
1

Deep Reinforcement Learning-Based Offloading

Scheduling for Vehicular Edge Computing

Wenhan Zhan, Chunbo Luo, Jin Wang, Chao Wang, Geyong Min, Hancong Duan,

and Qingxin Zhu

Abstract

Vehicular edge computing (VEC) is a new computing paradigm that has great potential to enhance the capability

of vehicle terminals (VT) to support resource-hungry in-vehicle applications with low latency and high energy

efficiency. In this paper, we investigate an important computation offloading scheduling problem in a typical VEC

scenario, where a VT traveling along an expressway intends to schedule its tasks waiting in the queue to minimize

the long-term cost in terms of a trade-off between task latency and energy consumption. Due to diverse task

characteristics, dynamic wireless environment, and frequent handover events caused by vehicle movements, an

optimal solution should take into account both where to schedule (i.e., local computation or offloading) and when

to schedule (i.e., the order and time for execution) each task. To solve such a complicated stochastic optimization

problem, we model it by a carefully designed Markov decision process (MDP) and resort to deep reinforcement

learning (DRL) to deal with the enormous state space. Our DRL implementation is designed based on the state-of-

the-art proximal policy optimization (PPO) algorithm. A parameter-shared network architecture combined with a

convolutional neural network (CNN) is utilized to approximate both policy and value function, which can effectively

extract representative features. A series of adjustments to the state and reward representations are taken to further

improve the training efficiency. Extensive simulation experiments and comprehensive comparisons with six known

baseline algorithms and their heuristic combinations clearly demonstrate the advantages of the proposed DRL-based

offloading scheduling method.

Index Terms

Computation offloading, deep reinforcement learning, mobile edge computing, task scheduling, vehicular edge

computing.

I. INTRODUCTION

W ITH the rapid development of the Internet-of-things (IoT) technologies, smart vehicles have become

increasingly prevalent, which has further boosted the proliferation of novel in-vehicle applications,

such as autonomous driving, augmented reality, and virus scanning [1], [2]. Such advanced vehicular

applications are in general computation-intensive, bandwidth-consuming, and/or latency-sensitive, and it

is difficult for onboard software and hardware systems to meet their demanding resource requirements.

Vehicular edge computing (VEC) [1]–[3], which is the application of mobile edge computing (MEC) [4],

[5] in vehicular scenarios, has recently received significant attention as a promising solution to improve

the situation. By offloading these resource-demanding tasks to the MEC servers attached in the roadside

units (RSU), the execution latency and energy consumption of in-vehicle applications can be significantly

reduced. At the same time, the bandwidth to the core network can be saved, diminishing the risk of

network congestion.

Task offloading is a key feature of MEC/VEC technologies. Due to the extra energy and time consump-

tion induced by data transmission and remote task execution, offloading computation tasks to edge servers

This work is supported by the National Natural Science Foundation of China (Grant No. 61871096 and No. 61972075), National Key

R&D Program of China (Grant No. 2018YFB2101300), EU H2020 Research and Innovation Programme under the Marie Sklodowska-Curie

(Grant No.752979), and China Scholarship Council.

W. Zhan, C. Luo, H. Duan, and Q. Zhu are with University of Electronic Science and Technology of China, Chengdu, 611731 China.

E-mail: {zhanwenhan, c.luo, duanhancong, qxzhu}@uestc.edu.cn.

C. Luo, J. Wang, C. Wang, and G. Min are with the College of Engineering, Mathematics and Physical Sciences, University of Exeter,

Exeter, EX4 4QF UK. E-mail: c.luo@exeter.ac.uk, jw855@exeter.ac.uk, chaowang@tongji.edu.cn, g.min@exeter.ac.uk.

2

may not always bring benefits. A key technical challenge is to balance the overall costs of computation

and communication when making offloading decisions. A number of efficient offloading algorithms have

been reported in the recent literature (e.g., [3], [6], [7]). To simplify the decision-making problem, most

of the existing solutions are based on the assumption of a static or quasi-static environment, e.g., the

state of the wireless channel is fixed during the complete offloading procedure. When user mobility and

complex wireless signal propagation are taken into consideration, the assumption of a static environment

no longer holds. Markov decision process (MDP) is an effective mathematical tool to model the impact of

user actions in a dynamic environment and allows seeking the optimal offloading decision for achieving

a particular long-term goal [8]–[10]. To this end, a state transition probability matrix that describes the

system dynamics (i.e., the probabilities of user actions leading to state transitions) should be constructed,

based on which the optimal offloading policy can be derived by value iteration or policy iteration. However,

in most real-world scenarios, the system dynamics is hard to measure or model. The transition probability

matrix is normally intractable to obtain, especially when the state and action spaces are large.

Deep reinforcement learning (DRL) [11], [12] is envisioned as a promising solution to complex se-

quential decision-making problems and has attracted increasing research interests in a wide range of

scientific disciplines. DRL is particularly suitable for solving the MEC/VEC offloading problems in

dynamic environments due to a number of reasons. First, DRL can target the optimization of long-term

offloading performance. This would outperform the “one-shot” and greedy application of the approaches

proposed in static environments (e.g., [3], [6], [7]), which may lead to strictly sub-optimal results. Second,

through DRL, the optimal offloading policy can be learned by interacting directly with the environment

without any prior knowledge of the system dynamics (e.g., wireless channel or tasks arrival characteristics).

This avoids the demand of the state transition matrix that is necessary when the conventional solutions are

utilized to solve MDP (e.g., [8]–[10]). Third, DRL can take full advantage of the powerful representation

capability of deep neural network (DNN). The optimal offloading policy can be adequately approximated

even in complicated problems with vast state and action spaces.

Recently, novel DRL-based offloading strategy designs have begun to emerge. For instance, Ref. [13]

proposes an offloading method to schedule mutually dependent tasks. A deep Q-learning based algorithm

is developed in [14] to solve the offloading decision-making problem among multiple users. Both [13] and

[14] consider static environments and resort to DRL to deal with the enormous state space. Offloading

problems in dynamic scenarios are investigated in [15]–[17]. For example, the authors in [15] utilize deep

Q-learning to find the optimal offloading policy for an IoT device with energy harvesting (EH) capability,

to select the optimal edge device and offloading data rate to maximize long-term system performance. They

consider a fine-granularity application with a fixed computation-to-volume ratio (CVR). A computation

task in this application model can be partitioned into multiple parts, and the number of CPU cycles

required for computing each input bit is fixed. Ref. [16] designs a DRL-based offloading scheme for a

mobile device with EH capability to select the best base station and the amount of energy for offloading.

A queue of tasks with identical size and CVR is considered in this work. Our earlier work [17] proposes a

DRL-based method to solve the offloading decision-making problem of a vehicle in a VEC environment,

aiming to minimize its long-term offloading cost. The adopted application model is similar to [16]. The

proliferation of new in-vehicle applications prompts the offloading methods in VEC scenario to support

more complex application models with different task sizes and CVRs. The diversity of offloading tasks

coupled with the high environment dynamics makes the offloading problem more complicated, and all the

methods introduced above are not applicable.

In this paper, we investigate the computation offloading scheduling problem in a typical VEC scenario,

where a VT traveling along an expressway decides how to schedule the tasks waiting in its task queue, as

shown in Fig. 1. The tasks are independently generated by different applications so that they have diverse

characteristics (regarding data size and CVR). MEC servers equipped in RSUs can be utilized to conduct

computation for the VT. The wireless vehicular communication environment is complex. Fading statistics

may be unknown, and instantaneous channel knowledge is only causally available. Due to the VT’s

mobility, handover from one serving RSU to another occurs periodically. These issues lead to dynamically

3

Fig. 1. The architecture of VEC offloading.

changing data transmission time/energy consumption and even transmission failures. Therefore, a good

offloading scheduling strategy should decide not only where to schedule each task (i.e., executing the task

locally in the VT or remotely on an MEC server), but also when to schedule (i.e., the scheduling order and

time of each task). This problem is very involved for conventional solutions because of the sophisticated

environment dynamics and vast state space. To tackle such challenges, we design a novel DRL-based

offloading scheduling method that can minimize the long-term cost defined as a trade-off between task

execution latency and energy consumption. The main contributions of our work are summarized as follows.

• We model the offloading scheduling process by a carefully designed MDP, in which the impacts of

task characteristics, wireless transmission and queue dynamics, and VT mobility are all taken into

account. Considering that the MDP is by nature model-free and has an enormous state and action

space, we propose applying DRL to find the optimal policy.

• A series of approaches are applied to improve training efficiency and convergence performance. First,

we design the training method based on the proximal policy optimization (PPO) algorithm, which

is the state-of-the-art policy gradient method with excellent stability and reliability [18]. In addition,

to better extract representative features of the task queue, a convolutional neural network (CNN) is

embedded in the DNN architecture, which is used to approximate the offloading scheduling policy

and value function. Finally, by deliberately adjusting the state and reward representations, a huge

number of inefficient exploration attempts in the training process can be avoided to further improve

the training efficiency.

• Extensive simulation experiments are conducted to compare the proposed DRL-based offloading

scheduling method with six known baseline algorithms and their heuristic combinations. The results

show that our approach can always achieve the lowest long-term cost. The potentials of applying

DRL to solve complex decision-making problems in VEC are clearly exhibited.

The rest of this paper is organized as follows. The system model is presented in Section II. In Section III,

we briefly introduce the background of DRL. Section IV formulates the computation offloading scheduling

problem as an MDP. The implementation of DRL and the training method are elaborated in Section V.

Simulation results and discussions are provided in Section VI. Finally, Section VII concludes this paper.

II. SYSTEM MODEL

In this section, we first introduce the system architecture. Then, the detailed mathematical models of

task queue, communication and computation operations, and the overall designing objective are elaborated.

Notation: Throughout the paper, we use N+ to denote the set of all positive integers. CN (0, σ2) denotes

a complex Gaussian distribution with zero mean and variance σ2. ⌈·⌉ denotes the ceiling operator. 1{Φ}

is the indicator function that equals 1 if the condition Φ is satisfied and otherwise 0.

4

A. System Architecture

In this paper, we consider a typical application scenario of VEC [2], as shown in Fig. 1. VTs are driven

along an expressway, served by RSUs deployed along the roadside. The distance between adjacent RSUs

is L meters, and the coverage regions of different RSUs do not overlap. Hence, the road is divided into

segments based on the coverage range of RSU. A VT can only be served by one RSU through vehicle-

to-infrastructure (V2I) communication. When it is driven across the boundary of two road segments, a

handover occurs. Each RSU is equipped with an MEC server, which acts as a proximity cloud for VTs,

i.e., a certain amount of computing resource can be reserved for each VT to conduct task computation.

A backup server located at the network backend is connected to all the MEC servers through wired

connections, and can enhance the capability of each MEC server when its computing resource is not

adequate. MEC servers can communicate with each other through the core network. Nevertheless, to

avoid degrading the condition of the core network, raw in-vehicle application data (e.g., input data for

task offloading), which usually have large size, are not allowed to be transmitted between RSUs [2].

The focus of this work is to, from the perspective of VTs, identify an offloading scheduling strategy

that can efficiently complete the execution of in-vehicle application computation tasks with a minimum

cost. Our analysis hereinafter concentrates on one single representative VT.1 The interaction between

the VT and its serving MEC server regarding computation offloading is shown at the bottom of Fig.

1. We consider an abstract computing architecture in the VT, which consists of a task queue, a task

scheduler, a local processing unit (LPU), and a data transmission unit (DTU).2 Independent computation

tasks, possibly generated by multiple types of applications, randomly arrive in the task queue (sorted by

their generation time). The task scheduler synthesizes all available system information (including queue

state, local execution state, transmission state, and remote execution state) and schedules the tasks based

on an offloading scheduling policy. A task that is assigned for local execution is processed on the LPU,

according to the scheduled execution time. For remote execution, a task is first transmitted to the serving

RSU via the DTU. Afterward, the MEC server at the RSU executes the task using the reserved computation

resource and then sends the computation result back to the VT.

The whole system is considered to operate in a slotted fashion: the smallest time interval for clock

counting, software/hardware operation, and message coding/transmission, is deemed as a unit time slot.

At the beginning of each time slot, the scheduler monitors the system state and, if necessary, performs the

offloading scheduling. Then, computation and/or communication operate during the entire time slot. The

time instant that the considered VT starts conducting the scheduling process of the tasks in its queue is

taken as the initial time slot 0. Let the speed of the VT be V (in meter/slot). At any time slot t (t ∈ N+),

its location (coordinate) can be found by x[t] = V t+ x[0], where x[0] is the starting location.

B. Task Queue Model

We model the system’s workload as a Poisson process with rate λ, indicating the expected number of

computation tasks arriving in the VT’s task queue in each time slot. The ith (i ∈ N+) arriving task Ji is

described as a 3-tuple:

Ji , (tg
i , di, ki). (1)

In (1), tg
i is the time that Ji is generated, di (in bit) is the size of the task input data, and ki (in CPU

cycle/bit) is its CVR, which can be obtained by applying program profilers [19]. All tasks waiting in

the queue are considered to be generated by computation-intensive in-vehicle applications (e.g., object

recognition or virus scanning). In general, the computation results of such tasks (e.g., object tags or virus

report) have sufficiently smaller data sizes compared with those of the input (e.g., pictures or files) [3].

1In this paper, a fixed amount of the MEC computation resource and V2I transmission bandwidth is assumed to be reserved for each VT.

Dynamically optimizing the allocation of limited computing and communication resources among multiple VTs is a more challenging issue,

which is one of our future research topics.
2The focus of our work is to identify a proper offloading scheduling strategy to balance local and remote execution in a complicated

vehicular communication and computation environment. A computing architecture with a single central unit is adopted.

5

Therefore, the size and transmission time of the output data of all tasks are considered to be negligible

throughout the paper.

We consider tasks without stringent latency demands or execution priority. They are sorted in the queue

by their generated time. In other words, when a new task arrives, it is appended to the rear end of the

task queue. If any task in the queue is sent to the LPU or DTU by the scheduler, tasks after it are shifted

forward to fill the empty position. We use Q to denote the maximum number of tasks the queue can hold,

and use q[t] (q[t] ≤ Q) to denote the actual number of tasks in the queue at time slot t. If q[t] = Q, new

incoming tasks have to be discarded and an overflow event occurs. Now, the state of the task queue at

any time slot t can be represented by a Q× 3 matrix Q[t], in which the jth (j ∈ {1, 2, · · · , q[t]}) row is

formed by the three defining elements of the jth waiting task (denoted by Q[t]〈j〉), i.e., task generation

time, input data size, and CVR, respectively. Each of the remaining Q − q[t] rows in Q[t] is a 1 × 3
all-zero vector, indicating the absence of a waiting task at that queue position.

Note that we can use two notations to refer to a task. The first reflects the natural task generation

process. For example, Ji in (1) represents the ith task generated by an in-vehicle application, and the

index i can be any positive integer. The second type of notation reflects the real-time status of the task

queue. For instance, Q[t]〈j〉 is the jth (sorted) task waiting in the queue at a particular time slot t, and the

integer index j is upper-bounded by Q. The former notation uniquely distinguishes different tasks. But

the latter can better help describe the dynamic nature of the considered system. To facilitate presentation,

with a little abuse of notation, we follow the similar way as (1) to describe task Q[t]〈j〉: when time t is

known, we have

Q[t]〈j〉 , (tg
j , dj, kj). (2)

C. Communication Model

The wireless V2I communication (for task offloading) is conducted in a block-fading environment.

The fading coefficient remains unchanged within each channel coherence time interval, which can be

one or multiple time slots, but varies randomly (not necessarily independently) afterward. We assume

that the channel fading coefficient between the VT and its serving RSU is statistically determined by the

signal propagation environment between them. For instance, under Rayleigh fading, the complex fading

coefficient h can be modeled by h = h̃ĥ, where ĥ ∼ CN (0, 1) represents small-scale fading and the large-

scale fading coefficient h̃ reflects the impact of both path loss and shadowing phenomenon. In general,

h̃ is a function of E , a set of environment factors such as the position of the VT x, the distance to the

serving RSU d, and possibly other factors. Since E is relatively simple to estimate, knowing E and thus

h̃ statistically describes h as a random variable generated from CN (0, |h̃|2).
Taking the capability of the employed channel code into consideration, the reliable transmission data

rate r from the VT to its serving RSU is a determined function of the channel fading coefficient. This

means, the transmission rate is also statistically determined by the environment factors, i.e., it obeys a

conditional probability density function (PDF) f(r|E). For a demonstration purpose, in this paper we limit

the set E = {x, d}: the environment is completely described by the location of the VT and the distance

between the VT and the serving RSU. For fixed x and d, the PDF f(r|E) is a fixed function but is

unknown to either the VT or RSUs.

At any time slot t, the VT can obtain a certain level of knowledge regarding the instantaneous fading

coefficient h[t], based on which it can infer the data rate r[t] (in bits/slot). If the VT intends to transmit

data to the RSU at time slot t, then r[t] bits data can be successfully delivered. Therefore, we denote

ttx(v, t) as the time consumed for transmitting data of size v (in bit) to the serving RSU, starting from

time slot t. It satisfies
t+ttx(v,t)−1

∑

s=t

r[s] < v ≤

t+ttx(v,t)
∑

s=t

r[s]. (3)

In practice, channel knowledge can only be causally available. The movement of the VT also contributes

to a dynamic channel environment where channel gains change rapidly. It is difficult to predict the exact

6

achievable transmission rate at future time slots. Hence the value of ttx(v, t) can only be known when the

data transmission actually completes. As a result, a good offloading scheduling strategy should make the

offloading decisions sequentially, instead of conducting “one-shot” solution.
Another issue caused by the movement of the VT and the dynamic wireless channel environment is the

transmission failure due to handover. As we mentioned earlier, to avoid degrading the condition of the

core network, raw in-vehicle application data are not allowed to be transmitted between RSUs. When the

VT leaves the coverage area of an RSU, if the input data transmission of a task has not yet finished, the

previously transmitted data cannot be passed to the new serving RSU and have to be discarded. The task

has to be re-transmitted by the VT with the cost of wasted energy and large delay. In contrast, since the

size of computation output data is negligible, the computation result can be delivered from the previous

serving RSU to the new one if the task input data transmission has been completed before handover.

D. Computation Model

The tasks in the queue are expected to be executed timely and efficiently, i.e., with small latency and

energy usage. Large delay reduces the usefulness of the in-vehicle application and user experience. High

energy consumption quickly drains the VT’s battery. They can both be considered as the cost of task

execution. The demanded time and energy for conducting the calculation of each task, either locally on

the LPU or remotely on the MEC server, are presented as follows.
1) Local Execution Model: Assume that the scheduler determines to schedule task Ji to local execution

at time slot ta
i . Then starting from ta

i , all of Ji’s CPU cycles, i.e., diki, will be executed on the LPU. The

required number of time slots to complete Ji on the LPU is

tl
i =

⌈

diki
f l

⌉

, (4)

where f l (in cycle/slot) is the CPU frequency of the LPU.
Following [20] and [21], the average power consumption, pl (in joule/slot), can be modeled by a super-

linear function of CPU frequency as pl = ξ · (f l)ν , where ξ and ν are both constants. Hence, the energy

consumed for executing Ji locally can be obtained by

el
i = pltl

i. (5)

2) Remote Execution Model: If task Ji is scheduled for offloading at time slot ta
i , the DTU starts to

deliver the task to the serving RSU at time slot ta
i . Upon successfully receiving all the input data, the

MEC server executes the task remotely for the VT. The total time consumption consists of two parts: time

for wireless data transmission and time for task computation on the MEC server. The former is related to

the scheduled starting time ta
i since the transmission data rate at each time slot depends on the location

of the VT, as presented in Section II-C. The number of time slots for completing the delivery of the di
bits data through V2I communication can be derived according to (3) as

ttx
i (t

a
i) = ttx(di, t

a
i). (6)

In addition, the number of time slots required for executing Ji on the MEC server can be calculated by

texe
i =

⌈

diki
f s

⌉

, (7)

where f s is the CPU frequency reserved for the VT by the service provider. Hence, the total time slots

consumed for offloading Ji can be obtained by

to
i (t

a
i) = ttx

i (t
a
i) + texe

i . (8)

From VT’s perspective, remote execution of tasks does not consume its energy. The energy usage for

offloading Ji is only for data transmission and is given by

eo
i (t

a
i) = ptxttx

i (t
a
i), (9)

where ptx (in joule/slot) is the transmission power of the VT.

7

E. Objective

As the VT drives along the expressway, the scheduler continuously determines “where” and “when”

to execute the tasks waiting in its queue. For each task Ji, the former refers to whether it should be

computed locally on the LPU (denoted by a binary indicator ai = 0) or offloaded to the MEC server for

remote execution (denoted by ai = 1). The latter refers to the starting time of the local calculation or

offloading operation (denoted by integer ta
i).

We define the latency experienced by task Ji as the total time duration (time slots) between the time

instant that Ji is generated (i.e., tg
i in (1)) and the time instant that the execution of Ji is completed.

Therefore, the latency can be obtained as a function of the scheduling decisions ai and ta
i :

li(ai, t
a
i) = ta

i + te
i(ai, t

a
i)− tg

i , (10)

where ta
i − tg

i represents the time duration that Ji spends to wait in the queue, and

te
i(ai, t

a
i) = (1− ai)t

l
i + ait

o
i (t

a
i) (11)

is a unified expression of completing the execution of Ji using (4) and (8).

Similarly, combining (5) and (9), the energy consumption for executing Ji can be defined as a function

of the scheduling decisions ai and ta
i :

ei(ai, t
a
i) = (1− ai)e

l
i + aie

o
i (t

a
i). (12)

Therefore, the cost of making the scheduling decisions for task Ji is defined as a trade-off between the

resulting task latency and energy consumption [20]–[22]:

ci(ai, t
a
i) = αli(ai, t

a
i) + βei(ai, t

a
i), (13)

where weighting coefficients α and β can be chosen to reflect designing preference towards smaller time

or energy usage.

The overall objective of our system design is to find the optimal computation offloading scheduling

strategy for the scheduler, in order to minimize the long-term cost, i.e., the average cost of making

scheduling decisions for all the tasks generated by the VT:

minimize
aaa,ttta

lim
n→∞

1

n

n
∑

i=1

ci(ai, t
a
i), (14)

where aaa = [a1, a2, · · · , an] and ttta = [ta
1, t

a
2, · · · , t

a
n]. The term

∑n

i=1 ci(ai, t
a
i) is the weighted sum of time

and energy consumption of all the tasks.

Solving the problem (14) is very challenging due to the impacts of the random task generation process

and dynamic wireless transmission environment. Conventional optimization techniques are hence hard to

apply. In this paper, we propose to apply DRL to identify the optimal offloading scheduling policy. We

will show that our method can efficiently and effectively estimate the unknown system dynamics, and

then properly make the scheduling decisions to achieve the expected long-term objective.

III. DEEP REINFORCEMENT LEARNING BACKGROUND

DRL is the enhancement of reinforcement learning (RL), with DNN for state representation or function

approximation [11], [12]. In an RL problem, an agent interacts with the environment over time. At each

time step n, the agent observes an environment state sn in the state space S, and selects an action an
from the action space A, following the policy π(an|sn), which is the probability of taking action an
when observing state sn. Then, the environment transits to the next state sn+1 ∈ S and emits the reward

signal rn to the agent, according to the environment dynamics P (sn+1|sn, an) and the reward function

8

R(sn, an, sn+1), respectively. This process continues indefinitely unless the agent observes a terminal state

(in an episodic problem). The accumulated reward of the agent from state sm is defined as

Gm =
∞
∑

l=0

γlrm+l, (15)

where γ ∈ (0, 1] is called the discount factor. Such a problem is usually formulated as an MDP, defined

as a 5-tuple, i.e., M = (S,A, P, R, γ).
The value function vπ(s) = Eπ[Gm|sm = s] is the expectation of accumulated reward following policy

π from state s. The action value function qπ(s, a) = Eπ[Gm|sm = s, am = a] is the expectation of

accumulated reward for selecting action a at state s and then following policy π. They respectively

indicate how good a state and a state-action pair is, and are connected via vπ(s) =
∑

a∈A π(a|s)qπ(s, a).
The objective of RL is to find the optimal policy π∗, to maximize the expectation of accumulated reward

from any state in the state space, i.e.,

vπ∗(s) = max
π

vπ(s) = max
a

qπ∗(s, a), s ∈ S. (16)

DRL uses DNNs to approximate the policy and/or value function. With the powerful representation

capability of DNN, large state space can be supported. Current DRL methods can be classified into two

categories: value-based methods and policy-based methods.

Value-based DRL methods adopt DNNs to approximate the value function (called value network), e.g.,

deep Q-network (DQN) [23] and double DQN [24]. Generally, the core idea of value-based DRL methods

is to minimize the difference between the value network and the real value function. A natural objective

function can be written as

LV(θ) = En[vπ∗(sn)− v(sn; θ)]
2, (17)

where v(·; θ) is the value network, and θ is the set of its parameters. vπ∗(·) represents the real value

function, which is unknown but is estimated by different value-based RL methods. The expectation En[·]
indicates the empirical average over a finite batch of samples in an algorithm that alternates between

sampling and optimization.

Policy-based DRL methods use DNNs to approximate the parameterized policy (called policy network),

e.g., REINFORCE [25] and Actor-Critic [26]. Comparing with value-based DRL methods, these methods

have better convergence properties and can learn stochastic policies. Policy-based DRL methods work by

computing an estimator of the policy gradient, and the most commonly used gradient estimator has form:

∇LPG(θ) = En[∇θ log π(an|sn; θ)Ân], (18)

where π is a stochastic policy and Ân is an estimator function at time-step n.

Traditional policy-based DRL methods, such as REINFORCE, have two main defects: 1) The Monte

Carlo sampling (to obtain Gn) brings high variance, leading to slow learning; 2) The on-policy (training

and sampling using the same policy) update can easily converge to a local optimum.

Recently, the generalized advantage estimation (GAE) is proposed to make a compromise between

variance and bias [27]. The GAE estimator is written as

ÂGAE(γ,φ)
n =

∞
∑

l=0

(γφ)lηvn+l, (19)

where φ is used to adjust the bias-variance trade-off, and

ηvn = rn + γv(sn+1;ω)− v(sn;ω). (20)

To alleviate the local optimum problem, off-policy learning is introduced to increase the exploration

ability of policy gradient methods. The PPO algorithm proposed by OpenAI is recently the state-of-the-art

[18]. Its objective function is

LCLIP(θ) = En[min(rn(θ)Ân, clip(rn(θ), 1− ǫ, 1 + ǫ)Ân)], (21)

9

where rn(θ) is the policy probability ratio defined as

rn(θ) =
π(an|sn; θ)

π(an|sn; θold)
. (22)

The clip function clip(rn(θ), 1 − ǫ, 1 + ǫ) constrains the value of rn, which removes the incentive for

moving rn outside the interval [1 − ǫ, 1 + ǫ], with ǫ being a hyper-parameter to control the clip range.

By taking the minimum of the clipped and unclipped objective, the final objective is restricted as a lower

bound to the unclipped objective. Because of these advantages, in this paper, we design our DRL-based

offloading scheduling method based on PPO.

IV. MDP FORMULATION

We propose to apply DRL to solve the considered offloading scheduling problem. To this end, we first

formulate an MDP that can adequately describe the offloading scheduling process and then use DRL to

find the optimal policy for the MDP. In what follows, each element of the MDP is presented.

A. State Space

At the beginning of each time slot, the scheduler monitors the system state, based on which the offloading

scheduling decision is made. We defined the state space of our MDP as

S , {s|s = (Q, slpu, sdtu, smec, x, d)}, (23)

where each state s uses 3Q + 5 parameters (dimensions) to represent the status of VT’s task queue (Q),

the LPU (slpu), the DTU (sdtu), the MEC server (smec), and finally the wireless environment ({x, d}). As

we stated in Section II, at each time slot t, Q is a Q× 3 matrix, the jth row of which clarifies the task

generation time, input data size, and CVR of the task Q[t]〈j〉. x and d are the current location of the VT

and its distance to the serving RSU, which determines the statistics of the current V2I transmission data

rate. The remaining state parameters slpu, sdtu, and smec are elaborated as follows.
1) LPU state slpu: We use slpu to describe the number of remaining CPU cycles that the LPU requires to

complete the task currently running on it. Specifically, assume that the scheduler decides to start operating

the task Ji on the LPU from a certain time slot t1. Then at the beginning of t1th time slot, slpu[t1] is

initialized to diki, which is the total number of CPU cycles demanded by Ji. Afterward, during each time

slot t ≥ t1, the LPU provides f l CPU cycles (and consumes pl Joules of energy) to execute the task. The

value of slpu is thus reduced by f l, until the computation is finished and slpu is set to 0. Such an LPU

state updating process (for a single task) can be described by

slpu[t] = max{slpu[t− 1]− f l, 0}, t > t1. (24)

When slpu reaches 0, the LPU is said to be idle and is able to host a new task.
2) DTU state sdtu: The parameter sdtu describes the amount of remaining data volume of the task that

needs to be transmitted to the MEC server by the DTU. Now, suppose that the scheduler decides to offload

task Ji, starting from time slot t2. This leads to sdtu[t2] = di. Then, in the tth time slot (t ≥ t2), up to r[t]
bits data can be delivered from the VT to the RSU (consuming ptx Joules of energy), so that the value

sdtu is decreased by r[t]. Consequently, the DTU state updating process (for a single task) is given by

sdtu[t] = max{sdtu[t− 1]− r[t− 1], 0}, t > t2, (25)

until sdtu reaches 0.

It is worth noting that the above process can be interrupted by a handover event. For instance, at a

certain time slot t3 (t3 ≥ t2), the VT enters the coverage region of a new RSU, but the transmission of

Ji has not yet finished, i.e., sdtu[t3] 6= 0. As we mentioned earlier, in this case, the re-transmission of

the whole task will be automatically conducted. Therefore, sdtu[t3] is re-initialized to di immediately, and

afterward the data transmission continues until sdtu = 0. Since the re-transmission causes waste of both

time and energy, a good offloading scheduling policy should try to avoid it in its decision-making process.

10

3) MEC server state smec: Similar to the LPU state, the value of smec indicates the number of remaining

CPU cycles that the MEC server requires to execute for the current offloaded task. Assume that at a specific

time slot t4, the transmission of Ji is found completed (i.e., sdtu[t4] reaches zero). Then the MEC server

state is initialized to smec[t4] = diki immediately. In each time slot, the MEC server provides f s CPU

cycles (no energy consumption from the VT’s perspective) for task computation and thus reduces the

value of smec by f s. This leads to the MEC server state satisfying

smec[t] = max{smec[t− 1]− f s, 0}, t > t4. (26)

At any time slot t, only when both sdtu[t] = 0 and smec[t] = 0, we say that the DTU is idle so that a

V2I transmission process can be activated.3 Otherwise, if either sdtu[t] 6= 0 or smec[t] 6= 0, tasks cannot be

scheduled for offloading.

The (3Q + 5)-dimensional state space S defined in (23) completely describes the characteristics of

the environment that our agent (i.e., the scheduler) interacts with. Due to the fact that each dimension

parameter has a large value range (i.e., x ≥ 0, 0 ≤ d ≤ L/2, slpu ≥ 0, sdtu ≥ 0, and smec ≥ 0), our MDP

actually has an enormous state space.

B. Action Space

The action space of our MDP includes three types of scheduling actions: local execution (LE), remote

execution (RE), and holding-on (HO). LE and RE are used to conduct the “where to schedule” operation,

and HO is specially designed to carry out the “when to schedule” operation. Each type of actions includes

multiple individual actions. They are elaborated as follows.

1) LE Action Type: This type of actions schedule tasks waiting in the VT’s queue to the LPU. The

complete set of such actions is defined as

LE , {LE1,LE2, · · ·LEQ}, (27)

where LEi (i ∈ {1, 2, · · · , Q}) is dedicated to the ith task in the queue. For instance, at the beginning

of a certain time slot t1, the scheduler decides to take action LEi (this is possible only when the LPU

is currently idle and the ith task in the queue exists, i.e., slpu[t1] = 0 and i ≤ q[t1]). By taking LEi, task

Q[t1]〈i〉 is sent to the LPU, which changes the state of the LPU (slpu[t1]) and the task queue (Q[t1])
immediately. Specifically, slpu[t1] is set to diki, and in VT’s queue, the tasks after Q[t1]〈i〉 are shifted

forward to fill the empty position. Afterward, the LPU state updates slot by slot as mentioned in Section

IV-A1.

2) RE Action Type: When the DTU is idle and the queue is not empty, an RE action can be taken to

offload the specified task for remote execution. We define all the actions of this type as a set, i.e.,

RE , {RE1,RE2, · · ·REQ}. (28)

By taking REj at time slot t2, task Q[t2]〈j〉 is sent to the DTU for uploading. The DTU state is set as

sdtu[t2] = dj , and the task queue state Q[t2] is updated similar to the LE action type as introduced before.

Then, the states of the DTU and MEC server changes with time according to Section IV-A2 and IV-A3,

respectively, without taking any action.

3) HO Action Type: The HO actions are responsible for postponing task scheduling. The set of actions

that perform such a function is defined as

HO , {HO1,HO2, · · · }, (29)

where HOw (w ∈ N+) means that the scheduler determines to keep all waiting tasks to stay in the

queue for w time slots, even though the LPU and/or DTU are capable of accepting the computation or

3In this paper, for simplicity, the situation that an MEC server can still receive data while executing another offloaded task is not considered.

Hence, only when both sdtu[t] = 0 and smec[t] = 0, offloading can be performed.

11

TABLE I

LEGITIMACY OF EACH ACTION TYPE
a

Situation Queue LPU DTU HO LE RE
(1) Not Empty Idle Idle X X X

(2) Not Empty Idle Busy X X ×

(3) Not Empty Busy Idle X × X

(4) Not Empty Busy Busy × × ×

(5) Empty × × ×
a X: Legal; ×: Illegal.

! " # $ % & ' () !

*

!

!

!

"

!

#

!

$

!

%

!

&

!

'

!

(

!

)

"

*

"

!

"

"

"

#

"

$

"

%

"

&

"

'

"

(

"

)

#

*

#

!

#

"

#

#

#

$

#

%

#

&

#

'

#

(

#

)

$

*

$

!

$

"

$

#

+,-. /012345 67/8

9+5 67/8

:;,2

9+5 67/8 :;,2 :;,29+5 67/8

345 67/8

3< 3<=< =< =<>? >? >?

+,-. ,@2.AB;0/ 6.2C..@ 2C1 D1@/.D72,B. ;D2,1@/

Fig. 2. An example task scheduling time line.

transmission of jobs. For example, at time slot t5, an action HOw is taken. Then in the next w time slots

(from time slot t5 to time slot t5 +w− 1), the scheduler does not carry out any offloading decisions (the

tasks scheduled for local or remote operations before time slot t5 are not affected). Certainly conducting

an HO action increases the latency of all tasks waiting in the queue. However, if the wireless condition

is poor and offloading causes unnecessarily large delay and/or energy consumption, properly postponing

the task scheduling process to wait for better transmission opportunities would be worthwhile.

4) Action Space and Action Legitimacy: With the three types of actions defined above, the complete

action space of our MDP, A, is defined as the union of the three sets LE , RE , and HO, i.e.,

A , LE ∪RE ∪ HO. (30)

However, for each system state s ∈ S, the set of actions that the scheduler can take, A(s), may be only

a subset of S. Throughout our paper, we term the actions included in A(s) as legal actions for state s,

and the remaining in A (i.e., those included in the complementary set of A(s)) as illegal actions.

Specifically, at the beginning of each time slot t, the scheduler monitors the system state s and determines

whether a scheduling action should be taken. Consider the case that a total of q[t] tasks are waiting in

the queue to be scheduled. As mentioned earlier, if the current LPU is idle (slpu[t] = 0), LE actions in

the set {LE1, LE2, · · · , LEq[t]} and all HO actions are legal actions. But the LPU being busy (slpu[t] > 0)

causes all actions in LE to be illegal. Similarly, if the current DTU is idle (sdtu[t] = 0 and smec[t] = 0),

RE actions in the set {RE1, RE2, · · · , REq[t]} and all HO actions are legal. When the DTU becomes

busy (sdtu[t] > 0 or smec[t] > 0), all actions in RE would be illegal. Finally, when there is no task in the

queue (i.e., Q[t] is an all-zero matrix) or no executing resource (i.e., both the LPU and DTU are busy),

no action can be taken (i.e., A(s) = ∅). Table I provides a summary of the legitimacy regarding each

type of actions.

It is worth noting that, due to the dynamic wireless environment, the diversity of offloading tasks,

and the potential of task parallel executing (both locally and remotely), the time interval between two

consecutive actions in fact varies. This is different from most conventional MDP modeling for MEC,

which assumes a fixed inter-decision time duration [15], [16].

Fig. 2 gives an example of a task scheduling time line in our MDP. Consider the case that the VT’s task

queue is not empty, and the LPU, DTU, and MEC states are all initialized to be zero. At time slot 1, both

the LPU and the DTU are idle, which is the situation (1) in Table I. The scheduler chooses an LE action

from the legal action space A(s), and the associated task is sent to the LPU. At time slot 2, since the LPU

12

is busy, actions in LE are excluded from the legal action space (situation (3) in Table I). The scheduler

takes an RE action to offload a task for remote execution, and the DTU becomes busy, too. The time slots

3-6 represent the situation (4) in Table I. Due to the lack of computation and communication resources,

no action can be taken. At time slot 7, the scheduler observes that the DTU is idle and immediately

takes another RE action. At time slot 13, the LPU is found to be idle (situation (2) in Table I), but the

scheduler considers it to be improper to locally compute any of the tasks in the queue (e.g., because all

tasks require a large number of CPU cycles). An HO action for postponing the task scheduling for 11
time slots is adopted. As a result, before the 25th time slot, no action can be taken even when the DTU

becomes idle from time slot 19. After the holding-on operation completes, the decision-making process

continues in the similar fashion.

Although the system has a different state in each time slot, the scheduler’s actions would actively affect

the system state only on those time slots that the action are taken (e.g., the time slots 1, 2, 7 and 14
in Fig. 2). The change of system states on other time slots (termed intermediate states) are caused by

environmental factors such as new arriving tasks (changing queue state Q), computation with local CPU

(changing LPU state slpu), successful or failing (due to handover) V2I transmission (changing DTU state

sdtu), computation with remote CPU (changing MEC sever state smec), and mobility of VT (changing x
and d). Therefore, the intermediate states are treated to be part of the environment and are not explicitly

considered in our MDP. In other words, the actual state space S in our MDP includes only the states

when actions can be taken. It is not difficult to see that, even though the intermediate states are excluded,

the state space S is still extremely large.

C. Rewards

Suppose that at time slot ta
n, the scheduler takes the nth action an ∈ A on state sn (sn ∈ S). Then, after

tb
n time slots, it comes to a new state sn+1 (sn+1 ∈ S), based on which a new action needs to be taken (at

time slot ta
n+1). We define the reward function R(sn, an, sn+1) based on the time and energy consumption

of all the tasks in the VT within the time interval of this state transition. Note that the time interval of

state transition, i.e., tb
n, varies based on different states and actions, but is easy to obtain (tb

n = ta
n+1− ta

n).

At each time slot t, if an arriving task is not finished, its latency would increase by one time slot.

Hence the total time delay (in slot) of all the tasks in the VT at time slot t is denoted as

∆s
l (t) = q[t] + 1{slpu[t]>0} + 1{sdtu[t]>0} + 1{smec[t]>0}. (31)

In (31), if a task is running on the LPU, then 1{slpu[t]>0} = 1, and if a task is in the process of offloading,

either 1{sdtu[t]>0} or 1{smec[t]>0} is 1. Therefore, the total time delay of all the tasks in the VT from state

sn to sn+1 after taking action an can be calculated by

∆l (sn, an, sn+1) =

ta
n+1

−1
∑

t=ta
n

∆s
l (t). (32)

The energy consumption is only associated with the task local computation and input data transmission.

Hence, the total energy consumption of all the tasks in the VT at time slot t can be calculated by

∆s
e(t) = pl · 1{slpu[t]>0} + ptx · 1{sdtu[t]>0}. (33)

Therefore, the total energy consumption of all the tasks in the VT from state sn to sn+1 after taking action

an is given by

∆e(sn, an, sn+1) =

ta
n+1

−1
∑

t=ta
n

∆s
e(t). (34)

Finally, considering the fact that our system has a dynamic workload, if the task arriving rate λ is

relatively large compared with scheduling speed, overflow events may possibly occur and new incoming

13

tasks have to be discarded. This issue brings bad user experience on vehicular applications. Hence, we

consider a cost induced by task queue overflow in our MDP, ∆o(sn, an, sn+1), which denotes the number

of overflowed tasks from state sn to sn+1 after taking action an.

Therefore, the overall cost brought by action an can be considered as a weighted sum of ∆l (sn, an, sn+1),
∆e(sn, an, sn+1), and ∆o(sn, an, sn+1):

cost(sn,an, sn+1) , α∆l (sn, an, sn+1)

+ β∆e(sn, an, sn+1) + ζ∆o(sn, an, sn+1).
(35)

The weighting parameters α and β can be properly chosen to reflect the user preference towards smaller

delay or lower energy usage in the offloading scheduling policy design, and ζ is the penalty parameter of

task overflow.

The reward function of our MDP, R(sn, an, sn+1), is defined as the negative of the cost function,

indicating how good this transition is, i.e.,

R(sn, an, sn+1) , −ks · cost(sn, an, sn+1), (36)

where the constant parameter ks is chosen to scales the value range of the reward.

Starting from an initial state sm ∈ S, the scheduler can interact with the environment following a specific

stochastic offloading scheduling policy, π(an|sn). Then, a Markov chain, i.e., sm, am, sm+1, am+1, · · · , is

obtained. The accumulated reward can be written as

Gm =

∞
∑

n=0

γnR(sm+n, am+n, sm+n+1), sm ∈ S. (37)

We can find that Gm is the weighted sum of time and energy consumption of all the tasks if the discount

factor γ is set 1 and no task overflow happens. Therefore, the goal of finding the optimal offloading

scheduling policy π∗ is consistent with the original objective introduced in Section II-E.

The enormous state and action space coupled with the highly dynamic environment makes it difficult

to obtain the environment dynamics, i.e., P (sn+1|sn, an). In the next section, we resort to the model-free

DRL to search for the optimal offloading scheduling policy.

V. DRL-BASED OFFLOADING SCHEDULING

Our DRL-based offloading scheduling method is described in this section. We first introduce the

architecture of the DNN used to approximate the offloading scheduling policy, and then design our

training method based on PPO to train the policy network. Afterward, several methods to improve training

efficiency are presented.

A. Network Architecture

Our DNN architecture design is illustrated in Fig. 3. Two functions are needed in the training process:

1) the offloading scheduling policy π(an|sn; θ), which is the target of learning, and 2) the value function

v(sn;ω), which is used for advantage estimation. Both functions take the environment state s ∈ S as

input but are with different output. Considering the fact that features useful for estimating the value

function could also help select actions and vice versa, we utilize a parameter-shared DNN architecture

to simultaneously approximate both the policy and value function. Specifically, the policy network and

the value network share most of the network structure (network layers and corresponding parameters).

The difference lies in the output layers after shared fully-connected (FC) layers. For the policy network,

a softmax layer outputs the probability distribution of all actions. For the value network, an FC layer

outputs the state value.

As we explained in Section IV-A, the state space S of the considered MDP is very large. Using a

single FC network structure for feature extraction can lead to a considerably inefficient training process.

14

Fig. 3. The DNN architecture design.

TABLE II

THE ARCHITECTURE OF THE SHARED DNN a

Layer Kernels Stride Output Remark

Input All states

Split 20× 2× 1, other states Cache other states

Conv2D 2× 2× 8 1 19× 1× 8 Resize, No padding

Conv1D 4× 16 1 16× 16 No padding

Conv1D 4× 16 2 7× 16 No padding

Conv1D 4× 20 1 4× 20 No padding

Concat 4× 20 ⊕ other states Concat other states

FC layer 512 Layer Norm. [28]

FC layer 512 Layer Norm.
a Leaky-ReLU is adopted as the activation function for all neurons.

We observe that for each state s = (Q, slpu, sdtu, smec, x, d), most parameters are used to describe the state

of the task queue, i.e., Q. Since Q has a fixed matrix form and the data stored in it are structured, we

propose to embed a CNN in the DNN architecture for efficient extraction of representative features of

the task queue. To this end, as shown in Fig. 3, the queue state is first separated from the input state

and is sent to CNN layers. The outputs of the CNN layers (representative features of the task queue)

are concatenated with the remaining state information before being input to the FC layers for facilitating

function approximations. In Section VI, we will show through experiments that such a network structure

can significantly improve training efficiency over using only FC layers.

In our experiments, we consider the case Q = 20. Table II shows the shared structure in our CNN-

embedded DNN architecture. Four convolutional layers are used to extract features in the queue. Note

that the input data size of the first convolutional layer is 20× 2× 1 but not 20× 3× 1 because we drop

all the task generated time in Q. Since the time consumed for task waiting in the queue is considered in

the reward signal of each time step, including this information is not helpful for our policy optimization.

B. Training Algorithm

Since the parameter-shared DNN architecture is adopted, the overall objective is a combination of the

error terms of both the policy network and value network. We utilize GAE as the estimator function. The

objective function of the policy network can be derived by substituting (19) and (22) into (21), and that

of the value network can be obtained by (17). Therefore, the overall maximization objective function can

be written as

LPPO(θ) = En[L
CLIP
n (θ)− cLV

n(θ)], (38)

15

where c is the loss coefficient. The subscript n of LCLIP
n and LV

n means that we obtain their value without

taking the expectation in (21) and (17) (we take the empirical average from a finite batch of samples after

their combination).

Algorithm 1 Training algorithm based on PPO

1: Initialize the DNN parameter θ randomly to obtain πθ

2: Initialize the sampling policy πθold with θold ← θ
3: for iteration = 1, 2, · · · do

4: /* Sampling (exploring) with πθold */

5: for i = 1, 2, · · · , N do

6: Sample a whole episode in the environment with πθold , and store the trajectory in Ti

7: Compute advantage estimates Â
GAE(γ,φ)
ni according to (19) for each time step n in the Ti

8: end for

9: Cache all sampled data in two sets: T and A

10: /* Optimizing πθ (exploiting) */

11: for epoch = 1, 2, · · · , K do

12: Update the policy based on the objective function (38), i.e., θ ← argmaxθ L
PPO(θ), by Adam

using the sampled data from T and A for one epoch

13: end for

14: Synchronise the sampling policy with θold ← θ
15: Drop T and A

16: end for

The details of the proposed training algorithm based on PPO is presented in Algorithm 1. Two DNNs

are initialized with the same parameter (θold ← θ), one for sampling (πθold), and the other for optimizing

(πθ). The algorithm alternates between sampling (line 4-8) and optimization (line 10-13). In the sampling

stage, N trajectories (e.g., (s0, a0, r0, s1, · · · , sterminal)) are sampled following the old policy πθold . For

training efficiency, the generalized advantage estimations for each time step n in each trajectory Ti, i.e.,

Â
GAE(γ,φ)
ni , are computed in advance in this stage. The sampled data are cached for optimization (line 9).

In the optimization stage, the parameter θ of the policy πθ is updated for K epochs. In each epoch, we

improve the policy πθ by conducting stochastic gradient ascend on the cached sampled data based on the

objective function, i.e., (38). After the optimization stage, we update the sampling policy πθold with the

current πθ and drop the cached data (line 14-15). Then the next iteration begins.

It is worth noting that the random policy in the exploring stage cannot ensure the legitimacy of the

chosen action according to the current state. Two types of illegal actions, as described in Section IV-B,

can both be selected when sampling (line 6). We deal with this problem as follows. First, if an illegal

action type is chosen (e.g., selecting LE action type when the LPU is busy), the system will neglect the

illegal action, leaving the system state unchanged. Since an action is needed at this time, this will prompt

the offloading scheduling policy to reschedule according to the same state. Thanks to the stochastic policy

supported by the policy-based DRL, there are always opportunities for other action types to be selected.

Then, the offloading process continues. To force our learning algorithm to effectively reduce the attempts

to explore illegal actions, we add a penalty term, ki, to the reward when an illegal action type is selected

during the training process. Second, when the task specified by an LEj or REj action does not exist, i.e.,

j > q[t], for simplicity, we let the scheduler select the first task in the queue automatically.

C. Training Efficiency

So far, we have carefully designed our DNN architecture to improve the feature extraction process and

applied the state-of-the-art PPO algorithm to enhance the training performance. However, the state space

and action space of this MDP are both very large, leading to a huge exploration space. As a result, the

16

training process is difficult to converge. To handle this issue, we adopt a series of methods to improve

training efficiency.

First, we restrict the selection of HO actions. Two constant parameters are defined, i.e., phmax and pg.

phmax limits the maximum waiting time of an HO action, and pg controls the granularity of HO actions.

This changes the set HO defined in (29) as

HO , {HOpg,HO2pg, · · · ,HOnpg}, npg ≤ phmax. (39)

Each time the scheduler takes an HO action, maximally the scheduling can be delayed by npg time

slots. If necessary, more HO actions can be taken to further postpone the decision-making procedure. To

limit the maximum waiting time of an HO action does not change the original MDP, but significantly

reduce the action space (the unlimited and discrete action space raises great challenges in implementing

the DRL algorithm [29]). Further, the length of each time slot can be very tiny, which makes nearly no

difference between consecutive HO actions. Larger granularity can help the algorithm learn the difference

between HO actions. By setting the granularity pg = 1, we derive the original MDP for modeling the

desired offloading scheduling process described in Section II. Now, the total number of HO actions in

HO becomes ⌈phmax/pg⌉.
To avoid the training process to explore the HO actions that hold the tasks for too long, which is clearly

of little use, the continuous waiting time of the system is recorded. A penalty term, kh, is applied when

the waiting time exceeds a certain threshold value. In our experiments, this threshold is simply set to

L/V , meaning that we do not encourage the VT to pass the complete coverage area of an RSU without

executing any task. In practice, such a value can certainly be much smaller.

Second, we can further reduce the size of the action space by setting a constant parameter psmax ≤ Q
and limit the number of possible LE and RE actions be at most psmax. In other words, the sets defined in

(27) and (28) are changed to

LE , {LE1,LE2, · · · ,LEpsmax}, (40)

RE , {RE1,RE2, · · · ,REpsmax}. (41)

Setting psmax = Q leads to the original MDP. However, if the system workload is relatively light (i.e., λ
is relatively small), for most of the time the number of tasks actually waiting in the queue, q[t], would

be much smaller than Q. A large number of actions would be illegal (i.e., {LEq[t]+1,LEq[t]+2, · · · ,LEQ}).
Large number of illegal actions also leads to slow learning. In addition, since tasks are sorted by their

generated time in the queue, tasks in the front of the queue should have a higher priority when scheduling.

By choosing the value of psmax to be smaller, the fairness of task scheduling is guaranteed, although with

a certain sacrifice of achievable performance. As a result, the total number of actions in A becomes

2psmax + ⌈phmax/pg⌉.
Finally, having a large number of tasks waiting in the queue is considered to be an unwanted event,

since it may lead to a higher probability of task overflow and inefficient exploration. To avoid such an

event to occur, we add a penalty term to the reward according to the current queue length, as kqq[t]
u, in

which the kq and u reflect our desire of the queue length. When kq = 0, the learning objective is consistent

with the original MDP problem. Choosing larger values of kq and u results in a smaller number of waiting

tasks and more efficient training process.

VI. PERFORMANCE EVALUATION

In this section, extensive simulation experiments are conducted to evaluate the proposed DRL-based

offloading scheduling method (DRLOSM). Our algorithm and network architecture are implemented using

TensorFlow [30]. The main simulation parameters and training hyper-parameters are listed in Table III

and Table IV, respectively.

We set the length of each time slot as 0.01 second, and, for ease of understanding, use second (instead of

time slot) in the unit of time-related parameters. The LPU’s CPU frequency (f l) and its power parameters

17

TABLE III

THE SIMULATION PARAMETERS

Parameter Value

Length of time slot 0.01 sec

LPU’s CPU frequency f l 400 MHz

LPU power linear parameter ξ 1.25× 10−26

LPU power exponential parameter ν 3
Wireless transmission power ptx 1.258 W

Size of task input data di [0.5, 3] MB

Computation-to-volume ratio ki [100, 3200] cycles/byte

Size of VT’s task queue Q 20
Selection range of each action psmax 4

Specific waiting period for HO action {0.2, 0.4, 0.6, 0.8} sec

MEC server’ CPU frequency fs 2000 MHz

RSU’s coverage region L 160 meter

Speed of VT V 20 meter/sec

Expected V2I data rates 4, 8, 16, 32, 16, 8, 4 Mbps

Standard deviation of V2I data rates
√
3 Mbps

TABLE IV

TRAINING HYPER-PARAMETERS

Parameter Value Parameter Value

Overflow coefficient ζ 0.5 Learning rate 10−4

Optimization method Adam [31] Discount factor γ 0.99
Loss coefficient c 0.5 Clipping range ǫ 0.2

Adv. discount factor φ 0.95 Scaling parameter ks 0.5
Penalty ki 4 Penalty kh 2
Penalty kq 0.0025 Queue coefficient u 2

(ξ and ν) are set according to [20]. Hence, the power consumption for local computing, pl, can be obtained

by pl = ξ(f l)ν . The V2I transmission power is set to ptx = 1.258 W [20]. The data size di and CVR ki for

each task are both sampled from uniform distributions within the respective regions shown in Table III.

The three parameters that affect the action space, i.e., the maximum waiting time slots of an HO action

phmax, the granularity of an HO action pg, and the selecting range of each action type psmax are set as 80,

20, and 4, respectively. The specific waiting period for each HO action is shown in Table III.

The V2I transmission data rate at each time slot is considered to be a Gaussian random variable, whose

expectation is related to the distance between the VT and its serving RSU. To simplify the experiment

environment, we evenly divide the coverage region of each RSU into seven road segments. The expected

data rate in each segment is considered to be the same. For the seven segments, they are set to be, from

the left end to the right end, 4, 8, 16, 32, 16, 8, 4 Mbps, respectively, to reflect the fact that a higher data

rate can be achieved when the VT is closer to the RSU.

Note that all the experiment environment setups, such as the channel statistics, CPU frequency of

LPU and MEC server, system workload, and inter-RSU distance are unknown to the agent (i.e., the

scheduler). But as long as the environment is fixed, our DRLOSM is capable of learning the optimal

offloading scheduling policy by directly interacting with the environment. Hence extending the experiment

environment to more general cases is straightforward, e.g., more complicated fading characteristics and

different but fixed inter-RSU distances.

A. Convergence Performance

We first validate the convergence performance of the proposed DRLOSM by training it in the experiment

environment. To balance the impacts of task latency and energy consumption on the cost function (13),

the weighting coefficients α and β are set as 0.07 and 1, respectively (the quantity of task latency is much

larger than the quantity of energy consumption).

18

0 250 500 750 1000 1250 1500 1750
Epoch

−80

−70

−60

−50

−40

−30

−20

−10

A
ve
ra
ge

 A
cc
um

ul
at
ed

 R
ew

ar
d

CNN-embedded DNN
3-layer FC

Fig. 4. Learning curves of different DNN architectures.

Two different DNN architectures, acting as the offloading scheduling policies, are adopted in this

experiment for comparison: the proposed CNN-embedded DNN architecture (CNN-embedded DNN) and

a 3-layer FC DNN architecture (3-layer FC). FC DNN is one of the most classical and commonly used

DNN architectures, which has been widely used in many studies, including our previous work [17]. In the

3-layer FC, each FC layer has 512 neurons with leaky-ReLU activation functions, and layer normalization

is adopted. The two policy networks are trained for 1800 epochs. After every five training epochs, they

are tested in the same environment, and the corresponding accumulated reward is recorded.

Fig. 4 shows the learning curves (average accumulated reward versus the number of training epochs) of

the two DNN architectures. The proposed CNN-embedded DNN performs much better than the 3-layer

FC. It obtains a higher average accumulated reward and converges faster (after around 500 training epochs)

and more stably. At the same time, the size of the CNN-embedded DNN (319848 training parameters) is

also smaller than that of the 3-layer FC (560140 training parameters). From the experiment, the advantage

of embedding a CNN in the DNN architecture is exhibited.

This experiment also shows the considerable time and computational overhead of the proposed DR-

LOSM during training. Even for the CNN-embedded DNN, it takes about 5 hours to converge to a good

solution on an NVIDIA GeForce GTX 1080 Ti. However, in our application scenario, the training process

can be performed offline in the remote cloud. The VT only needs to execute the inference process to

make offloading decisions. Considering the simple structure and small size of the CNN-embedded DNN,

the inference process of DRLOSM is very efficient (only 1.5 milliseconds on the NVIDIA GeForce GTX

1080 Ti), which can be readily supported by many practical embedded AI accelerators.

B. Performance in Static Queue Scenario

Now we evaluate the performance of our DRLOSM through comparisons with a number of baseline

algorithms. We start from a relatively simple static queue scenario (SQS), in which no new task can

be generated after the system initialization (i.e., the task arrival rate λ = 0). The following six baseline

algorithms are considered.

• All Local Execution (AL): All tasks are executed locally.

• All Offloading (AO): All tasks are scheduled to offload to the MEC servers, regardless of the wireless

condition.

• Random Offloading (RD): All the actions in the action space are chosen randomly with the same

probability.

• Time Greedy (TG): When the LPU becomes idle, the task with the lowest CVR is immediately

scheduled for local execution. When the DTU becomes idle, the task with the highest CVR is

immediately scheduled for offloading. The HO actions are avoided in this algorithm since they

always increase the task latency.

19

TABLE V

PARAMETERS OF THE GA BASELINE

Parameter Setting

Elite strategy enable

Elite count 1

Population size 100

Maximum generations 100

Selection strategy Tournament

Tournament size 3

Crossover probability 0.6

Crossover strategy Two point crossover

Creation distribution Uniform

Mutation probability 0.2

Independent Mutation distribution Uniform

Independent Mutation probability 0.1

• Energy Greedy (EG): We assume that EG knowns the expected V2I data rate on each road segment

on the expressway. It offloads tasks only on the road sections with the best wireless condition, which

brings the lowest energy consumption. If the energy consumption can be further reduced, EG can

also schedule a task for local execution (rather than offloading).

The above five baseline algorithms adopt pre-defined action rules (i.e., policy) to make offloading

scheduling decisions. Different from DRLOSM’s policy obtained through learning, these pre-defined action

rules are relatively naive and intuitive, making the decision process of the five algorithms even more

efficient, but with less flexibility (only suitable for some special situations).

In addition to the above five intuitive methods, the genetic algorithm (GA) is adopted as another

baseline algorithm. As a meta-heuristic algorithm, GA is a practical solution for combinatorial optimization

problems.

• Genetic Algorithm: The GA framework in DEAP is adopted to implement this baseline [32]. The

scheduling plan is encoded into the chromosome of each individual, which is an action sequence

for the scheduler to schedule the tasks in the queue. Each gene in the chromosome is an integer,

indicating one of the scheduling actions. The length of each chromosome is based on the length of

EG’s action sequence, which is long enough to find the optimal solution. We assume that GA knows

the wireless condition of each road segment. Hence, it can evaluate each individual by applying the

action sequence in a simulated environment. As the algorithm progresses, individuals that obtain lower

costs gain more opportunity for reproduction. When GA terminates, the most adaptable individual is

selected as the final scheduling plan. The tuning parameters of GA are summarized in Table V.

GA is a typical “one-shot” planning algorithm, which tries to compute the best offloading scheduling

plan according to the current system state. However, once the system state, based on which the scheduling

plan is made, changes (e.g., new tasks are generated), it should be re-executed. Hence, if new tasks keep

arriving dynamically, GA should be kept re-executed in an online fashion. Considering that the running

cost of GA is much expensive (more than 2 minutes each time on a Xeon E5-2650 v4 server in our

experiment while the running time of other algorithms is negligible), it is only suitable for SQS.

Simulations are performed via changing the weighting factor α and fixing β = 1. Under each setting

(one pair of α and β), the simulation is run for 500 times. In each simulation, the initial state of task queue

Q and the VT’s initial position x[0] are randomly chosen, but are kept identical for all the algorithms.

Since there is no risk of task overflow in SQS, we set the penalty parameters ζ and kq as 0 in training.

Fig. 5 shows the average cost for executing each task under different user preferences in SQS. We can

see that AL, AO, and RD always have high cost, because of their inflexible and naive behaviors. When α
is small, which means that the scheduling objective focuses more on energy consumption, EG performs

well. As α grows to be large, TG starts to outperform EG. In most cases, GA can be much better than

the above methods. However, when α is very small, a great number of HO actions are needed. This may

20

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
User Preference (α, β = 1)

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

 C
os

t

DRLOSM
RD

AL
AO

TG
EG

GA

Fig. 5. Comparison of average cost in SQS.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
User Prefere ce (α, (= 1)

0.0

0.5

1.0

1.5

2.0

2.5

A
ve
ra
ge

 N
um

be
r o

f R
e-
tra

ns
m
itt
ed

 T
as
ks

DRLOSM
RD

AL
AO

TG
EG

GA

Fig. 6. Comparison of average number of re-transmitted tasks in SQS.

cause the searching space of GA to be extremely large and thus reduce the achievable performance. For

instance, in our experiments when α = 0.03 the average cost of GA is larger than that of EG. Clearly,

our DRLOSM can always attain the lowest cost, no matter if α is very small or very large. It outperforms

GA, even when the agent does not have any prior knowledge regarding the environment dynamics.

In Fig. 6, we display the average number of re-transmitted tasks caused by transmission failures due to

handover events. Since AL and EG do not have transmission failures, they do not require re-transmission.

Their results in Fig. 6 are always 0 (But their overall costs are still high). AO causes the most number

of re-transmissions since all tasks have to be offloaded. Randomly placing some tasks for local execution

(i.e., RD) does not fundamentally solve the problem. Even the GA algorithm faces a significant amount of

task re-transmissions and hence a waste of time and energy resources. Again, by learning the knowledge of

the dynamic environment, our DRLOSM can properly choose its scheduling actions to avoid the probable

transmission failures and hence seldom causes task re-transmissions.

If we separate the overall cost and consider individually the task latency and energy consumption, the

comparisons among different schemes are displayed in Fig. 7 and Fig. 8, respectively. As expected, EG

always consumes the lowest level of energy, with the cost of largest delay. TG uses the highest energy

consumption to guarantee the fastest execution of tasks. DRLOSM and GA provide both relatively small

delay and low energy usage compared with other methods. Even without the knowledge of environment

dynamics, DRLOSM can be more adapt to user preference, and obtain a better overall performance than

GA as shown earlier in Fig. 5. The vast searching space of the considered problem often makes it difficult

for GA to find sufficiently good solutions.

21

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
User Preference (, β = 1)

5

10

15

20

25

30

A
ve
ra
ge

 T
as

k
La

te
nc

y
(s
ec

)

DRLOSM
RD

AL
AO

TG
EG

GA

Fig. 7. Comparison of average task latency in SQS.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
User Preference (α, (= 1)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

A
ve

ra
ge

 T
as
k
E
ne

rg
y
C
on

su
m
pt
io
n
(J
)

DRLOSM
RD

AL
AO

TG
EG

GA

Fig. 8. Comparison of average task energy consumption in SQS.

C. Performance in Dynamic Queue Scenario

In this section, we consider the more general situation in which the system workload λ > 0. In such

a dynamic queue scenario (DQS), new tasks keep arriving in the VT’s task queue and a good offloading

scheduling solution should also take them into consideration. As mentioned in the previous subsection,

applying the “one-shot” GA would require extremely high computation complexity. Hence we compare

our DRLOSM with only the remaining five baseline algorithms. We fix α = 0.06 and β = 1. For each

algorithm, the simulations are conducted for 200 rounds, each of which lasts 150 seconds. Within each

simulation round, the initial state of different algorithms are set to be identical. We adjust the value λ
to change from 0.1 (nearly no workload) to 1.0 (huge workload under which overflow occurs in all six

algorithms), and investigate the impact of workload on system performance.

Fig. 9 shows the average task latency comparison in DQS. As λ increases, the average task latency of

all the algorithms grows. For EG, AL, AO, and RD, there is a sudden rise of the curve slope at certain

values of λ. These methods do not adapt their scheduling behaviors according to the workload. When λ
is sufficiently large, the speed of task execution starts to lag behind the task arrival rate, which causes

tasks to stack in the queue. When λ further increases, the task latency curves become flat because the

task queues become fully occupied, and new tasks have to be discarded due to overflow. As expected,

among the algorithms, TG has the lowest average task latency, and EG has the highest. DRLOSM always

achieves a relatively small latency. The performance curve is smooth, which implies that it can adjust its

execution strategy according to the workload.

The average task energy consumption comparison is shown in Fig. 10. The performance curves of EG,

AL, AO, and RD are almost irrelevant to λ, which reflects the fact they do not adjust their behaviors

to handle different workloads. The energy consumption of TG decreases as λ raises. This is because the

proportion of re-transmitted tasks decreases when more tasks are executed. The algorithm is efficient for

22

0.2 0.4 0.6 0.8 1.0
User Workload λ (no./sec)

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 T
as

k
La

te
nc

y
(s
ec

)

DRLOSM
RD

AL
AO

TG
EG

Fig. 9. Average task latency versus workload in DQS.

0.2 0.4 0.6 0.8 1.0
User Workload λ (no./sec)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

A
ve

ra
ge

 T
as

k
E
ne

rg
y
C
on

su
m
pt
io
n
(J
)

DRLOSM
RD

AL
AO

TG
EG

Fig. 10. Average task energy consumption versus workload in DQS.

very high-workload regimes. DRLOSM has more energy consumption as the workload is larger, because

it is able to change its offloading scheduling policy, by scheduling more tasks with higher energy usage

for avoiding a rapidly increased queue, to maintain a relatively small overall cost. This is the reason

behind its good task latency performance in Fig. 9.

Fig. 11 illustrates the comparison of overall costs. When the workload is very light, EG achieves good

performance. On the other hand, for very heavy workload, TG outperforms other baseline algorithms.

Our DRLOSM is strictly better than both EG and TG, for all possible values of λ. Finally, Fig. 12

displays the average number of re-transmitted tasks due to communication failures. We can observe that

DRLOSM properly handle the handover issue, even it does not have knowledge regarding the dynamics

of the wireless environment. Only under high workload, the chances of DRLOSM’s transmission failure

rise. This is because it tries to offload more tasks to adapt to the system workload even in bad wireless

conditions. The advantages of the proposed solution are thus clearly exhibited.

D. Comparison with Combinative Strategy

In this subsection, we consider applying a combined decision strategy (CDS) that can dynamically switch

among the five intuitive algorithms, i.e., TG, EG, AL, AO, and RD, to achieve higher performance than

each of them. The switching rule is determined based on the length of the task queue q[t] and the distance

between the VT and the serving RSU d, and four heuristic thresholds are adopted, respectively termed

long queue (LQ), short queue (SQ), long distance (LD), and short distance (SD). Table VI summarizes

the offloading strategy of the CDS. Intuitively, if q[t] is very large, it is better to adopt TG to empty the

long queue. When q[t] is small, EG can be applied to minimize energy consumption without the necessity

of concerning the impact of the system workload. If SQ < q[t] < LQ, the CDS further considers the

23

0.2 0.4 0.6 0.8 1.0
User Workload λ (no./sec)

0

1

2

3

4

5

6

A
ve

ra
ge

 C
os

t

DRLOSM
RD

AL
AO

TG
EG

Fig. 11. Average cost versus workload in DQS.

0.2 0.4 0.6 0.8 1.0
User Workload λ (no./sec)

0

5

10

15

20

25

A
ve

ra
ge

 N
um

be
r o

f R
e-
tra

ns
m
itt
ed

 T
as

ks

DRLOSM
RD

AL
AO

TG
EG

Fig. 12. Average number of re-transmitted tasks versus workload in DQS.

TABLE VI

OFFLOADING STRATEGY OF CDS IN DIFFERENT SITUATIONS

Queue Length Distance to RSU Description Strategy

q[t] > LQ too many tasks in queue TG

q[t] < SQ system workload is low EG

SQ < q[t] < LQ d > LD offloading is not economical AL

SQ < q[t] < LQ d < SD offloading is economical AO

SQ < q[t] < LQ LD < d < SD no dominant strategy RD

value of d. If the VT is sufficiently close to the serving RSU, AO is in general the best solution. But if

d is sufficiently large, offloading may face failure and thus AL is chosen. Finally, when SQ < q[t] < LQ

and LD < d < SD both occur, none of the above four strategies would dominate others, and hence RD

is selected.

It is difficult to determine the optimal values of the four thresholds. We consider 24 different combina-

tions of them (as shown in Table VII), which results in 24 ways to employ CDS. They are all evaluated

in both SQS and DQS. The experiment results are shown in Fig. 13 and Fig. 14.

From the figures, we can see that the CDS algorithms have diverse performance, in different environ-

mental conditions. Some of them can perform close to the DRLOSM (e.g., CDS 3 and CDS 6 when

α = 0.03 in SQS). In extreme situations (e.g., with a huge workload, or very imbalanced time and energy

preference), they may even be slightly better (e.g., CDS 19 and CDS 24 in DQS when λ = 1.0). The

main reason behind such observations is that in these situations, carrying out a simple greedy algorithm

is already sufficiently good, but DRL may not be able to converge to the exact global optima.

However, to determine when and which intuitive strategy should be adopted in different environment

relies on expert knowledge (e.g., to determine suitable thresholds and the operating strategy in each

24

TABLE VII

24 CDS ALGORITHMS WITH DIFFERENT THRESHOLDS

CDS LQ SQ LD SD CDS LQ SQ LD SD

CDS 1 10 4 60 40 CDS 2 8 4 60 40

CDS 3 6 4 60 40 CDS 4 10 4 60 20

CDS 5 8 4 60 20 CDS 6 6 4 60 20

CDS 7 10 2 60 40 CDS 8 8 2 60 40

CDS 9 6 2 60 40 CDS 10 4 2 60 40

CDS 11 10 2 60 20 CDS 12 8 2 60 20

CDS 13 6 2 60 20 CDS 14 4 2 60 20

CDS 15 10 0 60 40 CDS 16 8 0 60 40

CDS 17 6 0 60 40 CDS 18 4 0 60 40

CDS 19 2 0 60 40 CDS 20 10 0 60 20

CDS 21 8 0 60 20 CDS 22 6 0 60 20

CDS 23 4 0 60 20 CDS 24 2 0 60 20

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
User Preference (α, β = 1)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

A
ve

ra
ge

 C
os

t

DRLOSM

Fig. 13. Comparison of average cost in SQS.

condition) and demands a lot of effort to fine-tune the decision rule (e.g., finding the best threshold values

in different environment). In practice, the operation environment and expectation towards performance

can be affected by a number of factors such as user preference, system workload, fading characteristics,

CPU frequency of LPU and MEC server, and the distance between RSUs. Any change in such factors

would require the combinative strategy to be redesigned and re-optimized. In such a complicated and

dynamic environment, the proposed DRLOSM can address these issues by interacting directly with the

environment and learning the optimal offloading scheduling policy. The advantages of model-free DRL-

based algorithms are obvious.

VII. CONCLUSION

We have investigated the computation offloading scheduling problem in a typical VEC scenario, which

is hard to solve using conventional methods because of the highly dynamic environment and the enormous

state space. A novel DRL-based method has been proposed in this paper to address these issues. It is

designed based on the state-of-the-art PPO algorithm. A parameter-shared DNN architecture, which is

enhanced by a CNN, is utilized to approximate both the policy and value function. A series of methods

have been considered to deal with the large state and action spaces and improve training efficiency.

Extensive simulation experiments have been conducted to demonstrate that our proposed method can

efficiently learn the optimal offloading scheduling policy without requiring any prior knowledge of the

environment dynamics, and it significantly outperforms a number of known baseline algorithms in terms

of the long-term cost.

In our paper, a fixed amount of the MEC computation resource and V2I transmission bandwidth is

assumed to be reserved for each VT. In more general conditions, the resource limitation on each RSU

25

0.2 0.4 0.6 0.8 1.0
User Workload λ (no./sec)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

A
ve

ra
ge

 C
os

t

DRLOSM

Fig. 14. Comparison of average cost in DQS.

should be considered. VTs would compete or cooperate with each other to share the limited resources. The

offloading scheduling problem, in this case, may be formulated using a multi-agent partially observable

MDP (multi-agent POMDP) [11]. In addition, one may also consider the scenarios in which each task has

an individual priority demand (regarding, e.g., latency) and the VT’s computing architecture is formed by

multiple heterogeneous sub-systems with diverse characteristics. Applying DRL to solve the offloading

scheduling problem in these systems may demand new approaches to formulate the optimization problem,

define the equivalent MDP, and design the DNN architecture and RL training method. They are treated

as meaningful future research directions.

REFERENCES

[1] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Mobile edge computing for the internet of vehicles: Offloading framework and job scheduling,”

IEEE Veh. Technol. Mag., vol. 14, no. 1, pp. 28–36, 2019.

[2] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge computing for vehicular networks: A promising network paradigm

with predictive off-loading,” IEEE Veh. Technol. Mag., vol. 12, no. 2, pp. 36–44, 2017.

[3] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and offloading in vehicular edge computing and networks,” IEEE

Internet Things J., vol. 6, no. 3, pp. 4377–4387, 2019.

[4] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp.

450–465, 2018.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp.

637–646, 2016.

[6] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with dynamic voltage and frequency scaling for energy minimization in

the mobile cloud computing environment,” IEEE Trans. Services Comput., vol. 8, no. 2, pp. 175–186, 2015.

[7] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge computing: Partial computation offloading using dynamic voltage

scaling,” IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, 2016.

[8] Y. Zhang, D. Niyato, and P. Wang, “Offloading in mobile cloudlet systems with intermittent connectivity,” IEEE Trans. Mobile Comput.,

vol. 14, no. 12, pp. 2516–2529, 2015.

[9] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation task scheduling for mobile-edge computing systems,” in Proc.

IEEE Int. Symp. Inf. Theory (ISIT), 2016, pp. 1451–1455.

[10] H. Ko, J. Lee, and S. Pack, “Spatial and temporal computation offloading decision algorithm in edge cloud-enabled heterogeneous

networks,” IEEE Access, vol. 6, pp. 18 920–18 932, 2018.

[11] Y. Li, “Deep reinforcement learning: An overview,” CoRR, vol. abs/1701.07274, 2017.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT Press, 2011.

[13] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computation offloading in multi-access edge computing using a deep

sequential model based on reinforcement learning,” IEEE Commun. Mag., vol. 57, no. 5, pp. 64–69, 2019.

[14] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based computation offloading and resource allocation for MEC,” in

Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2018, pp. 1–6.

[15] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-based computation offloading for IoT devices with energy

harvesting,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930–1941, 2019.

[16] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized computation offloading performance in virtual edge computing

systems via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3, pp. 4005–4018, 2019.

[17] W. Zhan, C. Luo, J. Wang, G. Min, and H. Duan, “Deep reinforcement learning-based computation offloading in vehicular edge

computing,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2019, pp. 1–6.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,

2017.

26

[19] A. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of mobile cloud computing application models,” IEEE Commun.

Surveys Tuts., vol. 16, no. 1, pp. 393–413, 2013.

[20] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile edge computing: Task allocation and computational frequency

scaling,” IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, 2017.

[21] X. Chen, “Decentralized computation offloading game for mobile cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,

pp. 974–983, 2015.

[22] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offloading and resource optimization in proximate clouds,” IEEE Trans.

Veh. Technol., vol. 66, no. 4, pp. 3435–3447, 2017.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski

et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[24] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-learning,” CoRR, vol. abs/1509.06461, 2015.

[25] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Machine learning, vol. 8,

no. 3-4, pp. 229–256, 1992.

[26] T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” CoRR, vol. abs/1205.4839, 2012.

[27] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous control using generalized advantage

estimation,” CoRR, vol. abs/1506.02438, 2015.

[28] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR, vol. abs/1607.06450, 2016.

[29] G. Dulac-Arnold, R. Evans, H. V. Hasselt, P. Sunehag, T. Lillicrap, J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Reinforcement

learning in large discrete action spaces,” CoRR, vol. abs/1512.07679, 2015.

[30] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system

for large-scale machine learning,” in Proc. USENIX 12th Symp. Operating Syst. Des. Implementation (OSDI), 2016, pp. 265–283.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2015, pp. 1–15.

[32] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “Deap: Evolutionary algorithms made easy,” Journal of

Machine Learning Research, vol. 13, no. Jul, pp. 2171–2175, 2012.

Wenhan Zhan received his B.E. and M.Sc. degrees from the University of Electronic Science and Technology of China

(UESTC), Chengdu, China, in 2010 and 2013, respectively. Since 2013, he has been an Experimentalist in UESTC.

From 2018 to 2019, he worked as a Visiting Scholar in the Department of Computer Science at the University of

Exeter, UK. He is currently also a Ph.D. student in UESTC. His research interests mainly lie in Distributed System,

Cloud Computing, Edge Computing, and Artificial Intelligence.

Chunbo Luo (M’12) received the Ph.D. degree in high performance cooperative wireless networks from the University

of Reading, UK. His research interest focuses on developing model-based and machine learning algorithms to solve

networking and engineering problems, such as wireless networks, with a particular focus on unmanned aerial vehicles

(UAVs). His research has been supported by NSFC, Royal Society, EU H2020, and industries. He is a fellow of the

Higher Education Academy and an IEEE member.

Jin Wang is a Ph.D. candidate in Computer Science at the University of Exeter. He received both B.Eng. and

M.Eng. degree in Computer System Architecture from the University of Electronic Science and Technology of China,

Chengdu, China in 2014 and 2017, respectively. His research interests include deep reinforcement learning, applied

machine learning, cloud and edge computing, and computer system optimization.

27

Chao Wang (S’07-M’09) received his B.E. degree from the University of Science and Technology of China, Hefei,

China, in 2003, his M.Sc. and Ph.D. degrees from the University of Edinburgh, UK, in 2005 and 2009, respectively.

From 2009 to 2012, he was a Postdoctoral Research Associate at KTH-Royal Institute of Technology, Stockholm,

Sweden. Since 2013, he has been with Tongji University, Shanghai, China, where he is an Associate Professor. He

is currently taking a Marie Sklodowska-Curie Individual Fellowship at the University of Exeter, UK. His research

interests include Information Theory and Signal Processing for Wireless Communication Networks, as well as Data-

Driven Research and Applications for Smart City and Intelligent Transportation Systems.

Geyong Min is a Professor of High-Performance Computing and Networking in the Department of Computer Science

within the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. He received the

Ph.D. degree in Computing Science from the University of Glasgow, UK, in 2003, and the B.Sc. degree in Computer

Science from Huazhong University of Science and Technology, China, in 1995. His research interests include Computer

Networks, Wireless Communications, Parallel and Distributed Computing, Ubiquitous Computing, Multimedia Systems,

Modeling and Performance Engineering.

Hancong Duan received his B.Sc. degree from Southwest Jiaotong University, Chengdu, China, in 1995, his M.E.

and Ph.D. degrees from the University of Electronic Science and Technology of China, Chengdu, China, in 2005

and 2007, respectively. He is currently a Professor of Computer Science at the University of Electronic Science and

Technology of China. His research interests include Large-Scale P2P Content Delivery Network, Distributed Storage,

Cloud Computing, and Artificial Intelligence.

Qingxin Zhu received his Ph.D. degree in Cybernetics from the University of Ottawa, Ottawa, Canada, in 1993. From

1993 to 1996, he was a Postdoctoral Researcher in the Department of Electronic Engineering at the University of

Ottawa and the School of Computer Science at Carleton University, Canada. He was a Senior Researcher of Nortel

and Omnimark in Canada from 1996 to 1997. Since 1998, he has been with the University of Electronic Science and

Technology of China, as a Professor and Director of Operations Research Office. From 2002 to 2003, he worked as a

Senior Visiting Scholar in the Computer Department of Concordia University, Montreal, Canada. His research interests

include Bioinformatics, Operational Research, and Optimization.

