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Abstract

The exploration of acoustic metasurfaces presented in this Thesis involves the

characterisation and verification through finite element method (FEM) modelling and

experimentation of a range of different acoustic metasurfaces. In airborne acoustics,

the patterning of sub-wavelength structures on acoustically-rigid material provides

the boundary condition that enables acoustic surface waves to exist. These surface

waves exist purely in the fluid layer above the rigid material and propagate parallel

to the surface, and are evanescent perpendicular to the surface.

The first study explores the radiative and bound acoustic modes supported by

a rigid grating formed of three same-depth, narrow grooves per unit cell. One of

the grooves is twice the width of the other two, forming a ‘compound’ grating.

The structure supports so-called ‘phase’ resonances where the phase difference of

the pressure field between the grooves on resonance varies by multiples of π. The

dispersion of these modes has been measured experimentally by monitoring the

specularly reflected signal as a function of the angle of incidence. In addition, by

near-field excitation, the dispersion of the non-radiative surface modes has been

characterised. The results are compared with the predictions of a finite element

method model.

The acoustic surface waves supported by hard surfaces patterned with repeat-

period, meandering grooves are next explored. The single, continuous groove forms a

glide-symmetric surface, inhibiting the formation of a bandgap at the first Brillouin-

zone boundary. Consequently, the acoustic surface waves exhibit an almost constant,



sub-speed-of-sound, group velocity over a broad frequency band. The dispersion

of these surface waves has been experimentally measured by a near-field scanning

technique and compared to finite element modelling. In addition the influence of

covering the straight sections of the channels has been explored. Covering the channel

reduces the coupling strength to free radiation which has been shown to significantly

alter the standing wave condition at the first Brillouin zone for small channel depths.

For such structures, the standing wave condition now comes from an open-ended

cavity resonance.

In the final results chapter, underwater acrylic plates are investigated. Due to the

change in the fluid, the solid may no longer be regarded as being acoustically-rigid,

and acoustic energy propagates into the solid. Because of this, even on a flat surface,

surface acoustic waves, Scholte waves are found at the interface of the solid and fluid.

Here in particular, so-called soft solid (acrylic) plates are investigated where the shear

velocity of the solid is less than the speed of sound in the fluid. The effect of adding

structure to thin acrylic plates has been thoroughly explored through FEM modelling.

By adding periodic grooves to the plate, unusual dispersion characteristics have been

shown. The hybridisation of the modified Scholte-like modes with the cantilever

resonances of the solid pillars has been described. The effect of varying grating

parameters on the band diagram has been explored, showing that the dispersion

of the modes is highly dependent on the structure. Experimental verification was

performed on a simple grating (one groove per period) showing good agreement with

the FEM model.
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Chapter 1

Introduction

1.1 Historical Background

Wave propagation in periodic structures has been the topic of studies in many areas

of physics. Perhaps one of the most important pieces of literature on periodic systems

is ’Wave Propagation in Periodic Structures’ by L. Brillouin.[1] In this work, Brillouin

described the mathematics of wave propagation for a variety of physical systems,

from solid state physics to the propagation along electric lines. Brillouin described

the propagation of waves in periodic structures using the Floquet theorem[2] for 1D,

2D and 3D periodic structures. The concept of the Brillouin zones was introduced

that describes the periodicity in momentum space due to the periodic lattice in real

space. This work forms a fundamental basis for all related work on periodic systems.

The study of periodic structures in acoustics is analogous to quantum mechanical

band theory of solids, where a periodic arrangement of atoms interacts with electronic

waves creating a band structure, for acoustics these waves are phonons. From this,

the acoustic equivalent of phononic crystals was proposed by Sigalas & Economou in

1993[4]. In this paper, the band structure is investigated for both acoustic and elastic

waves. The structure explored comprised 2D arrays of infinite cylinders embedded
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a b

Fig. 1.1 a) Órgano by Eusebio Sempere the sculpture used in the investigation. b)
Sound attenuation as a function of frequency, the inset shows the incident wavevector.
The labelled arrows show the expected sound attenuation maximum for a given
crystal plane. Image taken from Martínez-Sala et al.[3]

in a host material, in both rectangular and hexagonal arrangements. Experimental

confirmation of the band gaps predicted was by Martínez-Sala et al., where the sound

attenuation of acoustic waves propagating through a sculpture consisting of a sub-

wavelength array of metallic cylinders was explored.[3] The sculpture and results are

presented in Figure 1.1(a-b). Here, the results for an incident wavevector in the [100]

direction are presented. The peak at 1670 Hz is attributed to Bragg reflection from

the regular lattice and the formation of the first bandgap. Numerous other works

have also investigated sound attenuation by sub-wavelength periodic structures.[5–

8]. There have been many phenomena investigated using sub-wavelength periodic

structures such as guiding of acoustics waves, where transmission through both linear

and bent defects have been studied[9–13] as well as refractive acoustic devices, where

the periodic structures are implemented to create lenses[14–16].

Sub-wavelength structured materials for controlling sound, acoustic metamaterials,

have been the topic of an increasing number of investigations. In 2000 the first

artificial acoustic metamaterial was designed by Liu. et al.[17] This metamaterial

consisted of rubber-coated lead spheres arranged in a simple cubic structure, presented

in Figure 1.2(a). This system is analogous to a mass-spring system, the solid lead

2



1.1 Historical Background

Fig. 1.2 a) Cross-section of the unit to form the metamaterial. A 5mm lead sphere
coated by a 2.5 mm layer of silicone. b) A sonic crystal comprised of 8 × 8 × 8 units.
c) Calculated (solid line) and measured (circles) amplitude transmission coefficient
along the [100] direction. d) The band structure for a simple cubic array of the
coated spheres. [17]

sphere is the mass while the rubber acts as the spring. In this metamaterial, the

locally resonant and sub-wavelength nature creates an unconventional band structure

having flat dispersion curves presented in Figure 1.2(d) that form the lower boundaries

of two band gaps. By investigating the frequency-dependent effective bulk modulus

(Keff), they found that at frequencies close to resonance, the effective modulus turned

negative. One can see from the refractive index (n2 = ρeff/Keff, where ρ is the

effective density) that when Keff is negative, n becomes complex. The imaginary

component of n means the wave decays exponentially as it enters the material and

band gaps form.

Acoustic metamaterials may also take many other forms. One such form is a

loaded waveguide, where a one-dimensional array of Helmholtz cavities are attached

along the length of the waveguide, as illustrated in Figure 1.3(a). Fang et al.
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b                   K > 0, ρ < 0

a                   K < 0, ρ > 0

c                    K < 0, ρ < 0

Fig. 1.3 a) Open and closed cavity resonators can be used to design a metamaterial
with Keff < 0, ρeff > 0. b) A membrane-type metamaterial displays Keff > 0, ρeff < 0.
c) By combining the previous two examples a double negative metamaterial where
Keff < 0, ρeff < 0 may be created. Here, the red lines represent the location the
membranes.

explored the acoustic response of loaded waveguides in 2006.[18] They found that at

the collective resonance frequency of the cavities, a low-frequency stopband occurred.

The formation of this stopband was identified to coincide with when Keff goes

negative. The frequency at which the stopband exists may be altered by changing

the size of the cavities attached. This allows for loaded waveguides to have a low

resonant frequency, and to reflect sound until Keff returns to be positive. Lee et

al. investigated negative ρeff by designed a membrane-type metamaterial where

membranes are placed in parallel in a tube structure, similar to Figure 1.3(b). They

experimentally recorded negative ρeff by directly measuring the negative acceleration

of the fluid.[19]. A system where Keff and ρeff are both negative was explored by

Lee et al. who expanded their previous work to realise double negativity,[20] using a

similar structure as in the previous study; however, there are now small holes that

act as cavities giving negative Keff as presented in Figure 1.3(c).
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a b

ρeff

Keff

Fig. 1.4 a) Schematic of the structure used by Liang et al. The red-dashed line
represents the border of the primitive unit cell. The blue arrows represent the
propagation path of the sound. b) The effective parameters as a function of normalised
frequency. The grey region represents a band gap in the band structure around the
Γ point shown in the inset. Image taken and modified from [21]

The previously discussed single and double negative metamaterials have all used

resonating elements that give rise to the negative behaviour. Liang et al. studied a

metamaterial based on the coiling of space into labyrinthine structures presented

in Figure 1.4(a).[21] By using space coiled elements in the effective medium regime

(where the wavelength of excitation is much greater than the size of the structure, so

the structure is non-resonant and behaves like a material), band folding occurs, and

the material behaves double negative. Figure 1.4 shows the effective parameters as

a function of normalised frequency. The grey region represents a band gap formed

at the Γ point, for the frequency range of 0.18-0.218 both ρeff and Keff are negative.

Above the lower edge of the band gap ρeff turns positive, resulting in a complex n.

The upper edge of the band gap is formed when Keff turns positive; therefore, both

parameters are positive and n is real allowing the propagation of sound. At specific

frequencies the acoustic energy experiences a negative effective refractive index (n),

allowing for negative refraction to occur. This was shown numerically.
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c

d

a

b

Fig. 1.5 a) Composite unit cell of 16 different length space-coiled resonators, with a
layer of sponge on the surface. b) Layout of the channels of the experimental sample.
c) The absorption spectrum of only the composite resonators (blue) and only the
sponge layer (green). d) The absorption spectrum of the composite structure with
the sponge layer placed above the resonators. The coloured solid lines represent
theory, and the coloured circles represent experimental data. 345 Hz is the cutoff
frequency of the metamaterial. Image from [22].

One substantial issue with creating resonant sub-wavelength metamaterials is the

effect of thermoviscous losses in narrow channels.[23–25] These losses potentially can

strongly attenuate sound waves as they propagate through the metamaterial pre-

venting use in practice. However, for acoustic metamaterials designed for absorption,

these losses are beneficial.

The effect of the thermoviscous losses on periodic structures has been extensively

explored. C. Bradley described the propagation of linear, dissipative time-harmonic

waves in periodic waveguides. It was shown that if the boundary conditions describe

the dynamics of the thermoviscous effects, then a Floquet-like theorem can be applied,

and the waves are described as Bloch waves. For a system consisting of a waveguide

with rectangular branches, it was shown that the resulting block wave numbers have

both a real and an imaginary component. The dispersion diagram of the structure is

presented in Figure 1.6. The regions in which the wave number is real are known as

pass bands, and the regions where the wavenumber is complex are known as stop
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Fig. 1.6 The dispersion diagram of a waveguide with rectangular side branches inves-
tigated by Bradley, here both the real and imaginary components of the wavevector
are presented. The blue shaded regions represent Bragg stop bands. The red shaded
region represents a scatterer resonance stop band. Image taken and modified from
[26].

bands, which are associated with exponentially attenuated Bloch waves. Bradley

describes two conditions in which a stop band is likely to occur. The first is known

as the Bragg stop band condition, nλg = nk/2, where λg is the period, and k is

the wavevector in the direction of periodicity. The second referred to as scatterer

resonance stop bands occur due to the resonance of the rectangular branches of the

waveguide. In the dissipative system the previously sharp edges of the stop bands

are smoothed out. [26] Furthering the study of thermoviscous effect in periodic

structures, Sugimoto and Horioka described the dispersion characteristics of an array

of Helmholtz resonators connected to a waveguide. The authors noted that the derived

dispersion relation exhibits stop bands in the frequency domain; these stop bands

inhibit the propagation of acoustics waves through the structures even in the lossless

case. The stopbands are attributed to the resonance and Bragg reflection, which

occurs due to the periodicity of the system. Outside of the stopbands, the acoustic
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waves show dispersion.[27] More recently, Jiménez et al. designed subwavelength

acoustic panels consisting of a structure similar to that presented by Sugimoto

and Horioka. They showed that around the resonant frequency of the Helmholtz

resonators, near-perfect absorption occurred.

Merely using an array of narrow open-ended resonators to attenuate can poten-

tially result in two problems. Firstly, for low-frequency absorption, these structures

become very thick due to a half-wavelength resonance condition, which is often

undesirable as lightweight, thin absorbers have more application in cladding to

create anechoic conditions. Secondly, due to the resonant nature, these are narrow

band. Many investigations have focused on overcoming the narrow band nature

of resonant structures. Wu et al. investigated profiled absorbers where there are

multiple resonators per period of the same widths but different depths.[28–31] Wu

et al. showed that by including a perforated plate within the profiled absorber

broadened the resonances, resulting in a broadband absorber.[28] Romero-García

et al proposed a different method to increase the bandwidth of resonant structures.

by using the mechanism of sub-wavelength multi-resonant scattering. The structure

investigated consisted of a viscoelastic porous plate placed in front of a rigid back-

ing. In the regime where the incident wavelength is much larger than the distance

between the perforated plate and rigid backing, perfect absorption occurs. Perfect

absorption occurs in this system due to destructive interference between the direct

reflection from the perforated plate and reflection from the rigid backing. Due to the

wavelength being much larger than the phase difference between these two waves

is negligible, however, due to waves incident on the porous plate exhibiting a π

phase change, and those reflected from the rigid backing exhibiting no phase change,

destructive interference occurs.[29] Another method one may implement to create

a broadband response is by implementing rainbow trapping structures. Rainbow

trapping structures consist of multiple resonators per period, which are graded in
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depth. Due to the depths being graded, the resonances of the individual resonators

overlap, which creates a broadband response. Jiménez et al. investigated the response

of sub-wavelength panels composed of graded Helmholtz resonators. The authors

showed numerically low-frequency broadband absorption and confirmed the results

experimentally. [31]

A metamaterial designed to overcome both the narrow band and size problems

was designed by Yang et al.[22]. The unit cell of the structure designed comprised of

multiple different length space-coiled resonators, topped by a thin layer of sponge,

Figure 1.5(a-b). They discovered near-perfect absorption for frequencies above the

cutoff frequency in Figure 1.5(c), fc = c/dmin where dmin is the minimum cavity depth

needed for the desired frequency range, and c is the speed of sound. Frequencies below

the cutoff frequency are unable to propagate into the structure as the pressure-release

boundary conditions are no longer satisfied, where the pressure, P , must equal zero.

Having briefly reviewed phononic metamaterials we now go on to look at the

key area of this thesis: acoustic metasurfaces. In particular we explore interface

modes. Surface acoustic waves (SAWs) exist at the interface between two different

media. Rayleigh, Stoneley and Scholte waves exist at solid-vacuum, solid-solid, and

solid-fluid interfaces respectively[32–34].

At the interface between a solid half-space and a vacuum half-space, non-dispersive

interface waves, Rayleigh waves, exist. In an isotropic solid, for shallow depths the

particle motion is elliptical and retrograde (clockwise motion)[32], at greater depths

the particle motion becomes prograde (anticlockwise motion). The velocity of

Rayleigh waves (cR) has been the topic of many studies[37, 35, 38], P. Malischewsky

provided a comparison of the different approximate solutions for the Rayleigh wave

velocity[36], with the dependency on Poisson’s ratio presented in Figure 1.7.

Stoneley waves may exist at the interface between two dissimilar isotropic solids

when the two materials are perfectly bonded; these waves are non-dispersive[33].
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Fig. 1.7 Rayleigh wave velocity normalised to the transverse velocity of the solid.
The solid, thick grey line is the exact solution. The dashed black line is the
approximation from Scruby et al. [35]. The thin solid, black line is the approximation
from Malischewsky[36]. The dashed-dotted, black line is the approximation from
Bergmann[37]. Figure is taken from[36].
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Fig. 1.8 Particle trajectory in both materials for a Stoneley wave. Figure based on
[39]. The red lines show the particle displacement.
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Fig. 1.9 Particle trajectory in both materials for a Scholte wave. Figure based on
[39]. The red lines show the particle displacement.

Figure 1.8 shows the particle trajectory in the two elastic materials. In both media,

the particle motion is elliptical. In the lower solid, there is a reversal in the direction

of the particle motion just below the interface. In the upper solid, the reversal of

particle motion does not happen. The characteristics of Stoneley waves, which depend

on the stiffness and density of the two solids, has also been explored[34, 40]. The

propagation of Stoneley waves at the interface between pre-stressed, incompressible,

isotropic elastic materials has been investigated, showing that when a Stoneley wave

exists, the velocity of the wave will be higher than that of the slowest Rayleigh wave

speed of the solids[41–43]. For the case of loosely bonded elastic halfspaces, the

formulas for the velocity of the Stoneley wave has been explored by Vihn et al. The

formulas derived also show that if a Stoneley wave exists, it is unique[44]. Vihn

further expanded this work for the case of bonded interfaces[45].
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At a solid-fluid interface, two interface waves can exist - leaky Rayleigh waves and

Scholte waves. First, a hard solid-fluid interface is considered. A hard-solid−fluid

interface is one where the transverse velocity of the solid is greater than the longitu-

dinal velocity of the fluid (cF l < cSt < cSl, where the subscripts F and S represent

fluid and solid respectively). For such a system so-called leaky Rayleigh waves[46]

propagate with a velocity less than cSt, these waves attenuate as they propagate due

to radiating into the fluid. Leaky Rayleigh waves have been used to characterise the

physical properties of underwater solids [47, 48]. The Scholte wave velocity is less

than cF l, and if the viscoelastic effects are neglected in both the fluid and the solid,

the Scholte wave will propagate unattenuated. More Scholte wave energy for a hard

solid-fluid system is localised within the fluid than the solid. Scholte waves are a

linear combination of longitudinal and vertical shear waves in the solid, and they

are evanescent in both directions orthogonal to the interface. The magnitude of the

difference between the particle x-displacements in the fluid and solid is proportional

to (1 − c2
sch/c

2
F l)−1, where csch is the Scholte wave velocity. It can be seen that this

ratio becomes large as the Scholte wave velocity approaches that of the speed of

sound in the fluid[39]. A soft-solid−fluid system is one where the transverse velocity

of sound in the solid is less than the longitudinal velocity of the fluid (cSt < cF l < cSl).

In such systems, there has been some discussion as to whether leaky Rayleigh waves

exist[49–51]. Glorieux et al. experimentally confirmed the theoretical prediction

that the leaky Rayleigh root of the characteristic determinant becomes forbidden

for a soft solid-fluid system.[51]. For a soft solid-fluid system, the Scholte wave

energy is more localised within the solid, which is in contrast to the hard solid-fluid

case. The penetration depth of the wave is deeper for the soft solid-fluid system[52].

Scholte waves are used to characterise soft marine sediments [53–56] and also for

non-destructive defect testing[53, 57].
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Fig. 1.10 Lamb wave dispersion curve for the three first modes of a finite steel plate.
The y-axis has been normalised to the transverse velocity of steel (ct). Here, d is the
thickness of the plate.

Now, moving on to plates rather than semi-infinite substrates Lord Rayleigh first

discussed the topic of acoustic waves propagating in elastic plates and this was later

expanded by H. Lamb[32, 58]. For a free, infinite plate, there exist two modes which

are supported: a longitudinal symmetric mode (S) and a flexural anti-symmetric

mode (A). However, when a finite-sized plate is considered, there exists an infinite

number of modes. In Figure 1.10, the dispersion curves for the three lowest order

modes of a steel plate are shown. For the lowest order modes labelled S0 and A0,

as the frequency increases they tend to the Rayleigh wave speed (cR), while the

higher-order modes tend to the transverse velocity (ct) as the frequency is increased.

Lamb waves have often been used for the inspection of plates and non-destructive

defect testing, due to the property that they can propagate over long distances[59–61].

Lamb waves have also been used to determine the elastic properties of plates[62–65].

In electromagnetism the similar problem of propagation above a plane surface

was first explored by Sommerfeld in 1909[66]. This was expanded by Slater[67] who
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Fig. 1.11 The periodic rectangular groove grating modelled by Kelders et al., evanes-
cent ultrasound surfaces waves propagate above the surface of the solid.

developed an approximate theory of the propagation of waves between two parallel

plates, one of which was structured. The surface waves existing at an interface

between two media of different impedances was explored by Barlow at Cullen.[68]

It is know that the surface impedance contains a resistive and reactive term and is

written of the form Z = Rs + iXs. The quantity Xs arises from the skin depth. For

a good conductor Rs is slightly larger than Xs. The addition of corrugations on the

surface increases the reactance and therefore creates an artificial skin depth which

allows surface waves to bind and propagate along the surface.

More recently there has been a wide variety of investigations on periodic elec-

tromagnetic structures. Pendry et al.[69] developed a theory for structured metal

surfaces relating to surface plasmons: collective excitations of the electrons localised

to the surface of a metal. So-called designer surface plasmons, exhibit a similar

response to optical surface plasmons but at microwave frequencies. The dispersion

of these designer surface plasmons can be readily controlled by the parameters of

the periodic structure designed. The acoustic equivalent of Sommerfeld’s problem

was fully realised by Wenzel in 1974.[70] Wenzel found that a surface wave term
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a

b

Fig. 1.12 a) Dispersion of an acoustic surface wave above a coarse corrugated rigid
surface. b) The pressure fields in the x-z plane where the surface is along z=0. Here,
k0 is the incident wavevector, and p is the size of the unit cell.

existed for the acoustic problem which had previously been omitted by Ingard.[71]

Thomasson showed for a surface where the imaginary part of the surface impedance

is much greater than the real part surface waves can be excited by near grazing

incidence radiation.[72] Raspet and Baird later showed that the surface wave is a

true independently propagating wave.[73]

In a system where the solid is acoustically-rigid (no propagation of acoustic

energy into the solid), acoustic surface waves arise from diffractive coupling from

sub-wavelength periodic structuring resonators into the solid (note that Scholte

waves do not exist on the surface due to the solid being acoustically-rigid). These

were first described for ultrasonic surface waves by Kelders et al. using a modal

model and experiment.[74] Figure 1.11 shows the periodic rectangular-groove grating

modelled. Here, the surface waves propagate along the surface in the x direction.

Kelders then went on to confirm the existence of these surface waves experimentally

15



Introduction

(b)

Fig. 1.13 a) The structure investigated by Ye et al. Acoustic surface waves propagate
along the x direction and due to the grading of the radius of the cylinders in the y
direction, the acoustic surface wave is focused. b) Intensity field plot of the focused
acoustic surface wave. Image taken and modified from [78].

on the surface of a porous surface.[75] However, the first experimental evidence of

acoustic surface waves on periodically structured surfaces was demonstrated much

earlier by Ivanov-Shits et al. using thin aluminium strips over plywood.[76]. The

dispersion above a rectangular grating similar to that described by Kelders et al.

was experimentally measured by He et al.[77], presented in Figure 1.12(a). They

showed that by corrugating a rigid surface, highly confined acoustic surface waves

are supported over a broad frequency range. Figure 1.12(b) shows the pressure fields

at the red point in the dispersion diagram. The evanescent fields were shown to

be confined within one period of the surface in the z direction. The dispersion of

surface waves are highly dependant on the structure. Christensen et al. showed

that enhanced transmission could be obtained through a sub-wavelength hole on

resonance when the surface has been structured with a periodic groove array. They

also showed the transmission collimation of sound.[79]

Schwan et al. investigated the complex dispersion of acoustics surface waves of

a lossy metamaterial. The complex dispersion is difficult to obtain experimentally;

one must separate the attenuation caused by losses from the attenuation from
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the geometrical spreading of the source. The complex dispersion can be done by

implementing a spatial Laplace transform for complex wavenumbers (SLaTCoW)

on the experimental data. The authors theoretically derived a complex dispersion

relation that was used to validated the complex experimental dispersion obtained.

The metamaterial investigated was a square array of finite depth holes in a wooden

plate. It was shown that even with weakly damped resonators around the resonance,

the propagation of the surface acoustic waves becomes so highly attenuated that no

propagation occurs.[80]

A study by Ye et al. showed that acoustic surface waves can be focused by

grading the structure on the surface.[78] Such a structure is presented in Figure

1.13(a), where the cylindrical holes are graded in the y-direction but periodic in x.

Figure 1.13(b) shows the focusing effect in the direction that the acoustic surface

wave propagates. This occurs due to the n being graded in the y-direction. Acoustic

surface waves have also be used to exhibit rainbow trapping, where the structure is

graded and different frequencies propagate different lengths along the surface.[81, 82].

Sub-wavelength imaging from acoustic surface waves has been reported on two-

dimensional metamaterials. Jia et al. experimentally and numerically realised

such imagining from a square array of holes in a rigid surface.[83] Utilising the

broad flat equi-frequency contours of the surface waves supported on the surface, a

sub-wavelength image with a full width half maximum of 0.014λ was obtained.

In an underwater environment, Li et al. demonstrated experimentally that

underwater surface acoustic waves exist above an array of rigid cylinders. Figure 1.14

displays the dispersion diagrams for various r/a, where r is the radius of the cylinders

and a is the pitch. For r/a = 0.25 and 0.35 only one surface mode can be seen;

however, for larger r/a values a second mode can be seen. The mode represented by

black dots is a dipolar resonance around the cylinders. The blue dots represent a
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Fig. 1.14 Dispersion diagrams for one-dimension arrays of identical cylinders in the
x direction. a) r/a = 0.25. b) r/a = 0.35. c) r/a = 0.45. d) r/a = 0.49. r is the
radius of the cylinder and a is the pitch. The red dashes line represent the sound
line of water. The inset of (a) illustrates the structure. Image from [84].

quadrupole mode around the cylinder where the coupling is stronger as the cylinders

are placed closer together.

1.2 Introduction

This thesis will focus on the experimental measurement of acoustic surface waves

for airborne acoustics and underwater acoustics. In the literature, while there have

been many studies on acoustic metamaterials and metasurfaces, there appear to be

very few that directly characterise the propagation of acoustic surface waves through

experiments by measuring their dispersion. This is especially prevalent in the case of

underwater acoustics, where the direct measurement of the pressure-field through

surface scans of metasurfaces remains an unexplored area.

Chapter 2 will focus on essential background physics, which will be referred to

throughout the thesis.

In Chapter 3, the experimental and numerical methods used throughout the

thesis will be described. Radiative measurements are performed using a reflection

experiment where the reflection as a function of angle of incidence can be obtained.

18



1.2 Introduction

Such radiative measurements will be used in Chapter 4 to obtain the reflectivity

spectrum of a phase resonance surface. Near-field surface scans of the pressure fields

allow us to experimentally measure the dispersion of acoustic surface waves. The

acoustic surface waves have been experimentally measured on a compound grating

(Chapter 4), a glide-symmetric metasurface (Chapter 5), and an underwater simple

grating (Chapter 6). Finite element method (FEM) models are used to validate the

experimental data, and how the models are done will be described in this chapter.

FEM models are used throughout the thesis.

Chapter 4, the first of three experimental chapters will explore the radiative and

non-radiative modes supported by a compound grating, one with multiple grooves

per unit cell. On such gratings, a phenomenon known as phase resonance exists.

Phase resonances will be explored for periodic structures where there are more than

one resonating element per period. The dispersion diagrams of simple gratings will

be investigated through FEM modelling. Expanding on this, compound gratings

will be explored. The effect of changing the parameters of the grooves on the phase

resonances will be investigated for both two and three-grooves per unit cell. Finally,

the experimental validation of both the radiative and non-radiative dispersion will be

described using the methods presented in Chapter 3. Alongside the characterisation

of acoustic surface waves, the beaming of acoustic energy on the surface will be

explored experimentally.

So-called meander structures are the topic of Chapter 5. As discussed previously,

the use of space-coiled metamaterials can lead to interesting effects. However, the

investigation of the propagation of acoustic surface waves on such a surface had not

been undertaken. In this chapter, glide-symmetric meander channels are characterised

in full through FEM models and then experimentally validated. These meander

channels support slow acoustic surface waves which are broad band due to their

near-linear dispersion. The broad band feature is a direct consequence of the surface
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possessing glide symmetry which creates a zero band gap at the first Brillouin zone.

The decay in intensity of the surface waves will be experimentally measured. Finally,

through FEM modelling the dispersion of acoustic surface waves on partially covered

meander channels will be explored, showing that there is a change in the resonance

condition for shallow grooves compared to the uncovered systems.

Moving from airborne to underwater acoustics, Chapter 6 is a study of the effect

of introducing periodic structure to soft-solid plates. In an unstructured plate, two

types of interface modes exist within the non-radiative dispersion: symmetric and

anti-symmetric Scholte modes. In this chapter simple gratings (one groove per

period) are introduces into acrylic plates. The interaction between the Scholte modes

and the structural modes now excitable due to the grating is explored extensively

through FEM modelling. The dependence on the dispersion curves on the structure

is described. Experimental validation using near-field surface scans of an underwater

grating is presented.

Finally, possible extensions for this work will be described in Chapter 8. The

band structures for underwater soft-solid plates will be explored. Now structure is

added to both interfaces. Secondly, the band structure of adding a two-dimensional

periodic structure to one of the interfaces will be explored. Thirdly, preliminary

results for a method to obtain the radiative dispersion from a surface scan will be

presented and described.
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Background Theory

2.1 Introduction

In this chapter, the underlying theory relevant to this thesis will be discussed. Firstly

the reflection and transmission through a surface will be described and later for

an active surface, one with a frequency dependence reflectivity. Following this, the

resonant conditions for acoustic resonators used within this thesis will be defined.

The thermal and viscous losses play an essential role in the attenuation of both

reflected radiation and of propagating acoustic surfaces modes, these loss mechanisms

will be described. In order to characterise the metasurfaces, the band structure

will be characterised. In this chapter, the necessary background for these diagrams

will be described. Finally, the surface acoustics modes supported on an underwater

soft-solid plate will be defined.

2.2 Acoustic Reflection and Transmission

Within this section, an acoustic plane wave incident upon an interface between two

different semi-infinite fluids is considered. Here, the angle of incidence is θi. Such
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Fig. 2.1 Schematic of the transmission and reflection of a plane wave incident on the
interface between two different materials. The interface is located at z = 0.

an interface is shown in Figure 2.1, between two materials, denoted M1 and M2,

with their respective densities, ρ, and bulk modulus, K. The speed of sound in each

material is cM =
√
KM/ρM . Using this information, one may define the coefficient of

reflection amplitude as

R = ρ2c2cos(θi) − ρ1c1cos(θt)
ρ2c2cos(θi) + ρ1c1cos(θt)

(2.1)

and the coefficient of transmission amplitude as,

T = 2ρ2c2cos(θi)
ρ1c1cos(θt) + ρ2c2cos(θi)

. (2.2)

These can be written in terms of the specific acoustic impedance z =
√
KMρM ,

for each material

R = z2cos(θi) − z1cos(θt)
z2cos(θi) + z1cos(θt)

(2.3)
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2.2 Acoustic Reflection and Transmission

T = 2z2cos(θi)
z1cos(θt) + z2cos(θi)

. (2.4)

If one now considers a surface which has a frequency-dependent characteristic

impedance Z(ω), equation 2.3 may now take the usual form for a locally reactive

surface

R(ω) = Z(ω)cosθ − ρc

Z(ω)cosθ + ρc
. (2.5)

Considering a surface where each point acts as a simple harmonic oscillator Z(ω),

for example a simple groove array metasurface, a simple model of the system can be

found by equation 2.5 taking on a quadratic form and equation 2.3 can be written as

R(ω) = ω2
0 − ω2 − iω(ζ0 − η0/cosθ)
ω2

0 − ω2 − iω(ζ0 + η0/cosθ) , (2.6)

where ω0 is the resonant frequency, ζ0 is the dissipation and η0 is the admittance of

the surface[80].

The acoustic reflection and transmission has been the topic of many investigations.

Such studies explore the control of sound with acoustic metamaterials and surfaces,

whereby using such structure the reflected/transmitted waves can be manipulated to

achieve acoustic beam steering[85–89] and sound absorption[90–93].

This plane wave analysis of surfaces will be used through finite element method

modelling (FEM) to obtain the reflectivity spectrum of a simple grating in Chapter

4. However, once non-radiative modes are considered, Bloch waves must be included,

which will be discussed later in the chapter.
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2.3 Acoustic Resonators

When sound is incident upon a structured surface, resonances will occur. Simple

structures which support acoustic resonances are open and closed air-filled cavities,

shown in Figure 2.2(a,d). First consider an open-ended cavity of length L and width

w. For these standard ’organ pipe’ resonances to be supported, the amplitude of the

sound wave pressure field is close to zero at the open ends, where zero here is the

deviation from background atmospheric pressure. In contrast to the pressure, the

particle displacement is a maximum at an opening. In a physical system, the node

in pressure occurs a little distance out of the cavity, increasing the apparent length

of the cavity. This additional length leads to an end correction. Now the resonance

frequency, fr, can be defined as

fr = nc

2(L+ ∆L) (2.7)

where n is a positive integer and represents the harmonic, c is the adiabatic speed of

sound in air, L is the cavity length and ∆L is the end correction, which to first-order

is ∆L = 8w/3π [94].

The first two harmonics of an open-ended cavity are illustrated in Figure 2.2(b-c).

For n = 1 the pressure field shown as the red line has two nodes just beyond the

openings and an antinode at the centre of the cavity. For n = 2, there now exists

an additional node in the pressure in the centre of the cavity. If a cavity with one

end closed is considered, this n = 2 mode is not supported, due to the boundary

condition of a pressure maximum existing at the closed end. Therefore, only odd

harmonics are supported, and the resonance frequency takes the form

fr = mc

4(d+ ∆L/2) , (2.8)

where m is any odd-numbered positive integer, d is the depth of the cavity.
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n = 1 n = 3

n = 1 n = 2
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ΔL/2
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d e f

Fig. 2.2 a) An open cavity in an acoustically rigid material (grey) of length L and
width w. b) Fundamental harmonic of the cavity. c) The second harmonic of the
cavity. d) A closed at one end cavity in an acoustically rigid material (grey) of depth
d and width w. e) Fundamental harmonic of the cavity. f) The second mode of the
cavity. The red line and blue lines represent the pressure and particle displacement,
and their amplitude is respective of the distance from the grey-dashed line, which
equals zero amplitude.
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2.4 Thermal and Viscous losses

The thermoviscous effects of a propagating acoustic wave can be obtained from the

governing equation for acoustic wave propagation – the Helmholtz equation. For

some acoustic problems, the equation may be simplified by assuming that the wave

propagation is lossless and isentropic. To account for the thermoviscous effects one

must consider the effects of viscosity and heat conduction. These are considered by

assuming a small harmonic oscillation to the background pressure (p), temperature

(T ), and velocity field (u). Here the background pressure field and temperature

are functions of space, and the velocity field is assumed to be steady (u = 0).

By inserting these into the governing equations, one obtained the equation for a

propagating acoustic wave, including the thermoviscous losses. Now we will consider

the thermoviscous effects near an interface.

At the interface between a fluid and an acoustically-rigid solid, there exist two

boundary layers in the fluid which are dependent on the properties of the fluid, the

thermal and viscous boundary layers. The study of these two layers was explored

by Kirchoff[95] and expanded by Rayleigh[96]. The viscous boundary layer arises

from a no-slip boundary condition at the interface; this no-slip condition states

that the component of the velocity parallel to the boundary must equal zero at

the boundary. A velocity profile now exists at the interface, as at z = 0, u = 0,

and u must equal that of freely propagating sound u∞ as z → ∞. This velocity

profile is shown in Figure 2.3(a). If we assume that the particles are organised in

layers in the z-direction, it can be seen that each layer has a different velocity to the

neighbouring until it equals u∞. This change in u between each layer leads to viscous

effects. These viscous effects cause an irreversible transfer of momentum between

the particles where energy is dissipated. The thickness of the boundary layer as a

function of incident frequency is given by the following[97]
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Fig. 2.3 a) Velocity profile (red line) of the component parallel (u) to the interface
between a fluid and solid. The length of the arrows represents magnitude. u∞ is
the velocity component of freely propagating sound and δν is the boundary layer
thickness. b) Temperature profile (red line) of the temperature in a fluid at an
interface of a solid. The length of the arrows represents magnitude. T∞ is the
temperature of the fluid. T0 is the isothermal temperature of the solid.

δv ≈
√

ν

2πf (2.9)

where ν is the kinematic viscosity.

The thermal boundary layer occurs due to an isothermal boundary condition.

Here, the solid remains at a constant temperature, T0, which is different from the

temperature of the fluid, T∞. This is shown in Figure 2.3(b). This change in

the temperature between the two materials results in a temperature gradient. This

gradient in temperature results in irreversible heat transfer to the solid. The thickness

of the boundary layer as a function of incident frequency is given by the following[97]

δt ≈
√

α

2πf (2.10)

with α being the thermal diffusivity. One can define a ratio between the two boundary

layers, known as the Prandtl number
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Fig. 2.4 FEM models for normal incidence of a closed-end cavity of parameter d =
5 mm, w = 1 mm, and period (λg) = 4 mm, including different losses. No losses
(black, dashed and dotted line), thermal losses only (red, dashed line), viscous losses
only (blue, dotted line), and both thermal and viscous losses (solid, black line).

Pr = δ2
v

δ2
t

= ν

α
. (2.11)

For room temperature air Pr = 0.71[98].

In order to see the effect these boundary layers have on a real system, an air-filled

simple grating of w = 1 mm, d = 5 mm, and λg = 4 mm has been investigated

with different parameters of the fluid. Here, the fundamental quarter-wavelength

resonance of the cavity is explored. Figure 2.4 shows the normal incidence reflectivity

as a function of frequency. When both ν, α = 0, the reflectivity across all frequencies

is unity, this is due to δv and δt = 0. If now we only consider thermal effects (ν =

0, α ̸= 0) the reflectivity is now reduced to 0.92 at a frequency of 15.5 kHz, now

comparing this to the viscous only case (ν ̸= 0, α = 0) the reflectivity is reduced

to 0.85 at the same frequency, this highlights that viscous effects are dominant

for air-filled cavities. The wavelength on resonance is 0.022 m, for comparison δv
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2.4 Thermal and Viscous losses

= 12 µm and δt = 15 µm. The thermal and viscous boundary layers are several

orders of magnitude smaller than the incident wave, showing the geometry of the

grating is more important than the ratio of wavelength and boundary layer widths.

The geometry of the grating also dictates how strongly the resonator will couple to

incident radiation, which also affects the losses, which will be discussed later in the

chapter.

There have been many studies into the effects of the thermal and viscous boundary

layers in acoustics.[99–101] Ward et al.[102] studied the effect that narrowing the

width of cavities had on the effective speed of sound. Molerón et al.[103] highlighted

the importance of the inclusion of thermoviscous effects on the response of an array

of rigid slabs with sub-wavelength slits embedded in air. They showed that when

these effects were considered 100% reflection occurs; however, in the lossless case,

perfect transmission was predicted. The authors stated that the losses are not merely

a refinement, but a dominant feature in narrow-cavity resonant structures. These

boundary layer effects have also been studied in porous media.[104, 105].

One important feature of the losses is the quality factor (Q-factor) of a resonance.

The quality factor relates the internal losses of a surface, the thermal and viscous

losses, to the external losses of a surface, the coupling between neighbouring resonators

and also free radiation. Figure 2.5 shows a reflectivity spectrum for a simple grating

of w = 0.5 mm, d = 5 mm, and λg = 6 mm. One can define the quality factor as

Q = fr

∆f , (2.12)
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f1 f2

fr

Fig. 2.5 FEM model of the normal incidence reflectivity spectrum for a simple grating
of parameter w = 0.5 mm, d = 5 mm, and period (λg) = 6 mm. fr is the frequency
which the minimum reflectivity occurs. The full width at half maximum is defined
by f2 − f1.
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2.4 Thermal and Viscous losses

where fr is the frequency where the minimum value of reflectivity occurs. ∆f =

f2 − f1 is the full width at half maximum (FWHM). Q also measures how well

coupled the system is, with three distinct cases:

Q < 1, Under-coupled (2.13a)

Q = 1, Critically-coupled (2.13b)

Q > 1. Over-coupled (2.13c)

For Q < 1, the system is described as under-coupled as the internal losses are

higher than the external losses. For Q > 1 the system is over-coupled, and the

external losses are more prevalent than the internal losses. When Q = 1, the system

is critically-coupled, and the internal and external losses are equal. [106–108] In

acoustic systems, critical-coupling has been the topic of many studies in perfect and

broadband absorption[109–112]. One may consider the coupling by investigating

the damping of the system. For a grating being excited by incident radiation, this

radiation acts as the driving force for the resonance of the grooves. A damping ratio

(ζ) is defined as the damping in the system γ over the damping needed for critical

damping γc, which is related to the Q-factor by (ζ = 1/2Q). In an undamped system,

the exciting field would excite a resonance in the grating by a perturbation (δp) from

the background field pressure (p0). The pressure field in the grooves of the grating

would then oscillate about the background pressure field with the minimum and

maximum value given by p0 ± δp. Due to no damping being present, this would

then oscillate around the background field infinitely with the same amplitude. By

including a small amount of damping into the system, energy is now dissipated.

Now the amplitude of the oscillation will decrease with time until the pressure field
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return to p0. Here, the internal dissipation is low, and the system is over-coupled.

By increasing the damping so that γ = γc, the pressure within the groove will return

to p0 in the shortest time possible from the initial perturbation; this is a critically

coupled resonator. Finally, when the dissipation is high, the system is under-coupled.

The system does not oscillate about the background pressure field, and the decay in

amplitude from the initial perturbation is slower than that of a critically-coupled

system.

2.5 Acoustic Metasurfaces

If some 1D sub-wavelength periodic structure similar to the one shown in the inset of

Figure 2.6 is considered, where material 1 is a fluid and material 2 is an acoustically-

rigid material, surface modes will be supported at the interface z = 0. It is instructive

to investigate the dispersion relation for such modes. One may analyse the dispersion

of such surfaces by accounting for Bloch waves. Bloch waves are plane waves which

are modulated by a periodic function. One can solve the eigenvalues of Bloch waves

to obtain the dispersion diagram.

A dispersion relation relates the wavenumber (or frequency) of the exciting field

(k0) to the wavenumber in the direction of the periodicity (kx). An example of a

dispersion relation can be seen in Figure 2.6. Here, a grating wavevector is defined

as kg = 2π/λg, where λg is the periodicity of the sample. The region extending

from −kg/2 ≤ kx ≤ kg/2 is known as the first Brillouin zone. There are two distinct

regions of a dispersion relation. The radiative regime, shown in blue, is the region

where k0 > kx, due to the conservation of energy k2
0 = k2

x + k2
z , kz is real and

therefore, modes which exist in this region propagate energy away from the surface.

The non-radiative regime, shown in yellow, is the region where kx > k0, now kz must

be purely imaginary in order to conserve energy. This purely imaginary kz signifies
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0 kg/2 kg-kg/2-kg

In-plane wavevector kx
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z = 0

λg

Fig. 2.6 Schematic of a dispersion relation having two supported modes (solid, blue
lines), the sound line and diffracted sound line (solid and dashed, red lines, respec-
tively). The solid, magenta line shows the magnitude of the imaginary component of
kx. The yellow region represents the non-radiative regime of the first Brillouin zone.
The blue region represents the radiative regime of the first Brillouin zone, and the
green region represents the radiative regime where first-order diffraction modes may
exist. The dashed, grey lines show the top and bottom of a band gap formed by
the two standing wave solutions at the Brillouin zone boundary. Inset: a diagram a
unit cell of a periodic surface which would have a dispersion diagram similar to the
schematic shown. An acoustically-rigid compound grating (grey) with two resonators
per period (λg) is presented.
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λg

Fig. 2.7 1D mono-atomic chain of particles of periodicity λg. Particle displacement
at kg/2 (red line), and at 3kg/2 (blue line).

that modes within this region are bound to the surface and have an evanescent field

in the z-direction. These two regions are separated by a line where k0 = kx, and this

line represents waves where the group and phase velocity are the same. In airborne

acoustics, this is known as the sound line (solid, red lines). The diffracted sound

lines originating from −kg and kg are shown as the dashed, red lines. The in-plane

wavevector (kx) in reality is complex, and written as kx = k′
x + ik′′

x . In a lossless

system, the regions of the dispersion diagram where kx is purely real are known as

passbands. When kx is purely imaginary, regions known are stop band exist. In

the stopband regions no propagating surface mode on the surface exists. The solid,

blue lines in Figure 2.6 shows k′
x. The solid, magenta line shows k′′

x which is zero

everywhere except between the two dashed, grey lines. When losses are included in

the system, kx is complex throughout the dispersion diagram where the magnitude

of the imaginary component signifies the attenuation of the propagating wave.

Dispersion relations are periodic through multiples of kg in kx

kx = k0sinθ ±Nkg (2.14)
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where N is an integer, θ is the angle of incidence of the exciting field. For

simplicity Figure 2.7 shows a mono-atomic chain of particles rather than the previous

grating, and their displacement for two different values of kx, kg/2 and 3kg/2. Since

the smallest periodicity in the system is λg, any kx with a value of more than that

of kg will have additional maxima between the neighbouring particles. For the case

presented in Figure 2.7, the particle displacement for two standing wave solutions

can be seen. Although there are two different λx, the particles experience the same

displacement.

Within this thesis, non-radiative dispersions are obtained through FEM modelling

by solving for the eigenvalues of the Bloch waves supported on a given surface. This

analysis was used for simple gratings in Chapter 4 and 6, for more complex compound

gratings in Chapter 4, and for glide-symmetric meander metasurfaces in Chapter 5.

2.6 Acoustic Surface Waves

As discussed, modes which exist in the non-radiative regime are confined to the

surface since kz is purely imaginary. For a system comprised of an acoustically rigid

material and a fluid, the modes which exist are called acoustic Surface Waves (ASWs).

These ASWs propagate parallel to the surface and are evanescent orthogonal to

the surface. The number of ASWs supported per cavity resonance of a surface is

determined by the number of degrees of freedom on a given surface. A 1D array

of blind holes is considered with parameters, d = 5 mm, radius (r) = 1.5 mm, and

λg = 4 mm, the unit cell is shown in Figure 2.8(a). Since there is only one degree

of freedom per unit cell, only one surface mode exists. Figure 2.8(b-c) shows the

dispersion of the fundamental cavity mode and the fields in two unit cells at kg/2

obtained through finite element method modelling which will be discussed in detail

in Section 3.7.2. If an additional resonator is added into the unit cell at the same x
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Fig. 2.8 a) Unit cell of 1D periodic array consisting of a blind hole of depth (d)
= 5 mm, radius (r) = 1.5 mm, and λg = 4 mm. b) FEM model dispersion for
the structure in a. c) Instantaneous pressure fields within two adjacent holes at
kg/2. d) A unit cell of a 1D periodic array consisting of two blind holes (with the
same parameters as a), here, the centre-centre separation is 4 mm. e) FEM model
dispersion for the structure in d. f) Higher energy standing wave solution at kg/2. g)
Lower energy standing wave solution at kg/2.
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a
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θ1 θ2 θ3 θ4 θ5 90°0°

Fig. 2.9 a) Schematic of the angle of incidence (θ) upon a surface. b) Schematic of
how θ relates to the dispersion diagram.

position, but with a y-separation of 4 mm, Figure 2.8(d), an additional mode is now

supported.

2.6.1 Radiative Dispersion

As seen previously kx is dependent on the angle of incidence, θ, such that kx = k0sinθ.

It is easy to see at normal incidence (θ = 0◦) that kx = 0, on a dispersion diagram

the normal incidence data is a slice of data at kx = 0. At grazing incidence (θ = 90◦),

kx = k0 which is the sound line. Angles of incidence between these two values, are

slices of data with different gradients. A visual representation of this relationship is

shown in Figure 2.9

2.6.2 Band Gaps and Anti-crossings

Another feature of Figure 2.6 is the presence of a band gap, represented by the region

between the two grey dashed lines. If we consider the mode which originates at kx =

0 and the mode which originates at kx = kg, it is seen that as they reach the first

37



Background Theory

λg

r

k

Surface mode 

Sound line  

1st BZ boundary 

a

b c

x

y

d

Fig. 2.10 Unit cell of 1D periodic array consisting of glide-symmetric, blind holes of
depth (d) = 5 mm, radius (r) = 1.5 mm, λg = 4 mm, and a y-separation of 4 mm.
The blue dashed line represents the mirror plane. b) FEM model dispersion for the
structure in a. c-d) Standing wave solution at kg/2.

Brillouin zone boundary (kx = kg/2), rather than crossing they split, forming a lower

energy mode and a higher energy mode. Between these two modes is a region where

no mode can exist known as a band gap. The dispersion presented in Figure 2.8(e)

shows two modes and a band gap at kg/2. This band gap exists as the two standing

wave solutions have two different field configurations Figure 2.8(f-g). For the lower

energy mode, the acoustic fields within the two resonators in the unit cell are in

phase; however, for the higher frequency mode, there is now a phase difference of π

between the two cavities. As indicated above not all structures have a band gap at

the first Brillouin zone boundary, one such structure possesses a symmetry known as

glide symmetry[113, 114], Figure 2.10(a) shows such a structure. Glide symmetry

is defined as a reflection along a mirror plane (dashed, blue line) and a half-period

translation in the direction of periodicity (x). As can be seen in Figure 2.10(b) glide

symmetric periodic structures remove the band gap at the Brillouin zone boundary

[115, 116]. Figure 2.10(c-d) show the pressure fields of the two modes at kg/2. For

both of the modes, it is seen that only one line of resonators is excited and that the
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field configurations in both cases are identical, with no fields interacting with the

unexcited line of resonators.

The first studies of glide symmetry were in the ’60s and ’70s, along with studies

of twist symmetry which is a translation followed by a rotation.[113, 114, 117,

118]. More recently, glide-symmetric metasurfaces have been investigated with

microwaves[119, 120], such structures being employed to minimise leakage. They

have also been investigated to mimic the dispersion of surface plasmons [121, 122], and

also to prevent stop bands[123]. However as regards glide-symmetric metasurfaces in

acoustics, there is little research; this will be the topic of Chapter 5.

Band gaps are not the only splitting of modes to exist. Consider a simple grating

of parameters d = 5 mm, λg = 6 mm, and allow the slit width w to vary. The grating

will have a specific resonance frequency, given by the depth of the grooves, which

would appear as a line of constant frequency if the interaction with free radiation is

ignored. However, for a system where this interaction is considered, the resonance

mode interacts with the sound line, and an anti-crossing occurs. Figure 2.11 show

the full dispersion for gratings of different w. For the narrowest case w = 0.02 mm,

these cavities are highly isolated, and the coupling between neighbouring unit cells

is weak, it can be seen that an anti-crossing occurs between the sound line and

the resonant mode; however, the modes only disperse over a small frequency range.

As w is increased the frequency range which the mode disperse over increases as

does the size of the anti-crossing. When w = 3 the mode disperses over a broader

frequency range, demonstrating that the coupling between neighbouring until cells

has increased. In addition the band gap at the Brillouin zone boundary also increases

in magnitude. These anti-crossings are not just isolated between the mode resonances

and the sound line; they may also occur between different modes in the dispersion.
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Fig. 2.11 Dispersion relations for various groove widths of 1D periodic gratings of
parameters d = 5 mm, λg = 6 mm. As the groove width increases, the anti-crossing
between the two modes increases. The dashed, grey line represents the sound line.
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The band-structure of periodic structures has been the topic of numerous

investigations.[4, 124, 125] Kushwaha et al.[126] presented the first calculation of a

full band structure for periodic elastic composites.

2.7 Elastic Materials

So far only airborne acoustics has been considered, where the solid is acoustically

rigid. Acoustic waves in elastic media are defined by their elastic properties, namely

the Young’s (E), bulk (K) and shear (G) moduli, and the Poisson’s ratio (ν). From

these parameters and the density (ρ), both the longitudinal and transverse velocities

may be defined

cl =

√√√√K + 3
4G

ρ
=

√√√√ E(1 − ν)
ρ(1 + ν)(1 − 2ν) , (2.15)

ct =
√
G

ρ
. (2.16)

There are two other useful elastic moduli used to relate the three previously

stated and also cl and cl. These are know as Lamé constants

λ = ρ(c2
l − 2c2

t ) (2.17)

µ = ρc2
t (2.18)

These Lamé constants will be used later when describing the Lamb modes

supported on a fluid-loaded plate.

41



Background Theory

x

z

0

Solid

Fluid

Fluid

d
2

d
2

−

Fig. 2.12 An underwater plate of thickness d loaded with fluid on both sides.

2.7.1 Elastic Modes on Fluid-Loaded Plates

In this section the modes supported on a fluid-loaded, elastic plate of thickness

d is considered as shown in Figure 2.12, here the plate interfaces are located at

z = ±d
2 . There exist two pairs of modes on fluid loaded elastic plate, symmetric and

anti-symmetric coupled interface waves. The characteristic equations for both these

modes are as follows[127]

(k2
Tz − k2

x) tan(kTzd/2) + 4k2
xkLzkTz tan(kLzd/2)−

i
ρliqkLzω

4

ρskliq,zc4
t

tan(kLzd/2) tan(kTzd/2) = 0,
(2.19)

and the characteristic equation for the anti-symmetric modes is

(k2
Tz − k2

x) tan(kLzd/2) + 4k2
xkLzkTz tan(kTzd/2)+

i
ρliqkLzω

4

ρskliq,zc4
t

= 0.
(2.20)
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Fig. 2.13 Exaggerated total deformation of a d = 6 mm fluid-loaded, acrylic plate.
a) The symmetric coupled-Scholte mode. b) The anti-symmetric coupled-Scholte
mode. Each element represents a 1 x 1 mm area. The blue line represents the line at
z = 0 in the undeformed system.

In these equations kLz =
√
ω2/c2

l + k2
x and kTz =

√
ω2/c2

t + k2
x are the z-component

of the wavevector of the longitudinal and transverse waves in the solid respectively.

While the z component of the wavevector of the longitudinal wave in the fluid is

kliq,z. The densities in the solid and fluid are represented by ρs and ρliq.

For both the symmetric and the anti-symmetric equations, the real part is the

equations for free waves in a plate, known as Lamb’s equations. The additional term

is the imaginary term which describes the effects of fluid loading. Figure 2.13(a-b)

shows the deformation of the plate. The two green circles show the z-displacement

(uz) and x-displacement (ux) of one particle in the top half (z ≥ 0) and one in the

lower half (z ≤ 0) of the plate. In the symmetric case, it is seen that deformation

is symmetric around the reflection plane z = 0 (blue line), as uz are in opposite

directions and ux are in the same direction. In the anti-symmetric case at a particular

x position, uz is in the same direction and magnitude. However, in the upper and

lower half of the plate, ux are in opposite directions (I would like to thank Beth

Staples for help with these equations).

The dispersion relation for a d = 6 mm, water-loaded acrylic plate is shown in

Figure 2.14. The dashed, blue-line is the symmetric coupled-Scholte mode. At low
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Fig. 2.14 Dispersion relation for a 6 mm, water-loaded acrylic plate. cF l represents
the water sound line, and cSt represents the solid transverse speed.

kx, the symmetric mode follows the water sound line and then begins to disperse. In

contrast, at low kx the group velocity of the anti-symmetric mode begins at zero,

and increases until the mode become linear at high kx. Both of these modes tend

towards the Scholte wave speed as kx increases.

2.8 Conclusions

In this chapter, the properties of radiative and non-radiative modes supported on

both structures and unstructured surfaces have been discussed. The reflectivity

and transmission at an interface have been explored and expanded to the case of a

system composing of resonators. Various structures supporting acoustic resonances

have been discussed alongside the thermal and viscous boundary layers where losses

occur. Periodically structuring a surface has been shown to allow for bound surface

modes to couple to the surface, these modes disperse in frequency and can exhibit

phenomena such as band gaps and anti-crossings. Adding structure in one period of
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such a surface allows for additional modes to be supported, while certain symmetries

such as glide symmetry remove the band gap at the first Brillouin zone boundary.

Interface waves between two differing media have been discussed. A solid-fluid

interface has been shown to support Scholte waves. This discussion was expanded

to the case of fluid-loaded plates where symmetric and anti-symmetric modes are

supported. These modes are shown to be coupled Scholte modes. In the following

chapter I will discuss the experimental methods and numerical methods which will

be used extensively throughout the thesis.
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Chapter 3

Methods

3.1 Introduction

Within this chapter the methods of experimentally and computationally characterising

acoustic surfaces are presented. Experimentally such surfaces are analysed in both

the radiative and non-radiative regimes so they may be fully characterised. The

reflection experiments used to obtain the radiative dispersion are discussed in section

3.4. Surface scans from which the dispersion relation and iso-frequency contours

are obtained are discussed in section 3.5. Both of the methods use Fourier analysis

which is discussed in section 3.6.

Finite element modelling is used to obtain both the reflectivity spectrum in the

radiative regime and also the dispersion relation in the non-radiative regime.

3.2 Sample Fabrication

Within this thesis, multiple experimental samples were fabricated in house. The

sample discussed in Chapter 4 was fabricated from milled acrylic using 1 ± 0.02

mm milling cutters. The effect on the results due to the error in the cutting is
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Integrated 

amplifier

Conditioning

amplifier

Source Microphone

Fig. 3.1 Schematic of the equipment used in both the radiative and scan experiments.

negligible, as the width has little effect om resonant frequencies of the channels. In

Chapter 5, a similar milling process was used; however, these samples were milled

out of aluminium. The errors in fabrication remain the same and have a negligible

influence on the results. In the underwater case, the same milling process was used.

However, the effect on the results is more significant than the air case, due to the bulk

modes being considered. This increased sensitivity of the geometry of the structure

is explained in detail in Chapter 4.

3.3 Data Acquisition

To experimentally measure acoustic metasurfaces the hardware used is illustrated in

Figure 3.1. Depending on whether a radiative or non-radiative measurement was

taken it was connected to the relevant experimental setup, both of which use a

Labview interface which has been designed especially for experiments. A laptop is

the connected to a Picoscope 4262 which allows for the real-time signal acquisition

where the resolution of the time data can be set and also the amount of data points.
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3.4 Radiative Measurements

Fig. 3.2 The pulse shape used in all experiments (near-single-cycle Gaussian-envelope
sound pulse).

An Agilent 33500B series waveform generator is connected to the laptop which is

used to generate a pulse with the desired central frequency, length and shape. In all

of the following experiments near-single-cycle Gaussian-envelope (broad-band) sound

pulses were used shown in Figure 3.2. To ensure that the data is acquired correctly

the waveform generated is synchronised with the picoscope . The generated pulse is

then passed through a Cambridge audio topaz AM5 integrated amplifier, the pulse is

then passed to a source and emitted for measurement. An acoustic receiver detects

the acoustic pulse, this signal is then fed through a Brüel & Kjær nexus conditioning

amplifier in order to increase the strength of the detected signal. This signal is then

sent to the picoscope for the data acquisition and then to the laptop. This process is

then repeated for a desired number of repeats.

3.4 Radiative Measurements

To experimentally explore the radiative regime the equipment shown in Figure 3.3

was used. A speaker (Tucker-Davis Technologies MF1) was placed on a moveable

arm at a distance of 1 m away from a collimating mirror. The acoustic wavefronts

incident upon this mirror were reflected as plane waves onto a sample placed 2 m
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away. The reflected signal was then incident on to a second collimating mirror which

then focused the beam onto a microphone (Brüel & Kjær 4190) which was placed

on a second moveable arm. In order to ensure that the microphone and speaker did

not directly impede the acoustic beam they are placed below the central plane of

the experiment. The smallest angle of incidence (θ) that could be measured was a

pseudo-monostatic measurement where the microphone was placed on top of the

speaker and only one mirror was used (θ << 1◦). By contrast the smallest angle that

could be measured by using both the mirrors was 8.3° due to the physical size of the

mirrors (diameter of 44 cm), the equipment can theoretically be used to measure

up any angles within the range 8.3° - 90° but at the higher angles of incidence the

projected beam area onto the sample becomes much larger than that of the sample,

and the reflected signal becomes weak due to most of the beam not being incident

upon the sample. At the largest angles measured (θ = 70◦), direct transmission

becomes increasingly prevalent due to the width of the beam and the mirrors being

close to 180° apart.

There is a minimum frequency that can be measured in this setup due to the

finite size effects of the mirrors (radius = 220 mm, focal length = 1 m). As the

acoustic wavelength approaches the diameter of the mirrors, diffraction begins to

occur. However, in this thesis, the wavelength used is always smaller than the

diameter of the mirrors. The maximum wavelength used for radiative measurements

is 34 mm.

To obtain the reflectivity at a given angle two measurements had to be taken one

with the sample and a reference. The reference used was a flat metallic plate, an

acoustic mirror, the size of the sample. The signal form this reference plate was used

for normalisation. It should be noted that the reference measurements had to be

taken with great care as any divergence from the original orientation of the sample

rendered the reference unreliable. To decrease the effect of background noise repeats
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Fig. 3.3 a) Schematic (not to scale) of the experimental setup, consisting of a speaker
at the focus of a collimating mirror giving a plane wave incident onto the sample,
the reflected signal being then focused by a second mirror onto the microphone. The
speaker and microphone are placed below the central plane of the mirrors and sample
such that they do not directly impede the acoustic beams. Here, α = 90° – θ, where
θ is the angle of incidence. b) Side view of the experimental setup along the green
dotted line in (a). The red lines represent the shape of the phase fronts.

were taken, in all radiative measurements taken 100 repeats proved to be sufficient.

A typical signal to noise ratio from such measurements is 31.5 dB.

3.5 Non-Radiative Measurements

The measurement of the non-radiative, surface bound modes was undertaken by

recording the propagation of an acoustic pulse in time over a line or surface. These

scans were performed using scanning stages. For measurements in air, an XY
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scanner was used which allows for one and two-dimensional scans to be performed.

Underwater measurements used an XYZ scanner where three-dimensional scans could

also be performed. In order to set up an experiment a sample was held in place

within the scan area. A detector was then placed close to the surface (< 0.5 mm) so

that the evanescent fields of the bound surface waves could be detected. The detector

was then moved to the beginning of the scan range and then moved slowly to the

extremes of the scan area. This was to ensure that the detector distance from the

surface remained constant, as any variation in the distance resulted in inequivalent

intensities being recorded. Figure 3.4 shows an unstructured sample which has been

placed and aligned, the microphone in the lower right corner is at the start position

of the scan. In order to excite surface waves two excitation methods were used:

diffractive and direct. For airborne measurements 3 repeats were used as the signal

intensity was much stronger than in the radiative case. Typical signal to noise ratio

for airborne non-radiative measurements is 20 dB. In the underwater non-radiative

measurements 50 repeats were used with a signal to noise ratio of 15 dB.

In diffractive excitation a hole was drilled into the required position on the sample.

An acoustic source was then placed on the unstructured side of the sample so that

there was minimal distance between it and the hole. This was done as any distance

between the source and the plate resulted in a standing wave being formed which in

turn affects the intensity content of the pulse emitted from the hole. The emitted

acoustic pulse propagates through the hole and then diffracts, some of this diffracted

acoustic energy will couple to surface waves which are then measured. Diffractive

excitement was used in Chapters 4 and 6.

In direct excitation a source was placed at an angle (< 10°) to the surface and

a pulse is emitted directly onto the structured surface. This method proved to be

beneficial when measuring samples which support surfaces waves that rapidly decay,

as the microphone was able to be placed directly next to the source. One slight
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Fig. 3.4 An unstructured sample with a central hole (a) placed in the XY stage. The
sample has been aligned so that the microphone (b) remains at a fixed distance from
the surface while performing the scan.

disadvantage to this method is that a substantial amount of radiation leaves the

structured surface. Direct excitation was used in Chapter 5.

In both cases, the same data acquisition method was used as discussed in section

3.3. For air, a needle microphone (Brüel & Kjær Probe Microphone Type 4182)

was raster scanned at the required resolution over the predefined scan area. It is

important that both the resolution and scan size area are chosen carefully as the

resolution in space determines the maximum values in momentum-space which can

be measured, and the total scan length in a direction determines the resolution,

this is discussed in more detail in section 3.6. A slight complication is the scan of

high-momentum, rapidly-decaying waves where a high resolution scan is needed in

order for them to be recorded due to the decay lengths being small. At each position

a fluctuation of the acoustic pressure exists corresponding to the propagation of

acoustic energy over the surface, this varying pressure was then transduced into an
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Fig. 3.5 Progression of an acoustic pulse excited by diffraction through a central 6
mm diameter hole on an unstructured plate. Note that the intensity in the centre is
saturated due to the acoustic energy density being larger directly above the speaker.
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Fig. 3.6 Computational complexity growth with the number of samples. DFTs scale
with N2. FFTs scale with N logN .

electrical signal which was recorded as a function of time. In order to demonstrate

this more clearly, a surface scan of an unstructured plate of dimensions 360 × 360

× 10 mm was measured with a spatial resolution of 2.5 mm over a length of 300

mm in both directions. Whilst no surface waves are supported on this surface, due

to diffractive excitation the diffracted wave fronts propagate over the surface and

were recorded. For this sample shown in Figure 3.4 the central hole was 6 mm in

diameter. Figure 3.5 shows the acoustic pulse propagating over the surface. At a

time of 0.38 ms the pulse is emitting and diffracting from the hole. It should be

noted that the intensity of the radiation above the centre of the hole is much larger

than that anywhere else, as directly above the hole there is more acoustic energy

per unit area than above the structured surface due to the diffractive wave being

hemispherical in nature. As the time (t) progresses the wave propagates evenly in

all directions and falls in intensity.
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3.6 Fourier Analysis

Fourier analysis is an essential method for the analysis of the experimental data, it is

used to decompose a function in time f(t) into its spectral components of frequency

F (ω). Likewise, it is also used to decompose a function in space f(x) into the spectral

components of wavevector f(k). In the case of non-periodic functions in t the Fourier

transform and the inverse are defined as the following[128]

F (ω) = 1√
2π

∫ ∞

−∞
f(t)e−iωtdt (3.1)

f(t) = 1√
2π

∫ ∞

−∞
F (ω)eiωtdω. (3.2)

The equivalent expressions for non-period functions in x are

F (k) = 1√
2π

∫ ∞

−∞
f(x)e−ikxdt (3.3)

f(x) = 1√
2π

∫ ∞

−∞
f(k)eikxdt (3.4)

In the analysis of the experimental data discrete Fourier transforms (DFT) are

used[129]. The DFT creates a periodic signal by repeating the original, non-periodic

signal. This periodic signal results in a spectrum of data which occur at specific

frequencies at small intervals proportional to 1/N , where N is the total amount of

samples. To compute DFTs in Matlab a fast Fourier transform (FFT) algorithm is

used[130]. If a DFT is performed on a data set with N samples the computational

complexity is of order N2. However, by using a FFT the complexity is now N logN .

The relation between computational complexity and N is shown in figure 3.6. If two

data sets Y (k) and X(j) are related such that Y = FFT(X) and its inverse X =

IFFT(Y) these function are defined by:
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Y (k) =
N∑

j=1
X(j)W (j−1)(k−1)

n (3.5)

X(j) = 1
N

n∑
k=1

Y (k)W−(j−1)(k−1)
n (3.6)

where

Wn = e
−2πi

N . (3.7)

Using the above equations the frequency domain data is obtained from the time

domain data.

At each spatial position a 1D FFT was applied to the time signal. A typical

experimental time signal is shown is Figure 3.7(a), the whole time signal is not

shown for clarity purposes but the main feature is that the whole pulse emitted from

the speaker is measured within the first 6 ms. It may appear that the rest of the

data is somewhat irrelevant but it actually serves a very useful purpose - due to

the nature of FFTs the longer in time which a signal is measured (tmax): the higher

the frequency resolution will be, ∆f = 1
tmax

. Likewise, the resolution in time (∆t)

dictates the maximum frequency fmax which can be measured as fmax = 1
∆t

.

Examples of these relations can be seen in Figure 3.8 where the left column shows

the time domain functions and the right column the respective Fourier transforms

in frequency space |F (ω)|. The time domain functions are all sine waves of periods

T = 0.1 s and of the form f(t) = sin
(

2πt
T

)
. The range of t is defined t = 0 : ∆t :

nT , where n is a positive integer. The top row shows a 10 Hz sine wave with ∆t

= 0.010 s and n = 2. The resulting Fourier transform has been shifted around the

central axis y = 0 so that the zero-frequency components are in the centre of the

spectrum, it is also symmetric and defined within the following regions depending

on the length of the data set:
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b

a

Fig. 3.7 (a) Direct transmitted time domain signal for one position, in this case
directly above the hole used for diffractive excitation. Only a section of the time
signal is shown, so that the pulse can be seen more clearly. (b) Part of the frequency
spectrum obtained from the Fourier transform |F (ω)| of the above time signal, note
the periodic peaks which correspond to a standing wave forming in the system
between the plate and detector holder.
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Time domain Frequency domain

Fig. 3.8 Time domain: Top. Two periods of a 10 Hz sin wave with a ∆t = 0.010 s.
Middle. Two periods of a 10 Hz sin wave with a ∆t = 0.005 s. Bottom. Ten periods
of a 10 Hz sin wave with a ∆t = 0.010 s. In all of the above the magenta markers
show the actual data, the black line is only a guide to show the sin wave. Right side
shows their respective Fourier transforms.
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even: −fmax
2 : ∆f : fmax

2

odd: −fmax
2 + ∆f

2 : ∆f : fmax
2 − ∆f

2

Due to low temporal resolution the maximum frequency recorded (fmax
2 ) is only

50 Hz, in the case of a sine wave this does not present any issue; however, for

more complex functions or experimental data a larger fmax may be required. To

increase fmax an increase in time resolution is needed. An example of an increased

time resolution can be seen in the middle row. Here tmax has been kept the same

as in the first case but the resolution has been halved to ∆t = 0.005 s. After

Fourier transforming, it is now possible to measure up to an fmax
2 = 100 Hz. This is

particularly useful when the experimental data is expected to exist over a broad range

of frequencies. In both the previous discussed cases it can be seen that measuring

over a small total time results in poor resolution in frequency space. This leads to

the expected peak at 10 Hz being ill defined. The bottom row shows a 10 Hz sin

wave with a ∆t = 0.010 s and n = 20. In the frequency space it is immediately

obvious that the peak at 10 Hz is much better resolved compared to the previous

two examples. In the case of measuring over an infinite number of periods this peak

would be a delta function. Both the length and resolution of the temporal data

need careful consideration; having too high time resolution over a large time results

in exceeding the amount of data the data acquisition system can store. This is

particularly important in experiments where a large number of repeats are necessary.

After the first Fourier transform has been performed at each position the resulting

complex data
(
F (ω)

)
is used to plot the spatial fields. F (ω) is complex as the

imaginary component contains information about the phase. Examples of such

fields are shown in Figure 3.9 for two arbitrary frequencies. The top row shows the

instantaneous pressure field at one phase and is defined as the real components of

F (ω). In these figures the amplitude has been saturated due to the high acoustic

energy density that exists directly above the hole used for excitation. The middle
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Fig. 3.9 Spatial acoustic fields for an unstructured sample excited by diffraction
through a hole. The top row is the instantaneous pressure Re

(
F (ω)

)
, the middle

row is the phase arg
(
F (ω)

)
, and the bottom row is the absolute pressure |F (ω)|.

Note the scales on the instantaneous and absolute pressures have been saturated due
to acoustic energy density being larger directly above the speaker.
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row shows the phase (θ) which is defined as the argument of F (ω). The bottom

row show the absolute pressure defined as the modulus of F (ω). It is expected that

the absolute pressure should decay evenly in all directions; however, this is not the

case which can be seen more strongly in the 6219 Hz plot. This intensity variation

come from reflections within the experimental setup such as off the frame which

holds the sample into place. This is resolved by time gating the data. Time gating

is the process of shortening the time of recording the individual signal pulses to

remove unwanted data. One unwanted effect of shortening the time signal is that

the frequency resolution will be reduced. This can be counteracted by zero-padding

the data, whereby zeroes are added to the temporal data to increase the frequency

resolution; however, this can create artefacts in the resulting Fourier data due to

sharp changes in data where the data begins to be padded. It should be noted that

zero-padding will not resolve any features below the original resolution. One method

to overcome this is applying a window function to the data.

Since DFTs treat non-periodic data as periodic, it may affect how the resulting

frequency data will appear. In the case of time-gated data, when repeated at each

point where the data is repeated a sharp change in the data may now exist, this

results is spectral leakage: where the signal is spread to higher frequencies. Some

examples of window functions and their respective Fourier transforms are seen in

Figure 3.10. The first is a top-hat function which always results in a sharp transient

region of data. It is seen that while the mainlobe width (MLW) is small at 0.021%

(MLW is defined as the width where the peak is reduced by 3 dB) the leakage factor

(LF): the ratio of power in side lobes to total power is 9.35%, is high. Another factor

is the ratio of the power in the mainlobe peak compared to that of the sidelobes,

which is known as the relative side lobe attenuation (RSLA). In the case of the

top-hat function this is low at -13.3 dB. If we now consider the middle row a Hamming

window is shown. It is immediately obvious that the MLW is larger than that of the
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Fig. 3.10 Various window functions and their frequency spectra. Top: Top-hat
function. Middle: Hamming window function. Bottom: Hanning window function.
Note that the frequency has been normalised to the total number of samples.
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Fig. 3.11 A schematic of the Fourier analysis process. Firstly a temporal FFT is
performed on the raw data at each position (r) time domain, resulting in complex
frequency domain data. The second process is a subtle change of variable from
temporal to spatial, which is in practice a restructuring of the data matrix. A spatial
FFT is then performed on the spatial data at a given frequency, resulting in k-space
data. Cross-sections of the k-space data matrix are then taken in order to plot the
dispersion diagrams.

top-hat function at 0.025%, but both LF and RSLA have been improved at 0.03%

and -42.6 dB respectively. Finally, the third window function shown is a Hanning

window. Here, the MLW is 0.027%, the LF is 0.05%, and the RSLA is -31.5 dB. It is

seen that the use of a window function reduces the spectral leakage but at the cost

of the resolution of the data being reduced. The characteristics of the mode under

investigation determines which window function is used.

The next process is to perform a 2D FFT on the spatial field data which will

allow for the data to be analysed in momentum space. As for the discussion of

the temporal Fourier transform in the spatial Fourier transform we have similar

relations between the size and resolution. The resolution in momentum space in a

given direction is defined by ∆kx = 2π
L

where L is the total length of the scan in

a particular direction. The maximum momentum measurable is kmax = π
∆l

where

∆l is the spatial resolution. The range of k values defined depends on whether the

number of data points is even or off. For a particular direction:
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even: −kmax : ∆k : kmax

odd: −kmax + ∆k
2 : ∆k : kmax − ∆k

2

Two slightly different spatial FFTs were used to obtain the results in this thesis:

one by performing the FFT on the complex spatial data; the second by performing

the FFT on e(iθ). The choice between these two depends on the experiment being

performed. In experiments where the ASW’s signal is strong the first was used. The

second was used when trying to detect much weaker signals. If we write the full

complex spatial data as R = |R|e(iθ), by only analysing eiθ the amplitude is removed.

This results in the decay of the fields over distance being removed from the Fourier

data; however, this has limitations where the amplitude of the signal is required.

Examples of these two different Fourier transforms are shown in Figure 3.12. The

top dispersion shows the Fourier transform of the full complex data and the lower

shows the Fourier transform of e(iθ). In the full complex dispersion the data at higher

frequencies is very weak which is directly related to a weak frequency response of

the speaker at these frequencies. It is also seen that there is a periodic increase in

intensity of the mode in frequency, this is equivalent to what is seen in the frequency

spectrum of Figure 3.7. This is due to a standing wave between the plate and the

detector holder. The resulting data can be plotted as dispersion relations or as

isofrequency contours. A schematic of the whole Fourier analysis process is presented

in Figure 3.11.

Isofrequency contours are seen in Figure 3.13 for two different frequencies, the

data represents a slice of the dispersion relation for a given frequency. Due to the

experiment being for an unstructured plate, the ring of data represents the sound

line. The radius of the ring is given by the free space wavevector k0 = 2πf
v

, where v

is the speed of sound in air. This explains why as the frequency increases so does

the radius of the ring. It is also seen that contrary to what is expected the intensity

is not uniform around the ring, this arises from the scan area being a square. In
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Fig. 3.12 Dispersion relations obtained from the unstructured plate along the line
kz = 0. Top: dispersion relation of the complex data Fourier transform. Bottom:
dispersion relation of e(iθ).

66



3.6 Fourier Analysis

kx (m
-1)

k z
 (

m
-1

)

23250 Hz

10750 Hz
F

ourier am
plitude (arb.)

1

0

k z
 (

m
-1

)

Fig. 3.13 Isofrequency contours for an unstructured plate. The ring of data present
in both diagrams represents a waves propagating over the surface with a wavevector
equal to that of free radiation.
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Fig. 3.14 The function u (blue line),the approximate solution (red dashed line) which
is a combination of linear base functions (black line).

turn, more data being measured of waves propagating with momentums that have

components in both kx and kz, that with pure kx and kz.

3.7 Finite Element Method

The Finite element method (FEM) is a useful tool when trying to solve partial

differential equations (PDEs) for geometries where they cannot be analytically solved

by splitting the geometry into many smaller elements. Approximate equations are

constructed based on various discretisations by using numerical model equations to

approximate the PDE which are then solved using numerical methods[131]. The

solutions obtained from such equations are approximations of the real solutions of

the PDE. If a function u is defined to be a dependent variable in a PDE, it is possible

to approximate the function u ≈ uh using linear combinations of basis functions ψi:

uh =
∑

i

uiψi. (3.8)
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3.7 Finite Element Method

Here, ui are the coefficients of the functions that approximate u with uh. An

example of how the discretisation works is shown in Figure 3.14. Here the function

u is shown as a blue line which is being approximated by uh (red line) which itself

consists of 8 basis functions. Depending on the solution required this discretisation

does not have to be linear, a distribution of basis function may be used to resolve

parts of the function where a higher resolution is required. One such finite element

method program used is COMSOL Multiphysics, where the discretisations are

defined by mesh elements. All mesh elements were triangular for 2D models or

tetrahedral in 3D models, except in the PMLs (perfectly matched layer) where the

mesh elements were swept from the boundary of the model to the end of the PML.

The solutions are approximated along the boundaries of the mesh elements which are

then interpolated between the boundaries.[132] The following discussion will briefly

explain the construction of the models used within this thesis. In the modelling of

the thesis, two conditions were used to define the maximum mesh size, the first being

that there must be a minimum of 5 mesh elements per wavelength, the second being

that there must be 10 mesh elements per period so that the fields may be resolved.

The smaller of these two conditions was used.

3.7.1 Radiative Model

Within this thesis only periodic systems have been investigated. One use of FEM is

modelling the reflectivity spectrum of periodic surfaces. When modelling periodic

structures only one unit cell needs to be modelled. This is advantageous as it reduces

the amount of discretisation (mesh elements) and reduces the overall solve time of

the model. One such unit cell of a 2-dimensional monograting (periodic, infinitely-

long cavities of a depth) is shown in Figure 3.15(a). Here, an air-filled cavity in

an acoustically-rigid solid is modelled. Air was treated as an ideal gas, with the

following physical parameters: density = 1.2754 kg/m3; dynamic viscosity = 1.983 ×
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Fig. 3.15 a) Schematic of a radiative finite element model. Pressure acoustics is
represented by blue, thermoviscous acoustics is represented by the orange, and grey
represents solid mechanics. b) Example of reflectivity data obtained from a radiative
model. c) Example of dispersion relations obtained from an eigenvalue model.
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3.7 Finite Element Method

Fig. 3.16 Boundary layer thickness in air as a function of frequency. Here the
frequency range is 1 kHz - 30 kHz.

10−5 Pa s; thermal conductivity = 0.0257 W/m K; and the specific heat capacity =

CP = 1.005 kJ/kg K. [133] Note however, when modelling a system of a water-filled

cavity there is now a transfer of energy at the boundary. Therefore, the physics of the

solid must be included. Water was modelled with the following physical parameters:

density = 0.998 kg/m3; dynamic viscosity = 1.002 × 10−3 Pa s; thermal conductivity

= 0.598 W/m K; and the specific heat capacity = CP = 4.182 kJ/kg K. [133] The

cavity and the surrounding surface is modelled using the thermoviscous acoustics,

which models variations in pressure, velocity, and temperature. This is important

as the thermal and viscous boundary layers are where the losses occur, which arise

from an isothermal and no-slip boundary condition, respectively. These boundary

conditions are explained in detail in section 2.4. However, including thermoviscous

acoustics is computationally heavy. Therefore, it is only placed in the model where

needed. In this thesis, thermoviscous losses were only used in Chapter 4.

Figure 3.16 shows the thermal and viscous layer in air thicknesses as a function

of frequency. A convergence plot of the reflectivity from a grating with various
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Fig. 3.17 a) Convergence plot of the reflectivity from a grating as a function of
boundary layer mesh thickness (blue line). Note that 10 boundary layer mesh
elements were used in all models. The reflectivity from the same grating with no
boundary layer mesh included (red line). b) Convergence plot of an eigenvalue model
of an unstructured elastic plate. Here, the mesh scaling factor is the factor of which
the wavelength is divided by to obtain the maximum mesh size. The dashed red line
represents the size of the mesh, which equals the maximum mesh size equal to the
period/10.

boundary layer mesh thicknesses at 15 kHz is presented in Figure 3.17(a). A no

boundary layer mesh curve has been included for comparison. For an incident wave

at 15 kHz frequency, the boundary layer thicknesses are around 15 µm. In this

simulation 10 layers of the boundary layer mesh at the thickness stated were used

with a growth factor of 1.2 between each layer. It can be seen that the solution is

converged over the range presented. It should be noted that defining a too large

mesh for the structure results in the meshing failing. In comparison to the case

where the boundary layer mesh was excluded, there is a significant difference in the

reflectivity. In all the thermoviscous modelling in this thesis, five boundary layer

mesh elements per wavelength were used.

Above the surface, pressure acoustics is modelled. This only models variations

in the pressure fields and is where the background pressure field is defined. At

the thermoacoustic and pressure acoustic boundary certain conditions are included
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3.7 Finite Element Method

to keep the system physical. A dynamic condition at the boundary that there is

continuity of total normal stress. A kinematic condition of continuity of total normal

acceleration, and finally an adiabatic condition for the temperature. The background

pressure field is modelled as plane waves where the angle of incidence is defined as

needed. Finally, a perfectly matched layer (PML), also using the pressure acoustics

module, is added to the top of the model to acts as an absorber. A PML is an

artificial absorbing layer that is used to reduced the size of numerical models. [134]

Any radiation which enters is attenuated and cannot be reflected back into the

model. The red-dashed line on the sides of the air box and PML represents where the

Floquet boundary conditions exist. This condition allows for the wavevector to be

maintained at the boundaries. Therefore, there is no discontinuity at the boundary of

two neighbouring unit cells, and an infinite system is modelled. The mesh on both of

these boundaries must be identical so that the solutions are solved in the same place

on each boundary. In such models, a frequency and angle range are chosen, and the

model computes the results using parametric sweeps. The scattered pressure field

intensity is then calculated and normalised to the incident pressure field intensity

for each frequency and angle of incidence to give the reflectivity, allowing us to plot

a numerical radiative dispersion plot. Figure 3.15(b) shows the normal incidence

reflectivity obtained for various parameters, these results will be discussed later in

Chapter 4.

3.7.2 Eigenvalue Model

Eigenvalue models allow the calculation of the eigenvalues of particular surface. These

models are very similar to the previously discussed radiative models except that due

to the fact that the surface characteristics are being analysed the thermoviscous

acoustics may be removed and replaced with pressure acoustics. Due to thermoviscous

acoustics being computationally expensive and that it is not required to calculate
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the eigenvalues, it is omitted. Through the inclusion of Floquet periodic boundaries

where wavevectors have been defined for all directions, it is possible to find particular

eigenvalues for a given wavevector and numerically find the dispersion relation, Figure

3.15(c) shows dispersions which have been obtained by the eigenvalue solver, to be

discussed in Chapter 4. In this figure, the in-plane wavevector (kx) has been swept

to the first Brillouin zone. For each individual wavevector eigenvalue of the system

is found, and the frequency at which it occurs is stored. In post-processing, the

eigenfrequencies can be plotted against the in-plane wavevector. A convergence plot

for a typical eigenvalue model can is presented in Figure 3.17(b).

The interaction between pressure acoustics and solid mechanics module is only

used in eigenvalue models of Chapter 6. The solid mechanics module models the

stress, strain, and displacement of the structure. In order to couple with the pressure

acoustics, two effects are taken into account. The first being the fluid load on

the structure, and the second being the effects of the structural acceleration on

the fluid. It is from these conditions that the dispersion of the Scholte waves

discussed in Section 2.7 may be solved. These effects are implemented using the

Acoustic-Structure Multiphysics model.

3.8 Conclusions

The experimental setup and methods for obtain both radiative an non-radiative have

been discussed. After this the data analysis techniques used on the experimental data

such as time gating and the application of window functions have been described.

A numerical method known as finite element method has been introduced. FEM

modelling will be used in all the following results chapters to explore potential

metasurfaces and to validate experimental results.
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3.8 Conclusions

The first results chapter will explore the phenomenon of phase resonance on

compound grating (more than one groove per unit cell). Both of the radiative and

non-radiative experimental techniques introduced in this chapter will be used, as

well as FEM models.
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Chapter 4

The Acoustic Phase Resonances

and Surface Waves Supported by

Compound Rigid Gratings

4.1 Introduction

In the previous chapters the background physics and methods have been discussed.

Within this chapter, the dispersion is fully explored, through finite element method

(FEM) modelling and experimentally using the methods discussed previously, of the

acoustic surface modes supported by a compound grating (multiple grooves per unit

cell) with three grooves per unit cell of two different widths and all of the same

depth.

Throughout the chapter band diagrams of simple gratings are fully investigated

through Finite Element Method (FEM) modelling. Expanding on this, more com-

plicated, multiple grooves per unit cell compound gratings are investigated. The

addition of the extra degrees of freedom allow so-called phase resonances to be sup-
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ported. The effect of changing the parameters of the grooves on the phase resonances

was also explored. This was done for both two and three grooves per unit cell.

4.2 Background

Recently, a number of works [135–137] have shown that enhanced acoustic transmis-

sion of sound through sub-wavelength perforations (open-ended holes or grooves)

can be achieved. These studies are somewhat analogous to the extraordinary optical

transmission found in the electromagnetic domain explained by coupled surface wave

and evanescent diffraction phenomena.[138] Work by Skigin and coworkers [136, 139]

has shown that transmission of electromagnetic radiation through a so-called ‘com-

pound grating’, comprising of more than one groove per unit cell, is significantly

different to that for a simple groove grating. The additional complexity of the unit

cell typically broadens the existing resonant mode (due to increased radiative and

non-radiative losses), while a new, narrow (i.e., high-Q-factor) ‘phase’ resonant mode

is observed. These phase resonances are characterised by the resonant acoustic

fields in adjacent grooves varying in phase by odd multiples of π with strong field

enhancement on resonance. [139]

Analogous behaviour in the acoustic domain was predicted by Wang et al.[137] and

then experimentally verified by Ward et al.[25], who demonstrated phase resonances

in compound-groove-gratings with different structure factors. Narrow resonant dips

within the band of the broad transmission maxima were observed and attributed

to evanescent diffractive coupling between fields in adjacent grooves. More recently,

Zhang et al. [140] investigated the acoustic transmission for compound gratings

comprising of different square and triangular shaped elements; they reported some

degree of control of the resonance frequencies.

In addition to transmission-type gratings, similar phase-resonance effects in reflec-
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Fig. 4.1 Schematic of a simple grating unit cell of width w, depth d, and a periodicity
in x̂ of λg, the grooves are infinitely long in y. θ is the polar angle of incidence.

tion compound gratings have also been studied in the electromagnetic domain.[141–

143] In a study by Fantino et al.[141], several different metallic compound gratings

were numerically investigated. For a transverse-magnetic-polarised incident beam,

phase resonances were observed as maxima in the reflectivity spectrum of the surface,

with strongly enhanced fields within the grooves. A similar phenomenon for reflection

gratings has yet to be recorded in the acoustic domain.

4.3 Simple Gratings

Within this section, the reflectivity and surface modes of simple gratings will be

investigated. The unit cell of a simple grating is seen in Figure 4.1, here, a single

air-filled groove of depth d, width w, and infinitely long in the y - direction is

shown within an acoustically-rigid material. The properties of the modes in both

the radiative and non-radiative regimes can be altered by changing the parameters

of the grooves, w, d and the periodicity, λg.

Each groove of the simple grating supports a quarter-wavelength (λ/4) resonance

with frequencies given by
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fn = (2n+ 1)v
4(d+ ∆L) (4.1)

where the end-correction (∆L) is approximately 8w/3π[102], d is the groove depth,

v is the speed of sound in air, and n is a positive integer. This resonance condition

comes from the boundary condition that the displacement field of the particles must

be equal to zero at the bottom of the groove, and therefore, an antinode in the

pressure field exists. If we consider the opening of the groove, ignoring end effects,

the displacement field of the particles is maximum, and there is a node in the pressure

field. However, when end-effects are considered this node is located slightly above

the surface.

In the radiative regime, these resonances appear in the reflectivity spectrum

as minima: as the frequency approaches that of the resonance the intensity of the

pressure fields within the groove increase. When the pressure field is increased within

the groove so are the losses from the thermal and viscous boundary layers. The

viscous boundary layer exists at a solid/air interface where a gradient in the particle

velocity is present. For further discussion of the boundary layers please refer to

Section 2.4.

The effect of changing the groove depth is shown in Figure 4.2, here, w = 1 mm

and λg = 6 mm. Figure 4.2(a) displays the normal incidence reflectivity for depths

d = 2.5, 5.0 and 10.0 mm. As expected, the effect of increasing the groove depth

reduces the resonance frequency. Another feature of varying the depth is that as

it is increased the width of the respective reflectivity minima decrease to values:

0.79, 0.75, 0.69 respectively. As the grooves increase in depth, the fields become less

over-coupled hence increasing the Q-factor with values of 4.37(±0.24), 4.46(±0.13)

and 4.85(±0.008). Here, the uncertainties arise from the frequency resolution. [144]

This increase in Q-factor is also evident within the non-radiative regime as seen in
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Fig. 4.2 a) Normal incidence reflectivity of simple gratings with w = 1 mm, λg = 6
mm and various depths. n is the mode number. b) Non-radiative dispersion of the
fundamental surface waves supported by simple gratings of various depths. Here,
kg/2 is the first Brillouin-zone boundary. All data has been obtained through FEM
models.

Figure 4.2(b), which shows the dispersion of the fundamental mode of surface waves

supported by such simple gratings. As the depth increases the mode disperses over a

much narrower frequency range. Further information on the Q-factor can be found

in Section 2.4.

Another way to change the properties of the modes supported is by varying the

width of the groove. The normal incidence reflectivity is shown in Figure 4.3(a) for

different groove widths. If the w = 0.5 mm and w = 4 mm spectra are compared;

it is seen that in the wider case where the groove is occupying 2/3 of the unit cell

the mode has a Q-factor of 0.996(±0.008) and barely any loss with a minimum

reflectivity of 0.98. This is due to being highly over-coupled resulting in the pressure

fields within the grooves being weak. In comparison, the Q-factor for the w = 0.5

mm is larger at 14.0(±1.3), and its higher losses are present with a minimum in

the reflectively of 0.32. The effect of w on the reflectively minimum is shown in

Figure 4.4. A minimum value occurs when w = 0.25 mm, this is as the system
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Fig. 4.3 a) Normal incidence reflectivity of simple gratings with d = 5 mm, λg = 6
mm and various groove widths. b) non-radiative dispersion of the fundamental
surface waves supported by simple gratings of various groove widths. Here, kg/2 is
the first Brillouin-zone boundary. All data has been obtained through FEM models.

becomes critically-coupled: where the internal losses of the resonator are equal to

the radiative losses resulting in perfect absorption. At values of w below this, the

system is under-coupled. In the non-radiative regime as w is increased the modes

disperse over a larger frequency range as they couple more strongly to free radiation

as seen in the previous discussion with the fundamental mode of d = 10 mm. The

frequency at which the modes reach the Brillouin zone boundary decreases with w as

expected. As the width increases, so does the end-correction resulting in the groove

appearing longer, which decreases the resonant frequency.

In order to explore the reflectivity from a resonant surface, the following equation

taking the usual form is used:

R(ω) = ω2
0 − ω2 − iω(ζ0 − η0/cosθ)
ω2

0 − ω2 − iω(ζ0 + η0/cosθ) , (4.2)

where ω is the angular frequency, ω0 is the resonant frequency, ζ0 is the dissipation

and η0 is the admittance of the surface. Figure 4.5(a) shows the normal incidence
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w

w

Fig. 4.4 Relation between w and the reflectivity for a simple grating of d = 5 mm
and λg = 6 mm. At small w the system in under-coupled, the surface becomes
critically-coupled as w approaches 0.25 mm. At larger w the mode is over-coupled.
All data has been obtained through FEM models.

reflectivity spectra obtained from |R(ω)|. Three distinct cases are shown for under-

coupled, η0 > ζ0 which is satisfied when η0 = ω0/200; critically coupled η0 = ζ0, and

finally over-coupled, η0 < ζ0 satisfied by η0 = ω0/2. Here, ω0 takes the value 30000π,

and ζ0 = 2000. All three cases show the expected behaviour as previously discussed.

One may also look at the phase on reflection. If the phase of reflected waves at a

given distance from an acoustic mirror is considered, as the frequency is increased

the phase of the reflected wave would decrease at a constant rate as the wavelengths

shorten.

However, as soon as any structure is present on the reflecting surface, additional

phase changes occur as the frequency moves across the resonance of the structure.

It is expected that as ω approaches ω0 a phase shift of π occurs. This results in

a total phase shift of 2π over the full frequency spectrum for each resonant mode.

The phase shift for the critically coupled case occurs over a very narrow frequency

band. The over-coupled system is much different as the phase change now occurs
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Fig. 4.5 a) Normal incidence reflectivity spectrum calculated using equation 4.2 for
critically (solid, blue line), under (dashed, black line) and over-coupled (dotted, red
line) surfaces. b) Normal incidence phase on reflection for critically (solid, blue line),
under (dashed, black line) and over-coupled (dotted, red line) surfaces.

over a much broader frequency band, and an important feature is that the phase

change is less than 2π over the frequency range shown, this occurs as the internal

losses (the dissipation) of the surface are less than that of the external losses (the

admittance). However, due to the mode being broad in frequency a phase change of

2π will be accumulated as ω approaches infinity. A full FEM modelled dispersion of

a simple grating with w = 1 mm, d = 5 mm and λg = 6 mm is shown in Figure 4.6.

In all modelling presented in this chapter, the frequency resolution is 100 Hz, and an

angle resolution of 2◦. The non-radiative dispersion was calculated at a resolution of

kg/40. The colour data represents the radiative regime for angles of incidence up

to grazing; the reflectivity minimum weakens at higher angles of incidences due to

weaker coupling to free radiation. The blue line represents the acoustic surface mode

supported by the surface, due to there only being one resonator per unit cell, only

one mode exists per groove resonance.
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k

R
eflectivity

Fig. 4.6 Full FEM mode dispersion for a simple grating of w = 1 mm, d = 5 mm and
λg = 6 mm. The colour plot represents the radiative regime (k0 > kx). The blue line
represents the dispersion of the non-radiative surface mode (kx > k0). The red line
is the sound line (kx = k0).

4.4 Two-resonator Compound Grating

More resonators per unit cell create additional degrees of freedom. With higher

degrees of freedom more than one resonance will be found at every wavevector. One

such unit cell is shown in Figure 4.7 which has two identical grooves with a separation

of l. However, the grooves are unevenly separated such that l ̸= λg − l. If they were

evenly spaces, the periodicity would reduce to a simple grating. If a unit cell is

considered where w1 = w2 = 1 mm, d1 = d2 = 5 mm, l = 3 mm and λg = 10 mm,

then the resonance condition for both the grooves is the same. Therefore, in isolation

they have the same resonance frequency. The full dispersion for this structure has

been modelled in Figure 4.8(a), it is clear that in the non-radiative regime, two

coupled modes now exist for the fundamental resonance of the grooves. Figure 4.8ii

shows the phase of the lower frequency mode at the first Brillouin-zone boundary.

It is seen that acoustic fields in both of the grooves are in phase with each other.
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Fig. 4.7 Schematic of a two resonator compound grating unit cell. Here, two grooves
of widths: w1 and w2, and depths: d1 and d2; separated by l, within a pitch of λg.

However, when the higher frequency mode is considered, now there appears a phase

difference of π between the acoustic fields in the grooves. These two standing wave

solutions are of slightly different energies, which results in a band-gap existing at the

first Brillouin-zone boundary. This newly excited, high-frequency mode is a phase

resonance mode. Within the radiative regime, there are also two modes: one broad

mode at 16 kHz at normal incidence; and a second, much narrower mode which

lowers in frequency as the angle of incidence is increased. This mode originates

from the higher frequency radiative mode which has been folded back into the first

Brillouin zone, therefore, it does not interact with the sound line. This mode is

also not excitable at normal incidence due to the configurations of the fields; this

is a characteristic feature of a true phase resonance mode. The first mode is the

non-phase resonance mode, while the second is the phase resonance mode.

One may change various parameters of the system to increase the separation in

the frequency of the modes, or to increase the losses so that the system is critically

coupled. Consider a system where the width of one of the grooves has been doubled,

w1 = 2 mm and w2 = 1 mm, and the depths of the grooves have been kept the same.

Now the resonant frequency of each groove is slightly different as the end-correction
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Fig. 4.8 a) Full FEM dispersion for a two-resonator compound grating with parameters
w1 = w2 = 1 mm, d1 = d2 = 5 mm, l = 3 mm and λg = 10 mm. i) Phase within the
grooves of the higher frequency mode at kg/2. ii) Phase within the grooves of the
lower frequency mode at kg/2. The blue lines represent the dispersion of ASWs. The
red line represents the sound line. The phase here is arbitrarily chosen to highlight
the phase difference between the cavities.

increases with groove width, as discussed in Section 2.3. The full dispersion is shown

in Figure 4.9. In the non-radiative regime, the effect of the different groove widths

is that a larger band-gap exists at the first Brillouin-zone boundary, compared to

the equal-width system. This increased band-gap width is expected as there is now

a more significant difference in the energies of the two standing wave solutions at

kx = kg/2. In the radiative dispersion, it is immediately clear that the narrow, low-

frequency mode is much deeper in reflectivity. The minimum reflectivity is 0.19 as

compared with 0.70 for the case of two grooves of the same width. This reduction in

reflectivity signifies that this system is much closer to the critical coupling condition

while the same width case is under-coupled. It is important to remember that any

mode which exists in the radiative part of the dispersion diagram inherently radiates

energy away from the surface due to kz being real. These losses associated with these

radiative modes arise purely from the thermoviscous losses. An example of this is
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Fig. 4.9 a) Full dispersion for a two-resonator compound grating with parameters
w1 = 2 mm, w2 = 1 mm, d1 = d2 = 5 mm, l = 3 mm and λg = 10 mm. i) Phase
within the grooves of the higher frequency mode at kg/2. ii) Phase within the grooves
of the lower frequency mode at kg/2. The blue lines represent the dispersion of
ASWs. The red line represents the sound line. All results are from FEM modelling.
The phase here is arbitrarily chosen to highlight the phase difference between the
cavities.

shown in Section 2.4 in Figure 2.4 where the normal incidence reflectivity from a

simple grating was shown. By completely removing the thermoviscous effects from

the model, a reflectivity of unity was obtained. A feature of this mode is that the

reflectivity remains almost constant as θ is varied until just before reaching the sound

line. It is expected that the reflectively will increase to unity as the mode approaches

the sound line, as the exciting radiation becomes grazing in nature. The higher

frequency, over-coupled, radiative mode is also seen and is similar in characteristic

to the equivalent mode of the equal-width case.

Another way in which one may change the unit cell is to vary the groove depth.

The dependence on depth is more significant than the dependence on width. Consider

the case where d1 = 5.5 mm and d2 = 5 mm, defining a new variable, p, as d1/d2.

For this structure p = 1.1 and w1 = w2 = 1 mm. The dispersion diagram of the

p = 1.1 system is shown in Figure 4.10(a). The radiative dispersion is similar
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Fig. 4.10 a) Full dispersion for a two-resonator compound grating with d1 = 5.5 mm,
d2 = 5 mm. b) Full dispersion for a two-resonator compound grating with d1 = 7.5
mm, d2 = 5 mm. c) Full dispersion for a two-resonator compound grating with
d1 = 10 mm, d2 = 5 mm. i) Relative absolute pressure field within the grooves of N1
at kg/2. ii) Relative absolute pressure field within the grooves of N2 at kg/2. The
blue lines represent the dispersion of ASWs. The red line represents the sound line.
All results are from FEM modelling.
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Fig. 4.11 FEM model of relative absolute pressure (pr) field within the grooves at
kg/2 as a function of p. The blue lines represent pr fields within the groove whose
depth remains constant. The red line represents pr for the groove of varying depth.
The solid line represent pr for the N1 mode, and the dashed line represent N2 mode.

to the system shown in Figure 4.9. The non-radiative regime is also similar; a

band gap still exists at the first-Brillouin zone boundary due to the difference in

energies of the standing waves of modes N1 and N2. When the difference in depths is

increased, these two modes slowly begin to stop acting as a pair and begin to act as

independent resonances. This is shown in Figure 4.10(b) for the case where p = 1.5

and w1 = w2 = 1 mm. The flat, broad mode labelled R2 at 15 kHz in the radiative

region remains, which is related to the resonance frequency of the d2 = 5 mm groove;

however, the narrow, phase resonance mode characteristic has changed. Now R1 is a

flat, broad mode relating to the resonance of the d1 = 7.5 mm groove.

One additional feature is that the mode labelled N2 now anti-crosses with R2

at the point labelled A1. N2 crosses into the radiative regime becoming R1 and

anti-crosses with N1. This anti-crossing occurs in the region labelled A2. This

anti-crossing provides evidence that N1 and N2 are acting as separate resonator
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4.4 Two-resonator Compound Grating

modes. One may notice that as p increases, R1 moves further out of the wings of the

resonance R2.

Further evidence for this is found by considering the absolute pressure field within

the grooves at kg/2. In the case of equal groove depths, for N1 and N2 there is equal

intensity within each groove. From now on, the relative absolute pressure will be

considered in each groove, Pr = Pg/Pequal, where Pg is the absolute pressure in one

of the grooves, and Pequal is the pressure in the grooves for the equal depth system.

Considering the surfaces shown in Figure 4.10, it is seen that as p is increased the

difference in the absolute pressure between the two grooves increases. For the surface

in 4.10(c), considering the fields of the N1 mode the majority of the absolute pressure

is located within the d = 10 mm groove. However, for the N2 mode, the majority of

the absolute pressure is located in the d = 5 mm groove.

The relative absolute pressure within each groove was measured as a function

of p. The results as presented in Figure 4.11. Here, the blue line represents the

cavity whose depth remains constant (C1), and the red lines represent the cavity of

varying depth (C2). The solid line represents the data for the N1 mode, while the

dashed line represents the data for the N2 mode. Firstly considering the N1 data,

it is seen that as p increase Pr decreases in C2 and increases in C1. Interestingly,

Pr in C2 has a maximum value around p = 1.12 and then gradually decreases at a

constant gradient over the p range presented. This will be discussed in further detail

later. The data for the N2 mode shows a similar behaviour to the N1 mode; however,

as p increases Pr now increases in C2 and decreases in C1. From this, we can see

that as p increases, the acoustic energy which started evenly distributed between the

two cavities, becomes more confined to one of the cavities (depending on the mode).

This further provides evidence that as p increases, the cavities are acting as isolated

resonators within the unit cell as the coupling between the cavities decreases.
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Fig. 4.12 Full dispersion for a two-resonator compound gratings with p = 1.0, 1.1,
1.2 and 1.3. The blue lines represent the dispersion of ASWs. The red line represents
the sound line. All results are from FEM modelling.
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4.4 Two-resonator Compound Grating

To explore more this apparent isolation of the cavity modes surfaces with smaller

p are considered. Figure 4.12 shows the band diagrams for p = 1, 1.1, 1.2, 1.3. It

can be seen that as p is increased R1 lowers in frequency and also broadens. The

intensity of the mode also changes as p is increased. For the p = 1.0 case this mode is

not excitable at normal incidence, but as p is increased the mode becomes excitable

at all angles of incidences. The weakening intensity and broadening of the mode are

indicative of the mode becoming over-coupled. Within the non-radiative regime, the

change in dispersion as p is increased is more subtle that in the radiative regime.

As p is increased, the gradient of the upper mode becomes less negative until it is

almost flat in the p = 1.1 case. This gradient changes sign in the p = 1.2 case.

For a system where the modes are acting independently (p > 1.2), the surface

wave dispersion for both the modes begins on the sound line. As kx is increased,

the modes disperse until the first Brillouin zone boundary where standing wave

resonances across the unit cell occur. In Figure 4.11, the fields above the surface can

be seen to only exist above one of the grooves for each resonance, with the other

groove not influencing the form of the surface wave above the surface. If we now

consider a system where the grooves are coupled, at kg/2, both grooves now influence

the fields above the surface. This is in contrast to only one for the independent

systems. The surface waves for the independent system physically act like surface

waves above a monograting of the relevant groove depth; this is not the case for the

coupled system. It is shown for the coupled system that one of the modes is close to

critical coupling (high absorption due to losses occurring in both grooves). In the

independent system, due to only one groove being strongly excited per resonance,

lower absorption occurs.

Using a similar analysis to that of the simple gratings the phase on reflection is

investigated for 2-resonator compound gratings. Figure 4.13(a) shows the normal-

incidence phase on reflection for a two-unit compound grating with various p values
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Fig. 4.13 a) Normal incidence phase on reflection for various p values of two-resonator
compound gratings. b) Phase on reflection for surfaces with p values close to 1.0.
All results are from FEM modelling.
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where the background phase change has been removed. For a surface with p =

1.0, only one mode is expected at normal incidence: R2. It is seen that as the

frequency varies over the resonance region (radiative dispersion is shown in Figure

4.7) there occurs a phase shift associated with this mode between 10 - 22 kHz. As

soon as p is increased to 1.2 the phase change has now more than doubled, this

suggests another resonance is occurring within the system, and this is consistent with

the previous consideration that the resonators are acting in isolation. The phase

on reflection allows one to further analyse this sudden change from the resonators

coupling together to becoming independent. Structures were modelled for values of p

between 1.0 - 1.2. Two distinct mode behaviours occur, one for p values of 1.00 - 1.12,

and the other between values of 1.14 - 1.20. It is seen for p values of 1.08, 1.10, and

1.12 that there is a sudden increase in the phase on reflection occurring at around 14

kHz. For the p = 1.10, this occurs at the same frequency as the phase resonance

mode seen in Figure 4.12. It would appear that this sudden phase change occurs

when there is only a slight difference between the two groove depths, where the phase

resonance exists within the wings of the broader mode. The change in behaviour

occurs around p = 1.12, which is the same p value as where the maximum pressure

field in C2 for the N1 mode occurs. This again relates to the coupling between fields

of the cavities reducing, until they begin to act independently.

4.5 Three-resonator Compound Grating

The final configuration of compound gratings investigated are those with three-

resonators per period. As expected, the addition of an additional degree of freedom

allows for a third mode to be excited. Figure 4.14 shows a schematic of the unit

cell used. For consistency, the distance between the centre of the grooves remains

constant for all the following cases.

95



Phase Resonance

wAwA wB

x
y

z

d

g

l1 l1l2 l2
θ

λ

Fig. 4.14 Schematic of a unit cell comprising of three resonators per period (λg = 19
mm). In all discussed gratings λg = 19 mm, l1 = 3 mm, l2 = 6.5 mm. θ is the polar
angle of incidence.

Using FEM models, the band diagrams have been investigated for five different

systems: two keeping the width of the central groove constant and varying the width

of the outer grooves, and three keeping the width of the outer grooves constant and

varying that of the central groove. The results are shown in Figure 4.15. The first

case shown in Figure 4.15(a) shows the computed dispersion for a compound grating

with wA = 0.5 mm and wB = 2 mm. It is apparent that there is an absence of the

expected three modes in the non-radiative regimes; however, this is only because the

third mode does not exist in the frequency regime shown. The two modes which

do appear are both phase resonance modes. The pressure field configurations for

these two modes at kx = kg are shown in Figure 4.15(a,i-ii). The upper mode field

configuration is seen in 4.15(a-i). Here, the fields in the two outer grooves have a

phase difference of π, and there no pressure field within the central groove. The lower

frequency mode’s pressure field configurations are shown 4.15(a,ii), the fields in the

two outer grooves are π out of phase with the central groove. The modes within the

radiative dispersion are hard to distinguish; this is due to one of the phase resonance
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4.5 Three-resonator Compound Grating

modes existing very close to the central frequency of the non-phase resonance mode.

The lower frequency, phase resonance mode can be seen clearly and is becoming

over-coupled.

In contrast to the previously discussed dispersion, the radiative dispersion shown

in Figure 4.15(b) (for a surface where wA = 3 mm and wB = 2 mm) shows the two

phase resonance modes clearly. Interesting, at normal incidence the higher frequency

mode may now be excited but the lower frequency mode is only able to be excited

off-normal incidences. This change from the previous case of which mode may be

excited at normal incidence is explained by the resonance frequencies of the grooves.

All the grooves are of the same depth but their widths are different to perturb

their resonance frequencies. For the phase resonance between the outer grooves, the

frequency of the mode is higher than the other. As the widths of the outer groove

are more narrow than that of the central (wA < wB), the resonant frequency is

increased due to the end-corrections. However, in the other phase resonance, the

central groove is now being excited. As a result of the groove’s width being larger,

the resonance frequency is lowered, when the opposite case is considered where wA

> wB, the previous discussion is reversed. The phase resonance between the outer

cavities now occurs at a lower frequency than the other due to the grooves having

a lower resonance frequency. Due to the configuration of the pressure fields, the

mode where the phase resonance exists between the two outer grooves will always be

non-excitable at normal incidence.

To find a surface where one of the modes is critically-coupled, the width of the

central groove is kept constant (wA = 1 mm) and the widths of the outer grooves

are varied. In order for the lower mode to always be excited at normal incidence,

the width of the groove has been increased so that wA < wB is always true.

The band diagrams in Figure 4.16 show the influence of varying the width of

the central groove: wB = 1.5 mm, 2.0 mm, and 2.5 mm. In all of these cases, the
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Fig. 4.15 Full dispersion for various configurations of three-resonator compound
gratings. Here, the width of the central groove remains constant wB = 2 mm. a)
wA = 0.5 mm. b) wA = 3 mm. The solid blue lines represent the dispersion of
ASWs. The solid red line represents the sound line. The dashed white line represents
the diffracted sound line. The dotted blue line represents the first Brillouin zone
boundary. i & ii. Instantaneous pressure fields for the respective modes. All results
are from FEM modelling.
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Fig. 4.16 Full band diagrams for various configurations of three-resonator compound
gratings. Here, the widths of the outer grooves remain constant, wA = 2 mm. a)
wB = 1.5 mm. b) wB = 2 mm. c) wB = 2.5 mm. The solid blue lines represent
the dispersion of ASWs. The solid red line represents the sound line. The dashed
white line represents the diffracted sound line. The dotted blue line represents the
first Brillouin zone boundary. i & ii. Instantaneous pressure fields for the respective
modes. All results are from FEM modelling.
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lower mode is where the fields in the outer grooves are π out of phase with the

fields of the central groove. The first case in Figure 4.16(a) shows that mode ii is

under-coupled, as the width is increased to 2 mm the mode becomes near-critically

coupled as evidenced by the sharp minimum in Figure 4.16(b). The mode becomes

over-coupled, as the width is increased further and the mode begins to broaden. As

the width is increased, the reflectivity of the higher frequency mode (i) decreases

suggesting that the mode is approaching becoming critically coupled. For more

discussion on critical coupling, please refer to Section 2.4.

4.6 Experiment

To experimentally investigate phase resonances on a compound grating, a 23-unit

sample with the unit cell shown in Figure 4.16(b) was made. Here, λg = 19 mm,

d = 5 mm wA = 1 mm, and wB = 2 mm. The sample’s dimension are 450 mm ×

450 mm. The grooves extend the whole y-length of the sample. The experiments

were performed using the reflection experiment discussed in Section 3.4. A 12 kHz

centred single-cycle Gaussian enveloped pulse was used for all measurements. In

the experiment a pseudo-normal incidence measurement was performed followed

by θ = 8.3◦ which was the minimum angle able to be measured using two mirrors

due to their physical size. Finally an angle range of θ = 10◦ − 60◦ was measured

at 5◦ intervals. At each angle, 100 repeat measurements were recorded in the time-

domain, and subsequently averaged. The time domain signals are then Fast Fourier

Transformed (FFT) and the resulting frequency domain response is normalised to

that of an unpatterned, rigid plate.

The reflectivity as a function of frequency is shown in Figure 4.17(a). The rather

broad and shallow mode at 15.5 kHz (C) corresponds to a resonance where all the

fields in the three grooves in a unit cell are in-phase. The fundamental mode of
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the grooves is the quarter-wavelength (λ/4) condition plus an end correction. The

dependence of the modes’ resonant frequencies on the angle of incidence is shown

in Figure 4.17(b): off-normal excitation also reveals a third mode (B) that cannot

be excited at normal incidence, to which there is increased coupling strength with

increasing angle of incidence. Also of interest is the angle dependence of the resonance

frequency of mode (A) that shows a decrease in frequency as the angle of incidence

is increased.

The phase on reflection for normal incidence is shown in Figure 4.18. Here, the

broad, over-coupled mode (C) features a very sharp change in phase at 13 kHz

relating to the phase resonance mode (A). As expected, there is no feature of the

off-normal mode (B) as only normal incidence data is shown.

From such data, one obtains a mapping of much of the dispersion curve in the

radiative region for the plane containing the grating wavevector kg. Figure 4.19 shows

the experimental data obtained for the reflectivity measurements demonstrating the

dispersion of the three modes, compared to the predictions of the reflectivity from a

FEM model.

Also explored is the excitation of the bound surface modes supported by the

sample. The dispersion of the bound surface was experimentally measured using the

surface scan method described in Section 3.5. In this experiment, a scan area of 400

mm × 400 mm was used; this allowed for sufficient k-space resolution. A resolution

of 1 mm was used in both x and y. At each position of 3 repeats were taken. The

data was then Fourier analysed to obtain the dispersion diagram and isofrequency

contours. Figure 4.20 demonstrates that the acoustic surface mode dispersion is close

to being isotropic at the lowest studied frequencies but becomes highly anisotropic

as the frequency rises, and the mode approaches the Brillouin zone boundaries.

Fourier-transformed field information for any selected frequency in any direction

in k-space can be extracted to yield the mode’s dispersion. This is shown for the
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Fig. 4.17 (a) Experimental reflectivity data for near-normal incidence (blue crosses)
compared with the FEM model (solid line). (b) FEM model predictions of the
reflectivity showing the reflectivity spectrum for different angles of incidences. The
sharp feature at ∼12 kHz for θ = 30◦ corresponds to the onset of diffraction where
the in-plane component of the incident radiation λ0x is comparable to λg. As this
condition is met, radiation is diffracted into unwanted loss channels rather than
coupling to the surface mode.
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Fig. 4.18 Experimental near-normal incidence phase on reflection (blue crosses)
compared with the FEM model (solid line).

plane containing the grating vector in Figure 4.20, where the experimental data is

the colour scale, and the points are the eigenvalues predicted by the FEM modelling.

Note here the weak modulation of the intensity of the experimental signal along the

dispersion curve: this arises from the finite size of the sample defining a limiting

k-space resolution.

The first supported mode is the broad and shallow branch (C) for which the field

in each of the three grooves has the same phase in any given unit cell. Its frequency

is approximately given by its wavelength being four times the groove depth, d -

the fundamental resonance of the groove. When grooves are excited on resonance,

evanescent end-effects occur at the opening of each groove these near-fields couple

the groove resonances together over the surface in the form of a wave. For an ASW

mode within the first Brillouin zone (BZ), only one pressure antinode per unit cell is

allowed. This mode can be excited in the case of a simple grating because the ASWs

wavelength (λx) approaches that of twice the grating wavelength (λg): with one
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Fig. 4.19 Radiative domain in blue - frequency of reflectivity minima from experi-
mental measurements (symbols) compared with predictions of the reflected intensity
from the FEM model (colour-scale). The broad and shallow mode C has also been
labelled for completeness.
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figure).
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resonator per unit cell as the condition of one antinode per unit cell is satisfied. In

the case of shorter ASW wavelengths (in the second BZ) two antinodes are required

per unit cell with one being required over the rigid surface, this cannot occur. With

the addition of an additional degree of freedom, i.e. a second groove per unit cell,

the condition of two antinodes per unit cell may now be met. Then, by the process

of first-order diffraction, this mode is observed in the radiative region of the first BZ.

Extending the discussion to the case of the sample measured, with three resonators

per unit cell a third mode existing within the third BZ can be excited. Hence, with

the extra degree of freedom, ASWs with smaller wavelengths than λx = λg can now be

excited as an eigenmode with three antinodes per unit cell is now available. Similar

to the second mode, this mode is also scattered by diffraction into the radiative

region of the first BZ. These modes can be seen in the inset of Figure 4.20 as the

two red lines in the radiative region.

The acoustic field configurations for modes A, B and C are represented in Figure

4.22. As evidence of the previous discussions, notice that the ASW wavelength λx,

matches the associated wavevector of the Brillouin zone boundary from which it was

scattered; and note that mode C is a radiative mode and not confined to the surface.

The relative pressure field in comparison to the non-resonant case, for modes A, B

and C are 32.4, 21.7 and 3.5, respectively. When a comparison is made between

the absorption and the relative pressure field strength, it becomes apparent that as

the pressure field within the grooves increases the amount of absorption, seen as a

reduction in reflectivity in Figure 4.17, also increases.

The increased field on resonance is similar to the case of transverse-magnetic

light incident on a metallic compound grating; however, the difference is that in

the electromagnetic case the feature of the phase resonance gives a maximum in

the reflectivity while in the acoustic case a minimum is observed. This is due to

the relative backgrounds in the two cases: for p-polarised light, the phase resonance
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Fig. 4.22 Pressure fields for phase resonances A (the central groove fields being in
antiphase with the outer two), B (fields in the outer two grooves being in antiphase,
with the central one having zero amplitude), and C, the normal in-phase resonance.
The scaling factors for the limits of the colour scale are 32.4, 21.7, and 3.5 respectively.

features as a sharp maximum in a low background.[141] For acoustic waves, the

resonance is a sharp minimum in a high background.

From Figure 4.19 it is apparent that mode B is not excited at normal incidence.

This arises simply because the fields in the outer two grooves have to be in antiphase

for this mode with the central groove fields having zero amplitude at normal incidence.

It is thus impossible to excite with a plane, normal incidence wave. Away from

normal incidence, there is a phase difference across a unit cell, and this mode may

now be excited.

Note from Figure 4.21 how the surface wave propagation becomes progressively

more anisotropic as the frequency is increased. The equi-energy circle distorts first

into an ellipse and then at frequencies above the first resonance of the system (at

normal incidence) a band gap occurs where no mode is excitable in the x-direction,

and the equi-energy contour splits into curved lines. (The weaker features shown

towards the centre of each image are modes scattered into the first BZ by first-order

diffraction, there are also reflections present due to the finite sample size). From

these isofrequency contours, the direction of the group velocity (vg) (determined

by vg = ∇kω, ω being angular frequency) is obtained, and if it has a region which
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13 kHz 14 kHz

Fig. 4.23 Experimental data for the instantaneous pressure fields at 13 and 14 kHz,
showing that the power flow is strongly confined in four directions.

is straight, acoustic beaming occurs where a range of wavevectors have the same

vg. The direction of the acoustic beaming is the direction that is normal to the

isofrequency contours; an example of this is shown by the blue arrows in Figure

4.21. An example of this effect in the frequency domain is shown in Figure 4.23.

Interestingly, for different frequencies, the acoustic power is directed in different

directions allowing for a frequency dependent directivity of acoustic power on the

surface.

4.7 Conclusions

In this chapter, the characteristics of the radiative and non-radiative modes supported

by simple and compound gratings have been explored.

It was discovered for a surface with two grooves per period that as p increases (the

ratio of the groove depths) the resonators become less coupled and begin to behave

more like isolated resonators. Investigating the absolute pressure fields in each groove

for each surface mode supported, showed that as p increases the difference in pressure

between the grooves increases. However, for p = 1.12 the maximum value of pressure
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is the deeper groove. This maximum value of pressure in conjunction with a larger

phase shift presented in the phase on reflection supports the idea that the resonators

are becoming less coupled. One potential application of the independently coupled

sets would be a near-angle independent frequency-selective filter that operates for

two frequencies; this could be turned into an active frequency selective filter by

adjusting the depth of the cavities.

A compound groove grating having three grooves per period has been modelled

and the results verified experimentally, showing a sharp minimum in the reflectivity

spectrum for a phase resonant mode where the outer grooves are out of phase with the

central, giving the possibility of a frequency-specific acoustic filter. The surface was

also found to support acoustic surface modes whose dispersion has been obtained and

which, for a range of frequencies, exhibit frequency-dependent directional acoustic

power beaming due to a range of wavevectors having the same group velocity.

In the following chapter, the surface waves supported by a so-called meander

structure will be explored. These glide-symmetric surfaces present interesting band

diagrams due to a degeneracy of the modes at the first Brillouin zone boundary.

These surfaces have been modelled through FEM modelling and their predicted

response verified experimentally.
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Chapter 5

Broadband, Slow Sound on a

Glide-Symmetric

Meander-Channel Metasurface.

5.1 Introduction

In this chapter, so-called meander structures are investigated. The dispersion of

the surface modes supported by such glide-symmetric labyrinthine channels features

a zero magnitude band gap at the first Brillouin zone boundary and a region of

constant group velocity (vg). The dispersion of such structures has been thoroughly

investigated through FEM modelling and then experimentally verified. In addition,

the propagation length of the surface modes has been quantified. Finally, a variation

of the meander channel where the straight channels have been covered has been

explored through FEM modelling. A groove depth-dependent change in the resonance

condition of the standing waves at the first Brillouin zone between the two systems

will be explored.

111



Broadband, Slow Sound on a Glide-Symmetric Metasurface

5.2 Background

A number of works have shown that it is possible to control the propagation of

sound waves using arrays of sub-wavelength elements (phononic crystals) as first

proposed by Kock and Harvey[145], or more recently the study of labyrinthine

structures[146, 147]. Recently Liang et al.[21] demonstrated that, by using curled

perforations to coil up space, large effective refractive indices (n) can be achieved.

This allows the potential to spatially engineer n and create arrays of such structures

of various different acoustic path lengths to control phase-gradients allowing for the

focusing, absorption and directing of acoustic waves, as well as ‘doubly negative’

material properties and those with effective ‘density’ near zero. Other structured

surfaces have been used to control waves, such as a sub-wavelength corrugated surface

demonstrated by Zhu et al. where, by manipulating the dispersionless phase fronts,

ultra-broadband extraordinary reflection could be obtained[148]. Fan et al. found

that by enclosing a monopole sound source in a structure comprising of various

space-coiled elements allows for the device to be 1/10th the size of the wavelength

emitted[149].

Whilst being able to reduce the velocity of propagation of acoustic energy over

a surface is itself interesting and undoubtedly useful, for some applications one

may require this to be maintained over a broad frequency band. In general, this

is difficult to achieve with a periodically patterned or resonant surface because

of diffraction and mode-hybridisation, the former being particularly dominant on

approach to the first Brillouin zone boundary. Glide symmetric structures[113, 114]

offer an opportunity for broadband low-group-velocity acoustic surface waves, as

has been demonstrated in electromagnetism[150]. They comprise of a geometry

that has reflection symmetry about a mirror plane when the unit cell is displaced

by half a period. In this way, these structures do not present a band-gap at the
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Fig. 5.1 (a) Schematic of the surface of a unit cell used in this investigation, comprised
of an air-filled channel (blue) of depth d = 5 mm in an acoustically-rigid material
(grey). The depth is in the negative z direction, and the acoustic surface wave
propagates in the positive x-direction. Here, λg = 4 mm, w = r = 1 mm, and h = 5
mm. (b) FEM model non-radiative dispersion for different values of h.

first Brillouin zone boundary since the two normally different energy standing wave

solutions are now degenerate[121, 116], resulting in a near-linear dispersion over a

broad bandwidth.

5.3 Theory

The dispersion of the bound surface modes supported by different meander channels

is explored. Such meander channels have depth d, and width w, as illustrated in

Figure 5.1(a). The channel is space-coiled in a glide-symmetric unit cell with repeat

period of λg along the direction of propagation. To first order this may be modelled

through a simple geometrical approach, a wave following the channel across one unit

cell will propagate along a path-length of
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lp = 2(πr + h) (5.1)

where r is the radius of the curved channel sections and h is the length of the

straight sections of the channels. This increase in path length in relation to the unit

cell can be thought of as creating an effective waveguide index, given by

nwg = lp
λg

(5.2)

If the power propagation is confined to the grooves, then this is directly related to

the group index. A simple dispersion relation for such a structure can be established

since, to first order the wavevector in the vertical direction (depth of grooves) is

given by the quarter wavelength resonator condition, kz = 2π/4d (ignoring end effect

corrections [151]). With the wavevector in the propagation direction given by kx it

follows that the dispersion relation is simply

f = v

2π

√√√√( kx

nwg

)2

+
(

2π
4d

)2

(5.3)

The effect of varying h on the dispersion is considerable, as seen by FEM models

in Figure 5.1(b). The surface wave dispersion was obtained by modelling an infinite

system using Floquet boundary conditions. Solving the eigenvalues of the system

and performing a parametric sweep of the in-plane wavevector in the direction of

periodicity (kx), results in the dispersion curves shown. This is discussed in further

detail in Section 3.7.2. It is shown that as h is increased, the mode lowers in frequency

and the linear region’s gradient is decreased. It can also be seen for h = 10 mm and

20 mm, that the extent in kx for which the linear region exists is now reduced, as the

curved region of the dispersion is much more prominent than for smaller h values,

this is due to coupling strongly to free radiation.
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Fig. 5.2 Waveguide approximation from equation 5.3 (dashed coloured lines) and
finite element model (solid lines) dispersion for different values of h. The solid black
line corresponds to the maximum wavevector of an incident plane wave.

Now the FEM model results are compared with those obtained by the simple

analytic model, as shown in Figure 5.2. The simple analytic model neglects any

interactions with free-space sound modes and diffractive coupling between adjacent

grooves so there is significant disagreement between the two models at wavevectors

within and close to the sound line. However, at values of kx > k0, the mode becomes

more confined to the surface and therefore the channel, and hence equation 5.3

provides a good approximation. Of course, Equation 5.3 does not include any

diffraction effects, but it is clear from the FEM model that the modes have a linear

dispersion (and uniform group velocity) approaching the first Brillouin zone boundary

(kg/2) – a consequence of the glide symmetry of the system[114].

We also wish to investigate the effect of the channel width on the dispersion.

Figure 5.3 shows the FEM model for three channel widths: w = 0.5 mm, 1.0 mm

and 1.5 mm. The effect of changing the channel width is much more subtle than

varying h. Firstly, as one may expect the narrowest channel, w = 0.5 mm, couples
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Fig. 5.3 FEM model non-radiative dispersion for different values of w. Here, h = 5
mm, d = 5 mm, and λg = 4 mm.

less strongly to free radiation as much less of the surface is occupied by the channel.

Secondly, as the channel width is increased the gradient of the linear region also

increases, this increase in group velocity suggests that the path-length (lp) has now

decreased. However, this is a very small effect. Finally, as discussed previously in

Section 2.4, as the channel width increases so does the the end-correction making

the channels appear deeper, which decreases the resonance frequency.

Varying the depth of the meander has a very significant effect by shifting the

fundamental resonance resonance in the vertical (depth) direction. However this is

not the only effect as shown in the resulting dispersion illustrated in Figure 5.4. Here

we show the non-radiative dispersion relations for d = 2.5 mm, 5.0 mm and 10 mm.

The dispersion for d = 2.5 mm shows no near-linear region, this is because the modes

are coupling strongly to free radiation (explained more thoroughly in Section 2.4).

As d is increased to 5.0 mm, the dispersion shows a near-linear region as there is in

this case weaker coupling to free radiation. For d = 10 mm, the mode shows even
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d = 2.5 mm

d = 5.0 mm

d = 10 mm

k

Fig. 5.4 FEM model non-radiative dispersion for different values of d. Here, h = 5
mm, w = 1 mm, and λg = 4 mm.

weaker coupling to free radiation, which results in the near-linear region being over

an even broader kx region. In addition, as anticipated, as the depth is increased the

frequency at which the mode starts dispersing lowers, due to the quarter wavelength

resonance condition.

5.4 Experiment

To experimentally determine the dispersion of the ASWs, a loudspeaker with a

sound-launching conical attachment was positioned so that the sound emitted was

angled onto the surface, such as described in section 3.5. Figure 5.5 is a schematic of

the setup. The narrow exit hole of the cone and close proximity to the surface leads

to strong diffraction enabling the creation of high in-plane momentum components

and near-field coupling to the ASW. One of the main difficulties with obtaining

results was due to the signal from the surface mode being dominated by free radiation.

To avoid this the needle microphone (Brüel & Kjær Probe Microphone Type 4182)
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Probe 

Microphone

Sample

Loudspeaker

Sample

Fig. 5.5 Schematic of the experimental setup. A loudspeaker with conical attachment
emits a broadband-pulse that excites the ASW. This then propagates over the surface
and the arriving pulse is recorded using a near-field probe that is raster scanned over
the surface.

had its tip positioned about 0.5 mm from the surface. This was then raster-scanned

over the sample to detect the near-fields with a resolution of 1 mm over a total scan

length (x) of 300 mm. The signature of free radiation appears on the dispersion

along the sound line (kx = k0). This signal eventually dominates at high kx when

the surface modes become progressively more confined and their intensity at long

distances from the source becomes very low. For each microphone position, a 30 kHz

near-single-cycle Gaussian-envelope (broadband) sound pulse was emitted from the

loudspeaker and subsequently detected by the microphone. For each spatial position

an average of three pulses was taken to improve the signal to noise. Subsequently

a temporal Fourier transform was performed to obtain the amplitude and phase

for each frequency at each spatial position, resulting in a spatial field-map for each

frequency. A two-dimensional Fast Fourier Transform (FFT) was then performed

on each of the spatial field maps. By plotting the Fourier amplitudes as a function

of wavevector from each of these two-dimensional FFTs for each frequency one

obtains the dispersion diagram of the ASWs supported [152]. The group velocity
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(vg = dω/dk, where ω is the angular frequency) was calculated by fitting a straight

line to the near-linear region of the surface mode.

Five aluminium samples have been characterised each 600 mm in length (x):

three samples comprise of 150 unit cells, each with λg = 4 mm, w = 1 mm, and

straight line sections of h = 0 mm (i), 5 mm (ii), 10 mm (iii); a further sample (iv)

(100 unit cells) has λg = 6 mm, w = 2 mm and h = 5 mm. As will be discussed

later, a fifth sample (v) is a modified version of (ii) with tape placed over part of the

meander to remove the glide symmetry.

5.5 Height Dependence

Figure 5.6(a) shows a typical experimentally determined dispersion plot for the λg =

4 mm and h = 5 mm surface. Below 10 kHz the mode is essentially non-dispersive

and propagates as a grazing mode at the speed of sound. From 10 to 14 kHz there

is strong frequency dependence of both the phase and group velocity as the mode

moves from being a lightly-bound surface wave to being more like a waveguide

mode confined to the channel. Then, at higher frequencies up to 21 kHz, the mode

has a nearly constant gradient, corresponding to a constant group velocity, but a

changing phase velocity (vp). For this particular sample in the vicinity of 20 kHz

the group velocity is vg = 55.6 (± 4.1) ms−1, a reduction by a factor of 6 below that

of the speed of sound in air. Note that the FEM model predicts vg = 57.1 ms−1

which is in excellent agreement with the experimental data. These surface modes

propagated over the sample at a reduced velocity compared to waves propagating

over an unstructured surface, as these would propagate at the speed of sound. The

sound waves propagating over such a structured surface are described as slow, as

they propagate slower than the speed of sound in the surrounding fluid medium (air).
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The frequency range for which a near constant group velocity is observed is

extended in kx due to the absence of a band gap at the first Brillouin zone boundary,

a consequence of the glide symmetry of the structure. This glide symmetry condition

may be readily broken by applying a tight membrane over part of the meander

sample. This was done using parcel tape with the tape edge aligned parallel to the

propagation direction with the tape covering 20% of the meander of the h = 5

mm sample, as seen in the inset of Figure 5.6(b). The resulting ASW is now very

different; a band gap has opened between 16 and 18 kHz resulting in the mode no

longer having a constant group velocity over a wide band.

5.6 Channel Length Dependence

The effect of changing lp on the dispersion of the ASW is seen in Figure 5.6(c-d).

Using the simple analytic equation (3) we predict that nwg at high kx has values of

1.57 and 8.14 for the h = 0 and 10 mm samples respectively. For the h = 0 sample,

the analytical result compares favourably with that from the full modelling shown

in Figure 5.1(b), which gives 1.76. For the 10 mm sample, the full model value of

10.70 agrees less well since the analytic treatment neglects end effects as well as

interactions with the free-space sound. For these two surfaces, vg has been measured

as the group velocity (vg = dω/dk, where ω is the angular frequency) is the gradient

of the mode. It was calculated by fitting a straight line to the near-linear region

of the surface mode. The experimental index can then be calculated as nex = v/vg,

where v is the speed of sound in air. Experimentally vg had values of 192.4 (± 15.1)

ms−1 and 33.4 (± 3.1) ms−1 were found for h = 0 mm, and h = 10 mm respectively,

giving nex values of 1.78 (± 0.14) and 10.28 (± 0.96). The experimental values are in

close agreement with the FEM model of 1.76 and 10.70, respectively. As h increases,

the section of the band diagram where the mode disperses away from the sound
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Fig. 5.6 a-e) Two-dimensional FFT of the experimental field data recorded at a
height of 0.5 mm across the surface, illustrating the dispersion of the surface mode
supported by each of the investigated structures: a) h = 5 mm, w = 1 mm, also
shown are predictions from the FEM model (symbols). b) h = 5 mm, w = 1 mm,
but with the glide-symmetry broken. c) h = 0 mm, w = 1 mm. d) h = 10 mm, w =
1 mm. e) h = 5 mm, w = 2 mm. Note the different x-axis extent in (c) & (d).
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Fig. 5.7 a) Experimental absolute pressure field plot for a frequency 16.2 kHz over
50 mm in the x-direction of the sample. b) Calculation of the decay length from the
absolute pressure field.

line to where it becomes near-linear increases, reducing the bandwidth of the linear

region. As discussed in Section 2.6.2, this occurs as the mode couples more strongly

with free radiation.

5.7 Propagation Length

Also of interest is the propagation length of the ASWs along the x-direction of the

meander surface. Attenuation will occur due to the thermal and viscous boundary

layers within the channel, see Section 2.4. One may characterise the decay of the

ASW as the distance over which the amplitude of the absolute pressure field decays

to 1/e.

In order to calculate the decay length as a function of frequency, the absolute

pressure field at every third x position was integrated in the y-direction, this was to

ensure that the same part of every unit cell was being integrated over. An example of

such a field plot is shown in Figure 5.7(a) for a frequency of 16.2 kHz. The result of

the integrated amplitude as a function of x is shown in Figure 5.7(b). Here, the decay
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Fig. 5.8 Decay length as a function of frequency for the two different widths and h
= 5 mm samples. The vertical dashed line indicates the diffraction edge for the h =
5 mm, w = 2 mm sample.

length is calculated when the maximum value (I0) is reduced to I0/e; this was then

repeated for all frequencies. One should note, that this calculation is only undertaken

when the mode is away from the sound line and only up to frequencies for which the

signal is still well resolved at long distance from the source. To further investigate

the decay length, one sample (v) with a wider channel (w = 2 mm) was fabricated.

The dispersion plot for the ASW on this sample is shown in Figure 5.6(e) with the

inset showing a section of the sample. Notice that the dispersion of the mode curves

away from the sound line more slowly before becoming linear. This arises from

diffractive coupling between adjacent grooves. Similar coupling has been described

by Zhu et al.[148] for the case of isolated cavities supporting zero-velocity (trapped)

modes, however, the coupling in the presented structure becomes dominated by the

direct propagation along the groove as the mode becomes more strongly confined

at higher frequency. This results in the dispersion curve for the channel with the

largest h having the least near-linear region. Figure 5.8 shows the decay lengths as a
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function of frequency for the two different width h = 5 mm samples. With decreased

channel width the attenuation of the surface waves increases; this is expected as the

thermal and viscous boundary layers (∼ 15 µm) now occupy a larger proportion

of the channel. It is clear from the results that the width of the channel affects

the decay length of surface waves, with the narrow channels attenuating the waves

faster. The increased localisation of the pressure fields in the grooves (due to a

larger imaginary component of kz at a given frequency, due to smaller unit cell)

directly results in more energy being absorbed in the thermoviscous boundary layers

of the groove. In addition, the decay of the ASW for the w = 2 mm sample shows a

second, steeper, decay beyond 17 kHz. At these frequencies, the fields are becoming

more strongly localised in the curved ends of the channels. Eventually, nodes in

the pressure field form in the straight section in the channel and the fields begin

to resemble a glide-symmetric array of holes in place of the curved ends. With the

fields in the transverse direction falling to zero over a distance of about 5 mm (the

channel length in the transverse direction) then the characteristic wave dimension in

the transverse direction is of order 20 mm. Thus these localised strong fields may

now give rise to free radiation of this wavelength. This extra loss channel appears to

come in at about 17 kHz. Up until that frequency once the dispersion has deviated

from the sound line the decay length in the wider channel is more than twice that in

the narrower channel.

The progression of the localisation of the absolute pressure field as the frequency

is increased is shown in Figure 5.9 for the h = 5 mm, w = 1 mm sample. The

three frequencies shown are 13.5 kHz (kx << kg/2), 17.5 kHz (kx ≈ kg/2) , and

19.5 kHz (kx > kg/2). As expected, the absolute pressure field for the 13.5 kHz is

interacting with the surface, but the fields are weakly confined to the surface due to

the small imaginary kz. The phase plot in Figure 5.9(d) shows that the surface wave

wavelength is long compared to the unit cell (λsw >> λg). For the absolute field close
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Fig. 5.9 a-c) Absolute pressure fields over 3.5 periods. d-f) Phase maps over 3.5
periods.
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to the Brillouin zone boundary, it is evident that the modes are more confined with a

reduced field strength above the walls of the meander. Interestingly, when the phase

plots are investigated shown in Figure 5.9(d-f), it appears that the modes contain a

component in the y-direction as the fields are following the meander, even though

the only periodicity is in the x-direction. Figure 5.9(c,f) show the fields in the second

Brillouin zone. The wavelength of the surface wave is approaching that of the grating

period corresponding to the second Brillouin zone boundary (λsw = λg), compared to

being half the grating period at the first Brillouin zone boundary. Here, the maxima

in the absolute pressure are located in the curved sections of the meander channel,

with the straight sections having reduced intensity, suggesting that there are now

nodes in the pressure fields within these sections. The 19.5 kHz phase plot shows a

larger y-component of the field than that at 16.5 kHz, this is to be expected as both

the fields are more confined to the channel, and λsw is smaller than the previous case.

Figure 5.10 shows FEM isophase contours at various depths in the meander

channel for h = 5 mm, w = 1 mm, and d = 5 mm. At the bottom of the channel

(z = −5 mm), the contours are straight and orthogonal to the walls of the channel.

The contours remain unchanged until z = −1 mm. Here, the isophase contours in

the straight section are starting to curve; this is shown more prominently at z =

−0.5 mm. On the surface (z = 0 mm), the origin of the warped isophase contours

can start to be seen. The isophase contours no longer have the constraint of being

perpendicular to the walls of the channel, instead the field couples with the free

radiation where the isophase contours are parallel with the straight sections of the

meander channel. This is shown further as the contours are investigated above the

surface. The further away from the surface, the less influence the ASWs have on the

free fields, due to their evanescent nature.
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Fig. 5.10 Isophase contours at various depth within the grooves of a h = 5 mm, w =
1 mm, d = 5 mm meander channel. The surface is at z = 0 mm, and the bottom of
the channel is at z = −5 mm.
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Fig. 5.11 (a) Schematic of the surface of a covered meander unit cell comprised
of an air-filled channel (blue) of depth d = 5 mm in an acoustically-rigid material
(grey), covered by a thin (0.1 mm) acoustically rigid material (red). The depth is in
the negative z direction, and the acoustic surface wave propagates in the positive
x-direction. Here, λg = 4 mm, w = r = 1 mm, and h = 5 mm. (b) FEM model
non-radiative dispersion for different values of h.

5.8 Covered Meander

In the previous section, one characteristic of channels with a large h is the strong

coupling to free radiation, reducing the size of the near-linear region of the dispersion.

A simple way to reduce the strength of coupling is to reduce the area of the surface

which can directly couple to free radiation. One way to achieve this is to place a

thin, acoustically-rigid material over the vertical sections of the meander channel.

Figure 5.11(a) shows such a structure. Note, due to how the thin covering has been

placed the structure maintains its glide symmetry. As the height is increased only

the curved sections of the channels are open; therefore, for all values of h the same

area is open which allows similar coupling to free radiation. The effect of varying h

can be seen in Figure 5.11. All curves show little coupling to free radiation and large

near-linear regions. However, in contrast to the uncovered system, as h is increased
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Fig. 5.12 FEM model non-radiative dispersion for different values of d for a covered
meander of parameters h = 5 mm, w = 1 mm, and λg = 4 mm.

the frequency where the mode starts to disperse lowers substantially. To explore this

further, d will now be varied.

The effect of varying d for covered meanders has been explored. The resulting

dispersion relations are shown in Figure 5.12. The effect of changing the depth

is much more subtle than the uncovered case, as coupling to free radiation is not

as prevalent. Interestingly the frequencies where the mode begins to disperse and

cross the first Brillouin zone boundary are all smaller than the equivalent uncovered

structure. To explore this further, the frequency of the modes at kg/2, have been

calculated as a function of d, for both the covered and uncovered meanders in Figure

5.13. For d > 15 mm, there is little difference between the two systems, suggesting

the standing wave at kg/2 arise from the same condition. Figure 5.14(a-d) shows

the fields for the two systems for d = 19.5 mm. At the bottom of the channel (a,c)

it can clearly be seen that λsw = 2lp. For the systems considered λsw = 32.6 mm;

therefore, fsw = 10.5 kHz. While this is below the frequency which the FEM model
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Fig. 5.13 FEM model of the frequency of the modes at kg/2 for both a uncovered
and covered meanders. Both of parameters h = 5 mm, w = 1 mm, and λg = 4 mm.

in Figure 5.13 predicts of 11.5 kHz, naively the longest lp was chosen by considering

the path length directly along the centre of the channel, Figure 5.15(a). However,

considering the experimental fields shown in Figure 5.9(b), this is not the case. It

can be see that the fields in fact take the shortest route available, being essentially a

straight line from the centre of one curved channels to the centre of the next half a

period away, Figure 5.15(b). With this shorter path, one can assume that near the

first Brillouin zone boundary a lp of 29.1 mm may be used, giving fsw = 11.8 kHz,

which is in better agreement with the model.

For d < 15 mm the frequencies of the two systems start to diverge, with the

uncovered meander increasing in frequency at a faster rate as d decreases. If the

uncovered system is considered for d = 0.5 mm, the FEM model data in Figure

5.13 predicts fsw = 41.2 kHz. Figure 5.14(g-h) shows the fields of the modes at the

bottom and on the surface of the channel. At the bottom of the channel, the field

appears similar to the previously discussed large d system. However, the fields on the

surface show a subtle, but important difference. If we consider kz, for both depths
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Fig. 5.14 Instantaneous pressure fields at kg/2 for d = 1 mm and d = 19.5 mm.
a,c,e,g) Pressure fields at the bottom of the channel (z = −d. b,d,f,h) Fields on the
surface of the channel (z = 0). i-j) Pressure field of a surface in the y-z plane in the
centre of one of the straight channels (x = 1 mm).
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a b

Fig. 5.15 Schematic of different lp in a meander unit cell (red, dotted lines). a) Shows
the path where the wave propagates in the centre of the channel At kg/2, λsw = 2lp.
b) A shorter lp where the wave propagates diagonally across the vertical sections.

of the uncovered meander, it is obvious that the kz is purely imaginary due to it

being an ASW. When d = 19.5 mm, kz is larger than for d = 1 mm, due to the data

being taken at kx = kg/2 and due to the conservation (k0 =
√
k2

x + k2
z , assuming no y

component) of energy, a lower frequency indicates a larger kz component. Therefore,

the fields are more confined in the channel for d = 19.5 mm. The fields in Figure

5.14(d) show a clear reduction in the pressure between the two straight channel. In

contrast, for d = 1 mm this reduction does not exist. From this it is assumed that

λsw = 2λg, resulting in fsw = 42.9 kHz.

For the covered meander where d = 1 mm, the FEM model data in Figure 5.13

predicts fsw = 25.4 kHz. Figures 5.14(e-f) show the pressure fields at the bottom

of the channel and on the surface. It is immediately obvious that the maximum

pressure is located in the centre of the straight channels, reducing in intensity near

the uncovered sections suggesting an open-ended cavity resonance. Figure 5.14(i)

shows a cross-section in the centre of one of the straight channels, which displays

this resonance more clearly. Here, λsw = 2(h+ e.c), where e.c is an end correction
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for the cavity. If one naively assumes e.c = 2 mm, this then gives an estimate of fsw

= 24.5 kHz, which is similar to what the FEM model predicts.

The difference between frequencies of the mode at kg/2 for small d arises from

different standing wave conditions. For the uncovered meanders, the standing wave

condition is λsw = 2λg. For covered meanders, the standing wave condition comes

from an open-ended cavity resonance of the form λsw = 2(h+ e.c). For large d, the

standing wave condition for both systems is λsw = 2lp.

5.9 Conclusions

In this chapter, glide-symmetric metasurfaces composed of space-coiled (meandering)

cavities have been studied and show a broadband reduction in the group velocity

of the supported acoustic surface waves. We have shown that, as the length of the

meander is increased, the group velocity decreases, with values of 192.4 (± 15.1)

ms−1, 55.6 (± 4.1) ms−1 and 33.4 (± 3.1) ms−1 obtained for different length channels.

An increase in the channel width also results in a decreased attenuation of the ASWs

due to the thermoviscous boundary layers occupying a smaller proportion of the

channel. Covering the straight sections of the channels reduces the coupling strength

to free radiation and changed the standing wave condition at kg/2 for small values

of d. For the uncovered meanders, the standing wave condition is λsw = 2λg. For

covered meanders, the standing wave condition comes from an open-ended cavity

resonance of the form λsw = 2(h+ e.c). For large d, the standing wave condition for

both systems is λsw = 2lp. This work may lead to novel structures for controlling

the propagation of acoustic power over such surfaces.

In the following chapter we will move from airborne to underwater acoustics. The

dispersion of surface acoustic waves supported on soft-solid plates structured with
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simple gratings (one groove per period) will be investigated through FEM modelling

and experimentally verified.
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Chapter 6

Modified Coupled-Scholte Waves

on Thin Structured Plates

6.1 Introduction

In this chapter, simple acrylic gratings (one groove per period) will be investigated.

While similar to Chapter 4, these gratings will be investigated in an underwater

environment. The change from airborne to underwater acoustics no longer allows

for the solid to be treated as acoustically-rigid, as the impedances of the acrylic

and the water are similar. This allows for the propagation of acoustic energy along

the solid-fluid interface, with fields decaying in both materials. The dependence

on the characteristics of the surface waves on the structure of the simple groove

will be explored. The dispersion of acoustic surface waves will be characterised

experimentally on a sample of parameters h = 2.70 mm, w = 1 mm, dp = 5.63 mm,

and λg = 4 mm.

In this chapter, the dependence of the dispersion characteristics on the structure

of simple gratings are investigated through FEM modelling and experiments.
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6.2 Background

Acoustic metamaterials for underwater sound absorption have been the topic of

many investigations. One common method to increase the absorption of acoustic

energy, is to use periodic inclusions within a soft material – such as rubber. Ivansson

investigated the sound absorption of a thin viscous-elastic anechoic coating with

spherical air-filled cavities in a 2D periodic array, both theoretically and numerically.

The losses occur due to the multiple scattering by air-filled cavities, and it is shown

that the majority of the losses occur within the vicinity of the cavities. Here, coatings

much thinner than quarter-wavelength were described, this means that the absorber

is much thinner that the incident wavelength used.[153] Leroy et al. investigated the

absorption from a bubble metascreen - a sub-wavelength layer of bubbles immersed

in a soft elastic matrix. The results showed that by using only one layer, broadband

super absorption could be achieved.[92] Recently, pentamode materials (PM) have

been the topic of many studies. These structures were first proposed by Milton and

Cherkaev [154]. They exhibit fluid-like properties since the effective bulk modulus is

orders of magnitude greater than the shear modulus[155]. Due to their non-resonant

nature these materials are inherently broadband in nature. These structures have

been shown to have applications in cloaking [156–159].

The modes supported on a fluid-loaded elastic plate have been the focus of many

studies[160–162]. These modes, sometimes called quasi-Scholte modes may be used

to extract the material properties of the fluid.[160, 163] The dispersion of these

modes appears not to have been experimentally characterised at least to a similar

extent to the band diagrams obtained in the previous chapters. Furthermore, to

the authors knowledge there appears to be no experimental studies on the effect of

adding structure to the interfaces. In this chapter, the effect that structuring one of

the interfaces has on the dispersion will be investigated.
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6.3 Coupled Scholte Waves on Thin Plates

As discussed in Section 2.7.1, a thin solid plate immersed in a fluid will support two

coupled surface modes: a symmetric and anti-symmetric mode. These modes are

coupled Scholte waves, as due to the narrow thickness, the two Scholte modes on both

of the interfaces interact. Here, acrylic plates in water are explored. As discussed in

Section 2.7.1 acrylic can be describe as a soft-solid material. The transverse (shear)

wave speed is less than the speed of sound in water, this means that both modes

exist in the non-radiative domain. The parameters of the acrylic-based material used

in the FEM model are ρ = 1190 kgm−3, E = 4.5 GPa, ν = 0.35 [164]. With these

parameters the wave speed in the acrylic are ct = 1184 ms−1 and cl = 2464 ms−1. One

should note the viscoelastic losses are negligible for Scholte modes propagating along

the plate, as lossless transmission occurs through the plate.[162] Another feature

is the frequency dependant Young’s modulus. Previous measurements have shown

that for the frequency range of interest, a Young’s modulus of 4.5 GPa proved to

be suitable, this is larger than the standard value of E 3.2 GPa literature[164]. For

all the systems modelled within this chapter, the viscous effects of the fluid can be

neglected as at the frequency range of interest (<150 kHz) the Reynolds numbers

are greater than the critical value where they would have to be considered.[165] The

FEM modelling presented in this chapter neglects both the viscoelastic effects of the

solid and the thermoviscous effects of the fluid.’

The effect of the plate thickness (dp) on the dispersion of the modes is shown in

Figure 6.1. It is noticeable that as the plate thickness is increased, the anti-symmetric

mode (solid line) disperses over a smaller surface wavevector (kx) range. For example,

for the case of dp = 1 mm the mode disperses for all values of kx; however, as the

thickness is increased further the mode has almost constant group velocity. For

a plate of dp = 12 mm, the anti-symmetric mode disperses over a very small kx
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k k

kk

a b

c

d = 1 mm d = 3 mm

d = 6 mm d = 12 mm

Fig. 6.1 FEM non-radiative dispersion of acrylic plates of varying thicknesses (dp).
The solid, black line is the water sound line. The dashed, black line is the transverse
velocity of acrylic. The coloured, solid line is the anti-symmetric mode, and the
coloured, dotted line is the symmetric mode.
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range. Considering the symmetric mode, for dp = 1 mm the mode is located at the

sound line up to a frequency of about 80 kHz and disperses at higher frequencies.

As dp is increased, the frequency at which the mode appears to begins to deviate

away from the sound line reduces. When the plate of dp = 12 mm is considered,

it can be seen that the symmetric mode asymptotes to the same constant gradient

as the anti-symmetric mode. This constant gradient is the Scholte interface wave

speed. One may understand why both of these modes approach this line when the

penetration depth of the individual Scholte waves on each interface is considered. It

is known that the penetration depth is on the order of one wavelength (λsw)[34]. Due

to the inverse relationship as ksw increases the surface wavelength decreases then,

once the plate thickness becomes larger than 2λsw, the modes on each interface no

longer interact. Each interface supports a single interface Scholte wave. Therefore,

the modes tend to the Scholte wave velocity of a mode that exists on the interface

between a solid half-space and fluid half-space. As dp is decreased, the ksw at which

both modes tend to the Scholte wave velocity increases. Now, the effect of adding

structure to thin acrylic plate will be explored.

6.4 Surface Acoustic Waves on Monogratings

The introduction of a periodic structure to a plate supporting SAWs leads to inter-

esting characteristics. A shallow simple grating (one groove per period) is explored

to investigate the effect of adding structure to an acrylic plate.

Consider a 6 mm thick acrylic plate with a zero depth 4 mm periodicity, the

expected dispersion diagram is shown in Figure 6.2. The periodicity of the system

introduces diffraction and band-folding about the Brillouin zones. In the unstructured

system, there existed two coupled Scholte modes: one symmetric, and the other anti-

symmetric. However, once periodicity is introduced into a system, there now exists
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Symmetric

Anti-symmetric

Brillouin zone boundary

Sound line

k

Fig. 6.2 FEM model band structure for a 6 mm thick acrylic plate of thickness with
a zero depth 4 mm periodicity. Blue lines represents modes originating for kx = 0.
Red lines represents modes originating for kx = kg. One should note that due to
the infinitesimal perturbation added, the coupling into the diffracted modes will be
infinitely weak.
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x
y

z

Fig. 6.3 Schematic of the unit cell of the monogratings considered in this chapter.
λg is the pitch, h is the groove depth, dp is the plate thickness, and w is the groove
width. The sample is infinite in the y-direction.

two symmetric and two anti-symmetric modes. These additional modes originate

from Bragg scattering. Now, at the first Brillouin zone boundary (kx = kg/2) there

exist two standing waves on the surface. In the first Brillouin zone, there is a

simple crossing between the diffracted anti-symmetric mode (solid-red line) and the

undiffracted symmetric mode (dashed-blue line), in a system with finite perturbation

with real grooves added these two modes would anti-cross and a band-gap would

form. However, when a non-zero perturbation is added, caution needs to be taken as

adding structure may add more degrees of freedom to the surface; therefore, new

modes may be supported.

6.5 Groove Depth Dependence

The structures which will be investigated are monogratings. A unit cell of a mono-

grating of groove height, h, is shown in Figure 6.3. Firstly a monograting with a
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shallow groove is considered, such that h ≪ d, with parameters (h = 0.1 mm), dp =

6 mm, w = 1 mm and λg = 4 mm.

For the shallow grating considered, the band diagram is shown in Figure 6.4(a).

For the lower two modes shown (blue and red curves), as kx approaches kg/2 the

modes behave as expected for an unstructured plate. However, at the region labelled

A, there is an anti-crossing which arise due to mode repulsion. Two modes may

cross only if there exists exact symmetry between the two modes, which allows for

degenerate eigenvalues. However, when the modes are not symmetric, the modes

become coupled, and the degeneracy no longer exists; therefore, the modes ’repulse’

each other. An example of this can be seen in Figure 6.5 where a system where

mode crossing occurs (the structure in Figure 6.2) and one where mode repulsion

occurs (the structure in Figure 6.4). If we compare the total displacement fields

(A =
√
u2

d + w2
d, where ud is the x-displacement, and wd is the z-displacement), of

the points labelled i and ii, to the fields at the same kx for the system presenting

mode repulsion, labelled iii and iv, we see that they are near identical. Here, we

have gone from a system of two modes which do not interact and cross, to an upper

and lower mode, which has split due to the coupling of the two modes. Considering

the fields of the lower mode in the mode repulsion system, we can see that the mode

changes characteristic either side of the crossing, which is a characteristic feature of

mode repulsion.[166].

Next, a change of language is necessary, since unstructured plates are no longer

being investigated - there are no true symmetric and anti-symmetric modes, as the

addition of structure onto only one of the interfaces inherently makes this impossible;

therefore, these modes will be referred to as the modified symmetric (MS) and the

modified anti-symmetric (MA) coupled-Scholte modes. This anti-crossing arises from

the MS mode originating from kx = 0 coupling to the diffracted MA mode originating

from kx = kg. At kg/2, there now occur two additional anti-crossings, as the modes
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Fig. 6.4 a) FEM model of the non-radiative dispersion for a shallow monograting
with parameters dp = 6 mm, λg = 4 mm, w = 1 mm, and h = 0.1 mm. b-e) Total
displacement fields (A =

√
u2

d + w2
d, where ud is the x-displacement, and wd is the

z-displacement). of the modes at the first Brillouin zone boundary (kx = kg/2).
The solid red line in (b) represents the outline of the undisplaced plate. Note: the
amplitudes have been normalised to the maximum values, and also the physical
displacement shown has been greatly exaggerated.
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from kx = 0 couples with the mode from kx = kg, for both the MA modes, and

both the MS modes. Therefore, four standing-wave states now exist at kg/2, two

symmetric-like states and two anti-symmetric-like states.

The normalised total displacement fields (A =
√
u2 + w2) of the four standing

waves are presented in Figures 6.4(b-e). The lower frequency pair relate to the MA

modes, at kx = kg/2 there is a splitting of 297 Hz. The origin of this splitting is

explained by the difference in the displacement fields of the two modes. These modes

differ by a half-wavelength displacement in the x-direction. In Figure 6.4(d) the

maximum displacement in the z-direction occurs at x = λg/2 for the low-frequency

MA mode, where the centre of the groove is located. For the high frequency MA

mode [Figure 6.4(e)], there is a zero in the z-displacement at x = λg/2. The splitting

arises from a mass-loading effect from the added structure, which lowers the frequency

of the mode. For the pair of MS modes, this is also the case. The mode with the

maximum z-displacement at x = λg/2, Figure 6.4(b), is the low frequency MA mode,

while the high frequency MA mode has zero z-displacement at x = λg/2.

It is of interest to increase h and observe how the band structure is perturbed.

By increasing h, the effect of the mass loading will increase, which will increase the

size of the splittings at kg/2. To investigate the effect that varying h has on the band

structure, the modes for gratings of dp = 6 mm, w = 1 mm, λg = 4 mm, and h = 1

mm, 2 mm, 3 mm, and 4 mm are investigated. Figure 6.6 shows the evolution of the

modes as the depth is increased. For h = 1.0 mm there is an additional resonance

in the system compared to the previously discussed h = 0.1 mm. One may notice

that there is an anti-crossing between the red and blue curves (labelled A) which

lowers in frequency as h is increased; also the mode becomes near flat-banded for an

increasing kx range. There is a second anti-crossing (labelled B) between the yellow

and green curves. As h is further increased, it becomes more difficult to identify

each mode just from the band structure. To aid in the identification of the modes,
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h = 0 mm h = 0.1 mm

Mode crossing Mode repulsion
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0 2λgλg 0 2λgλg
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a b

Fig. 6.5 a) Schematic of a dispersion showing mode crossing from a symmetric system
(an unstructured plate). b) Schematic of mode a dispersion showing mode repulsion
for a non-symmetric system (h = 0.1 mm, λg = 4 mm). i-iv) Total displacement
fields (A =

√
u2 + w2, where u is the x-displacement, and w is the z-displacement for

the eigenvalues labelled in (a) and (b). Note: the amplitudes have been normalised
to the maximum values, and also the physical displacement shown has been greatly
exaggerated.
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h = 4.0 mmh = 3.0 mm
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Fig. 6.6 FEM model dispersion for gratings of various groove depths, dp = 6 mm, w
= 1 mm, λg = 4 mm. a) h = 1 mm. b) h = 2 mm. c) h = 3 mm. d) h = 4 mm.
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the fields at kg/2 for the h = 4 mm grating are displayed in Figure 6.7. For the first

mode shown 6.7(a), much of the displacement occurs in the solid pillars between the

grooves. This movement of the pillars is characteristic of a cantilever mode (CM);

however, coupling between each pillar through the supporting plate is shown. A

higher order cantilever mode can be seen in 6.7(c). The MA mode can be seen in

6.7(b) and 6.7(d). The field in 6.7(e) is the MS1 mode. The other symmetric-like

mode (MS2) does not appear in the frequency range shown. Notice how the fields

of mode 6.7(e) are very similar to the fields of the unstructured system shown in

Figure 6.4(c), this is due to them being the equivalent modes in each system.

One method to aid identification of the modes is to observe the frequency at

which the modes cross the first Brillouin zone as the groove depth is increased. The

results from such modelling can be seen in Figure 6.8. The first immediately obvious

feature is that as h increases CM1 lowers in frequency. If the pillars are to be treated

as cantilevers, one may naively assume that the resonance frequency will reduce

proportionally to 1/
√
h4.[167] This mode as h is increased, anti-crosses with MA2,

labelled A. Here, one may have noticed for h = 0.1 mm that the mode where the

maximum z-displacement occurring at x = 0 is the second high-frequency MA mode.

However, for h = 4 mm, the mode with maximum z-displacement occurs at x = 0 is

now the low-frequency MA mode. The anti-crossing with CM1 explains this change,

which shifts the frequency higher than the original, low-frequency MA mode for h =

0.1 mm. Also, MA2 does not anti-cross with the mode but exists in the gap formed

by MA1 and CM1. At kg/2 these modes are standing wave solutions of the same

pair, the difference between the two if that the maximum in the displacement field is

shifted by λg/2. One of the modes disperses little with h. This mode is MS1. It is

understandable why the modes are near dispersionless at small h values, as the fields

of these modes have a node in the displacement field at the location of the pillar.

Therefore, the introduction of the groove barely, if at all, affects the frequency of the
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Fig. 6.7 FEM model total displacement fields for a grating of parameters w = 1 mm,
h = 4 mm, dp = 6 mm, and λg = 4 mm. In order, they are CM1, MA1, CM2, MA2,
and MS1. The solid red line in (a) represents the outline of the undisplaced plate.
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Fig. 6.8 Frequency of the modes at kg/2 as a function of h. MA1,2 are the modified
anti-symmetric modes, MS1,2 are the modified symmetric modes, and CM1,2 are
the fundamental and first order cantilever modes. The modes are labelled for the
displacement fields at h = 4 mm.

standing wave solution. A second anti-crossing labelled B occurs between CM2 and

MA2. It can be seen in the fields shown in Figure 6.7 (c-d) that the fields of these

two modes are somewhat similar. For MA2, the highest displacement is located in

the plate; however, for CM2, the maximum displacement is located in the pillar. For

each of these modes, when the mode is excited a characteristic displacement of the

other mode is also seen. For MA2, the pillars displace similarly to how they displace

for CM2. For CM2, there occurs a small anti-symmetric displacement of the field.

These common features explain the anti-crossing. As h increases, some modes lower

in frequency. Ignoring the cantilever modes, this also happens for MA1 due to the

locations of the displacement anti-nodes. These anti-nodes are located at xa-node =

nλg (n ∈ 0,1,2,3...) because the displacement maxima are located at the pillars, we

observe that increasing the effect of the mass-loading is a lowering of the frequency.
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k k

w = 0.2 mm w = 3.8 mm
a b

Fig. 6.9 a) FEM model non-radiative band diagram for a grating of parameters w =
0.2 mm, dp = 6 mm, h = 3 mm, λg = 4 mm. b) FEM model non-radiative band
diagram for a grating of parameters w = 3.8 mm, dp = 6 mm, h = 3 mm, λg = 4
mm. Inset: a view of the anti-crossing between the red and blue curves.

6.6 Groove Width Dependence

Here we explore the effect of varying just the groove width while keeping the other

parameters fixed at h = 3 mm, dp = 6 mm, w = 1 mm, and λg = 4 mm. Initially, two

gratings will be considered, where w = 0.2 mm and 3.8 mm. In the small width case,

the width of the groove compared to the unit cell width is w/λg = 0.05. The band

diagram for this system is shown in Figure 6.9(a). The lower two modes disperse

similarly to the sample in Figure 6.6(c), where w = 1 mm; however, the CM2 mode

appears at a lower frequency and anti-crosses with the MS1. The yellow and green

curves represent the two MA modes at kg/2. The magnitude of the band splitting is

29.3 kHz. Since the two MA modes maxima displacement are translated by half a

period, it is understandable that the mode where the maxima in displacement are

located beneath the pillar, will be heavily perturbed by the pillar - as the pillar is

now occupying 95% of the backplate. For the MS modes, the gap at kg/2 is 7.4 kHz,
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Fig. 6.10 Total displacement fields for a wide groove grating of parameters w = 3.8
mm, h = 3 mm, dp = 6 mm, and λg = 4 mm. In order, they are CM1, CM2, CM3,
MA1, MA2, CM4, MS1, and MS2. The solid red line in (a) represents the outline of
the undisplaced plate.
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this suggests that due to the symmetry of the displacement, these modes are less

sensitive to the mass-loading effect of the pillars.

For the wider groove, w/λg = 0.95, the band diagram is much more different, as

seen in Figure 6.9(b). In the frequency range there now exist eight modes. Upon

investigation of these modes both the MA and MS modes can be seen at the Brillouin

zone, much smaller gaps exist between the modes than the previous case. For the

MA pair the gap is 180 Hz, and for the MS pair, the gap is 1090 Hz. The reduction

of gap width at kg/2 is easily understood as the narrow pillars reduce the effect of

the mass-loading on the standing wave solutions, hence, creating a smaller splitting

at kg/2. The fields of the anti-symmetric modes at kg/2 are presented in Figure

6.10(d-e), the mode shown in 6.10(d) is the lower frequency mode occurring at 70

kHz, while mode 6.10(e) displays the high-frequency mode at 70.3 kHz. For the

low-frequency mode the pillar is located at an anti-node in the displacement of the

plate. In contrast, for the high-frequency mode, the pillar is located at a displacement

node; however, the pillar is displacing also.

The remaining modes are all cantilever modes of increasing order with frequency,

the three lowest, CM1, CM2, CM3, all anti-cross with MA1 and disperse little in

frequency, hence they are flat-banded. The highest frequency cantilever mode, CM4

disperses more with frequency and anti-crosses with MS1. The two highest frequency

modes are the MS pair at kg/2. The fields in Figure 6.10(g-h) display similar

characteristics to the MA modes, where the pillar for the low-frequency mode (132.1

kHz) is located at an anti-node in the displacement. For the high-frequency mode

(134.1 kHz), the pillar is located at a node. For both the high-frequency MA and

MS mode, the pillar is resonating with the first cantilever mode which is lower in

frequency than the high-frequency modes.

The frequency of the modes at kg/2 as a function of w is presented in Figure

6.11(a-b). As mentioned previously, for small values of w, there exists a large splitting
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Fig. 6.11 a) FEM model of the frequency of the modes at kg/2 as a function of w,
for 0.2 mm ≤ w ≤ 3.5 mm. b) FEM model of the frequency of the modes at kg/2 as
a function of w, for 3.5 mm ≤ w ≤ 3.9 mm.
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at kg/2; however, as w is increased this decreases in size and both modes tend to the

same frequency of 70.3 kHz for w = 3.9 mm. For values of w less than 0.5 mm, four

of the six modes displayed show a decrease in frequency as w is decreased. These

modes are CM1, CM2, MA2 and MS2. The MS modes increase in frequency as w is

increased because the effective thickness of the plate is decreased. As seen in the

unstructured plate, as dp is decreased, the frequency at which the symmetric Scholte

mode asymptotes to the Scholte velocity increases. If this were to be the case for the

MA modes, we would expect a decrease in frequency with increasing w. However,

this only occurs for one of the MA modes, for MA1, the frequencies for the w = 0.2

mm and 3.5 mm samples vary little. With MA2, there is a decrease in frequency as

w is increased. The rate of this decrease is similar to the rate of increase of the MS

modes. This is rather like a previous discussion where the modified Scholte modes

and the cantilever modes exhibit similar displacement fields.

Next, the case where w/λg >0.875 is considered, the band structure is shown in

Figure 6.11(b). Here, there are multiple CM modes of various order decreasing in

frequency as w is increased. This is expected because as λg − w tends to zero, there

are no pillars; therefore, no cantilever resonances are supported. It is interesting that

with increasing order of cantilever resonance, the gradient of the modes increases,

suggesting that the higher-order modes are much more dependent on frequency than

the lower order modes. It can be seen that the CM modes decrease in frequency

with increasing w, and they anti-cross with one of the MA modes.

6.7 Plate Thickness Dependence

As a final model exploration the plate thickness dp will be increased, while the other

parameters will remain constant. Here, the parameters of the unit cell are h = 3

mm, w = 1 mm and λg = 4 mm. Figure 6.12(a) displays the FEM model of the
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frequency of the modes at kg/2 as a function of dp. For values of dp greater than

9 mm, the modes become almost fully independent of the thickness. However, for

values of dp less than 9 mm, all the modes disperse in frequency with decreasing

dp. For the MA and MS modes, it is expected that the anti-symmetric modes will

decrease in frequency, and the symmetric modes will increase in frequency as the

plate thickness decreases. One expects this as an unstructured plate displays similar

behaviour. There is however, an interesting difference between the MA and MS

modes. The gap between the two MA modes remains relatively constant as dp is

varied, this is expected as the mass-loading effect remains constant for MA1 as the

pillars do not change in size. However, the MS modes tend to the same frequency.

This suggests that the structure on one of the surfaces only has a small effect on

the dispersion of these modes. The dispersion of CM1 displays a similar trend to

that of the MA modes. From previous discussions, the field of CM1 is influenced by

MA1, where the backing plate shows a MA1 like displacement. The displacement of

this backing plate will change as dp is varied, which will result in a lowering of the

frequency similar to that of the MA1 mode.

As the value of dp approaches that of h for a particular system, the dispersion

behaves very differently. In this system, h = 3 mm, and the behaviour of the modes

markedly changes for dp < 4 mm. The displacement fields shown in Figure 6.12(b-e)

are for a system where dp = 3.1 mm. The modes shown are the same except for the

lowest frequency mode shown in Figure 6.12(a), as this mode was the CM1 mode.

The modes 6.12(b-c) represent the MA modes, in 6.12(b) this is easily seen as the

neighbouring pillars are at the anti-nodes in the displacement field. The displacement

field shown in 6.12(c), however, is not as clear. If the backing plate between the

two pillars is considered, in 6.12(b) there is a node in the displacement field at x

= λg/2, in 6.12(c) the node is located in the centre of the pillars at x = 0 and λg,

this is characteristic of the two anti-symmetric pairs. If the mode in 6.12(d) is now
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Fig. 6.12 a) FEM model of the frequency of the modes at kg/2 as a function of dp, for
3.1 mm ≤ d ≤ 12 mm. b-e) Total displacement fields for the four highest frequency
modes at dp = 3.1 mm. The lowest frequency (CM1) is omitted as it is addressed
earlier. The solid red line in (b) represents the outline of the undisplaced plate.
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considered, the fields resemble those of the mode in 6.12(c); however, there is a subtle

difference that the displacement field nodes exist at the edges of the plate connecting

the two pillars. It now appears that a new resonance not previously discussed in this

chapter is occurring. This new resonance is a standing wave in the elastic material

connecting the two pillars. This mode is similar to the fundamental mode of a string

fixed at both ends; however, in this system the ends are not fixed and can displace.

The next resonance of the connecting plate is shown in 6.12(e), and nodes exist in

the centre and in the two pillars. The anti-nodes are located halfway between the

node and the pillars; therefore, the pillars are being displaced.

So far, the modes on thin acrylic plate has been thoroughly investigated through

FEM modelling. The dispersion of the modes supported on such surfaces are highly

dependent on the grooves geometry. To verify the previous results, the band structure

of an experimental structure will be characterised using near-field scanning.

6.8 Experimental Sample

The experimental sample was made in house from milled acrylic, the dimensions

of the unit cell of the sample were chosen to be h = 2.70 mm, w = 1 mm, dp =

5.63 mm, and λg = 4 mm. The parameters of the acrylic-based material are ρ =

1190 kgm−3, E = 3.7 GPa, ν = 0.35, Note due to the frequency dependence of the

Young’s modulus; this value was obtained from fitting of the experimental data,

while keeping the other parameters constant to the standard values[164]. Over the

frequency range explored, E is constant. One may notice that this value is smaller

than that given at the beginning of the chapter, this arises from the samples coming

from different sources, hence the discrepancy between the two values. A schematic of

the unit cell is presented in Figure 6.13(a). A thin plate was chosen as the separation

of the MA and MS modes then exists over a large range in kx. The experimental
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sample consists of 101 periods in a 450 × 398 mm plate, where 23 mm has been left

unstructured in the x direction. The grooves extend the whole length of the sample.

As discussed previously, acrylic was chosen due to the transverse wave velocity being

less than the velocity of sound in water. In Figure 6.6(c) the expected dispersion can

be seen. The model displacement fields of the modes at kg/2 are shown in Figure

6.13(b-f), where the modes are CM1, MA1, MA2, MS1, and MS2 respectively.

6.9 Experimental Method

To experimentally measure the non-radiative dispersion where the surface modes

exist, a similar technique was implemented as discussed for the case of air in Section

3.5. A schematic of the experimental setup is displayed in Figure 6.14. Firstly, the

sample was slowly submerged into the water, so that any air bubbles which remained

on the sample were gently removed. The sample was then moved into the centre of

the tank to be aligned with the detector. To align the sample the scanning arm with

the hydrophone (Brüel & Kjær 8130) attached was placed roughly 1 cm away from

the surface. The hydrophone was slowly moved in intervals along the surface in a line,

if the microphone moved toward/away from the sample, the sample was realigned

so that it moved parallel to the surface. Once this initial alignment was complete,

the hydrophone was moved as close as possible to the sample without touching (<

0.5 mm). The source (Neptune Sonar D70) was placed on the unstructured side

of the sample. For this experiment, it was directly behind a small hole (diameter

2 mm) in the sample. This was to ensure that the acoustic energy diffracted and

coupled to the surface modes. The source was part shrouded in absorbing foam to

increase the directivity of the acoustic energy, as shown in the inset of Figure 6.14.

For these experiments, the hydrophone was placed at the centre of the sample. Once

the source was in place, the transducer was aligned to give maximum signal strength,
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Fig. 6.13 a) Schematic of the unit cell used for the experimental sample. b-f)
Displacement field for the modes at kg/2, from lowest to highest in frequency. In
order these modes are: CM1, MA1, MA2, MS1, and MS2.
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Hole
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Sample

Water

Fig. 6.14 Schematic of the underwater experimental setup (not to scale). The sample
is placed in a tank, and the hydrophone is aligned, ensuring that it moves parallel to
the surface at a constant distance away from the surface. Along the red dotted line
is where the scan is performed. The inset shows the source’s placement behind the
sample. The source has been shrouded in absorbing foam to increase the directivity
of the acoustic energy.

directly in front of the source. The hydrophone was then moved so that it was placed

at the edge of the sample so that the whole length of the sample could be measured.

In this experiment it was necessary to perform two separate line scans to cover

the frequency range needed. The only difference between the two experiments were

the pulse length and central frequency. Both experiments used single-cycle Gaussian

enveloped pulses shown in Chapter 3. The low-frequency scan had a pulse length

of 40 µs and 25 kHz central frequency. The high-frequency scan had a pulse length

of 20 µs and 50 kHz central frequency. Each spatial scan was 300 mm in length

(xl) with a resolution (xres) of 1/2π mm. At each position 50 repeats were taken
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and averaged to increase the signal to noise ratio. Temporal, followed by a spatial,

Fourier transforms were applied to the raw experimental data.

6.10 Results

The results of the experiments are displayed in Figure 6.15. Here, the results of the

low and high-frequency scans are separated by the red dashed line. The white-dotted

lines represent the results from the FEM model. For the lowest frequency mode,

at small values of kx the mode displays an anti-symmetric Scholte-like dispersion

(MA1), the mode then anti-crosses with the lowest order cantilever mode (CM1)

and becomes flat until kg/2. In the experimental results, this mode is not visible.

It is very difficult to observe modes with a flat dispersion, as vg = 0; however at

small kx this mode does have a non-zero value of vg. However the lowest frequency

which could be produced with the equipment available was 15 kHz. Thus the signal

strength at these frequencies at which this mode should be found was extremely low.

For this reason we did not find any clear experimental evidence for this lowest order

very slow mode.

The second mode begins at low kx as CM1, it then anti-crosses with MA1 and

becomes linear with a constant vg. As the mode approaches kg/2, vg tends to zero

due to the band splitting at kg/2. This mode can be seen in the experimental data

for small values of kx, the curve in the dispersion due to the anti-crossing (labelled

A) is also seen for positive kx and agrees well with the FEM model. The reason for

the difference between positive and negative directions is due to a small curvature of

the sample. While due care was taken to make the sample planar, it appears that

some curvature was present. This results in the hydrophone in one of the directions

(negative x-direction) moving away from the surface. Notice that a small section of

the band diagram was recorded in the region B. Below this region there is a 10 kHz
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Fig. 6.15 Experimental non-radiative dispersion. The red-dashed line shows the
boundary between the low-frequency and high-frequency scan data. The cyan lines
represent the sound lines of water.
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gap of little experimental data, this is likely due to the source being weak in signal

strength at these frequencies.

The next two modes will be considered together. In region C, the symmetric

Scholte-like mode (MS1) starts to disperse away from the water sound line. Here,

the model is in good agreement with the experimental results. This mode then

anti-crosses with the diffracted anti-symmetric-like mode (MA2). The mode can then

be seen to extend towards kg/2. In the experimental data, for higher kx values than

the label D, the intensity of the mode rapidly decays, due to the diffracted radiation

used to excite the surface not containing high kx components. While this appears to

be similar to the frequency region below B, there is intensity recorded on the water

sound line showing that the source signal was present. To increase the range in kx a

smaller hole should be used; however, by using a smaller hole less signal strength

will propagate through the hole and couple by diffraction to the surface modes. For

MA2, as vg is negative as the mode approaches kg/2, the mode was not measured by

the experiment. A small section of MA2 can be seen near the water sound line in

region E.

Finally, the highest frequency mode presented in the FEM result is the diffracted

symmetric-like mode, MS2. This mode, as with MA2 can not be measured experi-

mentally due to vg being negative.

6.11 Conclusions

In this chapter, the effect of adding structure to the surface modes supported by

acrylic plates has been thoroughly explored through FEM modelling. By adding

periodic grooves to the plate, unusual dispersion characteristics have been shown. The

hybridisation of the modified Scholte-like modes with the cantilever resonances of the

solid pillars has been described. The characteristic of these acoustic surface waves have
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been presented to be highly dependent on the dimensions of the grating used. The

splitting at the first Brillouin zone boundary of the modified anti-symmetric−Scholte

modes was shown to decrease as the width of the pillars decrease, this was expected

as the mass loading effect which creates the splitting vanishes as the pillars become

infinitesimally small. For the modified anti-symmetric−Scholte modes this effect was

much more subtle. As the thickness of the plate becomes similar to the groove depth,

a resonance in the thin plate connecting the pillars was found, showing displacement

fields similar to standing waves on a string bound at both ends.

A monograting of parameters h = 2.70 mm, w = 1 mm, dp = 5.63 mm, and

λg = 4 mm, has been fabricated and measured experimentally through the use of

line scans. A low- and high-frequency scan were used to obtain the frequency range

necessary.
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Chapter 7

Conclusions

At the interface between two different materials, surface, acoustic waves exist. How-

ever in contrast to the wealth of studies for elastic materials, for an interface between

a fluid and an acoustically-rigid material, these waves are rarely observed. A material

can be defined as acoustically rigid if its surface impedance is much greater than

that of the surrounding fluid. By adding periodic structure to an acoustically-rigid

material, acoustic surface waves may propagate on the structured interface. These

acoustic surface waves have too much in-plane momentum to radiate directly into the

fluid half space Thus to obey momentum conservation laws these modes are evanes-

cent in the direction normal to the surface. The evanescent waves do not propagate

energy away from the surface (as long as no defects are present). The characteristics

of acoustic surface waves are highly dependent on the periodic structure which they

exist over. Within this work, acoustic surface waves have been characterised over

various metasurfaces.

The first surfaces explored were simple (one groove per period) and compound

gratings (multiple grooves per period) in Chapter 4. By adding complexity to the

unit cell, new, narrow ’phase resonant’ modes were observed. Phase resonances are

characterised by the resonant acoustic fields in adjacent grooves varying in phase
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by odd multiples of π with strong field enhancement on resonance, and therefore,

the potential for high losses. It was discovered that for a surface with two grooves

per period that as the ratio of the groove depths increases the individual grooves

become less coupled and begin to behave more like isolated resonators. For the

first time, the dispersion of the modes supported by a compound grating with

three grooves per period, where the outer two grooves are twice the width of the

central groove, were investigated experimentally. A sharp minimum at 13 kHz

associated with the excitation of a phase resonance where the outer grooves are out

of phase with the central groove was recorded at normal incidence in the reflectivity

spectrum presenting high absorption. This mode dispersed strongly with frequency.

A second, weaker mode associated with a second phase resonance between the

two outer grooves was also measured. The acoustic surface mode dispersion was

obtained. Frequency-dependent directional acoustic power beaming was observed

experimentally and occurs due to linear regions in the iso-frequency contours where

a range of wavevectors have the same group velocity.

The acoustic surface waves supported by glide-symmetric metasurfaces composed

of space-coiled (meandering) cavities were the topic of Chapter 5. While space-

coiled metamaterials have been used in previous investigations, this chapter presents

the first experimental realisation and characterisation of acoustic surface waves on

meander surfaces. The surface modes supported on such narrow grooved structures

were shown to have broadband, near-linear dispersion (near-constant group velocity)

that was dependent on the length of the meander channels. The broadband behaviour

of these surfaces arises from the glide symmetry of the structure, that removes the

band gap at Brillouin zone boundaries because a degeneracy of modes exists. The

narrow cavities and resonance behaviour of the acoustic surface modes naturally

creates high attenuation as modes propagate along the surface. It was shown that by

increasing the channel width, the attenuation of the modes was reduced. Covering
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the straight sections of the meander channel was shown to reduce the coupling to

free radiation. The standing wave condition at first Brillouin zone for small values of

the depth was explored showing a change in behaviour when the meander channel

was partially covered. It was discovered that for partially covered meander channels,

the standing wave condition now comes from an open-ended cavity resonance (of the

form λx = 2λg) in the structure compared with the resonance condition being the

length of the channel in a unit cell for the uncovered case (λx = 2λg). For large d,

the standing wave condition for both systems is λx = 2lp.

In underwater acoustics, the solid materials previously considered acoustically-

rigid can no longer be described as such. A soft solid-fluid system is one where

the transverse velocity of the solid is less than the longitudinal velocity of the

fluid. Such a system is acrylic surrounded by water. In a flat soft-solid plate a

pair of surface acoustic waves (coupled-Scholte waves) exist in the non-radiative

dispersion. Structuring such plates hybridises the coupled-Scholte modes with the

locally resonating structures. In Chapter 6, the effect of adding structure to soft-solid

plates on the characteristic of acoustic surface waves was investigated. Structuring

one interface of the plate with a simple groove grating (one groove per period) induces

cantilever resonances in the pillars. These cantilever resonances hybridise with the

coupled-Scholte waves to form modified coupled-Scholte waves. The characteristic of

these acoustic surface waves was shown to be highly dependent on the dimensions of

the grating used. The splitting at the first Brillouin zone boundary of the modified

anti-symmetric−Scholte modes was shown to decrease as the width of the pillars

decrease, this was expected as the mass loading effect which creates the splitting

vanishes as the pillar become infinitesimally small. As the thickness of the plate

becomes similar to the groove depth, a resonance in the thin plate connecting the

pillars was found, showing displacement fields similar to standing waves on a string

bound at both ends. A monograting of parameters h = 2.70 mm, w = 1 mm, d

167



Conclusions

= 5.63 mm, and λg = 4 mm, was fabricated and measured experimentally using

pressure field line scans. The experimental dispersion of the surface modes gave good

agreement with the FEM model. However, the low-frequency mode could not be

measured due to equipment limitations, and high-momentum waves were not able to

be measured. This chapter presents the first experimental realisation of the acoustic

surface waves on an underwater grating and the discussion of the hybridisation of

the Scholte-like modes with the structural resonances of the grating.
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Chapter 8

Future Work

8.1 Introduction

In this chapter a set of modelling studies and a further experimental study are

outlined. These are essentially extensions of the previous work and could form

the basis of more in depth work. In the Chapter 6, the surface acoustic waves

supported by an underwater acrylic plate with a simple monograting on one of the

interfaces was investigated. In this chapter, this work will be expanded to plates

where both of the interfaces are now structured. Two different systems will be

discussed. Firstly, a system where the structure is symmetric with respect to the mid

plane will be considered, following that a glide-symmetric system will be explored

where the structure on one interface is displaced by half a pitch. It is proposed that

by implementing glide-symmetry into the system, will lead to a degeneracy of the

modes at the first Brillouin zone boundary which may allow broadband, slow surface

waves to exist on the surface.

The next preliminary study expands the previous 1D grating work to 2D or

bigratings in both soft- and hard-solids. It is expected due to the extra degree of
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Fig. 8.1 Unit cells for acrylic plates where both interfaces are structured with simple
gratings. Here, λg = 4 mm, d = 6 mm, h = 2.5 mm, and w = 1 mm a) The
structure is symmetric about a mirror plane through the centre of the plate. b) Glide
symmetric system where there is a translation of λg/2 and a reflection about the
mirror plane.

freedom present in the 2D systems, that additional, torsional modes will be supported

on such surfaces.

Finally, preliminary measurements for a method to obtain the reflectivity spectrum

of samples using angle scan measurements will be shown and discussed.

8.2 Structured Underwater Plates

In the Chapter 6, simple underwater acrylic gratings were investigated. For those

gratings, only one of the interfaces was structured. In this section, acrylic plates

where both of the interfaces have been structured will be investigated through FEM

models.
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Fig. 8.2 a) FEM model dispersion of the non-glide symmetric system. b) FEM model
dispersion for the glide-symmetric system.

The unit cells for the two systems which will be investigated are shown in Figure

8.1(a-b). For the first system in 8.1(a), each interface has been structured with a

simple monograting of parameters λg = 4 mm, d = 6 mm, h = 2.5 mm, and w =

1 mm. The structure is symmetric about a mirror plane at the centre of the plate.

This system will be described as the non-glide symmetric case. The second system

in 8.1(b) shows a glide-symmetric system of the same parameters, here the structure

on each interface is displaced by half a pitch with respect to the opposite interface.

The idea behind choosing these two structures was to compare the effect of adding

structure to both interfaces to a case which possesses glide symmetry. It has already

been shown in Chapter 5 that the dispersion of glide-symmetric surfaces leads to the

degeneracy of modes at the first Brillouin zone boundary.

If at first the dispersion presented in Figure 8.2(a) for the non-glide system

is considered, similarities can be seen with the single structured interface system.

The lowest order mode, indicated by the solid blue line, shows the crossing of the

MA1 mode with one of the CM modes. However, in this system, there now exists
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two cantilever modes for every cantilever resonance, due to both interfaces being

structured. The displacements for these two modes are shown in Figure 8.3(a-b).

In 8.3(a) the cantilever resonances on each face are anti-symmetric around the

mirror plane, while in 8.3(b) they are now symmetric about the mirror plane. In

contrast to the single structured interface system, there is a diffracted section of the

cantilever dispersion around A. The remaining dispersion curves are similar to the

systems in the Chapter 6, where there are a pair of anti-symmetric modes with the

field configuration shown in Figure 8.3(c-d). There is also a symmetric pair shown in

Figure 8.3(e-f).

The dispersion of the glide-symmetric system is displayed in Figure 8.2(b). The

effect of the glide symmetry is immediately obvious, by comparing this dispersion

with the non-glide system. At the first Brillouin zone there now exist three pairs of

degenerate modes: one for the cantilever modes, Figure 8.4(a-b); one for the modified

anti-symmetric modes, Figure 8.4(c-d); and the final pair relates to the modified

symmetric pair, Figure 8.4(e-f). For each of the three cases, the degeneracy arises

because the two standing wave solutions with periodicity twice the grating pitch

have identical field distributions when considered from the opposite faces. Thus they

are the same energy. This is clear in Figure 8.4 which illustrate that by translating

one by half a period and reflecting along the mirror plane, the field distribution of

the other mode in the pair is obtained. A further effect of the glide symmetry is

that for both the cantilever and anti-symmetric pairs of modes, around kg/2 the

dispersion becomes near-linear, due to the removal of the band gap. A similar feature

was shown in Chapter 5, albeit the linear region of the dispersion was over a much

broader frequency range.

In future such samples may be manufactured and their dispersion verified ex-

perimentally, as to the authors knowledge direct measurement of the dispersion of

surface acoustics wave on a glide-symmetric metamaterial has not yet been done.
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Fig. 8.3 Total displacement (A =
√
u2 + w2) of the modes supported on an acrylic

plate with grooves on both interfaces. Note: A has been normalised to the maximum
value. a) anti-symmetric cantilever mode, b) symmetric cantilever mode c-d) Modified
anti-symmetric coupled Scholte modes. e-f) Modified symmetric coupled Scholte
modes. The physical displacement shown has been exaggerated for clarity.
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Fig. 8.4 Total displacement (A =
√
u2 + w2) of the modes supported on an acrylic

plate with glide-symmetric grooves. Note: A has been normalised to the maximum
value. a) anti-symmetric cantilever mode, b) symmetric cantilever mode c-d) Modified
anti-symmetric coupled Scholte modes. e-f) Modified symmetric coupled Scholte
modes. The physical displacement shown has been exaggerated for clarity.
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8.3 Underwater Bigrating

So far, we have only considered underwater acoustic structures where the periodicity

is in one direction. Now the non-radiative dispersion of bigratings (perpendicular

intersecting grooves) on soft-solid and hard-solid metasurfaces will be explored.

The unit cell used in this initial investigation is presented in Figure 8.5. Here, in

both the y and x directions 1 mm wide grooves of 3 mm depth, are spaced 5 mm

apart. Creating a surface of perpendicular intersecting grooves. The resulting surface

is a square array of pillars on a backing plate. Here, λg = 6 mm. The soft-solid

material used is acrylic of parameters ρ = 1190 kgm−1, E = 4.5 GPa and ν = 0.35.

For the hard-solid aluminium was chosen with ρ = 2700 kgm−1, E = 70 GPa and ν

= 0.35.

The band diagram for both the acrylic and aluminium system are shown in Figure

8.6(a-b). It is immediately clear from initial observations that there is an abundance

of modes for acrylic, while the band structure of aluminium present three modes

over the frequency range displayed. Due to the lower ρ and E, the pillar resonances

3 mm

3 mm

5 m
m

5 mm

6 m
m

6 mm

xy

z

Fig. 8.5 The unit cell for the underwater bigrating investigated. The structure
comprises of a 5 mm × 5 mm × 3 mm pillar on a backing plate of a 6 mm × 6 mm
× 3 mm.
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Fig. 8.6 The band structure for both acrylic (a) and aluminium (b) bigratings. The
inset in (b) shows the contour in momentum space for which the band structure was
plotted. Here, kxn and kyn are the wavevectors normalised to kg/2 in the respective
direction. For acrylic, the lowest ten eigenvalues were solved.
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occur at a lower frequency than in aluminium. One should note that in the model

for the acrylic system that the lowest ten eigenvalues were solved. Now, we will

consider some of the modes. For mode a the displacement fields in Figure 8.7(a)

show an anti-symmetric wave propagating in the backing plate in the x-direction;

however, the fundamental cantilever mode is oscillating in the y-direction. Now

we can see a relatively flat mode which couples weakly to the sound lines. At the

X and M points, this mode is labelled b and c respectively. By investigating the

total displacement field, this mode can be identified as a torsional mode seen in

Figure 8.7(b-c), where the pillar is oscillating in a twisting motion about the centre,

and there is little displacement in the backing plate. In the one-dimension groove

structure seen in Chapter 6, these two modes were not excitable as the pillars are

infinite in the y-direction.

At the X point for the aluminium bigrating, there are two modes within the

frequency range displayed. The lower in frequency, located around a in Figure 8.6, is

the fundamental cantilever mode, where the pillar oscillates in the same direction

as the propagating wave in the backing plate. The second mode, located at b, is

one of the modified anti-symmetric Scholte modes. At the M point, the mode of the

fields at c, show that this mode in Figure 8.7(d) is the fundamental cantilever mode

oscillating in the y-directions, while the mode at d is the fundamental cantilever

mode oscillating in the x-directions.

Clearly there are many further modes one could discuss and an exploration of

such bigrating structures would need to explore the influence of the variation in

groove depth and pitch. Further possibilities lie with hexagonal gratings (essentially

trigratings) with three sets of grooves at 60 degrees to each other. Such structures

may well exhibit novel properties such as Dirac points if correctly fabricated. There

is here much that could be done.
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Fig. 8.7 Total displacement fields for selected modes at various points on the band
structures in Figure 8.6. a-c) Acrylic modes. d-e) Aluminium modes. a-b) Total
displacement fields at the X point. c-e) Total displacement fields at the M point.
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8.4 Radiative Scan Measurements

In this section, a potential experimental technique for obtaining the radiative dis-

persion of metasurfaces will be described. In this method, a point source is placed

at some distance above a sample. Then a two-dimensional scan of the detector

(Brüel & Kjær Probe Microphone Type 4182, with a tip diameter of 1.24 mm) in

the region between the source and sample is performed. Here we emphasise that the

probe microphone was placed such that it did not obstruct the incident radiation.

A schematic of the setup is shown in Figure 8.8. Here, in the x-z plane, the source

emits semi-circular wavefronts (shown as the blue lines). In the desired scan region,

these wavefronts propagate in the negative z-direction. Due to the spherical nature

of the point source, the incident radiation contains sound waves of multiple angles

of incidences (θ). When the wavefronts reach the sample, they are reflected and

propagate in positive z, shown by the red lines in 8.8. Depending on the sample of

interest, the reflected wave will be attenuated at some angles at some frequencies,

which should allow us to obtain the reflectivity spectrum.

Two different methods of obtaining the reflectivity spectrum just for near normal-

incidence radiation will be presented. The first will be a self normalisation where the

incident signal normalises the reflected signal. The second involves a second surface

scan where a mirror replaces the sample so that the sample’s reflection data can be

normalised to that of the mirror.

In order to test this method, we used the phase resonance sample used in Chapter

4, as the near normal-incidence reflectivity spectrum has already been characterised

via the method presented in Section 3.4. The time-domain data for a two-dimensional

surface scan is shown in Figure 8.9. For the measurement shown, a source was placed

270 mm above the sample surface. The scan region is 580 mm × 260 mm, and xres

= zres = 5 mm. One should note that the x-length of the sample is less than of
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Fig. 8.8 Schematic of the experimental setup used. Here, a point source is placed
above a sample. Due to the point-like nature of the source, spherical wavefronts are
emitted and propagate in the −z direction (shown by the blue lines). The sound
waves then interact wit the sample at z = 0 and reflect in the +z direction. By using
a point source, multiple θ can be measured instantaneously.

the scan area, at 450 mm. However, absorber was placed next to the sample to

reduce unwanted reflections. In order to achieve a point-like source, a 2 mm thick

aluminium plate of dimensions 450 mm × 450 mm with a 5 mm hole in the centre

was placed above the scan region. To avoid standing waves forming the source was

placed close to the plate surface. The pulse emitted from the speaker propagates

through the hole and diffracts on the opposite side resulting in spherical wavefronts.

The incident radiation can be seen in Figures 8.9(a-c), while the reflect pulse and the

ringing incident radiation are shown in Figures 8.9(d-f). Unexpectedly, in Figures

8.9(a-b), faint wavefronts can be seen to travel along the bottom of the plate at a

velocity faster than the speed of sound. These are radiative plate modes of the thin

aluminium plate.

Using the Fourier analysis presented in Section 3.6, the iso-frequency contours

presented in Figure 8.10 can be obtained. Considering the radiative dispersion for

the experimental sample obtained in Chapter 4, we know that as the frequency of
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Fig. 8.9 Time-domain experimental results, showing the propagation of sound waves
from the source located at z = 270 mm. Here, the pressure field has been normalised
to an arbitrary value so that the reflected waves could be shown more clearly. Note:
due to how the scans are performed, x = 0 is located at the extreme left of the figure.
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Fig. 8.10 Experimental iso-frequency contours for various frequencies of a radiative
scan for the phase resonance sample seen in Chapter 4. The dashed blue line in (a)
at kx = 0 represents normal-incidence and normal reflection data. The dashed white
in (a) at kz = 0 represents grazing incidence. The white arrows in (a-c) represent
the minimum related to mode A of the phase resonant sample (see Chapter 4). The
dashed white line in (d) is the sound line (k0 =
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z , in two-dimensions). Note

that the data has not had a window function applied as this reduced the resolution
of the peaks.
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plane. a) Incident radiation. b) reflected radiation.

the exciting radiation is increased to that of the resonance frequency of mode A (two

outer grooves out of phase with the central groove), the angle of incidence needed to

excited the mode goes from off-normal to near normal-incidence. The iso-frequency

contours show this feature, which has been highlighted in the reflected data (kz >

0) by the white arrows in Figures 8.10(a-c). It can be seen that as the frequency

increases, the kx component of the minima reduce until at 12.85 kHz the two minima

meet at kx = 0, which agrees with what was discussed in Chapter 4. One obvious

limitation of this method presents itself within the iso-frequency contours, the angle

range of the reflected radiation is poor, θmax ≈ 25◦. This is remedied by moving the

source closer to the sample; however, this reduces the resolution in kz.

From here onwards, we will only consider near normal-incidence. If we consider

data along at kx, we can see in the Fourier spectrum we obtain two peaks at ±kz = k0.

By integrating over the widths of these peaks for all frequencies, we can obtain the

incident and reflected signals as a function of frequency. Figure 8.11 shows the result

for both the phase resonance sample and also a metallic plate which acts as a mirror
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Fig. 8.12 Experimental near normal-incidence reflectivity (black-solid line), obtained
from the self-normalisation method, here, the reflected radiation was normalised
to the incident radiation. FEM model of the expected response from the phase
resonance sample (red dashed line).

for normalisation. The incident spectrum for both cases in 8.11(a) are similar. In the

reflection data, there is a clear difference between the sample and plate measurement

around 13 kHz in the sample data.

The near normal-incidence reflectivity of a self-normalised measurement can be

seen in Figure 8.12. It is immediately apparent that there is a significant difference

between the experimental and FEM model data, being that reflectivity is too low

over the frequency range shown, only reaching a maximum value of 0.55. However,

the minimum associated with the phase resonance can be seen at 12.9 kHz. One

possible reason for the low reflectivity is that the analysis ignores the third-dimension

(y-direction) completely. One possible explanation for this is the detector placement.

If the microphone was placed so that the probe obstructed the path of the incident

radiation, less radiation would reach the surface to be reflected back onto the

microphone. Therefore, there would be a reduction in intensity between the incident

and the reflected signals. There is also interference effects present in the data, shown
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Fig. 8.13 Experimental near normal-incidence reflectivity (black-solid line), obtained
from the mirror normalisation method, the reflected radiation from the sample was
normalised to the reflected radiation from a mirror. FEM model of the expected
response from the phase resonance sample (red dashed line).

by the fast oscillation in the data. This interference likely arises from standing waves

forming somewhere in the experimental setup.

The near normal-incidence reflectivity of the second method, where a mirror

measurement normalises the reflected wave is shown in Figure 8.13. As with the

self-normalisation method, the minimum at 12.9 kHz can be seen. However, the

maximum reflectivity now is greater than unity; this is due to some strong interference

in the measurements. It was shown in the previous case that standing waves are

able to form in the system leading to fast oscillations. When performing both scans,

the distance from the source to the sample surface must remain unchanged. Any

difference in distance will render the normalisation ineffective and present additional

features. It appears in this data, that while the scan was performed in the same plane,

the source to sample distance has changed ever so slightly. We can see in Figure

8.11(b) that in both the sample and plate measurements, there is a fast oscillation

present. If these fast oscillations occur at the same frequencies (which would happen
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in the ideal case), during the normalisation process, they will cancel. However, when

there is a slight difference between the two measurements, the oscillations occur

at different frequencies for each measurement. Therefore, they now constructively

and destructively interfere, which we see as the strong oscillations in Figure 8.13.

In airborne measurements, one solution to remove this potential variation between

sample and mirror measurements would be to use the unstructured side of the

sample as the mirror; this is possible as the materials used for sample fabrication are

acoustically-rigid. However, this was not possible with the phase resonance sample

due to the reverse of the sample being uneven in texture.

8.5 Conclusions

In this chapter, a few preliminary models and experiments have been shown to extend

the work presented in this thesis.

Following on from the result in Chapter 6, the effect on the band structure of

adding periodic structure to both interfaces was explored. By introducing glide-

symmetry into the system, degenerate modes at the first Brillouin zone boundary

were shown to exist.

Similar to the previous idea, the effect of adding 2D periodic structure to create

a bigrating onto one of the interfaces of underwater plate has been explored. Both

acrylic (soft) and aluminium (hard) bigratings were modelled FEM showing a vast

difference in the band structures. Due to the additional freedom, torsional modes of

the pillars are now supported on the surface.

Finally, a technique for obtaining the reflectivity spectrum (radiative dispersion)

through scanning techniques was suggested. Using two separate normalisation meth-

ods: one self-normalisation and the other a mirror normalisation, initial experimental

188



8.5 Conclusions

results were shown for near normal-incidence radiation. However, interference effects

were dominant in both sets of measurements.

It is clear from these three examples of possible studies that there are many more

which could be undertaken. For example, can one utilise 2D meander surfaces to give

much more isotropic slow-wave structures. What happens if we use partially covered

meander structures with tapered tape covering? Will this give us ’rainbow trapping’

of sound? Could this easily be achieved by fabricating a meander structure where the

height varies linearly along the sample? Is it possible to create slow-sound acoustic

waveguides by structuring either side of the channel with meander structures, or is it

merely that the thermoviscous losses would dominate attenuating the sound wave

rapidly? Can we create phase resonances in a structured underwater plate by having

multiple different sized pillars per unit cell? Also, what happens to the dispersion

relation if the backing plate has both soft and hard-solid pillars? Do the pillars

act independently or do the pillars couple through the backing plate? All of these

questions have yet to be answered, and could potentially lead to exciting discoveries

for acoustic metamaterials.
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