38% and generates a high number of false alarms, i.e. 6.8 false alarms per week. 

In the Section 5.3 the outputs of the second case study have been presented and 

discussed. The evaluation of M-ERS’ detection performance has shown that 

improvements of only minor degree can be achieved by the application of 

optimised threshold and persistence values to the E-ERS. The results of M-ERS’ 

performance evaluation have demonstrated an increased TPR by 1% combined 

with 1% drop of the FDR in contrast to the E-ERS. This case study has also 

demonstrated the beneficial use of validated and pre-processed sensor data. The 

evaluation of M-ERS’ (PSD) performance showed a decrease in FDR by 6% and 

4% at the expense of 2% and 3% lower TPRs compared to E-ERS and M-ERS 

respectively. But similar to the application of optimised thresholds, the 

improvements achieved by the use of pre-processed sensor data were not 

dramatically high. 
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The final Section in this chapter presents the results of the performance 

evaluation of the new developed HC-ERS. Overall the event detection method 

has been successfully applied to the real-wold water quality sensor data of the 

demonstration WTW. CUSUM fault and RF event detection in combination have 

proven to perform well in the detection of failure events at WTWs’ processes. The 

evaluation of HC-ERS’ performance with a TPR of 82% and an FDR of 14% 

respectively has demonstrated major improvements against threshold-based E-

ERS and M-ERS and also clearly better detection capabilities compared to its 

benchmark CANARY. Moreover, HC-ERS has proven to be sufficiently fast for 

near real-time event detection. These results indicate the potential of the system 

to be effectively used for event detection at WTW. 
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6 CONCLUSIONS 

This thesis has presented a range of methodologies for near real-time detection 

of failure events at WTW’s processes and demonstrated their application on real 

WTW’s sensor data. The work comprised the evaluation of the: (a) existing, 

threshold-based event detection system (E-ERS) currently used by the United 

Utilities water company at the selected demonstration site, (b) the optimisation of 

the existing threshold-based event detection system resulting in the modified 

ERS (M-ERS) and (c) the development of a novel, hybrid event detection system 

(HC-ERS) that makes use of the CUSUM-based fault detection and RF event 

detection. Section 6.1 provides a summary of the work done in the thesis followed 

by key conclusions and contributions made to the research area presented in 

Section 6.2. Finally, recommendations for future developments in this work and 

the field of near real-time recognition of failure events at WTW’s processes are 

given in Section 6.3. 

6.1 Thesis Summary 

The first chapter of this thesis provided an introduction (see Section 1.1) into the 

field of event detection at WTW’s processes and highlighted in Section 1.2 the 

shortcomings of event detection systems currently used in water industry. In this 

way the scope and objectives of the thesis were defined in Section 1.3 as part of 

the overall aim to develop and validate a new methodology and a near real-time 

event recognition system for the detection of faulty sensor data and faulty 

processes at Water Treatment Works (WTWs). The methodology must be able 

to detect and distinguish fault sensor data and fault WTW’s processes in near 

real-time. Additionally, the methodology should be cheap in implementation and 

practical in real world operation. Finally, the structure of the thesis was outlined 

in Section 1.4. 

Starting with a brief introduction in Section 2.1, in the second chapter previous 

work relevant to the development of this thesis was reviewed. Section 2.2 

included a brief overview about general fault detection methods and focused in 

Section 2.3 on methodologies developed for the water sector as well as in Section 

2.4 on software applications already used in water industry for event detection at 

WTW’s processes. The review provided a summary of current methods including 
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widely spread Statistical Process Control (SPC) techniques such as control 

charts and Principle Components Analysis (PCA), but also - most evident to the 

development of the novel near real-time event recognition system presented in 

this thesis - recently increasing machine learning techniques such as Artificial 

Neural Networks (ANN) and Support Vector Machines (SVM). 

The third chapter starts by the description of the real-life WTW in Section 3.1 and 

the related data used for the development of the near real-time event detection 

methodologies in Section 3.2. Real world data from the demonstration site 

provided by the water company was used for the developments within this thesis. 

The dataset used for the case studies included data of 22 water quality signals 

observed by sensors deployed at the WTW over a time period of more than 3 

years and contained a large variety of failure events affecting WTW’s treatment 

processes identified by visual inspection of single sensor signals. The 163 events 

identified this way were classified into 5 major events and 158 minor events (see 

Section 3.3). All case studies applied this comprehensive dataset that was split 

into ~70% of total time period of data used for calibration and ~30% of total time 

period for validation on unseen data. Finally, a brief summary of the chapter was 

given in Section 3.4. 

In Chapter 4 methodologies of existing event recognition system (E-ERS), 

modified event recognition system M-ERS and new developed CUSUSM Hybrid 

event recognition system (HC-ERS) were discussed. After a brief introduction in 

Section 4.1, an overview of E-ERS’ architecture was provided in Section 4.2 

aiming to determine the fundamentals for its assessment and performance 

evaluation. Section 4.3 detailed the methods applied for M-ERS improving E-

ERS’s detection capabilities. The section has outlined two strategies to achieve 

enhanced detection performance of the E-ERS that comprised first the use of 

optimised thresholds and persistence values and second the application of 

validated and pre-processed sensor data. Whilst the enumeration method used 

for determining optimised of threshold and persistence values was detailed in 

Section 4.3.1, sensor data validation and pre-processing methods applied to the 

sensor raw data were outlined in Section 4.3.2. Detection methodologies used 

for development of the novel Hybrid CUSUM Event Recognition System (HC-

ERS) were presented in Section 4.4. HC-ERS that combines the CUSUM control 
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chart techniques described in Section 4.4.2 for fault detection on individual water 

quality signals with Random Forest (RF) machine learning classifiers detailed in 

Section 4.4.3 for the prediction of event occurrence probability and hence ultimate 

overall event detection. Methodologies applied and metrics used for the 

performance evaluation of the different ERSs were outlined in Section 4.5 

followed by a concluding summary of the chapter in Section 4.6.  

Finally, Chapter 5 provided the results of the case studies conducted on E-ERS, 

M-ERS and HC-ERS. After a brief introduction in Section 5.1, the E-ERS that 

makes use of thresholds and persistence values applied to singe signals was 

assessed by evaluating its capabilities of detecting failure events at WTW’s 

processes in Section 5.2. To demonstrate E-ERS’s performance and for 

comparison to M-ERS and HC-ERS, it was applied to the dataset of validation 

time period and resulting detection metrics evaluated. The E-ERS performed 

moderate, achieving a F1 value of 0.31 and generating 6.8 false alarms per week. 

Section 5.3 discussed the results of performance evaluation of M-ERS. To 

demonstrate M-ERS’s performance that makes use of optimised threshold and 

persistence values, it was first applied to the same dataset used for the 

performance evaluation of E-ERS and resulting detection metrics evaluated. M-

ERS achieved only minor improvements compared to E-ERS, generating a F1 

value of 0.32 and 5.9 false alarms per week. The beneficial use of validated and 

Pre-processed Sensor Data (PSD) were demonstrated by the application of M-

ERS (PSD) on pre-processed sensor data achieving a fall from 5.9 to 5.2 false 

alarms per week compared to M-ERS applied to sensor raw data. 

In Section 5.4 the results of the case studies conducted on the HC-ERS’s were 

discussed. After a final refinement of CUSUM fault detection parameters and 

selection of RF as best performing classifiers HC-ERS was applied to pre-

processed sensor data and the resulting detection metrics compared to above 

ERSs and the well-established CANARY (Hart and McKenna, 2009) event 

detection systems evaluated to demonstrate the detection performance of HC-

ERS. Compared to all other ERSs the novel HC-ERS performed well achieving a 

F1 value of 0.82 and 0.5 false alarms per week in contrast to CANARY’s F1 value 

of 0.70 and 0.9 false alarms per week. After final optimisation by removing 

redundant signals the evaluation of HC-ERS’s detection performance conducted 

by its application on pre-processed sensor data of 16 remaining signals 
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demonstrated further improvements of the system achieving a F1 value of 0.84 

and generating 0.3 false alarms per week. 

6.2 Conclusions and Contributions 

The work conducted on the development of the novel HC-ERS forms meaningful 

contribution to the research area. The key conclusions and contributions 

presented in this thesis are as follows: 

• A novel event recognition methodology (HC-ERS) was developed. 

The new methodology is capable of identifying the presence of failure 

events at WTW’s processes in near-real-time by processing water quality 

signals coming from sensors deployed at WTW. Unlike other ERSs found 

in the literature, which usually deploy a single method for event detection, 

the HC-ERS utilises a hybrid of two data-driven methods. The new HC-

ERS was tested and validated on real life data and has proved to be 

effective. The HC-ERS has achieved a true positive detection rate of 82%, 

an F1 value of 0.84 and a  false alarm rate of 14% (equivalent to only 0.3 

false alarms per week) when applied on the validation (i.e. unseen) data 

set (see Section 5.4 for details). For comparison, the equivalent values 

obtained by using the CANARY method were 79% true detection rate, 0.73 

F1 score, 31% false alarm rate and 0.6 false alarms per week. Therefore, 

the HC-ERS method shows promise for practical application in the water 

industry. 

• A new automated method for sensor data validation and pre-

processing in near real-time was developed. This method is used for 

the identification and correction of different types of sensor faults in near 

real-time. The method applies four statistical tests to the collected raw 

sensor data (see Section 4.3.2) for the identification and correction of faulty 

sensor data. The new sensor data validation and pre-processing method 

was tested, validated and demonstrated by comparing the performance of 

the M-ERS method with and without Pre-processed Sensor Data (PSD) 

method. When compared to the M-ERS method, the detection results 

achieved by the M-ERS (PSD) method demonstrated to be effective by 
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reducing false alarms from 5.9 to 5.2 false alarms per week (see Section 

5.3 for details). The PSD was integrated into the new HC-ERS method. 

• Detailed testing and optimisation of the existing, threshold-based 

event detection system (E-ERS) was conducted. This method is 

currently used by the water company and has demonstrated fairly 

moderate detection performance. The system achieved a modest F1 value 

of 0.31 with barely acceptable 6.8 false alarms generated per week. An 

attempt was made to overcome the limitations of the E-ERS method (see 

Section 5.2 for details) by optimising its thresholds and related persistence 

time values. However, the resulting M-ERS method obtained this way 

demonstrated only minor improvements. The use of PSD method applied 

to M-ERS demonstrated no substantial advancements in detection 

performance either (see Section 5.3 for details). All this demonstrates the 

clear limitations of threshold based detection methods which, 

unfortunately, continue to dominate in engineering practice.  

6.3 Future Work Recommendations 

Future work should involve further validation of the new HC-ERS method on 

additional real world data collected at different WTW sites. In this thesis, the 

testing and validation was done on a single WTW due to limitations in availability 

of real world data. Tests at additional WTWs with potentially different sensors and 

failure events would not only enable a more thorough validation and 

demonstration of the proposed HC-ERS detection method, this would, more 

importantly, provide an opportunity to gain additional insights and hence further 

generalise the observations made in this thesis. 

Future work could also consider novel machine learning and other methods as 

this is a constantly developing field. The latest rapid progress in development of 

machine learning and artificial intelligence techniques could be explored to further 

improve the detection methodology. This applies especially to the emerging field 

of deep learning techniques such as deep learning artificial neural networks. The 

application of improved event detection techniques would enable further 

improvements in the detection performance and lowering the false positive rate. 
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Future work could also look into the classification of identified events into different 

subtypes of respective root causes with the aim to further improve detection 

performance. At this development stage the classification of events into subtypes 

was not possible due to a lack of knowledge about the root causes of labelled 

events within the used dataset. Analysis of failure events detected by the HC-

ERS and investigation of their root causes would enable to set up a continuously 

growing database containing different fault types labelled by their root causes. 

This specific fault types should be first identified and classified by experts from 

the water company up to this stage the database is filled with of a sufficient high 

number of each fault types. From this stage on the classification procedure could 

be conducted automatically by system’s recognition of respective fault types and 

incorporated into the HC-ERS and other methods to enable the system to be 

additionally used to identify fault types and thus will help to determine the possible 

root cause of a problem. This further development of HC-ERS towards fault type 

classification in turn, would allow to locate faults and map these to corresponding 

WTW’s processes and single sensors. However, diagnosis of events done this 

way would be extremely advantageous for practical WTW’s operation, because 

an unusually high or frequent occurrence of failure events at certain locations of 

the treatment processes would indicate weak spots, e.g. dosages, retention 

times, etc. that could then be corrected by WTW’s operators.  

Further research should be undertaken to overcome the specific issue described 

in Appendix B (see Figure B-5). Due to the time delay of downstream signal’s 

deviations in the presence of an event, the ERS is not continuously identifying 

the event over its entire duration. It was frequently observed that multiple alarms 

were raised in the presence of an event caused by intermediate interruptions of 

the event status. To overcome this issue, once a fault is identified by CUSUM 

fault detection a persistence value could be introduced aiming to prolongate the 

duration of labelling this fault for a number of specified time steps. The use of 

such kind of persistence value presumably would be beneficial for avoiding above 

described interruptions. The more continuous event predictions achieved this 

way should further increase the detection performance and also lead to higher 

AUC values when generating ROC curves for the performance evaluation of the 

classifier. Further testing should be conducted to investigate the optimal number 
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of time steps to be used for these persistence values and to explore to what 

extend this measure improves the detection performance of the system. 

The use of enhanced sensors that can provide their or nearby asset’s ‘health 

status’ should be investigated to examine possible options of integrating this 

additional metadata into the detection process. The use of this additional 

information could be beneficial for the more reliable detection of process faults 

and would likely improve the system’s overall detection performance. For 

example, using sensors with self-diagnostic feasibility and integrating additional 

sensor information about the status/condition of assets, e.g. of pump speed, 

vibration, etc. will certainly help to improve the reliability of fault predictions. The 

additional information, however, could possibly reduce the value of separate 

sensor data validation and pre-processing procedure used in this thesis due to 

the use of more specific information coming directly from the WTW sensors. 

The HC-ERS could also be integrated into a decision support tool with a suitable 

user-friendly interface enabling improved visibility of the WTW’s process states 

in near real-time. The decision support tool should ideally display an overall view 

of all WTW’s treatment processes by visually indicating the condition of single 

process states, e.g. similar to traffic lights systems (green for healthy, orange for 

early warning of processes in danger of getting out of control and red for faulty 

processes). A great visibility of WTW’s process conditions at a glance is a key 

feature and crucial for a successful and practical implementation of HC-ERS in 

the water industry. 
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APPENDIX A SIDE CALCULATION OF PRELIMINARY 

CLASSIFIER PARAMETER SETTINGS 

Appendix A presents the preliminary analysis to explore the number of neurons 

and decision trees that represents the most suitable choice to be used by the 

ANN and RF or AdaBoost classifiers for the detection of failure events at WTW’s 

processes.  

First, the analysis was done using the ANN classification method with the aim to 

identify the adequate number of ANN’s neurons. This was done by growing the 

number of neurons and comparing this number against the ratio of TPR and FDR 

generated by the neural network. Figure A-1 shows that the number of 100 

neurons was the most suitable choice. The ANN with 100 neurons was tested 

using the CUSUM (finetuned) output data for validation time period. After that, 

the detection performance of the method was evaluated by calculating the 

detection metrics in the same way as it was done for E-ERS and M-ERS (see 

Section 5.4.3).  

 

 

Figure A-1 Comparison of the number of neurons for the Neural Network 
against the ration of True Positive Rate (TPR) to False Discovery 

Rate (FDR) generated by its application to CUSUM finetuned output 
data. 
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Similar to above, the number of trees for RF and AdaBoost classifiers were 

explored by growing template trees and comparing the number of trees against 

the ratio of TPR of FDR. Numbers of 10 and 100 decision trees were derived as 

most suitable for the application of AdaBoost and RF classifiers to the CUSUM 

finetuned output data of validation time period (see Figure A-2).  

 

 

Figure A-2 Comparison of the number of decision trees for RF and AdaBoost 
classifiers against the ration of True Positive Rate (TPR) to False 
Discovery Rate (FDR) generated by their application to CUSUM 

finetuned output data. 

 

AdaBoost and RF classifiers that make use of 10 and 100 decision trees 

respectively were then tested followed by the evaluation of their detection 

performances in the same way as it was done before (see Section 5.4.3).  
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APPENDIX B SIDE CALCULATION AND ANALYSIS OF 

REFINED CUSUM AND CLASSIFIER METHODS  

In Appendix B side calculations to evaluate the most suitable parameter settings 

for the refinement of the event classification methods are presented first. 

Additionally, the analysis undertaken to evaluate the CUSUM criteria whose 

output serves the most adequate input for the event classifier model is outlined. 

Finally, in Appendix B the outcome of ROC curves and AUCs used for the 

performance evaluation of the classification procedures is discussed. 

Prior to the final tests of the classifier models (see Section 5.4.3) again the 

adequate number of neurons for the NN and trees for AdaBoost and RF 

classifiers for the new CUSUM data were explored first. For the NN the numbers 

of neurons were derived by 10 and 400 Neurons for the application to CUSUM 

output data according to criterion 2 and criterion 3 respectively (see Figure B-1). 

 

 

Figure B-1 Comparison of the number of neurons for the Neural Network (NN) 
against the ratio of True Positive Rate (TPR) to False Discovery Rate 
(FDR) when applied to CUSUM refined criterion 2 and 3 output data. 

 

Figure B-2 shows the plot that displays the numbers of 50 and 100 decision trees 

derived as best choice for the application of AdaBoost and the RF classifier to 

CUSUM criterion 2 and 3 output data.  
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a)  b) 
  

 

 

 

 

 

  

 

Figure B-2 Comparison of the number of trees for AdaBoost (a) and Random 
Forest (b) ensemble classifier against the ratio of True Positive Rate 

(TPR) to False Discovery Rate (FDR) when applied to CUSUM 
criterion 2 and criterion 3 output data. 

 

Performance of each classifier technique was evaluated in the same way as it 

was done for the initial experiment by testing the models on the pre-processed 

sensor data of the 22 sensor signals for validation time period. The resulting 

detection metrics are shown in Table B-1. 

 

Table B-1 Comparison of tested classifiers’ detection statistics on CUSUM 
refined criterion 2 and 3 output data. 

 

 

PPV FDR FP                                         FNR                  
Criterion 2 Total Major Minor

AdaBoost 71% 100% 70% 69% 31% 30 30%

Artificial Neural Network 80% 100% 80% 68% 32% 39 20%

Random Forest 87% 100% 87% 62% 38% 55 13%0 0 0 0

SVM (RBF) 61% 100% 60% 75% 25% 19 39%

PPV FDR FP                                         FNR                  
Criterion 3 Total Major Minor

AdaBoost 61% 100% 60% 75% 25% 19 39%

Artificial Neural Network 75% 100% 75% 75% 26% 26 25%

Random Forest 87% 100% 87% 77% 23% 27 13%0 0 0 0

SVM (RBF) 80% 100% 80% 67% 33% 42 20%

Classifier True Detections False Detections

TPR                                                                         

TPR                                                                         

True Detections False DetectionsClassifier
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From the detection metrics presented in Table B-1 can be seen that the classifiers 

show improved event detection capabilities compared to preliminary tests with 

CUSUM finetuned parameters (see Table 5-16). The systems now generate 

reasonable high TPRs between 61% to 87% combined with significant lower 

FDRs of 23% to 38% compared to FDRs of 52% to 58% produced by the initial 

tests with CUSUM finetuned parameters. In general, the models using CUSUM 

output data with parameters refined according to criterion 3 (parameters have 

been optimised to maximise the number of true detections, i.e. true positives and 

true negatives) perform better than the models with CUSUM parameters refined 

after criterion 2 (parameters optimised by using regression techniques). This is 

demonstrated by usually lower FDRs of 23% to 33% at the same level of TPRs 

generated with CUSUM parameters selected by criterion 3 compared to the FDRs 

of 25% to 38% produced by the models using CUSUM criterion 2. 

Regarding performance of the classification techniques RF classifiers were 

identified as best performing by achieving highest TPR of 87% and lowest FDR 

of 23% among all tested classifiers. 

As it was done for the preliminary classifier tests ROC curves and AUCs were 

calculated to evaluate the performance of the classification procedures. Figure 

B-3 shows the ROC curves and AUCs of each technique for both CUSUM 

parameter selection criteria. 
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a) b) 

 

 

 

 

 

 

 

 

c) d) 
 

 

 

 

 

  

 

Figure B-3 Receiver Operating Characteristic (ROC) curves for (a) AdaBoost, 
(b) Neural Network (NN), (c) Random Forest (RF), and (d) Support 
Vector Machine (SVM) classifiers generated by their application to 

refined CUSUM criterion 2 and criterion 3 output data. 

 

From the ROC curves as shown in Figure B-3 it can be seen that the performance 

of the models has greatly improved according to the results achieved by the initial 

tests. This is also confirmed by increased AUC values of around 0.7 (except the 

AUC of 0.61 generated by SVM for criterion 2) compared to the AUC values 

(mostly below 0.6) achieved by the initial testing of the classifiers. The ROC 

curves also confirm CUSUM criterion 3 as better choice than CUSUM criterion 2 
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since the curves produced by the classifiers using CUSUM output data generated 

with parameters optimised according to criterion 3 dominate in all cases the 

criterion 2 curves at the most important portion of the ROC curves (i.e. FPRs from 

0 to 0.3). Figure B-4 shows the above mentioned portion of the ROC curves of 

the classifiers for CUSUM criterion 3 only.  

 

 

Figure B-4 Receiver Operating Characteristic (ROC) curves for (a) AdaBoost, (b) 
Neural Network (NN), (c) Random Forest (RF), and (d) Support Vector 
Machine (SVM) classifiers generated by their application to refined 
CUSUM criterion 2 and criterion 3 output data. 

 

The figure shows that the ROC curve for RF dominate all other curves and thus 

confirms aside the highest AUC value of 0.73 and promising detection metrics 

(see Table B-1) achieved by RF classifiers this technique as most suitable event 

detection method.  

Even though the event classification methodology appears to perform well some 

difficulties with ROC curves and AUC as measure for performance evaluation of 

ERS arise (EPA, 2013). When creating the ROC curves and calculating the AUC 

value each time step during an event is classified as a true positive or false 

negative. Due to inconsistencies and time lags in signal’s deviations the classifier 

is unable to clearly define continuously periods of event predictions during the 

whole time of the presence of an event. This issue is demonstrated by Figure B-
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5, which shows the predictions of the RF classifier (red) compared with the 

labelled events (blue) over a cut-out of validation time period (from 17th December 

to 8th February). White spaces between event predictions during the presence of 

an event demonstrate above described effect. Although this effect does not seem 

to influence the performance of the event detection technique, the achieved AUC 

values do not fully reflect the event detection capabilities of the classifier. 

 

Figure B-5 Event predictions of the RF classifier (red) compared with the 
labelled events (blue). 

 

Not only for the reason that RF classifiers have demonstrated best detection 

performance among the tested methods, but also for their easy implementation 

combined with a high computational efficiency this classification technique were 

chosen as best suitable event detection method for the new HC-ERS. RF 

required the least time to process compared to the other tested classifiers. 
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