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Abstract

The exploration of acoustic metasurfaces presented in this Thesis involves the
characterisation and verification through finite element method (FEM) modelling and
experimentation of a range of different acoustic metasurfaces. In airborne acoustics,
the patterning of sub-wavelength structures on acoustically-rigid material provides
the boundary condition that enables acoustic surface waves to exist. These surface
waves exist purely in the fluid layer above the rigid material and propagate parallel
to the surface, and are evanescent perpendicular to the surface.

The first study explores the radiative and bound acoustic modes supported by
a rigid grating formed of three same-depth, narrow grooves per unit cell. One of
the grooves is twice the width of the other two, forming a ‘compound’ grating.
The structure supports so-called ‘phase’ resonances where the phase difference of
the pressure field between the grooves on resonance varies by multiples of 7. The
dispersion of these modes has been measured experimentally by monitoring the
specularly reflected signal as a function of the angle of incidence. In addition, by
near-field excitation, the dispersion of the non-radiative surface modes has been
characterised. The results are compared with the predictions of a finite element
method model.

The acoustic surface waves supported by hard surfaces patterned with repeat-
period, meandering grooves are next explored. The single, continuous groove forms a
glide-symmetric surface, inhibiting the formation of a bandgap at the first Brillouin-

zone boundary. Consequently, the acoustic surface waves exhibit an almost constant,



sub-speed-of-sound, group velocity over a broad frequency band. The dispersion
of these surface waves has been experimentally measured by a near-field scanning
technique and compared to finite element modelling. In addition the influence of
covering the straight sections of the channels has been explored. Covering the channel
reduces the coupling strength to free radiation which has been shown to significantly
alter the standing wave condition at the first Brillouin zone for small channel depths.
For such structures, the standing wave condition now comes from an open-ended
cavity resonance.

In the final results chapter, underwater acrylic plates are investigated. Due to the
change in the fluid, the solid may no longer be regarded as being acoustically-rigid,
and acoustic energy propagates into the solid. Because of this, even on a flat surface,
surface acoustic waves, Scholte waves are found at the interface of the solid and fluid.
Here in particular, so-called soft solid (acrylic) plates are investigated where the shear
velocity of the solid is less than the speed of sound in the fluid. The effect of adding
structure to thin acrylic plates has been thoroughly explored through FEM modelling.
By adding periodic grooves to the plate, unusual dispersion characteristics have been
shown. The hybridisation of the modified Scholte-like modes with the cantilever
resonances of the solid pillars has been described. The effect of varying grating
parameters on the band diagram has been explored, showing that the dispersion
of the modes is highly dependent on the structure. Experimental verification was

performed on a simple grating (one groove per period) showing good agreement with

the FEM model.
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Chapter 1

Introduction

1.1 Historical Background

Wave propagation in periodic structures has been the topic of studies in many areas
of physics. Perhaps one of the most important pieces of literature on periodic systems
is " Wave Propagation in Periodic Structures’ by L. Brillouin.[1] In this work, Brillouin
described the mathematics of wave propagation for a variety of physical systems,
from solid state physics to the propagation along electric lines. Brillouin described
the propagation of waves in periodic structures using the Floquet theorem|[2] for 1D,
2D and 3D periodic structures. The concept of the Brillouin zones was introduced
that describes the periodicity in momentum space due to the periodic lattice in real
space. This work forms a fundamental basis for all related work on periodic systems.

The study of periodic structures in acoustics is analogous to quantum mechanical
band theory of solids, where a periodic arrangement of atoms interacts with electronic
waves creating a band structure, for acoustics these waves are phonons. From this,
the acoustic equivalent of phononic crystals was proposed by Sigalas & Economou in
1993[4]. In this paper, the band structure is investigated for both acoustic and elastic

waves. The structure explored comprised 2D arrays of infinite cylinders embedded
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Fig. 1.1 a) Organo by Eusebio Sempere the sculpture used in the investigation. b)
Sound attenuation as a function of frequency, the inset shows the incident wavevector.
The labelled arrows show the expected sound attenuation maximum for a given
crystal plane. Image taken from Martinez-Sala et al.[3]

in a host material, in both rectangular and hexagonal arrangements. Experimental
confirmation of the band gaps predicted was by Martinez-Sala et al., where the sound
attenuation of acoustic waves propagating through a sculpture consisting of a sub-
wavelength array of metallic cylinders was explored.[3] The sculpture and results are
presented in Figure 1.1(a-b). Here, the results for an incident wavevector in the [100]
direction are presented. The peak at 1670 Hz is attributed to Bragg reflection from
the regular lattice and the formation of the first bandgap. Numerous other works
have also investigated sound attenuation by sub-wavelength periodic structures.[5—
8]. There have been many phenomena investigated using sub-wavelength periodic
structures such as guiding of acoustics waves, where transmission through both linear
and bent defects have been studied[9-13] as well as refractive acoustic devices, where
the periodic structures are implemented to create lenses[14-16].

Sub-wavelength structured materials for controlling sound, acoustic metamaterials,
have been the topic of an increasing number of investigations. In 2000 the first
artificial acoustic metamaterial was designed by Liu. et al.[17] This metamaterial
consisted of rubber-coated lead spheres arranged in a simple cubic structure, presented

in Figure 1.2(a). This system is analogous to a mass-spring system, the solid lead



1.1 Historical Background

20 T T ST

g T % ]
"-0.4_ __ﬁr._._
Ve e w kMM T R

Smm

Coefficient

Fig. 1.2 a) Cross-section of the unit to form the metamaterial. A 5mm lead sphere
coated by a 2.5 mm layer of silicone. b) A sonic crystal comprised of 8 x 8 x 8 units.
c¢) Calculated (solid line) and measured (circles) amplitude transmission coefficient
along the [100] direction. d) The band structure for a simple cubic array of the
coated spheres. [17]

sphere is the mass while the rubber acts as the spring. In this metamaterial, the
locally resonant and sub-wavelength nature creates an unconventional band structure
having flat dispersion curves presented in Figure 1.2(d) that form the lower boundaries
of two band gaps. By investigating the frequency-dependent effective bulk modulus
(Kenr), they found that at frequencies close to resonance, the effective modulus turned
negative. One can see from the refractive index (n? = peg/Keg, where p is the
effective density) that when K. is negative, n becomes complex. The imaginary
component of n means the wave decays exponentially as it enters the material and
band gaps form.

Acoustic metamaterials may also take many other forms. One such form is a
loaded waveguide, where a one-dimensional array of Helmholtz cavities are attached

along the length of the waveguide, as illustrated in Figure 1.3(a). Fang et al.
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Fig. 1.3 a) Open and closed cavity resonators can be used to design a metamaterial
with Keg < 0, per > 0. b) A membrane-type metamaterial displays Keg > 0, peg < 0.
¢) By combining the previous two examples a double negative metamaterial where
Keg < 0, per < 0 may be created. Here, the red lines represent the location the
membranes.

explored the acoustic response of loaded waveguides in 2006.[18] They found that at
the collective resonance frequency of the cavities, a low-frequency stopband occurred.
The formation of this stopband was identified to coincide with when K. goes
negative. The frequency at which the stopband exists may be altered by changing
the size of the cavities attached. This allows for loaded waveguides to have a low
resonant frequency, and to reflect sound until K. returns to be positive. Lee et
al. investigated negative peg by designed a membrane-type metamaterial where
membranes are placed in parallel in a tube structure, similar to Figure 1.3(b). They
experimentally recorded negative p.g by directly measuring the negative acceleration
of the fluid.[19]. A system where K.g and peg are both negative was explored by
Lee et al. who expanded their previous work to realise double negativity,[20] using a
similar structure as in the previous study; however, there are now small holes that

act as cavities giving negative K as presented in Figure 1.3(c).
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Fig. 1.4 a) Schematic of the structure used by Liang et al. The red-dashed line
represents the border of the primitive unit cell. The blue arrows represent the
propagation path of the sound. b) The effective parameters as a function of normalised
frequency. The grey region represents a band gap in the band structure around the
I’ point shown in the inset. Image taken and modified from [21]

The previously discussed single and double negative metamaterials have all used
resonating elements that give rise to the negative behaviour. Liang et al. studied a
metamaterial based on the coiling of space into labyrinthine structures presented
in Figure 1.4(a).[21] By using space coiled elements in the effective medium regime
(where the wavelength of excitation is much greater than the size of the structure, so
the structure is non-resonant and behaves like a material), band folding occurs, and
the material behaves double negative. Figure 1.4 shows the effective parameters as
a function of normalised frequency. The grey region represents a band gap formed
at the I' point, for the frequency range of 0.18-0.218 both p.g and K¢ are negative.
Above the lower edge of the band gap peg turns positive, resulting in a complex n.
The upper edge of the band gap is formed when K. turns positive; therefore, both
parameters are positive and n is real allowing the propagation of sound. At specific
frequencies the acoustic energy experiences a negative effective refractive index (n),

allowing for negative refraction to occur. This was shown numerically.
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Fig. 1.5 a) Composite unit cell of 16 different length space-coiled resonators, with a
layer of sponge on the surface. b) Layout of the channels of the experimental sample.
¢) The absorption spectrum of only the composite resonators (blue) and only the
sponge layer (green). d) The absorption spectrum of the composite structure with
the sponge layer placed above the resonators. The coloured solid lines represent
theory, and the coloured circles represent experimental data. 345 Hz is the cutoff
frequency of the metamaterial. Image from [22].

One substantial issue with creating resonant sub-wavelength metamaterials is the
effect of thermoviscous losses in narrow channels.[23-25] These losses potentially can
strongly attenuate sound waves as they propagate through the metamaterial pre-
venting use in practice. However, for acoustic metamaterials designed for absorption,
these losses are beneficial.

The effect of the thermoviscous losses on periodic structures has been extensively
explored. C. Bradley described the propagation of linear, dissipative time-harmonic
waves in periodic waveguides. It was shown that if the boundary conditions describe
the dynamics of the thermoviscous effects, then a Floquet-like theorem can be applied,
and the waves are described as Bloch waves. For a system consisting of a waveguide
with rectangular branches, it was shown that the resulting block wave numbers have
both a real and an imaginary component. The dispersion diagram of the structure is
presented in Figure 1.6. The regions in which the wave number is real are known as

pass bands, and the regions where the wavenumber is complex are known as stop
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Fig. 1.6 The dispersion diagram of a waveguide with rectangular side branches inves-
tigated by Bradley, here both the real and imaginary components of the wavevector
are presented. The blue shaded regions represent Bragg stop bands. The red shaded
region represents a scatterer resonance stop band. Image taken and modified from
[26].

bands, which are associated with exponentially attenuated Bloch waves. Bradley
describes two conditions in which a stop band is likely to occur. The first is known
as the Bragg stop band condition, nA;, = nk/2, where )\, is the period, and k is
the wavevector in the direction of periodicity. The second referred to as scatterer
resonance stop bands occur due to the resonance of the rectangular branches of the
waveguide. In the dissipative system the previously sharp edges of the stop bands
are smoothed out. [26] Furthering the study of thermoviscous effect in periodic
structures, Sugimoto and Horioka described the dispersion characteristics of an array
of Helmholtz resonators connected to a waveguide. The authors noted that the derived
dispersion relation exhibits stop bands in the frequency domain; these stop bands
inhibit the propagation of acoustics waves through the structures even in the lossless

case. The stopbands are attributed to the resonance and Bragg reflection, which

occurs due to the periodicity of the system. Outside of the stopbands, the acoustic
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waves show dispersion.[27] More recently, Jiménez et al. designed subwavelength
acoustic panels consisting of a structure similar to that presented by Sugimoto
and Horioka. They showed that around the resonant frequency of the Helmholtz
resonators, near-perfect absorption occurred.

Merely using an array of narrow open-ended resonators to attenuate can poten-
tially result in two problems. Firstly, for low-frequency absorption, these structures
become very thick due to a half-wavelength resonance condition, which is often
undesirable as lightweight, thin absorbers have more application in cladding to
create anechoic conditions. Secondly, due to the resonant nature, these are narrow
band. Many investigations have focused on overcoming the narrow band nature
of resonant structures. Wu et al. investigated profiled absorbers where there are
multiple resonators per period of the same widths but different depths.[28-31] Wu
et al. showed that by including a perforated plate within the profiled absorber
broadened the resonances, resulting in a broadband absorber.[28] Romero-Garcia
et al proposed a different method to increase the bandwidth of resonant structures.
by using the mechanism of sub-wavelength multi-resonant scattering. The structure
investigated consisted of a viscoelastic porous plate placed in front of a rigid back-
ing. In the regime where the incident wavelength is much larger than the distance
between the perforated plate and rigid backing, perfect absorption occurs. Perfect
absorption occurs in this system due to destructive interference between the direct
reflection from the perforated plate and reflection from the rigid backing. Due to the
wavelength being much larger than the phase difference between these two waves
is negligible, however, due to waves incident on the porous plate exhibiting a m
phase change, and those reflected from the rigid backing exhibiting no phase change,
destructive interference occurs.[29] Another method one may implement to create
a broadband response is by implementing rainbow trapping structures. Rainbow

trapping structures consist of multiple resonators per period, which are graded in
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depth. Due to the depths being graded, the resonances of the individual resonators
overlap, which creates a broadband response. Jiménez et al. investigated the response
of sub-wavelength panels composed of graded Helmholtz resonators. The authors
showed numerically low-frequency broadband absorption and confirmed the results
experimentally. [31]

A metamaterial designed to overcome both the narrow band and size problems
was designed by Yang et al.[22]. The unit cell of the structure designed comprised of
multiple different length space-coiled resonators, topped by a thin layer of sponge,
Figure 1.5(a-b). They discovered near-perfect absorption for frequencies above the
cutoff frequency in Figure 1.5(¢c), fe. = ¢/dmin Where dy,;, is the minimum cavity depth
needed for the desired frequency range, and c is the speed of sound. Frequencies below
the cutoff frequency are unable to propagate into the structure as the pressure-release
boundary conditions are no longer satisfied, where the pressure, P, must equal zero.

Having briefly reviewed phononic metamaterials we now go on to look at the
key area of this thesis: acoustic metasurfaces. In particular we explore interface
modes. Surface acoustic waves (SAWSs) exist at the interface between two different
media. Rayleigh, Stoneley and Scholte waves exist at solid-vacuum, solid-solid, and
solid-fluid interfaces respectively[32-34].

At the interface between a solid half-space and a vacuum half-space, non-dispersive
interface waves, Rayleigh waves, exist. In an isotropic solid, for shallow depths the
particle motion is elliptical and retrograde (clockwise motion)[32], at greater depths
the particle motion becomes prograde (anticlockwise motion). The velocity of
Rayleigh waves (cr) has been the topic of many studies[37, 35, 38], P. Malischewsky
provided a comparison of the different approximate solutions for the Rayleigh wave
velocity[36], with the dependency on Poisson’s ratio presented in Figure 1.7.

Stoneley waves may exist at the interface between two dissimilar isotropic solids

when the two materials are perfectly bonded; these waves are non-dispersive[33].



Introduction

095}

0.9

0.85

0.8

VR / Vs

0.75

0.7

-1 -08 -06 -04 -02 O 02 04
Poisson's ratio v

Fig. 1.7 Rayleigh wave velocity normalised to the transverse velocity of the solid.
The solid, thick grey line is the exact solution. The dashed black line is the
approximation from Scruby et al. [35]. The thin solid, black line is the approximation
from Malischewsky[36]. The dashed-dotted, black line is the approximation from

Bergmann[37]. Figure is taken from[36].
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Fig. 1.8 Particle trajectory in both materials for a Stoneley wave. Figure based on
[39]. The red lines show the particle displacement.
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Fig. 1.9 Particle trajectory in both materials for a Scholte wave. Figure based on
[39]. The red lines show the particle displacement.

Figure 1.8 shows the particle trajectory in the two elastic materials. In both media,
the particle motion is elliptical. In the lower solid, there is a reversal in the direction
of the particle motion just below the interface. In the upper solid, the reversal of
particle motion does not happen. The characteristics of Stoneley waves, which depend
on the stiffness and density of the two solids, has also been explored[34, 40]. The
propagation of Stoneley waves at the interface between pre-stressed, incompressible,
isotropic elastic materials has been investigated, showing that when a Stoneley wave
exists, the velocity of the wave will be higher than that of the slowest Rayleigh wave
speed of the solids[41-43]. For the case of loosely bonded elastic halfspaces, the
formulas for the velocity of the Stoneley wave has been explored by Vihn et al. The
formulas derived also show that if a Stoneley wave exists, it is unique[44]. Vihn

further expanded this work for the case of bonded interfaces[45].
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At a solid-fluid interface, two interface waves can exist - leaky Rayleigh waves and
Scholte waves. First, a hard solid-fluid interface is considered. A hard-solid—fluid
interface is one where the transverse velocity of the solid is greater than the longitu-
dinal velocity of the fluid (cp < cg¢ < cgi, where the subscripts F' and S represent
fluid and solid respectively). For such a system so-called leaky Rayleigh waves[46]
propagate with a velocity less than cg;, these waves attenuate as they propagate due
to radiating into the fluid. Leaky Rayleigh waves have been used to characterise the
physical properties of underwater solids [47, 48]. The Scholte wave velocity is less
than cp;, and if the viscoelastic effects are neglected in both the fluid and the solid,
the Scholte wave will propagate unattenuated. More Scholte wave energy for a hard
solid-fluid system is localised within the fluid than the solid. Scholte waves are a
linear combination of longitudinal and vertical shear waves in the solid, and they
are evanescent in both directions orthogonal to the interface. The magnitude of the
difference between the particle x-displacements in the fluid and solid is proportional
to (1 — 2, /ck) Y, where cqp is the Scholte wave velocity. It can be seen that this
ratio becomes large as the Scholte wave velocity approaches that of the speed of
sound in the fluid[39]. A soft-solid—fluid system is one where the transverse velocity
of sound in the solid is less than the longitudinal velocity of the fluid (¢s; < ¢ < ¢g1).
In such systems, there has been some discussion as to whether leaky Rayleigh waves
exist[49-51]. Glorieux et al. experimentally confirmed the theoretical prediction
that the leaky Rayleigh root of the characteristic determinant becomes forbidden
for a soft solid-fluid system.[51]. For a soft solid-fluid system, the Scholte wave
energy is more localised within the solid, which is in contrast to the hard solid-fluid
case. The penetration depth of the wave is deeper for the soft solid-fluid system[52].
Scholte waves are used to characterise soft marine sediments [53-56] and also for

non-destructive defect testing[53, 57].

12
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Fig. 1.10 Lamb wave dispersion curve for the three first modes of a finite steel plate.
The y-axis has been normalised to the transverse velocity of steel (¢;). Here, d is the
thickness of the plate.

Now, moving on to plates rather than semi-infinite substrates Lord Rayleigh first
discussed the topic of acoustic waves propagating in elastic plates and this was later
expanded by H. Lamb[32, 58]. For a free, infinite plate, there exist two modes which
are supported: a longitudinal symmetric mode (S) and a flexural anti-symmetric
mode (A). However, when a finite-sized plate is considered, there exists an infinite
number of modes. In Figure 1.10, the dispersion curves for the three lowest order
modes of a steel plate are shown. For the lowest order modes labelled Sy and Ay,
as the frequency increases they tend to the Rayleigh wave speed (cgr), while the
higher-order modes tend to the transverse velocity (c;) as the frequency is increased.
Lamb waves have often been used for the inspection of plates and non-destructive
defect testing, due to the property that they can propagate over long distances[59-61].
Lamb waves have also been used to determine the elastic properties of plates[62-65].

In electromagnetism the similar problem of propagation above a plane surface

was first explored by Sommerfeld in 1909[66]. This was expanded by Slater[67] who
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Fig. 1.11 The periodic rectangular groove grating modelled by Kelders et al., evanes-
cent ultrasound surfaces waves propagate above the surface of the solid.

developed an approximate theory of the propagation of waves between two parallel
plates, one of which was structured. The surface waves existing at an interface
between two media of different impedances was explored by Barlow at Cullen.[68]
It is know that the surface impedance contains a resistive and reactive term and is
written of the form Z = R, + iX,. The quantity X, arises from the skin depth. For
a good conductor Ry is slightly larger than X;. The addition of corrugations on the
surface increases the reactance and therefore creates an artificial skin depth which
allows surface waves to bind and propagate along the surface.

More recently there has been a wide variety of investigations on periodic elec-
tromagnetic structures. Pendry et al.[69] developed a theory for structured metal
surfaces relating to surface plasmons: collective excitations of the electrons localised
to the surface of a metal. So-called designer surface plasmons, exhibit a similar
response to optical surface plasmons but at microwave frequencies. The dispersion
of these designer surface plasmons can be readily controlled by the parameters of
the periodic structure designed. The acoustic equivalent of Sommerfeld’s problem

was fully realised by Wenzel in 1974.[70] Wenzel found that a surface wave term

14
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Fig. 1.12 a) Dispersion of an acoustic surface wave above a coarse corrugated rigid
surface. b) The pressure fields in the x-z plane where the surface is along z=0. Here,
ko is the incident wavevector, and p is the size of the unit cell.

existed for the acoustic problem which had previously been omitted by Ingard.[71]
Thomasson showed for a surface where the imaginary part of the surface impedance
is much greater than the real part surface waves can be excited by near grazing
incidence radiation.[72] Raspet and Baird later showed that the surface wave is a
true independently propagating wave.|[73]

In a system where the solid is acoustically-rigid (no propagation of acoustic
energy into the solid), acoustic surface waves arise from diffractive coupling from
sub-wavelength periodic structuring resonators into the solid (note that Scholte
waves do not exist on the surface due to the solid being acoustically-rigid). These
were first described for ultrasonic surface waves by Kelders et al. using a modal
model and experiment.[74] Figure 1.11 shows the periodic rectangular-groove grating
modelled. Here, the surface waves propagate along the surface in the x direction.

Kelders then went on to confirm the existence of these surface waves experimentally
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Fig. 1.13 a) The structure investigated by Ye et al. Acoustic surface waves propagate
along the x direction and due to the grading of the radius of the cylinders in the y
direction, the acoustic surface wave is focused. b) Intensity field plot of the focused
acoustic surface wave. Image taken and modified from [78].

on the surface of a porous surface.[75] However, the first experimental evidence of
acoustic surface waves on periodically structured surfaces was demonstrated much
earlier by Ivanov-Shits et al. using thin aluminium strips over plywood.[76]. The
dispersion above a rectangular grating similar to that described by Kelders et al.
was experimentally measured by He et al.[77], presented in Figure 1.12(a). They
showed that by corrugating a rigid surface, highly confined acoustic surface waves
are supported over a broad frequency range. Figure 1.12(b) shows the pressure fields
at the red point in the dispersion diagram. The evanescent fields were shown to
be confined within one period of the surface in the z direction. The dispersion of
surface waves are highly dependant on the structure. Christensen et al. showed
that enhanced transmission could be obtained through a sub-wavelength hole on
resonance when the surface has been structured with a periodic groove array. They
also showed the transmission collimation of sound.|[79]

Schwan et al. investigated the complex dispersion of acoustics surface waves of
a lossy metamaterial. The complex dispersion is difficult to obtain experimentally;

one must separate the attenuation caused by losses from the attenuation from
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the geometrical spreading of the source. The complex dispersion can be done by
implementing a spatial Laplace transform for complex wavenumbers (SLaTCoW)
on the experimental data. The authors theoretically derived a complex dispersion
relation that was used to validated the complex experimental dispersion obtained.
The metamaterial investigated was a square array of finite depth holes in a wooden
plate. It was shown that even with weakly damped resonators around the resonance,
the propagation of the surface acoustic waves becomes so highly attenuated that no
propagation occurs.|[80]

A study by Ye et al. showed that acoustic surface waves can be focused by
grading the structure on the surface.[78] Such a structure is presented in Figure
1.13(a), where the cylindrical holes are graded in the y-direction but periodic in x.
Figure 1.13(b) shows the focusing effect in the direction that the acoustic surface
wave propagates. This occurs due to the n being graded in the y-direction. Acoustic
surface waves have also be used to exhibit rainbow trapping, where the structure is
graded and different frequencies propagate different lengths along the surface.[81, 82].
Sub-wavelength imaging from acoustic surface waves has been reported on two-
dimensional metamaterials. Jia et al. experimentally and numerically realised
such imagining from a square array of holes in a rigid surface.[83] Utilising the
broad flat equi-frequency contours of the surface waves supported on the surface, a
sub-wavelength image with a full width half maximum of 0.014\ was obtained.

In an underwater environment, Li et al. demonstrated experimentally that
underwater surface acoustic waves exist above an array of rigid cylinders. Figure 1.14
displays the dispersion diagrams for various r/a, where r is the radius of the cylinders
and a is the pitch. For r/a = 0.25 and 0.35 only one surface mode can be seen;
however, for larger r/a values a second mode can be seen. The mode represented by

black dots is a dipolar resonance around the cylinders. The blue dots represent a
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Fig. 1.14 Dispersion diagrams for one-dimension arrays of identical cylinders in the
x direction. a) r/a = 0.25. b) r/a = 0.35. ¢) r/a = 0.45. d) r/a = 0.49. r is the
radius of the cylinder and a is the pitch. The red dashes line represent the sound
line of water. The inset of (a) illustrates the structure. Image from [84].

quadrupole mode around the cylinder where the coupling is stronger as the cylinders

are placed closer together.

1.2 Introduction

This thesis will focus on the experimental measurement of acoustic surface waves
for airborne acoustics and underwater acoustics. In the literature, while there have
been many studies on acoustic metamaterials and metasurfaces, there appear to be
very few that directly characterise the propagation of acoustic surface waves through
experiments by measuring their dispersion. This is especially prevalent in the case of
underwater acoustics, where the direct measurement of the pressure-field through
surface scans of metasurfaces remains an unexplored area.

Chapter 2 will focus on essential background physics, which will be referred to
throughout the thesis.

In Chapter 3, the experimental and numerical methods used throughout the
thesis will be described. Radiative measurements are performed using a reflection

experiment where the reflection as a function of angle of incidence can be obtained.
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Such radiative measurements will be used in Chapter 4 to obtain the reflectivity
spectrum of a phase resonance surface. Near-field surface scans of the pressure fields
allow us to experimentally measure the dispersion of acoustic surface waves. The
acoustic surface waves have been experimentally measured on a compound grating
(Chapter 4), a glide-symmetric metasurface (Chapter 5), and an underwater simple
grating (Chapter 6). Finite element method (FEM) models are used to validate the
experimental data, and how the models are done will be described in this chapter.
FEM models are used throughout the thesis.

Chapter 4, the first of three experimental chapters will explore the radiative and
non-radiative modes supported by a compound grating, one with multiple grooves
per unit cell. On such gratings, a phenomenon known as phase resonance exists.
Phase resonances will be explored for periodic structures where there are more than
one resonating element per period. The dispersion diagrams of simple gratings will
be investigated through FEM modelling. Expanding on this, compound gratings
will be explored. The effect of changing the parameters of the grooves on the phase
resonances will be investigated for both two and three-grooves per unit cell. Finally,
the experimental validation of both the radiative and non-radiative dispersion will be
described using the methods presented in Chapter 3. Alongside the characterisation
of acoustic surface waves, the beaming of acoustic energy on the surface will be
explored experimentally.

So-called meander structures are the topic of Chapter 5. As discussed previously,
the use of space-coiled metamaterials can lead to interesting effects. However, the
investigation of the propagation of acoustic surface waves on such a surface had not
been undertaken. In this chapter, glide-symmetric meander channels are characterised
in full through FEM models and then experimentally validated. These meander
channels support slow acoustic surface waves which are broad band due to their

near-linear dispersion. The broad band feature is a direct consequence of the surface
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possessing glide symmetry which creates a zero band gap at the first Brillouin zone.
The decay in intensity of the surface waves will be experimentally measured. Finally,
through FEM modelling the dispersion of acoustic surface waves on partially covered
meander channels will be explored, showing that there is a change in the resonance
condition for shallow grooves compared to the uncovered systems.

Moving from airborne to underwater acoustics, Chapter 6 is a study of the effect
of introducing periodic structure to soft-solid plates. In an unstructured plate, two
types of interface modes exist within the non-radiative dispersion: symmetric and
anti-symmetric Scholte modes. In this chapter simple gratings (one groove per
period) are introduces into acrylic plates. The interaction between the Scholte modes
and the structural modes now excitable due to the grating is explored extensively
through FEM modelling. The dependence on the dispersion curves on the structure
is described. Experimental validation using near-field surface scans of an underwater
grating is presented.

Finally, possible extensions for this work will be described in Chapter 8. The
band structures for underwater soft-solid plates will be explored. Now structure is
added to both interfaces. Secondly, the band structure of adding a two-dimensional
periodic structure to one of the interfaces will be explored. Thirdly, preliminary
results for a method to obtain the radiative dispersion from a surface scan will be

presented and described.
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Chapter 2

Background Theory

2.1 Introduction

In this chapter, the underlying theory relevant to this thesis will be discussed. Firstly
the reflection and transmission through a surface will be described and later for
an active surface, one with a frequency dependence reflectivity. Following this, the
resonant conditions for acoustic resonators used within this thesis will be defined.
The thermal and viscous losses play an essential role in the attenuation of both
reflected radiation and of propagating acoustic surfaces modes, these loss mechanisms
will be described. In order to characterise the metasurfaces, the band structure
will be characterised. In this chapter, the necessary background for these diagrams
will be described. Finally, the surface acoustics modes supported on an underwater

soft-solid plate will be defined.

2.2 Acoustic Reflection and Transmission

Within this section, an acoustic plane wave incident upon an interface between two

different semi-infinite fluids is considered. Here, the angle of incidence is 6;. Such
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t P2 Ky
Fig. 2.1 Schematic of the transmission and reflection of a plane wave incident on the

interface between two different materials. The interface is located at z = 0.

an interface is shown in Figure 2.1, between two materials, denoted M; and M,,
with their respective densities, p, and bulk modulus, K. The speed of sound in each
material is ¢yy = /Ky /pap. Using this information, one may define the coefficient of

reflection amplitude as

pacacos(6;) — preicos(6y)

R = 2.1
p2cacos(6;) + preqcos(6y) (2.1)

and the coefficient of transmission amplitude as,
2pacacos(b;) (2.2)

— preicos(6y) + pacacos(;)
These can be written in terms of the specific acoustic impedance z = /Ky pur,

for each material

z9c08(0;) — z1cos(6y)

= 29c08(0;) + z1cos(6;)

(2.3)
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B 229c08(6))
— z1c08(0y) 4 zoc0s(6;)

(2.4)

If one now considers a surface which has a frequency-dependent characteristic
impedance Z(w), equation 2.3 may now take the usual form for a locally reactive

surface

Z(w)cosb — pc

Rlw) = Z(w)cosd + pc’

(2.5)

Considering a surface where each point acts as a simple harmonic oscillator Z(w),
for example a simple groove array metasurface, a simple model of the system can be

found by equation 2.5 taking on a quadratic form and equation 2.3 can be written as

 wi — w? —iw(Go — 1o/ cosbh)

W — w? —iw((o + mo/cosh)’

R(w) (2.6)

where wy is the resonant frequency, (; is the dissipation and 7, is the admittance of
the surface[80].

The acoustic reflection and transmission has been the topic of many investigations.
Such studies explore the control of sound with acoustic metamaterials and surfaces,
whereby using such structure the reflected /transmitted waves can be manipulated to
achieve acoustic beam steering[85-89] and sound absorption[90-93].

This plane wave analysis of surfaces will be used through finite element method
modelling (FEM) to obtain the reflectivity spectrum of a simple grating in Chapter
4. However, once non-radiative modes are considered, Bloch waves must be included,

which will be discussed later in the chapter.
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2.3 Acoustic Resonators

When sound is incident upon a structured surface, resonances will occur. Simple
structures which support acoustic resonances are open and closed air-filled cavities,
shown in Figure 2.2(a,d). First consider an open-ended cavity of length L and width
w. For these standard 'organ pipe’ resonances to be supported, the amplitude of the
sound wave pressure field is close to zero at the open ends, where zero here is the
deviation from background atmospheric pressure. In contrast to the pressure, the
particle displacement is a maximum at an opening. In a physical system, the node
in pressure occurs a little distance out of the cavity, increasing the apparent length
of the cavity. This additional length leads to an end correction. Now the resonance
frequency, f;, can be defined as

fo= 5 (2.7)

(L+ AL)
where n is a positive integer and represents the harmonic, ¢ is the adiabatic speed of
sound in air, L is the cavity length and AL is the end correction, which to first-order
is AL = 8w/3m [94].

The first two harmonics of an open-ended cavity are illustrated in Figure 2.2(b-c).
For n = 1 the pressure field shown as the red line has two nodes just beyond the
openings and an antinode at the centre of the cavity. For n = 2, there now exists
an additional node in the pressure in the centre of the cavity. If a cavity with one
end closed is considered, this n = 2 mode is not supported, due to the boundary
condition of a pressure maximum existing at the closed end. Therefore, only odd
harmonics are supported, and the resonance frequency takes the form

=1 (2.8)

(d+ AL/2)
where m is any odd-numbered positive integer, d is the depth of the cavity.
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Fig. 2.2 a) An open cavity in an acoustically rigid material (grey) of length L and
width w. b) Fundamental harmonic of the cavity. ¢) The second harmonic of the
cavity. d) A closed at one end cavity in an acoustically rigid material (grey) of depth
d and width w. e) Fundamental harmonic of the cavity. f) The second mode of the
cavity. The red line and blue lines represent the pressure and particle displacement,
and their amplitude is respective of the distance from the grey-dashed line, which
equals zero amplitude.
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2.4 Thermal and Viscous losses

The thermoviscous effects of a propagating acoustic wave can be obtained from the
governing equation for acoustic wave propagation — the Helmholtz equation. For
some acoustic problems, the equation may be simplified by assuming that the wave
propagation is lossless and isentropic. To account for the thermoviscous effects one
must consider the effects of viscosity and heat conduction. These are considered by
assuming a small harmonic oscillation to the background pressure (p), temperature
(T"), and velocity field (u). Here the background pressure field and temperature
are functions of space, and the velocity field is assumed to be steady (u = 0).
By inserting these into the governing equations, one obtained the equation for a
propagating acoustic wave, including the thermoviscous losses. Now we will consider
the thermoviscous effects near an interface.

At the interface between a fluid and an acoustically-rigid solid, there exist two
boundary layers in the fluid which are dependent on the properties of the fluid, the
thermal and viscous boundary layers. The study of these two layers was explored
by Kirchoff[95] and expanded by Rayleigh[96]. The viscous boundary layer arises
from a no-slip boundary condition at the interface; this no-slip condition states
that the component of the velocity parallel to the boundary must equal zero at
the boundary. A velocity profile now exists at the interface, as at z = 0, u = 0,
and v must equal that of freely propagating sound u., as z — oo. This velocity
profile is shown in Figure 2.3(a). If we assume that the particles are organised in
layers in the z-direction, it can be seen that each layer has a different velocity to the
neighbouring until it equals u.,. This change in u between each layer leads to viscous
effects. These viscous effects cause an irreversible transfer of momentum between
the particles where energy is dissipated. The thickness of the boundary layer as a

function of incident frequency is given by the following[97]

26



2.4 Thermal and Viscous losses

a U, _ Fhid| b /it Fluid
Z 4 > Z I
X —> iév X
Ty
Solid Solid

Fig. 2.3 a) Velocity profile (red line) of the component parallel (u) to the interface
between a fluid and solid. The length of the arrows represents magnitude. ., is
the velocity component of freely propagating sound and ¢, is the boundary layer
thickness. b) Temperature profile (red line) of the temperature in a fluid at an
interface of a solid. The length of the arrows represents magnitude. 7., is the
temperature of the fluid. Tj is the isothermal temperature of the solid.
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where v is the kinematic viscosity.

The thermal boundary layer occurs due to an isothermal boundary condition.
Here, the solid remains at a constant temperature, Ty, which is different from the
temperature of the fluid, 7. This is shown in Figure 2.3(b). This change in
the temperature between the two materials results in a temperature gradient. This
gradient in temperature results in irreversible heat transfer to the solid. The thickness

of the boundary layer as a function of incident frequency is given by the following[97]

5, ~ /2:]0 (2.10)

with « being the thermal diffusivity. One can define a ratio between the two boundary

layers, known as the Prandtl number
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Fig. 2.4 FEM models for normal incidence of a closed-end cavity of parameter d =
5 mm, w = 1 mm, and period (\y) = 4 mm, including different losses. No losses
(black, dashed and dotted line), thermal losses only (red, dashed line), viscous losses
only (blue, dotted line), and both thermal and viscous losses (solid, black line).
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For room temperature air Pr = 0.71[98].

In order to see the effect these boundary layers have on a real system, an air-filled
simple grating of w = 1 mm, d = 5 mm, and A\, = 4 mm has been investigated
with different parameters of the fluid. Here, the fundamental quarter-wavelength
resonance of the cavity is explored. Figure 2.4 shows the normal incidence reflectivity
as a function of frequency. When both v, a = 0, the reflectivity across all frequencies
is unity, this is due to J, and §; = 0. If now we only consider thermal effects (v =
0, a # 0) the reflectivity is now reduced to 0.92 at a frequency of 15.5 kHz, now
comparing this to the viscous only case (v # 0, « = 0) the reflectivity is reduced
to 0.85 at the same frequency, this highlights that viscous effects are dominant

for air-filled cavities. The wavelength on resonance is 0.022 m, for comparison ¢,
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2.4 Thermal and Viscous losses

= 12 pm and ¢; = 15 pm. The thermal and viscous boundary layers are several
orders of magnitude smaller than the incident wave, showing the geometry of the
grating is more important than the ratio of wavelength and boundary layer widths.
The geometry of the grating also dictates how strongly the resonator will couple to
incident radiation, which also affects the losses, which will be discussed later in the
chapter.

There have been many studies into the effects of the thermal and viscous boundary
layers in acoustics.[99-101] Ward et al.[102] studied the effect that narrowing the
width of cavities had on the effective speed of sound. Molerén et al.[103] highlighted
the importance of the inclusion of thermoviscous effects on the response of an array
of rigid slabs with sub-wavelength slits embedded in air. They showed that when
these effects were considered 100% reflection occurs; however, in the lossless case,
perfect transmission was predicted. The authors stated that the losses are not merely
a refinement, but a dominant feature in narrow-cavity resonant structures. These
boundary layer effects have also been studied in porous media.[104, 105].

One important feature of the losses is the quality factor (Q-factor) of a resonance.
The quality factor relates the internal losses of a surface, the thermal and viscous
losses, to the external losses of a surface, the coupling between neighbouring resonators
and also free radiation. Figure 2.5 shows a reflectivity spectrum for a simple grating

of w= 0.5 mm, d =5 mm, and \; = 6 mm. One can define the quality factor as

Q=

AT (2.12)
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Fig. 2.5 FEM model of the normal incidence reflectivity spectrum for a simple grating
of parameter w = 0.5 mm, d = 5 mm, and period (\;) = 6 mm. f, is the frequency
which the minimum reflectivity occurs. The full width at half maximum is defined

by f2 = f1.
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2.4 Thermal and Viscous losses

where f, is the frequency where the minimum value of reflectivity occurs. Af =
fo — f1 is the full width at half maximum (FWHM). @ also measures how well

coupled the system is, with three distinct cases:

Q <1, Under-coupled (2.13a)
Q =1, Critically-coupled (2.13b)
Q > 1. Over-coupled (2.13¢)

For () < 1, the system is described as under-coupled as the internal losses are
higher than the external losses. For ) > 1 the system is over-coupled, and the
external losses are more prevalent than the internal losses. When @) = 1, the system
is critically-coupled, and the internal and external losses are equal. [106-108] In
acoustic systems, critical-coupling has been the topic of many studies in perfect and
broadband absorption[109-112]. One may consider the coupling by investigating
the damping of the system. For a grating being excited by incident radiation, this
radiation acts as the driving force for the resonance of the grooves. A damping ratio
(¢) is defined as the damping in the system 7 over the damping needed for critical
damping 7., which is related to the Q-factor by (¢ = 1/2Q). In an undamped system,
the exciting field would excite a resonance in the grating by a perturbation (dp) from
the background field pressure (pg). The pressure field in the grooves of the grating
would then oscillate about the background pressure field with the minimum and
maximum value given by pg + dp. Due to no damping being present, this would
then oscillate around the background field infinitely with the same amplitude. By
including a small amount of damping into the system, energy is now dissipated.

Now the amplitude of the oscillation will decrease with time until the pressure field
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return to pg. Here, the internal dissipation is low, and the system is over-coupled.
By increasing the damping so that v = ~,., the pressure within the groove will return
to po in the shortest time possible from the initial perturbation; this is a critically
coupled resonator. Finally, when the dissipation is high, the system is under-coupled.
The system does not oscillate about the background pressure field, and the decay in
amplitude from the initial perturbation is slower than that of a critically-coupled

system.

2.5 Acoustic Metasurfaces

If some 1D sub-wavelength periodic structure similar to the one shown in the inset of
Figure 2.6 is considered, where material 1 is a fluid and material 2 is an acoustically-
rigid material, surface modes will be supported at the interface z = 0. It is instructive
to investigate the dispersion relation for such modes. One may analyse the dispersion
of such surfaces by accounting for Bloch waves. Bloch waves are plane waves which
are modulated by a periodic function. One can solve the eigenvalues of Bloch waves
to obtain the dispersion diagram.

A dispersion relation relates the wavenumber (or frequency) of the exciting field
(ko) to the wavenumber in the direction of the periodicity (ky). An example of a
dispersion relation can be seen in Figure 2.6. Here, a grating wavevector is defined
as kg = 2m/)\y, where )y is the periodicity of the sample. The region extending
from —k,/2 < ky < k,/2 is known as the first Brillouin zone. There are two distinct
regions of a dispersion relation. The radiative regime, shown in blue, is the region
where ky > k,, due to the conservation of energy k3 = k2 + k%, k, is real and
therefore, modes which exist in this region propagate energy away from the surface.
The non-radiative regime, shown in yellow, is the region where ky > ko, now k, must

be purely imaginary in order to conserve energy. This purely imaginary k, signifies

32



2.5 Acoustic Metasurfaces

*, k)2 0 k/2 X,
In-plane wavevector £k,

Fig. 2.6 Schematic of a dispersion relation having two supported modes (solid, blue
lines), the sound line and diffracted sound line (solid and dashed, red lines, respec-
tively). The solid, magenta line shows the magnitude of the imaginary component of
ky. The yellow region represents the non-radiative regime of the first Brillouin zone.
The blue region represents the radiative regime of the first Brillouin zone, and the
green region represents the radiative regime where first-order diffraction modes may
exist. The dashed, grey lines show the top and bottom of a band gap formed by
the two standing wave solutions at the Brillouin zone boundary. Inset: a diagram a
unit cell of a periodic surface which would have a dispersion diagram similar to the
schematic shown. An acoustically-rigid compound grating (grey) with two resonators
per period ()g) is presented.
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Fig. 2.7 1D mono-atomic chain of particles of periodicity A,. Particle displacement
at ky/2 (red line), and at 3k,/2 (blue line).

that modes within this region are bound to the surface and have an evanescent field
in the z-direction. These two regions are separated by a line where ky = k,, and this
line represents waves where the group and phase velocity are the same. In airborne
acoustics, this is known as the sound line (solid, red lines). The diffracted sound
lines originating from —k, and k, are shown as the dashed, red lines. The in-plane
wavevector (ky) in reality is complex, and written as ky, = k. + k. In a lossless
system, the regions of the dispersion diagram where k, is purely real are known as
passbands. When k, is purely imaginary, regions known are stop band exist. In
the stopband regions no propagating surface mode on the surface exists. The solid,
blue lines in Figure 2.6 shows k. The solid, magenta line shows £} which is zero
everywhere except between the two dashed, grey lines. When losses are included in
the system, k, is complex throughout the dispersion diagram where the magnitude
of the imaginary component signifies the attenuation of the propagating wave.

Dispersion relations are periodic through multiples of k, in ky

ky = kosing £ Nk, (2.14)

34



2.6 Acoustic Surface Waves

where N is an integer, 6 is the angle of incidence of the exciting field. For
simplicity Figure 2.7 shows a mono-atomic chain of particles rather than the previous
grating, and their displacement for two different values of k, k,/2 and 3k, /2. Since
the smallest periodicity in the system is Ag, any k, with a value of more than that
of k, will have additional maxima between the neighbouring particles. For the case
presented in Figure 2.7, the particle displacement for two standing wave solutions
can be seen. Although there are two different \,, the particles experience the same
displacement.

Within this thesis, non-radiative dispersions are obtained through FEM modelling
by solving for the eigenvalues of the Bloch waves supported on a given surface. This
analysis was used for simple gratings in Chapter 4 and 6, for more complex compound

gratings in Chapter 4, and for glide-symmetric meander metasurfaces in Chapter 5.

2.6 Acoustic Surface Waves

As discussed, modes which exist in the non-radiative regime are confined to the
surface since k, is purely imaginary. For a system comprised of an acoustically rigid
material and a fluid, the modes which exist are called acoustic Surface Waves (ASWs).
These ASWs propagate parallel to the surface and are evanescent orthogonal to
the surface. The number of ASWs supported per cavity resonance of a surface is
determined by the number of degrees of freedom on a given surface. A 1D array
of blind holes is considered with parameters, d = 5 mm, radius (r) = 1.5 mm, and
Ag = 4 mm, the unit cell is shown in Figure 2.8(a). Since there is only one degree
of freedom per unit cell, only one surface mode exists. Figure 2.8(b-c) shows the
dispersion of the fundamental cavity mode and the fields in two unit cells at k,/2
obtained through finite element method modelling which will be discussed in detail

in Section 3.7.2. If an additional resonator is added into the unit cell at the same x
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Fig. 2.8 a) Unit cell of 1D periodic array consisting of a blind hole of depth (d)
= 5 mm, radius (r) = 1.5 mm, and A\; = 4 mm. b) FEM model dispersion for
the structure in a. c¢) Instantaneous pressure fields within two adjacent holes at
ky,/2. d) A unit cell of a 1D periodic array consisting of two blind holes (with the
same parameters as a), here, the centre-centre separation is 4 mm. e) FEM model
dispersion for the structure in d. f) Higher energy standing wave solution at k,/2. g)

Lower energy standing wave solution at k,/2.
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2.6 Acoustic Surface Waves

0° 8, 0, 6; 6, 65 90°
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2

Fig. 2.9 a) Schematic of the angle of incidence () upon a surface. b) Schematic of
how 0 relates to the dispersion diagram.

position, but with a y-separation of 4 mm, Figure 2.8(d), an additional mode is now

supported.

2.6.1 Radiative Dispersion

As seen previously k, is dependent on the angle of incidence, @, such that k, = kgsiné.
It is easy to see at normal incidence (6 = 0°) that k, = 0, on a dispersion diagram
the normal incidence data is a slice of data at kx = 0. At grazing incidence (6 = 90°),
ky = ko which is the sound line. Angles of incidence between these two values, are
slices of data with different gradients. A visual representation of this relationship is

shown in Figure 2.9

2.6.2 Band Gaps and Anti-crossings

Another feature of Figure 2.6 is the presence of a band gap, represented by the region
between the two grey dashed lines. If we consider the mode which originates at k, =

0 and the mode which originates at kyx = kg, it is seen that as they reach the first
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Fig. 2.10 Unit cell of 1D periodic array consisting of glide-symmetric, blind holes of
depth (d) = 5 mm, radius (r) = 1.5 mm, A\; = 4 mm, and a y-separation of 4 mm.
The blue dashed line represents the mirror plane. b) FEM model dispersion for the
structure in a. c-d) Standing wave solution at k,/2.

Brillouin zone boundary (kx = k,/2), rather than crossing they split, forming a lower
energy mode and a higher energy mode. Between these two modes is a region where
no mode can exist known as a band gap. The dispersion presented in Figure 2.8(e)
shows two modes and a band gap at k,/2. This band gap exists as the two standing
wave solutions have two different field configurations Figure 2.8(f-g). For the lower
energy mode, the acoustic fields within the two resonators in the unit cell are in
phase; however, for the higher frequency mode, there is now a phase difference of 7
between the two cavities. As indicated above not all structures have a band gap at
the first Brillouin zone boundary, one such structure possesses a symmetry known as
glide symmetry[113, 114], Figure 2.10(a) shows such a structure. Glide symmetry
is defined as a reflection along a mirror plane (dashed, blue line) and a half-period
translation in the direction of periodicity (x). As can be seen in Figure 2.10(b) glide
symmetric periodic structures remove the band gap at the Brillouin zone boundary
[115, 116]. Figure 2.10(c-d) show the pressure fields of the two modes at k,/2. For

both of the modes, it is seen that only one line of resonators is excited and that the
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2.6 Acoustic Surface Waves

field configurations in both cases are identical, with no fields interacting with the
unexcited line of resonators.

The first studies of glide symmetry were in the '60s and ’70s, along with studies
of twist symmetry which is a translation followed by a rotation.[113, 114, 117,
118]. More recently, glide-symmetric metasurfaces have been investigated with
microwaves[119, 120], such structures being employed to minimise leakage. They
have also been investigated to mimic the dispersion of surface plasmons [121, 122], and
also to prevent stop bands[123]. However as regards glide-symmetric metasurfaces in
acoustics, there is little research; this will be the topic of Chapter 5.

Band gaps are not the only splitting of modes to exist. Consider a simple grating
of parameters d = 5 mm, A\; = 6 mm, and allow the slit width w to vary. The grating
will have a specific resonance frequency, given by the depth of the grooves, which
would appear as a line of constant frequency if the interaction with free radiation is
ignored. However, for a system where this interaction is considered, the resonance
mode interacts with the sound line, and an anti-crossing occurs. Figure 2.11 show
the full dispersion for gratings of different w. For the narrowest case w = 0.02 mm,
these cavities are highly isolated, and the coupling between neighbouring unit cells
is weak, it can be seen that an anti-crossing occurs between the sound line and
the resonant mode; however, the modes only disperse over a small frequency range.
As w is increased the frequency range which the mode disperse over increases as
does the size of the anti-crossing. When w = 3 the mode disperses over a broader
frequency range, demonstrating that the coupling between neighbouring until cells
has increased. In addition the band gap at the Brillouin zone boundary also increases
in magnitude. These anti-crossings are not just isolated between the mode resonances

and the sound line; they may also occur between different modes in the dispersion.
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Fig. 2.11 Dispersion relations for various groove widths of 1D periodic gratings of
parameters d = 5 mm, A, = 6 mm. As the groove width increases, the anti-crossing
between the two modes increases. The dashed, grey line represents the sound line.
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The band-structure of periodic structures has been the topic of numerous
investigations.[4, 124, 125] Kushwaha et al.[126] presented the first calculation of a

full band structure for periodic elastic composites.

2.7 Elastic Materials

So far only airborne acoustics has been considered, where the solid is acoustically
rigid. Acoustic waves in elastic media are defined by their elastic properties, namely
the Young’s (), bulk (K) and shear (G) moduli, and the Poisson’s ratio (v). From

these parameters and the density (p), both the longitudinal and transverse velocities

K436 E(1—v)
aTNT T J p(1+v)(1—2v) (2.15)
G
o — /p. (2.16)

There are two other useful elastic moduli used to relate the three previously

may be defined

stated and also ¢ and ¢;. These are know as Lamé constants

A= p(cf —2¢2) (2.17)

0= pct (2.18)

These Lamé constants will be used later when describing the Lamb modes

supported on a fluid-loaded plate.
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Fig. 2.12 An underwater plate of thickness d loaded with fluid on both sides.

2.7.1 Elastic Modes on Fluid-Loaded Plates

In this section the modes supported on a fluid-loaded, elastic plate of thickness
d is considered as shown in Figure 2.12, here the plate interfaces are located at
z = ig. There exist two pairs of modes on fluid loaded elastic plate, symmetric and
anti-symmetric coupled interface waves. The characteristic equations for both these

modes are as follows[127]

kQ — l{?2 tan szd 2 +4k2kszTz tan kde 2)—
Tz 'S 'S

ekt (2.19)
i——— tan(ky,d/2) tan(kr,d/2) = 0,
pskliq,zct
and the characteristic equation for the anti-symmetric modes is
(/{Z%Z — ki) tan(kLZd/Z) + 4k)2<kszTz tan(kTZd/Q)—i—
.IoliquzW4 -0 <220)
Pazre — 0.
pskliq,zct
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2.7 Elastic Materials

Fig. 2.13 Exaggerated total deformation of a d = 6 mm fluid-loaded, acrylic plate.
a) The symmetric coupled-Scholte mode. b) The anti-symmetric coupled-Scholte
mode. Each element represents a 1 x 1 mm area. The blue line represents the line at
z = 0 in the undeformed system.

In these equations kr, = y/w?/c? + k2 and kt, = \/w?/c? + k2 are the z-component

of the wavevector of the longitudinal and transverse waves in the solid respectively.
While the z component of the wavevector of the longitudinal wave in the fluid is
kiiq.. The densities in the solid and fluid are represented by ps and pyiq.

For both the symmetric and the anti-symmetric equations, the real part is the
equations for free waves in a plate, known as Lamb’s equations. The additional term
is the imaginary term which describes the effects of fluid loading. Figure 2.13(a-b)
shows the deformation of the plate. The two green circles show the z-displacement
(u,) and x-displacement (uy) of one particle in the top half (z > 0) and one in the
lower half (z < 0) of the plate. In the symmetric case, it is seen that deformation
is symmetric around the reflection plane z = 0 (blue line), as u, are in opposite
directions and u, are in the same direction. In the anti-symmetric case at a particular
X position, u, is in the same direction and magnitude. However, in the upper and
lower half of the plate, uy are in opposite directions (I would like to thank Beth
Staples for help with these equations).

The dispersion relation for a d = 6 mm, water-loaded acrylic plate is shown in

Figure 2.14. The dashed, blue-line is the symmetric coupled-Scholte mode. At low
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Fig. 2.14 Dispersion relation for a 6 mm, water-loaded acrylic plate. cp; represents
the water sound line, and cg; represents the solid transverse speed.

k., the symmetric mode follows the water sound line and then begins to disperse. In
contrast, at low ky the group velocity of the anti-symmetric mode begins at zero,
and increases until the mode become linear at high k.. Both of these modes tend

towards the Scholte wave speed as ky increases.

2.8 Conclusions

In this chapter, the properties of radiative and non-radiative modes supported on
both structures and unstructured surfaces have been discussed. The reflectivity
and transmission at an interface have been explored and expanded to the case of a
system composing of resonators. Various structures supporting acoustic resonances
have been discussed alongside the thermal and viscous boundary layers where losses
occur. Periodically structuring a surface has been shown to allow for bound surface
modes to couple to the surface, these modes disperse in frequency and can exhibit

phenomena such as band gaps and anti-crossings. Adding structure in one period of
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such a surface allows for additional modes to be supported, while certain symmetries
such as glide symmetry remove the band gap at the first Brillouin zone boundary.
Interface waves between two differing media have been discussed. A solid-fluid
interface has been shown to support Scholte waves. This discussion was expanded
to the case of fluid-loaded plates where symmetric and anti-symmetric modes are
supported. These modes are shown to be coupled Scholte modes. In the following
chapter I will discuss the experimental methods and numerical methods which will

be used extensively throughout the thesis.
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Chapter 3

Methods

3.1 Introduction

Within this chapter the methods of experimentally and computationally characterising
acoustic surfaces are presented. Experimentally such surfaces are analysed in both
the radiative and non-radiative regimes so they may be fully characterised. The
reflection experiments used to obtain the radiative dispersion are discussed in section
3.4. Surface scans from which the dispersion relation and iso-frequency contours
are obtained are discussed in section 3.5. Both of the methods use Fourier analysis
which is discussed in section 3.6.

Finite element modelling is used to obtain both the reflectivity spectrum in the

radiative regime and also the dispersion relation in the non-radiative regime.

3.2 Sample Fabrication

Within this thesis, multiple experimental samples were fabricated in house. The
sample discussed in Chapter 4 was fabricated from milled acrylic using 1 £+ 0.02

mm milling cutters. The effect on the results due to the error in the cutting is
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Fig. 3.1 Schematic of the equipment used in both the radiative and scan experiments.

negligible, as the width has little effect om resonant frequencies of the channels. In
Chapter 5, a similar milling process was used; however, these samples were milled
out of aluminium. The errors in fabrication remain the same and have a negligible
influence on the results. In the underwater case, the same milling process was used.
However, the effect on the results is more significant than the air case, due to the bulk
modes being considered. This increased sensitivity of the geometry of the structure

is explained in detail in Chapter 4.

3.3 Data Acquisition

To experimentally measure acoustic metasurfaces the hardware used is illustrated in
Figure 3.1. Depending on whether a radiative or non-radiative measurement was
taken it was connected to the relevant experimental setup, both of which use a
Labview interface which has been designed especially for experiments. A laptop is
the connected to a Picoscope 4262 which allows for the real-time signal acquisition

where the resolution of the time data can be set and also the amount of data points.
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Fig. 3.2 The pulse shape used in all experiments (near-single-cycle Gaussian-envelope
sound pulse).

An Agilent 33500B series waveform generator is connected to the laptop which is
used to generate a pulse with the desired central frequency, length and shape. In all
of the following experiments near-single-cycle Gaussian-envelope (broad-band) sound
pulses were used shown in Figure 3.2. To ensure that the data is acquired correctly
the waveform generated is synchronised with the picoscope . The generated pulse is
then passed through a Cambridge audio topaz AMb5 integrated amplifier, the pulse is
then passed to a source and emitted for measurement. An acoustic receiver detects
the acoustic pulse, this signal is then fed through a Briiel & Kjeer nexus conditioning
amplifier in order to increase the strength of the detected signal. This signal is then
sent to the picoscope for the data acquisition and then to the laptop. This process is

then repeated for a desired number of repeats.

3.4 Radiative Measurements

To experimentally explore the radiative regime the equipment shown in Figure 3.3
was used. A speaker (Tucker-Davis Technologies MF1) was placed on a moveable
arm at a distance of 1 m away from a collimating mirror. The acoustic wavefronts

incident upon this mirror were reflected as plane waves onto a sample placed 2 m
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away. The reflected signal was then incident on to a second collimating mirror which
then focused the beam onto a microphone (Briiel & Kjeer 4190) which was placed
on a second moveable arm. In order to ensure that the microphone and speaker did
not directly impede the acoustic beam they are placed below the central plane of
the experiment. The smallest angle of incidence () that could be measured was a
pseudo-monostatic measurement where the microphone was placed on top of the
speaker and only one mirror was used (6 << 1°). By contrast the smallest angle that
could be measured by using both the mirrors was 8.3° due to the physical size of the
mirrors (diameter of 44 cm), the equipment can theoretically be used to measure
up any angles within the range 8.3° - 90° but at the higher angles of incidence the
projected beam area onto the sample becomes much larger than that of the sample,
and the reflected signal becomes weak due to most of the beam not being incident
upon the sample. At the largest angles measured (§ = 70°), direct transmission
becomes increasingly prevalent due to the width of the beam and the mirrors being
close to 180° apart.

There is a minimum frequency that can be measured in this setup due to the
finite size effects of the mirrors (radius = 220 mm, focal length = 1 m). As the
acoustic wavelength approaches the diameter of the mirrors, diffraction begins to
occur. However, in this thesis, the wavelength used is always smaller than the
diameter of the mirrors. The maximum wavelength used for radiative measurements
is 34 mm.

To obtain the reflectivity at a given angle two measurements had to be taken one
with the sample and a reference. The reference used was a flat metallic plate, an
acoustic mirror, the size of the sample. The signal form this reference plate was used
for normalisation. It should be noted that the reference measurements had to be
taken with great care as any divergence from the original orientation of the sample

rendered the reference unreliable. To decrease the effect of background noise repeats
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3.5 Non-Radiative Measurements

Source

Fig. 3.3 a) Schematic (not to scale) of the experimental setup, consisting of a speaker
at the focus of a collimating mirror giving a plane wave incident onto the sample,
the reflected signal being then focused by a second mirror onto the microphone. The
speaker and microphone are placed below the central plane of the mirrors and sample
such that they do not directly impede the acoustic beams. Here, a = 90° — @, where
0 is the angle of incidence. b) Side view of the experimental setup along the green
dotted line in (a). The red lines represent the shape of the phase fronts.

were taken, in all radiative measurements taken 100 repeats proved to be sufficient.

A typical signal to noise ratio from such measurements is 31.5 dB.

3.5 Non-Radiative Measurements

The measurement of the non-radiative, surface bound modes was undertaken by
recording the propagation of an acoustic pulse in time over a line or surface. These

scans were performed using scanning stages. For measurements in air, an XY
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scanner was used which allows for one and two-dimensional scans to be performed.
Underwater measurements used an XYZ scanner where three-dimensional scans could
also be performed. In order to set up an experiment a sample was held in place
within the scan area. A detector was then placed close to the surface (< 0.5 mm) so
that the evanescent fields of the bound surface waves could be detected. The detector
was then moved to the beginning of the scan range and then moved slowly to the
extremes of the scan area. This was to ensure that the detector distance from the
surface remained constant, as any variation in the distance resulted in inequivalent
intensities being recorded. Figure 3.4 shows an unstructured sample which has been
placed and aligned, the microphone in the lower right corner is at the start position
of the scan. In order to excite surface waves two excitation methods were used:
diffractive and direct. For airborne measurements 3 repeats were used as the signal
intensity was much stronger than in the radiative case. Typical signal to noise ratio
for airborne non-radiative measurements is 20 dB. In the underwater non-radiative
measurements 50 repeats were used with a signal to noise ratio of 15 dB.

In diffractive excitation a hole was drilled into the required position on the sample.
An acoustic source was then placed on the unstructured side of the sample so that
there was minimal distance between it and the hole. This was done as any distance
between the source and the plate resulted in a standing wave being formed which in
turn affects the intensity content of the pulse emitted from the hole. The emitted
acoustic pulse propagates through the hole and then diffracts, some of this diffracted
acoustic energy will couple to surface waves which are then measured. Diffractive
excitement was used in Chapters 4 and 6.

In direct excitation a source was placed at an angle (< 10°) to the surface and
a pulse is emitted directly onto the structured surface. This method proved to be
beneficial when measuring samples which support surfaces waves that rapidly decay,

as the microphone was able to be placed directly next to the source. One slight
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3.5 Non-Radiative Measurements

Fig. 3.4 An unstructured sample with a central hole (a) placed in the XY stage. The
sample has been aligned so that the microphone (b) remains at a fixed distance from
the surface while performing the scan.

disadvantage to this method is that a substantial amount of radiation leaves the
structured surface. Direct excitation was used in Chapter 5.

In both cases, the same data acquisition method was used as discussed in section
3.3. For air, a needle microphone (Briiel & Kjzer Probe Microphone Type 4182)
was raster scanned at the required resolution over the predefined scan area. It is
important that both the resolution and scan size area are chosen carefully as the
resolution in space determines the maximum values in momentum-space which can
be measured, and the total scan length in a direction determines the resolution,
this is discussed in more detail in section 3.6. A slight complication is the scan of
high-momentum, rapidly-decaying waves where a high resolution scan is needed in
order for them to be recorded due to the decay lengths being small. At each position
a fluctuation of the acoustic pressure exists corresponding to the propagation of

acoustic energy over the surface, this varying pressure was then transduced into an
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Fig. 3.5 Progression of an acoustic pulse excited by diffraction through a central 6
mm diameter hole on an unstructured plate. Note that the intensity in the centre is
saturated due to the acoustic energy density being larger directly above the speaker.
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Fig. 3.6 Computational complexity growth with the number of samples. DFTs scale
with N2, FFTs scale with Nlog/V.

electrical signal which was recorded as a function of time. In order to demonstrate
this more clearly, a surface scan of an unstructured plate of dimensions 360 x 360
x 10 mm was measured with a spatial resolution of 2.5 mm over a length of 300
mm in both directions. Whilst no surface waves are supported on this surface, due
to diffractive excitation the diffracted wave fronts propagate over the surface and
were recorded. For this sample shown in Figure 3.4 the central hole was 6 mm in
diameter. Figure 3.5 shows the acoustic pulse propagating over the surface. At a
time of 0.38 ms the pulse is emitting and diffracting from the hole. It should be
noted that the intensity of the radiation above the centre of the hole is much larger
than that anywhere else, as directly above the hole there is more acoustic energy
per unit area than above the structured surface due to the diffractive wave being
hemispherical in nature. As the time (¢) progresses the wave propagates evenly in

all directions and falls in intensity.
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3.6 Fourier Analysis

Fourier analysis is an essential method for the analysis of the experimental data, it is
used to decompose a function in time f(¢) into its spectral components of frequency
F(w). Likewise, it is also used to decompose a function in space f(x) into the spectral
components of wavevector f(k). In the case of non-periodic functions in ¢ the Fourier

transform and the inverse are defined as the following[128]

F(w) = ¢12_7T L O; Flt)etdt (3.1)

(1) = ¢12—7T | P, (3.2)

The equivalent expressions for non-period functions in x are

Fk) = \/127 [ sty ar (3.3)

fla) == [ ke (3.4)

In the analysis of the experimental data discrete Fourier transforms (DFT) are
used[129]. The DFT creates a periodic signal by repeating the original, non-periodic
signal. This periodic signal results in a spectrum of data which occur at specific
frequencies at small intervals proportional to 1/N, where N is the total amount of
samples. To compute DFTs in Matlab a fast Fourier transform (FFT) algorithm is
used[130]. If a DFT is performed on a data set with N samples the computational
complexity is of order N2. However, by using a FFT the complexity is now NlogN.
The relation between computational complexity and N is shown in figure 3.6. If two
data sets Y (k) and X(j) are related such that Y = FFT(X) and its inverse X =
IFFT(Y) these function are defined by:
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N

Y(k) =Y X)W D¢ (3.5)

j=1

. 1 & i (e

X(5) = 5 2V (W, 006y (36)

k=1

where

W, =e~ . (3.7)

Using the above equations the frequency domain data is obtained from the time
domain data.

At each spatial position a 1D FFT was applied to the time signal. A typical
experimental time signal is shown is Figure 3.7(a), the whole time signal is not
shown for clarity purposes but the main feature is that the whole pulse emitted from
the speaker is measured within the first 6 ms. It may appear that the rest of the
data is somewhat irrelevant but it actually serves a very useful purpose - due to
the nature of FFTs the longer in time which a signal is measured (fax): the higher

the frequency resolution will be, Af = —1—. Likewise, the resolution in time (At)

tmax

L
At

dictates the maximum frequency f.x which can be measured as fp.x =

Examples of these relations can be seen in Figure 3.8 where the left column shows
the time domain functions and the right column the respective Fourier transforms
in frequency space |F(w)|. The time domain functions are all sine waves of periods
T = 0.1 s and of the form f(¢) = sin (%) The range of ¢ is defined t = 0 : At :
nT', where n is a positive integer. The top row shows a 10 Hz sine wave with At
= 0.010 s and n = 2. The resulting Fourier transform has been shifted around the
central axis y = 0 so that the zero-frequency components are in the centre of the

spectrum, it is also symmetric and defined within the following regions depending

on the length of the data set:
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Fig. 3.7 (a) Direct transmitted time domain signal for one position, in this case
directly above the hole used for diffractive excitation. Only a section of the time
signal is shown, so that the pulse can be seen more clearly. (b) Part of the frequency
spectrum obtained from the Fourier transform |F'(w)| of the above time signal, note
the periodic peaks which correspond to a standing wave forming in the system
between the plate and detector holder.
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Fig. 3.8 Time domain: Top. Two periods of a 10 Hz sin wave with a At = 0.010 s.
Middle. Two periods of a 10 Hz sin wave with a At = 0.005 s. Bottom. Ten periods
of a 10 Hz sin wave with a At = 0.010 s. In all of the above the magenta markers
show the actual data, the black line is only a guide to show the sin wave. Right side
shows their respective Fourier transforms.
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. _fmax . . fmax
even: s Af

odd: —%—l—%:Af:%—%

Due to low temporal resolution the maximum frequency recorded (%) is only
50 Hz, in the case of a sine wave this does not present any issue; however, for
more complex functions or experimental data a larger fi,.x may be required. To
increase fiax an increase in time resolution is needed. An example of an increased
time resolution can be seen in the middle row. Here t¢,,, has been kept the same
as in the first case but the resolution has been halved to At = 0.005 s. After
Fourier transforming, it is now possible to measure up to an % = 100 Hz. This is
particularly useful when the experimental data is expected to exist over a broad range
of frequencies. In both the previous discussed cases it can be seen that measuring
over a small total time results in poor resolution in frequency space. This leads to
the expected peak at 10 Hz being ill defined. The bottom row shows a 10 Hz sin
wave with a At = 0.010 s and n = 20. In the frequency space it is immediately
obvious that the peak at 10 Hz is much better resolved compared to the previous
two examples. In the case of measuring over an infinite number of periods this peak
would be a delta function. Both the length and resolution of the temporal data
need careful consideration; having too high time resolution over a large time results
in exceeding the amount of data the data acquisition system can store. This is
particularly important in experiments where a large number of repeats are necessary.

After the first Fourier transform has been performed at each position the resulting
complex data (F(w)) is used to plot the spatial fields. F(w) is complex as the
imaginary component contains information about the phase. Examples of such
fields are shown in Figure 3.9 for two arbitrary frequencies. The top row shows the
instantaneous pressure field at one phase and is defined as the real components of

F(w). In these figures the amplitude has been saturated due to the high acoustic

energy density that exists directly above the hole used for excitation. The middle

60



3.6 Fourier Analysis

6219 Hz 14031 Hz

300 F 3 X : z : 300

250 q{’ ‘\r 1 250 1 p*

200 F

150 F

100 [

amssaxd
snoourjuRISU[

S50F 1 1%

200 pg

150

aseyq

100

[S—

250

200

150

ainssaxd
ANosqQy

100

0 50 100 150 200 250 300 0 50 100 150 200 250 300
X (mm) X (mm)

Fig. 3.9 Spatial acoustic fields for an unstructured sample excited by diffraction
through a hole. The top row is the instantaneous pressure Re (F (w)), the middle

row is the phase arg(F(w)), and the bottom row is the absolute pressure |F(w)|.
Note the scales on the instantaneous and absolute pressures have been saturated due
to acoustic energy density being larger directly above the speaker.
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row shows the phase (¢) which is defined as the argument of F(w). The bottom
row show the absolute pressure defined as the modulus of F(w). It is expected that
the absolute pressure should decay evenly in all directions; however, this is not the
case which can be seen more strongly in the 6219 Hz plot. This intensity variation
come from reflections within the experimental setup such as off the frame which
holds the sample into place. This is resolved by time gating the data. Time gating
is the process of shortening the time of recording the individual signal pulses to
remove unwanted data. One unwanted effect of shortening the time signal is that
the frequency resolution will be reduced. This can be counteracted by zero-padding
the data, whereby zeroes are added to the temporal data to increase the frequency
resolution; however, this can create artefacts in the resulting Fourier data due to
sharp changes in data where the data begins to be padded. It should be noted that
zero-padding will not resolve any features below the original resolution. One method
to overcome this is applying a window function to the data.

Since DF'T5s treat non-periodic data as periodic, it may affect how the resulting
frequency data will appear. In the case of time-gated data, when repeated at each
point where the data is repeated a sharp change in the data may now exist, this
results is spectral leakage: where the signal is spread to higher frequencies. Some
examples of window functions and their respective Fourier transforms are seen in
Figure 3.10. The first is a top-hat function which always results in a sharp transient
region of data. It is seen that while the mainlobe width (MLW) is small at 0.021%
(MLW is defined as the width where the peak is reduced by 3 dB) the leakage factor
(LF): the ratio of power in side lobes to total power is 9.35%, is high. Another factor
is the ratio of the power in the mainlobe peak compared to that of the sidelobes,
which is known as the relative side lobe attenuation (RSLA). In the case of the
top-hat function this is low at -13.3 dB. If we now consider the middle row a Hamming

window is shown. It is immediately obvious that the MLW is larger than that of the
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Fig. 3.10 Various window functions and their frequency spectra. Top: Top-hat
function. Middle: Hamming window function. Bottom: Hanning window function.
Note that the frequency has been normalised to the total number of samples.
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Fig. 3.11 A schematic of the Fourier analysis process. Firstly a temporal FFT is
performed on the raw data at each position (r) time domain, resulting in complex
frequency domain data. The second process is a subtle change of variable from
temporal to spatial, which is in practice a restructuring of the data matrix. A spatial
FFT is then performed on the spatial data at a given frequency, resulting in k-space
data. Cross-sections of the k-space data matrix are then taken in order to plot the
dispersion diagrams.

top-hat function at 0.025%, but both LF and RSLA have been improved at 0.03%
and -42.6 dB respectively. Finally, the third window function shown is a Hanning
window. Here, the MLW is 0.027%, the LF is 0.05%, and the RSLA is -31.5 dB. It is
seen that the use of a window function reduces the spectral leakage but at the cost
of the resolution of the data being reduced. The characteristics of the mode under
investigation determines which window function is used.

The next process is to perform a 2D FFT on the spatial field data which will
allow for the data to be analysed in momentum space. As for the discussion of
the temporal Fourier transform in the spatial Fourier transform we have similar
relations between the size and resolution. The resolution in momentum space in a

2

given direction is defined by Ak, = < where L is the total length of the scan in

a particular direction. The maximum momentum measurable is k.. = X; Where
Al is the spatial resolution. The range of k£ values defined depends on whether the

number of data points is even or off. For a particular direction:
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even: —kmax 1 Ak kpax

odd:  —kpax + % AE  kpax — %

Two slightly different spatial FFTs were used to obtain the results in this thesis:
one by performing the FFT on the complex spatial data; the second by performing
the FFT on €. The choice between these two depends on the experiment being
performed. In experiments where the ASW’s signal is strong the first was used. The
second was used when trying to detect much weaker signals. If we write the full
complex spatial data as R = |R|e™), by only analysing e? the amplitude is removed.
This results in the decay of the fields over distance being removed from the Fourier
data; however, this has limitations where the amplitude of the signal is required.
Examples of these two different Fourier transforms are shown in Figure 3.12. The
top dispersion shows the Fourier transform of the full complex data and the lower
shows the Fourier transform of e(®). In the full complex dispersion the data at higher
frequencies is very weak which is directly related to a weak frequency response of
the speaker at these frequencies. It is also seen that there is a periodic increase in
intensity of the mode in frequency, this is equivalent to what is seen in the frequency
spectrum of Figure 3.7. This is due to a standing wave between the plate and the
detector holder. The resulting data can be plotted as dispersion relations or as
isofrequency contours. A schematic of the whole Fourier analysis process is presented
in Figure 3.11.

[sofrequency contours are seen in Figure 3.13 for two different frequencies, the
data represents a slice of the dispersion relation for a given frequency. Due to the

experiment being for an unstructured plate, the ring of data represents the sound

line. The radius of the ring is given by the free space wavevector ky = ?, where v
is the speed of sound in air. This explains why as the frequency increases so does
the radius of the ring. It is also seen that contrary to what is expected the intensity

is not uniform around the ring, this arises from the scan area being a square. In
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Fig. 3.12 Dispersion relations obtained from the unstructured plate along the line
k, = 0. Top: dispersion relation of the complex data Fourier transform. Bottom:
dispersion relation of e(®).
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Fig. 3.13 Isofrequency contours for an unstructured plate. The ring of data present
in both diagrams represents a waves propagating over the surface with a wavevector
equal to that of free radiation.
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Fig. 3.14 The function u (blue line),the approximate solution (red dashed line) which
is a combination of linear base functions (black line).

turn, more data being measured of waves propagating with momentums that have

components in both k, and k,, that with pure k£, and k,.

3.7 Finite Element Method

The Finite element method (FEM) is a useful tool when trying to solve partial
differential equations (PDEs) for geometries where they cannot be analytically solved
by splitting the geometry into many smaller elements. Approximate equations are
constructed based on various discretisations by using numerical model equations to
approximate the PDE which are then solved using numerical methods[131]. The
solutions obtained from such equations are approximations of the real solutions of
the PDE. If a function u is defined to be a dependent variable in a PDE, it is possible

to approximate the function u ~ w; using linear combinations of basis functions );:

Up = Zuﬂbz (3'8)
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3.7 Finite Element Method

Here, u; are the coefficients of the functions that approximate u with u,. An
example of how the discretisation works is shown in Figure 3.14. Here the function
w is shown as a blue line which is being approximated by u;, (red line) which itself
consists of 8 basis functions. Depending on the solution required this discretisation
does not have to be linear, a distribution of basis function may be used to resolve
parts of the function where a higher resolution is required. One such finite element
method program used is COMSOL Multiphysics, where the discretisations are
defined by mesh elements. All mesh elements were triangular for 2D models or
tetrahedral in 3D models, except in the PMLs (perfectly matched layer) where the
mesh elements were swept from the boundary of the model to the end of the PML.
The solutions are approximated along the boundaries of the mesh elements which are
then interpolated between the boundaries.[132] The following discussion will briefly
explain the construction of the models used within this thesis. In the modelling of
the thesis, two conditions were used to define the maximum mesh size, the first being
that there must be a minimum of 5 mesh elements per wavelength, the second being
that there must be 10 mesh elements per period so that the fields may be resolved.

The smaller of these two conditions was used.

3.7.1 Radiative Model

Within this thesis only periodic systems have been investigated. One use of FEM is
modelling the reflectivity spectrum of periodic surfaces. When modelling periodic
structures only one unit cell needs to be modelled. This is advantageous as it reduces
the amount of discretisation (mesh elements) and reduces the overall solve time of
the model. One such unit cell of a 2-dimensional monograting (periodic, infinitely-
long cavities of a depth) is shown in Figure 3.15(a). Here, an air-filled cavity in
an acoustically-rigid solid is modelled. Air was treated as an ideal gas, with the

following physical parameters: density = 1.2754 kg/m3; dynamic viscosity = 1.983 x
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Fig. 3.15 a) Schematic of a radiative finite element model. Pressure acoustics is
represented by blue, thermoviscous acoustics is represented by the orange, and grey
represents solid mechanics. b) Example of reflectivity data obtained from a radiative
model. ¢) Example of dispersion relations obtained from an eigenvalue model.
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Fig. 3.16 Boundary layer thickness in air as a function of frequency. Here the
frequency range is 1 kHz - 30 kHz.

107° Pa s; thermal conductivity = 0.0257 W/m K; and the specific heat capacity =
Cp = 1.005 kJ/kg K. [133] Note however, when modelling a system of a water-filled
cavity there is now a transfer of energy at the boundary. Therefore, the physics of the
solid must be included. Water was modelled with the following physical parameters:
density = 0.998 kg/m?; dynamic viscosity = 1.002 x 1073 Pa s; thermal conductivity
= 0.598 W/m K; and the specific heat capacity = Cp = 4.182 kJ /kg K. [133] The
cavity and the surrounding surface is modelled using the thermoviscous acoustics,
which models variations in pressure, velocity, and temperature. This is important
as the thermal and viscous boundary layers are where the losses occur, which arise
from an isothermal and no-slip boundary condition, respectively. These boundary
conditions are explained in detail in section 2.4. However, including thermoviscous
acoustics is computationally heavy. Therefore, it is only placed in the model where
needed. In this thesis, thermoviscous losses were only used in Chapter 4.

Figure 3.16 shows the thermal and viscous layer in air thicknesses as a function

of frequency. A convergence plot of the reflectivity from a grating with various
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Fig. 3.17 a) Convergence plot of the reflectivity from a grating as a function of
boundary layer mesh thickness (blue line). Note that 10 boundary layer mesh
elements were used in all models. The reflectivity from the same grating with no
boundary layer mesh included (red line). b) Convergence plot of an eigenvalue model
of an unstructured elastic plate. Here, the mesh scaling factor is the factor of which
the wavelength is divided by to obtain the maximum mesh size. The dashed red line
represents the size of the mesh, which equals the maximum mesh size equal to the
period/10.

boundary layer mesh thicknesses at 15 kHz is presented in Figure 3.17(a). A no
boundary layer mesh curve has been included for comparison. For an incident wave
at 15 kHz frequency, the boundary layer thicknesses are around 15 pm. In this
simulation 10 layers of the boundary layer mesh at the thickness stated were used
with a growth factor of 1.2 between each layer. It can be seen that the solution is
converged over the range presented. It should be noted that defining a too large
mesh for the structure results in the meshing failing. In comparison to the case
where the boundary layer mesh was excluded, there is a significant difference in the
reflectivity. In all the thermoviscous modelling in this thesis, five boundary layer
mesh elements per wavelength were used.

Above the surface, pressure acoustics is modelled. This only models variations
in the pressure fields and is where the background pressure field is defined. At

the thermoacoustic and pressure acoustic boundary certain conditions are included
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to keep the system physical. A dynamic condition at the boundary that there is
continuity of total normal stress. A kinematic condition of continuity of total normal
acceleration, and finally an adiabatic condition for the temperature. The background
pressure field is modelled as plane waves where the angle of incidence is defined as
needed. Finally, a perfectly matched layer (PML), also using the pressure acoustics
module, is added to the top of the model to acts as an absorber. A PML is an
artificial absorbing layer that is used to reduced the size of numerical models. [134]
Any radiation which enters is attenuated and cannot be reflected back into the
model. The red-dashed line on the sides of the air box and PML represents where the
Floquet boundary conditions exist. This condition allows for the wavevector to be
maintained at the boundaries. Therefore, there is no discontinuity at the boundary of
two neighbouring unit cells, and an infinite system is modelled. The mesh on both of
these boundaries must be identical so that the solutions are solved in the same place
on each boundary. In such models, a frequency and angle range are chosen, and the
model computes the results using parametric sweeps. The scattered pressure field
intensity is then calculated and normalised to the incident pressure field intensity
for each frequency and angle of incidence to give the reflectivity, allowing us to plot
a numerical radiative dispersion plot. Figure 3.15(b) shows the normal incidence
reflectivity obtained for various parameters, these results will be discussed later in

Chapter 4.

3.7.2 Eigenvalue Model

Eigenvalue models allow the calculation of the eigenvalues of particular surface. These
models are very similar to the previously discussed radiative models except that due
to the fact that the surface characteristics are being analysed the thermoviscous
acoustics may be removed and replaced with pressure acoustics. Due to thermoviscous

acoustics being computationally expensive and that it is not required to calculate
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the eigenvalues, it is omitted. Through the inclusion of Floquet periodic boundaries
where wavevectors have been defined for all directions, it is possible to find particular
eigenvalues for a given wavevector and numerically find the dispersion relation, Figure
3.15(c) shows dispersions which have been obtained by the eigenvalue solver, to be
discussed in Chapter 4. In this figure, the in-plane wavevector (k) has been swept
to the first Brillouin zone. For each individual wavevector eigenvalue of the system
is found, and the frequency at which it occurs is stored. In post-processing, the
eigenfrequencies can be plotted against the in-plane wavevector. A convergence plot
for a typical eigenvalue model can is presented in Figure 3.17(b).

The interaction between pressure acoustics and solid mechanics module is only
used in eigenvalue models of Chapter 6. The solid mechanics module models the
stress, strain, and displacement of the structure. In order to couple with the pressure
acoustics, two effects are taken into account. The first being the fluid load on
the structure, and the second being the effects of the structural acceleration on
the fluid. It is from these conditions that the dispersion of the Scholte waves
discussed in Section 2.7 may be solved. These effects are implemented using the

Acoustic-Structure Multiphysics model.

3.8 Conclusions

The experimental setup and methods for obtain both radiative an non-radiative have
been discussed. After this the data analysis techniques used on the experimental data
such as time gating and the application of window functions have been described.
A numerical method known as finite element method has been introduced. FEM
modelling will be used in all the following results chapters to explore potential

metasurfaces and to validate experimental results.
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3.8 Conclusions

The first results chapter will explore the phenomenon of phase resonance on
compound grating (more than one groove per unit cell). Both of the radiative and

non-radiative experimental techniques introduced in this chapter will be used, as

well as FEM models.
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Chapter 4

The Acoustic Phase Resonances
and Surface Waves Supported by

Compound Rigid Gratings

4.1 Introduction

In the previous chapters the background physics and methods have been discussed.
Within this chapter, the dispersion is fully explored, through finite element method
(FEM) modelling and experimentally using the methods discussed previously, of the
acoustic surface modes supported by a compound grating (multiple grooves per unit
cell) with three grooves per unit cell of two different widths and all of the same
depth.

Throughout the chapter band diagrams of simple gratings are fully investigated
through Finite Element Method (FEM) modelling. Expanding on this, more com-
plicated, multiple grooves per unit cell compound gratings are investigated. The

addition of the extra degrees of freedom allow so-called phase resonances to be sup-
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ported. The effect of changing the parameters of the grooves on the phase resonances

was also explored. This was done for both two and three grooves per unit cell.

4.2 Background

Recently, a number of works [135-137] have shown that enhanced acoustic transmis-
sion of sound through sub-wavelength perforations (open-ended holes or grooves)
can be achieved. These studies are somewhat analogous to the extraordinary optical
transmission found in the electromagnetic domain explained by coupled surface wave
and evanescent diffraction phenomena.[138] Work by Skigin and coworkers [136, 139]
has shown that transmission of electromagnetic radiation through a so-called ‘com-
pound grating’, comprising of more than one groove per unit cell, is significantly
different to that for a simple groove grating. The additional complexity of the unit
cell typically broadens the existing resonant mode (due to increased radiative and
non-radiative losses), while a new, narrow (i.e., high-Q-factor) ‘phase’ resonant mode
is observed. These phase resonances are characterised by the resonant acoustic
fields in adjacent grooves varying in phase by odd multiples of = with strong field
enhancement on resonance. [139]

Analogous behaviour in the acoustic domain was predicted by Wang et al.[137] and
then experimentally verified by Ward et al.[25], who demonstrated phase resonances
in compound-groove-gratings with different structure factors. Narrow resonant dips
within the band of the broad transmission maxima were observed and attributed
to evanescent diffractive coupling between fields in adjacent grooves. More recently,
Zhang et al. [140] investigated the acoustic transmission for compound gratings
comprising of different square and triangular shaped elements; they reported some
degree of control of the resonance frequencies.

In addition to transmission-type gratings, similar phase-resonance effects in reflec-
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Fig. 4.1 Schematic of a simple grating unit cell of width w, depth d, and a periodicity
in X of Ay, the grooves are infinitely long in y. 6 is the polar angle of incidence.

tion compound gratings have also been studied in the electromagnetic domain.[141—
143] In a study by Fantino et al.[141], several different metallic compound gratings
were numerically investigated. For a transverse-magnetic-polarised incident beam,
phase resonances were observed as maxima in the reflectivity spectrum of the surface,
with strongly enhanced fields within the grooves. A similar phenomenon for reflection

gratings has yet to be recorded in the acoustic domain.

4.3 Simple Gratings

Within this section, the reflectivity and surface modes of simple gratings will be
investigated. The unit cell of a simple grating is seen in Figure 4.1, here, a single
air-filled groove of depth d, width w, and infinitely long in the y - direction is
shown within an acoustically-rigid material. The properties of the modes in both
the radiative and non-radiative regimes can be altered by changing the parameters
of the grooves, w, d and the periodicity, A,.

Each groove of the simple grating supports a quarter-wavelength (A/4) resonance

with frequencies given by
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_ (2n+1)w
Jn= 4(d + AL)

(4.1)

where the end-correction (AL) is approximately 8w/37[102], d is the groove depth,
v is the speed of sound in air, and n is a positive integer. This resonance condition
comes from the boundary condition that the displacement field of the particles must
be equal to zero at the bottom of the groove, and therefore, an antinode in the
pressure field exists. If we consider the opening of the groove, ignoring end effects,
the displacement field of the particles is maximum, and there is a node in the pressure
field. However, when end-effects are considered this node is located slightly above
the surface.

In the radiative regime, these resonances appear in the reflectivity spectrum
as minima: as the frequency approaches that of the resonance the intensity of the
pressure fields within the groove increase. When the pressure field is increased within
the groove so are the losses from the thermal and viscous boundary layers. The
viscous boundary layer exists at a solid/air interface where a gradient in the particle
velocity is present. For further discussion of the boundary layers please refer to
Section 2.4.

The effect of changing the groove depth is shown in Figure 4.2, here, w = 1 mm
and Ay, = 6 mm. Figure 4.2(a) displays the normal incidence reflectivity for depths
d = 2.5, 5.0 and 10.0 mm. As expected, the effect of increasing the groove depth
reduces the resonance frequency. Another feature of varying the depth is that as
it is increased the width of the respective reflectivity minima decrease to values:
0.79, 0.75, 0.69 respectively. As the grooves increase in depth, the fields become less
over-coupled hence increasing the Q-factor with values of 4.37(40.24), 4.46(+£0.13)
and 4.85(40.008). Here, the uncertainties arise from the frequency resolution. [144]

This increase in Q-factor is also evident within the non-radiative regime as seen in
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Fig. 4.2 a) Normal incidence reflectivity of simple gratings with w =1 mm, A\, =6
mm and various depths. n is the mode number. b) Non-radiative dispersion of the
fundamental surface waves supported by simple gratings of various depths. Here,
kg/2 is the first Brillouin-zone boundary. All data has been obtained through FEM
models.

Figure 4.2(b), which shows the dispersion of the fundamental mode of surface waves
supported by such simple gratings. As the depth increases the mode disperses over a
much narrower frequency range. Further information on the Q-factor can be found
in Section 2.4.

Another way to change the properties of the modes supported is by varying the
width of the groove. The normal incidence reflectivity is shown in Figure 4.3(a) for
different groove widths. If the w = 0.5 mm and w = 4 mm spectra are compared;
it is seen that in the wider case where the groove is occupying 2/3 of the unit cell
the mode has a Q-factor of 0.996(10.008) and barely any loss with a minimum
reflectivity of 0.98. This is due to being highly over-coupled resulting in the pressure
fields within the grooves being weak. In comparison, the Q-factor for the w = 0.5
mm is larger at 14.0(£1.3), and its higher losses are present with a minimum in
the reflectively of 0.32. The effect of w on the reflectively minimum is shown in

Figure 4.4. A minimum value occurs when w = 0.25 mm, this is as the system
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Fig. 4.3 a) Normal incidence reflectivity of simple gratings with d =5 mm, A\, =6
mm and various groove widths. b) non-radiative dispersion of the fundamental
surface waves supported by simple gratings of various groove widths. Here, kg /2 is
the first Brillouin-zone boundary. All data has been obtained through FEM models.

becomes critically-coupled: where the internal losses of the resonator are equal to
the radiative losses resulting in perfect absorption. At values of w below this, the
system is under-coupled. In the non-radiative regime as w is increased the modes
disperse over a larger frequency range as they couple more strongly to free radiation
as seen in the previous discussion with the fundamental mode of d = 10 mm. The
frequency at which the modes reach the Brillouin zone boundary decreases with w as
expected. As the width increases, so does the end-correction resulting in the groove
appearing longer, which decreases the resonant frequency.

In order to explore the reflectivity from a resonant surface, the following equation

taking the usual form is used:

Riw) = wd — w? —iw(Cy — no/cosh)

= 4.2
wg — w? —iw(Co + nmo/cosh)’ (4.2)

where w is the angular frequency, wy is the resonant frequency, (j is the dissipation

and 79 is the admittance of the surface. Figure 4.5(a) shows the normal incidence
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Fig. 4.4 Relation between w and the reflectivity for a simple grating of d =5 mm
and A\, = 6 mm. At small w the system in under-coupled, the surface becomes
critically-coupled as w approaches 0.25 mm. At larger w the mode is over-coupled.
All data has been obtained through FEM models.

reflectivity spectra obtained from |R(w)|. Three distinct cases are shown for under-
coupled, 19 > (p which is satisfied when 7y = wy/200; critically coupled 7y = (o, and
finally over-coupled, ny < (o satisfied by 1y = wo/2. Here, wy takes the value 300007,
and (o = 2000. All three cases show the expected behaviour as previously discussed.
One may also look at the phase on reflection. If the phase of reflected waves at a
given distance from an acoustic mirror is considered, as the frequency is increased
the phase of the reflected wave would decrease at a constant rate as the wavelengths
shorten.

However, as soon as any structure is present on the reflecting surface, additional
phase changes occur as the frequency moves across the resonance of the structure.
It is expected that as w approaches wy a phase shift of 7 occurs. This results in
a total phase shift of 27 over the full frequency spectrum for each resonant mode.
The phase shift for the critically coupled case occurs over a very narrow frequency

band. The over-coupled system is much different as the phase change now occurs
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Fig. 4.5 a) Normal incidence reflectivity spectrum calculated using equation 4.2 for
critically (solid, blue line), under (dashed, black line) and over-coupled (dotted, red
line) surfaces. b) Normal incidence phase on reflection for critically (solid, blue line),
under (dashed, black line) and over-coupled (dotted, red line) surfaces.

over a much broader frequency band, and an important feature is that the phase
change is less than 27 over the frequency range shown, this occurs as the internal
losses (the dissipation) of the surface are less than that of the external losses (the
admittance). However, due to the mode being broad in frequency a phase change of
27 will be accumulated as w approaches infinity. A full FEM modelled dispersion of
a simple grating with w = 1 mm, d = 5 mm and Ay = 6 mm is shown in Figure 4.6.
In all modelling presented in this chapter, the frequency resolution is 100 Hz, and an
angle resolution of 2o0. The non-radiative dispersion was calculated at a resolution of
ky/40. The colour data represents the radiative regime for angles of incidence up
to grazing; the reflectivity minimum weakens at higher angles of incidences due to
weaker coupling to free radiation. The blue line represents the acoustic surface mode
supported by the surface, due to there only being one resonator per unit cell, only

one mode exists per groove resonance.
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Fig. 4.6 Full FEM mode dispersion for a simple grating of w = 1 mm, d = 5 mm and
Ag = 6 mm. The colour plot represents the radiative regime (ko > ky). The blue line
represents the dispersion of the non-radiative surface mode (ky > ko). The red line
is the sound line (ky = ko).

4.4 Two-resonator Compound Grating

More resonators per unit cell create additional degrees of freedom. With higher
degrees of freedom more than one resonance will be found at every wavevector. One
such unit cell is shown in Figure 4.7 which has two identical grooves with a separation
of [. However, the grooves are unevenly separated such that [ # A\, — [. If they were
evenly spaces, the periodicity would reduce to a simple grating. If a unit cell is
considered where w; = we = 1 mm, d; = dy = 5 mm, [ = 3 mm and A\; = 10 mm,
then the resonance condition for both the grooves is the same. Therefore, in isolation
they have the same resonance frequency. The full dispersion for this structure has
been modelled in Figure 4.8(a), it is clear that in the non-radiative regime, two
coupled modes now exist for the fundamental resonance of the grooves. Figure 4.8ii
shows the phase of the lower frequency mode at the first Brillouin-zone boundary.

It is seen that acoustic fields in both of the grooves are in phase with each other.
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Fig. 4.7 Schematic of a two resonator compound grating unit cell. Here, two grooves
of widths: w; and w,, and depths: d; and dy; separated by [, within a pitch of A,.

However, when the higher frequency mode is considered, now there appears a phase
difference of m between the acoustic fields in the grooves. These two standing wave
solutions are of slightly different energies, which results in a band-gap existing at the
first Brillouin-zone boundary. This newly excited, high-frequency mode is a phase
resonance mode. Within the radiative regime, there are also two modes: one broad
mode at 16 kHz at normal incidence; and a second, much narrower mode which
lowers in frequency as the angle of incidence is increased. This mode originates
from the higher frequency radiative mode which has been folded back into the first
Brillouin zone, therefore, it does not interact with the sound line. This mode is
also not excitable at normal incidence due to the configurations of the fields; this
is a characteristic feature of a true phase resonance mode. The first mode is the
non-phase resonance mode, while the second is the phase resonance mode.

One may change various parameters of the system to increase the separation in
the frequency of the modes, or to increase the losses so that the system is critically
coupled. Consider a system where the width of one of the grooves has been doubled,
wi; = 2 mm and we = 1 mm, and the depths of the grooves have been kept the same.

Now the resonant frequency of each groove is slightly different as the end-correction
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Fig. 4.8 a) Full FEM dispersion for a two-resonator compound grating with parameters
w; =wy =1mm, dy =dy =5 mm, [ =3 mm and A\; = 10 mm. i) Phase within the
grooves of the higher frequency mode at k,/2. ii) Phase within the grooves of the
lower frequency mode at k,/2. The blue lines represent the dispersion of ASWs. The
red line represents the sound line. The phase here is arbitrarily chosen to highlight
the phase difference between the cavities.

increases with groove width, as discussed in Section 2.3. The full dispersion is shown
in Figure 4.9. In the non-radiative regime, the effect of the different groove widths
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