The relationship between psychological well-being and physical activity: The impact of measurement

Submitted by Lisa Rachel Stephanie Phillips to the University of Exeter
As a thesis for the degree of
Doctor of Philosophy in Sport and Health Sciences
In May 2013

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature: ..
Abstract

Psychological well-being occurs when there is an absence of mental disorders and presence of positive states. Given the increasing prevalence of mental disorders, which are thought to have their roots in childhood, improving psychological well-being in children is currently an important area of research. Physical activity has been proposed as a method by which negative states can be reduced and positive states increased, thereby increasing children’s overall psychological well-being and in turn helping to protect against a decline into clinical disorders. Research focusing on physical activity and psychological well-being has mainly used self-reported measurements to assess physical activity, a method which leads to considerable non-differential misclassification that in turn will attenuate associations between physical activity and psychological wellbeing. Few studies have employed more precise, objective measures such as accelerometry. Despite providing a more precise measure of physical activity, a number of limitations are present with the use of accelerometry, specifically concerning the data reduction processes. Various decisions made when handling accelerometer data can result in misclassification of time spent in different intensities of physical activity and can introduce selection bias. The present thesis aims to address how the decisions made during data reduction can affect estimates of physical activity prevalence and alter the observed relationships between physical activity and psychological well-being in children.

The first study of this thesis assessed the misclassification of activity intensities occurring as a result of the use of various accelerometer cut-points and the resulting variation in relationships between physical activity and psychological well-being that occurs. Results showed that the use of different cut-points to determine physical activity intensity alters the magnitude of the relationship between physical activity and psychological well-being; relationships were attenuated, with some becoming non-significant. The second study addressed the issue of children’s compliance with wear time requirements over multiple time points; compliance with wear time decreased over time, whilst inclusion and exclusion rules based on minimum wear times introduced selection bias. The use of more lenient wear time criteria, to reduce selection
bias, introduced misclassification of physical activity intensities. Further, longitudinal relationships between physical activity and psychological well-being differed depending upon the wear time criteria employed. The third study aimed to address whether compliance, and in turn selection bias would systematically differ between groups of a trial of a physical activity intervention, and whether this would alter the results of the intervention itself. Results showed that compliance varied across trial condition, that selection bias with groups was different for each condition and that non-compliance hindered the exploration of the mediating effect of physical activity on psychological well-being. Study four involved the validation and calibration of a new wrist worn, waterproof physical activity monitor more compatible with 24 hour wear, thus potentially overcoming the compliance problems noted in the earlier studies. Results showed good concurrent and criterion validity, with high classification accuracy for the cut-points created. The final study assessed the acceptability and compliance with 24 hour wear in children and allowed a detailed examination of the underestimation of time spent in PA intensities that occurs from capturing shorter and different periods of the day. Results showed large misclassification with 10 hour capture periods relative to complete observation, with time in activity intensities varying across different periods of the day.

The results of this thesis demonstrate that substantial selection bias and misclassification of time in activity intensities can be introduced through the decisions made during the processing of raw accelerometry data. Furthermore, this error alters the relationships between physical activity and psychological well-being. The results indicate that the true relationship between physical activity and psychological well-being in children may still be unknown, with researchers reporting relationships and effects only relevant to the measurement methods and data reduction processes they have employed. A method of overcoming selection bias and reducing misclassification is through 24 hour wear, which through the design of new accelerometers is now possible. Future studies should use monitors compatible with and acceptable for complete observation. This would result in more precise estimates of time spent in physical activity intensities and less selection bias. Both of these improvements would greatly increase our understanding of the relationship between physical activity and psychological well-being in children.
Acknowledgments

Firstly, I would like to thank my supervisors, Associate Professor Melvyn Hillsdon and Dr. Alex Rowlands for their ever present support and their eternal patience during the completion of this thesis. Their continued guidance and advice throughout this process have been greatly appreciated. Thank you both, for your dedication to this thesis. Special thanks to Melvyn, who joined the supervisory team half way my doctoral programme, and since, has shared knowledge and expertise and provided an insurmountable amount of support and patience, even with the most simple of questions.

I would also like to thank Gaynor Parfitt for her supervision and encouragement throughout the early stages of my research. I am grateful to David Childs and Joss Langford for their technical support, and to Brad Metcalf, who acted as a sounding board, provided advice and played the role of devil’s advocate well during discussions in the final stages of this thesis. I would also like to convey my appreciation to my ever understanding employers, Dr. Jennifer Lloyd and Associate Professor Katrina Wyatt, who afforded me great flexibility in working hours during the final writing period, accompanied by huge encouragement.

My PhD research could not have taken place without the cooperation and enthusiasm of the children who kindly participated in the studies. Alongside the participants, I would like to express my gratitude to the schools and parents, without whom, I would be unable to undertake my research. I am immensely grateful to all involved! In relation to this, I thank Dr Charlotte Hamlyn-Williams, Johanna Hänggi, Anastasia Shvedko, Lorraine McNulty, Caitlin Vulgattio and Rebecca Calver, to whom I am indebted, for their help and hard work during the data collection process.

Thanks to Charlotte, Lou, Izzy and Jodi for being a sounding board for ideas, whilst providing support, encouragement and a calming influence when I needed it most. I also would like to thank Andy Price for putting up with me even through the most stressful periods; for remaining positive, keeping me sane and
providing much needed laughter, relaxation and encouragement, accompanied by lots of food and cups of tea!

Finally, I would like to thank my parents for their unwavering support, not only during the last four years, but throughout my entire education. Thank you for always believing in me, you’ve made this all possible! Special acknowledgement is given to my dad, Stephen Phillips, who sadly passed away prior to the completion of this thesis; your wisdom and guidance are with me every day.
I would like to dedicate this thesis to my parents, Sandra and Steve Phillips, who have provided unconditional love and support always.

I hope I've made you proud!
List of contents

<table>
<thead>
<tr>
<th>Abstract</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>4</td>
</tr>
<tr>
<td>Dedication</td>
<td>6</td>
</tr>
<tr>
<td>List of Tables</td>
<td>11</td>
</tr>
<tr>
<td>List of Figures</td>
<td>14</td>
</tr>
<tr>
<td>Definitions and abbreviations</td>
<td>15</td>
</tr>
</tbody>
</table>

Chapter 1: Defining children’s psychological well-being
- Conceptualising psychological well-being... 16
- Mental disorders.................................. 16
- Positive states.................................. 19
- Increasing psychological well-being.......... 22
- Summary.. 24

Chapter 2: A review of the psychological well-being and physical activity literature
- Physical activity and psychological well-being... 27
- Physical activity and psychological well-being in children and adolescents... 29
- Proposed direction of relationships........... 43
- Longitudinal research............................ 43
- Physical activity intervention trials in children and adolescents... 49
- Meta-analyses.................................... 55
- Dose – response.................................. 58
- Discussion of the PA and PWB literature....... 59

Chapter 3: Methodology
- Psychological well-being measurement.......... 63
 - Self-report................................... 65
 - Interviews................................... 67
 - Choice of methods............................ 68
- Physical activity................................ 69
 - Definition and classification................ 69
- Measurement of physical activity................ 69
 - The importance of accurate physical activity measurement... 73
 - Measures of energy expenditure.............. 75
 - Measures of behaviour........................ 78
 - Measures of physical activity via movement sensors... 83
- Sources of misclassification in the association between PA and PWB.. 94
 - Misclassification through random and systematic error... 95
 - Misclassification through accelerometer data... 98
 - Cut-point misclassification.................... 101
 - Selection bias and loss to follow up bias in PA... 104
- Choice of methods................................ 106
Chapter 4: Associations between children’s psychological well-being and physical activity intensity by accelerometer defined intensity levels

4.1 Introduction ... 113
4.2 Method ... 119
 4.2.1 Participants ... 119
 4.2.2 Protocol .. 119
 4.2.3 Psychological well-being 120
 4.2.4 Data reduction 123
 4.2.5 Data analysis .. 124
4.3 Results .. 125
 4.3.1 Descriptives ... 125
 4.3.2 ANOVAs ... 125
 4.3.3 Correlations ... 127
4.4 Discussion .. 131
 4.4.1 Time in activity intensities 131
 4.4.2 PA and PWB relationships 132
 4.4.3 Limitations and future directions 138
4.5 Conclusion .. 139

Chapter 5: Children’s compliance with wear time criteria across multiple time points

5.1 Introduction .. 140
 5.1.1 Wear time compliance 140
5.2 Method .. 144
 5.2.1 Protocol .. 144
 5.2.2 Participants ... 144
 5.2.3 Physical activity 144
 5.2.4 Psychological well-being 145
 5.2.4 Data reduction and analysis 145
5.3 Results .. 146
 5.3.1 Compliance ... 146
 5.3.2 Selection bias arising from compliance and non-compliance 148
 5.3.3 Classification of time in activity intensities depending upon wear time 151
 5.3.4 Cross sectional and longitudinal associations by wear time criteria 153
5.4 Discussion .. 157
 5.4.1 Compliance ... 157
 5.4.2 Wear time compliance and selection bias 159
 5.4.3 Wear time compliance and misclassification ... 161
 5.4.4 Wear time criteria and relationships between PA and PWB 162
5.5 Conclusion .. 164
Chapter 6: Wear time compliance across a physical activity intervention

6.1 Introduction .. 166
 6.1.2 Intervention rationale .. 167
6.2. Method .. 169
 6.2.1 Participants .. 169
 6.2.2 Protocol .. 170
 6.2.3 Measures ... 171
 6.2.4 Data reduction and analysis 171
6.3 Results .. 172
 6.3.1 Loss to follow up ... 172
 6.3.2 Effects of the intervention 173
 6.3.3 Wear time compliance 173
 6.3.4 Selection bias .. 177
 6.3.5 Misclassification of time in activity intensities 182
 6.3.6 Intervention effects upon PA 185
6.4 Discussion .. 185
 6.4.1 Intervention effects ... 186
 6.4.2 Wear time compliance 187
 6.4.3 Limitations ... 193
6.5. Conclusion .. 194

Chapter 7: Validation and calibration of the GENEA accelerometer for assessment of children’s physical activity

7.1 Introduction .. 195
7.2 Methods .. 196
 7.2.1 Participants .. 196
 7.2.2 Protocol .. 197
 7.2.3 Data analysis .. 198
7.3. Results .. 200
 7.3.1 Descriptives .. 200
 7.3.2 ANOVAs .. 202
 7.3.3 Validity .. 202
 7.3.4 Regression analysis .. 203
 7.3.5 Receiver operator characteristic curve analysis 203
7.5 Discussion .. 204
7.6 Conclusion .. 207

Chapter 8: 24 hour physical activity monitoring: An examination of misclassification and the impact upon relationships with psychological well-being

8.1 Introduction .. 208
 8.1.1 Bias and misclassification 209
8.2 Method .. 211
 8.2.1 Participants .. 211
 8.2.2 Protocol .. 211
 8.2.3 Measures ... 211
 8.2.4 Physical activity measurement 213
 8.2.5 Data analysis .. 213
8.3 Results .. 216
 8.3.1 Compliance .. 216
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Adult and child Activity MET values from Ridley and Olds (2008).</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>Classification of physical activity intensities by relative energy expenditure (adapted from ACSM, 2006).</td>
<td>73</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of physical activity assessment methods.</td>
<td>109</td>
</tr>
<tr>
<td>4.1</td>
<td>Published cut-points for activity intensities established with ActiGraph models 7164 and GT1M.</td>
<td>124</td>
</tr>
<tr>
<td>4.2</td>
<td>Means ± SD for psychological well-being variables.</td>
<td>125</td>
</tr>
<tr>
<td>4.3</td>
<td>Zero-order and partial relationships between cut-point defined sedentary behaviour and psychological well-being variables.</td>
<td>127</td>
</tr>
<tr>
<td>4.4</td>
<td>Zero-order and partial correlations between cut-point defined light activity and psychological well-being variables.</td>
<td>128</td>
</tr>
<tr>
<td>4.5</td>
<td>Zero-order and partial correlations between cut-point defined moderate activity and psychological well-being variables.</td>
<td>129</td>
</tr>
<tr>
<td>4.6</td>
<td>Zero-order and partial correlations for cut-point defined vigorous activity and psychological well-being variables.</td>
<td>130</td>
</tr>
<tr>
<td>4.7</td>
<td>Zero-order and partial correlations for cut-point defined MVPA and psychological well-being variables.</td>
<td>130</td>
</tr>
<tr>
<td>5.1.</td>
<td>Percentage of children achieving different wear times for varying combinations of days and hours per day.</td>
<td>147</td>
</tr>
<tr>
<td>5.2.</td>
<td>Number of participants complying with wear time criteria from total N with percentages shown in brackets, across multiple time points.</td>
<td>148</td>
</tr>
<tr>
<td>5.3</td>
<td>Means (± SD) of anthropometric and PWB measures for compliers and non-compliers with two minimum wear time criteria at baseline.</td>
<td>149</td>
</tr>
<tr>
<td>5.4</td>
<td>Means (± SD) of anthropometric and PWB measures for compliers and non-compliers with two minimum wear time criteria at mid-point.</td>
<td>150</td>
</tr>
<tr>
<td>5.5.</td>
<td>Means (± SD) of anthropometric and PWB measures for compliers and non-compliers with two minimum wear time criteria at end-point.</td>
<td>151</td>
</tr>
</tbody>
</table>
5.6. Mean ± SD time (minutes) accumulated in each activity intensity across three time points for 10 hours minimum wear for 3 weekdays and 1 weekend day criteria.

5.7. Mean ± SD time accumulated in each activity intensity across three time points for a minimum 8 hours wear for 3 weekdays and 1 weekend day criteria.

5.8. Correlations between baseline PA and follow up measures of PWB for different wear criteria.

5.9. Regression analysis for baseline PA and PSW for 10 hour and 8 hour wear time criteria.

6.1. Number of children with complete PWB questionnaires (n) in the total sample for each condition across time points (N).

6.2. Number of accelerometer files for each intervention condition and each time point, with number (n) and percentage (%) of participants complying and not complying with 10 hour wear time criteria across time points.

6.3. Number of accelerometer files for each intervention condition and each time point, with number (n) and percentage (%) of participants complying and not complying with 8 hour wear time criteria across time points.

6.4. Means ± SD for compliers and non-compliers with two wear time criteria for intervention criteria at baseline.

6.5. Mean (± SD) time accumulated in different activity intensities for compliers with different wear time criteria by condition at each time point.

7.1. Means and standard deviations for ActiGraph (counts·second), GENEA (g·second) output and METs.

7.2. Criterion and concurrent validity of accelerometer output for each group.

7.3. Sensitivity, specificity and area under the curve and resultant cut-points for each GENEA monitor.

8.2. Number and percentage of children complying with different wear time criteria at each day, along with cumulative percentages for the inclusion of more lenient ‘day’ criteria.
8.3 Minutes difference in time accumulated in activity intensities relative to 24-hour monitoring.

8.4 Means and standard deviations and the percentage of children classed as normal, borderline and abnormal for SDQ subscales of participants achieving full wear time (N = 78).

8.5 Correlation matrix for 1 second epochs for 10 hour PA capture periods and 24 hours for 7 days with PWB variables (N = 78).
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Multidimensional hierarchy of self-esteem.</td>
</tr>
<tr>
<td>3.1</td>
<td>Trade-off between feasibility and validity of physical activity monitors, modified from Esliger and Tremblay (2007).</td>
</tr>
<tr>
<td>4.1</td>
<td>Significant differences between times spent in each activity intensity when classified by different cut-points.</td>
</tr>
<tr>
<td>5.1</td>
<td>Compliance with different wear-time criteria across measurement points.</td>
</tr>
<tr>
<td>8.1</td>
<td>The number of children recruited, those eligible to be assessed for compliance and subsequently the number of children achieving 24 hour wear for 7 days and ≥10 hours for 3 week and 1 weekend day.</td>
</tr>
<tr>
<td>8.2</td>
<td>Mean minutes per day spent in activity intensities for different periods of wear time in participants achieving complete observation.</td>
</tr>
</tbody>
</table>
Definitions

Physical activity:
Throughout this thesis physical activity is defined as ‘any bodily movement produced by skeletal muscle that results in energy expenditure above resting level’ (Caspersen et al., 1985, p. 128).

Significant / significance:
The term significant is used throughout this thesis to indicate statistical significance, determined as $p < 0.05$.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>Physical activity</td>
</tr>
<tr>
<td>MVPA</td>
<td>Moderate to vigorous physical activity</td>
</tr>
<tr>
<td>LTPA</td>
<td>Leisure time physical activity</td>
</tr>
<tr>
<td>PWB</td>
<td>Psychological well-being</td>
</tr>
<tr>
<td>GSW</td>
<td>Global self-worth</td>
</tr>
<tr>
<td>PSW</td>
<td>Physical self-worth</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>MET</td>
<td>Metabolic equivalent term</td>
</tr>
</tbody>
</table>