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Thesis summary 
 
The three-dimensional structure of gorgonian octocoral, like Eunicella, can 

provide vital habitat for other marine organisms and are thus considered 

ecosystem engineers. As they are ecosystem engineers, the conservation of 

Eunicella can deliver benefit to other marine organisms and thus their 

conservation can have a significant impact. Phylogenetic assessment of a 

species is pivotal in order to inform management efforts and conservation 

strategies accurately. Unfortunately, phylogenetic assessment of octocoral has 

been massively hindered by a lack of variation in their mitochondrial genomes. 

This is highly evident in the Eunicella genus, as previous studies have shown 

no variation in the mitochondrial protein-coding gene cox1. In Chapter 2, novel 

primers were successfully developed and exploited to explore the phylogenetic 

relationships between three predominant Atlantic-Mediterranean members of 

Eunicella (E. verrucosa, E. singularis and E. cavolini). This is one of the first 

studies to identify variation in the mitochondrial genomes of Eunicella. In 

Chapter 3, complete mitochondrial genomes of 19 E. verrucosa individuals 

were sequenced. Only two E. verrucosa genotypes were observed. 17 E. 

verrucosa individuals showed a widespread genotype and two E. verrucosa 

individuals, from Lion Rock, Isle of Scilly, southwest England, showed a unique 

genotype. Even compared to the known low levels of variation in the 

mitogenomes of octocoral, extremely low levels of variation were observed 

between the mitogenomes of E. verrucosa and E. cavolini, suggesting a recent 

divergence of the species. Holaxonia-phylogenies were produced by exploiting 

partial contigs of mtMutS and complete mitochondrial protein-coding 

sequences. These phylogenies support the inclusion of Eunicella in the family 
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Gorgonidae, in line with previous research. The confirmation of Eunicella spp. 

position within the octocoral phylogeny will allow for properly informed 

conservation efforts. The conservation of Eunicella spp. is especially important, 

as they are ecosystem engineers it is highly probable the conservation of 

Eunicella spp. will have secondary impact on other marine organisms that rely 

on Eunicella spp. for habitat or resources. 
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Chapter 1 - General introduction 

1.1.  The Cnidarian phylum 

Phylum Cnidaria has been estimated to include more than 11,000 extant 

species that are commonly referred to as sea anemones, corals, sea fans, 

hydroids and jellyfish (Daly et al. 2007). Despite the seemingly simple body 

plans found within the cnidarians, they are a highly diverse group of animals, in 

both form and life history strategy, and can be found in all marine environments, 

where they build reefs, occupy the deep ocean and parasitize other animals 

(Collins 2009). Organisms within phylum Cnidaria play a vital role within the 

marine ecosystem. Cnidaria often feed on eggs and larvae of benthic, 

planktonic and nektonic organisms, where their feeding habits may act to 

implement some regulation of biodiversity (Boero et al. 2005). Due to their basal 

position in the metazoan kingdom they are also vital to our understanding of the 

evolution of the diversity in Metazoa, as well as the development of body plans 

in all metazoans.  

 

All cnidarians produce the complex extracellular secretory product cnidae, a 

defining apomorphy (derived characteristic) for the phylum. The widely known 

nematocysts are one type of cnidae and are most commonly associated with 

the "stinging cells" of jellyfish. However, nematocysts are the microscopic 

capsule produced by the cell and not the cell itself (Fautin 2009). Cnidae are 

produced by all cnidarians and are used to protect themselves and catch prey 

(Fautin 2009). Nematocysts are one of three categories of cnidae, the other two 

being ptychocysts and spirocysts, which only occur in the anthozoan subclass 

Hexacorallia.  
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The cnidarian phylum along with 3 other phyla (Placozoa, Porifera and 

Ctenophora), form a group of organisms called the non-bilaterian basal 

Metazoa. The cnidarian phylum consists of two monophyletic clades Anthozoa 

and Medusozoa, Figure 1a. These clades can be defined by the mobility of the 

adult life phase (Kayal et al. 2013). The class Anthozoa, containing corals and 

sea anemones, is characterized by an adult life phase that shows only the 

sessile polyp form, Figure 1b.  The subphylum Medusozoa, contains the 

remaining four classes of Cnidaria (Cubozoa, Hydrozoa, Scyphozoa, 

Staurozoa), housing jellyfish and hydroids. Medusozoa can have a free-living 

medusa and/or the polyp adult life phase; the medusa stage is believed to be 

an apomorphy for Medusozoa, as molecular work suggests the sessile polyp 

adult form is likely the ancestral state (Collins et al. 2006; Daly et al. 2007).  

Within phylum Cnidaria taxonomic ranks have different implications due to a 

mismatch in the hierarchical taxonomic rank. For example, the subphylum 

Medusozoa is of comparable taxonomic organisation to the class Anthozoa, 

due to the high density of species found within Anthozoa. The distinction 

between Anthozoa and Medusozoa is well supported by anatomy and life 

history evidence (Salvini-Plawen 1978; Bridge et al. 1995; Daly et al. 2007) as 

well as phylogenetic evidence (Odorico and Miller 1997; Berntson, France, and 

Mullineaux 1999; Kim, Kim, and Cunningham 1999; Won, Rho, and Song 2001; 

Collins 2002). 
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Class Anthozoa is comprised of two monophyletic clades (subclasses), 

Octocorallia and Hexacorallia. As mentioned, all members of Anthozoa are 

exclusively polypoid and may be colonial, clonal or solitary (Daly et al. 2007). 

Hexacorallia is well known for its reef-building stony corals seen in shallow-

water tropical reefs, but also contains sea anemones and the deep-water black 

coral. They have polyps with tentacle arrangements in multiples of six. The less 

well-known clade Octocorallia consists of species commonly referred to as blue 

coral, sea fan and sea pens. They are distinguished from other anthozoans by 

the presence of polyps bearing eight mesenteries: non-calcareous partitions 

dividing the gastrovascular cavity of the polyp and joining the pharynx to the 

body wall (Bayer, Grasshoff, and Verseveldt 1983; McFadden, Sánchez, and 

France 2010). 

	 

	 

a b 

Figure 1 (a) summary of the systematic relationships within the Cnidarian 
phylum, adapted from Technau and Steele (2011). (b) Adapted from Foret et 
al. (2010), depicts the general life cycled of Cniadrians. The red arrows show 
the life cycle of anthozoans where the adult form is a sessile polyp. The blue 
arrows shows the common Medusozoan life cycle where both polyp and 
medusa form is seen in the life cycle with the adult life phase often being a 
free-floating medusa. 
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1.2. Octocorallia: life history, ecosystem services and threats  

1.2.1. Life history 

Octocorallia is currently represented by over 3,000 species that can be found in 

all marine environments (Cairns 2007; Yesson et al. 2012). Despite reaching 

maximum diversity in the shallow tropical waters of the western Indo-Pacific, 

where they can occupy 20-50% of the reef substrate, an estimated 75% of 

octocorals are found below 50 meters depth (Tursch and Tursch 1982; 

Fabricius 1997; Yesson et al. 2012). However the diversity of octocorals might 

not be fully recognised as deep-sea species are still being described (Soler-

Hurtado and Lopez-Gonzalez 2012); the situation has been further complicated 

by widespread taxonomic revision, splitting and grouping taxa due to varying 

degrees of conflicting genetic and morphological data (Saucier, Sajjadi, and 

France 2017).   

 

With the exception of one species (Taiaro tauhou), all known octocorals are 

colonial (Bayer and Muzik 1976; McFadden, Sánchez, and France 2010). 

Hence, the polyps of a single individual are connected via gasto-vascual canals 

such that polyps have protoplasmic connections (Bayer 1973). Octocorals can 

reproduce both sexually and asexually (Coma et al. 1995). With the majority of 

octocorals being internal or external gonochoric brooders (Weinberg and 

Weinberg 1979; Brazeau and Lasker 1989; Lasker et al. 1996). However, 

broadcast spawning and hermaphroditism have been reported (Brazeau and 

Lasker 1989; Lasker et al. 1996). 
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Like many cnidarians, octocorals are benthic suspension feeders. Octocorals 

are passive filter feeders due to the relatively high surface area of their 

tentacles and the fact that they possess relatively basic nematocysts (Gili and 

Coma 1998). Octocorals feed on detritus, phytoplankton and zooplankton prey 

(Katharina E. Fabricius and Dommisse 2000; Ribes, Coma, and Rossi 2003).  

 

1.2.2. Environmental benefits   

Octocorals are an extremely important component of the benthic biomass and 

play an import ecological role in the marine realm as 'ecosystem engineers'. 

Ecosystem engineers are defined as organisms that alter the physical 

environment (Wright and Jones 2006). The three-dimensional structure of 

octocorals causes alterations to the physical environment in which they are 

located, increasing habitat complexity and heterogeneity, providing 

microhabitats and substrate for other organisms, as well as altering the flow of 

water and sediment (Buhl-Mortensen et al. 2010). Gorgonian octocorals not 

only settle in relatively fast flowing water, but orientate themselves 

perpendicular to the flow of water to maximize the volume of water passing over 

their polyps and thus they can increase sediment flow (Wainwright and Dillon 

1969). Benefits of this increased flow of water and sediment can be passed on 

to other filter-feeding organisms associated with the colony (Buhl-Mortensen et 

al. 2010).  

 

They can have a range of facultative and obligatory associated biota including 

ophiuroids, barnacles, shrimp, anemones, hydroids and molluscs (e.g. Cupido 

et al. 2012; Herrera, Shank, and Sánchez 2012), with shallow water species 

showing more obligatory associated biota than deep-sea gorgonians (Buhl-
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Mortensen et al. 2010). The increase in habitat complexity brought about by the 

three-dimensional structure of resident octocorals can have a strong influence 

on biodiversity (Krieger and Wing 2002; Linares 2007; Ponti et al. 2014), 

providing essential ecosystem services to the human population. Stone (2006) 

reported that 85% of economically important fish were associated with cold-

water corals, mostly gorgonians, in the Aleutian Islands of Alaska. Moreover, 

Baillon et al. (2012) in a summary of multi-year surveys reported a strong 

association of commercially important fish larvae (Sebastes spp) with octocoral 

species. This suggested that these octocorals act as nursery grounds for fish 

larvae and are an essential habitat, requiring specific management in order to 

maintain the viability of these commercially important fish stocks. Although hard 

to calculate in monetary terms, the evidence presented here suggests 

octocorals provide a clear ecosystem service; as ecosystem engineers they 

provide a disproportionate benefit to the human population via facilitating 

commercial fisheries as well as the ecosystem as a whole.   

 

1.2.3. Economic benefits   

Octocorals have evolved an array of secondary metabolites used in ecological 

functions such as anti-predator defence, interspecific space competition and 

anti-fouling (Sammarco and Coll 1992). For example, a lipid extracted from the 

Caribbean gorgonian coral Erythropodium caribaeorum has been shown to 

reduce predation by reef fish in both laboratory and field experiments ( Pawlik, 

Burch, and Fenical 1987; Fenical and Pawlik 1991). The gorgonian octocoral, 

Leptogorgia virgulata, produces secondary metabolites with strong anti-fouling 

properties, which can inhibit settlement of the barnacle Amphibalanus 

amphitrite. There are also potential benefits of allelochemicals, metabolites 
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released by an organism that has a detrimental effect on other organisms, 

which could be used in producing a non-polluting antifoulant, as an alternative 

to the globally banned biocide TBT (Gerhart, Rittschof, and Mayo 1988). Eight 

out of twenty-nine Indian Ocean octocoral species showed high rates of 

settlement inhibition (Raveendran, Limna Mol, and Parameswaran 2011), thus 

showing potential as natural product-derived antifoulants (NPAs).  

 

Prospecting the potential of octocoral secondary metabolites is of high interest 

to the pharmaceutical industry. For example, the compounds, 9, 11-secosterols, 

isolated from Eunicella cavolini have been shown to have anti-proliferation 

activity to adenocarcinoma cells, strongly inhibiting the growth of human 

prostate and breast adenocarcinoma cells (Ioannou et al. 2009). 

Pseudopterosin elisabethae octocorals are harvested in The Bahamas for use 

in the cosmetics industry due to the anti-inflammatory properties of 

the pseodoterosin class of compounds they produce (Goffredo and Lasker 

2008). With the increased interest in marine bioprospecting, the great economic 

potential of octocorals is obvious. Erwin, López-Legentil and Schuhmann (2010) 

predicts a $563 billion – $5.69 trillion economic value to novel anti-cancer drugs 

from marine organisms, quantifying the potential and importance of marine 

bioprospecting as an ecosystem service. The majority of novel marine 

bioprospecting compounds have come from soft-bodied invertebrates, such a 

Porifera and Cnidaria, including Octocorallia, making the research and 

conservation of Octocorallia of keen interest to both researchers in academia 

and industry.  
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1.2.4. Threats 

Despite their potential ecological and economic benefits, octocoral populations 

are threatened globally by anthropogenic impacts, either from direct harvesting 

and mechanical damage or indirectly through climate change. Due to the 

sessile nature of octocorals, they are particularly vulnerable to bottom trawling 

fishing gear (Watling and Auster 2006). The impact of bottom trawling fishing 

gear is prevalent in both shallow and deep offshore-waters, such that local 

inshore conservation efforts have focused on banning trawling in certain areas 

due to the damage fishing gear has on particular octocoral species (Hall-

Spencer et al. 2007; Atrill et al. 2011). Despite there being less research into 

the impact of fishing on octocorals compared to their sister taxa Hexacorallia, 

where evidence suggests the impact of bottom trawling fishing gear is long-

lasting (Althaus et al. 2009), there is mounting evidence to show gorgonians are 

a prominent component of by-catch and potentially they are as vulnerable as 

hexacorals to mechanical damage by bottom trawling (Watling and Norse 1998; 

Stone 2006; Edinger, Wareham, and Haedrich 2007; Bo et al. 2014). 

Gorgonians are not only directly impacted by fishing gear but are also 

frequently entangled in lost fishing gear (Sheehan et al. 2017). Bo et al. (2014) 

showed the impact of lost fishing debris in up to 62% of video frames, from ROV 

surveys in the Mediterranean.  

 

Coral bleaching, the expulsion of endosymbiotic Symbiodinium spp found within 

coral polyps, is well documented in Hexacorallia but has also been recorded in 

Octocorollia (Weil, and Yoshioka 2010). This highlights the potential sensitivity 

of octocorals to the effects of climate change and, specifically, increased sea 

surface temperatures. Moreover, disease outbreaks closely linked with 
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temperature anomalies have been documented to caused mass mortality of 

multiple Mediterranean octocoral species including Paramuricea clavata, 

Eunicella singularis and Eunicella cavolini (Cerrano et al. 2000; Martin, 

Bonnefont, and Chancerelle 2002; Cupido et al. 2012). These mass 

mortality events occurred during 1999 and 2003 within the Ligurian Sea, most 

likely by an opportunistic bacterial or fungal disease. Between 2003-

2006 Vibro spp bacteria caused another disease outbreak in the shallow water 

gorgonian Eunicella verrucosa in the southwest of England; to date, however, 

there is a paucity of scientific evidence for the aetiology of the disease 

outbreak. Nonetheless, Cerrano et al. (2000) observed reduced reproductive 

output in Paramuricea calvata populations after the Ligurian Sea disease 

outbreak in 2003, while a study into the population recovery of P. clavata 

(Linares et al. 2008) showed that a significant skew in sex ratio occurred, 

leading to a male-dominated population from an originally approximately equal 

sex ratio. Such a finding highlights the potential long-term impact that increased 

incidence of disease outbreaks, due to increasing sea surface temperatures, 

could have on octocoral populations, which may then have knock-on effects to 

the biodiversity they support. Anthropogenic impacts on octocorals are made 

even more alarming by their slow-growth rates and long lifespans, as it appears 

that population recovery post-disturbance will be slow (Sheehan et al. 2017).  

 

1.3.  Mitochondrial DNA 

Over the last four decades, mitochondrial DNA (mtDNA) has been the marker of 

choice for phylogenetic and phylogeographic studies. Despite recent advances 

in techniques that use nuclear DNA as a marker, such as RADseq, mtDNA is 

still highly popular marker due to the technical ease of its use in genetic 
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research (Galtier et al. 2009). Firstly, mtDNA is easy to amplify, is present in 

multiple copies per cell, and genes are not duplicated (Galtier et al. 2009). 

Moreover, certain evolutionary and biological properties of mtDNA simplify 

analysis, such as it being non-recombining, its near-neutrality and clock-like rate 

of base substitutions (Rubinoff and Holland 2005; Birky 2001; Galtier et al. 

2009). 

 

Despite high levels of base substitutions that occur in metazoan mitochondrial 

genomes, some general patterns are evident such as the structure, average 

size, and gene content, which is often highly conserved (Boore 1999). A typical 

mitochondrial genome is roughly 16 kb long but can range from 14–17 kb, 

variation in length often being due to variation of the single large non-coding 

control region (Shadel and Clayton 1997). Metazoan mtDNA usually encodes 

13 proteins, 2 rRNAs (for mitochondrial ribosomal subunits) and 22 tRNAs 

(Boore 1999). However, within the basal metazoans there seems to be a 

concentration of exceptions to these outlined generalisations. For example, 

Medusozoa are unique among metazoans as they have linearised 

mitochondrial genomes; this is a molecular synapomorphy for the sub-phylum 

(Bridge et al. 1992). Throughout Anthozoa, mitochondrial genomes contain a 

severely reduced complement of tRNA genes, encoding only 1-2 tRNA genes, 

20-21 less than compared to other metazoans (Beagley, Okimoto, and 

Wolstenholme 1998; Brugler and France 2007; Sinniger and Pawlowski 2009; 

Poliseno et al. 2017).  

 

Potentially the most unique mitochondrial genomes can be seen in the 

anthozoan sub-class Octocorallia. Octocoral mitochondrial genomes are usually 



 18 

18-19 kb long and contain a unique open reading frame, mtMutS, of roughly 

2950 bp (Poliseno et al. 2017; McFadden, Sánchez, and France 2010; Brugler 

and France 2008). Since mtMuts was first observed in 1995 in the mitochondrial 

genome of Renilla kolikeri and Sarcophyton glacum (Anthozoa: Octocorallia), it 

has since been observed in all octocoral species studied; conversely, it has not 

been observed in the mitochondrial genome of any other organism and is a 

defining apomorphy for the clade (Pont-Kingdon et al. 1995; Beaton, Roger, 

and Cavalier-Smith 1998; Bilewitch and Degnan 2011). This unique open 

reading frame (ORF) encodes for a mismatch repair protein MutS. All lines of 

evidence suggest this ORF encodes for a functional mismatch repair gene, 

such that mtMutS is actively transcribed and the gene encodes for a protein that 

has the necessary components for DNA mismatch repair (Bilewitch and Degnan 

2011). These two factors coincide with observed reduced rates of sequence 

variation in octocoral mitochondrial genomes when compared to their sister taxa 

Hexacorallia, as well as other metazoans (France et al. 1996). This reduced 

rate of variation can have serious implications for the phylogenetic analysis of 

octocoral.  

 

The octocoral unique open reading frame, mtMutS, was previously referred to 

as mtMSH1 based on a 19.7% similarity of its translated sequence to the yeast 

nuclear Mutational Suppressor Homolog 1 (Pont-Kingdon et al. 1995). 

However, recent compelling evidence shows that mtMutS has no immediate 

common ancestor with any eukaryotic MutS Homologs 1 (MSH1) families and is 

likely of non-eukaryotic origin (Bilewitch and Degnan 2011). Phylogenetic 

analysis shows strong clustering of all octocoral MutS sequences with the 

MutS7 lineage, forming a clade with epsilonproteobacteria MutS and viral MutS; 
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in turn, all share Domains I, III and V of MutS, plus a C-terminal unique to the 

MutS7 lineage. This evidence is persuasive and suggests this is potentially the 

first case of horizontal gene transfer into a metazoan mitochondrial genome 

(Bilewitch and Degnan 2011).  

 

1.4. Octocoral systematics 

1.4.1 Monophyly  

The monophyly of Octocorallia has long been recognized and is generally well-

supported by both morphological and molecular data (McFadden, Sánchez, and 

France 2010). The sub-class can be distinguished by the ubiquitous symmetry 

shown by octocoral polyps, which bear eight tentacles and eight internal 

mesenteries, a diagnostic apomorphy for the sub-class. Other features are often 

used to identify Octocorallia, for example, skeletons containing calcareous 

sclerites, polyps having pinnules, and lateral extensions on the tentacles (Daly 

et al.2007). However, these features are not true diagnostic apomorphies as, 

despite these features being widespread in Octocorallia, a few taxa lack some 

of these characteristics (Daly et al. 2007). For example, such exceptions as 

pinnule-less polyps described by Alderslade and McFadden (2007) or the order 

Heliporacea, which possess no sclerites but instead lays down a crystalline 

aragonite skeleton (Bayer 1973). 

 

Early phylogenetic studies of phylum Cnidaria, which used 16S, 18S and 28S-

partial rDNA sequence data, all support morphology-based characterisation and 

define Octocorallia as monophyletic (Berntson, France, and Mullineaux 1999; 

Bridge et al. 1995; Chen et al. 1995). Moreover, the above studies also support 

the sister relationship of Octocorallia with Hexacorallia. More recently, Figueroa 
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and Baco (2014) conducted a phylogenetic study using 83 mitochondrial 

genomes and were able to demonstrate the monophyly of Octocorallia. 

However, arguably the most compelling evidence for the monophyly of 

Octocorallia is the presence of a unique ORF, mtMutS, which, as outlined 

above, has been found in all octocoral mitochondrial genomes studied and in no 

other metazoan mitochondrial genome (Culligan et al. 2000; Bilewitch and 

Degnan 2011). 

 

1.4.2. Ordinal, sub-ordinal and family level relationships 

Despite the fact octocorals have been of interest to naturalists for centuries, 

Octocorallia is arguably the least well-resolved higher taxonomic group within 

Cnidaria, with classification into taxonomic groups at the ordinal level or below 

remaining problematic. There are a few characteristics of Octocorallia taxa that 

can make them hard to classify. Firstly, there is a general paucity of defining 

morphological and molecular synapomorphies (Daly et al. 2007; McFadden, 

Sánchez, and France 2010). Moreover, plasticity in morphological features is 

observed, but a lack of understanding as to what degree the environment 

influences the phenotype of an individual makes it hard to delineate species or 

ectomorphs (Berntson et al. 2001). Finally, there is also a general lack of fossil 

records for these soft-bodied animals, making mapping the evolution of any 

diagnostic feature particularly challenging (Berntson et al. 2001; Carlos Prada, 

Schizas, and Yoshioka 2008).  

 

In general, the morphological features used to distinguish octocorals are colony 

growth form, features of skeletal axis (if present), the shape and arrangement of 

sclerites, microscopic calcite crystals embedded in coenenchymal tissue and 
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polyps, as well as other features specific to certain clades, such as the 

arrangement of secondary polyps around the rachis only seen in the sea pen 

families. From a morphological point of view, the lack of synapomorphies is due 

to the relatively simple body plans of octocorals, and the significance of any 

given feature is often highly debated due to the plasticity in these features 

(Berntson et al. 2001).  

 

Throughout the 20th century, Hickson (1930) taxonomic classification system 

was the most widely used for classifying taxa within the Anthozoa. Largely 

based on colony growth form, he produced six orders (O. Pennatulacea, 

O. Helioporacea, O. Gorgonacea, O. Stolonifera, O. Telestacea, 

O. Alcyonacea). Currently, Bayer (1981) 3-order classification system is the 

most widely used by taxonomists and retains two of Hickson (1930) orders 

Helioporacea and Pennatulacea, as they are defined by clear morphological 

synapomorphies. The remaining four orders (Gorgonacea, Stolonifera, 

Telestacea,  Alcyonacea) were collapsed into a single large order, 

O. Alcyonacea, due to the recognition that these groups graded into each other 

morphologically.  

 

Helioporacea contains only two extant families that are unique among 

octocorals as they lay down a solid skeletal matrix of crystalline aragonite, a 

convergent feature with taxa of Scleractinia (Hexacorallia) (Bayer and Muzik 

1977). Pennatulacea, often referred to as sea pens, contains 14 extant families 

that have a level of colony architecture that surpasses any complexity seen in 

Anthozoa. Pennatulacea is characterised by having primary axil polyps 

(oozooids), which differentiate into a barren stalk (penduncle) and inflates, 
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thereby anchoring the colony in soft sediment, and a distal rachis where 

secondary polyps are arranged (Bayer 1961, 1973). Families within 

Pennatulacea are distinguished via the arrangement of secondary polyps 

around the rachis (Daly et al. 2007).   

 

Unlike the other two orders, Alcyonacea lacks any defining synapomorphies. 

This large order consists of 31 families and contains groups often referred to as 

soft corals and gorgonians. For taxonomic convenience order Alcyonacea is 

currently divided into two suborders (Calcaxonia, Holaxonia) and four sub-

ordinal groups (Scleraxonia, Stolonifera, Alcyoniina, Protoalcyonaria). These 

sub-ordinal groups are known to represent grades of colony morphology and 

skeletal composition, but are not recognised as true clades (Daly et al. 2007; 

McFadden, Sánchez, and France 2010). The major features used to distinguish 

orders, within Alcyonacea are the overall colony growth form, the presence of a 

supporting skeletal axis and details of axial composition (Daly et al. 2007; 

McFadden, Sánchez, and France 2010). The Alcyoniina, Stolonifera and 

Protoalcyonaria groups include families that lack a skeletal axis or axial-like 

layer. The final three groups informally referred to as gorgonians produce a 

skeletal axis or axial like layer composed of calcite and a proteinaceous 

material called gorgonin.  

 

Within Aclyonacea, the gorgonian groups Calcaxonia and Holaxonia are 

defined by clear morphological apomorphies and are thus recognised as true 

suborders (Grasshoff 1999; Daly et al. 2007). As defined by Daly et al. (2007) 

the axis of both Calcaxonia and Holaxonia consists of gorgonin, however, they 

differ by the amount of non-sclerite calcite and the composition of their central 
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core. Calcaxonia possesses a large amount of non-sclerite calcite and a solid 

cross-chambered core, while Holaxonia have small amounts of non-sclerite 

calcite and a hollow cross-chambered central core (Daly et al. 2007).  

 

Early molecular studies that included sufficient taxa to allow assessment of the 

relationships within Octocorallia did not reproduce the six sub-ordinal groups of 

Alcyonacea (France et al. 1996; Berntson et al. 2001). Subsequently, Sánchez, 

Lasker, and Taylor (2003) reanalysed data from these previous studies, along 

with the addition of a secondary structure analysis for 16S rDNA sequences, 

and produced highly similar results to the original studies. Despite the fact these 

partial 16S and complete 18S rDNA studies did not corroborate the taxonomic 

classification of Bayer (1981), they did produce general clades that are still 

reproduced in modern octocoral molecular phylogenies (McFadden et al. 2006; 

Figueroa and Baco 2014).  

 

Indeed, the study by McFadden et al. (2006) is to date still renowned as the 

most extensive octocoral phylogenetic study available and produced well-

supported clades similar to those seen in the earlier molecular studies; Figure 2 

shows the phylogeny produced by McFadden et al. (2006) based of the partial 

contigs of ND2 and mtMutS, totaling 1429 bp. They sampled a total of 115 taxa 

representing 29 of the 45 families. McFadden et al. (2006) produced two major 

clades, Clade 1 (Holaxonia-Alcyoniina) and Clade 2 (Calcaxonia-

Pennatulacea); as well as a third smaller clade, Clade 3 (Anthosmastus-

Corallium), whose relationship to the two major clades was unresolved 

(McFadden et al. 2006). Clade 1 consists of the majority of soft corals (sub-

ordinal group Alcyoniina), as well as the gorgonian suborder Holaxonia, along 
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with the majority of representatives from Scleraxonia and Stolonifera. Clade 2 is 

comprised of all sea pens (Pennatualcea), which resolved as a monophyletic 

clade, and it also includes O. Helioporacea and the gorgonian suborder 

Calcaxonia.  

 

More recently, the study by Figueroa and Baco (2014) showed the increased 

resolution that complete mitochondrial genomes can provide in phylogenetic 

studies. Figueroa and Baco (2014) used 34 complete octocoral mitochondrial 

genomes and produced clades largely congruent to McFadden et al 2006. With 

the increase in sequence data and resolution, they were able to resolve the 

position of the deeper nodes, such as the Anthomastus-Corallium clade, 

showing its sister relationship to the Pennatulacea-Calcaxonia clade, which are 

unresolved in McFadden et al. (2006). Unfortunately, for Figueroa and Baco 

(2014), only 34 complete octocoral mitogenomes, were available for analysis 

so, despite the increase in resolution, the lack of sufficient taxa limited the study 

of relationships within Octocorallia. Poliseno et al. (2017) calculated that only 

1% of known octocoral species had publically available mitochondrial genomes. 

Thus, finding a cheap and scalable method to sequence mitochondrial 

genomes would vastly improve our knowledge of the relationships within 

subclass Octocorallia 
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Figure 3 Maximum likelihood phylogram from McFadden et al. (2006) that utilises partial 
contigs of the mitochondrial protein coding genes mtMutS and nad2 from 103 Octocorallia. 
Circled numbers on the phylogram show the clades discussed in text (1) Holaxonia-
Alcyoniina, (2) Calcaxonia-Pennatualcea and (3) Anthomastus-Corallium. 
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In summary, there is a general lack of resolution in the molecular markers used 

to date; this makes it hard to draw any conclusions on the taxonomic and 

evolutionary relationships between and within the clades of Octocorallia. A lack 

of resolution in these markers at the deeper nodes and a lack of fossil records 

has implications for mapping the evolution of morphological characteristics, 

making it almost impossible to map out the evolution of diagnostic 

morphological features. Complete mitochondrial genomes have shown some 

promise in increasing resolution in octocoral phylogenetic studies. Of the 

studies reviewed above, that by McFadden et al. (2006) is the only one to 

include sufficient taxa to be able to make any assumptions about family-level 

relationships within Octocorallia. Unfortunately, even this study is characterised 

by varying degrees of polyphyly of the morphologically-defined taxonomic 

groupings; this disparity between morphological and molecular data appears to 

be widespread throughout Octocorallia (McFadden et al. 2010).  

 

1.4.3. Intrageneric and intraspecific relationships  

Galtier et al. (2009) called into question how rigorously all animal mitochondrial 

DNA follows the general assumptions held about metazoan mitochondrial DNA 

(i.e. faster rates of nucleotide substitution than nuclear DNA, clock-like evolution 

and near-neutrality) and its use as an evolutionary and taxonomic marker. Such 

exceptions to these general assumptions are highly prevalent in octocorals 

where severely reduced rates of variation within mitochondrial genomes are 

observed; estimates suggest anthozoan mitochondrial genomes evolve 50-100 

times slower than other metazoan mitochondrial genomes (Shearer et al. 2002); 

studies on scleractinian corals suggest their mitochondrial genomes may evolve 

five-times slower than their nuclear genomes (Chen et al. 2009). This lack of 
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base substitution has acted to severely hinder the use of molecular 

phylogenetic tools for exploring intra- and intergeneric relationships in 

octocorals. As mentioned previously, the reduced rates of variation observed 

within octocoral mitochondrial genomes are likely due to the presence of the 

mismatch repair gene mtMutS within the mitogenome of Octocorallia (Bilewitch 

and Degnan 2011). 

 

The study by France et al. (1996) showed reduced rates of variation in 

octocorals even compared to their sister taxa (Hexacorallia). Hexacorallia are 

also known to have low levels of mtDNA sequence variation; pairwise 

comparison of 16S rDNA intrageneric genetic distances between genera of 

octocorals and hexacorals, showed values of 2.7–6.3% and 16.1–26.3%, 

respectively. Reduced rates of sequence variation have been observed in 

almost all octocoral mitochondrial markers, analysed to date. For example, the 

mitochondrial cytochrome oxidase I gene (cox1) has been proposed as a 

universal genetic barcode, a means by which to identify known species based 

on the DNA sequence of cox1 (Hebert, Ratnasingham, and Jeremy 2003). 

However, one study of Mediterranean octocorals found identical cox1 sequence 

(547 bp) between different Eunicella species (Eunicella singularis and Eunicella 

cavolinii), showing a lack of variation of this marker at both intergeneric and 

intrageneric levels (Calderón, Garrabou, and Aurelle 2006).  

 

Paradoxically the mismatch repair gene mtMutS has been shown to have 

elevated levels of variation compared to other mitochondrial protein-coding 

sequences (France and Hoover 2002; van der Ham, Brugler, and France 2009). 

Estimates suggest it has roughly twice the variation of other mitochondrial 
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protein-coding regions, hence it is often the focal marker used in genus-level 

and species-level phylogenetic studies of octocorals (Mcfadden et al. 2011; 

McFadden, Sánchez, and France 2010). Currently, partial contigs of mtMutS 

have been applied to a wide range of octocoral taxa, such as Caribbean 

holaxonians (Wirshing et al. 2005), deep-sea gorgonians (France 2007) and 

Indo-Pacific alcyoniids (Mcfadden et al. 2009).  

 

The only single-copy nuclear gene that has been applied to multiple taxa in 

octocoral is SRP54 (Concepcion et al. 2008). It has been shown to have 

intraspecific and interspecific variation an order of magnitude above 

mitochondrial protein-coding genes (Concepcion et al. 2008). Unfortunately, it 

has proven difficult to amplify in many octocoral species, and has not been 

widely applied (McFadden, Sánchez, and France 2010). 

 

Genetic barcoding is also problematic in Octocorallia due to this lack of variation 

(Mcfadden et al. 2011). van der Ham, Brugler and France, (2009) suggested no 

single mitochondrial gene region has sufficient variation to distinguish species 

unequivocally and thus suggested the need for species-specific barcodes. 

Recent work by Poliseno et al. (2017) has shown the power of mitogenomic 

sequencing in identifying areas of high variation for intrageneric biogeographic 

studies. Firstly, they used complete mitogenomes to show nucleotide diversity 

of ~2.6% between Leptogorgia taxa, far greater than the 1% nucleotide diversity 

threshold proposed by McFadden et al. (2011) for mtMutS based species 

delimitation. Moreover, they (Poliseno et al. 2017) were able to identify the 

intergenic region between nad5 and nad4 as having the highest levels of 

variation between the Leptogorgia species studied. The identification of areas of 
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highest variation allows for the proposal of species-specific genetic barcodes 

that would, in theory, provide a lower cost mitochondrial marker with the most 

informative sites possible.  

 

In summary, studies into the intrageneric relationships in Octocorallia have 

been severely hampered by the lack of variation in their mitochondrial 

genomes. This lack of variation is likely due to the presence of a functional 

mismatch repair gene, mtMutS, found in their mitogenomes. The increased 

variation found in mtMutS sequence has been used to studied intrageneric 

relationships within Octocorallia, with varying levels of success. A study by 

Poliseno et al. (2017) showed the potential for mitogenomes to identify areas of 

greatest mtDNA variation in their study species and allowed identification of 

candidate areas to target for genetic barcoding.  

 

1.5. Study species  

This study will investigate the phylogenetic relationships within European 

members of the octocoral genus Eunicella, with a focus on Eunicella verrucosa. 

E. verrucosa (pink sea fan) is a Holaxonia octocoral in the Gorgonidae family. It 

is thought to be gonochoristic and to reproduce sexually by broadcast spawning 

with external fertilization (Munro 2004). Typically, colonies are approximately 30 

cm tall when fully-grown, but have been documented as reaching up to 75cm  

(Wood 2013). They are found at depths of between 10 –150 m on rocky 

substrates in areas of moderate to high water currents  (Hayward and Ryland 

1995). They are native to the northeast Atlantic and parts of the Mediterranean 

Sea, where they range from northwest Ireland down to western Africa, as well 

as the western Mediterranean (Sheehan et al. 2017).  
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Eunicella cavolini and Eunicella singularis are both Mediterranean species and 

at some locations can be found in sympatry with E. verrucosa. Previous genetic 

work, by Calderón, Garrabou and Aurelle (2006) on these three species has 

shown no variation at all across 576 bp of the cox1 mitochondrial gene, they 

were also unable to distinguish between these three Eunicella members with 

the nuclear marker ITS2.  

 

1.6. Research aims  

This research aimed to use mitochondrial gene data to assess the phylogenetic 

relationships between three species of Eunicella: E. verrucosa, E. cavolini and 

E. singularis. Finding a mitochondrial marker with sufficient variation to 

differentiate these three species would be of use to researchers after Calderón, 

Garrabou and Aurelle (2006) found no sequence variation in the cox1 gene 

between these Eunicella species. Moreover, by analysing a large number of E. 

verrucosa samples from across the species range, we aimed to elucidate any 

phylogeographic patterns discernable using mitochondrial DNA sequences.  

 

The aim of Chapter 2 was to describe the use of newly developed primers that 

target areas of the Eunicella sp. mitochondrial genome that are suspected to 

have the highest levels of variation. The markers were also combined with 

sequence data available in GenBank to explore their utility in discerning 

relationships throughout the Holaxonian suborder.  

 

Chapter 3 focussed on elucidating intraspecific variation in Eunicella verrucosa, 

as well as, intrageneric variation between Eunicella species. This was achieved 
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by sequencing complete mitochondrial genomes in a relatively large number of 

E. verrucosa individuals from across the species range. Again, sequences from 

GenBank were used to assess the utility of complete mitochondrial genomes for 

determining relationships in suborder Holaxonia.  

 

The study aimed to assess the phylogenetic relationships between E. 

verrucosa, E. cavolini and E. singularis, as well as, their relationships to other 

Holaxonia octocoral. Phylogenetic studies like this are vital to properly informing 

conservation efforts. As ecosystem engineers the conservation of Eunicella sp. 

is especially important, as their conservation can pass on benefits to other 

marine species and thus conservation of these gorgonian octocorals can have a 

disproportionately large benefit (Boogert, Paterson, and Laland 2006). 

Moreover, understanding the phylogenetic relationships in basal metazoans, 

like Octocorallia, is required to understand the evolution and development of all 

Metazoans.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 32 

Chapter 2 - Phylogenetic assessment of European 
members of the octocoral genus Eunicella 

 
 
2.1. Abstract  
 
Phylogenetic research into the relationships within Octocorallia has been 

hindered by the reduced variation observed within their mitochondrial genomes. 

In one study the octocoral genus Eunicella has shown no variation across the 

sequence of the gene cox1, hindering any inference of relationships between 

members of the genus. In this study, we explored the phylogenetic relationships 

between three Atlantic-Mediterranean members of Eunicella; E. verrucosa, E. 

cavolini and E. singularis by applying novel primers, which target partial contig 

of the protein-coding gene mtMutS and the nad5-nad4 intergenic region. We 

utilised the mitochondrial genomes of Eunicella to explore the relationships 

within the genus, as well as, their relationships to other Holaxonia octocoral. 

The phylogenetic analysis utilising partial mtMutS sequences resolved all 

members of Eunicella as monophyletic and confirmed the placement of 

Eunicella within the family Gorgonidae. Variation was observed in the nad5-

nad4 intergenic region between E. verrucosa and E. cavolini. This is the first 

study to show variation in mitochondrial sequences between these two 

individual species. The variation found in nad5-nad4 intergenic region 

demonstrates the region's potential candidate for a genus-specific character-

based barcode, a crucial tool for molecular ecologists. Studies into the 

phylogenetic relationships of Eunicella are pivotal to inform management and 

conservation strategies for the genus properly; conservation of ecosystem 

engineers like Eunicella can have a disproportionately large impact passing on 

benefit to other marine organisms. 
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2.2 . Introduction 
 
The octocoral genus Eunicella has five members that inhabit the coastal waters 

of Europe, with Eunicella verrucosa, Eunicella cavolini and Eunicella singularis 

being the most abundant by far (Grasshoff 1992). As mentioned in Chapter 1, 

the three-dimensional structure of gorgonian octocorals, such as Eunicella, can 

provide important habitat for other marine organisms and are thus consider 

ecosystem engineers (Buhl-Mortensen et al. 2010; Baillon et al. 2012). 

However, due to their sedentary nature, they are vulnerable to destructive 

fishing methods, such as bottom trawling fishing, and population recovery is 

slow due to their slow growth rates (Bo et al. 2014; Althaus et al. 2009; 

Sheehan et al. 2017). Moreover, these European members of Eunicella have 

been affected by mass mortality events within both the Mediterranean Sea and 

the Atlantic Ocean, most likely due to thermal anomalies (Garrabou et al. 2009; 

Cerrano et al. 2000; Martin, Bonnefont, and Chancerelle 2002; Cupido et al. 

2012).  

 

Eunicella verrucosa (pink sea fan) is generally the most common of these five 

coastal octocoral species and can be found within both the Mediterranean Sea 

and the Atlantic Ocean (Holland, Jenkins and Stevens, 2017). The pink sea fan 

is listed as vulnerable on the IUCN Red List (World Conservation Monitoring 

Centre 1996); however, IUCN rules state listings are outdated after 10 year, so 

this 23-year-old listing is not considered accurate and needs updating 

(Rondinini et al. 2014). E. verrucosa is most abundant within the costal waters 

of Britain but is still considered nationally rare due to its range being limited to 

the south west coast of England (Hiscock et al. 2010). It is listed as a priority 

species under the UK Biodiversity Action plan and a species of principal 
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importance in England under the NERC Act 2004. Although the pink sea fan is 

also found within the Mediterranean Sea, the yellow sea fan (Eunicella cavolini) 

and the white sea fan (Eunicella singularis) are most abundant within this 

region.  

 

Throughout Octocorallia, there is a general lack of definitive morphological 

characteristics by which to reliably distinguish species; Eunicella is no exception 

to this (McFadden et al. 2006). Within Eunicella a long un-branching colony 

architecture and presence of symbionts can be used to distinguish E. singularis 

from E. verrucosa and E. cavolini (Grasshoff 1992). Eunicella cavolini and 

Eunicella verrucosa are near morphologically identical-looking organisms. 

Grasshoff (1992) defined diagnostic taxonomic characteristics for the Eunicella 

genus, these features can be seen in Table 1, with the major difference being 

the protuberance of the polyps in E. verrucosa and a general lack of these in E. 

cavolini (Grasshoff 1992; Carpine and Grasshoff 1975). However, subtle 

differences in their colony architecture and sclerites are still apparent.  

 
Table 1 Outlines the diagnostic morphological features of members of the 
octocoral genus Eunicella, as outlined by Grasshoff (1992).  
Species Diagnostic characteristics 
Eunicella verrucosa Pink or white in colour, densely ramified with short 

branches, protuberant polyps, sclerites are balloon 
clubs with large spiny edges, no symbionts. 

Eunicella cavolini Yellow to light-red, densely branched, polyps with 
little or few protuberant, sclerite are clubs widely 
circular with fine humps in exterior surface, no 
symbionts. 

Eunicella singularis Long straight branches, polyps a little protuberant, 
sclerites clubs narrowly circular with exterior face 
completely flat, photosynthetic symbionts present.  
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To further complicate this, plasticity in morphological characteristics has been 

observed in Octocorallia and the Eunicella genus (Gori et al. 2011; Carlos 

Prada, Schizas, and Yoshioka 2008). Observations show an increased variation 

in colony growth form and changes in colour at depth for Eunicella singularis, as 

well as asymbiotic E. singularis individuals being observed at depths (Gori et al. 

2011). Despite its importance, there is a lack of published data that elucidates 

the role of the environment in shaping morphological characteristics across 

Eunicella and Octocorallia as a whole.  

 

From a genetic point of view, the genus Eunicella also lacks molecular markers 

with sufficient resolution to delineate individual species; no variant sites have 

been found between these three Eunicella species within the mitochondrial 

protein-coding genes COI and mtMutS (Calderón, Garrabou, and Aurelle 2006; 

Gori et al. 2012). The lack of variation seen within these mitochondrial markers 

is most likely due to the unique mitochondrial mismatch repair gene, mtMutS. 

As stated in Chapter 1, this actively transcribed protein-coding gene contains all 

the mechanisms required for mismatch repair and coincides with octocoral 

mitochondrial variation rates 50-100 times lower than other metazoans (France 

et al. 1996; Shearer et al. 2002). The nuclear markers ITS 1 and ITS 2 do not 

have high enough resolution to delineate the three Eunicella species (Calderón, 

Garrabou, and Aurelle 2006; Costantini et al. 2016). It has been suggested that 

incomplete concerted evolution could have caused this lack of variation 

between the three species in the multi-copy nuclear markers (Costantini et al. 

2016; Calderón, Garrabou, and Aurelle 2006).  
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The accurate assessment of species boundaries is pivotal in order to advance 

the understanding of the proper phylogeographical and/or phylogenetic 

relationships within a species or group of species, which is required for the 

successful conservation of an organism (Knowlton 2000; Eytan et al. 2009). 

Molecular markers with sufficient resolution to delineate species are essential 

for the phylogenetic assessment of species. This is especially important for a 

genus such as Eunicella, where morphologically similar individuals living in 

sympatry show variation in morphological characteristics due to environmental 

factors (Hillis 1987). 

 

The aim of this study was to investigate the phylogeographic relationships 

within Eunicella verrucosa, as well as the wider phylogenetic relationship in the 

Eunicella genus, specifically between Eunicella verrucosa, Eunicella cavolini 

and Eunicella singularis. A proper phylogeographic assessment of E. verrucosa 

is essential for the proper conservation of this IUCN red-list species. We aim to 

investigate these phylogenetic relationships via the use of newly designed 

molecular markers.  

 

Due to the lack of variation seen in previously used mitochondrial markers, a 

new set of primer pairs was created to target regions suspected to have the 

highest levels of variation. The mtMutS gene has been reported to have twice 

the variation of other mitochondrial protein-coding genes, however, currently 

available markers only target the first ~750 bp (Mcfadden et al. 2011). Here we 

use two newly developed primer pairs designed to target the remaining 2,000 

bp of this protein-coding gene. Primers were also created to target the 

intergenic region (IGR) between the mitochondrial protein-coding genes NAD5 
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and NAD4. This roughly 1,000 bp IGR was selected following on from work by 

Poliseno et al. (2017) which identified this IGR as having the greatest variation 

in the mitogenomes of Leptogorgia spp., a genus of octocoral in the same 

family (Gorgoniidae) as Eunicella. (Poliseno et al. 2017)  

 
 
2.3. Material and Methods  
 
 
2.3.1. Sample collection 

Eunicella verrucosa samples were collected from northwest Ireland to Portugal 

and the northwest of the Mediterranean Sea (Table 3), representing most of 

their known range. Samples were collected via SCUBA at depths of between 5 

and 30 metres, by removing 3 cm of an individual’s terminal branch. Collection 

has occurred since 2007 to present. To avoid sampling clones, samples were 

taken from colonies spaced 1 m apart (as explained in Holland, Jenkins and 

Stevens 2017). Once samples were removed from a colony they were placed in 

a mesh bag, brought to the surface and rapidly immersed in 95-100% ethanol. 

Ethanol was changed 24 - 48 hours after initial immersion to remove any 

excreted secondary metabolites that might affect downstream analysis. 

Samples of Eunicella cavolini and Eunicella singularis were also collected from 

areas across the Mediterranean Sea via the method outlined above.  

 

2.3.2. DNA extraction 

DNA extraction was carried out using a modified salting-out protocol that was 

originally designed for the extraction of DNA from crustacean exoskeleton (Li et 

al. 2011). The slightly longer modified salting-out extraction protocol was 

chosen after poor quality DNA was obtained when using a commercial DNA 

extraction kit. The modified salting-out protocol was carried out using 15 - 20 
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polyps cut away from the hard central axis of a roughly 1 - 2 cm long section of 

branch from the sea fan. The polyps were added to 35 µl of 1M DTT 

(dithiothreitol), 42 µl 0.5 M EDTA, 10 µl proteinase K and 350 µl 1% SDS cell 

lysis buffer (100mM Tris-Cl; 50 mM EDTA; 1% SDS) and left to incubate at 65 

°C for 4 hours. After the incubation 140 µl 7.5 M ammonium acetate was added 

and samples incubated at 4°C for 10 minutes before centrifuge at 12,000 g for 

10 minutes. Supernatant was then added to a new tube.  This stage was then 

repeated by adding 140 µl 7.5 M ammonium acetate to the new test tube and 

incubated at 4°C for 10 minutes before centrifuge at 12,000 g for 10 minutes 

and removing supernatant to another new test tube. 700 µl cold isopropanol 

was added and samples mixed by gentle inversion before being centrifuge at 

8000 g for 5 minutes. Supernatant was discarded and DNA pellet left 

undisturbed. The DNA pellet was then washed with 400 µl of 70% ethanol, 

pellet is then left to completely dry before being re-dissolved in 100 µl of 

nuclease-free water. The purity and concentration of the extracted DNA were 

quantified using a NanoDrop One (Thermo Scientific, Wilmington, DE, USA).  

 

2.3.3. Primer design and DNA amplification 

New primers were designed to target an area of the mitochondrial genome 

suspected to have the highest levels of variation, detailed below. The first group 

of three primer pairs were designed to target the increased variation seen in the 

mitochondrial gene encoding for mtMutS (van der Ham, Brugler, and France 

2009; Mcfadden et al. 2011). A primer pair was also designed to capture any 

variation in the intergenic region between NAD4 and NAD5. Poliseno (et al. 

2017) identified the intergenic region between nad5 and nad4 to show the 

highest levels of variation in Leptogorgia, a genus of octocoral in the same 
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family as Eunicella (Gorgonidae). Moreover, this intergenic region is the largest 

intergenic region seen in a published Eunicella cavolini mitogenome (Poliseno 

et al. 2017). Primers were designed using published sequences of the complete 

Eunicella cavolini mitochondrial genome (NCBI Accession: KY559408.1).  

 

All PCR reactions were performed in 25 µL reactions with: 0.375 µL of each the 

forward and reverse primer, 0.25 µL BSA (NEB), 12.5 µL HotStart Taq Master 

Mix (Qiagen), 9.0 µL RNase free water and 2.5 µL extracted DNA. A 60˚C to 

55˚C touch down protocol was used for the primer pairs MutS3 and NAD5-IGR-

NAD4 and a 60˚C to 50˚C touch down protocol was used for MutS2 primer 

pairs. The PCR thermal cycle for the 60˚C to 55˚C touch down were as follows: 

an initial denaturing stage 94˚C for 5 minutes; followed by 35 cycles of 30 

seconds denaturing at 94˚C, 30 seconds annealing at 60˚C (decreasing by 

0.5˚C every cycle for 10 cycles then remaining at 55˚C for the remaining 25 

cycle), and finally 30 second extension at 72˚C; after these 35 cycles there is a 

final extension for 5 minutes at 72˚C. The thermal cycle for 60˚C to 50˚C 

touchdown is identical except the 0.5˚C decrease in annealing temperature will 

continue for 20 cycles, and subsequently remain at 50 ˚C for the final 15 cycles.  
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The MutS1 primer pairs were tested multiple times by gradient PCR to find the 

optimal annealing temperature, however, none were successful. The MutS1 

primer pairs were not investigated further after a lack of variation found in the 

returned sequences for other primer pairs.  

 

A 5 µL aliquot of each amplified PCR product was viewed using gel 

electrophoresis on a 1% agarose gel in order to check successful amplification 

and the rough size of each amplicon. A 20 µL aliquot was then purified using a 

Qiagen Minielute PCR purification kit (Qiagen GmbH, Germany) following the 

manufacturer’s instructions. If there was presence of any ghost band on the 

initial gel, the remaining 20 µL was also separated by gel electrophoresis on a 

1% agarose gel and only the target band was extracted and purified by Qiagen 

Minielute gel extraction kit (Qiagen GmbH, Germany). Purified amplicon DNA 

concentration was measured using a NanoDrop 1000 Spectrophotometer 

(Thermo Scientific, Wilmington, USA). Sanger sequencing was completed 

Figure 3 The diagram visualises the segments of the octocoral mitochondrial 
genome the newly developed primer pairs target.  
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externally by a commercial sequencing facility EUROFINS® (Eurofins 

Genomics, United Kingdom).  

 
 
2.3.4. Phylogenetic analysis  
 
For each individual, the software Geneious 6.1.8 was used to examine the 

forward and reverse sequences; sequence quality was visualised and 

sequences trimmed where needed. Consensus sequences for each individual 

were produced after assessment of the pairwise alignment performed in 

Geneious 6.1.8. The two MutS sequences (forward and reverse) for an 

individual were then assembled to produce a “MutS contig” for each individual. 

In Geneious 6.1.8 sequences for each contig were aligned using the ClustalW 

alignment software, with default settings. Due to a disparity in the number of 

individuals sequenced, each contig (MutS vs IGR) were analysed separately.  

 

For each contig the Geneious 6.1.8 plugin PhyML (Guindon & Gascuel, 2003) 

with 100 bootstrap replicates was used to construct maximum-likelihood trees. 

The Geneious 6.1.8 plugin MrBayes (Ronquist and Huelsenbeck 2003) was 

used to produce Bayesian inference trees; four Monte-Carlo chains were 

selected at a chain length of 1,100,000 with sampling frequency set at 200, 

burn-in length set at 100,000, and a random number seed setting. The 

Consensus Tree Builder in Geneious 6.1.8 was used to build consensus trees 

for both Maximum-Likelihood and Bayesian reconstructions after removing the 

initial 25% burn-in and the support threshold set at 50%. Appropriate nucleotide 

substitution models were selected using MEGA 7.0.26 (Kumar, Stecher & 

Tamura 2015).  
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For the analysis of the MutS contig, all available Holaxonia octocoral complete 

mitochondrial genomes were obtained from GenBank and sequences 

corresponding to the MutS contig were extracted. The octocoral Renilla 

muelleria, a member of the order Pennatulacea (sea pens), was chosen as the 

outgroup for this analysis. For the NAD5-IGR-NAD4 contig analysis the 

complete mitogenome of Eunicella albicans was obtained from GenBank and 

NAD5-IGR-NAD4 sequence was extracted and used as the outgroup in this 

analysis.  

 

Table 2 List of specimens used in the analysis of the mtMutS contig.  
Species Family Genbank 

accession no  
Sequence 
from 

Eunicella verrucosa (Bla01) Gorgoniidae n/a This study 

Eunicella verrucosa (Lun20) Gorgoniidae n/a This study 

Eunicella verrucosa (Men16) Gorgoniidae n/a This study 

Eunicella verrucosa (Por2_02) Gorgoniidae n/a This study 

Eunicella verrucosa (EV_MAI03) Gorgoniidae n/a This study 

Eunicella verrucosa (EV_MAI12) Gorgoniidae n/a This study 

Eunicella verrucosa (Cul1) Gorgoniidae n/a This study 

Eunicella verrucosa (Cul2) Gorgoniidae n/a This study 

Leptogorgia sarmentosa Gorgoniidae NC_035670.1 Genbank 

Leptogorgia alba Gorgoniidae NC_035669.1 Genbank 

Pacifigorgia cairnsi Gorgoniidae NC_035668.1 Genbank 

Eunicella cavolini Gorgoniidae NC_035667.1 Genbank 

Eunicella albicans Gorgoniidae NC_035666.1 Genbank 

Eugorgia mutabilis Gorgoniidae NC_035665.1 Genbank 

Leptogorgia gaini Gorgoniidae NC_035664.1 Genbank 

Leptogorgia capverdensis Gorgoniidae NC_035663.1 Genbank 

Paramuricea macrospina Paramuriceidae NC_034750.1 Genbank 
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Paramuricea clavata Paramuriceidae NC_034749.1 Genbank 

Muricea purpurea Plexauridae NC_029698.1 Genbank 

Muricea crassa Plexauridae NC_029697.1 Genbank 

Calicogorgia granulosa Acanthogorgiidae NC_023345.1 Genbank 

Euplexaura crassa Plexauridae NC_020458.1 Genbank 

Echinogorgia complexa Plexauridae NC_020457.1 Genbank 

Pseudopterogorgia bipinnata Gorgoniidae NC_008157.1 Genbank 

Renilla muelleri (O. Pennatulacea) Renillidae  NC_018378.1 Genbank 

^Where applicable GenBank accession numbers shown. For the Eunicella 
individuals’ sequenced in this study, letters within the brackets indicates the 
individual’s name. Renilla muelleri a member of the sea pen suborder 
Pennatulacea was used as the out-group in subsequent analysis. 
	
	
	

Table	3	List of specimens used in the analysis of the NAD5-IGR-NAD4 contig. 	
Individuals ID 
code 

Species Geographic 
region  

GenBank 
acession no. 

Sequence 
from 

Thu05 Eunicella verrucosa Ireland n/a This study 

Thu10 Eunicella verrucosa Ireland n/a This study 

Bla01  Eunicella verrucosa  Ireland n/a This study 

Bla05 Eunicella verrucosa  Ireland n/a This study 

Lun20 Eunicella verrucosa  Britain n/a This study 

Lio09 Eunicella verrucosa  Britain n/a This study 

Eten04 Eunicella verrucosa  Britain n/a This study 

Eten11 Eunicella verrucosa  Britain n/a This study 

Men16 Eunicella verrucosa France n/a This study 

Faro03 Eunicella verrucosa  Portugal n/a This study 

Por2_02 Eunicella verrucosa  Portugal n/a This study 

EV_MAI03 Eunicella verrucosa  Mediterranean n/a This study 

EV_MAI12 Eunicella verrucosa  Mediterranean n/a This study 
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Eunicella 
albicans 

Eunicella albicans n/a NC_035666.1 Genbank 

Cp_56 Eunicella singularis  Mediterranean n/a This study 

Mp_70 Eunicella singularis  Mediterranean n/a This study 

Faro1_10 Eunicella cavolini  Portugal n/a This study 

Where applicable GenBank accession numbers shown. For the Eunicella 
individuals’ sequenced in this study geographic region column indicates where 
the sample was collected. NAD5-IGR-NAD4 sequence was extracted from 
Eunicella albicans mitogenome and subsequent used as the out-group in the 
analysis. 
 
 
2.4. Results  
 
A total of 17 sequences were used in the analysis of the NAD5-IGR-NAD4 

contig; 16 were sequenced in this study and the outgroup (E. albicans) NAD5-

IGR-NAD4 contig was extracted from previously published mitogenome. Full 

details of all sequences used can be seen in Table 3 (NAD5-IGR-NAD4). The 

HKY model was selected for the analysis of IGR contigs with a fixed transition 

transversion ratio of 1.47. Both maximum-likelihood (ML) and Bayesian 

inference trees separated out E. verrucosa, E. singularis and E cavolini.  Both 

ML and Bayesian inference showed very strong consensus support (100) for 

the E. singularis and E. verrucosa clade. Within this clade the E. verrucosa 

clade had 70.7 and 96.7 consensus support for ML and Bayesian inference, 

respectively (Fig. 4). Strong consensus support (>90) with the Bayesian 

inference tree was observed for all nodes. Within species, sequences were 

identical for the NAD5-NAD4 intergenic region, and are shown as unresolved 

polytomies (Fig. 4).  

 

For the analysis of the mtMutS contig, 25 sequences were used; 8 were 

sequenced in this study and 17 were extracted from published Holaxonia 

octocoral mitogenomes, Table 2. The HKY+G substitution model was selected 



 45 

with 5 gamma categories, a gamma distribution parameter fixed at 0.53 and a 

fixed transition / transversion ratio of 2.59, as outlined using the MEGA7 

substitution model test. The mtMutS phylogenetic tree presents consensus 

support values for both the maximum-likelihood and Bayesian inference 

methods, Figure 6 visualises mtMutS phylogram and cladogram in Figure 7. 

High consensus support is observed for the majority of nodes. Within Eunicella, 

E. cavolini groups within the E. verrucosa clade, with two individuals from 

Valencia (Cul1 and Cul2) being more distantly related to the other E. verrucosa 

individuals than is E. cavolini. Unfortunately, amplification of E. singularis 

mtMutS contigs was not successful; thus, no assessment can be made on their 

relationship to the other Eunicella individuals.  
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Figure 4 Depicts the maximum likelihood phylogram created in the analysis of the NAD5-IGR-
NAD4 contig dataset. Tip labels show individuals ID code, which are outlined in Table 2. The 
analysis uses 17 NAD5-IGR-NAD4 sequences; including E. albicans extracted from complete 
mitochondrial genome sequence from GenBank and rooted the tree. Values below branches 
show consensus support values for both the maximum likelihood and Bayesian inference 
analysis (ML/Bayesian).  
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Figure 5 Depicts the ML phylogram produced using the partial contigs of mtMutS, a total of 25 
sequences were used. The symbol ★ indicates branches that had consensus support values of 
>70% ML and >90% for Bayesian inference analysis. The sea pen Renilla muelleri was used to 
root the tree. 
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Figure 6 Depicts the ML cladogram produced using the partial contigs of mtMutS, a total 
of 25 sequences were used. Values under the branch show the consensus support value 
for ML and Bayesian inference (ML / Bayesian inference). Branches with * /  *	 indicates 
branches that had consensus support values of 100 for both ML and bayesian inference 
analysis. The sea pen Renilla muelleri was used to root the tree. 
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2.5. Discussion 
 
2.5.1. NAD5-IGR-NAD4  
 
In this study, the newly developed primers, that target NAD5-IGR-NAD4 in the 

octocoral mitochondrial genome, were unable to distinguish at the conspecific 

level within Eunicella.  A total of 13 E. verrucosa NAD5-IGR-NAD4 contigs were 

sequenced in this study and no variation was observed across this 1,156bp 

contig regardless of their geographic origin. This apparent lack of variation 

accords with previous findings in Anthozoa (France and Hoover 2002; Shearer 

et al. 2002; Fukami and Knowlton 2005; Calderón, Garrabou, and Aurelle 

2006). 

 

However, this marker was able to distinguish members of Eunicella at the 

congeneric level, with high ML and Bayesian inference consensus support 

values (>70) for each species’ monophyletic clade (Fig. 4). The variation found 

in this study between the Eunicella species provides a real advance for 

evolutionary studies of taxa within the genus, as previous phylogenetic studies 

have not found any genetic variation in the cox1 gene between the European 

representatives of Eunicella studied to date (Calderón, Garrabou, and Aurelle 

2006). Calderon et al. (2006) also found that the nuclear marker ITS2 was 

unable to distinguish between Eunicella species. This lack of variation in cox1 

appears to be a widespread phenomenon in Octocorallia with estimations of 

18.5% of congeneric species sharing identical cox1 sequences (Mcfadden et al. 

2011). In turn, this has serious implications for genetic barcoding in Eunicella 

and Octocorallia in general, as the cox1 sequence has been proposed as the 

universal barcode (Hebert, Ratnasingham, and Jeremy 2003). DNA barcoding 
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is a method developed to identify all species with the use of a standardised 

segment of DNA sequence. 

 

DNA barcoding sequences can be interpreted via two main methods: distance-

based or character-based methods (Hebert, Ratnasingham, and Jeremy 2003; 

Velzen et al. 2012; Chakraborty, Dhar, and Ghosh 2017). Distance-based 

methods are the most commonly used barcoding method, which uses a 

comparative analysis based on distance-based clustering of the species in 

question and then uses arbitrary distance thresholds to define species 

boundaries (Hebert, Ratnasingham, and Jeremy 2003; Desalle, Egan, and 

Siddall 2005; Bergmann et al. 2009). To accurately define a distance threshold 

value a gap between intraspecific variation and interspecific variation is required 

(Desalle, Egan, and Siddall 2005; Bergmann et al. 2009) .  Character-based 

methods work upon diagnostic nucleotide traits, they require two data points, 

the presence or absence of discrete nucleotides and the relative position of this 

diagnostic nucleotide in the barcoding sequence (Desalle, Egan, and Siddall 

2005; Rach et al. 2008).  

 

To overcome the problems of DNA barcoding in Octocorallia, that can occur 

due to a lack of variation in the cox1 gene, Mcfadden et al. (2011) proposed to 

continue to use a distance-based method, but with an extended barcode 

requiring the sequencing of three separate sections of the mitochondrial 

genome (cox1, mtMutS and igr1). To be able to delineate congeneric species 

they also proposed adopting a reduced genetic distance threshold of >0.5% 

compared to the commonly used 2-3%. Genetic barcodes are meant to be 

cheap and easy to obtain however, this extended barcode requires the 
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amplification and sequencing of three separate sequences and thus diminishes 

the accessibility of this barcode. Moreover, distance-based methods have been 

criticised as they are seen as a highly subjective approach, with percentage 

difference thresholds being criticised as arbitrary and not being based on sound 

biological reasons (Bergmann et al. 2013; Desalle, Egan, and Siddall 2005). 

Velzen et al. (2012) has shown that, compared to distance-based methods, 

character-based methods have greater success in identifying recently diverged 

species, where incomplete lineage sorting can lead to a lack of a barcoding 

gap.  Although Octocorals may not have recently diverged, they do show a lack 

of a barcoding gap, due to low rates of evolution which cause a lack of 

interspecific variation (Mcfadden et al. 2011; Shearer and Coffroth 2008); thus 

they may still be of some value for exploring taxonomic variation within 

Octocorallia.  

 

The variation observed in this study in the NAD5-IGR-NAD4 mitochondrial 

genome sequence, while limited, still demonstrates its ability to discriminate 

between different species of Eunicella and its potential as a character-based 

barcode for this genus. This study has identified potential diagnostic nucleotides 

within the nad5-nad4 intergenic region. However, to properly define an 

unambiguous character based barcode for Eunicella further studies are needed; 

such study would aim to identify any intraspecific variation in NAD5-IGR-NAD4 

across the entire species range of E. singularis and E. cavolini, emulating the 

research that was carried out for E. verrucosa in this current study.  

 

Pursuing such research would be highly valuable, as a character-based 

barcode would provide many advantages to both the research and conservation 
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of the genus. Firstly, a character-based approach to delineating species 

produces a binary result determined from an objective set of criteria, meaning it 

can easily be combined with classical morphological diagnostics (Chakraborty, 

Dhar, and Ghosh 2017; Desalle, Egan, and Siddall 2005). Specifically, for 

Eunicella, this means that the few diagnostic morphological characteristics for 

each species can easily be combined with the few available diagnostic 

nucleotides, to produce more robust criteria with which to define the species. 

Moreover, Eunicella is a genus whose members' morphological features are 

highly plastic and which appear to vary due to environmental factors (Gori et al. 

2011; Carlos Prada, Schizas, and Yoshioka 2008). A character-based barcode, 

as suggested here, would allow for a definitive molecular taxonomic 

identification of the species.  

 

2.5.2. mtMutS  
 
Here the partial contig of mtMutS has successfully been exploited in order to 

assess phylogenetic relationships within the octocoral suborder Holaxonia. This 

marker has shown sufficiently high resolution to infer relationships within 

Holaxonia and both maximum-likelihood and Bayesian inference analyses 

produced high consensus support values (>70) for the majority of branches 

within the mtMutS–based phylogeny (Fig. 5 and 6). Within this tree, a well 

supported monophyletic clade containing all analysed members of the family 

Gorgoniidae and Plexauridae is defined; earlier works on gorgonian octocorals, 

which used morphological and molecular data, also identified distinctions 

between the highly similar Holaxonian families (Sánchez 2007; Aguilar and 

Sanchez 2007). The family level relationships observed in these earlier studies 

are corroborated with the mtMutS contig phylogeny produced in this study, 
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however, neither of these previous studies included the genus Eunicella so no 

comment on the relationships within the Gorgoniidae could be made at this 

time.  

 

Within the Gorgoniidae clade defined in the mtMutS molecular phylogeny (Fig. 

5 and 6), the genus Eunicella formed a monophyletic clade, with ML and 

Bayesian inference consensus support values of 100.  Similarly, in a previous 

mitogenome-based study of genus Leptogorgia (Poliseno et al. 2017) using 

complete mitochondrial protein-coding sequences, a high level of congruence 

was observed between the Holaxonia clade of Poliseno et al. (2017) and that 

produced in the current study.  Within Poliseno et al. (2017) the members of 

Eunicella studied (E. cavolini and E. albicans) also formed a monophyletic clade 

within the Gorgonidae clade.  Former taxonomic subdivision placed Eunicella 

into the family Plexauridae (Bayer 1961); however, the findings of both Poliseno 

et al. (2017) and the current study confirm the reassignment of Eunicella to the 

family Gorgonidae. Both studies identified Leptogorgia as being paraphyletic, 

both placing Leptogorgia alba outside the main Leptogorgia clade, thereby 

demonstrating the divergence between Pacific (L. alba) and Atlantic 

Leptogorgia species ( = all other Leptogorgia studied).  

 

Thus, the molecular studies of Eunicella, including the current study, are pivotal, 

not only for the conservation of this genus, which has recently experienced 

multiple mass mortalities (Cerrano et al. 2000; Martin, Bonnefont, and 

Chancerelle 2002; Cupido et al. 2012), but also to understand the wider 

evolutionary relationships within Ocotocorallia.  As aforementioned, there is a 

general scarcity of fossils records for Octocorallia creatures, as their soft bodies 
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will decompose rather than fossilise (Juan Armando Sánchez, Lasker, and 

Taylor 2003; Carlos Prada, Schizas, and Yoshioka 2008). Since very few fossils 

of Octocorallia are typically found, any that are discovered are pivotal to 

mapping the evolution of morphological characteristics in octocorals as well as, 

in calibrating molecular phylogenies.  Any octocoral fossils that are found are 

usually extremely hard to assign with any degree of confidence to a certain 

clade, due to a lack of diagnostic morphological features in Octocorallia 

(Kocurko and Kocurko 1992; McFadden, Sánchez, and France 2010). One of 

the largest and most diverse octocoral fossil assemblages known originated 

from the Red Bluff Formation in Mississippi and dates back to around 28 –34 

million years ago in the Lower Oligocene (Kocurko and Kocurko 1992). The 

only morphological characteristic that can be positively identified to a particular 

genus is a distinct balloon club sclerite from a Eunicella individual (this balloon 

club sclerite form does not occur in any other octocoral taxon). An unequivocal 

identification such as this means that molecular studies into Eunicella and its 

relationship to other octocorals are even more vital, as this taxa of this genus 

can potentially provide a fossil-based calibration date to any octocoral 

phylogenetic tree.  
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Chapter 3 - Complete mitochondrial genome 
sequencing of Eunicella verrucosa 

 
3.1.1. Abstract  

 
Phylogenetic assessment of Octocorallia has been severely hindered by a lack of 

variation in the molecular markers used to date. However, complete mitochondrial 

genomes have shown to increase resolution of octocoral phylogenies, when 

compared to the widely used molecular marker mtMutS, and have resolved 

previously unresolved clades within Octocorallia phylogenies. Despite this only 

1% of known octocorals have publicly available mitochondrial genomes. In this 

study, we apply NGS with rolling circle amplification (RCA), an amplification 

method novel to Octocorallia, to produce a total of 19 E. verrucosa complete 

mitochondrial genomes. Our results identified only two genotypes across the 

entire range of E. verrucosa. Extremely low genetic distances (0.06%) between 

the mitochondrial genomes of E. verrucosa and E. cavolini were observed. This 

level of variation is low, even when compared with the known low levels of 

variation observed in other octocoral mitochondrial genomes, suggesting a recent 

divergence between E. verrucosa and E. cavolini. A recent divergence would 

suggest these two Eunicella species diverged after the most recent reopening of 

the Strait of Gibraltar, calling into question the mechanism of their divergence. 

The RCA, applied in this study, has shown high efficiency producing octocoral 

mitochondrial genomes in a cost-effectively with minimal hands-on time; 

highlighting its potential as an extremely useful tool for phylogeneticists. The 

increased sequencing breadth complete mitochondrial genomes provide can help 

resolve relationships within Octocorallia. Understanding relationships within basal 

metazoans such as octocoral can help the broader understanding of evolution 

and development of metazoans.   
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3.2. Introduction  

3.2.1. General introduction 

Octocoral mitochondrial genomes are unique among Metazoans as they 

contain a mismatch repair gene, mtMutS (Pont-Kingdon et al. 1995; Culligan et 

al. 2000). The presence of this mismatch repair gene coincides with extremely 

low levels of genetic variation in the mitochondrial genomes of octocoral 

(France and Hoover 2002; McFadden, Sánchez, and France 2010). This low 

level of mitochondrial gene variation has caused a lack of variation in the 

majority of molecular makers used to date, which has severely hampered 

insights into the relationships within Octocorallia (McFadden, Sánchez, and 

France 2010). Recently, Figueroa and Baco (2014) exemplified the advantages 

that complete mitochondrial genomes can provide to octocoral phylogenetic 

research. In their study, they were able to resolve previously unresolved clades 

in Octocorallia (McFadden et al. 2006; Figueroa and Baco 2014); unfortunately, 

further insights into the relationships within Octocorallia was limited by a paucity 

of available octocoral mitogenomes. To date, only 1% of the known octocoral 

species have published mitochondrial genomes (Poliseno et al. 2017).  

 

Common methods that have been used to obtain octocoral mitogenomes are 

conventional PCR and long-PCR combined with primer walking sequencing; 

both of these methods are relatively labour intensive and require previous 

sequence knowledge (Park et al. 2012; Burger et al. 2007; Kayal et al. 2013; 

Brockman and Mcfadden 2012). Conventional PCR requires the use and 

optimisation of over 30 primer pairs (Park et al. 2012). Long PCR and primer 

walking sequencing, this method is more efficient than conventional PCR as the 
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mitogenome is amplified in 3,000bp fragments, thus reducing the number of 

amplifications required (Poliseno et al. 2017; Burger et al. 2007; Kayal et al. 

2013). Although long-PCR is an efficient process, it still requires the testing of 

multiple long-PCR primers to acquire complete coverage of the mitochondrial 

genome (Burger et al. 2007).  Moreover, the primer-walking sequencing method 

that is required can be a slow and costly sequencing method.  

 

With the advantages complete mitogenomes can provide to phylogenetic 

studies of octocoral the application of a cost-effective and efficient amplification 

method would show a real advancement for octocoral phylogenetic research. 

Rolling circle amplification is one such method; details on this method are 

outlined below. 

 

3.2.2. Rolling Circle Amplification (RCA) 

Rolling circle amplification (RCA), also known as multiple displacement 

amplification, is an alternative amplification method to the commonly used 

polymerase chain reaction (PCR) (Johne et al. 2009). It is an isothermal 

reaction that enriches for circular DNA compared to linear DNA (Wang et al. 

2014). In vivo, the replication of circular DNA molecules often follows a rolling 

circle amplification mechanism (Kornberg and Baker 1992).  In vitro, RCA itself 

has been used since 1989, being applied to multiple different organismal 

circular DNA templates across a range of different DNA polymerases (Blanco et 

al. 1989; Shavitt and Livneh 1989; Liu et al. 1996). RCA has several major 

advantages over conventional PCR, as it does not require the design of specific 

primers or optimisation of a thermal cycle, as discussed below (Ni et al. 2015).  
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The general principle of RCA and the way it enriches circular DNA over linear 

DNA is shown in Figure 7. Initially, specific primers are annealed to the template 

strand and then the polymerase incorporates nucleotides in the 5'-3' direction, 

complementary to the template strand. Figure 7a depicts the RCA process for a 

linear template molecule and shows how RCA would amplify linear DNA until 

the template ends, yielding a 1:1 ratio of the template sequence in the amplicon 

and the template DNA. 

 

However, circular DNA generates a much larger amplicon to template ratio as 

once amplification of the circular DNA reads around to the original primer 

binding site, displacement of the newly synthesised strand occurs and 

amplification continues, producing multiple copies of template per single primer 

binding event (Fig. 7b). The amplicon produced is a concatemer and consists of 

multiple repeated copies of the original template DNA, hence a greater yield of 

circular template sequence is obtained compared to amplification from a linear 

DNA template per single primer binding event.  

 

The up-regulation of circular DNA can be further increased by the inclusion of 

additional primers, the binding sites of which are found on the complementary 

strand (Fig. 7c). These additional primers can bind to the displaced strand and 

initiate addition DNA synthesis. Typically, however, the approach often adopted 

in research is the use of multiple primers (Johne et al. 2009), either specifically 

designed or random primers, which bind to both strands of the circular DNA 

template as well as, the newly synthesised DNA sequence. The use of multiple 

primers produces a hyper-branched RCA amplicon, that contains multiple 

connected concatemers of the template DNA molecule, as seen in Figure 1c 
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(Lizardi et al. 1998). Thus, a multi-primed RCA method further increases the 

efficiency of the amplification of circular template DNA. Multi-primed RCA also 

allows for enrichment of circular DNA over linear DNA, with practical 

quantifications of 100- to 10,000-fold enrichment of the mouse mitogenome 

and, in the worst case, 1:50,000 of nuclear DNA molecules to mtDNA molecules 

(Marquis et al. 2017).  

 

RCA requires the use of a polymerase that possesses specific features and it 

cannot be performed with Taq polymerase, which is often used in conventional 

PCR (Johne et al. 2009). The most common polymerases utilised in RCA are 

phi29, Bst, and Vent exo-DNA polymerase (Ali et al. 2014). phi29 DNA 

polymerase has been used to induce RCA since 1989 and has been shown to 

be of great value to exploring questions in viral and microbial biology (Blanco et 

al. 1989; Johne et al. 2009). phi29 DNA polymerase is part of the B-family of 

Figure 7 Adapted from Johne et al. 2009 – Rolling-circle amplification of viral DNA 
genomes using phi29 polymerase. Blue lines depict template DNA sequences, red 
lines represent newly synthesised DNA sequences and green lines represent 
primer sequences. (a) Represents the synthesis of linear DNA. (b) Shows the up-
regulation of circular DNA by RCA with a polymerase with strand displacement 
activity and a single primer. (c) Depicts multi-primed RCA and how primers in the 
reaction mixture can bind to the newly synthesised DNA.  
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replicative polymerases and is a single protein with a molecular mass of 68 kDa 

(Blanco et al. 1989; Berman et al. 2007), which is encoded in the genome of the 

bacteriophage phi29 that infects Bacillus subtilis (Blanco et al. 1989).  

 

phi29 DNA polymerase possesses several features that make it highly suitable 

for isothermal RCA. Firstly, the strand displacement activity of phi29 DNA 

polymerase allows the enzyme to displace the complementary strand of DNA, 

meaning that unlike conventional PCR amplification, it can be carried out 

isothermally without needing to optimise a thermal cycle (Blanco et al. 1989; 

Kamtekar et al. 2004; Luthra and Medeiros 2004; Spits et al. 2006). Secondly, 

phi29 DNA polymerase can produce large products of >70 Kbp; these large 

products are required in order to up-regulate circular DNA and allow for as 

many repeats of circular template DNA per concatemer (Blanco et al. 1989; 

Banér et al. 1998). Moreover, the enzyme has a relatively long half-life, which 

allows for a prolonged reaction. Studies have estimated that within a 10-hour 

reaction, phi29-RCA can produce a product with an estimated length of 900 

Kbp (Dahl et al. 2004; Banér et al. 1998). phi29 DNA polymerase is also a 

highly accurate polymerase due to the enzyme’s proofreading ability which 

occurs due to its 3'-5' DNA exonuclease activity (Esteban, Salas, and Blanco 

1993). The proofreading activity of phi29 DNA polymerase means it has an 

estimated error rate of 1 in every 10 6 – 107 bases, two to three orders of 

magnitude less than Taq polymerase error rates of 1 in every 104 bases (Tindall 

and Kunkel 1988; Esteban, Salas, and Blanco 1993; Paez et al. 2004). This 

exonuclease activity causes the degradation of primers and can reduce yield, 

which can be combatted using primers with thiophosphate linkages in the 3' 

terminal nucleotides (Dean et al. 2001). The ability of phi29 DNA polymerase to 
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produce large products with low error rates, combined with its strand 

displacement activity, allows for efficient RCA and thus the up-regulation of 

circular DNA without the need to optimise a thermal cycle.   

 

The phi29 DNA polymerase induced RCA (phi29-RCA) method was first applied 

to viral genomes in 2004, when the papillomavirus circular genome was 

successfully amplified directly from tissue samples (Rector et al. 2004). Multi-

primed phi29-RCA has been pivotal in the discovery of unknown and 

uncultivable viruses, as RCA in combination with random hexamer primers can 

amplify sequences without the need for previous knowledge of the target 

sequence (Johne et al. 2009). The application of multi-primed phi29-RCA has 

led to the discovery and diagnostics of multiple viruses that infect humans, 

animals and plants (Haible, Kober, and Jeske 2006; Johne et al. 2009). It has 

also been applied in microbial studies, in which plasmids have been amplified 

directly from cells or plaques (Dean et al. 2001).  

 

Due to its highly sensitive nature, phi29-RCA has recently been applied in the 

identification of deleterious heteroplasmic genetic mutations in human 

mitochondrial genomes (Marquis et al. 2017). The mitochondrial genome is 

found in multiple copies within a cell, ranging from a few hundred to a few 

thousand (Ye et al. 2014); heteroplasmy is said to occur when a subset of this 

mitochondrial gene pool contains a unique mutation and discrete populations of 

mitochondrial genomes can be found within one cell. phi29-RCA has been used 

to detect very low-frequency heteroplasmy due to the extremely low error rates 

observed in the amplification method. Highly sensitive detection of 

heteroplasmy is vital, as 1 in 200 humans carry one of the top ten most 
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abundant pathogenic mitochondrial mutations (Elliott et al. 2008). phi29-RCA 

has shown its ability to be a cheap, easy and highly accurate amplification 

method, but has mainly been applied to the identification of human diseases 

and viral genomes. However, a few studies have implemented this method with 

non-model metazoan mitochondrial genomes (Simison, Lindberg, and Boore 

2006; Wolff et al. 2012). 

 

3.2.3. Study aims  

This study aimed to investigate intraspecific variation in the mitochondrial 

genome of Eunicella verrucosa. This was achieved by applying the 

aforementioned phi29-induced RCA method in order to sequence multiple 

E. verrucosa complete mitochondrial genomes.  

 

Intraspecific variation is presumed to be low in octocorals, however, this is 

assumed from a relatively small number of individual genetic barcodes (France 

and Hoover 2002; Mcfadden et al. 2011; McFadden et al. 2006; McFadden, 

Sánchez, and France 2010; Calderón, Garrabou, and Aurelle 2006). By 

sequencing a large number E. verrucosa individuals, from their entire range, 

with a greater breadth of sequencing, by sequencing the whole mitochondrial 

genome and not just targeting a small segment, we aimed to equivocally define 

any intraspecific variation observed in their mitochondrial genomes. We 

anticipated that the identification of any intraspecific variation could be used as 

the basis of a simple, inexpensive molecular marker.  

 

We also aimed to demonstrate the efficiency of phi29 induced RCA and its 

ability to sequence a large number of Octocorallia mitochondrial genomes. This 
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would be a pivotal tool for phylogenetic studies of octocoral species, as, to date, 

only ~1% of the known 3,000 species of octocorals have publicly available 

mitochondrial genomes (Poliseno et al. 2017). 

 
 

3.3. Material and Methods  

3.3.1. Sample collection and DNA extraction 

Eunicella verrucosa samples were collected from sites ranging from northwest 

Ireland to Portugal and the northwest of the Mediterranean Sea (Table 4), 

representing most of their known range. Samples were collected via SCUBA at 

depths of between 5 and 30 metres via the removal of a 3 cm section of a 

terminal branch from an individual sea fan. Collection of samples has been on-

going from 2007 to the present. To avoid sampling clones, samples were taken 

from colonies spaced ~1 m apart (as explained in Holland, Jenkins, and 

Stevens 2017). Once samples were removed from a colony they were placed in 

a mesh bag, brought to the surface and rapidly immersed in 95 - 100% ethanol. 

Ethanol was changed 24 - 48 hours after initial immersion to remove any 

excreted secondary metabolites that might affect downstream analysis. DNA 

was extracted following the modified salting-out protocol outlined in Chapter 2 

(Li et al. 2011). The purity and concentration of the extracted DNA were 

quantified using a NanoDrop One (Thermo Scientific, Wilmington, DE, USA). 

 

3.3.2. Rolling circle amplification 

phi29 induced rolling circle amplification (phi29-RCA) was carried out in 50 µL 

reactions in a two-stage process. Reactions comprised 2.5 µL of DNA extract, 

0.5 µL (200 µg/ml) BSA, 0.5 µL (500 µM) Exo-Resistant Random primers 

(Thermo Fisher Scientific, Inc.), 2.5 µL Phi29 DNA Polymerase Reaction Buffer 
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(NEB) and 19 µL of nuclease-free water which was denatured at 95°C for 3 

minutes then cooled at 10°C for 15 minutes. To the above reaction 0.5 µL (200 

µg/ml) BSA, 0.5 µL (500 µM) Exo-Resistant Random primers (Thermo Fisher 

Scientific, Inc.), 2.5 µL Phi29 DNA Polymerase Reaction Buffer (NEB), 19.25 µL 

of nuclease-free water, 1.25 µL (10mM) dNTP solution mix (NEB) and 1 µL (10 

units) Phi29 DNA Polymerase (NEB) were added. The reaction was heated at 

34°C for 16 hours, after which the temperature was raised to 65°C for 15 

minutes to heat inactivate the polymerase.  

 

A sodium acetate-ethanol precipitation was carried out to purify the amplified 

DNA. For this, 5 µL of 3M sodium acetate and 125 µL 100% ethanol was added 

to the final 50 µL RCA reaction and cooled in the freezer (-20°C) for two hours. 

Subsequently, reactions were centrifuged at 13.3 rpm for 20 minutes and the 

supernatant was then removed, leaving just a DNA pellet in the bottom of the 

reaction tube. The DNA pellet was washed twice, by adding 200 µL of 70% 

ethanol, centrifuging at 13.3 rpm for 5 minutes and removing the supernatant. 

The DNA pellet was then left to dry, prior to being re-suspended in 12 µL of EB 

buffer (Qiagen).  

 

3.3.3. Sequencing and Bioinformatics 

The sequencing was outsourced and carried out by Exeter Sequencing Service 

and Computational Core Facilities at the University of Exeter. Library 

preparations were carried out using a Mosquito LV (ttpLabTech) using Nextera 

XT. Minimal PCR cycles were used in library preparation, with the maximum 

number of cycles being 12. Individuals were barcoded and pooled onto a single 
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lane of paired-end 300bp Illumina MiSeq v2, which has a capacity of 24-30 

million reads. 

 

Assembly of all mitochondrial genomes was carried out in Linux. In summary, 

the bioinformatics process proceeded as follows: low-quality reads and 

adaptors were removed via the program Fastq-mcf v.1.04.636; a de novo 

SPAdes (Nurk et al. 2013) assembly was then carried out. Due to the large 

amount of contamination that was observed the de novo contigs produced by 

SPAdes were blast searched against the Eunicella cavolini complete 

mitochondrial genome (NCBI accession number: KY559408.1). The contigs with 

significant hits were then extracted; this was often in the form of one large 

19,267 bp contig representing the complete mitochondrial genome of E. 

verrucosa. The extracted contig was then used as a reference genome to 

assemble the raw reads back on to.  

 

As well as the de novo SPAdes assembly, raw reads were also mapped against 

a reference genome. Due to the known similarity between E. cavolini and E. 

verrucosa mitochondrial genomes, as evidenced in chapter 2, the Eunicella 

cavolini mitochondrial genome (NCBI accession number: KY559408.1) was 

used as a reference genome against which to assemble individuals. The 

Burrows-Wheeler Aligner (BWA) (Li and Durbin 2009) program was used to 

align the trimmed reads against the reference genome. The Samtools package 

(Li et al. 2009) was then used to sort, index and remove duplicates. The 

freebayes (Garrison and Marth 2012) and Real Time Genomics packages (Real 

Time Genomics Limited©, 2015) were then used to filter and call variant sites; 

only variant sites with a Q score of >30 were kept. These variant data were put 
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into BCFtools to create a consensus sequence. BAM files were loaded into the 

Integrative Genomics Viewer (IGV) (Ribison et al. 2011) to visualise variant 

sites and to assess the overall assembly.  

 
3.3.4. Phylogenetic analysis 

The program Geneious 6.1.8 was used for phylogenetic analysis of the 

mitochondrial genome sequences of Eunicella verrucosa. Sequences were 

aligned using the ClustalW alignment software, with default settings. The Akaike 

information criterion corrected value (AICc) obtained from MEGA 7.0.26 

(Kumar, Stecher and Tamura 2015) was used to select the most appropriate 

nucleotide substitution model for each alignment. Maximum-likelihood trees 

were created with the Geneious 6.1.8 plugin PhyML (Guindon and Gascuel 

2003) with 100 bootstrap replicates. The Geneious 6.1.8 plugin MrBayes 

(Ronquist et al. 2012) was used to produce Bayesian inference trees; four 

Monte-Carlo chains were selected at a chain length of 1,100,000 with sampling 

frequency set at 200, burn-in length set at 100,000, and a random number seed 

setting. The Consensus Tree Builder in Geneious was used to build consensus 

trees for both maximum-likelihood and Bayesian reconstructions after removing 

the initial 10% burn-in, and the support threshold set at 50%. For the 

phylogenetic analysis of Eunicella complete mitochondrial genomes, a 

GTR+G+I nucleotide substitution model was selected, with 5 gamma categories 

and a transition/transversion ratio of 3.42.  

 

For the analysis of the Holaxonia clade, only two Eunicella verrucosa 

sequences (Lio13 and Bla04) were used to represent the two genotypes 

observed in this study. Additional Holaxonia mitochondrial genome sequences 

were obtained from GenBank. Holaxonian mtDNA genomes included in the 
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analysis are the same as in Chapter 2, except for the removal of Euplexaura 

crassa, due to unsuccessful alignment.  As in chapter 2, Renilla muelleri 

(O. Pennatulacea) was used as the outgroup. Due to the extreme length 

variation of intergenic regions, protein-coding genes were extracted from each 

mitochondrial genome. The 14 protein-coding gene sequences were 

concatenated for each individual and aligned using ClustalW in Geneious 6.1.8. 

Maximum-likelihood and Bayesian inference trees were produced as outlined 

above. A GTR+G+I nucleotide substitution model was implemented with 5 

gamma distribution categories and a transition/transversion ratio of 2.59.  

 

3.3.5. PCR amplification and Sanger sequencing  

A unique genotype was observed in two samples from Lion Rock, Isles of Scilly, 

southwest England (Lio03 and Lio13). Two single nucleotide polymorphisms 

(SNPs) seen in the genotype unique to Lion Rock were found within the nad5-

nad4 intergenic region. To confirm the unique polymorphisms were not 

observed because of an error in the RCA amplification method or NGS 

sequencing, PCR amplification and Sanger sequencing of this intergenic region 

was carried out using the primer pair NAD5-IGR-NAD4, developed in Chapter 2.  

 

All PCR reactions were performed in 25 µL reactions with: 0.375 µL of each of 

the forward and reverse primer, 0.25 µL BSA (NEB), 12.5 µL HotStart Taq 

Master Mix (Qiagen), 9.0 µL RNase free water and 2.5 µL extracted DNA. A 

60˚C to 55˚C touchdown protocol was used for the NAD5-IGR-NAD4 primers. 

The PCR thermal cycle for the 60˚C to 55˚C touch down was as follows: an 

initial denaturing stage at 94˚C for 5 minutes; followed by 35 cycles of 30 

seconds denaturing at 94˚C, 30 seconds annealing at 60˚C (decreasing by 
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0.5˚C every cycle for 10 cycles then remaining at 55˚C for the remaining 25 

cycles), and finally a 30 second extension at 72˚C; after these 35 cycles, a final 

extension for 5 minutes at 72˚C was undertaken.  

 

A 5 µL aliquot of each amplified PCR product was viewed using gel 

electrophoresis on a 1% agarose gel in order to check successful amplification 

and to assess the rough size of each amplicon. A 20 µL aliquot was then 

purified using a Qiagen Minielute PCR purification kit (Qiagen GmbH, Germany) 

following the manufacturer’s instructions. The DNA concentration of the purified 

amplicon was measured using a NanoDrop 1000 Spectrophotometer (Thermo 

Scientific, Wilmington, USA). Sanger sequencing was completed externally by a 

commercial sequencing facility, EUROFINS® (Eurofins Genomics, United 

Kingdom).  
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Table 4. Specimens used in the analysis of Holaxonia complete mitochondrial genome 
sequences.  
Species Family GenBank accession no  Sequence from 

Eunicella verrucosa (Bla04) Gorgoniidae n/a This study 

Eunicella verrucosa (Lio13) Gorgoniidae n/a This study 

Leptogorgia sarmentosa Gorgoniidae NC_035670.1 Genbank 

Leptogorgia alba Gorgoniidae NC_035669.1 Genbank 

Pacifigorgia cairnsi Gorgoniidae NC_035668.1 Genbank 

Eunicella cavolini Gorgoniidae NC_035667.1 Genbank 

Eunicella albicans Gorgoniidae NC_035666.1 Genbank 

Eugorgia mutabilis Gorgoniidae NC_035665.1 Genbank 

Leptogorgia gaini Gorgoniidae NC_035664.1 Genbank 

Leptogorgia capverdensis Gorgoniidae NC_035663.1 Genbank 

Paramuricea macrospina Paramuriceidae NC_034750.1 Genbank 

Paramuricea clavata Paramuriceidae NC_034749.1 Genbank 

Muricea purpurea Plexauridae NC_029698.1 Genbank 

Muricea crassa Plexauridae NC_029697.1 Genbank 

Calicogorgia granulosa Acanthogorgiidae NC_023345.1 Genbank 

Echinogorgia complexa Plexauridae NC_020457.1 Genbank 

Pseudopterogorgia bipinnata Gorgoniidae NC_008157.1 Genbank 

Renilla muelleri (O. Pennatulacea) Renillidae  NC_018378.1 Genbank 

 
Where applicable GenBank accession numbers are shown. For the two Eunicella specimens 
sequenced in this study, individual’s ID code is shown in brackets adjacent to species name. 
Renilla muelleri, a member of the sea pen suborder Pennatulacea, was used as the outgroup in 
all analyses.  
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3.4. Results  
 
3.4.1. Mitogenomes 

A total of 19 E. verrucosa mitochondrial genomes were sequenced in this study 

and two distinct genotypes were observed. Two E. verrucosa members from 

Lion Rock, Isles of Scilly, southwest England (Lio03 and Lio13) shared a 

distinct genotype; the second genotype was shared by all other E. verrucosa 

sequenced analysed. The complete mitogenomes were 19,267 bp and 19,248 

bp in length for the widespread genotype and the Lion Rock genotype, 

respectively. Both of the mitogenomes showed the ancestral gene arrangement 

(Type A), which includes 14 protein-coding genes, two ribosomal RNA subunits 

(12S and 16S) and one methionine tRNA gene (tRNAMet) (Fig. 8). GC content 

was 37.3% for both genotypes. All protein-coding genes had the start codon 

ATG. The stop codons were either TAG or TAA, except for the Cox1 gene, 

which terminates with CTTT.  

 

In comparison to Eunicella cavolini (GenBank KY559408.1), the widespread 

genotype showed a total of six single nucleotide polymorphisms (SNPs) and a 

single 49 bp deletion in the nad5-nad4 intergenic region. Compared to Eunicella 

cavolini (GenBank KY559408.1), Lion Rock individuals have 12 SNPs, a 21 bp 

deletion and a separate 49 bp deletion both in the nad5-nad4 intergenic region, 

as well as, a 2 bp insertion in the atp6-atp8 intergenic region. A third individual 

(Lio06) from Lion Rock was sequenced that did not present the unique Lion 

Rock genotype, but shared that of the other ‘standard’ E. verrucosa sequenced.  

To test the validity of these unique polymorphisms, Sanger sequencing was 

carried out. Two SNPs, unique to the Lion Rock genotype, occurred in the 

nad5-nad4 intergenic region and thus PCR amplification was carried out using 
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the primers developed in Chapter 2 of this thesis, NAD5-IGR-NAD4. Sanger 

sequencing nad5-nad4 intergenic region confirmed these unique Lion Rock 

SNPs were not just error of the NGS library preparation or sequencing.  

 

Table 5.  Genetic distances between Eunicella mitogenomes  
	

 E. verrucosa 
(Bla04) 

E. verrucosa 
(Lio13) 

E. cavolini 

E. verrucosa 
(Bla04) 

      

E. verrucosa 
(Lio13) 

0.0727 (14)     

E. cavolini 0.0312 (6) 0.0624 (12)   

 
Genetic distances are presented as a percentage and the number of 
substitutions is given in brackets.  
 

 

3.4.2. Phylogenetic analysis 

A total of 21 complete mitogenome sequences were analysed to produce the 

Eunicella phylogenetic tree, of which 19 were derived from E. verrucosa newly 

sequenced in this study. Both maximum-likelihood and Bayesian inference 

consensus support values were greater than 95 for all nodes. The two Lion 

Rock individuals showing the unique genotype were resolved as being more 

distinct than E. cavolini to the other E. verrucosa individuals analysed (Fig. 9).  

 

The holaxonian phylogenetic analysis used 18 concatenated sequences, 

containing all 14 mitochondrial protein-coding genes. In this analysis, 

mitogenome sequences derived from only two E. verrucosa individuals (Lio13 

and Bla04) were used, representing the two distinct mtDNA genotypes 

observed in this study. Holaxonian mitochondrial genome sequences were 
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extracted from GenBank, details are outlined in Table 4. Maximum-likelihood 

and Bayesian inference trees both had the same topology and showed high 

support for the majority of nodes (Fig. 10 and 11). For both maximum-likelihood 

and Bayesian inference, consensus support values were >83 for all nodes, 

except a single node that connects Muricea sp. to the other Plexuaridae 

species studied.  

 

 

 

 

Figure 8. Depicts the fully annotated mitochondrial genome of Eunicella 
verrucosa. Inner circles shows GC-content and AT-content in blue and 
green, respectively. 
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Figure 9.		Phylogram	constructed	by	maximum	likelihood	analysis	of	21	complete	
Eunicella	mitochondrial	genomes.	Both	maximum	likelihood	(ML)	and	Bayesian	
inference	consensus	support	values	are	shown	on	each	major	node	(ML/Bayesian).	
Sequences	derived	from	individuals	sequenced	in	the	current	study	are	labelled	in	bold.	 
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Figure 10. Phylogram constructed by maximum likelihood analysis of 18 Holaxonia 
mitochondrial genomes. All 14 mitochondrial protein-coding genes were extracted from 
complete mitochondrial genomes. The star symbol * indicates nodes with consensus 
support values of >70 for maximum likelihood and >90 for Bayesian inference if values 
are below ML and Bayesian inference values are stated (ML/ Bayesian). Sequences 
derived from individuals sequenced in the current study are labelled in bold. 
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Figure 11. Cladogram constructed by maximum likelihood analysis of 18 Holaxonia 
complete mitochondrial protein-coding sequence. Both maximum likelihood (ML) and 
Bayesian inference consensus support values are shown above each node 
(ML/Bayesian). * / * indicates nodes with conesus support values of 100 for both ML 
and Bayesian inference analysis. Sequences derived from individuals sequenced in 
the current study are labelled in bold. 
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3.5. Discussion  
 
3.5.1. Eunicella verrucosa mitochondrial genomes  
 
The phi29 induced rolling circle amplification utilised in this study enabled the 

generally extremely low sequence variation occurring throughout the complete 

Eunicella mitochondrial genomes to be observed across a relatively large 

number of E. verrucosa individuals – 19 in total. Two distinct genotypes were 

observed, a widespread genotype and a distinct Lion Rock genotype that was 

only observed in two individuals. Throughout the 19,267 bp mitogenome, of the 

widespread E. verrucosa genotype, only 6 variant sites were found when 

comparing the widespread E. verrucosa mitogenome genotype to Eunicella 

cavolini, equating to a genetic distance of 0.03%. Anthozoans are 

acknowledged to have extremely low rates of mitochondrial evolution, with 

France et al. (1996) showing Hexacorallia to have a congeneric genetic 

distance of 16.1-26.3%, with that of Ocotocorallia being even lower at 2.7-6.3%, 

for the mitochondrial gene encoding 16S rDNA. However, France et al. (1996) 

only studied one segment of the mitochondrial genome. McFadden et al. (2011) 

provided a more comprehensive analysis, which included 75 individuals and 

three different segments of the octocoral mitochondrial genome, totalling 1844 

bp. McFadden et al. (2011) showed an average within-genus pairwise genetic 

distance of 2.36% and an average intraspecific genetic distance of 0.16%. This 

intraspecific variation equates to five times the variation found between E. 

verrucosa and E. cavolini, in the current study. The members of Eunicella 

analysed in this study exhibit extremely low genetic variation, even when 

compared to the typically low variation observed in other octocoral 

mitogenomes (France et al. 1996; France and Hoover 2002; McFadden, 

Sánchez, and France 2010; Mcfadden et al. 2011).   
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Similarly, low genetic distances have been observed in Leptogorgia, Poliseno et 

al. (2017) found a genetic distance of <0.05% between L. sarmentosa and 

L. capverdensis. The study included a fossil-calibrated molecular dating 

analysis, where the authors suggested a relatively recent divergence of 

L. sarmentosa and L. capverdensis, occurring approximately 3 Mya. Both 

Eunicella and Leptogorgia are Atlantic-Mediterranean members of the octocoral 

family Gorgonidae. Logic suggests that the extremely low divergence observed 

in Eunicella, in this current study, is most likely also due to a recent 

diversification event between E. verrucosa and E. cavolini. As no molecular 

dating analysis was carried out in the current study, due to time constraints, no 

definitive estimation can be made on the divergence time between E. verrucosa 

and E. cavolini. However, a divergence time of 3 Mys or lower, would be inline 

with the divergence times estimated by Poliseno et al. (2017), and would place 

the divergence of E. verrucosa and E. cavolini after the most recent re-opening 

of the Strait of Gibraltar (5.96 - 5.33 Mya) (Krijgsman et al. 1999; Patarnello, 

Volckaert, and Castilho 2007; Garcia-Castellanos and Villaseñor 2011). A 

divergence after the re-opening of the Strait of Gibraltar would call into question 

the whether these species diverged via peripatric, parapatric or sympatric 

speciation.  

 

Interestingly, two E. verrucosa individuals from Lion Rock, Isles of Scilly, 

southwest England (Lio03 and Lio13), showed a unique genotype, which 

differed by 14 substitutions from the widespread E. verrucosa genotype. This 

Lion Rock genotype showed a pairwise genetic distance with the widespread E. 

verrucosa of twice that observed when comparing of E. cavolini against the 

widespread E. verrucosa genotype (Table 5). Figure 9 shows the phylogenetic 
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tree produced from the alignment of Eunicella mitochondrial genomes, both 

maximum-likelihood and Bayesian inference show the same topology and 

resolve the Lion rock genotype as more distinct than E. cavolini to E. verrucosa, 

with strong consensus support (>95) for both the maximum-likelihood and 

Bayesian inference analyses. A third individual (Lio06) from Lion Rock was 

sequenced that did not present the unique Lion Rock genotype, but shared that 

of the other ‘standard’ E. verrucosa sequenced. This calls into question the 

validity of these sequences and whether sequencing error has occurred in the 

library preparation or sequencing process (Pfeiffer et al. 2018). As mentioned 

previously, Sanger sequencing of the nad5-nad4 intergenic was carried out and 

confirmed these unique polymorphisms were not just error of the NGS library 

preparation or sequencing. Therefore, the evidence presented in this study 

suggests the two members of Lion Rock have a unique genotype, which is not 

seen in any other E. verrucosa studied to date.  

 

To date, the study by Holland, Jenkins, and Stevens (2017) is the only research 

to assess the population structure of E. verrucosa in the Atlantic. These authors 

were able to identify regional population structure in E. verrucosa by using 13 

microsatellite loci. In their study, a total of 22 individuals from the Lion Rock 

sample site were included, as well as 23 individuals from a separate sample site 

in the Isles of Scilly. With this comprehensive coverage, their study showed no 

distinction of Lion Rock samples compared to other samples from southwest 

Britain; this can be seen in both a principal component analysis (PCA) and a 

Bayesian iterative analysis of genetic variants among populations – a 

STRUCTURE analysis using the program STRUCTURE v2.3.4 (Pritchard et al., 

2000).  
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Preliminary restriction site associated DNA sequencing (RAD-seq) analysis has 

been performed on E. verrucosa across their natural range (T. Jenkins, 

unpublished data). RAD-seq is a relatively new genome-wide method of 

analysis and has shown great potential in the field of population genetics. RAD-

seq combines next generation sequencing (NGS) with enzymatic fragmentation 

of the genomic DNA to provide sequence data from sequences adjacent to the 

target cut sites (Baird et al. 2008). Ultimately, these sequences provide 

thousands of loci from across the genome, including both coding and non-

coding DNA, where SNPs are identified and can be used to infer relationships 

within the study species (Cariou, Duret, and Charlat 2013). Preliminary 

restriction site associated DNA sequencing (RAD-seq) analysis of E. verrucosa 

suggests no distinction of the Lion Rock individuals (T. Jenkins, unpublished 

data). This RAD-seq analysis included 13 E. verrucosa samples from Lion 

Rock, including the individuals that showed the unique mitogenome in the 

current study (Lio03 and Lio13). In the preliminary RAD-seq analysis, 

individuals from the Lion Rock sample site showed no major distinction when 

compared to other British E. verrucosa samples; genetically, the two individuals, 

Lio03 and Lio13, showed no obvious distinction to the other Lion Rock samples 

analysed (T. Jenkins, unpublished data).  

 

The Lion Rock specimens showing pairwise mtDNA-based genetic distances 

twice that of E. cavolini, when E. cavolini is compared to the widespread 

E. verrucosa mitogenome, could lead to it being inferred that the Lion Rock 

individuals are a distinct taxonomic entity, perhaps a separate species or 

subspecies. However, the nuclear, genome-wide, multiple loci data, produced 
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by both microsatellite analysis and the RAD-seq method, clearly show that the 

two Lion Rock individuals are in fact E. verrucosa (Holland, Jenkins, and 

Stevens 2017; T. Jenkins, unpublished data).  This study shows the importance 

of comprehensive sampling and the need for multiple independent sources of 

evidence –the use of multiple genome-wide genetic markers– when inferring 

phylogenetic relationships. This is especially important in Octocorallia, a clade 

of species with extremely low levels of mitogenomic variation, where even minor 

levels of genetic variation can cause relationships to be inferred.  

 

3.5.2. Holaxonia mitogenome phylogeny  

Published octocoral mitochondrial genomes were successfully used to analyse 

the relationships within Holaxonia. The analysis used all 14 protein-coding 

genes from the mitochondrial genomes of 18 octocoral taxa; two mitochondrial 

genomes sequenced in this study were used to represent the two distinct E. 

verrucosa genotypes identified during this research.  High levels of congruence 

of topology are apparent when comparing the Holaxonia mitogenome 

phylogeny (Fig. 10 and 11) to the mtMutS Holaxonia phylogeny (Fig. 5) 

presented in Chapter 2 of this study. However, the analysis of complete 

mitochondrial genomes (Chapter 3) showed a slight increase in consensus 

support for the majority of major nodes. The relative placement of all 

Gorgonidae members was the same, with distinct, highly supported Eunicella 

and Leptogorgia clades, while some previously ambiguous classifications were 

resolved by the use of whole mtDNA genomes. For example, the position of 

Pseudopterogorgia bipinnata within the Leptogorgia clade (which was 

unresolved in the mtMutS phylogeny) has been resolved in the mitogenome 
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phylogeny, with high consensus support of 83.5 and 97, respectively, in the 

maximum-likelihood and Bayesian inference analyses.  

 

Until recently, the majority of octocoral phylogenies have been based on limited 

numbers of mitochondrial protein-coding genes (Sánchez et al. 2003; Herrera, 

Baco, and Sánchez 2010; McFadden, Sánchez, and France 2010). More than 

10 years on, the phylogeny presented by McFadden et al. (2006), which utilised 

partial contigs of the mitochondrial genes mtMutS and nad2, is generally still 

considered the most comprehensive octocoral phylogeny available. 

Unfortunately, many of the deeper nodes of the McFadden et al. phylogeny 

were not resolved and a large amount of sequence data would be required to 

resolve these nodes (McFadden et al. 2006). Nonetheless, the power of 

complete mitochondrial genome sequences to resolve relationships in 

Octocorallia is evident (Uda et al. 2011; Poliseno et al. 2017), most notably in 

the study by Figueroa and Baco (2014). The latter authors used complete 

mitochondrial genomes to produce a tree with a high degree of congruence to 

that of McFadden et al. (2006), but with better resolution of previously 

unresolved deeper nodes. Often, however, octocoral mitogenome studies, such 

as these, are hampered by the lack of availability of published octocoral 

mitochondrial genomes; tellingly, Poliseno et al. (2017) suggest that currently 

only 1% of the 3,000 known octocoral species have publicly available 

mitochondrial genomes.  

 

3.5.3 Implications 

The extremely low variation found in members of the Eunicella genus has 

hampered any inference on phylogeographic relationships in Eunicella 
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verrucosa, in the current study. However, even when compared to the lack of 

mitochondrial sequence variation seen in other Octocorallia species, the level of 

variation observed in this study is extremely low, providing an interesting 

subject for further evolutionary research. For example, if estimations of the 

divergence time for Eunicella taxa are comparable to the Leptogorgia species 

studied in Poliseno et al. (2017), this raises an interesting question regarding 

the mechanism of divergence between Eunicella verrucosa and Eunicella 

cavolini. Further research is needed in this area to produce an accurate 

estimate of their divergence times. However, as observed in the current study, 

the extremely low genetic distances observed between the complete 

mitochondrial genomes of E. verrucosa and E. cavolini, would suggest that no 

area of the mitochondrial genome has sufficient variation to accurately and 

unambiguously define the evolutionary relationship between these two 

Eunicella species.  

 

Moreover, the genetic differences observed between the Lion Rock genotype 

and the widespread E. verrucosa genotype exemplifies why researchers cannot 

rely on a single locus to infer taxonomic and evolutionary relationships. The 

mitochondrial genome replicates as a single unit and a single-locus tree can 

present a biased inference of the evolutionary history of the species being 

studied due to the effect of selection or the stochastic nature of coalescence 

processes (Ballard and Whitlock 2004; Galtier et al. 2009; Drovetski et al. 2015; 

Hung, Drovetski, and Zink 2016). In a species group such as Octocorallia, that 

has low levels of mitochondrial gene variation, the bias of using only a single 

locus might be amplified, as even a relatively small stochastic variation in the 
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mitochondrial sequence may lead to invalid inferences regarding relationships 

within the group.   

 
Nonetheless, the breadth of sequence data that complete mitochondrial 

genomes can provide makes them valuable in providing insights into the deeper 

nodes of the Octocorallia and in resolving previously unresolved nodes 

(Figueroa and Baco 2014). This was exemplified in the current study, where 

mitochondrial genomes increased consensus support for the majority of nodes, 

as well as resolving several previously unresolved nodes – unfortunately, as 

discussed above, only 1% of the known members of Octocorallia have publicly 

available mitochondrial genomes (Poliseno et al. 2017).  

 

Finally, although this study has focused primarily on sequencing samples of E. 

verrucosa, it has also highlighted the potential of the RCA method to sequence 

complete mitochondrial genomes in a cost effective and highly efficient manner. 

The RCA method has a minimal hands-on laboratory time of just 20 minutes, 

with no need to optimise thermal cycles and it is also a highly scalable process 

(Johne et al. 2009). RCA in combination with NGS tools mean that it is now 

possible to produce a relatively large number of complete mitochondrial 

genomes quickly and cheaply, with an average cost of less than £200 per 

mtDNA genome in the current study.  
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Chapter 4 - General Conclusion  

Gorgonian octocorals, like Eunicella, are pivotal members of the marine 

ecosystem, as their three-dimensional structures provide vital habitat for a 

range of other organisms and thus, are considered ecosystem engineers (Buhl-

Mortensen et al. 2010). Unfortunately, they have also been affected by multiple 

mass mortality events, which have been linked to thermal anomalies (Cerrano 

et al. 2000; Martin, Bonnefont, and Chancerelle 2002; Cupido et al. 2012). 

Members of this genus are also vulnerable to anthropogenic impacts, for 

example, the IUCN redlist species Eunicella verrucosa being subject to damage 

from bottom trawling fishing gear (Hall-Spencer et al. 2007). Phylogenetic 

studies into the relationships between threatened gorgonian octocorals are vital 

to inform conservation effort, as the conservation of ecosystem engineers, like 

Eunicella, can have a broader positive impact on other species (Boogert, 

Paterson, and Laland 2006). However, phylogenetic studies of the Anthozoan 

sub-class Octocorallia have been severely hampered by the lack of variation 

shown in their mitochondrial genome (McFadden, Sánchez, and France 2010). 

This lack of variation is highly evident in Eunicella, such that, previous studies 

have shown no variation in the mitochondrial protein-coding gene cox1 gene 

between these European members of Eunicella (Calderón, Garrabou, and 

Aurelle 2006). 

 

This study aimed to explore the mitochondrial genomes of E. verrucosa, E. 

cavolini and E. singularis to identify any genetic variation, allowing us to assess 

better and understand the phylogenetic relationships within Eunicella, and their 

relationship to other members of the octocoral sub-order Holaxonia.  
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As previous molecular markers have been unsuccessful in differentiating 

Eunicella spp. novel primers were designed in chapter 2 to target areas of the 

mitochondrial genome suspected to have the highest levels of variation. 

Mitochondrial DNA was targeted as the ease of amplification means the 

molecular markers developed in this study could be widely applied by 

researchers to inform conservation actions. 

 In this study, the variation observed in the nad5-nad4 intergenic region enabled 

us to differentiate between the studied Eunicella species; E. verrucosa, E. 

cavolini and E. singularis. Although the variation was limited, this is one of the 

first studies to identify molecular variation between the mitochondrial genomes 

of these three Eunicella morphospecies. The variation found in this intergenic 

region demonstrates its potential as a genus-specific character-based genetic 

barcode. Character-based barcoding methods have been shown to have 

greater success, than the more common, distance-based methods when 

identifying recently diverged species, as they don’t rely on an arbitrary threshold 

gaps between intraspecific and interspecific variation (Bergmann et al 2009; 

Velzen et al 2012).  Due to the low levels of variation observed between the 

studied Eunicella species a binary barcoding method, like a character-based 

barcode, would allow for a more robust criterion on which to define the studied 

Eunicella species on (Desalle, Egan, and Siddall 2005; Chakraborty, Dhar, and 

Ghosh 2017). Moreover, it will allow for the combination of the scarce molecular 

and morphological data, and in turn, allow us to better conserve these species.  

The variation found in this intergenic region demonstrates its potential as a 

genus-specific character-based genetic barcode. A binary barcoding method, 

like a character-based barcode, would allow for a more robust criterion on which 

to define these Eunicella species on (Desalle, Egan, and Siddall 2005; 
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Chakraborty, Dhar, and Ghosh 2017); allowing us to combine the scarce 

molecular and morphological data, and in turn, allow us to better conserve 

these species.  

 

Interestingly, two E. verrucosa genotypes were observed. The widespread 

genotype was found in 17 E. verrucosa individuals and was present in 

individuals from all sampling sites. The unique Lion Rock genotype was only 

observed in two individuals collected from Lion Rock, Isle of Scilly, Britain. 

Interestingly, when comparing these findings to previous microsatellite (Holland, 

Jenkins, and Stevens 2017) and preliminary RAD-seq data (T. Jenkins, 

unpublished data), which included these Lion Rock individuals, there was no 

suggestion that these Lion Rock individuals differentiated from the other British 

E. verrucosa surveyed. Inline with their studies, the current study highlights the 

importance of using multi-loci data, when inferring relationships within 

Octocorallia and not just relying on the single-locus data mitochondrial 

sequences produce (Hung, Drovetski, and Zink 2016). 

 

The analysis undertaken in both Chapters 2 and 3 produced highly congruent 

Holaxonia phylogenies. Partial contigs of mtMutS were used to produce the 

Holaxonia phylogeny in Chapter 2; this gene was targeted as it has shown to 

have twice the levels of variation when compared to other octocoral 

mitochondrial protein-coding genes (Mcfadden et al. 2011). The Holaxonian 

phylogeny produced in Chapter 3 utilised the sequence of all 14 protein-coding 

genes, extracted from complete mitogenomes. Former taxonomic assignment 

placed Eunicella into the family Plexauridae before they were reassigned to 

Gorgonidae (Bayer 1961); both Holaxonia phylogenies, produced in this study, 
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support the reassignment of Eunicella to the Gorgonidae family, in line with 

findings by Poliseno et al. (2017). Both Holaxonia trees produced, in this study, 

show highly congruent topologies, but the increased sequencing breadth in the 

complete mitogenome phylogeny of Chapter 3 resolved the position of 

Pseudopterogorgia bipinnata. The analysis in chapter 3 also showed increased 

consensus support for the majority of nodes. This study has shown the 

advantage complete mitogenomes can have over single protein-coding genes 

in the analysis of relationships within Octocorallia, as has been shown in other 

studies (Uda et al. 2011; Figueroa and Baco 2014; Poliseno et al. 2017). 

 

Complete mitogenomes have been shown to increase the resolution of 

octocoral phylogenies (Uda et al 2011; Figureoa and Baco 2014). However, 

only 1% of known octocorals have currently published mitochondrial genomes 

(Poliseno et al 2017). The phi29-RCA amplification method, implemented in 

Chapter 3, has shown its ability to produce mitochondrial genomes cost-

effectively with minimal hands-on laboratory time. Thus, showing its potential as 

a useful tool for octocoral phylogeneticst, as it allows for the production of large 

quantity of octocoral mitochondrial genomes, in an cost effective, efficient and 

highly scalable manor. 

 

In this study, genetic variation in the mitochondrial genomes of E. verrucosa, E. 

cavolini and E. singularis was successfully explored. The nad5-nad4 intergenic 

region was highlighted as a potential candidate for a genus-specific character-

based barcode for Eunicella. The ability of phi29-RCA to produce a large 

number of mitochondrial genomes was shown. The complete mitochondrial 

genomes of E. verrucosa showed extremely low divergence from E. cavolini, 
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suggesting a recent divergence of the two species and raising the question of 

their diversification. Complete mitochondrial genomes were shown to increase 

the resolution of phylogenies compared to partial contig of the protein-coding 

gene, mtMutS. 
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