TRUSSES WITH REDUCED THERMAL EXPANSION:
THEIR DESIGN, AND MASS AND STIFFNESS PENALTIES.

Submitted by Nunzio Maria Andrea Palumbo to the University of Exeter
as a thesis for the degree of
Doctor of Philosophy in Engineering
In March 2013

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Nunzio Maria Andrea Palumbo

Signature: ………………………………………………………………………
Abstract.

This thesis focused on the mechanisms involved in negative thermal expansion of 2D/3D lattice structures. The effects of varying the constituent materials and geometry were explored. The lattices had geometries similar to those found in light-weight structures in many transport applications, including aerospace and spacecraft. One specific case was to determine how to reduce the coefficient of thermal expansivity (CTE) of such structures to near zero, by using two constituent materials with contrasting CTEs, without incurring penalties in terms of other elastic and failure properties, mass and manufacturability. The lattice geometries able to exhibit altered CTE were explored, and penalties in terms of other elastic properties were quantified. The results were scale-independent and so were generic to all such lattices. Analytical prediction and generic relationships between the geometries of the lattices and their performance were proposed. Experimental validation of the model predictions was undertaken using physical samples.

The thermomechanical properties were simulated by commercial finite element method (FEM) codes (Ansys 11, Ansys, Inc.). Ansys parametric design language was adopted to generate large sets of solutions to be evaluated against chosen criteria. Results show small or, in some cases, no penalties to be paid in terms of stiffness and mass for implementing dual-material lattices with near-zero CTE. Such lattices may compete favourably with high-cost and high-density materials (e.g. Invar) and the manufacture of dual-material lattices can be by standard processes or alternative new process such as Additive Layer Manufacturing (ALM).
An example of truss core sandwich application for aerospace application was modelled by FEM. Applications as cores in sandwich panels might be the first route by which the ALM manufacturing process is required to develop dual-material capability.
Title Page.

Abstract.

Table of Contents.

List of Figures.

List of Tables.

Nomenclature.

Acknowledgements.
Contents

1 INTRODUCTION AND LITERATURE REVIEW ... 1

1.1 Introduction and thesis outline .. 1

1.2 Thermal Expansion ... 3

1.3 Negative Thermal Expansion .. 5

1.3.1 Mechanisms ... 5

1.3.2 Cubic and isotropic materials .. 11

1.3.3 Anisotropic materials ... 17

1.4 Engineering of Negative Thermal Expansion Structures 25

1.4.1 Cellular solids ... 25

1.4.2 Laminated composites ... 37

1.5 Applications ... 41

2 NEAR-ZERO THERMAL EXPANSIVITY 2D LATTICE STRUCTURES: PERFORMANCE IN TERMS OF MASS AND MECHANICAL PROPERTIES. 43

2.1 Introduction .. 43

2.2 Methodology .. 46

2.2.1 Comparison FE solution vs. Truss Analysis 54

2.3 Results .. 54

2.3.1 CTE, First Parametric Study ... 54

2.3.2 CTE, Second Parametric Study .. 58
2.3.3 Stiffness and mass in second parametric study ... 61
2.3.4 Comparison FE solution vs. Truss Analysis ... 63
2.4 Discussion ... 66
2.5 Conclusion ... 69

3 HIGH PERFORMANCE 3D TRUSSES: LIMITS OF THERMAL
DISTORTION AND ELASTIC PROPERTIES ... 70

3.1 Introduction ... 70
3.2 Methodology ... 73
 3.2.1 Numerical Modelling .. 73
 3.2.2 Validation .. 78
 3.2.3 Analytical Modelling .. 80
3.3 Results ... 95
 3.3.1 Numerical modelling ... 95
 3.3.2 Validation ... 107
 3.3.3 Analytical modelling ... 110
3.4 Discussion ... 111
3.5 Conclusion .. 115

4 COMBINATORIAL DETERMINATION OF 3D STRUCTURES: THERMAL
DISTORTION AND ELASTIC PROPERTIES ... 117

4.1 Introduction ... 117
5.7 Conclusion .. 190

6 FINITE ELEMENT MODELLING OF TRUSS CORE SANDWICHES 192

6.1 Introduction .. 192

6.2 Methodology ... 195

 6.2.1 Analytical modelling .. 201

6.3 Results .. 202

 6.3.1 Analytical modelling results .. 210

6.4 Discussions and conclusions .. 210

7 DISCUSSION ... 212

 7.1 Discussion ... 212

8 CONCLUSION AND FURTHER WORK ... 221

 8.1 Conclusion and further work .. 221