
For Review Only
Maximum Likelihood Finite-Element Model Updating of Civil 

Engineering Structures Using Nature-Inspired 
Computational Algorithms

Journal: Structural Engineering International

Manuscript ID Draft

Manuscript Type: Scientific Papers

Type of Structure: Bridges, Buildings, Dams

Material and Equipment: Composites, Steel, Bearings/Joints/Seismic Device

Other Aspects: Dynamic effects / vibrations, Instrumentation / Monitoring, Assessment / 
Repair

 

@@date to be populated upon sending@@



For Review Only

FOCUS POINTS

 Finite-Element Model Updating of Civil Engineering Structures is usually 
performed under the Maximum Likelihood Method.

 According to this method, the updating problem is transformed into a global 
optimization problem.

 This optimization problem can be formulated under two approaches: (i) single-
objective function approach; and (ii) multi-objective function approach.

 Nature-inspired computational algorithms, which allow finding efficiently the 
global solution of the problem but they require a high simulation time to tackle 
this problem, are usually employed to solve this optimization problem.

 Two are the main contributions of this study: (i) to establish which is the most 
adequate approach to formulate the updating problem; and (ii) to determine 
which is the most efficient NIC algorithm to solve this optimization problem.

 Harmony search has been implemented innovatively herein to cope with the FE 
model updating problem.
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Maximum Likelihood Finite-Element Model Updating of Civil 

Engineering Structures Using Nature-Inspired Computational 

Algorithms

Finite-element model updating of civil engineering structures is usually 

performed under the maximum likelihood method for practical engineering 

applications. According to this method, the updating problem may be 

transformed into an optimization problem. Thus, the value of the most relevant 

physical parameters of the model is obtained via the minimization of an objective 

function. This function is normally defined in terms of the differences between 

the numerical and experimental modal properties of the structure. Two different 

approaches may be used to define this objective function: (i) single-objective or 

(ii) multi-objective approach. Due to the complexity of the problem, global 

optimization algorithms are usually considered. Among these algorithms, nature-

inspired computational algorithms have been widely used for finite-element-

model updating of civil engineering structures. Nevertheless, this method 

presents two main limitations: (i) a clear dependence between the updated model 

and the objective function considered for the updating problem; and (ii) a high 

simulation cost. In order to overcome these drawbacks, a detailed study has been 

performed herein both to find the most efficient computational algorithm among 

several well-known nature-inspired algorithms and to establish the most adequate 

objective function to tackle the updating problem. A laboratory footbridge has 

been considered as benchmark for this purpose.

Keywords: finite-element model updating, maximum likelihood method, single-

objective optimization, multi-objective optimization, nature-inspired 

computational algorithms, harmony search, civil engineering structures.
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Finite-element model updating of civil engineering structures is usually 

performed under the maximum likelihood method for practical engineering 

applications. According to this method, the updating problem may be 

transformed into an optimization problem. Thus, the value of the most relevant 

physical parameters of the model is obtained via the minimization of an objective 

function. This function is normally defined in terms of the differences between 

the numerical and experimental modal properties of the structure. Two different 

approaches may be used to define this objective function: (i) single-objective or 

(ii) multi-objective approach. Due to the complexity of the problem, global 

optimization algorithms are usually considered. Among these algorithms, nature-

inspired computational algorithms have been widely used for finite-element-

model updating of civil engineering structures. Nevertheless, this method 

presents two main limitations: (i) a clear dependence between the updated model 

and the objective function considered for the updating problem; and (ii) a high 

simulation cost. In order to overcome these drawbacks, a detailed study has been 

performed herein both to find the most efficient computational algorithm among 

several well-known nature-inspired algorithms and to establish the most adequate 

objective function to tackle the updating problem. A laboratory footbridge has 

been considered as benchmark for this purpose.

Keywords: finite-element model updating, maximum likelihood method, single-

objective optimization, multi-objective optimization, nature-inspired 

computational algorithms, harmony search, civil engineering structures.

Introduction

Finite-element (FE) models have been extensively used to simulate numerically 
the behaviour of civil engineering structures. However, these numerical models do not 
frequently reflect adequately the actual behaviour of the structures, so they need to be 
improved based on the results obtained from field tests and continuous monitoring [1]. 
After the adjustment, these numerical models better characterize the real response of the 
structures under external actions. For practical engineering applications, the tuning of 
the numerical models is usually achieved via the modification of the most relevant 
physical parameters of the structure in order to reduce the differences between its 
numerical and experimental behaviour. After the updating process, the resulting updated 
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model can be used either to assess more accurately the behaviour of civil engineering 
structures [2, 3, 4] or to establish a strategy for damage detection [5, 6].

As one of the main objectives of the FE model updating is to estimate indirectly 
the value of the most relevant physical parameters of the structure, the updating problem 
can be formulated as a parameter identification problem [7]. In order to solve the 
parameter identification problem, the so-called estimators are usually employed [8]. 
Estimators can be classified into two general groups [9, 10]: (i) point estimators, which 
return the expected value of each considered design parameter; and (ii) interval 
estimators, which return either an interval in which the value of each considered design 
parameter may be located or even the probability density function of each considered 
design parameter. On the one hand, among the point estimators, the maximum 
likelihood method (MLM) [8] has been widely used due to its efficiency and accuracy 
to solve the updating problem for practical engineering applications [11]. On the other 
hand, among the interval estimators, the Bayesian method [12] has imposed since it 
allows estimating numerically the probabilistic density function of the considered 
design parameters which can be useful to perform any kind of structural reliability 
analysis [13].

Among these two methods, the MLM has been commonly employed for 
practical engineering applications due to: (i) an easier implementation, (ii) the lower 
simulation time required to solve the updating problem (against the Bayesian method); 
and (iii) the straightforward use of the updated models for deterministic applications [2, 
11]. For all these reasons, this study focuses on the analysis of the performance of FE 
model updating under the MLM

The parameter identification problem, under the MLM and assuming a normal 
distribution of the adjustment errors, is equivalent to the ordinary least squares problem 
[14]. Thus, under this assumption, the parameter identification problem may be 
transformed into an optimization problem, and therefore the model updating problem 
may be formulated as an optimization problem. The purpose of this optimization 
problem is to obtain the value of the design parameters of the structure which minimizes 
the difference between the numerical and experimental behaviour of the structure. In 
order to characterize the behaviour of the structure, its modal properties are normally 
considered [8]. Thus, the numerical modal properties of the structure are commonly 
obtained from a modal analysis based on the FE method [8]; and the experimental 
modal properties are identified via the signal processing (either experimental or 
operational modal analysis) of the records obtained during an experimental test (either 
forced or ambient vibration test) [15].

In this manner, the objective function of this optimization problem can be 
defined in terms of the relative differences (residuals) between the numerical and 
experimental modal properties of the structure. As two types of modal properties are 
normally considered (natural frequencies and associated vibration modes), two type of 
residuals must be taken into account for the definition of the objective function. As 
these modal properties have different nature, a new problem arises, how to weigh the 
influence of each residual on the definition of the objective function. Two approaches 
are considered to cope with this problem [16]: (i) the single-objective function (SOF) 
approach; where a single objective is optimized and different weighting factors are 
considered to assess the influence of each residuals; and (ii) the multi-objective function 
(MOF) approach, where the different terms of a multi-objective function are optimized 
which are defined in terms of each residuals. Both approaches have been used 
interchangeably for practical engineering application [17, 18], being rare the studies in 
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which the performance of these two approaches has been compared. For this reason, one 
of the objectives of this study is to shed light to this issue.

On the other hand, an optimization algorithm must be selected to solve this 
minimization problem. Due to the nonlinear relationship between the modal properties 
of the structure and the considered physical parameters, computational intelligence 
algorithms are usually considered for this purpose [8]. Computational algorithms allow 
finding the global optimum of nonlinear optimization problems regardless of the initial 
searching point considered. Among these computational algorithms, nature-inspired 
computational (NIC) algorithms have been widely employed to solve the FE model 
updating problem [8]. Nevertheless, these computational algorithms present a clear 
drawback, the high simulation time required to perform the updating process. In order to 
overcome this limitation, it must be checked which is the most efficient NIC algorithm 
to solve each particular optimization problem. Herein, a comparison study will be 
carried out to analyse the performance of several NIC algorithms to solve the updating 
problem.

Therefore two are the main objectives of this study: (i) to establish which is the 
most adequate approach, either SOF approach or the MOF approach, to formulate the 
updating problem under the MLM; and (ii) to determine which is the most efficient NIC 
algorithm to solve the FE model updating problem among three different computational 
algorithms.

Three NIC algorithms have been compared herein: (i) genetic algorithms (GA); 
the most commonly employed computational algorithm to cope with the updating 
problem [19]; (ii) the particle swarm (PS) algorithm, which has shown a great 
efficiently to solve the FE model updating problem of mechanical structures [20]; and 
(iii) the harmony search (HS) algorithm, a more recent global optimization algorithm 
[21], that although it has been applied successfully for structural engineering 
applications [22], however, it has not been yet implemented for the FE model updating 
of civil engineering structures.

For this purpose, the performance of the two mentioned approaches and the three 
considered NIC algorithm has been compared when they are implemented to perform 
the FE model updating of a real civil engineering structure. As benchmark structure, a 
laboratory steel footbridge located at the Vibration Engineering Section of the 
University of Exeter (U.K.) has been considered [23]. A FE model of the structure has 
been built. The numerical modal properties of the structure have been obtained via a 
modal analysis. Subsequently, the experimental modal properties have been identified 
experimentally via an experimental modal analysis. The records obtained in a forced 
vibration test have been used for this purpose. A bad correlation between the numerical 
and experimental modal properties has been computed and the necessity of performing a 
FE model updating has been revealed. In order to compare the different model updating 
processes, three comparison criteria have been considered to determine the most 
adequate approach for FE model updating of civil engineering structures under the 
MLM; the sweep capacity, the computational cost and the goodness of the solution, and 
other two comparison criteria have been taken into account for the determination of the 
most efficient NIC algorithm; the computational cost and the accuracy of the 
adjustment.

The results of this study can be implemented easily to improve the FE model 
updating of real civil engineering structures for practical engineering applications. 
Nevertheless, further studies are needed to assess the performance of these NIC 
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algorithms when they are implemented for the FE model updating of different types of 
civil engineering structures under the MLM.

The paper is organized as follows. Some basics of the FE model updating 
problem under the MLM are described in second section. Third section is devoted to the 
description of the three NIC algorithms considered herein. In fourth section, a real case-
study is presented. The FE model updating of a steel laboratory footbridge is performed 
under the two mentioned approaches and the three considered NIC algorithms. A 
discussion about the comparison of the results obtained is also included. Finally, some 
concluding remarks are drawn to close the paper in last section.

Basics of FE Model Updating under the Maximum Likelihood Method

According to the MLM, the updating process consists in the modification of the 
most relevant physical parameters of the FE model in order to adjust the numerical 
estimation of the response of the structure to its actual structural behaviour [14]. Hence, 
according to this method, the updating problem may be transformed into an 
optimization problem [8].

Therefore, the main objective of this optimization problem is to obtain the value 
of some design parameters which minimizes the value of an objective function defined 
in terms of the relative differences (residuals) between the numerical and experimental 
modal properties of the structure [8]. As design parameters, the physical parameters, 
which have the greatest influence on the dynamic behaviour of the structure, are usually 
selected [8]. The search space is normally constrained by a search domain to guarantee 
that the solution obtained maintains the physical meaning of the problem.

Two types of residuals are usually considered to define the objective function of 
the updating problem: (i) residuals associated with the natural frequencies,  (being  𝑟𝑓

𝑗 𝑗
the considered natural frequency), and (ii) residuals associated with the vibration 
modes,  (being  the considered vibration mode).𝑟𝑚

𝑗 𝑗

The influence of these two types of residuals in the objective function is 
evaluated via two different approaches: (i) the single-objective function (SOF) 
approach; and (ii) the multi-objective function (MOF) approach.

Under the SOF approach, the objective function is defined in terms of the 
weighted residuals between the numerical and experimental modal properties of the 
structure. These weights are established to consider the relative contribution of each 
residual. Their value can be determined either by a statistical criterion [1] or by a trial-
and-error criterion [5]. According to the statistical criterion, the weights are defined in 
terms of the uncertainty associated with the estimates of the experimental modal 
properties of the structure. According to the trial-and-error criterion, the weights are 
defined by an iterative process which ensures the best agreement between the numerical 
and experimental modal properties of the structure. Herein the performance of the 
second criterion has been analysed.

Under the MOF approach, the objective function is defined in terms of several 
functional components. For practical engineering applications, this objective function is 
defined by two functional components [16]: (i) the first component is defined in terms 
of the residuals associated with the natural frequencies, ; and (ii) the second 𝑟𝑓

𝑗 (𝛉)
component is defined in terms of the residuals associated with the vibration modes, 𝑟𝑚

𝑗 (
 (being  the considered vibration mode). Although, this approach presents as 𝛉) 𝑗
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advantage that it is not necessary to define the weights of the residuals, it has a clear 
drawback, a subsequent decision-making problem must be solved to select the best 
solution among the set of possible solutions (the so-called Pareto front) provided by the 
optimization algorithm. In order to solve this decision-making problem, the normal 
boundary intersection (NBI) method has been considered herein [24] among the 
different criteria provide in literature [25].

Thus, the general formulation of the FE-model updating problem under the SOF 
approach may be stated as follows [16]:

min 𝑓(𝛉) = 𝑚𝑖𝑛
𝑚

∑
𝑗 = 1

𝑤𝑗𝑟𝑗(𝛉)2 = 𝑚𝑖𝑛
𝑚𝑓

∑
𝑗 = 1

𝑤𝑓
𝑗 𝑟𝑓

𝑗 (𝛉)2 +
𝑚𝑚

∑
𝑗 = 1

𝑤𝑚
𝑗 𝑟𝑚

𝑗 (𝛉)2

𝛉𝑙 ≤ 𝛉 ≤ 𝛉𝑢 ∑𝑤𝑗 = ∑𝑤𝑓
𝑗 + 𝑤𝑚

𝑗 = 1 𝑤𝑗 ≥ 0

(1)

where  is the objective function for the single-objective function approach (SOF); 𝑓(𝛉)
 is the size of the residuals vector related to the natural frequencies, ;  is the 𝑚𝑓 𝐫𝐟(𝛉) 𝑚𝑚

size of the residuals vector related to the vibration modes, ;  is the size of the 𝐫𝐦(𝛉) 𝑚
residuals vector, ;  is the weighting factor of the element  of the residuals vector; 𝐫(𝛉) 𝑤𝑗 𝑗

 is the element  of the residuals vector;  is the weighting factor of the element  𝑟𝑗(𝛉) 𝑗 𝑤𝑓
𝑗 𝑗

of the residuals vector associated with the natural frequencies,  is the element  of 𝑟𝑓
𝑗 (𝛉) 𝑗

the residuals vector associated with the natural frequencies;  is the weighting factor 𝑤𝑚
𝑗

of the element  of the residuals vector associated with the vibration modes;  is 𝑗 𝑟𝑚
𝑗 (𝛉)

the element  of the residuals vector associated with the vibration modes; 𝑗 𝛉 = [𝜃1,…,𝜃𝑖
 is the physical parameter vector/design parameter vector (with  the number of ,…,𝜃𝑛𝑣] 𝑛𝑣

terms of this vector);  is the lower bound vector of the search 𝛉𝑙 = [𝜃𝑙
1,…,𝜃𝑙

𝑖,…,𝜃𝑙
𝑛𝑣]

domain of the physical parameter vector; and  is the upper bound 𝛉𝑢 = [𝜃𝑢
1,…,𝜃𝑢

𝑖 ,…,𝜃𝑢
𝑛𝑣]

vector of the search domain of the physical parameter vector.

On the other hand, the general formulation of the FE model updating problem 
under the MOF approach may be stated as follows [16]:

min 𝐟(𝛉) = (𝑓1(𝛉) 𝑓2(𝛉)) = 𝑚𝑖𝑛(∑𝑚𝑓

𝑗 = 1
𝑟𝑓

𝑗 (𝛉)2 ∑𝑚𝑚

𝑗 = 1
𝑟𝑚

𝑗 (𝛉)2)
𝛉𝑙 ≤ 𝛉 ≤ 𝛉𝑢

(2)

where  and  are respectively the first and the second sub-objective functions 𝑓1(𝛉) 𝑓2(𝛉)
for the multi-objective function approach.

In order to guarantee that the two types of residuals are well-balanced, the 
residuals may be normalized as follows [16]:

 𝑟𝑓
𝑗 (𝛉) =

𝑓𝑛𝑢𝑚,𝑗(𝛉) ― 𝑓𝑒𝑥𝑝,𝑗

𝑓𝑒𝑥𝑝,𝑗
𝑗 = 1,2,…,𝑚𝑓

(3)

 𝑟𝑚
𝑗 (𝛉) = ((1 ― 𝑀𝐴𝐶𝑗(𝛉))2

𝑀𝐴𝐶𝑗(𝛉) ) 𝑗 = 1,2,…,𝑚𝑚
(4)

Therefore the FE model updating process consists of the following steps [8]: (i) 
the modal properties of the structure are identified experimentally via the signal 
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processing of the records obtained during a vibration test; (ii) the numerical modal 
properties of the structure are obtained via a FE modal analysis; (iii) the objective 
function is evaluated; (iv) the design parameters are modified; and (v) the steps (ii) to 
(iv) are repeated iteratively until some convergence criterion is met.

As result of this process, either a vector of updated design parameters (SOF 
approach) or the Pareto front (MOF approach) is obtained. Additionally, a subsequent 
decision-making problem must be tackled to select the vector of updated parameters 
under the MOF approach. Fig. 1 shows the flowchart of the FE model updating problem 
under the MLM.

Fig. 1. Flowchart of the FE model updating problem under the MLM [26].

In order to assess the performance of the updating process, the correlation 
between the numerical and experimental modal properties must be determined. For this 
purpose, several ratios have been proposed [15]. Among the different proposals, the 
relative difference between the numerical and experimental natural frequencies, ∆𝑓𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗
, and the modal assurance criterion, , are widely used [1]. Both ratios (𝛉) 𝑀𝐴𝐶𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗 (𝛉)
are defined as:

 [%]∆𝑓𝑛𝑢𝑚,𝑗
𝑒𝑥𝑝,𝑗 (𝛉) =

𝑓𝑛𝑢𝑚,𝑗(𝛉) ― 𝑓𝑒𝑥𝑝,𝑗

𝑓𝑒𝑥𝑝,𝑗
100 (5)

𝑀𝐴𝐶𝑛𝑢𝑚,𝑗
𝑒𝑥𝑝,𝑗 (𝛉) =

(𝜙𝑇
𝑛𝑢𝑚,𝑗(𝛉) ∙ 𝜙𝑒𝑥𝑝,𝑗)2

(𝜙𝑇
𝑛𝑢𝑚,𝑗(𝛉) ∙ 𝜙𝑛𝑢𝑚,𝑗(𝛉))(𝜙𝑇

𝑒𝑥𝑝,𝑗 ∙ 𝜙𝑒𝑥𝑝,𝑗)
(6)

where  and  are respectively the numerical and experimental  natural 𝑓𝑛𝑢𝑚,𝑗(𝛉) 𝑓𝑒𝑥𝑝,𝑗 𝑗
frequencies of the structure;  and  are the numerical and experimental  𝜙𝑛𝑢𝑚,𝑗(𝛉) 𝜙𝑒𝑥𝑝,𝑗 𝑗
vibration modes; and T denotes the  transpose function.

A good correlation between the numerical and experimental modal properties of 
the structure is achieved if both the relative differences, , are lower than ∆𝑓𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗 (𝛉)
5.00 % and their corresponding  ratios are greater than 0.90 [27].𝑀𝐴𝐶𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗 (𝛉)

Nature-Inspired Computational Algorithms for Numerical Optimization
Nature-inspired computational (NIC) algorithms have been widely used to solve 

the FE model updating problem under the MLM. The main advantages of these 
computational algorithms are: (i) their independence in relation to the initial values of 
the design parameters; and (ii) their ability to find the global optimum of the objective 
function. However, they present a clear drawback; the high simulation time required to 
solve the updating problem. For this reason, it is necessary to assess the performance of 
each NIC algorithm when it is implemented in a particular optimization problem.

For this purpose, the performance of three NIC algorithms, under both the SOF 
approach and the MOF approach, has been compared herein: (i) genetic algorithms 
(GA); (ii) particle swarm (PS) algorithm; and (iii) the harmony search (HS) algorithm. 
These NIC algorithms are described briefly in this section.

Genetic Algorithms (GA)
The genetic algorithms (GA) are a NIC algorithms based on the Darwin’s 

natural selection theory [19]. According to this theory, each possible value of the design 
parameters is identified as a chromosome. Thus, each set of design parameters is 
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grouped into an individual (parameter vector). Subsequently, the value of this parameter 
vector is improved via an iterative process where the value of the objective function is 
optimized. The GA can be summarized in the following steps: (i) an initial random 
population of parameter vectors is created; (ii) the objective function is evaluated for all 
the individuals; (iii) a new population is created using three mechanisms (selection, 
crossover and mutation); (iv) the objective function is evaluated for the individuals of 
the new population; (v) the steps (iii) and (iv) are repeated until some convergence 
criterion is met. Fig. 2a shows the flowchart of the GA.

Three mechanisms are used for this algorithm to find the optimum value of the 
objective function: (i) the selection, where a part of the initial population is maintained 
when a new population is generated; (ii) the crossover, where a new parameter vector is 
derived from two previous ones; and (iii) the mutation, where a new parameter vector is 
generated from a previous one modifying randomly the value of one element of the 
vector. The combination of these two last mechanisms allows sweeping the search 
domain of the optimization problem. Three design variables are defined to characterize 
these three mechanisms: (i) the selection ratio, , which establishes the number of 𝑠𝑒𝑙𝑟
individuals that constitute the elite of the population, they are maintained in the next 
generation and they are used as parents for the generation of new individuals using the 
crossover and mutation mechanism; (ii) the crossover ratio, , which determines 𝑐𝑟𝑜𝑠𝑟
the percentage of the remaining population that is modified by crossover mechanism; 
and (iii) the mutation ratio, , which establishes the percentage of the remaining 𝑚𝑢𝑡𝑟
population that is modified by the mutation mechanism.

Particle Swarm (PS) Algorithm
The particle swarm (PS) algorithm was proposed by Kennedy and Eberhart [20]. 

It is a NIC algorithm based on social behaviour of biological organisms when they 
move in a single group to achieve a desired overall objective.

According to this, the particles move through the search space following simple 
laws related to their position (value of the physical parameters) and velocity. The 
position of each particle is improved in terms of both its own best position and the best 
position of the remaining particles. Thus, as the position of each particle is updated in 
terms of its velocity, the performance of the algorithm depends mainly on this design 
variable.

Hence, the particle’s velocity depends on three main parameters: (i) the 
particle’s inertia, , which controls the impact of the current velocity on the 𝑖𝑝𝑎𝑟
subsequent velocity; (ii), a self-adjustment weight, ; which weighs the influence of 𝑠𝑒𝑙𝑤
the best position achieved by this particle on the subsequent velocity; and (iii) a social-
adjustment weight, , which weighs the influence of the best position achieved by 𝑠𝑜𝑐𝑤
the best particle in the swarm on the subsequent velocity. The particle’s inertia, ,  𝑖𝑝𝑎𝑟
controls the exploratory properties of the simulation. Thus, a high value of inertia 
encourages a global exploration, while a low value of the inertia encourages local 
exploration. The self-adjustment weight, , indicates the confidence that the current 𝑠𝑒𝑙𝑤
particle has on itself and the social-adjustment weight, , indicates the confidence 𝑠𝑜𝑐𝑤
the current particle has on the successes of the population [8]

The PS algorithm consists of the following steps: (i) a population of particles’ 
position and velocities are generated randomly (the particles’ position must be 
distributed in the search domain); (ii) the velocity of each particle is evaluated; (iii) the 
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position of each particle is updated; (iv) steps (ii) and (iii) are repeated until some 
convergence criterion is met. Fig. 2b shows the flowchart of the PS algorithm.

Harmony Search (HS) Algorithm
The HS algorithm was initially formulated by Zong Woo Geem et al. [21]. It is 

based on the improvisation carried out by the musicians when they are searching for the 
harmony following aesthetic requirements. The HS algorithm consists of the following 
steps: (i) an initial random population of possible solutions, which is stored in the 
harmony memory matrix, , is created; (ii) the objective function is evaluated for 𝐇𝐌
each of the candidate solutions; (iii) a new harmony is created at each iteration; (iv) the 
objective function is evaluated for each new harmony, (v) the harmony memory matrix,

, is updated comparing the original and new harmonies; and (vi) the steps (iii) to (v)  𝐇𝐌
are repeated until some convergence criterion is met. Fig. 2c also shows the flowchart of 
the HS algorithm.

For the generation of a new harmony, three mechanisms are considered: (i) 
harmonies in memory; (ii) pitch adjustment; and (iii) randomization. Each parameter 
from a new vector may be defined either from a previous value stored in the harmony 
memory matrix, , or from a new random value. These two possibilities are 𝐇𝐌
controlled by the harmony memory consideration rate,  which establishes the 𝐻𝑀𝐶𝑅
probability of selecting a previous element of the harmony memory matrix, .. 𝐇𝐌
Additionally, if the value is adopted from a previous one, it can be mutated according to 
the pitch adjustment rate, , and considering a predefined bandwidth, , of possible 𝑃𝐴𝑅 𝑏𝑤
values.

Fig. 2. Flowchart of the three considered NIC algorithms: a) genetic algorithms (GA); 
b) particle swarm (PS); and c) harmony search (HS).

MOF Approach for the Three Considered NIC Algorithms
The MOF approach of the GA is implemented via the NSGA-II (Non-dominated 

Sorting Genetic Algorithm) [28]. This algorithm makes use of the non-dominated 
sorting technique [29] to distinguish between dominated and non-dominated (those that 
improve the value of one objective function without sacrificing the others) solutions. 
For this purpose, each individual (possible solution) is characterized by an operator so-
called, crowded comparison operator. This operator takes into account two attributes of 
the solution: (i) the rank; and (ii) the crowding distance.

The steps of the GA under the MOF approach are: (i) an initial population is 
randomly created; (ii) the multi-objective function is evaluated for each individual; (iii) 
subsequently, the non-dominated sorting technique is employed to sort the solutions 
based on the rank and the crowding distance; (iv) then an  iterative process is initialized 
where a new population is generated using both the crossover and mutation 
mechanisms; (v) the multi-objective function is evaluated for the new population and 
the non-dominated sorting technique is used again; (vi) the initial size of the population 
is restored via its truncation based on the worst crowding distance solutions; and (vii) 
the steps (iv) to (vi) are repeated until some convergence criterion is met. As result of 
this process, the so-called Pareto front, a set of possible solutions of the updating 
problem, is obtained.

Subsequently, the MOF approach of the PS algorithm is also based on the 
classification of the non-dominated particles [30]. Hence, once the initial particles’ 
population is created and the multi-objective function is evaluated, the non-dominated 
solutions are obtained and stored in the particles’ repository. A similar process, to 
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define the Pareto front, is obtained after the mutation of the position. Thus, if the 
mutated particle dominates the non-mutated, the latter is updated. This step is applied 
iteratively to both the updated particle’s position and the best particle’s position. Then, 
the non-dominated solutions are added to the repository and finally, the domination is 
evaluated for the overall repository to neglect the dominated particles. These steps are 
repeated iteratively until some convergence criterion is met. As results of this process, 
the Pareto font is obtained.

Finally, the MOF approach of the HS algorithm has also been implemented [31] 
considering the main rules of the NSGA-II algorithm. According to this, the HS 
algorithm under a MOF approach consists of the following steps: (i) an initial set of 
harmonies is generated (harmony memory matrix, ); (ii) the multi-objective function 𝐇𝐌
is evaluated for all of harmonies; (iii) the attributes of each individual are calculated 
using the crowded comparison operator; (iv) the harmonies are sorted based on the 
crowding distance; (v) a new set of harmonies is created based on the three mentioned 
design variables ( ,  and ); (vi) the multi-objective function is evaluated 𝐻𝑀𝐶𝑅 𝑃𝐴𝑅 𝑏𝑤
for the new harmonies; (vii) the harmony memory matrix, , is truncated using both 𝐇𝐌
the non-dominated sorting technique and the crowding distance; and (viii) the steps (v) 
to (vii) are repeated until some convergence criterion is met. Finally, as result of this 
process, the Pareto front is obtained.

Discussion about the Performance of the Three Considered Nature-Inspired Algorithms
As Fig. 2 illustrates, the three considered NIC algorithms under the SOF 

approach share three common characteristics: (i) the random initialization of a 
population; (ii) the implementation of several mathematical operations to modify this 
population; and (iii) the iterative application of this re-generation process until some 
convergence criteria is met. Additionally, they also share the use of the non-dominated 
sorting rules for their implementation under a MOF approach.

However, some particular differences among these NIC algorithms make 
interesting comparing their performance when they are implemented for the FE model 
updating of civil engineering structures.

Between the GA and the HS algorithm, the main difference lies in the different 
complexity of the operations which control the updating of the population. Therefore, 
the operations associated with the HS algorithm (selection, improvement and 
randomization) are computationally easier than the operations associated with the GA 
(selection, crossover and mutation). Thus, it is expected that the computational time 
required to solve an optimization problem using the HS algorithm is lower than the one 
required employing GA. However, the simplicity of the operations can have a negative 
influence on both the accuracy of the solution and the sweeping capacity of the 
algorithm, reducing the performance of the HS algorithm when it is implemented for a 
practical engineering application.

Additionally, among these two algorithms (GA and HS) and the PS algorithm, 
the main difference is related to the re-generation of the population. While the two 
mentioned algorithms (GA and HS) generate iteratively different populations (new 
populations) during the updating process; the PS algorithm maintains the initial 
population and it only updates iteratively its attributes. In this manner, the PS algorithm 
may reduce the simulation time required to solve an optimization problem. However, as 
on the one hand, the sweeping capacity of the algorithm is lower than the GA; and on 
the other hand, the computational operations needed to compute the position and the 
velocity of each particle are more complex than the re-generating operations of the HS 
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algorithm, it is not possible establish that the PS algorithm is the most efficient 
computational algorithm among the three considered ones to solve any optimization 
problem.

For all these reason, it is not possible to establish preliminary which is the most 
efficient algorithm to solve a particular optimization problem, being necessary to 
perform a comparative study to analyse their performance for each considered case. For 
this purpose, the performance of the three mentioned NIC algorithms, when they are 
implemented for the FE model updating of a real case-study, have been compared in 
next section.

Application Example: FE Model Updating of a Laboratory Footbridge
A real case-study, an application example, has been analysed to meet the two 

objectives of this study: (i) to establish the most adequate approach to formulate the 
updating problem under the MLM; and (ii) to determine the most efficient NIC 
algorithm among the three above mentioned computational algorithms. Therefore, the 
performance of the three mentioned NIC algorithms under the two approaches has been 
compared when they have been implemented to perform the FE model updating of a 
laboratory structure. The comparison process is described in detail in this section.

Preliminary FE Model and Numerical Modal Analysis of the Laboratory Footbridge
This laboratory footbridge is a frame structure with a single span of 15 m. The 

structure is configured by two lateral steel beams separated transversally 2.5 m. These 
beams are braced by diaphragms separated longitudinally 1.25 m. The diaphragms 
consist in rectangular plates of 200x12 mm. The lateral beams are connected in their 
both sides to steel columns. These columns are pinned directly to the ground. The deck 
of the structure is formed by composite SPS panels [32]. These composite SPS panels 
are bolted to both the longitudinal and transversal elements. An overall view of the 
structure and its main constitutive components is illustrated in Fig. 3. A more detailed 
description of this structure can be found in Ref [23].

The structure was modelled with three types of elements in the FE package 
Ansys [33]. All the numerical simulations were performed using a laptop computer with 
a processor of 3.6 GHz and a RAM memory of 8 GB. The mesh consisted of 31903 
elements (Fig. 5). For our purpose the FE model was performed according to the 
following scheme: (i) the two main lateral beams and the transversal plates have been 
modelled with a four node shell elements with six degrees of freedom at each node 
(SHELL181); (ii) the SPS panels have been modelled with the same type of element 
(SHELL181) considering its sandwich behaviour through the first-order shear-
deformation theory; (iii) the bolts that configure the connection between the SPS panel 
and the steel structure have been modelled by 3-D beam elements (BEAM188); and (iv) 
the supports were modelled by means of longitudinal and lateral spring elements 
(COMBIN14) and considering that the vertical displacement was constrained. 

The initial value for these spring parameters has been estimated from a 
simplified FE model of just the column that configure the support, resulting an 
equivalent stiffness of  N/m in the longitudinal direction and 𝑘𝑙𝑜𝑛 = 5.5 ∙ 107 𝑘𝑙𝑎𝑡 = 1.9 ∙

 N/m in the lateral direction.107

As mechanical properties of the constitutive materials the following values were 
considered: (i) for the steel [34], a density  kg/m3, a Young’s modulus 𝛾𝑠 = 7850 𝐸𝑠

 MPa and a Poisson’s ratio ; and (ii) for the polyurethane [35], a = 2.1 ∙ 105 𝜈𝑠 = 0.3
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density  kg/m3, a Young’s modulus  MPa and a Poisson’s ratio 𝛾𝑝 = 1100 𝐸𝑝 = 750 𝜈𝑝
.= 0.5
This FE has been used to perform a numerical modal analysis. The first seven 

natural frequencies, , and associated numerical vibration modes, , 𝑓𝑛𝑢𝑚,𝑗(𝜽) 𝜙𝑛𝑢𝑚,𝑗(𝜽)
have been obtained from this numerical analysis (being  the considered vibration 𝑗
mode). Thus, Table 1 shows the first seven numerical natural frequencies, , 𝑓𝑛𝑢𝑚,𝑗(𝜽)
and Fig. 3 illustrates the first seven numerical vibration modes, . 𝜙𝑛𝑢𝑚,𝑗(𝜽)

Fig. 3. Description of the structure and initial first seven numerical vibration modes, 
, being  the considered vibration mode.𝜙𝑛𝑢𝑚,𝑗(𝛉) 𝑗

Experimental Identification of the Modal Properties of the Laboratory Footbridge

Subsequently, a forced vibration test was conducted to identify experimentally 
the modal properties of the footbridge. A set of proof-mass actuators and rowing 
accelerometers were used for this purpose (Fig. 4). The actuators were simultaneously 
driven by uncorrelated random signals considering a Multi-input Multi-output (MIMO) 
configuration [15, 23]. At all the considered reference points (instrumented points), the 
Frequency Response Functions (FRFs) were determined considering an overlap of 50%. 
Later, probable mode locations were identified in the FRFs fitted curves via a complex 
mode indicator function. Finally, a global polynomial curve fitting method has been 
used to identify experimentally the first seven natural frequencies and associated 
vibration modes based on the mentioned probable mode locations [15]. Both the forced 
vibration test and the corresponding experimental modal analysis have been described 
in detail in Ref [23].

Fig. 4. Forced vibration test of the laboratory footbridge [23].

The first seven experimental natural frequencies, , and associated 𝑓𝑒𝑥𝑝,𝑗
experimental vibration modes, , were obtained as result of this experimental modal 𝜙𝑒𝑥𝑝,𝑗
analysis (being  the considered vibration mode). Thus, Table 1 shows the first seven 𝑗
experimental natural frequencies, , and Fig. 5 illustrates the first seven 𝑓𝑒𝑥𝑝,𝑗
experimental vibration modes, .𝜙𝑒𝑥𝑝,𝑗

Correlation between the Preliminary Numerical and Experimental Modal Properties of 
the Laboratory Footbridge

In order to analyse the correlation between the numerical and experimental 
modal properties of the laboratory footbridge, the relative differences, , and ∆𝑓𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗 (𝜽)
the  ratios were determined. Table 1 shows the correlation between the 𝑀𝐴𝐶(𝜽)𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗
numerical and experimental modal properties of the laboratory footbridge. Additionally, 
Fig. 5 illustrates a comparison between the numerical, , and experimental, 𝜙𝑛𝑢𝑚,𝑗(𝜽)

, vibration modes.𝜙𝑒𝑥𝑝,𝑗

Table 1. Correlation between the initial numerical and experimental modal properties of 
the laboratory footbridge (being  the numerical natural frequencies;  the 𝑓𝑛𝑢𝑚,𝑗(𝛉) 𝑓𝑒𝑥𝑝,𝑗
experimental natural frequencies; , the relative differences between the ∆𝑓𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗 (𝛉)
numerical and experimental natural frequencies; and the  ratio of the  𝑀𝐴𝐶(𝛉)𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗 𝑗
considered vibration mode).

As Table 1 shows that although the shapes of six of the seven identified 
vibration modes were in good agreement (with  ratios greater than 0.90), 𝑀𝐴𝐶(𝜽)𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗
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the relative differences, , between the numerical and experimental natural ∆𝑓𝑛𝑢𝑚,𝑗
𝑒𝑥𝑝,𝑗 (𝜽)

frequencies of four of the seven vibration modes were still large.

Therefore, it becomes necessary to improve the FE model of this structure in 
order to achieve a better correlation between its numerical and experimental modal 
properties and, consequently, to obtain a FE model which better reflects the actual 
dynamic behaviour of this structure [5].

FE Model Updating of the Laboratory Footbridge
In order to formulate the FE model updating problem of this laboratory 

footbridge under the MLM, the following elements must be defined: (i) the objective 
function of the problem (either  or ); (ii) the design parameters, ; (iii) the 𝑓(𝜽) 𝒇(𝜽) 𝜽
search domain (  and ); and (iv) the optimization algorithm (GA, PS or HS).𝜽𝒍 𝜽𝒖

Thus, the two approaches of the objective function have been defined in the 
second section; the considered optimization algorithms have been described in the third 
section; and the design parameters and their corresponding search domains have been 
established here.

Hence, set with the most relevant physical parameters of the model has been 
selected, . The modal strain energy associated with each physical parameter was 𝛉
considered as selection criterion [36]. A sensitivity analysis was carried out for this 
purpose. This analysis consists in calculating the ratio between the modal strain energy 
associated with each parameter and the overall modal strain energy of the structure. This 
ratio allows selecting the most relevant physical parameters for each considered 
vibration mode. After this sensitivity analysis, ten physical parameters of the structure 
were selected as design parameters. Table 2 and Fig. 7 illustrate the ten considered 
physical parameters. Additionally, a search domain has been included to constrain this 
optimization problem and thus, to guarantee the physical meaning of the updated model. 
Table 2 also shows the lower, , and the upper, , bounds of this search domain.𝛉𝐥 𝛉𝐮

Fig. 5. FE model and comparison between the numerical, , and 𝜙𝑛𝑢𝑚,𝑗(𝜽)
experimental, , vibration modes of the laboratory footbridge (being  the 𝜙𝑒𝑥𝑝,𝑗 𝑗
considered vibration mode).

Table 2. Search domain (lower bound, , and upper bound, ) of the considered 𝛉𝐥 𝛉𝐮

physical parameters of the model, .𝛉
After selecting both the design parameters and their corresponding search 

domain, the updating problem has been solved considering the two approaches and the 
three considered NIC algorithms.

Comparison among GA, PS and HS for FE Model Updating under the SOF Approach

First, the initial FE model of the laboratory footbridge was updating under the 
SOF approach considering the three mentioned NIC algorithms (GA, PS and HS). The 
solution of each updating problem has been performed via its implementation in both 
the FE analysis package Ansys [33] and the mathematical package Matlab [37]. Two 
comparison criteria were considered to validate the performance of the three considered 
NIC algorithms: (i) the computational cost; and (ii) the accuracy of the adjustment.

For the three NIC algorithms, the following common design variables were 
considered: (i) as population size, ; (ii) as maximum number of iterations, 𝑃𝑜𝑝 = 100

; and (iii) as objective function tolerance,  (according to this, the 𝐼𝑡𝑒𝑟 = 50 𝑇𝑜𝑙𝐹 = 10 ―5
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algorithm stops if the average relative change of the best value of the objective function 
is less than or equal to ).𝑇𝑜𝑙𝐹

Additionally, for each NIC algorithms, the following particular design variables 
were considered: (i) for the GA, as selection ratio, , as crossover ratio, 𝑠𝑒𝑙𝑟 = 0.1

, and as mutation ratio, ; (ii) for the PS algorithm, as particle’s 𝑐𝑟𝑜𝑠𝑟 = 0.9 𝑚𝑢𝑡𝑟 = 0.1
inertia, , as self-adjustment weight, , and as social-adjustment 𝑖𝑝𝑎𝑟 = 0.95 𝑠𝑒𝑙𝑤 = 0.05
weight, ; and (iii) for the HS algorithm, as new population size, 𝑠𝑜𝑐𝑤 = 0.02

, as harmony memory consideration rate, , as pitch 𝑁𝑒𝑤_𝑃𝑜𝑝 = 40 𝐻𝑀𝐶𝑅 = 0.9
adjustment rate, , and as bandwidth,  .𝑃𝐴𝑅 = 0.3 𝑏𝑤 =

1
100(𝜽𝒖 ― 𝜽𝒍)

In this manner, to consider the impact of the residual weights on the updated 
value of the single-objective function, , a trial-and-error criterion [5] was 𝑓(𝜽)
considered. Table 3 shows the eleven cases established in terms of the different values 
considered for the residuals associated with the natural frequencies, , and vibration ∑𝑤𝑓

𝑗
modes., , respectively. Additionally, each case was run ten times in order to take ∑𝑤𝑚

𝑗
into account that the initial population has been generated randomly.

As result of the updating process, Table 3 shows the average values of the 
residuals for the three considered NIC algorithms in terms of the different value 
considered for the weighting factors. Additionally, Fig. 6a illustrates the representation 
in the multi-objective functional space of the residuals associated with each case and 
computational algorithm.

Table 3. Average values of the residuals in terms of the weighting factors under the 
SOF approach for the three considered NIC algorithms (GA, PS and HS).

Additionally, the simulation time required to solve the updating problem for 
each case has been determined. Thus, the following average simulation time were 
computed: (i) 74072 s for the GA; (ii) 43857 s for the PS; and (iii) 34380 s for the HS.

According to these results, two main conclusions can be drawn: (i) the accuracy 
of the three mentioned NIC algorithm is similar; and (ii) the HS algorithm allows 
reducing the simulation time required to perform the updating process. In this manner, 
the HS algorithm allows performing the FE model updating of this structure more 
efficiently than the other algorithms since it reduces the computational cost without 
compromising the accuracy of the adjustment.

Comparison among GA, PS and HS for the FE Model Updating under the MOF 
Approach

Subsequently, the initial FE model of the laboratory footbridge was also 
updating under the MOF approach considering the three mentioned computational 
algorithms. The updating process was performed again via its implementation in both 
the FE analysis package Ansys [33] and the mathematical package Matlab [37]. As 
comparison criteria, the two above mentioned were considered again.

For the three NIC algorithms under the MOF approach, the same design 
variables (common and particular) were considered. Additionally, the number of 
elements of the Pareto front was established in 25. The updating problem was solved ten 
times for each NIC algorithms to take into account the random generation of the initial 
population.

As result of the updating process, Fig. 6b illustrates the average Pareto front 
obtained for each considered NIC algorithm.
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Fig. 6. Comparison among the different residuals in the functional space considering the 
three NIC algorithms (GA, PS and HS): a) The SOF approach; b) The MOF approach; 
and c) Both the SOF and MOF approaches.

Additionally, the simulation time required, to obtain the Pareto front 
corresponding to each mentioned NIC algorithm, has been determined. Thus, the 
following average simulation times were computed: (i) 307057 s for the GA; (ii) 
240663 s for the PS; and (iii) 121676 s for the HS.

According to these results, three main conclusions can be drawn: (i) the accuracy 
of both the PS and HS algorithm is greater than the one provided by the GA since the 
Pareto front obtained by these two algorithms allows reducing the overall value of the 
residuals between the numerical and experimental modal properties of the structure; (ii) 
the accuracy between the PS and HS algorithms is similar; and (iii) the HS algorithm 
allows reducing again the simulation time required to perform the updating process. In 
this manner, the HS algorithm is again the most efficient NIC algorithm to solve the 
updating problem under the MOF approach.

Comparison between the SOF Approach and the MOF Approach for the FE Model 
Updating of the Laboratory Footbridge

Otherwise the performance of the two approaches has been compared. For this 
purpose, three comparison criteria were taken into account: (i) the sweep capacity; (ii) 
the computational cost; and (iii) the goodness of the solution.

Fig. 6c illustrates a comparison among the solutions obtained considering the 
two approach (SOF and MOF) and the three mentioned NIC algorithms (GA, PS and 
HS). The pair of residuals of each solution has been represented in the multi-objective 
functional space.

As Fig. 6c shows although all the solutions obtained under the SOF approach 
belong to the Pareto front of the updating problem, however they focus on one of the 
branches of the curve. Thus, the sweep capacity of the SOF approach is lower than the 
one obtained under the MOF approach. Additionally, the set of solutions obtained under 
the SOF approach present a worse adjustment than the set of solutions obtained under 
the MOF approach. All the solutions obtained under the SOF approach present a greater 
distance to the coordinate origin (overall adjustment error) and they are far from the so-
called knee-point, or solutions which better balances the value of the two types of 
residuals [24]. Additionally, the simulation time required to perform the updating 
process under the MOF approach is lower than the one required under the SOF 
approach. Thus, the most efficient algorithm, the HS algorithms, takes about 378180 s 
to determine the best updated model under the SOF while it only takes 121677 s under 
the MOF approach (121676 s to determine the Pareto front and 1 s to solve the decision-
making problem).

For all these reasons, it can be established that the MOF approach of the HS 
algorithm is the best option to perform the FE model updating of a civil engineering 
structure under the MLM.

Finally, for the sake of completeness, the modal properties of the footbridge, 
after the updating process, are shown in Table 4 and Fig. 7. The best solution of the 
Pareto front provided by the HS algorithm under the MOF approach has been 
considered for this purpose. This best solution has been obtained via the implementation 
of the NBI method [24] on this Pareto front. Thus, Table 4 shows the first seven 
updated natural frequencies, , of the structure and Fig. 7 illustrates the first 𝑓𝑢𝑝𝑑,𝑗(𝜽)
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seven vibration modes, . As Table 4 shows, the correlation between the 𝜙𝑢𝑝𝑑,𝑗(𝜽)
updated and experimental modal properties of the footbridge, after the updating process, 
is good. All the relative differences, , are lower than 5%, and all the ∆𝑓𝑢𝑝𝑑,𝑗

𝑒𝑥𝑝,𝑗(𝜽)
 ratios are greater than 0.9. 𝑀𝐴𝐶(𝜽)𝑢𝑝𝑑,𝑗

𝑒𝑥𝑝,𝑗

Fig. 7. Comparison between the updated, , and experimental, , vibration 𝜙𝑢𝑝𝑑,𝑗(𝜽) 𝜙𝑒𝑥𝑝,𝑗
modes of the laboratory footbridge (being  the considered vibration mode).𝑗
Table 4. Correlation between the updated and experimental modal properties of the 
laboratory footbridge (being  the updated natural frequencies;  the 𝑓𝑢𝑝𝑑,𝑗(𝛉) 𝑓𝑒𝑥𝑝,𝑗
experimental natural frequencies; , the relative differences between the ∆fupd,j

exp,j (𝛉)
updated and experimental natural frequencies; and the  ratio of the  MAC(𝛉)upd,j

exp,j 𝑗
considered vibration mode).

Conclusions

FE model updating of civil engineering structures is usually performed under the 
MLM. According to this method, the FE model updating problem may be formulated as 
an optimization problem. Thus, the main objective of this optimization problem is to 
obtain the value of the most relevant physical parameters of the structure which 
minimizes the relative differences between the numerical and experimental modal 
properties of the structure. As two modal properties are normally considered, the natural 
frequencies and their associated vibration modes, one key aspect to take into account is 
how to handle the influence of the residuals associated with each modal property in the 
solution of the updating problem. In order to overcome this drawback, two approaches 
have been proposed to formulate the optimization problem: (i) the SOF approach; and 
(ii) the MOF approach.

Additionally, due to both the complexity of the models and the non-linear 
relationship between the residuals and the considered design parameters, computational 
intelligence algorithms are have been extensively used to solve the updating problem. 
Among these computational algorithms, NIC algorithms have been shown especially 
effective to cope with this problem. Nevertheless, their use presents a main drawback, 
the high simulation time required to solve this optimization problem.

In order to shed light to these two drawbacks, this study has two main 
objectives: (i) to establish which is the most adequate approach to formulate the 
updating problem under the MLM; and (ii) to determine which is the most efficient NIC 
algorithm to solve the FE model updating problem among three different computational 
algorithms (GA, PS and HS).

For this purpose, the FE model updating of a real civil engineering structures has 
been performed under the two mentioned approaches and considering the three 
mentioned NIC algorithm. As benchmark structure, a laboratory steel footbridge located 
at the University of Exeter (U.K.) has been considered. A FE model of the structure has 
been built. The numerical modal properties of the footbridge have been obtained from a 
FE modal analysis. Subsequently, the experimental modal properties of the footbridge 
were obtained by the signal processing (experimental modal analysis) of the records 
obtained during a forced vibration test. The correlation between the numerical and 
experimental modal properties has been computed and the necessity of improving the 
FE model has been revealed. Different comparison criteria have been regarded to 
compare the results of the different FE model updating processes. Thus, for the 
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establishment of the most adequate approach: (i) the sweep capacity; (ii) the 
computational cost; and (iii) the goodness of the solution have been taken into account. 
Additionally, for the determination of the most efficient NIC algorithm: (i) the 
computational cost; and (ii) the accuracy of the adjustment have been considered.

As result of this study two main conclusions have been obtained: (i) the MOF 
approach is the most adequate option to perform the FE model updating of civil 
engineering structures under the MLM since it allows sweeping more widely the space 
search; it allows reducing the overall simulation time required to solve the updating 
problem and it allows obtaining an updated model which better balances the influence 
of the two considered residuals; and (ii) the HS algorithm is the most efficient NIC 
algorithm among the three considered ones to solve the updating problem since it allows 
reducing clearly the computational cost without compromising the accuracy of the 
adjustment.

In this manner, the results provided herein can be implemented directly to 
improve the FE model updating of complex civil engineering structures for practical 
engineering applications. Nevertheless, further studies are recommended to validate the 
performance of the HS algorithm when it is implemented for the FE model updating 
under the MOF approach of different types of civil engineering structures.
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Table 1. Correlation between the initial numerical and experimental modal properties of 
the laboratory footbridge (being  the numerical natural frequencies;  the 𝑓𝑛𝑢𝑚,𝑗(𝛉) 𝑓𝑒𝑥𝑝,𝑗
experimental natural frequencies; , the relative differences between the ∆𝑓𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗 (𝛉)
numerical and experimental natural frequencies; and the  ratio of the  𝑀𝐴𝐶(𝛉)𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗 𝑗
considered vibration mode).

Vibration Mode  [Hz]𝑓𝑛𝑢𝑚,𝑗(𝜽)  [Hz]𝑓𝑒𝑥𝑝,𝑗  [%]∆𝑓𝑛𝑢𝑚,𝑗
𝑒𝑥𝑝,𝑗 (𝜽)  [-]𝑀𝐴𝐶(𝜽)𝑛𝑢𝑚,𝑗

𝑒𝑥𝑝,𝑗
1 (1st Bending) 3.638 3.810 -4.509 0.999
2 (1st Torsional) 5.329 5.144 3.600 0.994
3 (2nd Torsional) 10.185 8.485 20.033 0.990
4 (2nd Bending) 11.310 12.366 -8.540 0.877
5 (3rd Bending) 17.364 18.605 -6.670 0.985
6 (3rd Torsional) 20.238 20.459 -1.080 0.993
7 (4th Bending) 21.105 22.980 -8.159 0.910
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Table 2. Search domain (lower bound, , and upper bound, ) of the considered 𝛉𝐥 𝛉𝐮

physical parameters of the model, .𝛉

Physical
Parameter, .𝜽

Definition 
(Fig. 7)

Lower 
Bound, .𝜽𝒍

Upper 
Bound, .𝜽𝒖

𝜃1 Young’s modulus steel. Sections 1/12 [MPa] 1.89 ∙ 105 2.31 ∙ 105

𝜃2 Young’s modulus steel. Sections 2/11 [MPa] 1.89 ∙ 105 2.31 ∙ 105

𝜃3 Young’s modulus steel. Sections 3/10 [MPa] 1.89 ∙ 105 2.31 ∙ 105

𝜃4 Young’s modulus steel. Sections 4/9 [MPa] 1.89 ∙ 105 2.31 ∙ 105

𝜃5 Young’s modulus steel. Sections 5/8 [MPa] 1.89 ∙ 105 2.31 ∙ 105

𝜃6 Young’s modulus steel. Sections 6/7 [MPa] 1.89 ∙ 105 2.31 ∙ 105

𝜃7 Young’s modulus polyurethane [MPa] 0.75 ∙ 103 1.50 ∙ 103

𝜃8 Young’s modulus steel of the bolts [MPa] 2.10 ∙ 105 2.10 ∙ 106

𝜃9 Longitudinal stiffness spring [N/m] 1.38 ∙ 107 1.10 ∙ 108

𝜃10 Lateral stiffness spring [N/m] 4.75 ∙ 106 3.80 ∙ 107
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Table 3. Average values of the residuals in terms of the weighting factors under the 
single-objective function approach (SOF) for the three considered NIC algorithms (GA, 
PS and HS).

GA [ ]𝑥10 ―3 PS [ ]𝑥10 ―3 HS [ ]𝑥10 ―3Case ∑𝑤𝑓
𝑗 ∑𝑤𝑚

𝑗

∑𝑟𝑓
𝑗 (𝛉)2 ∑𝑟𝑚

𝑗 (𝛉)2 ∑𝑟𝑓
𝑗 (𝛉)2 ∑𝑟𝑚

𝑗 (𝛉)2 ∑𝑟𝑓
𝑗 (𝛉)2 ∑𝑟𝑚

𝑗 (𝛉)2

01 1.0 0.0 3.63 2.69 3.56 2.68 3.55 2.69
02 0.9 0.1 3.57 2.66 3.56 2.68 3.55 2.69
03 0.8 0.2 3.59 2.62 3.58 2.51 3.58 2.66
04 0.7 0.3 3.58 2.53 3.57 2.52 3.61 2.52
05 0.6 0.4 3.57 2.56 3.57 2.50 3.62 2.50
06 0.5 0.5 3.58 2.51 3.58 2.51 3.58 2.57
07 0.4 0.6 3.58 2.52 3.58 2.49 3.62 2.51
08 0.3 0.7 3.59 2.48 3.58 2.49 3.63 2.51
09 0.2 0.8 3.58 2.51 3.58 2.49 3.62 2.49
10 0.1 0.9 3.58 2.53 3.59 2.47 3.70 2.47
11 0.0 1.0 3.59 2.50 3.59 2.49 3.64 2.46
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Table 4. Correlation between the updated and experimental modal properties of the 
laboratory footbridge (being  the updated natural frequencies;  the 𝑓𝑢𝑝𝑑,𝑗(𝛉) 𝑓𝑒𝑥𝑝,𝑗
experimental natural frequencies; , the relative differences between the ∆fupd,j

exp,j (𝛉)
updated and experimental natural frequencies; and the  ratio of the  MAC(𝛉)upd,j

exp,j 𝑗
considered vibration mode).

Vibration Mode  [Hz]𝑓𝑢𝑝𝑑,𝑗(𝜽)  [Hz]𝑓𝑒𝑥𝑝,𝑗  [%]∆𝑓𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗(𝜽)  [-]𝑀𝐴𝐶(𝜽)𝑢𝑝𝑑,𝑗

𝑒𝑥𝑝,𝑗
1 (1st Bending) 3.854 3.810 1.155 0.999
2 (1st Torsional) 5.489 5.144 4.907 0.994
3 (2nd Torsional) 8.365 8.485 -1.414 0.988
4 (2nd Bending) 11.896 12.366 -3.800 0.905
5 (3rd Bending) 18.662 18.605 0.306 0.987
6 (3rd Torsional) 20.016 20.459 -2.163 0.993
7 (4th Bending) 22.506 22.980 -2.063 0.957

Page 27 of 34 @@date to be populated upon sending@@

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 

Figure 1 

147x90mm (600 x 600 DPI) 

Page 28 of 34@@date to be populated upon sending@@

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 

Figure 2 
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Figure 3 
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Figure 5 
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Figure 6 
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Figure 7 

144x184mm (300 x 300 DPI) 

Page 34 of 34@@date to be populated upon sending@@

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


