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Abstract

Given the relevance of mobility in a globalised world, the development of

sustainable mobility describes one of the most prominent challenges of modern

societies. Electric mobility in conjunction with renewable energy (RE) gener-

ation can contribute to the reduction of transportation-related greenhouse gas

(GHG) emissions. The combination of RE generation and electric mobility is

a nontrivial task. Fluctuations in RE generation and mobility-related energy

demand are the products of independent processes. Among other objectives,

“smart charging” concepts aim to align these processes by shifting electric

vehicle (EV) charging into sensible periods, for instance during excessive RE

availability.

The original purpose of EVs, which is to provide mobility to their users, is

significantly a↵ected by charging events. EVs cannot fulfil their purpose for

as long as they are charging. Hence, shifting charging into periods in which a

user wants to be mobile would contradict the concept of electric mobility.

Existing smart charging solutions often consider EV energy demand as

generic input that needs to be provided by the user. A smart charging solu-

tion’s dependency on user input, however, limits its applicability. To eliminate

the necessity of manual charging data provision and promote a widespread

application of smart charging solutions, this dissertation demonstrates how

smart charging can be enhanced by individual user mobility prediction.

As part of a joint framework, the thesis explores an improved method for

human mobility prediction. The method combines a Markov model-based

prediction scheme with kernel density estimation for departure time predic-

tion. A neural network-based prediction method for atypical travel behaviour

further enhances the framework’s prediction performance. It is demonstrated

that a generic scheduling scheme can schedule EV charging based on predicted

mobility under consideration of existing charging infrastructure.

The applicability of a smart charging framework on real-world data is used

to demonstrate that it can avoid disutility and a user’s adaption in mobility

behaviour due to EV-related constraints is not necessary. The resulting frame-

work does not only contribute to the wider adoption of smart charging but

can also improve EV acceptance. Improved smart charging usability serves
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multiple higher purposes as it accelerates prevalent adoption to EV, advances

sustainable mobility, reduces transportation-related GHG emissions and saves

resources.

Furthermore, insights about individual mobility behaviour are aggregated

to gain knowledge about collective behaviour, which will be valuable informa-

tion for utilities, grid operators and government energy policymakers.
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Chapter 1: Introduction

The automobile industry is facing the greatest transformation in its history. A

market that has been dominated by internal combustion engine vehicles (ICEVs)

is now determined to change into a market that will be predominantly based on

vehicles that are propelled by electric power units. The transition is mainly driven

by e↵orts to reduce road vehicle-related emissions of greenhouse gases (GHG) [1].

Being the second greatest source, transportation accounted for 15% of the global

GHG emissions in 2017 [2].

Electric vehicles (EV) can be operated without local emissions and have the

potential to contribute to a more e�cient and clean transportation sector [3]. Nev-

ertheless, the energy to charge EVs needs to be generated somehow, which is why

some sources argue that electric mobility shifts pollution to the location of power

production [4] [5] [6].

The discussions around the environmental impact of EVs were the starting point

for several types of research, which investigated how the well-to-wheel emissions of

EVs could be determined and minimised [7]. Well-to-wheel emissions describe how

much pollution is generated in the process of generating the power to operate an

EV. Several independent studies imply that an EV only creates any emission-related

benefit over an ICEV if it is charged with renewable energy [8] [9].

Power generation for charging EVs is not the only aspect that is discussed con-

troversially in the fields of electric energy generation and transportation. With an

increased EV market penetration, the impact of charging EVs on local power grids

becomes a relevant detail. The lower energy density of existing battery technology

compared with fossil fuel (11800 - 12800 Wh/kg for petrol and diesel vs. 200 Wh/kg

for EV batteries [10]) is often compensated with large capacity traction batteries,

which can be charged with high power rates to achieve a short charging time. A

load of several hundred kilowatts (kW) that a single charging EV can generate on

a power grid is significantly higher than from any other domestic device [11].

Many research projects focus on the challenges brought by the increasing power
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demand caused by charging EV and the corresponding loads on power grids.

Thereby multiple aspects can be summarised into two key aspects that need to

be addressed in particular:

• Single and especially multiple simultaneously charging EVs can create higher

loads than any other device within private infrastructures. Hence, power grid

branches that originally were not designed to cope with high loads could easily

be overstrained.

• The growing utilisation of volatile renewable energy in conjunction with load

peaks created by charging EVs increases the risk of local blackouts.

The motivation to maximise the proportion of renewable energy for EV charging

and indications for negative grid impact of charging EVs are the main drivers for the

development of smart charging solutions. The mitigation of the impact of charging

EVs on the power grid includes shifting charging events into periods of renewable

power generation, whereas it is avoided to charge at the time when high grid loads

are already expected.

Smart charging describes a process in which an EV and a charging infrastructure

negotiate a charging event in consideration of the aforementioned factors. The strat-

egy that guides the negotiation can vary, depending on di↵erent optimisation targets.

To this end, a communication channel is used to transmit a vehicle’s charging need

in form of energy demand and a “target time”, at which charging should be finished.

An infrastructure can provide a set of parameters that informs the vehicle about the

available charging power and additional information, such as time-dependent power

or energy prices.

Both the vehicle’s energy demand and the point in time at which charging should

be finished are mandatory for a smart charging event, independent from the opti-

misation scheme. Both parameters are required to compute a “schedule” that takes

into account an infrastructure’s capabilities and, for instance, the expected renew-

able energy availability. Also, both values are required to reflect an EV user’s

mobility wishes. The “required energy” parameter ensures that the vehicle can pro-
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vide the desired range within the limits of its battery capacity. The “target time”

ensures a su�cient charge at the time of departure.

A major shortcoming of existing smart charging proposals is that a user’s charg-

ing demand, e.g. the required energy and target time must be provided manually.

An EV’s energy demand is the result of its user’s mobility wishes. Hence, an EV’s

charging demand is dependant from its current state of charge (SOC), its current

position/location and the current time as a reference to the next departure.

Apart from handing over energy demand and departure time to the system, it

is an EV user’s task to determine a sensible input to the smart charging system.

For instance, it could be sensible to charge a vehicle just enough to reach a location

at which charging might be more e�cient or less expensive. In most existing smart

charging proposals, this task can be complicated if external information such as flex-

ible power prices, renewable energy generation, charging infrastructure availability

and possibly others must be taken into the equation. To date, the technology that

is required for sustainable EV charging creates significantly more user involvement

than operating a conventional vehicle.

The transition to EVs and the introduction of EV charging technology should

be critically assessed from a user’s perspective. A significant number of individuals

report being uncomfortable with technological change and the associated uncertainty

[12]. Studies about the predisposition towards new technologies found out that 50%

of Americans are “technology pessimists” [13] and stick to “notions of tradition and

familiarity...” in their buying decisions [14] [15].

The following research question is brought up, if the conservative attitude to-

wards new technology is taken into account: What motivates an individual, which is

already required to adapt to EV technology, to participate in smart charging, rather

than charging whenever it is possible?

Existing smart charging proposals refer to monetary benefits by charging auto-

matically in the time of cheap power provision. However, as will be shown in this

research, the actual achievable benefit is neglectable with current tari↵ structures.

The limitations of existing smart charging solutions are used to formulate the first
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research question of this thesis:

• How can existing smart charging solutions be advanced by being more user-

friendly to promote their use and to contribute to a user-friendly application?

The assessment of existing smart charging solutions is used to illustrate existing

shortcomings and to design a conceptual framework for an advanced smart charging

system. Apart from creating a user experience improvement, an advanced system

must be able to provide vehicle-related charging demand automatically and without

the necessity of manual user input. A challenge for such a system is to provide

charging inputs that reflect a user’s demand, without causing disutility. For example,

if a system schedules charging until 9:00 a.m. and the EV user plans to departure

at 8:00 a.m.. The assessment of the first research question will illustrate, that a

user-centric smart charging solution must relate to an EV user’s travel behaviour.

The research question that arises from this challenge is:

• What characterises human travel behaviour and are these characteristics eli-

gible to make useful assumptions about smart charging parameters?

Deduced from these two questions and building upon findings of human travel be-

haviour prediction, one objective of this thesis is to answer the question:

• How can existing prediction schemes be enhanced to provide spatio-temporal

mobility predictions which can be used to schedule smart charging events based

on prediction?

The prediction of mobility and corresponding energy demand is one of at least

two requirements which must be fulfilled to provide an advanced smart charging

system. The second step is characterised by a scheme that schedules necessary

charging periods in the sequence of predicted mobility events, leading to the following

research question:

• What characterises a scheduling scheme that combines individual predicted

mobility, predicted energy demand, and charging infrastructure features to a

smart “charging schedule”?
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Motivated by the need, identified in Chapter 2, to improve existing smart charg-

ing solutions, this thesis explores how individual human travel behaviour can be

predicted as part of an advanced smart charging framework. Supported by the rele-

vance of a successful transition to sustainable electric mobility, this thesis proposes

an adaptive system, which provides full spatio-temporal user mobility prediction

and can be considered as an extension to existing smart charging proposals.

Building upon the first research questions the objective of this research is to

investigate possibilities to predict mobility characteristics aiming to automate smart

charging to a degree at which a user is relieved from general residual planning or

scheduling task.

Chapter 3 assesses a purposely collected data set to investigate vehicle-related

travel data. The analyses of characteristic trip length, departure times, points of

interest (POI), trip sequences and dwell times provide the basis for the design of

an advanced prediction mechanism. The investigation of travel data includes the

assessment of typical travel patterns, which follow a weekly cycle and atypical travel

patterns, which do not follow a weekly periodicity.

Building upon findings of Chapter 3, Chapter 4 explores di↵erent combinations

of Markovian mobility prediction mechanisms and combines them to a prediction

framework, which identifies and predicts typical and atypical travel patterns. The

prediction method is supplemented by density estimation based departure time pre-

diction.

Chapter 5 introduces a generic scheduling scheme that is designed to schedule

charging events according to di↵erent priorities. The scheduling scheme allows the

deduction of parameters that are required to make use of smart charging technology.

More specifically, the scheduling scheme can be used to transfer relevant departure

time and predict energy demands to a smart charging infrastructure, which elimi-

nates manual user input.

Referring to the initial question, “What motivates a user to participate in smart

charging?” is answered by the proposal of a smart charging framework, which poten-

tially eliminates a user’s involvement in the smart charging process. An EV driver

17



could experience the system as a user-centric recommendation system, which gives

individualised notifications for “smart” charging events. The proposed framework

achieves two greater goals. It promotes the necessary application of smart charg-

ing for secure and sustainable EV charging and contributes to positive EV user

experience.

1.1 Contributions

Given the importance of smart charging for a sustainable transition to electro-

mobility, this research provides several original contributions:

• This work contains a detailed review of the concepts of existing smart charg-

ing solutions. The review in Chapter 2 reveals that the majority of existing

smart charging solutions rely on a user’s price sensitivity to make use of smart

charging technology. Simulation with real-world mobility data and power tar-

i↵s will demonstrate, that most existing smart charging proposals miss con-

vincing motivations for an EV user to participate in balanced grid operation.

The discussion in Chapter 2 is used to propose a conceptual approach that

promotes the application of smart charging by eliminating user involvement.

• The analysis of travel data outlines the need for and benefits of a smart charg-

ing solution that is largely independent of a user’s interactions. Chapter 3

introduces a method for EV-related data processing and mobility prediction.

The collected data, as well as an accessible data set of anonymised smartphone

data, is used to characterise human travel behaviour. In the subsequent Chap-

ters 4 and 5, the aggregated data set is used to demonstrate the applicability

of the introduced prediction and scheduling schemes.

• This work introduces an improved method for travel pattern prediction based

on a Markov model and probability density estimation (PDE) for accurate

departure and arrival time prediction. Furthermore, a method is introduced

that utilises a clustering method for categorical data and an artificial neural

network (ANN) for day sequence prediction, which enhances the framework’s
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prediction accuracy. This contribution, which is presented in Chapter 4, pro-

vides a travel pattern prediction that sets the groundwork for the subsequent

generation of smart charging schedules.

• To the author’s knowledge, this thesis is the first that combines individual

travel pattern prediction with smart charging solutions. Hence, it is hoped that

with the introduction of the proposed smart charging framework, this thesis

contributes to the scientific communities of EV charging, power production,

and human mobility prediction.

1.2 Thesis Outline

The outline of this thesis is depicted in Figure 1. Because the proposed methods and

framework adopt and build upon existing methods, Chapter 2 introduces existing

concepts for EV smart charging and human mobility prediction.

Chapter 3 describes the field study that has been conducted as part of this work

to a) capture di↵erent travel patterns and b) validate the introduced smart charging

framework on a real-world data set in later chapters. Human travel behaviour is

further analysed with the help of a set of smartphone data that is processed and

analysed in Chapter 3 to enlarge the accessible database.

Chapter 4 derives the requirements that mobility prediction in the context of

smart charging creates and introduces an improved method for travel pattern pre-

diction. To this end, di↵erent prediction methods are explored and combined to

ensure that the framework provides reliable predictions for a great variety of di↵er-

ent travel patterns.

Chapter 5 introduces a generic rating algorithm to create predicted schedules.

These schedules combine predicted travel behaviour, energy demand, flexible tari↵s

and charging infrastructure availability to an user-centric proposal of smart charging

events.

Chapter 6 concludes this work and gives an outlook for further research.
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Results, Conclusion and Outlook

Mobility Prediction for Electric Vehicle Smart Charging

Introduction and Background
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Charging Schedules
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Augmentation

6. Summary and Remarks

Preface Background Contributions Remarks

Figure 1: Outline of this thesis
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Chapter 2: Background

Chapter 1 pointed out that an advanced smart charging concept should consider

an EV user’s “travel demand”. “Travel demand” can be described as a subtopic

of “human travel behaviour” and marks a dedicated research topic. Hence, the de-

sign of an advanced smart charging system combines the scientific fields of human

travel behaviour and EV (smart) charging. Existing literature, however, treats both

aspects as independent scientific fields. To assess their compatibility and address

the central research question, ‘how to utilise mobility prediction for smart charg-

ing’, this chapter gives background information about existing smart charging and

mobility prediction concepts. The reviewed prediction concepts target private per-

sons in contrast to, for instance, public transportation systems. Section 2.1 gives

an overview of the emerging relevance of electro-mobility. Section 2.2 comments

on e↵ects and corresponding challenges of uncoordinated EV charging. Section 2.3

explains existing smart charging concepts to mitigate the impact of uncoordinated

charging. Section 2.4 gives an overview of existing concepts of travel pattern analysis

and trajectory data mining. Section 2.4.6 describes the challenges that are created

by mobility prediction in the context of electro-mobility. Section 2.5 summarises

this chapter and discusses the compatibility of travel pattern prediction and smart

charging.

2.1 Electro-Mobility

Being responsible for approximately 15% of the global greenhouse gas emission1,

the transportation sector in its current state is unsustainable [14]. To create an

alternative to vehicles that release GHG by the combustion of fossil fuels, almost all

global active vehicle manufacturers are investing in the development of EVs.

However, currently, widespread distribution of EVs is hindered due to various

reasons. The most obvious aspect is the comparably high cost of ownership for EVs.

Dallinger [16] estimated that the additional investment for an EV to a comparable

1https://www.iea.org/weo/, 2019, IEA
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ICEV is between 4585 Euros and 8067 Euros. Duvall et al. estimated that the extra

cost of owning a hybrid electric vehicle (HEV) ranges between $2500 and $14,000

compared to ICEV [17]. Disregarding the possibility to compensate higher initial

investment costs over a vehicle’s lifetime [18], incentives in several countries were

introduced to promote sales of EVs.

According to the International Organisation of Motor Vehicle Manufacturers

(OICA2), in 2015, the number of passenger and commercial vehicles worldwide

reached almost 1.3 billion units. Around 746000 of these units were battery electric

vehicles (BEV), which utilise electric power for propulsion. The required electric

power can be obtained by di↵erent sources, such as hydrogen cells or vehicle in-

tegrated combustion engines [19]. This thesis focuses on battery electric vehicles,

which obtain their energy from a power grid by using charging equipment to charge

so-called traction batteries, also referred to as plug-in electric vehicles (PEV). Figure

2 illustrates the rising numbers of registered EVs worldwide from 2012 to 2018.
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Figure 2: Number of registered electric vehicles (2012-2018) [20]

Besides the absence of local emissions, electric engines and drive trains are su-

perior to combustion engines in term of e�ciency and can help to reduce the overall

2http://www.oica.net/category/vehicles-in-use/, 2019, OICA
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power demand for transportation [21] [22].

2.1.1 Trends in Electro-Mobility

Electro-mobility has gained increased attention in recent years. Emission limits fre-

quently being exceeded inside city centres caused several countries to pass legislation

that prohibits combustion engines in general [23] [24]. The Netherlands as well as

India plan to stop the registration of vehicles with combustion engines in 2030, Great

Britain and France aim for a prohibition in 2040. In Norway, a prohibition could

start in 2025, at the same time being one of the fastest growing markets for EVs

within the last decade3. Figure 3 illustrates the rapid increase of EV-registrations

(BEV and “plug-in electric vehicles” (PHEV)) in Norway from 2008 to 2017.

Figure 3: Electric vehicle registration in Norway

The ongoing discussion about banning combustion engine vehicles from city cen-

tres, financial incentives [25] and increasing customer acceptance [26] motivate ve-

hicle manufacturers to revise their product lines. As a consequence, the number

of available hybrid or fully electric vehicles is constantly rising. Trends in sales

of EVs as well as the declared adoption of their product lines of multiple vehicle

manufacturers imply that the global market share of EVs will grow.

Both Norway and China established world-leading positions in the electrification

of passenger tra�c. Both countries installed strong monetary and non-monetary

incentives for both, investments in charging infrastructure and vehicles. This led to

an increase of EV market penetration from 0.3% to 2.2% in China and 11% to 32%

in Norway between 2014 and 2018 [27]. These trends indicate the growing relevance

3http://www.eafo.eu/content/norway
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of EVs and demonstrate how quickly a relevant proportion of transportation-related

energy demand could be shifted from fossil fuels to electric power. With global sales

of more than one million units in 2017, EV sales are expected to reach up to 4.5

million by 2020 [27].

2.1.2 Battery Electric Vehicle Components

EVs are categorised according to di↵erent factors. Vehicles that combine combustion

engines with electric engines but cannot be charged via the electric power grid are

called “hybrid electric vehicle” (HEV) or “mild hybrids”. Hybrid vehicles that can be

charged via the electric power grid are called “plug-in hybrid electric vehicle”. Pure

electric driven vehicles are often referred to as “battery electric vehicles” (BEV). In

the remainder of this work, if not stated di↵erently, “EV” refers to BEV.

HEV carry an internal combustion engine in addition to an electric engine.

Hence, their battery capacity is usually smaller than in BEV, as the majority of

energy is provided by fossil fuel. Table 1 gives an overview of typical battery sizes

of some currently available PHEV.

Table 1: Capacity and range of some currently available PHEV

Vehicle Battery capacity

[kWh]

Rated electric

range [km]

Porsche Panamera 4 e-

hybrid

14.1 50

Mercedes Benz S 560 e 13.5 50

Toyota Prius 8.8 20

Compared with plug-in hybrid electric vehicles, full battery electric vehicles rely

solely on electric energy provided by the traction battery and therefore carry larger

batteries with greater capacities to provide a range up to several hundred kilometres.

A vehicle’s battery size a↵ects the potential impact that a vehicle can create on the

power grid that it is connected to while charging. Not only the energy that is

related to a charging event is greater for vehicles with larger batteries but also the
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potential load it creates while charging can be higher. Table 2 gives an overview

of some currently available full electric vehicles and their battery sizes according to

the manufacturer’s homepages. The capacity is in most cases significantly higher

compared to PHEV batteries, as illustrated in Table 1.

Table 2: Capacity and range of some currently available EV

Vehicle Battery capacity

[kWh]

Rated electric

range [km]

Fiat 500e 24 135

Honda Clarity EV 25.5 143

Hyundai Ioniq EV 28 200

Ford Focus Electric 33.5 185

Volkswagen e-Golf 35.8 201

Nissan LEAF II 40 243

BMW i3 42 246

Tesla Model 3 SR 50 354

Chevrolet Bolt EV 60 383

Tesla Model 3 MR 62 425

Hyundai Kona EV 64 415

Kia Niro Electric 64 379

Tesla Model 3 LR 78 499

Tesla Model SD 75 416

Tesla Model XD 75 381

Jaguar i-Pace 90 377

Audi e-tron 95 399

Tesla Model SD 100 539

Tesla Model XD 100 475

An EV’s traction battery consists of multiple battery cells connected in parallel

and series. By connecting battery cells in series, it is possible to increase the voltage

output as the overall voltage is the sum of all cell voltages connected in series. In
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contrast, a traction battery’s overall capacity is the sum of all cell capacities, that

are connected in parallel [28]. This property is used to create a battery setup that

provides the required battery output and the desired capacity.

To date, most available EVs are built with traction batteries that provide a mean

voltage output of 400 V [29]. More recent developments increase the voltage output

to 800 V [30] [31]. By increasing the voltage, the current can be decreased while

maintaining the power output but with smaller cable diameters for the high voltage

system, which helps reduce an EV’s overall weight.

2.1.2.1 Battery State of Charge

The State of Charge (SOC) is used to express the present battery capacity as a

percentage of its maximum capacity [32]. It is often di↵erentiated between technical

SOC and “usable” SOC. While the technical SOC is derived from the cell’s current

to indicate the change in battery capacity over time, the “usable” SOC is used

to indicate the range of charge of a battery that can be exploited without creating

extended wear on the battery cell chemistry (e.g. 6%-96%) [33] [34] [35] [36]. For this

thesis, a more applicable indicator is a battery’s State of Energy (SOE), because the

SOE is independent of a battery specific capacity. The SOE is indicated in kilowatt

hours (kWh) and describes a battery’s actual energy content [37]. The amount of

energy stored in the battery defines the spatial constraints of an EV [38]. In the

remainder of this thesis, simulations and calculations regarding a vehicle’s range and

energy demand will be based on a vehicle’s (simulated) SOE.

2.1.2.2 Electric Vehicle Charging Components

To operate an electric motor, EVs are equipped with power electronics (Inverters)

that convert direct current (DC) provided by a battery to a three-phase alternating

current (AC) [39]. Inverters also modulate AC in frequency and voltage to control

the electric motor’s power output corresponding to the requested power output from

the driver.

An EV’s battery can be charged in two di↵erent ways. If the vehicle is coasting,

the electric motor(s) can be used to convert the vehicle’s kinetic energy to a three-
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phase current. In this state, the inverter will convert AC, created by the motor, into

DC to charge the traction battery. This process is referred to as “recuperation”.

The second option is to charge the battery via an external power source. Today

most charging infrastructures provide AC (see Section 2.1.3 for detailed discussion).

While in theory, the inverter could also be used to convert externally obtained AC,

a so-called onboard charger (OBC) is used to provide the battery required DC [29]

[40]. An OBC converts AC on di↵erent power levels between 3.6 kW and 22 kW.

OBCs, in contrast to inverters, are galvanically isolated from the power grid and

therefore require fewer safety measures to be operated [41] [42]. Figure 4 gives a

schematic overview of some EV-components and their connections.

Figure 4: Conceptual illustration of EV components. The blue lines represent the
interface to an external power supply. Figure adapted from [43].

2.1.3 Charging Infrastructure

The charging infrastructure is often referred to as the enabler of electric tra�c and

acts as a physical interface between vehicle and power source [14]. The achievable

power output depends on the available voltage and current, which can be di↵erent

depending on the national power grid [44]. Charging infrastructure with both AC

and DC exists [40] [45]. While AC has the advantage of being available in private

infrastructure, it is limited to the maximum power output of the local low voltage

(LV) grid. In contrast, DC is usually not available in private infrastructure, but o↵ers

higher charging power and is not required to be converted to match the battery’s

requirements. DC charging infrastructure is connected to the distribution grid and

is responsible for power conversion instead of the vehicle’s inverter [45].
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The following paragraphs categorise charging infrastructure in three di↵erent

classes.

2.1.3.1 Private Charging Infrastructure

Private infrastructures are usually designed to cope with the average load of a house-

hold, which normally range up to 5 kW in peak [11]. Figure 5 gives an overview of

loads of domestic appliance and the typical frequency of use. Referring to charging

at home with up to 22 kW (Mode 4 according to IEC 62196, see Subsection 5.1.4),

EVs can generate substantially higher loads than other currently available devices

in private households.

Charging in private infrastructure is expected to be the most popular way of

charging EVs and has been the favourable charging location in surveys and field

trials [46] [47] [48]. This is an important finding as private vehicles often remain

parked at home for the longest part of the day [49]. Hence charging at home o↵ers

the highest potential to be optimised, as it can be delayed or scheduled with a

lower risk of compromising the user’s required range [50]. A key feature, that makes

charging at home attractive, is that an EV user must not fear waiting time to start

charging due to charging point occupation.
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Figure 5: House loads and the corresponding frequency of use [11].

2.1.3.2 Semi-Public Charging Infrastructure

Charging infrastructure that is not private but o↵ers limited access to a specific

group of customers or users is referred to as semi-public charging infrastructure.

Examples of such kind of charging infrastructures are charging installations for air-

port service vehicles or EVs for public transportation.

Charging infrastructure for this group of vehicles is likely to be used less ran-

domly as public infrastructure since the duty cycles and the corresponding energy

demand of a distinctive group of vehicles can be analysed more easily [51]. In addi-

tion to that, charging events are bound to specific locations which help dimension

the charging infrastructure to the expected load accordingly.

2.1.3.3 Public Charging Infrastructure

If a trip length exceeds an EV’s range, is it required to be charged during the trip.

In this situation, charging times of several hours would not be accepted. To avoid

long charging sessions, vehicles need to be equipped with DC charging technology
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that enables fast charging with high power [52]. Charging on a trip, which is usually

conducted on public infrastructure, intends to be as fast as possible to avoid waiting

time. To this end, DC fast charging infrastructure is designed to cope with high loads

[45]. To date, there is a great variety of di↵erent public AC charging infrastructures,

which, at the time of writing, is limited to around 22 kW [14]. Due to the necessity

of AC to DC conversion AC charging is limited to relatively small charging power

which results in charging sessions of up to several hours.

As the intention to charge instantly and as quickly as possible suspends the con-

cept of smart charging, charging at public fast-charging infrastructure is neglected

from the consideration of a smart charging framework.

Taking into account human travel and usage behaviour related to personal ve-

hicles, AC charging o↵ers more potential to be optimised. This is emphasised in

Chapter 3, which will show that for the majority of EV users fast charging would

not be required, as the length of parking periods are more than su�cient to cover

the energy demand of private vehicles, even with low power outputs.

2.2 Uncoordinated Charging Schemes

The relevance of smart charging solutions can be illustrated by assessing the e↵ects

of multiple uncoordinated charging EVs on the power grid.

The following sources refer to “uncoordinated charging” as a process in which

vehicles are either charged immediately after their last trip or immediately after the

last trip of the day. Furthermore, these charging events are conducted without any

kind of communication between the EV and the power grid. They are referred to as

“uncoordinated” as the sum of required charging energy would require a coordinated

grid load allocation to avoid local power grid congestion.

An example that is frequently used to illustrate the event of uncoordinated charg-

ing is the scenario of EV owners arriving at home in the afternoon. After finishing

the final trip of the day, the scenario assumes that a great number of EV owners

will start to charge their vehicles on a private power outlet.

Since humans tend to follow similar and repetitive activity patterns during the

30



day, there is an increased risk of simultaneously charging EVs in periods in which

workers arrive at home [53] (see Section 2.4.1 for a review of human travel patterns).

Assuming an uncoordinated charging behaviour as described above is expected to

create a significant load impact on corresponding power grids. Details of the e↵ects

have been investigated in several research projects [54][55][56][57][58][59][60][61].

Disregarding the di↵erent data sets that were used for the impact assessments of

charging EVs, all investigations conclude the same results with di↵erent magnitudes

concerning their impact: uncoordinated charging can have negative e↵ects on power

grids in form of losses [59], harmonic distortions and DC o↵sets [60] as well as

voltage drops and deviations [61]. Based on the description of uncoordinated vehicle

charging, the e↵ects are most significant for charging events in private infrastructure.

A broad consensus can be identified regarding the criticality of large quantities of

simultaneously charging vehicles. In this case, the sum of power that is required to

charge every vehicle is greater than the infrastructure’s capacity. To determine peri-

ods in which critical situations probably occur, di↵erent approaches were presented.

Steen et al. [59] used demographic data of a case study in Sweden to determine

points in time in which a large proportion of people usually arrive at work or at

home. Assuming they would connect a large quantity of EVs for charging in a short

period would result in a critical increase in power demand in these periods.

In contrast, Ma et al. [62] used a surveyed dataset of “Mobility in Germany 2008”

to model EV user behaviour and estimate accumulated and time-dependent energy

and power demand for EV charging. By having access to the regular trip starting and

ending times in conjunction with simulated energy demands, the authors addressed

the risk of operating the power grid outside of the permissible power limit, if vehicles

are charged without any coordinated schedule.

Real EV charging patterns were evaluated by Jiang et al. [63] from a dataset of

64 EVs that were observed for a period of more than twelve months. The results

in [63] are di↵erent to the previously mentioned sources, as the observed load peak

caused by charging events was observed between 3:00 p.m. - 5:00 p.m. rather than

expected peak loads between 3:00 p.m. and 8:00 p.m. of other researches [64] [65].
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Further impact assessments concluding a critical increase in load due simultaneously

charging EVs were conducted in [66][60][67][63].

Di↵erences regarding the magnitude of EV related grid impacts can be explained

by the great number of dynamic influences. Two examples are the assumption of

di↵erent EV market penetration scenarios and the di↵erences in the expected time

dependant charging locations. For instance, Jiang et al. [63] focused on the impact

of charging at public charging stations, located in the vicinity of working places.

Other research projects expect the largest proportion of EV-charging in private

infrastructure. The assumption that many users charge their vehicles during the

working time naturally results in di↵erent load peak compared to charging after the

commute in the evening.

2.2.1 Charging Considerations

A charging event is characterised by several aspects. The following subsection will

introduce the dominating influencing factors, according to the prominent literature.

Relevant aspects can be separated into two groups:

• vehicle related

• grid-related.

Power grids are separated into Transmission Grid in which utilities feed gener-

ated power, Distribution Grid and Low Voltage Systems, on which the consumer is

connected to the grid [68] [44].

Di↵erent grid levels are interconnected via transformers which transform high

voltage (Transmission Grid) to medium voltage (Distribution Grid) and low voltage

(Low Voltage Systems) for consumers. In some cases, great power consumers, such

as industrial facilities which surpass country-specific load limits, are connected to

the distribution grid directly to reduce stress on the low voltage distribution infras-

tructure. Same applies for power generating facilities such as wind farms [69] and

photovoltaics [70].

DC charging infrastructure, for instance charging parks that o↵er high charg-

ing power for multiple EVs simultaneously, can surpass local grid constraints. In
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this case, the charging infrastructures are, similar to industrial facilities, directly

connected to the distribution grid.

2.2.1.1 Charging Location

Depending on the assumption where an EV would be charged, the results of the

assessments of EV charging impacts on a power grid vary. As discussed in Sec-

tion 2.1.3, EVs can be connected to the grid via di↵erent types of infrastructure.

The tendency of humans to travel alongside di↵erent locations during the day im-

plies that users pass by or visit di↵erent charging infrastructure types during their

daily journeys. Accordingly, the user’s decision to use one of the available charging

possibilities does change the corresponding grid impact in terms of load and location.

To anticipate a realistic EV penetration scenario, Pederson et al. clustered

parking locations of vehicles to provide geospatial details for load simulation of

charging EVs. The goal of the investigation was to find out how the charging

location could a↵ect di↵erent branches of a power grid [71]. A shortcoming of the

investigation is the assumption that EVs would be connected to the grid every

time they are stationary. This assumption would be supported by opportunistic

charging behaviour, which has been concluded for a majority of EV users in [50].

However, it is not considered to be realistic to find a charging infrastructure at

every parking location. Furthermore, driving data which did not imply a typical

“home-work-home” schedule was excluded from the analysis in [71]. Nevertheless,

Pederson et al. were able to illustrate a correlation between mobility behaviour,

potential charging behaviour and the corresponding impact of a charging location

to the power grid.

Besides the relevance of the question: “where to charge?” for an EV user,

the location of a critical number of simultaneously conducted charging events is of

relevance for a secure grid operation [61] [72]. This applies especially to charging

events that are not conducted on dedicated charging infrastructure, for example at

an EV user’s home. Recall that dedicated charging infrastructure is designed to cope

high loads, as has been described in Section 2.1.3. In residential areas, which have
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not been dimensioned for simultaneously charging EVs, grid operators will benefit

from information about expected loads, as it o↵ers the possibility to utilise shifting

potential of flexible loads [73].

2.2.1.2 Charging Time of Day

The time of a charging event plays an important role for utilities, as power needs

to be generated at the moment it is needed. To prepare power grid and power

generation facilities, utilities create load profiles [74]. These profiles show the aver-

age power demand of a su�cient number of households and indicate the expected

grid load [75]. Figure 6 illustrates a standard load profile of a residential power

consumer in Germany [76]. Separate profiles can be created for commercial and

industrial power consumers. Figure 6 emphasises that residential power demand is

characterised by peaks in the morning and evening hours, presumably when residents

are awake and follow activities at home. Based on this forecast, utilities organise

their resources.
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Figure 6: Load profiles for working days (red), Saturday (light green) and Sunday
(green). Illustration adapted from [76].

Taking into account the energy and power demand of EVs, the charging time

of a su�cient number of EVs changes existing load profiles [77]. An assessment
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of the impact of charging EV has been conducted in [59] and [78] to show the

influence of charging vehicles on standard load profiles. Investigations regarding

the impact of uncontrolled charging have been conducted for di↵erent regions and

countries, e.g. among others, Germany [79], United Kingdom [50], Belgium [80],

USA [81], Canada [82], Portugal [77], Sweden [83], Denmark [71] and Norway [84].

The impact regarding the maximum load created by charging vehicles is sensitive

to the assumed EV market penetration, as di↵erent results of impact assessments

suggest.

Load profiles illustrate the challenges that must be expected when EVs are

charged in a manner that most researchers assume, which is at home and right

after the arrival in the afternoon/evening. Charging EVs in private infrastructure is

usually limited to 22 kW, which is already a higher load than most existing devices

create in private infrastructures. The sum of simultaneously charging vehicles, es-

pecially on a local level [72], could increase the peak in power demand between 5:00

p.m. and 9:00 p.m. significantly.

The risk of overloading a power grid always exists. For instance, the excessive

additional load of air conditioners causes critical stress on California’s power grid

during hot summer days [85] [86]. Established tools such as load profiles, that are

based on historical data and experience, cannot prevent situations where demand

excels the capacity of the grid, however, they can forecast critical situations and

initiate counteractions. Applicable tools in these situations are control mechanisms

like Time-of-use (TOU) [87], Real-time-pricing (RTP) [88] or critical peak pricing

(CPP) tari↵s [85], which will be explained in more detail in Subsection 2.3. As

the dispatch decision is made by the consumer, these mechanisms are referred to as

“indirect control mechanisms” or “customer-driven control” mechanisms. In con-

trast, a direct control dispatch decision, sometimes described as “direct load control”

(DLC), can be taken by the service provider [89] [90]. Details about the advantages

and disadvantages of di↵erent dispatch allocations are given in [16].
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2.2.2 E↵ects of Vehicle Charging on Power Grids

Charging an EV has di↵erent impacts on a power grid. Despite creating a significant

load, these impacts may cause problems which have been investigated in several

research projects.

Focusing on AC charging with 16-32 A current, Farkas et al. investigated pos-

sibilities to protect distribution and transmission grids from overloads and power

quality issues, caused by charging EVs [91]. For their investigation, Farkas et al. fo-

cused on single-phased and three-phased chargers and pointed out, that single-phase

chargers can create a voltage asymmetry on the low voltage grid. It should be added

that this applies for any single-phase device, however, established devices in house-

hold create smaller loads and their e↵ects are accordingly less relevant. In addition

to that, the e↵ects should be eased by the random distribution of single phased

devices over all three phases. Similar e↵ects were investigated and demonstrated in

[60].

Focusing on investigating the impact of DC fast charging on the distribution

grid, Yanus et al. [92] compared stochastic and deterministic modelling approaches

to elaborate on the e↵ects and possible mitigation measures. Unsurprisingly their

findings confirmed that fast charging (with up to 250 kW in their simulation) can

have negative e↵ects on distribution transformer loading and system bus voltage

profiles. However, it is also demonstrated that local energy storage and voltage

conditioning devices, such as Static Var Compensators (SVC), can be used to handle

the identified issues.

To gain a better understanding of the influence of onboard chargers on power

quality (PQ) in a larger city context, the authors in [60] used a joint research plat-

form. In their findings, Bass et al. illustrate that onboard chargers, more specifically

charge controllers, can sometimes create high levels of total harmonic distortions

(DTH)4 which are amplified with a greater number of simultaneously charging ve-

hicles. Similar findings were investigated and presented in [93] and [81].

The previously cited investigations demonstrate that EVs have a measurable

4Harmonic distortions describe deviations from the sinusoidal shape of a current or voltage [60].
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impact on PQ. To this end, the degree of allowed disturbances, caused by an EV’s

OBC, is defined in national norms and standards. However, the goal of this disser-

tation’s smart charging framework is to minimise the impact of charging vehicles in

terms of loads and not to mitigate the PQ-issues that were presented in the previ-

ously mentioned sources. It is assumed that the combination of previously described

PQ standards and an early provision of charging needs (based on predicted charging

demand and location) will help utilities and grid operators to prepare and allocate

grid resources in a manner that minimises the aforementioned negative e↵ects.

2.2.3 Charging Behaviour Case Studies

A charging event’s location and time are determined by an EV user’s decision to

charge or more specifically a result of user-specific charging behaviour. Comparably

little is known about the actual charging behaviour of private EV owners. To this

end, data extracted from the SwitchEV project has been analysed in [94]. The

SwitchEV project used 49 EVs to collect driving and charging data from a total

of 125 users over a period of four years. 23 of these individuals used the vehicle

for private purposes and had access to charging infrastructure at home as well as

to the Charge Your Car (CYC) project, which operates a charging network of 850

charging posts in public, work and home locations [48].

The survey in [48] used data loggers to record vehicle data and smart meter

data to record charging related loads. Figure 7 illustrates the average SOC change

of 3332 charging events that took place in the residential infrastructure. The plot

gives insight into users’ charging behaviour at home. It reveals that most charging

events are not conducted because they appeared to be necessary. Instead, it draws

the picture of an opportunistic charging behaviour, in which charging is conducted

due to the availability of charging infrastructure, rather than due to a charging need.

This observation is supported by a qualitative survey, conducted in the context of

the SwitchEV project, in which users stated to “charge it whether it needs it or not.

Just to max up the miles.” [95].

An analysis of 19000 charging events, including public charging, is given in Fig-
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Figure 7: Start and end SOC for 3332 charging events in residential infrastructure.
The box indicates the area between the 25th and 75th percentile of data. The bold
lines indicate the median. The whiskers indicate the maximum and minimum of all
observations [95].

ure 8. The boxplot indicates that when public charging infrastructure is taken into

account, the median Start SOC is slightly higher but in general similar to the charg-

ing behaviour in private infrastructure [48]. Figure 8 also illustrates that 50% of

charging events are used to charge batteries between 15% to 40%. The trial gives

Figure 8: Start and end SOC as well as the corresponding SOC di↵erence for 19000
charging events [95].

valuable insight into charging behaviour. However, the indicated numbers must be

assessed carefully and should not be generalised. The vehicles used in the SwitchEV

study carried traction batteries with capacities between 15 kWh and 24 kWh (Nis-

san Leaf - 24 kWh for MY 2011-2015, Avid Cue-V - 22 kWh, Peugeot iOn - 15 kWh

(usable)), which is relatively small compared to other available EV (see Table 2).

The average daily driven distance was 38.9 km in this trial [94].
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Nevertheless, as discussed in Section 2.1.1, OEMs tend to equip vehicles with

greater batteries in newer vehicle generations to create larger ranges. Apart from

the qualitative survey in [95], the data allows no assumption about the users’ actual

charging motivation. For instance, Franke et al. provide information that charging

decisions are, among others, based on a user’s “comfortable range” and “battery

interaction style” [46].

Building upon findings of [46], Nicolo modelled EV use and charging behaviour

in a conceptual and analytical framework [50]. Based on the limited data that cap-

tures the real charging behaviour of EV users, Nicolo assumes that EV drivers base

their charging decision only on the currently available energy (and derived vehicle

range) and the energy required until the next charging opportunity. This automat-

ically results in a myopic charging decision, because the decision does not entail

considerations of the characteristic of all charging opportunities within a given time

frame. This is a simplification if one considers the variety of charging opportunities

that were available to a price-sensitive user.

Only very recently, more real-world data is available to be evaluated regarding

EV owners’ real-world charging behaviour. The UK “Electric Nation” EV Smart

Charger Trial being the largest smart charging trial in the world5, according to

the conducting entity, is currently investigating EV users’ willingness to participate

in smart charging solutions. The trial’s full findings were not available for this

dissertation, however, initial findings were made available. In principle, participants

of the trial accepted smart charging, that shifted their charging events based on

adjusted timers, for as long as the amount of charge was provided when they needed

it.

2.2.4 Discussion

The assessment of the aforementioned literature reveals that time and location play

an essential role in the impact evaluation of charging EVs. However, these aspects

also reveal the underlying uncertainties in previously conducted research projects

since they are mostly based on di↵erent demographic data and assumptions regard-

5http://www.electricnation.org.uk/
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ing user and charging behaviour. For instance, due to missing information, most

projects expect that vehicles are either charged after every trip or after the last trip

of the day. In the long term, however, these assumptions must be critically assessed.

Further observations are necessary to confirm that vehicles will be connected to the

grid after every trip, especially if improved EV ranges, that make frequent charging

unnecessary, are taken into account. Furthermore, it needs to be taken into account,

that a higher EV market penetration will increase the number of private EV owners

with no access to residential charging infrastructure. Hence, for EV owners with-

out a dedicated charging location, the assumption of frequent and regular (short)

charging events is not necessarily applicable.

2.3 Smart Charging Schemes

Building upon findings and anticipated e↵ects of EVs on power grids that are de-

scribed in Subsection 2.2, research was conducted to optimise the integration of EV

into the power grid which is referred to as smart charging solutions. The notation

smart charging summarises a great number of di↵erent schemes that are proposed

to mitigate negative and promote positive e↵ects of EV charging. They are referred

to as “smart” as they intend to organise resources in an e�cient way. The follow-

ing paragraphs provide some examples of works that aim toward smart charging

solutions.

Optimisation regarding EV grid integration can target di↵erent aspects, such

as load mitigation and loss reduction. Steen et al. [59] showed that coordinated

charging strategies can reduce loads and losses in a power grid in contrast to un-

coordinated charging. Their strategy schedules vehicle charging based on time of

day and a vehicle’s anticipated location under the assumption of hourly electricity

prices at the Nordic day-ahead spot market. Vehicles future locations were antici-

pated from demographic data, provided by a national travel survey [96].

A comparable approach was presented in [62] in which a scheduling function for

online optimal charging is proposed. The scheduling strategy optimises the charging

of an EV fleet by considering load and price forecasts. The charging demand and
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corresponding load were simulated based on arrival times on workdays and weekends,

derived from data collected in the “Mobility in Germany 2008” travel survey.

Pointing out the future necessity of scheduled EV charging in [36], Sundstroem

et al. propose two methods, one linear and one quadratic approximation of battery

behaviour, to schedule EV charging concerning wind power availability, power price

and an EV fleet’s energy demand. In [36] it is pointed out that a vehicle’s energy

demand must either be set by the end-user or should be the result of predicted

driving patterns. However, Sundstroem et al. exclude the prediction of driving

patterns in their publication. The EV fleet’s data, which has been used to vali-

date their scheduling scheme, is not made accessible. Further, comparable, smart

charging models are proposed in [54][57][62][97][16][64][98][99] and [100]. All listed

smart charging proposals share systematic similarities in their design. EV energy

demand is usually anticipated from some sort of statistical movement/travel data.

The anticipated EV energy demand is assigned to variable time slots, which in some

investigations are location variant. Charging events and/or energy demand is then

arranged to avoid negative grid impacts and/or maximise RE utilisation.

Building upon a similar systematic, Daina [50] used two real-world data sets

ECarSim [50] and [38] to propose a random utility model for joint EV drivers’

activity-travel scheduling and charging choices. Daina’s work di↵ers from previ-

ously described researches in that an EV’s energy demand is determined by a user’s

preference regarding the activity choices, which is expressed via a human-machine

interface (HMI). More specifically, an EV user can choose between di↵erent pro-

posals regarding the charging schedule. Daina’s work is one of the first scientific

contribution that focuses on a user’s charging choice rather than on a charging

demand that is treated as a generic input to a smart charging scheme.

Simplified, most existing smart charging solutions shift charging related loads

into times when it is uncritical for the grid and/or advantageous in terms of power

production or availability. This primarily serves the interest of grid operators and is,

therefore, a one-sided motivation that often ignores the original purpose of electric

mobility.
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Summarised, smart charging strategies rely on information that is required to

be provided by a user, e.g. at what time charging has to be finished and/or what

is the desired SOE? From a user’s perspective, it is neither practical nor convenient

to provide this information for every single charging session. Sometimes it even

appears to be impossible for a user to know how much energy would be required to

reach the next destinations. Smart charging is likely to fail, assuming that a user

would have to provide an accurate schedule for all of his planned trips.

As to date, all incentivised smart charging schemes are time and energy-

dependent and rely on similar inputs, which have been summarised in [50] as:

• charging start time preference

• charging end time preference

• preference in available energy at the end of the charging operation.

For this dissertation, it will be assumed that sooner or later one or multiple

models of incentives for smart charging will prevail. The assessment of existing

smart charging solution reveals that they follow di↵erent strategies to pursue mutual

targets.

2.3.1 Smart Charging Considerations

Smart charging aims to harmonise power demand and supply. This can be achieved

by adjusting the power demand, supply or both. This goal can be achieved with

di↵erent strategies, which shall be explained in the following paragraphs.

Peak Shaving/Valley Filling

As previously explained, the main motivation for coordinated charging is to reduce

stress on power grid components. Standard profiles in Figure 6 show that the ma-

jority of grid load is produced in a few “peak hours” in which the demand for energy

is particularly high. The concept of peak shaving pursues the goal of shifting loads

from these peaks into “demand valleys”, thus in times in which the power demand

is usually lower, for instance during the night. Naturally, this is only applicable for
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shiftable loads, which do not compromise users in their power shifting capability. A

few examples for such loads are heat pumps, freezers and heating devices, which,

due to their thermal inertia, can be operated to fulfil their tasks while reducing their

loads for specific periods of the day to a minimum [101]. EVs o↵er similar capabili-

ties as they can fulfil their purpose, independent from the time in which they where

charged.

Delayed Charging

The multimodal shape of prevalent load curves (Figure 6) can be explained by the

daily habits of a large number of individuals. A peak in the morning is being created

by a large number of people waking up and getting ready to work. A peak in the

afternoon is due to returning people to their home and using di↵erent electric devices,

as has been described in various other sources [83]. An often discussed aspect is the

assumption that the demand peak in the afternoon could grow significantly when

people arrive at home and start charging immediately.

An oversimplified concept of smart charging is to delay charging events, to mit-

igate the aforementioned e↵ect. However, to delay charging simplifies the overall

challenge that is addressed with smart charging. To delay charging by a static time

factor also neglects the possibility to use a charging event as dynamic load and loses

the possibility to facilitate peak shaving or the utilisation of fluctuating renewable

energies. In addition to that, Schey et al. discovered that due to a time-of-use tari↵

that o↵ers financial incentives starting from midnight, a demand spike at midnight

was created as a great number of users scheduled charging events at the same time

[102].

Renewable Energy Utilisation

The strongest argument for the electrification of passenger vehicles is the possibility

to utilise RE as a source for propulsion. This idea complements the concept of

“Smart Grids” in which bi-directional communication and control signals are used

to optimise decentralised power generation and grid operation.
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RE generation, for instance through photovoltaic or wind energy, is subject to

prevailing weather conditions and underlies fluctuations [103]. To provide a reliable

power source for EV charging, RE would be required to be bu↵ered. Bu↵ering

electric energy, however, is expensive [104] and lowers RE’s positive impact as it

creates losses and requires additional equipment. An e�cient combination of RE

generation and smart charging creates interdependence between both processes.

High costs for storing electric energy and the volatility of RE generation creates

another challenge that is addressed with smart charging. In grid branches into which

a large proportion of renewable energy is fed, power surplus can become a problem

[105] and forces grid operators to degrade RE generation when power production

surpluses the demand. Similar to other devices such as heat pumps, EVs can be

used as a flexible load. This means that their load can be adapted within technical

limits. Simplified, charging power could dynamically be increased to reduce sporadic

RE generation surplus [103].

Cost optimal charging

Apart from di↵erent motives of existing smart charging proposals, the vast majority

of scientific contributions does not consider a user’s motivation to participate in

smart charging or argues that monetary benefits for EV users justify the accom-

panying user tasks. Creating financial incentives to shift EV charging describes an

indirect control mechanism (see Subsection 2.2.2). Potential monetary benefits are

challenged, for instance in [103], in which it is questioned if a vehicle owner would

be willing “to waiver a part of the comfort for the chance of reduced costs, o↵ered

by a flexible tari↵.”.

The entanglement to flexible tari↵s constitutes a further shortcoming of existing

smart charging solutions. Using Germany as an example, the roll-out of smart

metering hardware, which is a requirement for the provision of flexible tari↵s, will

not be finished until 20326. Accordingly, financially incentivised smart charging

would be limited to regions with advanced metering equipment.

6
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Utility Controlled Charging

DLC (see Subsection 2.2.2) in the context of vehicle charging is referred to as Utility

Controlled Charging (UCC). UCC describes a form of smart charging in which

the planning of charging and discharging of plugged-in EVs is handed over to an

electric utility or third party [47]. To anticipate the acceptance of EV users to

utility controlled smart charging services, Bailey et al. conducted a survey on 1470

participants and found out that 24% of the participants agreed strongly to the

statement that UCC would be an “invasion of privacy” while 39% strongly agreed

or agreed to the statement that UCC “takes control away from me in a way that I

would not like” [47]. Due to the little acceptance, the concept of UCC is not further

analysed for this thesis.

2.3.2 Summary of Smart Charging Solutions

Charging an EV with high power can create situations where conflicts of interests

arise. While utilities and grid operators are interested in optimised and secure grid

operation, users of EVs wish to fulfil their mobility demand at any given time [38]

[62] [106].

The development of existing smart charging solutions is mostly based on statisti-

cal data of user behaviour and does in most cases not consider individual behaviour

or preferences. Most solutions rely on users’ price sensitivity to participate in smart

charging.

The impact of EVs and the e↵ects of fluctuating renewable energy have not

been critical in the past, but will become more relevant if the trends in EV market

penetration and RE energy installations continues to grow. Hence, smart charging

concepts aim to combine the following aspects:

• Prevention of congestion of the transmission and distribution grid

• Prevention of congestion of single branches

• Utilisation of renewable energy production

• Utilisation of power price incentives
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• Respecting the EV user’s mobility demand

Deduced from the listed findings on EV-grid integration, the following generic inputs

are of relevance for smart charging concepts:

• Plug-in time (for conductive charging) [d:hh:mm] (Details in Section 2.3.2.1)

• Plug-o↵/departure time (for conductive charging) [d:hh:mm] (Details in Sec-

tion 2.3.2.1)

• Required energy [kWh]

• Available power as function of time [kW]

Further data is optional to optimise charging (Details in Section 2.3.2.2):

• Price per unit energy [-]

• Price per unit power [-]

• Percentage of renewable energy [%]

• Percentage of self-generated energy [%]

2.3.2.1 Plug-in time and plug-o↵ time

Plug-in and -o↵-time define the period in which charging of a vehicle can be con-

ducted. This period can be longer than the necessary charging time, which creates

“flexibility”. This flexibility allows charging the vehicle preferably in times of ex-

cessive power availability or in times of cheap energy/power availability.

“Plug-in” and “plug-o↵” events define a period in which a vehicle is connected

to the grid and could potentially be charged. In an uncontrolled charging scenario, a

vehicle starts charging immediately after being connected to the grid. After reaching

the target SOC the vehicle remains idle until it is plugged o↵. Charging immediately

after plugging-in reduces flexibility. Once fully charged, the battery o↵ers no bu↵er

capability for RE or cheaper energy.

“Flexibility” is only available, if the charging time with full charging power

is shorter then the period in which the vehicle is plugged in. Hence, for smart
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charging it is mandatory to have information about the planed unplugging time and

the desired energy since a fall-short of the charging target could compromise the

user’s mobility. The availability of power can change dynamically, for instance due

to other loads in the grid branch or fluctuating power production. Thus, postponing

charging is always associated to a risk of not reaching an EV user’s energy demand.

2.3.2.2 Charging Strategies

Smart charging is conducted by following di↵erent strategies to achieve specific

optimisation goals. These goals may be defined as minimising the cost of charging

or minimising a vehicle’s charging impact on a power grid or to maximise the RE

utilisation. Depending on the optimisation goal, di↵erent signals are required.

Figure 9 depicts an overview of some of the factors that influence smart charging

strategies. A holistic smart charging strategy requires to take both vehicle and

grid-related aspects into account to create a charging plan that fulfils both party’s

requirements.

2.3.3 Challenges and Discussion

The assessment of current smart charging solutions exhibits that existing concepts

are mainly derived from findings regarding EV charging impact on the power grid.

As a result, these solutions postulate a demographic rather than individual user

behaviour. By using demographic behaviour as the basis for the development of

smart charging solutions, the e↵ectiveness of proposed systems is sensitive to indi-

vidual user behaviour deviations.

Previous studies, that are based on user surveys and trials, expect a myopic

charging behaviour [50]. Short term charging considerations, however, stand in con-

flict with the objectives of smart charging. This is because they create spontaneous

power demand peaks which can not be postponed in more sensible periods.

Fundamentally, smart charging can be described as a technical concept that is

motivated by the objective of a stable grid operation. Rationally, an EV user does

not benefit from smart charging, when instant charging without any scheduling
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Figure 9: Overview of factors that are involved in the process and application of
smart charging.

is considered as an alternative. Hence, existing smart charging concepts propose

incentives to utilise EV users’ price sensitivity for smart charging participation.

Some findings of EV charging trials suggest that distinctive user groups are

in general susceptible to incentives [50]. Despite limited representativeness of the

conducted studies, the investigated applications of smart charging require manual

input from the EV user regarding charging preferences, e.g. required energy and

time at which charging must be completed, to be functional. Ideally, charging needs

should be communicated as early as possible, to utilise the time between the moment

in which the need is determined and the time the energy should be provided.

Based on the previous summary, smart charging is an integral part of a smart

grid, which is required to harmonise power demand and supply. A smart charg-
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ing framework’s task can be formulated to answer the following (vehicle-related)

questions:

• Until when has the vehicle to be charged?

• How much energy will be needed?

• Where will the vehicle be charged?

All of the aforementioned factors are dependant of a vehicle user’s individual

mobility behaviour. Mobility behaviour, as will be demonstrated in the following

section, is often characterised by repetitive patterns. Therefore a framework that is

capable of providing the required information for smart charging needs to be able

to learn and predict individual mobility behaviour.

While the framework focuses on learning individual mobility behaviour, the col-

lective knowledge of many users can be utilised for the higher purpose of smart

charging EV fleets. Based on previously described findings, a smart charging solu-

tion should either be aware of the time-varying grid load and schedules charging in

periods of little residual loads or contribute to the determination of a reliable load

profile for e�cient time-dependent resource allocation. The identification of rele-

vant input parameters provides the groundwork for the development of an adequate

smart charging framework. Other than previous works, e.g. [50], this project aims to

relieve an EV user from considerations such as “charging decisions once they arrive

at a location where charging is available” or “decisions when to depart jointly with

the charging decision”. This includes that a user is not required to choose between

di↵erent options for smart charging, which is o↵ered to him after every single trip.

A key advantage of an automated smart charging scheme is that grid resource

allocations based on individual charging schedules could be conducted earlier than

with manual inputs. Individual and time-dependent energy demand could be up-

dated every time a new charging schedule is created, which could be done in real-

time. Up to date charging demand in the form of individual charging schedules

could help to identify situations of potential grid congestion or missing RE avail-

ability early in advance.
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2.4 Travel Pattern Analysis and Mobility Prediction

Travel patterns of humans have been in the focus of scientific investigations since

multiple decades. In 1984 Recker et al. [107] described activity patterns “as a set of

measurements that define human movement and the output is the classification of

this movement into a set of either ‘natural’ or predetermined categories.”. Challeng-

ing, however, is “the reduction of the complexity of the measurement vector while

maintaining the corresponding information content for pattern comparison [...]”. A

deeper analysis of corresponding literature shows that travel patterns are often used

to describe frequently observable trajectories.

Mazimpaka et al. give a comprehensive overview of methods and applications

of trajectory mining. Based on [108], this thesis follows the conceptual approach

of describing individual vehicle related spatio-temporal patterns, which intends to

find human-interpretable structures describing the data. To this end, Chapter 3

analyses and illustrates vehicle-related movement patterns, that have been collected

specifically for this project.

The description of movement patterns sets the basis for the subsequent prediction

of corresponding patterns, aiming for an accurate individual and vehicle-related

spatio-temporal energy demand schedule.

Out of three di↵erent pattern mining categories, that are Frequent Pattern Min-

ing, Group Pattern Mining and Repetitive Pattern Mining, the latter is of interest

for individual mobility prediction. It is used to describe regular movement patterns

such as the movement of a commuter [108]. Regularity in this context encompasses

some kind of periodicity, which promotes the object’s predictability [109].

2.4.1 Travel Patterns

A review of pertinent literature shows that the term “mobility” is used in di↵erent

descriptive contexts. Hence the interpretation of “mobility prediction” is context

related and therefore used for di↵erent application problems [110]. By definition,

the term is applied to describe an object’s movement within a predefined space.

Relating to human mobility, this can describe mobility within an apartment, a
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house or a building where a “relevant place” can be a single room or even a part of

one specific room [111] [112]. In a greater scale, covering areas of, for instance, a

University Campus [113], some sources refer to mobility within greater areas. Qin

et al. simply define mobility as spatio-temporal tracks of individuals [114].

To this end, mobility in the context of this research refers to mobility that is not

limited by a specific spatial or temporal restriction. However, the focus is set on a

spatial and temporal scale, that is relevant for a framework that schedules charging

events for EVs.

2.4.2 Human Mobility

Inherent in the historical development of human societies, human mobility behaviour

covers di↵erent domains. Independent from its domain, human mobility can be

described as an alternating process that consists of “jumps” (between locations) of

length �r and waiting times (time spent at the location) of duration �t. Findings

of [115] indicate that the distributions P of �r and �t are both fat-tailed and can

be expressed with

P (�r) ⇠ |�r|�1�↵ (1)

with 0 < ↵ < 2 and

P (�t) ⇠ |�t|�1�� (2)

with 0 < �  1 [116]. Figure 10 illustrates �t which has been observed in [114].

The characteristic fat-tailed shape of these distributions suggests describing hu-

man travel behaviour as Lévy flights or Continuous-Time Random Walks (CTRW).

Both Lévy flights and CTRW have well studied modelling frameworks, as has been

pointed out in [116], and propose a simple framework implementation for human

mobility prediction. However, Song et al. demonstrate that both models do not ex-

plain and sometimes even stand in conflict with reproducible scaling laws regarding

human trajectories, which they derived from two large mobility data sets.

Using among others [116] as a baseline, Schneider et al. broke down human

mobility patterns to three key indicators [117]:
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Figure 10: Residence time at most relevant locations [114].

• the trip distance distribution p(d)

• the radius of gyration rg(t)

• and the number of visited locations S(t) over time.

Several researchers dedicated their work to finding statistical models which can be

used to describe these three key indicators. Brockmann et al. found out, that when

P (d) is interpreted as the probability of finding a displacement of length d the trip

distance distribution can be approximated with

P (d) ⇠ d�(1+�) (3)

where � = 0.59 ± 0.2 [118]. Gonzales et al. [115] concludes that the radius of

gyration distribution P (rg) can be approximated with

P (rg) = (rg + r0
g
)��rexp(�rg/) (4)

with r0
g
= 5.8 km, �r = 1.65 ± 0.15 and  = 350 km. Furthermore, in [116] it has

52



been found out that the number of distinct locations S(t) visited by a randomly

moving human can be approximated with

S(t) ⇠ tµ (5)

with µ = 0.6± 0.02.

Three aspects of the aforementioned findings should be critically assessed. One is

that the data sets that were used for the formulation of the aforementioned equations

do not consist of ground truth data. Instead, the location data is derived from mobile

phone records that were either captured when a person received a text message/call

or periodically once per hour. The individual’s location was then assumed to be in

the vicinity of the closest telephone tower. Similar approaches can be found in [119]

[115] [120] [121].

Hence the second aspect: The data sets that were used to derive (3) (4) and (5)

are rather coarse-grained. An individual’s movement within the range of one single

tower is not being reflected. In their data set, consisting of mobile phone records

from the area of Seoul, Chon et al. detected 11±2 significant places in the range of

one telephone tower [122].

The third aspect is that the proposed methods were tested on long-term mobility

behaviour, usually covering periods of more than eight weeks. As has been pointed

out in [116] and [117], S(t) does not show a robust scaling exponent µ for t < 24h.

Furthermore, it has been demonstrated in [115] that rg stabilises only after a few

months.

Referring to a smart charging framework, empirically observed scaling laws for

human mobility do not su�ce to predict an individual’s mobility for charging pur-

poses. This is due to individual deviations and the di↵erence in prediction periods.

However, these scaling laws help to identify relevant parameters, which are the lo-

cations, the step length and waiting times (dwell times) at specific locations.
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2.4.3 Movement Clustering

Clustering of movement has been conducted for di↵erent purposes. Lv et al. [123]

clustered movement patterns according to the hourly movement data entropy to

identify four di↵erent user types.

Qin et al. [114] propose two di↵erent clustering methods to identify similarities

in spatio-temporal movement data. One method uses k-means clustering and the

hamming distance to measure the distance between two day vectors. The second

method they propose is based on a community network detection [124]. With this

method, user mobility records create an individual weighted network. Similarities of

day vectors are expressed as weight, where days with similar vectors have a weight

of one and day vectors with little similarity have a weight close to zero.

A benefit of this approach is that it is not necessary to adjust the number of

clusters a priori. More specifically, Qin et al. use a variant of the algorithm proposed

by Duch et al. which is based on an extremal optimisation (EO) of the value of

modularity and is feasible for the accurate identification of community structure in

large complex networks [124].

The corresponding clusters were then used to create an “average day” from all

days of one cluster, under the assumption that this average is a good representation

of the created cluster. An important finding is that with data clustering, Qin et al.

is able to reduce the uncertainty, measured as entropy in movement data. Entropy

in context of mobility data is used to quantify the randomness in mobility data and

is discussed in more detail in Subsection 2.4.9. Reducing the uncertainty implies

an increase in predictability, hence an opportunity to enhance the performance of

a prediction algorithm. Figure 11 illustrates the number of di↵erent clusters, the

number of frequently visited locations and the user profile specific entropy before

and after clustering. All data profiles consist of smartphone location data.
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Figure 11: Di↵erence in entropy before and after clustering mobility profiles. The
clustering was done with help of an extremal optimisation (EO) algorithm [114].

2.4.4 Mobility Prediction Applications

Motivations that are often presented for research in the context of mobility pre-

diction and travel pattern analysis are: urban planning and tra�c forecasting [125]

[126] as well as migratory flows [110] and epidemic modelling [127]. More recent work

can be found in the context of network performance improvements [128] [129], data

pre-fetching [130] [131] and energy consumption of smartphones [132]. Economic

motivation is presented by Barbosa-Filho et al. [110], in which a better under-

standing of human mobility behaviour is motivated by findings of studies in Europe

and the USA, which state that households spend 15-20% of their expenditures on

transportation, making it the second-largest expenditure category after housing.

In addition to that, [110] also emphasise, that transportation is the second-largest

source of GHG and therefore has an enormous impact on human societies.

A technology-driven indication for the relevance of user mobility/location data

is demonstrated in “Google data collection” by Douglas C. Schmidt [133]. Schmidt
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found out that a device with Google’s browser, Chrome, installed, sends around

340 location updates per day to Google’s servers, even if the device is dormant and

stationary. This accounts for 35% of all data samples sent to Google.

2.4.4.1 Location Based Services

Location-based services (LBS) describe information technology (IT) services that

utilise an individual’s or object’s location to provide specific functionalities or ser-

vices [134]. To provide this service, specific parameters need to be known to the

corresponding IT system. This includes an individual’s current position and the

assignment of a service to a location. A location, in this context, is defined as a

spatial region of any size or form. Both an individual’s current position and the

assignment of a location are the fundamentals of human mobility prediction, which

is why mobility prediction could be described as an extension to LBS.

An example for the close relationship of LBS and human mobility prediction is

given in [135]. Krumm et. al. used GPS-data of vehicles to create a probabilistic

map of location dependant destinations. Extending the probable destinations with

route guidance and tra�c information provides a useful LBS to drivers. The pro-

posed solution must not be considered as a genuine prediction mechanism. Relevant

aspects, such as temporal correlations and departure times were excluded from the

research. However, the proposed model in [135] aimed to predict destination while

the vehicle was being on a trip and used LBS data to anticipated a vehicle’s future

whereabouts. Further examples for LBS are given in [136][131] [137] [138] [139] [140]

[141] [142] [143] [144] [145] [146] [147] [148] and [149].

2.4.4.2 Network Performance Improvement

More recent applications use mobility prediction in wireless networks for network

performance improvements and handover events [150]. Baumann [130], for instance,

investigated di↵erent variants of Markov Model-based prediction methods to predict

a user’s location within a wireless network to pre-fetch relevant data for smartphone

applications. Another example of smartphone-related mobility prediction is [149].

To predict a smartphone user’s mobility, kernel density estimation is used on multiple
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temporal and spatial variables for location prediction. While these are just some

examples for potential network improvements, smartphone related applications have

been one of the biggest drivers in the realm of user mobility prediction. To this end,

researchers often use smartphone sensor data for prediction applications. However,

similar to most prediction tasks in wireless networks, smartphone application-related

prediction often focuses on short term predictions for periods of seconds to minutes,

which describes “next step” prediction tasks [130].

2.4.5 Prediction Methods

At the beginning of mobility research, Origin-Destination (OD) matrices (T) were

used to capture the number of individuals Tij which travel between predefined origin

zone i and destination zone j. While in the past Tij was based on travel surveys

or tra�c counts and used to describe mobility on a population level, rather than

individual level [110], individual GPS data allows to adapt the OD-matrix concept

to predict mobility behaviour on an individual level (see Section 2.4.5.1 for a more

detailed discussion).

An assessment of di↵erent data representations helps to assess various predic-

tion methods, that are presented in recent literature. Depending on the prediction

task, the literature proposes di↵erent forms of representation for mobility data. An

overview of di↵erent travel data representations is given in [151] of which some are

illustrated in Figure 12.

In its simplest form, location prediction is location independent (LI). This means,

that a naive predictor chooses the most observed location in an individual’s location

sequence as the individual’s future location. While this may look like an oversimpli-

fication of the prediction task, [115] demonstrated that in a ranked list of locations,

where the highest ranked location is the location at which an individual was observed

most often, the probability to find a person at a location with rank L is:

P (L) ⇠ 1/L (6)

which describes the Zipf law [152]. However, a naive predictor is of little help for
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Figure 12: Di↵erent travel sequence representations [151].

applications that require spatio-temporal predictions of human travel behaviour as

it predicts an individual to always be at the same location.

Other systems use visitation sequences, as illustrated in Figure 12, to compute

transition probabilities between locations. These systems are described as location

dependant (LD) systems, as an individual’s location is considered as input for the

prediction task. Temporal parameters increase a prediction task’s complexity [153].

To limit the complexity of time dependant location predictions, a popular method

is to discretise time intervals (see Figure 12) to limit the number of possible pre-

diction outcomes. However, this step reduces the achievable temporal accuracy of

a prediction (see Section 4.6 for a more detailed discussion). Further overviews

about di↵erent mobility prediction methods are given in [149] [154] [130] [108] and

[110]. The following subsections discuss di↵erent mobility predictions approaches,

presented in recent literature. Note that due to the growing scientific interest in
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human travel patterns, there is a great number of di↵erent iterations of prediction

mechanisms. The following subsections discuss the conceptual approaches behind

these mechanisms and will highlight transferable aspects, which are of specific in-

terest for the investigation of EV related mobility prediction, focusing on smart

charging use cases.

2.4.5.1 Discrete-time Markov Models

Markov models are one main type of human mobility prediction methods [154]. Re-

ferring to [155], a Markov model describes a stochastic process or a sequence of

random observations, where an observation is independent of all other observations

except the antecedent. Observations also referred to as system states, can be used

to describe a person’s presence at a defined location (L). Transferring a first order

Markov model to mobility behaviour, the sequence of a person’s visited locations

(system states) allows calculating the transition probabilities from one location to

another. Figure 13 illustrates a simple Markov process, in which a systems transi-

tions from state l1 to l2 to l3 and so on.

𝑙1 𝑙 𝑙 𝑙 𝑙

Figure 13: First order Markov illustration

According to [155], the conditional distribution for observing ln, given all previ-

ous observations up to time n, is given by

p(ln|l1, ..., ln�1) = p(ln|ln�1). (7)

Assuming that only a person’s current location is relevant for the transition

probability to the next location, describes a Markov model of first order. Likewise, if

a person’s current and previous location is used to compute the transition probability

to the next location, a Markov model of second order is being obtained, where the
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joint distribution is given by

p(l1, ..., lN) = p(l1)p(l2|l1)
NY

n=3

p(ln|ln�1, ln�2). (8)

It is possible to create a transition matrix that contains probabilities from a set

of locations to all attainable locations. The parameters of a Markov process can be

expressed by a transition matrix, written as

P =

2

66666664

P (l1, l1) P (l1, l2) . . . P (l1, ln)

P (l2, l1) P (l2, l2) . . . P (l2, ln)

...
...

. . .
...

P (ln, l1) P (ln, l2) . . . P (ln, ln)

3

77777775

. (9)

Based on a traditional Markov model, future states can be predicted by choosing

the state that is, based on the transition probability, most probable to occur for the

next step. This approach shows similarities with the previously described OD-

matrices as it is based on a n ⇥ m matrix that is created by origin-destination

couples but replaces the number of individuals that travel from i to j (Tij) with the

probability of an individual to travel from i to j (Pij).

Markov models provide the basis for many location prediction applications. In

these applications, Markov models with little complexity (first order with fallback

solutions) performed best for “next step” predictions [130] [153]. A fallback solution,

in this occasion, describes a mechanism that allows the algorithm to “escape” into

a di↵erent state [153].

2.4.5.2 Neural Networks

Neural Networks (NN) are often used for clustering, classification, pattern recogni-

tion, forecasting and association tasks [156]. Their strength, characterised by their

ability to recognise patterns [157], proposes their applicability for travel pattern

analysis and prediction.

Based on [157], the fundamental concept of NN for classification and regression

problems will be summarised in the following. Consider a classification problem
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in which an input is to be assigned to a correct class in a set of classes Ck where

k = 1, ..., n. Let a set of input variables for the classification be denoted as x1, ..., xd

and a set of output variables as yk where k = 1, ..., c. The intention of using a NN

is to use some mathematical equations with adjustable parameters whose values are

determined with the help of example data to solve this classification task correctly.

This task can be written in the form

yk = yk(x;w) (10)

where w is a vector of parameters. Learning and training in the context of NN

refers to the process of finding values for the vector’s parameters which fulfil the

classification task most accurate on an example data set.

When categorical data is used to train a NN, the data must be provided in a

form, that presents features in a processable integer format. A simple method for this

processing step is an one-hot encoder to perform “binarisation” of categorical data

and to include it as a feature to train a model. Table 3 illustrates how categorical

data can be encoded to train a NN.

Table 3: Example of one hot encoded categorical data

Category

1

2

3

!

Category 1 Category 2 Category 3

1 0 0

0 1 0

0 0 1

To create interpretable results for mobility prediction applications with NN, softmax

functions are applied to obtain probability distributions of the generated output

[155]. This could be necessary to assign probabilities to a set of locations, comparable

to the output of a MM based mobility prediction.

An example of mobility prediction with the help of NN is given in [158], in which

an individual’s future trajectory is predicted to identify relevant base stations in a
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5G network cell. For a similar use case, reference [159] used NN to predict handover

events in wireless networks to improve a user’s service quality and network resource

allocations.

As the mobility prediction domain is dominated by MM based prediction meth-

ods, only very few scientific investigations provide a direct comparison with NN

based prediction methods. An example is [160] in which three di↵erent prediction

methods, including a NN, are compared to a naive predictor and a first order MM.

On the used data set, the introduced NN outperformed the MM by around 8% on

average for “next place” predictions. However, with 44% accuracy for the MM im-

plementation in [160], the indicated performance is significantly lower than what has

been reported in several other pieces of research that utilised MM based prediction

methods for mobility prediction [130] [153]. Since Etter et al. left out a detailed

explanation for the applied input parameters for their MM implementation, the

presented results can not be compared to other implementations.

2.4.5.3 Probabilistic Kernel Method

In cases in which the probability distribution for a process or event is unknown

Probability Density Estimation (PDE) can be employed. In the case of mobility

prediction, PDE has been applied to estimate various spatio-temporal parameters.

Do et al. [149], for instance, used PDE to estimate the time dependant probability

to find an individual in a set of known locations. For this purpose, location specific

data points were created in a five minute interval, when a user was registered to be

in a known location via a smartphone’s GPS. New locations were added with an

incremental identifier to an individual’s set of locations. “Locations” were declared

as GPS points with a 100 meter radius. By overlaying 24-hour intervals, Do et

al. used di↵erent kernels to create a probability distribution for the aforementioned

location identifiers. Intuitively, a more frequently occurring identifier (often visited

locations) creates a time dependant higher density, hence a higher probability in

contrast to a less occurring identifier (less visited location).

The introduced model was validated with a data set of 133 smartphone records,
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collected in a period of at least three months. The prediction accuracy was reported

to be 84% on average for one-hour predictions and 77% on average for three-hour

predictions, starting from a user’s current location. With their model, Do et. al.

presented remarkable results regarding the prediction accuracy for one and three

hours. Referring to a smart charging scheme however, one to three hours of predic-

tion horizon is too short to create a reliable charging schedule. Nevertheless, the

concept of PDE has been demonstrated to be a useful tool for the estimation of

transitions times (see Section 4.6 for a more detailed discussion).

2.4.6 Mobility Prediction Challenges

Mobility prediction in the context of human mobility is subject to some degree of

uncertainty, due to the randomness in human mobility behaviour [119]. Hence,

challenges in human mobility prediction are a) to capture the uncertainty of an

individual’s travel behaviour and b) to adapt schemes that use mobility prediction

according to the degree of uncertainty. The following subsections give an overview

of relevant findings in the field of human travel patterns, which should be considered

in the design of a smart charging framework.

2.4.7 Atypical Travel Behaviour

So far the reader has been introduced to di↵erent machine learning techniques to-

gether with di↵erent fields of applications. What most of the introduced prediction

frameworks have in common is a static distinction between mobility behaviour on dif-

ferent days of the week. While some researches further distinguish between working

days and weekends [130] [161], this simplification assumes periodicity-based travel

behaviour. Hence the prediction of events on a Monday is based and limited on

historic data of all Mondays (or all working days). A periodicity-based approach

neglects a phenomenon that has been described as atypical travel pattern in [151].

With help of a large sample of transit smart card records from London, Goulet-

Langlois et al. were able to demonstrate that regularity in travel behaviour is not

tied to the periodicity of fixed time intervals (weekdays or week). How the proposed

smart charging framework will take into account atypical travel behaviour will be
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explained in Subsection 4.4.

2.4.8 Predictability

Independent of the field of application, human mobility is subject to some degree of

randomness in human behaviour. One of the most cited work in the field regarding

randomness in mobility prediction is [119] in which the theoretical limits of human

mobility predictions have been investigated. The work described in [119] was the

starting point for several researchers to investigate the correlation between spatial

and temporal features that enabled prediction schemes to reach the in [119] claimed

upper limit of human mobility predictability of 93%.

Predictability can be defined as the mean probability to predict a person’s next

location correctly [162]. Based on this definition Song et al. presented a method that

aims to determine the limits of human mobility prediction mathematically [119].

Di↵erent aspects of mobility, such as arrival time and dwell time, show di↵ering

degrees of predictability, based on entropy calculation. Baumann used the Mobility

Data Challenge (MDC) data set7 to calculate the predictability of residence time and

arrival time of individuals’ three most visited locations and showed that residence

time is characterised by higher predictability than arrival times. Figure 14 depicts

Baumann’s results.

The results reveal that it is generally easier to predict where somebody will be

than the corresponding arrival times, which coincides with findings of [153].

2.4.9 Entropy

In information theory, Entropy measures the average number of bits that are re-

quired to code a given message with a set of symbols, for which their probability of

occurrence is known [163].

In the context of mobility prediction, Entropy can be used to measure the irreg-

ularity in behaviour, which is an indicator for a person’s predictability. A pertinent

work in this regard is [119], in which the limits on the predictability of human mobil-

ity have been investigated. Song et al. used entropy of mobility records to describe

7https://www.idiap.ch/dataset/mdc
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Figure 14: Findings of Baumann in the MDC data set. Correlation of probability
and predictability for residence time and arrival time and cummulative distribution
function of residence time for L1= most visited location, L2= second most visited
location, etc.[130].

the interplay of regular and therefore predictable behaviour and behaviour that oc-

curs randomly, hence being unpredictable. Based on the mobility data of 45000

individuals, Song et al. claimed an upper bound of 93% predictability.

Song et al. introduce three entropy measures, that have been applied on mobility

data consisting of individual, slotted sequences of cell phone tower symbols: the

random entropy, the temporal uncorrelated entropy and the “actual entropy”. The

random entropy is defined as

Srand

i
⌘ log2Ni (11)

where Ni is the number of individual locations visited by user i, assuming an even

distribution of probability per location. This value is considered as indicator about

a user’s predictability as, under this assumption, the probability to predict a user’s
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location correctly is 1/N and S increases with N . In reverse, assuming an individ-

ual is completely predictable (for instance because it is always at one location) S

equals 0. However, this is obviously not the case, as humans tend to visit a lim-

ited number of locations with distinctive probabilities. To account for the di↵erence

in popularity of all user specific destination, the temporal-uncorrelated entropy is

introduced as

Sunc

i
⌘ �

NiX

j=1

pi(j)log2pi(j) (12)

where pj(j) is the probability that location j was visited by the user i. As Sunc

i
does

not capture the temporal aspect of the location sequence, the “actual entropy” is

defined as

Si ⌘ �

X

T 0⇢Ti

P (T 0)log2[P (T 0
i
)] (13)

where P (T 0
i
) is the probability of finding a particular time-ordered subsequence T 0

i

in the sequence Ti. In (13) Si depends not only on the frequency of visitations but

also on the order in which the nodes were visited and the time spent at each loca-

tion, “thus capturing a spatio-temporal order presented in the individual’s mobility

pattern”.

However, in [119] data was divided in hourly intervals. As Burbey illustrated in

[164], the form of representation of mobility data has an impact on the prediction

outcome. This is related to findings of [165], which show that the spatial and

temporal resolution of data influences the maximum predictability of movement

data. The stated maximum predictability of > 90% was also discussed, among

others, in [151], [162] and [166] to refine the aforementioned upper limit.

Ikanovic et al. show in [165] that the maximum achievable predictability in-

creases with a lower temporal and spatial resolution of the same data. Similar

findings were presented in [151] in which it is argued that, due to the hourly resolu-

tion of cell phone data in [119] in conjunction with the entropy measure described

in Equation (13), their findings merely reflect the tendency of an individual to stay

in a location for multiple hours. In [151] in particular, it was made transparent,

that the predictability for a “time-bin location” is higher than for a “next place”
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prediction.

Equally Zhao et al. pointed out that for travel behaviour prediction, the few

hours when people travel to di↵erent locations are much more important than the

majority of hours, in which they do not [167]. Thus, a user’s location will more

often than not, stay the same, which explains the high theoretical limit of 93%

predictability in [119].

The di↵erent interpretation of [119] and [162] regarding mobility data entropy

estimation illustrates that there is not one general rule for computing mobility data

entropy. To account for the number of time slots in the investigated data, user

mobility entropy S in the remainder of this project is, similar to [162], estimated

with:

S = �

P
N

j=1

P
i2I

lij

Dtot
· log

⇣
lij

Dtot

⌘

Ttot

(14)

where the number of time slots in one day is Ttot, the number of days is Dtot, I is

the set of all visited locations and lij is the number of times location i dominates

time slot j.

2.5 Literature Summary and Discussion

EVs o↵er great potential to reduce transportation related pollution. The integration

of EV into power grids is challenging, as the magnitude of e↵ects that are caused

by charging vehicles are the product of many dynamic factors. Simultaneously,

EVs create possibilities to be used as flexible loads, which can be used to utilise

fluctuating RE.

For the integration of EVs into smart grids, that organise grid resources to

harmonise power demand and supply, smart charging solutions are proposed. Smart

charging requires the provision of information about the time and location dependent

energy demand of EVs. The time and location dependent energy demand is a

function of an EV user’s mobility. Hence, existing smart charging schemes are

dependant on a user’s charging decision and the willingness to provide the necessary

information.

Studies that investigated the charging decision process of EV owners assume a
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joint charging and travel decision. Based on considerations of the currently available

energy and the energy required until the next charging opportunity is available,

charging decisions are myopic.

Myopic charging behaviour, however, stands in conflict with the fundamental

concept of smart charging. Smart charging, which requires bi-directional commu-

nication, works best when individual charging needs are communicated as early

as possible to be able to organise grid resources and schedule charging loads into

sensible periods.

Existing smart charging frameworks prioritise a grid-centric approach for

scheduling schemes. Existing user-centric approaches discuss the aspects of charging

EVs, but lack an investigation of the smart charging principle. Apart from mone-

tary benefits, that are claimed to motivate users to conduct smart charging, little

attention is set on a user’s motivation and benefit of using smart charging technology

[168].

As has been pointed out, a vehicle’s energy demand is a function of a user’s

vehicle-related mobility. Humans tend to follow circadian rhythms in their mobility

which can be used to make reasonable assumptions about their future whereabouts.

Travel behaviour also allows making predictions about the type of transportation

and the taken routes.

Insights into human travel patterns, progress in the field of mobility prediction

and findings of user mobility entropy allow the application and adaption of various

prediction methods which can be used to derive individual charging parameters.

Existing smart charging schemes can be improved by a smart charging framework

that takes an individual’s mobility into account and provides vehicle-related energy

demands automatically to the grid instances to relieve the user from being involved

in charging decisions and the burden of providing charging parameters manually.

This dissertation introduces a joint framework for automated user mobility pre-

diction and smart charging. Empirical implementations of the joint framework are

carried out with mobility data of smartphones and vehicle data that has been specif-

ically collected for this research.
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The applicability of such framework on real world data is used to demonstrate

that a smart charging framework can avoid EV charging related disutility and that

a user is not required to adapt his/her mobility behaviour due to EV related con-

straints. The resulting framework should not only contribute to the wider adoption

of smart charging but also to an improved EV acceptance.
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Chapter 3: Data Collection and Augmentation

Due to data scarcity, researches often make use of mathematical models for an impact

evaluation of EVs on the power grid. This can be attributed to the relatively low EV

adoption at the time of writing and due to the challenges that researchers encounter

when personal vehicle data needs to be collected [50].

Nonetheless, research in mobility prediction generated a number of di↵erent mo-

bility data sets and surveys that were made available in recent years [49] [169].

Processing real-world data avoids to make assumptions about the stochastic nature

of human mobility and reduces corresponding uncertainties [38].

Human travel behaviour prediction for automated smart charging purposes cre-

ates specific requirements which suspends the usability of most available data sets.

The prediction of specific trajectories requires detailed data to identify similar trips

and their characteristics to derive their significance and energy related context. More

specifically, the mobility data must contain features which allow the computation of

route specific energy demands.

To this end, Chapter 3 describes a mobility data set trial, in which vehicle data

has been collected specifically for this project.

To account for the specific requirements of a smart charging framework, several

requirements regarding the data features must be satisfied. For example, the mobil-

ity data must provide details about the driving trajectories to assess route-specific

energy demand. Hence, it is insu�cient to use mobility survey data, which is usually

limited to the number and/or length of trips per day (e.g. [49] and [169]). Facing

similar challenges as other researches, the lack of both public data and an EV fleet

requires this project to rely on vehicle data that has been collected with conven-

tional (internal combustion engine) vehicles [170]. Conventional vehicle data can

lack representation due to EV related aspects, for instance, range anxiety, charging

infrastructure scarcity and biases. However, simulation results in this thesis demon-

strate that mobility demand recorded with conventional vehicles could be satisfied

with EV, without any trade-o↵s. Hence, it is valid to state that the aforementioned
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preconceptions are unfounded and that users can eventually drive EVs with similar

requirements as ICEV [170].

Based on the aforementioned challenges and preconceptions of electric mobility,

a framework that predicts and simulates charging demand based on data collected

with ICEV proves that corresponding mobility demand could be satisfied with EV.

At the same time, “ICEV-mobility data” is unbiased in the sense that the observed

individuals did not adapt their mobility due to range anxiety or other EV-related

aspects.

The illustration of data that has been collected in the context of this work will

show that it exhibits characteristics similar to those used by other research projects

[130] [149] [169] [170] [171]. Based on the similarity of specific data features, it is

valid to state that the majority of data collected and used in this thesis appears to

be representative for typical travel behaviour. The capability of the proposed frame-

work to predict behaviour learned based on the collected data is thus transferable to

other data of similar features and provides an original contribution. However, the

reader should recall that, as in any empirical analysis of travel behaviour, the data

is a↵ected by geographical, cultural and temporal aspects. Furthermore, exceptions

within the used data sets, for instance, atypical travel behaviour, will be discussed

and examined separately in Section 4.4.

Chapter 3 discusses some general features of the collected data sets. However,

due to limitations in space, only some user profiles will be illustrated in detail to

visualise distinctive travel behaviour characteristics. These characteristics are, if

not stated di↵erently, shared by most individuals in the data set and hence are not

necessary to be illustrated individually.

3.1 Introduction

The prediction of individual behaviour requires historical data of the relevant in-

dividual regarding visited locations. Such data has significant privacy implications

and therefore must be protected. In most cases, even low-resolution data reveals

an individual’s home location and allows conclusions about behaviour patterns and
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lifestyle preferences.

This chapter provides details about the collection method and processing of cor-

responding data to user mobility profiles. Data Source 1 (DS1) refers to a purposely

collected data set which consists of private passenger vehicle data, collected with

in-vehicle GPS receivers. Based on definitions given in [167], DS1 is transportation

mode-specific and can be described as intrinsic mobility data. Trip start and end

times can be set into a direct context of a trip start and end with a specific type of

transportation.

The data set for the validation of the prediction framework concept is enlarged by

Data Source 2 (DS2), which utilises smartphone movement data. The smartphone

data consists of multiple samples of a user’s time stamped location data. This form

of data is described as extrinsic mobility data [167]. Unlike intrinsic mobility data,

extrinsic data is not assigned to a specific type of transportation. A trait of DS2 is

that it is not necessarily associated with a transportation activity. More specifically,

location records were only recorded when a location based service application was

running and requesting the location from the smartphone’s operating system. An

extrinsic data collection method requires a mapping of the data records and the

travel behaviour by utilising the time and distance between location samples [167].

The combination of both intrinsic and extrinsic data collection methods is used

to investigate the data source’s impact on the framework’s output. To the author’s

knowledge, this work is the first that uses intrinsic and extrinsic data for smart

charging purposes. Inherent to their collection method, DS1 and DS2 show di↵erent

sources of error which have a measurable impact on their prediction accuracy out-

come, as will be demonstrated in Section 4.8. Based on the definition given in [110],

similar prediction methods are applied to data of di↵erent domains. While vehicle

data is considered as a single-scale domain, smartphone data must be considered as

a multi-scale domain, as it contains multi-modal movement data.

Further details about the additional processing of movement data will be given

in Section 3.2.
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3.2 Data Collection

An EV’s energy demand is a function of its utilisation. To this end 44 privately

owned vehicles, that are driven regularly, are equipped with GPS-trackers8, to record

trip specific parameters:

Table 4: Data collection parameters

Parameter

Latitude

Longitude

Altitude

Speed

Unix time

GPS-Accuracy

Trackers are connected to the vehicle’s On-Board-Diagnostics-2 (OBD2) Port

for power supply. For as long as the vehicle is moving, GPS positions are sent to a

dedicated server via GSM.

3.2.1 Equipment

The tracking devices were calibrated to be activated when a vehicle was started

and to be deactivated when the vehicle was shut o↵. The selected tracking devices,

illustrated in Figure 15, were equipped with internal storage of 160 Byte to bu↵er

data when no signal service was available.

8GV500 Queclink, http://www.queclink.com/GV500
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Figure 15: Tracking device with two GPS antennas, internal storage of 160 Byte,
backup battery and GSM module.

3.2.2 Experiments Setup

Participants were asked to keep the tracking device installed for at least eight con-

secutive weeks. There were no additional requirements set, apart from that the

vehicle should be used on more than three days per week, to provide a minimum

data input for simulated charging needs.

Table 5: Collected demographic data

Description Participants Percent

Female 9 20.5

Male 35 79.5

It is recognised that the acquired sample size should not be considered as repre-

sentative for any EV user group. However, as will be illustrated in the remainder of

this chapter, the collected data is a good representation of mobility patterns, that

were reported in other mobility studies. Therefore it is reasonable to assume that

results that will be extracted from the acquired data will provide a scientific contri-

bution and that later derived prediction schemes are applicable for other individuals.

Table 5 gives an overview of the basic demographics of the trial’s participants.

The influence of demographics on a mobility predictor’s performance has been re-

ported as negligible [130].
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Due to the sensitive nature of the collected data, participants received a privacy

policy information sheet before the tracker installation to inform about the data

collection scope and handling process. At no time tracker data and personal data

were stored on similar devices or in the same network. The server that hosted

the database stored tracker data linked to the tracker device’s International Mobile

Equipment Identity (IMEI) number.

The web front end which allowed access to the database was secured by a Flask9

reference module [172]. To secure the transmission of a user name/password com-

bination, communication between client and server was carried out exclusively via

Hypertext Transfer Protocol Secure (HTTPS). To access data via an Application-

Programming-Interface (API), a predefined API-key was required. Requests without

the API-key were denied. The server that stored the data was located in a locked

server room at the Stuttgart Media University and secured through a Firewall. The

data handling throughout the experiment was in compliance with the General Data

Protection Regulation (GDPR).

3.2.3 Route Matching

Location prediction methods require input about the sequence of visited places.

However, for energy related queries information about trajectories between these

places are necessary. To identify repetitive driven routes, a route matching scheme

is employed. Route matching refers to the process of assigning a degree of similarity

to a set of trajectories [173]. Note that route matching is done for every user, more

specifically for user specific mobility record, individually.

Calculating the geographical distance between GPS coordinates can be done,

among other methods, by calculating the Euclidean distance or great-circle distance

depending on the desired accuracy [173]. For this thesis, a Eucleadian distance

based method is used to compare the similarity of trajectories. The conducted trial

uses GPS latitude/longitude/altitude records which allows an object’s localisation

in a three-dimensional space. Hence trajectories are not required to be compared

according to their shape solely. A shaped based comparison would create high

9https://flask.palletsprojects.com/en/1.0.x/
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computational costs since a new route record would have to be compared to the set of

all existing user specific routes. The computation costs can be reduced by an initial

comparison of the start and end points of two to be compared trajectories. When

corresponding start and end point are outside of a to be defined space (which define

visited places), they can be excluded from the comparison, as these trajectories

cannot be similar.

Raw coordinate values are not su�cient to be compared with each other to

determine route similarity in the conducted trial. This is because the number of

captured coordinates, even on similar paths, can vary depending on the tracker

calibration (time or distance dependant records, filters that optimise storage and

performance, etc.). Hence, the route matching method is adapted accordingly.

First, a trajectory T is defined as in [173]:

T : ((p1, t1), ..., (pn, tn)) (15)

where pk 2 R2, pk 2 R 8k 2 [1...n], 8n 2 N and n is the length of the trajectory.

The real location between ti and ti+1 is unknown. A line segment between pi and

pi+1 is defined as si.

The Euclidean distance between two trajectories can then be expressed with

the Hausdor↵ distance. To compute the Hausdor↵ distance the infimum distance

between a point of set 1 (Route A) to all points of set 2 (Route B) is determined.

The supremum (longest of all shortest) of this set of distances defines the Hausdor↵

distance. It is defined as:

dHausdorff (A,B) = max{ sup
a2A

inf
b2B

d(a, b), sup
b2B

inf
a2A

d(a, b) }. (16)

Because the shortest distance from one point set to the other is not symmetric,

it is required to compute the geographical distance from Route A to Route B and

from Route B to Route A. This method is non-directional as it does only compare

the shapes of two routes and does not take the route’s direction into account. A

route from Location A to Location B and a route from Location B to Location A
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would be considered as similar when the same paths were taken [174]. However,

this method is robust against an unequal quantity of coordinates that represent the

respective routes as it does not compare them consecutively.

The method, as described in (16), is a point-to-point based distance calculation

and thus prone to GPS outliers. The e↵ect can be mitigated by using a point-to-

segment comparison [173]. A point-to-segment based approach considers the entire

route for the distance calculation instead of just the recorded coordinates.

The method is still Hausdor↵ distance based but instead of determining the

maximum distance between two routes, the average distance is calculated. More

specifically, the degree of route similarity is determined by the average value of

all straight line distances between each coordinate and its closest segment of the

opposing route. Calculating the average deviation has the advantage of being robust

against outliers.

Informally, the process is summarised with the following steps:

1. For each coordinate in Route A, calculate the straight line distance to all

segments of Route B.

2. Select the minimum of all these calculated distances for each coordinate.

3. Add together all previously determined minimum point to segment distances

to get a total of all distances.

4. Repeat the previous steps 1-3 for each coordinate of Route B to Route A.

5. Similar to the approach of calculating the Hausdor↵ distance, this leads to two

values: The sum of all minimum point to segment distances from Route A to

Route B and the sum of all distances from Route B to Route A. Add both

of these values together and divide the result by the total amount of recorded

coordinates.

Based on the Hausdor↵ distance approach, this algorithm compares the shape

of two routes without taking their direction into account. Since the direction of a

route may have implications on the energy demand, the start- and endpoints of two
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routes are compared. Only if the geographical distance between the start coordinates

and the distance between the end coordinates of both routes are within a radius of

empirically determined 800 m [175], routes are being compared with each other.

The threshold was determined to be big enough so that route deviation originat-

ing from parking the vehicle at di↵erent locations are ignored but small enough to

consider short trips between close locations (the trip would be ignored if the length

of the trip is below the threshold).

3.2.4 Preprocessing

Matching trajectories is a pre-processing step to assign distinctive trajectory identi-

fication numbers (trip IDs) to recorded trajectories. Once a new trip is successfully

compared and assigned to a previously driven trip, it is labelled with the same ID

that has been given at the first trips appearance. The computational cost for this

process is justifiable as it reduces the input for a learning algorithm significantly.

Transitions between locations can thus be expressed by a single trajectory identifier

only.

Recall that prediction methods such as MM are based on a system’s “state

changes”. In the case of mobility prediction, these states are defined as a presence

at specific locations. This mechanism requires to identify significant locations, which

are referred to as personal points of interests (POI).

Assigning POIs is comparable with the assignemtn of trip-IDs. Data records at

a relevant location will be distributed around the actual location. This is because

a user could park a vehicle at di↵erent locations around a distinctive destination.

Also, GPS-errors could falsify the determination of a POI, for instance in a parking

garage.

The clustering method selected for this thesis is based on a method proposed by

Ashbrook et al. [139]. The concept behind this proposal is adapted by assigning a

radius to the last coordinate of every trip, which then defines a POI. Every trip end

that lies within the radius of a previously defined POI is assigned to the correspond-

ing POI. Since endpoints may be distributed around a POI centre, for instance, due
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to di↵erent parking spots, k-means is used to continuously adapt a POI’s centre

point. Recording trips as described in Section 3.2.3 allows defining route-specific

POIs as they are start and endpoints of a trajectory. The duration between two

consecutive trips can be defined as parking time. The time that a vehicle remains

at a POI together with trip sequences allows drawing a contentious timeline that

can be used as input for predicting a vehicle’s prospective energy requirements.

3.2.5 Observation and Analysis

Di↵erent data features can be characterised for distinctive properties of collected

user profiles. The identification of distinctive user characteristics is useful for mul-

tiple reasons. Being able to classify users in groups of similar movement behaviour

helps to adjust the prediction framework accordingly to subsequently improve the

individual prediction performance.

Data of 27 participants met the requirements that were set to be eligible for the

prediction framework. Data from the remaining users had to be neglected from the

evaluation since their records were inconsistent or incomplete.

Table 6 gives an overview of the collected data of DS1. Key indicators such as the

average number of trips per day and the average distance per trip are comparable

to data of [49], which is illustrated in Figure 16.

Figure 17 illustrates all driven trip distance of the analysed data. Note that

90% of all trips are shorter than 48 km. Assuming an average power demand of 22

kWh/100km for an EV, which is a typical value for medium size EVs [43], means

that 90% of all trips require less than 10.5 kWh per trip. Furthermore, it was found

out that trips that account for the longest 10% have a repetitive factor of 1.4. This

shows that these trips are most of the time, not part of routines. Figure 18 and

Figure 19 illustrate the trip distance distribution of User 2 and User 6. Plateaus at

30 km (User 2) and 38 km (User 6) illustrate that a great proportion of all driven

trips for these individuals are comparable in length. By clustering similar routes

with unique identifiers, the analysis of trip IDs revealed that for both users the

plateaus are mainly created by the daily commute between home and work. Apart
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Table 6: User data overview DS1

User Days of
obser-
vation

P

Trips
Av.
Trips/
Day

Mean
trip
[km]

Median
trip
[km]

total
Dist.
[km]

90th
per-
centile
[km]

1 71 116 1.6 16.48 9.08 1108 32.49
2 57 77 1.4 12.54 8.65 1727 30.73
3 70 188 2.7 14.72 5.95 4961 52.00
4 54 187 3.5 22.92 13.11 3444 33.82
5 58 183 3.2 19.58 5.04 1700 49.38
6 69 162 2.3 18.85 12.75 4416 38.91
7 111 311 2.8 27.17 13.24 5586 37.98
8 160 392 2.5 30.04 4.25 7301 29.29
9 139 389 2.8 27.44 8.43 6309 61.01
10 114 264 2.3 29.24 9.65 6430 40.44
12 82 261 3.2 22.21 7.40 4505 29.84
13 111 299 2.7 22.35 8.43 6821 54.34
14 172 229 1.3 11.59 6.17 1815 12.56
15 134 291 2.2 36.98 17.00 8440 67.94
16 113 180 1.6 24.62 17.70 4477 49.34
17 98 453 4.6 15.20 6.48 6748 31.55
18 94 333 3.5 14.24 5.09 3999 22.52
19 384 784 2.0 11.29 5.00 6545 29.79
20 394 699 1.8 21.86 9.17 8239 19.79
21 74 304 4.1 12.34 5.62 2797 18.94
22 132 480 3.6 10.17 5.20 3598 12.75
23 131 401 3.1 11.89 8.74 4343 20.30
24 132 501 3.8 13.89 7.72 6305 32.36
25 368 302 0.8 25.33 6.72 4781 38.92
26 390 672 1.7 8.70 6.46 2837 8.53
27 86 315 3.7 15.03 5.73 3811 20.00
28 133 258 1.9 37.65 20.20 8310 48.14

Total 3931 9031 133527

Av. 140 343 2.6 21.59 9.32 4945 34.21
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Figure 16: Average number of trips per day by country [49].
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Figure 17: Trip distance distribution of all users of DS1. Trips shorter than 1 km
are excluded from the illustration. The green lines mark the 90th percentile.

from the similarity in length, these trips also show a high degree of regularity in

terms of their appearance frequency.
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Figure 18: Trip distance distribution of User 2. Commute is coloured in red. For
scaling trips shorter than 1 km are excluded from the illustration.

Figure 19: Trip distance distribution of User 6. Commute is coloured in red. For
scaling trips shorter than 1 km are excluded from the illustration.
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Several sources report observations that indicate that humans tend to travel

between few significant locations [115] [116] [118]. DS1 confirms these observations.

89% of the total observation time, participants spent at one of the three most visited

locations. This is reflected by the visit count as well as the dwell time per relevant

POI, as illustrated in Figure 20. Vehicles remained parked for around 61% on

average at their most visited location while location data of smartphones indicate

an average of 54% of dwell time for their most visited location. The lower value

for smartphones can be explained by the comparatively higher number of locations

that were recorded in DS2 compared to DS1 (e.g. a person might visit two stores

while the person’s vehicle was parked at a single location).
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Figure 20: Dwell time in percentage per top ten locations for vehicle data (DS 1, 27
data samples)

Due to their high frequency and long dwell times, frequently visited locations,

such as home or workplaces, o↵er great potential for optimised charging events. To

this end, the individual dwell time distributions on these locations are of specific

interest. Figure 21 and Figure 22 illustrate dwell-time distributions of User 2 and

User 6 at their two most visited POIs. In both cases, a great proportion of stopovers

show a similar duration which suggests good predictability of dwell times at these

locations. Only on a few occasions, the dwell time is significantly higher than usual,
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which could illustrate weekends at which the vehicle was not used, holiday’s or times

in which another vehicle was used.

Figure 21: Dwell times on the two most visited locations of User 2

Figure 22: Dwell times on the two most visited locations of User 6

User 2 and User 6 are examples of characteristic mobility behaviour in DS1,

which is distinguished by a great degree of regularity. Their mobility behaviour is

also following findings of other researchers, such as [113] in which 69% (+-7%) of

transitions are towards a location that is visited at least three times in a period of

two months.

All location records of User 6 are presented as colourmap in Figure 23. The travel

records show that the person travels regularly from its home location to the working

place in the morning and back home in the evening. A regular visit is also observable

on the last working day of the week (Fridays). The travel behaviour at weekends

is rather irregular. The user’s average profile entropy is 0.68. Just by visualising
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Figure 23: Colourmap of all location records of User 6 (69 days). The first recorded
day is a Wednesday. Di↵erent colours indicate presence at di↵erent POIs. Black
entries indicates periods of driving. Note that departure time on the last weeks of
record are shifted to the left, due to clock change (daylight saving).

the data, it is possible to identify a high degree of regularity for departure times in

the morning. Furthermore, it becomes apparent, that departure times from work to

home in the afternoon underlie more deviations. The distribution of departure times

in the morning and evening respectively are illustrated in Figure 24. In the morning

User 6 leaves most of the time in a period between minute 386 and 400. A few times

he left earlier between minute 351 and 365. Departure times from work to home are

wider distributed, creating a “leaving period” of roughly 100 minutes. Note that

the distributions in Figure 24 only depict departures from home to work and vise

versa. Departures to other destinations are excluded. Departure time distribution,

trip length distribution as well as the dwell time distribution of Users 2 and User 6

show characteristic shapes, which can be observed for most user profiles in the data

collection trial.

Naturally, there are users with less characteristic travel behaviour. In that re-

gard, an interesting observation was made on data of User 16. The shape of trip

distance distribution (Figure 25) is comparable to Users 2 and 6 (see Figure 18 and

19), however, the mobility pattern illustrates a distinctive di↵erence to other users.
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Figure 24: Departure times in the morning and in the evening (with corrected day
time saving o↵set).

Figure 28 shows that User 16 follows a travel behaviour, that can be described as

Figure 25: Trip distance distribution of User 16. For scaling trips shorter than 1 km
are excluded from the illustration.

atypical [151]. Trips from and to work, which usually underlie great regularity and

weekly periodicity, change in terms of departure time by increments of eight hours

with a periodicity of three weeks. As User 16 works in a three-shift operation, the

mobility behaviour contains a three-week periodicity, which consequently a↵ects the

commute times.

Other than the commute of User 6, that starts in one period with a length
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of roughly ten minutes (Figure 24) , departure times of User 16 gather in three

periods that are distributed over the entire day, as illustrated in Figure 26. Wider

distributed events are more challenging to predict. For User 16 an average entropy

of 1.18 was determined.

Figure 26: Departure time distribution for commute of User 16.

In Figure 26 departure events to the working place are grouped in three periods

of roughly 40 minutes. The three periods are separated by eight hour increments.

Departure events from work to home show similar characteristics. It is recognisable

that departure times towards home in the night (around minute 100) are more

pronounced. This could indicate that the person developed the habit to always

drive home after leaving work in the night but to visit other locations after work if

the shift ended during the day.

Figure 27: Dwell times on the two most visited locations of User 16.
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Figure 28: Colourmap of all location records of User 16. 60 minute o↵set due to
UTC time shift.

3.2.6 Mobility Patterns from Mobile Phone Data

For the smartphone data, more than 80% of total record time is spent at one of

the three most visited locations. Accounting for 89% of record time it is 9% more

likely to find a vehicle at one of the three most visited parking locations. These

numbers match with findings of [115] and [176] which issue similar numbers in their

investigation of large mobility data sets. It can also be highlighted that for all user

profiles of DS2 the following statement is true: the location that overall has been

visited for the longest period is the location at which the majority of nights (11:00

p.m. - 5:00 a.m.) is spent. This permits the assumption that the longest visited

location is also the individual’s home location, which is of interest for charging

matters and will be discussed in more detail in Chapter 4.

Figure 30 illustrates the trip distance distribution of 56815 trips in DS2, con-

sisting of 251 user Profiles. The longest 10% of trips are between 406 km and 21.6

km in length. The 90th percentile is around 50% shorter than in DS1. The mean

and median trip distance is 8.85 km and 3.65 km respectively. The total recorded
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Figure 29: Dwell time in percent per top ten location for smartphone data (DS2, 96
data samples)

Figure 30: Trip distance distribution smartphone data (DS2, 251 User). The green
lines mark the 90th percentile.

driving distance in DS2 is 503630 km.

These values indicate di↵erent characteristics than illustrated for DS1 which can

be accounted to di↵erent factors. The data sets were collected with di↵erent meth-

ods. DS2 does not allow to di↵erentiate between personal vehicle trips, passenger

rides or other means of transportation such as bus or train rides. Furthermore, GPS
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signal is usually not available in indoor or urban environments, where according to

[113] people spend approximately 87% of their time.

State of the art smartphones use Assisted Global Positioning System (AGPS) to

assist the satellite-based positioning system. AGPS uses cellular location data and

wireless network signals to assist localisation [177]. However, DS2 is anonymised

and allows no assumption about the type of smartphone or software that has been

used to collect the data, hence, no indication about the data accuracy is given.

Finally, the DS2 does not indicate whether a smartphone was switched o↵ or

if a smartphone paused the location tracking for energy-saving etc. In the data, a

period in which the smartphone’s positioning system was switched o↵ appears as

visit at the location at which the system was switched o↵.

Other than DS1 which, apart from few exceptions, has been recorded in Germany,

DS2 consists solely of data recorded in the USA, California.

3.2.7 Data Access

Assigning trip and POI IDs is the first step in a multi-step process to predict vehicle-

related mobility behaviour. By collecting GPS data and storing it in a database

allows making specific requests, independent from the applied prediction algorithm.

For instance, an algorithm could request an individual’s visited POI-sequence for

specific periods, departure times from specific POIs or trip lengths between POIs.

A generic database sets the groundwork for the subsequent prediction task.

Chapter 4 illustrates how the introduced framework builds upon the described pre-

processed data structure.

3.2.8 Discussion

The vehicle data is less complex compared with the smartphone data as it features a

unimodal movement record. The data shows fewer locations that are considered as

relevant for the user and trajectories are in general limited to space that is accessible

to vehicles. False data was observed when GPS signal strength was too weak or not

existing, for instance in parking garages or tunnels.
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Smartphone data is more complex compared to vehicle data as it consists of

multimodal travel records and covers a greater space dimension. The separation of

“travel” and “movement” data is prone to false classification and the identification

of the particular transportation mode is a nontrivial task [178] [179]. Besides, DS2

consists of time-stamped GPS points without any indication of transportation mode

and was collected without any temporal consistency. To this end, the data set has

been re-sampled to create profiles with one GPS point per minute.

DS2 requires additional processing to be usable for this analysis. Hence GPS

records were separated into movement data, for instance, when a person travels and

non-movement data when a person remains stationary. A trip is assigned when

the data indicates an average speed of � 2.7 m/s for at least 180 seconds. Due

to the varying data sampling frequency, it must be expected that DS2 contains

noise. Departure times, in particular, might be a↵ected by a delayed detection

of movement. However, the data collection method of DS2 is comparable to data

collection methods of other research projects, which investigated human mobility

and travel behaviour. In [119] and [165] for instance, travel behaviour was deduced

from cellphone data, consisting of cell identification numbers which were assigned

according to a user’s presence in the vicinity of a cell phone tower. These data

sets do neither contain information about the mode of transportation but provided

insights into human travel behaviour in general.

Nevertheless, findings derived from DS2 will be influenced by noise and the afore-

mentioned re-sampling process. For instance, the analysis of DS2 neglects “trips”

within a radius of around 500 metres (2.7 m/s ⇥ 180 s). Since this investigation

aims to capture mobility that is conducted by a (personal) vehicle, movement that

takes place within such a small radius can be neglected, as it creates no signifi-

cant energy demand. On the other hand, the data set’s limitation regarding the

detection of transportation mode can lead to the assignment of a vehicle trip even

tough the true mode of transportation was di↵erent, e.g. train, bus, etc. Thus an

overestimation of required energy as a result of mobility in DS2 must be expected.

Both DS1 and DS2, as any empirical analysis of travel behaviour, is influenced
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by a person’s “lifestyle”, “perceptions”, “attitudes” and “preferences” [180]. To this

end, it is recognised that not all travel choices and motivations can be captured in

this work. Thus the subsequently introduced prediction framework is designed to be

independent of “locational behaviour” and “activity behaviour” [180], which would

involve location features and/or location-specific activities into the prediction task.

Instead, the framework is designed to rely on acknowledged findings of human travel

behaviour, which state that humans tend to revisit a few significant locations and

follow repetitive mobility behaviour on a daily periodicity.

3.3 EV Energy Demand Model

For this study, no real-world ground truth data of EVs was accessible for evaluation.

Hence mobility data of ICEVs has been collected to test the prediction of travel

patterns and subsequent scheduling schemes. To create a reasonable energy demand,

two di↵erent options are available:

• Calculating the energy demand based on an average energy demand per dis-

tance unit and applying it to the recorded driving distances.

• Applying a dynamic vehicle model on the recorded driving data to calculate

an energy demand based on the vehicle dynamics.

The simulation of an energy demand via a vehicle dynamic model is a more

complex task then assuming average energy demands. A simulation can be imple-

mented with respect to parameters such as the vehicle’s acceleration, ambient- and

component temperatures, etc. Thus, simulated energy demands will account for

personal driving styles and environmental conditions, which should reflect in more

accurate assumptions about the individual real-world energy demand. However, a

simulation’s accuracy depends on the availability of such external data. If data is

used, which does not contain information about acceleration, vehicle mass, tem-

perature, etc. the complexity of simulation might not be justified. The following

section describes an EV energy demand model that uses vehicle dynamic data and

ambient temperature data to compute an individual’s EV-related energy demand.
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The assessment of sensible input parameters and the simulation model’s accuracy is

discussed in [172].

3.3.1 Vehicle Energy Demand Estimation and Measurement

Di↵erent studies have been conducted to evaluate passenger vehicle energy con-

sumption. Figure 31 illustrates distributions for energy consumption for di↵erent

classes of passenger vehicles including energy for auxiliaries [181]. The data10 is

derived from a dataset recorded by 522 BEVs for a period of three weeks. Table 7

summarises the results of the study for small, medium and large passenger vehi-

cles as well as for light commercial vehicles (LCV). The results were derived from

the maximum probability of vehicle class-specific energy demand distributions, as

illustrated in Figure 31.

Table 7: Estimated energy consumption per 100 km

Vehicle class Mean [kWh] Median [kWh]

Small 14.8 14.5

Medium 20.5 20.2

Large 24.3 22.9

LCV 25.7 25.0

Further investigation concerning energy demand of EV were conducted in [43].

The illustrated values in Table 8 were determined under test bench conditions and

include auxiliary consumers.

Table 8: Measured energy consumption in [43]

Vehicle kWh/100km

Mitsubishi i-MiEV 14.8

Mercedes-Benz A-Klasse E-Cell 33.2

Smart Fortwo Electric Drive 17.2

Nissan Leaf 18.8

Citroën Berlingo 16.5

10The actual vehicle trajectories were not made available in this study.
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Figure 31: Energy demand distributions for di↵erent vehicle classes according
to [181]. Dashed lines indicate 95% confidence intervals calculated by bootstrap-
ping.

In all references, vehicles with greater weight show an increased energy demand

compared to smaller vehicles which implies that this is mostly accountable to greater

inertia. The total energy demand is the sum of several di↵erent factors, which will

be described in the following section.

3.3.2 Energy Demand Modelling

To be able to assign an energy demand to mobility data that is not available in

the granularity that is required to feed a holistic vehicle dynamic model, a good

estimation of missing parameters for di↵erent vehicle types is required. A vehicle’s

energy demand Edem is a function of its utilisation. Edem is the product of the

required power Preq to overcome driving resistances for time t:

Edem = Preq ⇤ t (17)

where Preq is composed of di↵erent driving resistances and auxiliary power demands:
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Preq =
Pres

⌘res
+

Prec

⌘rec
+

Paux

⌘aux
. (18)

Pres = total driving resistance

Prec = total recuperated power

Paux = total power of auxiliary consumers

⌘res = overall power train e�ciency

⌘rec = overall recuperation e�ciency

⌘aux = overall auxiliary consumer e�ciency.

Pres is composed of the product of all driving resistances and the vehicle’s

velocity v:

Pres = (Fhc + Frr + Fad + Fi) ⇤ v. (19)

Fhc = hill climbing force

Frr = rolling resistance force

Fad = aerodynamic drag

Fi = inert force.

Fhc is defined as:

Fhc = m ⇤ g ⇤ sin↵. (20)

m = vehicle’s weight

g = gravitational acceleration

↵ = arctan�h

�x
, with �h as a segment’s height and �x as a segments horizontal

distance.

Rolling resistance force is defined as:

Frr = m ⇤ g ⇤ cos↵ ⇤ fr. (21)
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fr = rolling resistance coe�cient.

Aerodynamic drag Fad is defined as:

Fad =
⇢air
2

⇤ cw ⇤ A ⇤ v2. (22)

⇢air = density of the ambient air

cw = vehicle’s drag coe�cient

A = vehicle’s front surface.

Inert force Fi is defined as:

Fi = m ⇤ � ⇤ a. (23)

�= factor for rotational and translational movement

a = vehicle’s acceleration.

An EV can recover a proportion of its kinetic energy when it recuperates (see

Section 2.1.2.2). While recuperating, high electric power flows can occur, which

can exceed the limits of system components [182]. Hence recuperation power can

vary based on the vehicle type. Also ⌘rec is usually not constant. However, due to

the limited resolution of recorded data (approximately one data point per 70 m),

it is feasible to assume that strong deceleration events are smoothened by the data

resolution. Hence it is assumed that recuperated power is a vehicle’s negative inert

force Fi with a constant ⌘rec.

Auxiliary power demands are composed of:

Paux = Pauxvar + Pauxmin (24)

where Pauxvar are variable loads, such as air conditioning or heating devices and

Pauxmin is the minimum power that the system requires to be operated.

The tracking devices could not be used to record the use of auxiliary consumers.

Hence their power demand is modelled empirically. The ambient temperature is

used to model the vehicle’s interior temperature as well as the vehicle’s traction
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battery’s temperature. The ambient temperature was obtained from a web service11

and mapped to the vehicles’ spatio-temporal data.

The thermal management of the vehicle’s interior and the vehicle’s battery ac-

count for the two greatest auxiliary power demands [43]. To account for their power

demand, the thermal conditioning coe�cient � is introduced as:

�

8
>>>><

>>>>:

0, if Tamb = Top

1, if |Tcur � Top| > |Tamb � Top|

|
Tcur�Top

Tamb�Top
|, otherwise

(25)

with

Tcur = Current temperature

Top = Operating temperature

Tamb = Ambient temperature.

The coe�cient accounts for the potential power demand that is created through

the di↵erence between ambient temperature and the vehicle’s (targeted) interior

temperature as well as the di↵erence between ambient temperature and the batteries

operating temperature. Thus

Pauxvar = Pbat ⇤ �bat + Pinter ⇤ �inter (26)

where Pbat is the battery’s power demand and Pinter is the power demand to tem-

perate the vehicle’s interior.

To account for the battery’s temperature-dependent e�ciency, ⌘hv is mapped to

a regression function, as displayed in Figure 32.

The motor’s load-dependant e�ciency ⌘motor is also mapped to a regression func-

tion, as displayed in Figure 33.

11Dark Sky API
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Figure 32: Battery e�ciency. Values taken from [183].

Figure 33: Motor e�ciency. Values taken from [184].

3.3.3 Configuration of the EV Energy Demand Model

The previous section introduced the parameters that are used to create a simpli-

fied model for the energy demand simulation. A more detailed simulation would

not be justified due to factors that cannot be simulated based on accessible data.

This includes individual vehicle configurations, personal preferences, etc. Generic

inputs are illustrated in Table 9. They are constant, regardless of the vehicle or

trip data. The energy demand calculation is done by computing the power demand

while traversing a trajectory segment. Segments are defined similarly as in Subsec-

tion 3.2.3. In the following sections, if not stated di↵erently, the energy demand

refers to the sum of energy demands of all segments of one trajectory.

98



Table 9: Generic model input

Description Symbol Value

Gravitational acceleration g 9.81 m/s2

Passenger mass mp 70.8 kg

Universal gas constant R 8.3145 J

mol⇤K

Molar mass of dry air Md 0.029 kg

mol

Passenger mass mp is added to a vehicle’s empty weight resulting in its total

weight. Vehicle specific static and conditional input parameters are listed in Ta-

ble 10. The traction battery’s and the motor’s e�ciency contribute to a significant

change in power demand when they are operated outside of their optimal tempera-

ture window. Hence these parameters are modelled conditional on temperature.

Table 10: Vehicle parameters

Parameter Symbol Type

Empty vehicle weight me static

Rolling resistance coe�cient fr static

Drag coe�cient cw static

Front surface A static

Rotary translational movement factor � static

Mechanical e�ciency ⌘mec static

HV battery e�ciency ⌘hv conditional

Motor e�ciency ⌘motor conditional

Recuperation e�ciency ⌘rec static

Operation temperature interior Toi static

Operation temperature battery Tob
static

Idle power demand Pauxmin static

It is possible to change the input values depending on the required vehicle type

simulation. For reference, two di↵erent vehicle classes are simulated for this project,

as they account for a great proportion of currently used EVs. Referring to compact
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vehicles, the Nissan Leaf will be simulated. Referring to a limousine style vehicle,

the Tesla P100D will be simulated.

To compute segment-specific power demand for auxiliaries, the vehicle’s interior

and battery temperature is modelled for every segment individually. Both tempera-

tures are used to compute the thermal conditioning coe�cients �inter and �bat. Pinter

and Pbat are obtained from manufacturer’s data for the Tesla P100D12 and from a

large scale study for the Nissan Leaf [185] respectively. The temperature-dependent

maximum and minimum power demand for auxiliary consumers is illustrated in Fig-

ure 34. The simulation chooses a random value between the curves to account for

di↵erent auxiliary consumer use.

Figure 34: Power demand of auxiliary devices [172]

Thereby it is assumed that Toi is 22
�C and Tob

is 24�C. Both the vehicle’s interior

and the battery’s temperature are computed for every trajectory segment. For both,

active heating and active cooling di↵erent temperature gradients are estimated for

driving and idling based on data of [186] [187] [188] and illustrated in Figure 35.

Static values for rolling resistance coe�cient (0.01) and rotatory translational

movements factor (1.1) are based on [189] and [190] respectively.

12https://www.tesla.com/models
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Figure 35: Interior and battery conditioning [172]. The individual graphs illustrate
the change of interior and battery temperature as function of time.

3.3.4 Model Validation

The introduced model is designed to label trip data consisting of time-stamped

velocity, coordinates, altitude and temperature with corresponding energy demand.

The model is validated on a real-world data set, consisting of >900 km of recorded

driving and corresponding energy demand data. As illustrated in Table 11, the data

was collected with a “Porsche Boxster E” prototype vehicle and a Tesla P85+ and
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measured via the vehicles’ Controlled Area Network (CAN) bus system.

Table 11: Test vehicle data

Attributes Porsche Boxster E Tesla P85+

Number of trips 7 7

Total distance 213.24 km 673.19 km

Average trip length 30.46 km 96.17 km

Road type Mostly rural Highway

Season Summer Fall

Average temperature 18�C 5.6�C

The available CAN data was limited on traction components, which excludes

data of auxiliaries. Hence validation of the system’s output E is limited on Pres

and Prec per segment length t. Table 12 and Table 15 compare the simulated and

measured energy to overcome the driving resistances for the recorded seven trips

of the Porsche and Tesla. Table 13 and Table 16 correspond to the simulated and

measured recuperated energy for both vehicles. Table 14 and Table 17 illustrates the

simulated combined energy demands per trip for the Porsche and Tesla in comparison

with the measured energy demand. The di↵erence between simulation results per

trip ft with measured data yt is given as Mean Average Percentage Error (MAPE)

which is defined as:

MAPE =
100%

n

nX

t=1

���
yt � ft

yt

���. (27)

MAPE is chosen as error measurement to account for the di↵erences in trip lengths

(Trip No. 1,...,7).
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Table 12: Porsche Boxster E simulation results for traction energy (rounded values)

Trip No. Simulated

traction E

[kWh]

Measured

traction E

[kWh]

MAPE

1 6.95 7.75 -10.26

2 12.21 12.00 +1.74

3 12.62 12.99 -2.84

4 5.53 6.10 -9.35

5 11.22 11.55 -2.80

6 5.48 5.48 -0.06

7 5.74 6.56 -12.54

Average

5.83%

Table 13: Porsche Boxster E simulation results for recuperation energy (rounded
values)

Trip No. Simulated re-

cuperation E

[kWh]

Measured re-

cuperation E

[kWh]

MAPE

1 -0.75 -0.82 +8.83

2 -1.01 -1.01 +0.31

3 -1.05 -1.33 +20.92

4 -0.46 -0.44 -3.36

5 -0.92 -0.81 -13.99

6 -0.45 -0.30 -50.27

7 -0.54 -0.75 +27.49

Average

17.88%
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Table 14: Porsche Boxster E simulation results for total energy (rounded values)

Trip No. Simulated to-

tal E [kWh]

Measured to-

tal E [kWh]

MAPE

1 6.20 6.92 -10.43

2 11.2 10.99 + 1.93

3 11.57 11.66 -0.78

4 5.07 5.66 -10.34

5 10.30 10.74 -4.07

6 5.03 5.18 -2.84

7 5.20 5.81 -10.62

Average

5.86%

Table 15: Tesla P85+ simulation traction energy (rounded values)

Trip No. Simulated

traction E

[kWh]

Measured

traction E

[kWh]

MAPE

1 48.84 45.40 +7.59

2 45.32 50.22 -9.75

3 51.33 49.47 +3.76

4 13.29 14.00 -5.10

5 12.15 12.57 -3.34

6 8.25 8.09 +2.02

7 20.62 18.57 +11.02

Average

6.08%
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Trip No. Simulated re-

cuperation E

[kWh]

Measured re-

cuperation E

[kWh]

MAPE

1 -3.72 -3.37 -10.23

2 -2.66 -2.58 -2.84

3 -3.28 -3.22 -2.00

4 -0.96 -1.35 +29.10

5 -0.81 -0.76 -5.72

6 -0.78 -1.04 +25.07

7 -1.40 -1.51 +7.20

Average

17.88%

Table 16: Tesla P85+ simulation results for recuperation energy (rounded values)

Table 17: Tesla P85+ simulation results for total energy (rounded values)

Trip No. Simulated to-

tal E [kWh]

Measured to-

tal E [kWh]

MAPE

1 45.12 42.02 +7.38

2 42.67 47.64 -10.44

3 48.05 46.26 +3.88

4 12.33 12.65 -2.54

5 11.34 11.80 -3.93

6 7.47 7.05 +6.03

7 19.22 17.06 +12.64

Average

6.69%

It is recognised that the proposed simulation model does not capture the entire

thermodynamic and dynamic structure that account for an EV’s energy demand.

However, the simulation results demonstrate that the model is accurate enough to
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reflect increased energy demands when a vehicle is used in cold or hot environmental

conditions. Apart from the power demand for propulsion, the model takes into

account two relevant sources of power demand, which are the thermal conditioning

of the vehicle’s interior and the vehicle’s battery. Considering the data resolution,

the model creates small estimation errors for both reference vehicles. The MAPE

for the Porsche Boxster E is 5.86% and 6.69% for the Tesla P85+. The estimation

error for Prec is higher than for Pres. Since Prec accounts for a small proportion in

Preq, the error is accepted.

3.4 Conclusion

Clustering POIs and trips allow a visual inspection of driving patterns. While this

analysis, similar to other research projects, gives insights about common patterns

and behaviours, this work also aims to identify individual characteristics to design

and adapt a prediction and scheduling framework that takes any deviations from

“regular” and well-investigated movement behaviour into account. An example for

atypical travel behaviour has been illustrated with data of User 16.

The prediction of atypical travel behaviour is a more complex task than predic-

tion of typical behaviour. A literature review shows that most researchers assume a

weekly periodicity in human travel behaviour. Assuming weekly periodicity suggests

to cluster days according to their day name or to separate working days from week-

ends. However, this assumption will falsify predictions for individuals with atypical

travel behaviour (see Subsection 2.4.7).

To account for atypical travel behaviour Chapter 4 introduces a method that is

based on similarity measure to provide more reliable mobility predictions and thus a

better energy requirement forecast. Due to the scarcity of data that captures the real

driving behaviour of EV users, the trial utilises data (DS1) that consists of travel

behaviour captured with conventional vehicles. Studies indicate that individual

travel choices are influenced by EV attributes such as attainable range, charging

needs, etc. However, it is argued that these choices are biased through experiences

with conventional vehicles and in most cases unfounded [38]. The assessment of
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travel data sets introduced in Chapter 3 and the corresponding simulated energy

demand indicate that the great majority of trips that are part of individual and

regular travel routines, could be covered with EVs, even if they carry small capacity

batteries.

Furthermore, the fact that the collected data sets are unbiased regarding EV

perceptions is used to argue that individuals would not experience any disutility by

using an EV instead of a conventional vehicle, given an adequate amount of charging

infrastructure is available. Building upon this argument, the collected data is used to

demonstrate the possibility of combining individual mobility, corresponding energy

demand and smart charging.

Chapter 3 introduces and discusses a data collection trial that has been con-

ducted specifically to set the basis for the validation of a prediction and charging

scheduling framework. To enlarge the database and ensure representativeness, DS2

is consulted. Independent from the dataset, home locations prove to be the most

visited location at which individuals spend most of their time, thus being the most

relevant location for potential smart charging. The working/educational location is

the second most visited location and could be considered as an alternative charging

location, given the EV user cannot charge an EV at home.

Based on the analysed data sets, the commute between the first and second most

visited location accounts for the majority of a vehicle’s energy demand. Being the

most regular, thus most predictable proportion of an individual’s mobility, a smart

charging framework is determined to capture these mobility patterns. However,

humans’ tendency to randomly visit new locations must not be neglected by the

framework’s design, as one of the prominent reasons to possess a vehicle is being

flexible in personal mobility.

To be able to use unbiased mobility behaviour on the one hand and to design

a charging scheduling framework, on the other hand, a vehicle dynamic model is

developed to simulate EV specific energy demands. The model uses real-world driv-

ing data and EV component-specific attributes to simulate energy demands based

on the recorded vehicle dynamics and externally obtained temperature values. The
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model is designed to incorporate translational and thermal attributes to account for

the two greatest vehicle-related energy demands: propulsion and heating/cooling of

the traction battery and the vehicle’s interior. Based on findings of human mobility

behaviour, specific features have been extracted, illustrated and discussed to iden-

tify characteristics that can be utilised for the design of a smart charging framework

that takes individual mobility behaviour into account.

Based on the average number of trips per day and the average trip distance, the

average energy demand per day can be estimated. Given the mobility behaviour

that has been captured in DS1 and DS2, EVs with rather small battery capacities

could cover the captured mobility demand. In only very few occasions the driven

trip distance is greater than the range an EV could provide. The data also shows

that the longest 10% of driven trips are not part of routines, hence being less relevant

for prediction based scheduling tasks.

The most visited locations are usually visited regularly and, in most cases, show

characteristic variance in dwell times. If the objective is to utilise parking times

that are the byproduct of an individual’s unbiased mobility behaviour for charging,

these described characteristics are of specific interest as they lower an individual’s

mobility entropy. A low entropy indicates high predictability to the advantage of

an automated scheduling scheme.

These findings provide the necessary groundwork for the subsequent investigation

of adequate mobility prediction algorithms. Features that characterise DS1 and

DS2 are comparable to those reported by multiple other sources. Hence it is valid

to assume that they can be considered to be representative and a framework that

performs well on DS1 and DS2 will also perform well on other mobility data.
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Chapter 4: Mobility Prediction for Battery EV

Predicting a user’s EV related mobility is an open research field with increasing

relevance as markets for EVs are expected to grow significantly within the next

decades. Electric mobility is linked to electric energy demand, which creates a

measurable impact regarding its load on power grids. Together with investigations

that addressed the risk of overstressing power grids due to simultaneously charging

EVs, several types of research discovered di↵erent optimisation schemes. They aim

to mitigate the impact of charging vehicles by organising grid resources and charging

demand e�ciently.

While optimised charging strategies for EV have also been part of recent scientific

publications, the combination of individual user mobility and optimised EV grid

integration was subject to comparatively few scientific investigations.

Chapter 3 discussed di↵erent aspects of mobility records, which can be used to

characterise predictable travel patterns. Based on these characteristics, Chapter 4

describes how to design a mobility prediction framework to meet the requirements

of an automated EV charging schedule.

The mobility behaviour analysis in Chapter 3 has highlighted the following:

• For the majority of individuals, a great proportion of their travel history orig-

inates from their commute.

• The commute is usually the trip between the first and second longest visited

location.

• For individuals with typical travel behaviour, departure times for the commute

can be observed in rather short periods during working days.

Based on these observations a mobility prediction framework for charging scheduling

must not necessarily be capable of predicting every single trip but should be able to

accurately predict dwell times on frequently visited locations, especially if they o↵er

to charge an EV. Irregular trips are of less relevance in terms of their destination

but more on their energy demand. Subsection 4.1 discusses mobility prediction in
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the context of EV mobility. To realise a sensible combination of location and depar-

ture time prediction, Subsection 4.2 introduces a conceptual framework for mobility

prediction, focusing on EV related issues. Section 4.3 describes the methodology

that has been used to design the prediction framework. Section 4.4 addresses the

problem of atypical travel behaviour in the design of a prediction mechanism. More

specifically Subsection 4.5 highlights di↵erent aspects of location prediction to ac-

count for the relevance of frequently visited locations. To account for the temporal

aspect of individual travel behaviour Subsection 4.6 introduces a method to estimate

departure and corresponding arrival time. Spatio-temporal prediction accuracy is

a two-dimensional unit. To account for the framework’s geographic and temporal

accuracy, Subsection 4.8 discusses possibilities to capture both aspects and how to

feedback the error measures to improve the framework’s performance. Parts of this

section have been published in [191].

4.1 Introduction

Individual mobility prediction has been applied to address very di↵erent problems.

Prediction frameworks are usually designed to solve a specific task, such as the

prediction of the next location (e.g. data fetching in wireless networks) or the

arrival time of transportation systems (Busses, Trains, etc.) [159]. In the context of

EVs, the relevant prediction task consists of a private vehicle’s future whereabouts

and corresponding energy demand. Both information can be retrieved by predicting

user-specific trips to locations in a period, which is a function of the driver’s mobility

behaviour and the capacity of the vehicle’s battery. Note that this definition limits

the framework’s applicability to “personal mobility”. This excludes, for instance,

the mobility of a taxi or bus driver during work.

The necessary prediction range, which will be referred to the prediction horizon,

is defined by the point in time in which the vehicle’s battery will be depleted. The

objective of the smart charging framework is to avoid situations in which an EV

user is unable to reach a destination due to insu�cient charge. The parking event

at which the vehicle’s battery will reach a state of energy (SOE) below the required
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energy for the next trip defines the required prediction horizon.

For some applications, only a user’s next location is of relevance. Data fetching

applications or intelligent transportation systems, for instance, often aim to predict

an individual’s next location only. Based on findings in human travel behaviour

(see Section 2) and due to natural constraints, the number of attainable locations

in “next-step” applications is mostly limited to few locations. A human’s tendency

to travel between a few personal significant locations also scales down the period

in which a transition can be expected, which simplifies the prediction task. Hence,

transition prediction applications will be referred to as short-term predictions.

On the other end of the spectrum of mobility prediction there are long-term

predictions, that reach out to months or years [192]. Long-term predictions usually

do not examine location transitions as in case of short-term predictions. Also, an

accurate transition time of day is usually not of specific interest. Instead, long-

term predictions usually aim to gain knowledge about human migration flows and

motivations to travel [193]. Sadilek et al. point out, that techniques, such as Markov

models and random walk-based formalism, that work well for short term mobility

prediction are of little help in the context of long term mobility [192].

In relation to the previously given examples, the prediction of EV specific use

cases can be described as medium-term mobility prediction, which typically reaches

out several days, up to a few weeks. The relevant prediction horizon can be defined

as a function of the vehicle’s battery capacity and a user’s mobility demand. The

following calculation should illustrate how the two factors influence the prediction

horizon:

Let the daily driving distance be 50 km. Further, let the average energy con-

sumption of EVs be 20 kWh per 100 km and the battery size be around 100 kWh.

With a conservative safety margin of around 20% SOC, it is reasonable to assume

that an EV requires to be charged around one time per week.

Relating to temporal predictions, existing frameworks often reduce their com-
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plexity by binning mobility events (transitions to other places) into time slots of 15

minutes [130] , 30 minutes [117] or 60 minutes [153]. A prediction outcome may then

be expressed as “Transition from A to B at time slot 16”, which may be interpreted

as travelling from work to home at hour 16 at that specific day. Using, for instance,

60 minutes as time slot unit reduces the number of possible prediction outcomes

for the most probable transition time to 24 possible outcomes per day. Taking into

account that state of the art EV can charge their batteries from 10% to 80% within

15 minutes13, this temporal resolution for departure time prediction is rather coarse.

A key disadvantage in a fixed time bin selection is that the accuracy, even in regular

behaviour, is bounded to the size of the selected bin width.

Based on the previous description, a major challenge for smart charging related

mobility prediction is the combination of short- and long-term prediction mecha-

nisms. More specifically, a good departure time prediction mechanism needs to be

combined with a high performing transition prediction mechanism for prediction

horizons up to one week. Referencing to the temporal prediction accuracy, higher

temporal accuracy than in existing works would improve the subsequent charging

scheduling task.

This is realised by combining density estimation for departure time predictions

and a Markov model predictor for location transitions. This concept has been pub-

lished in [194] and will be explained in the following sections.

4.2 Conceptual Framework

Literature about human mobility behaviour, EVs and smart charging suggests that

a smart charging framework should consist of multiple sequential steps which can be

separated into three di↵erent segments (Figure 36): Data Collection (1), Prediction

(2) and Scheduling (3). In this context, it is an advantage to design the framework

with a generic coupling of (1), (2) and (3) to be able to implement more sophisticated

models when new findings or more data are available [195].

The three segments are further separated into di↵erent sub-steps. Regarding

13e.g. Porsche Taycan
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Smart Charging Framework
Data Collection 
and Processing Prediction Scheduling

Figure 36: Illustration of three sequential tasks of data handling, prediction, and
scheduling that form the conceptual smart charging framework

Data Collection and Processing (Figure 37), sub-steps consist of the collection of

travel data, charging related infrastructure data and the pre-processing of corre-

sponding data to be processable for the subsequent prediction and scheduling steps.

Data Collection and Processing

Travel Data Charging Data Preprocessing

Figure 37: Three steps that form the Data Collection and Processing step. For
the subsequent Prediction and Scheduling steps, the collected data must combine
energy related travel data in conjunction with information about available charging
infrastructure.

The prediction scheme can be further separated into three di↵erent prediction

sub-steps (Figure 38), consisting of a scheme that handles atypical travel behaviour

(Section 4.4), a location prediction scheme and a departure time prediction scheme.

Prediction
Handling Atypical

Travel Pattern Location Prediction Departure Prediction

Figure 38: Prediction structure

The framework’s third segment (Figure 39) consists of the scheduling segment

that processes data that is relevant for smart charging and the computation of

sensible charging periods and events (Section 5.2.3) based on the previously obtained

mobility prediction.

Apart from the previously defined requirements, the framework must be able to
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Scheduling
Processing Smart
Charging Inputs

Providing Smart Charging 
Schedule

Figure 39: Scheduling structure

handle the following circumstances/conditions to provide a reliable charging schedule

and to o↵er real-world applicability:

• Independent from the consulted prediction scheme, the situation can occur, in

which the probability to visit two di↵erent locations is equal. The prediction

algorithm must be able to provide a sensible prediction nonetheless to ensure

that the subsequent scheduling task can be conducted.

• The prediction scheme must be able to provide a sensible trip and energy

demand prediction when the vehicle visits a location for the first time.

• The system must be able to adapt to changes in a vehicle user’s mobility

behaviour, for example, if the location of work changes, the user moves to a

new home, during holidays, etc.

4.3 Methodology

Humans tend to follow a daily (24 hours) activity rhythm [196], which is why pre-

diction periods may be separated in multiple 24 hour periods. The prediction of

mobility within 24 hours is referred to “Intra-day prediction”. The framework’s

task is formulated to predict the mobility of 24 hour periods and to string consecu-

tive 24 hour periods together. In “traditional” prediction approaches, day sequences

are given by the natural order of weekdays. Figure 40 depicts the corresponding con-

cept. Some researches further simplify this task by joining Monday to Friday in a

“Workday” cluster and Saturday and Sunday in a “Weekend” cluster [123] [153].

In this case, the day sequence is deterministically given by five 24 hour periods fol-

lowed by two weekend clusters. Recall that not all individuals follow a weekly-based

periodicity, as has been illustrated on User 16 in Section 3. To be independent of a
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natural order of day clusters, the order of day clusters must be determined by the

framework. The task of predicting the sequence of day clusters will be referred to

as “Inter-day prediction”. The task of inter-day prediction consists of the identifi-

Intra-Day prediction

Monday Tuesday Wednesday Thursday

Monday_1
Monday_2

Monday_3

Tuesday_1
Tuesday_2

Tuesday_3
Tuesday_n

Inter-Day prediction (given by weekly cycle)

ɒ ɒ

Monday_n

Friday Saturday Sunday

ɒ ɒ ɒ

Figure 40: Traditional approach to predict day dependent mobility

cation and subsequent prediction of day (cluster) sequences, which is illustrated in

Figure 41, and will be explained in more detail in Subsection 4.4. For the intended

Intra-Day prediction

Day Cluster_1 Day Cluster_2 Day Cluster_3 Day Cluster_n

Day_1
Day_2

Day_12

Day_4
Day_7

Day_3
Day_n

Inter-Day prediction�(given E\ sequence prediction)

ɒ ɒ

Day_n

Figure 41: Artificial Neural Network based sequence prediction

framework, day clusters provide the input for day-specific location and departure

time predictions. In Chapter 2 it has been discussed that Markov models of n-th

order with n < 2 and fallback performed best under di↵erent conditions. Hence,

the introduced framework is enabled to switch into a model of zeroth order, which
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corresponds to a location independent (LI) state. In a location independent state,

the location at which an individual was observed most often at the next time bin

will be predicted as the individual’s next location, independent from the individual’s

current location. The determination of the most occurring time-dependent location

corresponds to the mathematical term mode and will be referred to in the follow-

ing sections accordingly. Details about the Markov model-based location prediction

scheme are given in Section 4.5.

For Markov model based location predictions of order > 0, departure time must

be predicted separately. This is because a time-independent Markov models, which

performed best in [130], contains no temporal information. Departure time predic-

tions are conducted with KDE and are explained in detail in Section 4.6. Note that

an LI prediction requires no separate departure time prediction. By determining

the time-dependent most visited location, a departure would be assigned to the

time interval at which the Mode for the location symbol changes.

Implementing two variants of an inter-day prediction and two variants of intra-

day prediction results in four di↵erent combinations of prediction schemes. De-

pending on the actual user mobility pattern, it is expected that for some users the

“traditional” approach will provide a better prediction performance than the intro-

duced inter-day prediction. Similarly, it is expected that for some users, a location

independent approach performs better than a location-dependent approach. To

leverage the individually better performing approach, the implementation follows

an ensemble learning approach [197]. More specifically, the system combines the

individually better performing methods by executing every possible combination of

aforementioned inter- and intra-day mobility prediction. The final prediction result

is provided by the combination of prediction schemes that performed best for the

individual user. The corresponding performance measure, which defines the best

performing combination of inter- and intra-day prediction, is explained in Subsec-

tion 4.8.3. Figure 42 illustrates the overall structure of the proposed prediction

framework.
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Figure 42: Two inter-day prediction methods and the subsequent two methods for
the intra-day prediction.

4.4 Handling Atypical Travel Patterns

To account for travel behaviour that does not follow the periodicity of one day

or week, the prediction framework is enabled to conduct an inter-day prediction,

which determines the input for the subsequent intra-day prediction. This method is

introduced to enable the framework to handle atypical travel behaviour, which has

been explained in Section 2.4.7.

A day is a natural choice for a basic prediction interval due to the fundamental

period of regularity in human activity and mobility patterns [198] [199]. Recall that

the “traditional” inter-day prediction is based on the assumption that travel be-

haviour follows a weekly periodicity. A system that is designed on this assumption

expects that observations of all Mondays provide the necessary input for the predic-

tion of travel events on Monday. Hence all Mondays form a cluster which serves as

input for the prediction of following Mondays. Furthermore, these systems assume

that there is a fixed cluster sequence, given by the natural order of weekdays. To be

independent of weekday names (weekday clusters) and a given sequence, the weekly

cycle independent sub-method clusters 24 hour periods based on their similarity

regarding travel behaviour.

The order of inter- and intra-day prediction remains the same for both prediction

methods: The inter-day prediction forms a set of days from the recorded user profile,

which is then used as input for the intra-day prediction. The “traditional” approach,

in which the order of day clusters is given by the natural order of weekdays, will be
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referred to as Weekly Cycle Dependent (WCD). The method, which is independent

of the natural order of weekdays will be referred to as Weekly Cycle Independent

(WCI). Details about the day clustering process are given in Subsection 4.4.1.

Based on the output of the inter-day prediction, the intra-day prediction fore-

casts the cluster-specific travel pattern. Recall that in the intra-day prediction, two

approaches are possible, namely Location Dependent (LD) and Location Indepen-

dent. The LD approach referrers to the Markov Model in conjunction with the

kernel density estimation and the LI approach referrers to the time bin dependent

mode.

4.4.1 Day Clustering

To detect atypical regularities in a user’s travel history, days with similar movement

patterns are clustered. This task is solved with a cluster analysis, which can be

described in a three-step process consisting of a similarity measure, fusion algorithm

and determination of an adequate number of clusters. This procedure will be referred

to as Feature Clustering (FC).

Boriah et al. presented and evaluated several similarity measures for categorical

data in [200]. The proposed method is transferred to quantify the similarity in daily

movements with the Goodall1 [200] similarity measure.

Therefore, let T 2 N denote the last time point of a day, which must be chosen

according to the desired resolution, for example, T = 24 for a time point each

hour or T = 1440 for each minute. Further let Pk be the set of all POIs that

occurred on time point k for k = 1, . . . , T for the given user profile overall days in

the data. Further let X = (X1, . . . , XT ) and X 0 = (X 0
1
, . . . , X 0

T
) be the mobility

data of two days, where Xk, X 0
k
2 Pk describes the location at the k-th time point

for k = 1, . . . , T of the first and second day respectively.

The similarity measure SM is then calculated with:

SM(X,X 0) =
1

T

TX

k=1

S(Xk, X
0
k
), (28)
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where

S(Xk, Yk) =

8
>><

>>:

1�
P
q2Q

p2
k
(q) if Xk = X 0

k

0 otherwise

, (29)

with

Q = {POI 2 Pk | fk(POI)  fk(Xk)}

and

p2
k
(Xk) =

fk(Xk)(fk(Xk)� 1)

N(N � 1)
. (30)

N 2 N denotes the total number of observed days of the user profile and fk(x) the

total number of occurrences of POI x 2 Pk at the k-th point of time.

This similarity measure compares whether the individual was in the same loca-

tion for each point in time within two days. Rarely visited locations are weighted

higher to lessen the e↵ect that an individual mostly stayed in one POI, e.g. at home.

Since this is a similarity measure for categorical data, the hierarchical clustering

algorithm is utilised. Furthermore, a silhouette-coe�cient is used to evaluate the

cluster quality and to determine a reasonable number of clusters [201]. It compares

the mean intra-cluster distance and the mean inter-cluster distance of each object

(day). To identify a reasonable number of clusters, the amount of clusters to be

formed is incremented in multiple cycles and the average silhouette coe�cient is

calculated. The number of clusters is determined by the highest average silhouette

coe�cient.

4.4.2 Day Sequence Prediction with ANN

The previous subsection described how clusters are formed. For a user record of

n days, this results in a sequence of n cluster symbols, as illustrated in Figure 43.

Since the order of this sequence is not bound to the periodicity of weekdays, this

approach makes it necessary to learn and predict the cluster sequence separately.

To account for this, it is assumed that successive clusters provide information about
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subsequent clusters.

Hence the ratio of a variable number of known clusters to a subsequent unknown

cluster is to be formed and learned by the framework. The framework is designed

to consider di↵erent inputs for the sequence prediction. The information on known

holidays and the current weekday will be considered in particular. The principle for

two exemplary input clusters for a searched output cluster is illustrated in Figure

44. The cluster assigned to the respective day is indicated by each number and

colour.
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Figure 43: (a) represents a cluster sequence of an individual. The sequence follows a
fairly one week periodicity. (b) represents the cluster sequence of another individual
with a periodicity of three weeks. In both cases, a period of six weeks is displayed.
Each cluster is highlighted with an individual colour.

1 1 2 1 1 3

4 1 1 1 1 3 2

4 1 1 1 1 3 3

2 1 1 1 1

Mo Tu We Th Su

𝐶𝑙 𝐶𝑙 𝐶𝑙

CW 1

CW 2

CW 3

CW 4

3

Sa𝑾𝑫𝒕

Figure 44: Illustration of cluster sequence prediction. The number and colour rep-
resent the determined cluster for the respective day. The example illustrates two
input days for the Input layer (Clt�2 = 1, Clt�1 = 1) with the predicted day being
a Friday (WDt = Fr). In this case the ANN would predict Clt = 1 as an output.

The combination of di↵erent information types results in a complex non-linear
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relationship between input and output [191]. Therefore, an ANN is explored to find

existing patterns in the cluster sequence by combining additional information. The

ANN’s structure allows to integrate additional (categorical) information into the

forecast of the next cluster (public holidays, etc.). The NN’s number of layers is

calibrated to be equal to half the number of input neurons.

...

...

WDt

HDt

Clt�1

Clt�n

Clt

Input
Layer

Hidden
Layer

Output
Layer

Figure 45: Feedforward ANN for next cluster prediction. The input layer can include
the corresponding weekday (WDt), the information of a public holiday (HDt) and
a number of previous cluster numbers (Cl�1, ..., Cl�n).

All described input factors of the ANN are categorical variables. In order to be

able to process them, they must be one-hot encoded [202]. The output of the ANN

shows which cluster most likely occurs for the next day. Therefore it must also be

one-hot encoded. In addition, the Softmax-Function [155] is applied to the output

(see Paragraph 2.4.5.2). Thus the values of the individual outputs range between

zero and one with output neurons summing up to 1. The normalised output can be

interpreted as probabilities for each cluster of the following day.

The coded data is used to train the ANN in order to find a functional relationship

between the input and output clusters. The ANN’s structure is shown in Figure 45.

To recognise the patterns in the respective profile, several ANNs with a di↵erent

number of input clusters Clt�n are trained for each profile (n = 2, ..., 7). The one

with the highest cluster prediction performance (in sample test) is selected. The

trained ANN is then used to obtain a forecast of the next cluster for the upcoming

day. All days in the recorded user profile assigned to this predicted cluster will now

provide the input for the subsequent intra-day prediction (see Figure 42).
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The described scheme for atypical travel pattern prediction can be considered

as an addition to existing MM based prediction methods. It is designed to provide

an alternative approach to the “traditional” process of clustering days. With the

parallel implementation of the di↵erent prediction methods, it is ensured that the

individually better performing approach provides the final mobility prediction.

4.5 Location Prediction

In Chapter 3 specific characteristics of human mobility have been identified and

discussed. Based on findings illustrated in Chapter 3, a human’s mobility can be

described as a network of visited locations, as illustrated in Figure 46. In this

network, for instance, a location’s relevance grows proportionally with its number

of visitations and/or the time spent at the location. The following section reviews

existing methods to determine a location’s relevance in an individual’s network of

visited locations and methods to determine departure times. Based on this review,

Sections 4.7 introduces the concept of a new prediction method.

4.5.1 Review of Existing Methods

Along with di↵erent prediction methods, discussed in Chapter 2, (MM) based pre-

diction methods anticipate that trends in an underlying state sequence provide im-

portant information about the probabilities of the next occurring state [155]. As

has been illustrated in a number of di↵erent research projects, it is valid to describe

human mobility as a Markovian process [113] [140]. Humans tend to follow repet-

itive patterns in their mobility which is one explanation for the good performance

of Markov models in mobility prediction [130].

Based on findings illustrated in [119] and [122], location-dependent prediction

methods generally perform better than location independent prediction methods.

Furthermore, di↵erent combinations of spatial and temporal features were combined

in [130] to investigate their performance in a MM based prediction approach. To this

end, Baumann combined a user’s current location (l1), a user’s current and previous

location (l1l2), time of day, day of the week and weekday/weekends to 18 di↵erent
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Figure 46: Example for an EV user’s location network. Circles (l1, l2, ...) mark an
individual’s relevant locations. A Mobility Markov Model creates edges between
visited locations (states). The edge’s weight is defined by the transition probability
(p) between corresponding states.

Markov predictors and measured their ability to predict a user’s next place 1-time

step ahead. Time steps were defined as 15-minute time slots. The experiment was

conducted on a recorded mobility data set of 37 users (MDC-Dataset14).

Baumann was able to confirm findings of Song et al. and demonstrate that a

first order Markov model, in which solely a user’s current location is used to predict

the next destination, is performing best in terms of prediction accuracy. Baumann

defined the predictor’s accuracy as the ratio of correct predictions to all prediction

attempts.

Another example of the utilisation of a Markov model derived location prediction

scheme is [153]. In her dissertation, Burbey used a Markov model to predict future

locations and departure times. Pointing out a similar separation of spatial and

temporal features as in [130], Burbey proposes to predict future locations based on

a sequence prediction (Markov model) and assigns a Market Basket Analysis for

temporal predictions. Further variances of Markov model applications for mobility

prediction have been presented in [123], [203] and [204].

The principle of a location-dependent transition prediction is illustrated in Fig-

14www.idiap.ch/dataset/mdc
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ure 47. Example probabilities to transition from l0 to l4, l6 and l12 are marked in

red.

𝑙6 𝑙7 𝑙 𝑙 𝑙10

𝑙1 𝑙 𝑙 𝑙 𝑙

𝑙0

𝑙11 𝑙1 𝑙1 𝑙1 𝑙1

7
16

1
8

1
10

Figure 47: Illustration for location prediction steps. Every destination is associated
to a location specific transition probability.

4.5.2 Markov Process

Based on [155] and the definition given in Paragraph 2.4.5.1 Markov processes can

be described with the “Probability Theory”. Let X be a set of POIs that represent

Origins and Y be a set of POIs that represent Destinations. X can take any value

of xi where i=1,..., M, and Y can take any value of yj where j=1,...,L, forming a

L⇥M matrix. Let N be an individual’s POI sequence where the last item is the

individual’s current location x = xcl. If the number of visits in which X = xi is

denoted ci and similarly the number in which Y = yj is denoted as rj, the probability

p for the event (X = xi, Y = yj) is called joint probability and calculated with

p(X = xi, Y = yj) =
nij

N
(31)
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where nij is the cell i, j as fraction of all cells of the matrix L⇥M. The probability

for instances of Y = yj given X = xi is called the conditional probability and is

written as p(Y = yj|X = xi).

The location prediction task can be described as finding the probabilities for

transitioning to a specific node in a network of destinations, given that a POI se-

quence is used to count the number of transitions between X and Y . Since the

Origin (cl) is known (x = xcl), the conditional probability for known destinations

can be calculated with

p(Y = yj|X = xcl) =
ncl,j

NY

(32)

where ncl,j is the number of transitions from cl to yj and NY (cl) =
P

L

j=1
ncl,j.

With Equation (32) it is possible to determine the probabilities of travelling to

all known locations, which must by definition add up to 1. Based on the MM,

the Destination with the highest probability would be considered to be the next

destination. Note that this calculation does not include any temporal information

yet and can be described as a simple stochastic process. This, however, is a drawback

for the application of MM for mobility prediction. More specifically, if data has

been collected for a long period, high counts for known locations will outweigh new

locations simply due to their long existence in the network, but not necessarily due

to higher relevance [140]. Naturally, the longer the data is being collected, the longer

it takes the system to adapt to changes in behaviour. While this feature avoids that

irregular transitions faze the prediction of routines it becomes challenging for the

system to distinguish between new/relevant and outdated data.

4.5.3 Baseline Scenarios

A system that is based on a Markov process will fail to provide a transition proba-

bility if an individual visits locations in a sequence that has not been presented to

the model before (in higher-order models) or when a location is visited for the first

time.

Failing to provide a transition prediction is a significant disadvantage for

medium-term prediction horizons. Whenever the system fails to provide a prob-
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ability p for the next transition, the prediction for the entire transition chain fails.

To avoid that the system is not able to predict a location for the next transition

there are di↵erent options available, also referred to as “fallback” or “escape” solu-

tions [113]:

• When the model’s order n > 1, the order can be decreased until p > 0.

• When a vehicle is used to visit a location for the first time, n = 1 does not

resolve the issue. This is because the MM approach is location dependent.

In this case, the system “escapes” into a location independent state (zeroth

order, see Subsection 4.5.5).

Also, in situations where the probabilities for the next locations are equal, for in-

stance, 50% for POI1 and 50% for POI2, the system is calibrated to select the

location that has been visited more recently, under the assumption that more recent

data contains more information.

4.5.4 Location Dependent Prediction

The location-dependent prediction in the proposed framework is based on a Markov

model of first order. Recall that in a MM system of first order only the current

state, an individual’s current location, is used to calculate the transition probability

to the next state St+1. A user’s recorded POI sequence N is used to create a

transition matrix T with POIs (see Subsection 3.2.4), as illustrated in the following

example:

N=1, 2, 3, 1, 3, 1, 3, 2, 4, 5, 6, 2, 3, 1, 3, 1,...,cl where cl is a user’s

current location. The corresponding transition matrix is depict in Figure 48.
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1 2 3 4 5 6

1 0 0 4 0 0 0

2 1 0 1 0 0 1

3 3 2 0 0 0 0

4 0 1 0 0 0 0

5 0 0 0 1 0 0

6 0 0 0 0 1 0
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𝑥
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Figure 48: Transition matrix example

Naturally, a user’s actual current location is only known for the first prediction

step. Since the framework requires a prediction for up to several days (prediction

horizon), the system assumes a user’s transition to the most probable destination

and repeats the prediction task until the “transition chain” is long enough to cover

the required prediction horizon. The transition to the most probable destination

is checked for plausibility in conjunction with the expected departure time. The

process of checking the plausibility for transition and departure time prediction is

explained in detail in Subsection 4.6.

4.5.5 Location Independent Prediction

A MM of zeroth order corresponds to a location independent prediction [153]. This

prediction variant is implemented as alternative method to let the framework switch

into a di↵erent prediction mechanism in situations in which a MM of first order is

not able to provide a transition probability, for instance, if an EV user parked at a

location that has not been visited yet (see Subsection 4.5.3).

To implement the model, a day is divided into 1440 bins (one bin per weekday

minute). If a user is at the location with the POI symbol ‘1’ from midnight until

6:00 am, time bin No. 1 to No. 360 are assigned to the corresponding symbol. The

method uses no context (previous locations) and will, independent from the user’s

127



Figure 49: Example Colourmap of a six-week mobility record. Trips are indicated
in black. The area framed in red illustrates the input for hour 15 for which the
mode predicts the most probable location. To predict a day specific most probable
location for hour 15, for instance on a Monday, only Mondays serve as input.

current location, predict an individual’s next location to be the one that has been

the most visited location at the day-specific time bin in the past. This method is

location independent, which especially for long prediction periods should be more

robust against error propagation. If A describes a matrix where the columns are

minute of days (1440) and the lines are days of records, starting from the current

minute ti, ti+1 is calculated with

mode{arxmi+1, ..., arnmi+1} (33)

where x is the first relevant day and n is the last relevant day.

As this method picks the most occurring POI identifier per time bin, it can be

referred to the mathematical operation mode [151]. Note that it is not ensured that
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this method predicts a trip duration correctly or a trip between location transitions

at all. To this end, a subsequent step must be added to this method, which ensures

that between every predicted location transition a trip symbol is existing. In the

tested implementation a trip’s duration is the median trip duration of the predicted

trip ID. The predicted trip ID is the ID that occurred most often between the

departure location and the predicted destination. Figure 50 gives an example for

Figure 50: Example of predicted colourmap.

the prediction result, using six weeks of sample data of the example user, displayed

in Figure 49.

4.6 Departure Time Prediction

This section introduces a non-parametric departure time prediction method that is

based on kernel density estimation (KDE). A separated departure time prediction
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is required since the previously described Markov model’s transition prediction is

decoupled from the departure time prediction.

4.6.1 Review of Existing Methods

Temporal behaviour is generally more di�cult to predict than spatial behaviour

[122] [205]. The temporal aspect of mobility prediction can be investigated from two

di↵erent angles. One approach is to identify characteristic periods (time of day),

in which an individual is usually on the move. By investigating di↵erent mobility

profiles, the beginning of these periods can be observed in the morning hours, when

people usually commute to work. A higher probability to be at di↵erent places

results in a higher mobility entropy. The hourly mobility entropy of di↵erent users

is illustrated in Figure 51. The illustration is the result of an analysis in [123] to

illustrate periods in which humans are more mobile, hence less predictable.

Figure 51: Entropy of di↵erent User Clusters [123]

Another approach is to focus on the prediction of stay time at a distinct loca-

tion, as demonstrated in [205] and [122]. Based on the MDC data set, Baumann

demonstrated that stay times show lower entropy than arrival times. A lower en-

tropy indicates higher predictability (see Section 2.4.8). Baumann showcases rele-

vant findings for EV specific predictions. Recall that a smart charging framework

aims to schedule charging events based on the location and expected dwell time. An

overestimation of dwell time for a location at which a charging event is scheduled
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could lead to an insu�cient battery charge when the objective is to reach the level

of charge before the user departs.

By comparing eight di↵erent dwell time prediction methods, a location indepen-

dent Markov model of first order produced the smallest number of overestimated

dwell time predictions [205]. Similar findings regarding the dwell time prediction

accuracy are illustrated in [113]. Baumann argues that the presence of temporal

data forces the predictor to be “riskier” in predicting place transitions, which leads

to a smaller dwell time estimation.

In its simplest form, dwell time prediction is only useful for one next-step pre-

dictions in which the end of a stay could mark the probable departure time [113].

Recall that a smart charging framework is required to provide medium-term pre-

dictions. Hence a dwell time based “next-step” prediction is not considered to be

su�cient for the necessary prediction horizon for EV specific predictions.

Although the aforementioned references state higher entropy for departure time

predictions, a location-specific departure time prediction appears to be the more

appropriate prediction scheme for a smart charging framework. This is because by

predicting departure times independent from arrival time, the medium-term predic-

tion is less prone to error propagation. By predicting arrival and departure periods

independent from each other, errors for the arrival time do not necessarily have

an impact on the prediction accuracy of departure periods. Figure 52 illustrates

the correlation of dwell time prediction and its variance and arrival-departure time

prediction.

Di↵erent departure time prediction schemes have been presented in recent litera-

ture. A common approach is to create time bins and count transition events within

these time bins. The discretisation of time intervals is an established method to

simplify temporal prediction tasks. To incorporate time bins into Markov models,

in [205], [206] and [164] time bins were randomly defined as 15 minute intervals. The

downside of this approach is that the temporal prediction accuracy is limited to the

discrete time bin scale. For instance, two departure events, separated by only one

minute (on di↵erent days) could be assigned to two di↵erent 15-minute intervals,
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Figure 52: Dwell time prediction vs. departure and arrival time prediction.

creating a potential departure interval of 30 minutes. In an EV context, 30 min-

utes of charging time could account for a significant change in the attainable range.

Hence, a non-parametric approach, such as a kernel density estimator, promises a

more accurate estimation method for the intended use case.

The previously discussed aspect creates special requirements regarding the tem-

poral prediction task for a smart charging framework. Based on a study15 conducted

in 2018, 86% of EV charging takes place at the EV owner’s home. Hence an accurate

prediction of arrival and departure times, especially at home, is a priority for the

smart charging framework. According to [205] the predictability of residence time

for the most visited location, which is usually an individual’s home, is lower than

for the second and third most visited location, the following section will introduce

a non-parametric method to predict departure time for scheduled charging.

4.6.2 Kernel Density Estimation

This section discusses how departure and arrival events will be predicted. In the

previous section, it has been discussed why departure and arrival times play an

essential role in the task of scheduling charging events. Both events define periods

15http://www.electricnation.org.uk/wp-content/uploads/2018/10/Electric-Nation-
What-weve-learnt-so-far-Oct18.pdf
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in which the vehicle can be charged for its future trips. Charging schedules and their

optimisation benefit from high accuracy for the prediction of departure and arrival

events.

The corresponding problem statement can be formulated as follows: What time

of day features the highest probability to leave a location to a known destination?

More specifically, the problem can be formulated to find the probability X that

a location-dependent departure event falls into the period (a,b). Given that the

corresponding probability density function (PDF), also referred to as kernel density

estimation, f is known, X can be quantified with

P (a < X < b) =

Z
b

a

f(d)dx (34)

where a < b [207]. Based on observations illustrated in Chapter 3, human’s tendency

to move following distinctive travel patterns suggests that departure events follow

a distinctive probability distribution which, however, is unknown. Considering a

scenario in which an individual is observed for a limited period, the observation

data provides samples for the underlying probability function f(x). As the true

probability density function is unknown, it must be estimated. The required kernel

density estimator for a nonparametric approach is defined as

f̂(x) =
1

nh

nX

i=1

k

✓
x�Xi

h

◆
(35)

where i = 1, 2, ..., n are samples of relevant departure times, k defines the kernel

density function and h > 0 is the bandwidth [207]. Apart from the actual samples,

the shape of the corresponding density estimation is influenced by the selection of

the kernel k and the bandwidth h.

The kernel function k defines the shape of weight function that usually satisfies
R1
�1 k(x)dx = 1 and is symmetric over 0 [207] [208]. In relation to the kernel’s shape,

the choice of the density estimator’s bandwidth has a greater impact on the shape of

the density estimation, as it defines the width of the kernel (see in Subsection 4.6.3

for a detailed discussion).
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The set of samples, that is used to create a density estimation, consists of data

that is classed as relevant for the estimation. More specifically, departure times

provide data points that are classed as relevant when the origin and destination of

the corresponding trip correlate with the transition prediction (see 3.2.4). Figure

53 visualises a histogram of relevant departure events in the morning (Home-Work)

from User 6 and the corresponding density estimation.
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Figure 53: KDE Example. Departure events are illustrated as histogram with a bin
width of one minute. The red function displays the kernel density estimation. The
purple function illustrates the empirical cumulative distribution function (ECDF)
which can indicate a departure’s “certainty” for EV charging purposes.

4.6.3 Bandwidth Selection

A density estimation’s bandwidth, also referred to as hyper-parameter, defines the

smoothness of an estimated function [149]. Recall that the bandwidth defines the

width of the kernel function. Hence a larger bandwidth creates a smoother density

curve. Selecting an adequate bandwidth is a non-trivial task. It is challenging in
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particular if the underlying density has long tails.

If a small bandwidth is chosen, samples at the tails of a distribution create noise.

If the bandwidth is too large, the information in the main part of the distribution is

lost (over-smoothing) [208]. The “optimal” bandwidth can be inferred with di↵erent

methods. For instance, the goodness-of-fit of the density estimate can be quantified

with an error criterion. A sensible choice of bandwidth h minimises this error [209].

Note that, since f(x) is unknown, the error can only be approximated asymptoti-

cally. A measure to quantify the estimated error is to compute the Mean Integrated

Squared Error (MISE) [210] with

MISE(h) = E

 Z
(f̂h(x)� f(x))2 dx

�
. (36)

If the kernel k is assumed to be Gaussian

k(x) =
1

p
2⇡

exp

✓
�
1

2
x2

◆
(37)

then

h =

✓
4�̂5

3n

◆ 1
5

⇡ 1.06�̂n�1/5, (38)

where �̂ is the sample set’s standard deviation, minimises the MISE [207]. Equation

(38) is referred to as Silverman’s rule of thumb. Note that there are di↵erent methods

to obtain h [208]. For departure time prediction, the peak’s location is more relevant

than the estimation of the probability function. For simplicity, the built-in MATLAB

function ksdensity is employed to minimise MISE(h), which determines h according

to the Scott’s estimate (see Figure 54).

Transferred into a scenario of departure time observation, a long-tailed distri-

bution would be created when an individual departures to a specific destination

most of the time within a short period but sometimes at very di↵erent day times.

Statistically the appearance of departures at “unusual” times might be negligible,

however, the total number of these unusual departures could sum up to a significant

proportion of the overall number of relevant departure events.

Using a bandwidth that is dependent on the sample size n instead of being static
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Figure 54: Optimal bandwidth based on MISE.

is useful as it adapts to the underlying data distribution. Given a system that ob-

serves a user’s movement, the sample set should evolve from sparse to dense. This

means that the density estimation could be improved with every additional sample

by choosing a variable bandwidth. This promotes the utilisation of KDE for depar-

ture time prediction as locations of specific interest, such as an individual’s home,

are visited most frequently and will proportionally provide the most sample points

for the density estimation. Based on departure time observations in Chapter 3, it is

valid to assume that eventually, location-specific departure times will form a near

Gaussian distribution around a typical departure time. To this end, the KDE’s

bandwidth is computed based on Equation (38). Concluding the concept of depar-

ture time estimation, departure time is predicted at the time of the day at which

f̂(x) reaches its maximum.

4.7 Multi-step Prediction

The separation of location prediction (via MM) and departure time prediction (via

KDE) requires to design the prediction as a sequential process. The most reliable

predictor for a destination is an individual’s current location [130]. Hence, the

process starts with the MM based prediction of the next destination. Once the

destination with the highest probability is being determined, the process proceeds

with the probability estimation of the corresponding departure time. The predicted

location is used as input for the determination of relevant departure events, that are

all departure times of trips that originated from the current location and ended at

the predicted destination.
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In this process, predicted departure times overrule transition probabilities. If,

for instance, the most probable departure period to the most probable destination

elapsed, the system falls back to the location-dependent second most probable des-

tination. If the same applies to the departure time to the second most probable

destination, the process is repeated for the (current) third most probable destina-

tion. Algorithm 1 illustrates the conceptual process.

Algorithm 1 Markov Model with density estimation

1: N = POI sequence
2: CDT = Current Daytime
3: Current Location (CL) = Last element of N
4: Create transition matrix T:{1,...,m}⇥{1,...,n}
5: First Most Probable Destination (FMPD) = max{T[cl,n]}
6: Execute probability density estimation for day specific departure times from CL

to FMPD
7: Highest Peak of density estimation = Day specific Most Probable Departure

Time (MPDT)
8: if MPDT > CDT then return Destination = FMPD, Departure Time =

MPDT
9: else Second Most Probable Destination (SMPD) = max{T[cl,n]\{FMPD}}

10: Execute probability density estimation for day specific departure times from
CL to SMPD

11: Highest Peak of density estimation = MPDT
12: if MPDT > CDT then return Destination = SMPD, Departure Time =

MPDT
13: else Third Most Probable Destination (TMPD) = max{T[cl,n]\{FMPD,

SMPD}}

14: Execute probability density estimation for day specific departure times
from CL to TMPD

15: Highest Peak of density estimation = MPDT
16: if MPDT > CDT then return Destination = TMPD, Departure Time

= MPDT, CDT = Arrival Time at predicted location
17: else assume no more trips at that specific day, CDT = 0:00 (+1 day)
18: end if
19: end if
20: end if

This iterative process ensures that the predicted departure time is “valid”. The

system would be forced to predict transitions if the process would not be stopped

after the consideration of the location dependant three most probable destinations.

The three most probable destinations are considered as they account for almost 90%

of all visits for most users (see Section 3). Note that the location dependent most

probable destinations are considered and not the global most relevant destinations.
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The first, second and third most probable destination as well as the most prob-

able departure time are maximum values that can be determined with a “sort”

function. The operation must be executed once per prediction step. For destina-

tion probabilities, the results with indices (0), (1) and (2) are the corresponding

first, second and third most probable destination. Given the applied code uses the

Quicksort method, as for instance in MATLAB, the algorithm has a complexity of

O(n · log(n)) if n is the number of possible destinations [211].

At this stage, the system determined the most probable (next) destination and

the most probable departure time. The first prediction step is concluded by the

estimation of arrival time at the predicted destination under consideration of the

expected trip duration. The trip duration is determined by the median trip duration

Determine most probable 
destination

Determine most probable 
departure time

Validate departure time

Spatio-temporal prediction

Use current 
location

No

Yes

Figure 55: Sequential steps of location based transition prediction and subsequent
departure time prediction. A departure time is valid if it is yet to come for the
predicted day (most probable departure time > current day time (see Algorithm 1)).

of all trips that lead from the origin to the destination. A schematic view of the

prediction process is illustrated in Figure 55.
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4.8 Validation and Experiment

This chapter introduces the conceptual framework for a novel spatio-temporal mo-

bility prediction method. This subsection depicts results that were obtained with an

implementation of the introduced methods in MATLAB on DS1 and DS2. To illus-

trate the results that were obtained with the method that has been introduced

in Subsection 4.4, results of the MM/PDE and mode approach are illustrated.

More specifically, Subsection 4.8.2 discusses the framework’s transition prediction

accuracy as well as its spatial (Subsection 4.8.3) and temporal accuracy (Subsec-

tion 4.8.4). A definition of the di↵erent measures is given in the following sections.

4.8.1 Error Matrices

To schedule charging based on spatio-temporal predictions, both spatial and tem-

poral accuracy is of high relevance. Wrong location predictions can lead to wrong

assumptions about the mobility-related energy demand and false expectations con-

cerning the charging infrastructure availability. Inaccuracies for arrival and depar-

ture times could result in insu�cient vehicle charging, for instance, due to shorter

dwell times.

The performance of prediction algorithms is typically measured with a set of

di↵erent metrics. Well known performance indicators for prediction algorithms are

accuracy, precision, recall and F1-score [110] [212]. Accuracy, precision and recall

are computed based on classifications given by a confusion matrix. The matrix

contains four di↵erent classes: true positive (TP), true negative (TN), false positive

(FP) and false negative (FN). The corresponding definitions are:

Accuracy = TP+TN

TP+TN+FP+FN

Precision = TP

TP+FP

Recall = TP

TP+FN
.

A fourth metric is given as F1-score, which is defined as the harmonic average of

precision and recall:

F1-Score = 2⇤Precision⇤Recall

Precision+Recall
.
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The F1-score indicates how well a prediction algorithm can balance precision and

recall [130]. A high F1-score indicates a good prediction performance. Based on

this definition, three di↵erent metrics are of specific relevance to the framework’s

prediction task:

• Transition prediction performance: The algorithm’s transition prediction per-

formance is measured with three di↵erent scores: precision, recall and F1-

score. The predicted transition precision is defined as the ratio of correctly

predicted transitions and the total number of predicted transitions, which,

in this context corresponds to the definition of accuracy. The score is com-

puted with a ratio of six weeks of training data and one week of predicted

data (out of sample test). The second score is the transition recall which is

defined as the ratio of correctly predicted transitions and the total number of

actually occurred transitions. The definitions of transition precision and recall

are resumed from [205]. The transition is considered as being correct if the

predicted origin-destination couple is equal to the observation, regardless of

the predicted transition time.

• Spatial accuracy: The spatial prediction accuracy refers to the framework’s

ability to correctly predict an individual’s (vehicle’s) presence at a specific

location. Every prediction consists of seven days with one predicted location

symbol per minute (7 days ⇥1440 minutes = 10080 location predictions). The

spatial accuracy in percent corresponds to the fraction of correctly predicted

location symbols.

• Temporal accuracy: The departure time prediction accuracy is measured for

correctly predicted transitions. The error is indicated as di↵erence in minutes

from the predicted departure event time to the observed departure time.

Referring to the aforementioned performance measures, an adequate comparison

of di↵erent prediction models is di�cult for multiple reasons: One reason is that

most investigations use di↵erent data sets which often show di↵erent characteristics

that influence predictability. Another is that there are divers measurements that
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indicate the accuracy of a prediction method.

Focusing on medium-term mobility predictions, three di↵erent accuracy metrics

are introduced to indicate the model’s prediction performance. For the measurement

and to ensure similar conditions for all user profiles, the available profiles are cut in

periods of seven consecutive weeks. The last week (7th) from each mobility profile is

separated from the data. This single week is not presented to the prediction models

and serves for testing the prediction accuracy for each individual (out-of-sample

test). This results in a training data set of six weeks and a validation data set of

one week per profile.

4.8.2 Transition Accuracy

Both prediction schemes underestimate the number of trips in a week. The average

ratio of the number of predicted and observed trips is 0.87 in DS1 and 0.52 in DS2

for MM/KDE. The Mode based prediction achieved a ratio of 0.73 for DS1 and 0.83

for DS2.

An underestimation of transition predictions was expected for both prediction

methods and can be attributed to the framework’s limitation to predict regular trips.

The observations indicate that in addition to regular mobility behaviour, there is a

proportion of random mobility, which does not follow a logic that is captured by the

framework. Part of this random behaviour is captured by the number of trips that

headed to destinations that have not been visited in the six weeks of sample data.

In average, 15.6% of trips in DS1 and 16.3% in DS2 headed to a destination that

has not been visited in the six weeks of training data. The probability of heading

to an unknown destination can be computed for every profile individually and, in

addition to a profile’s entropy, indicates the uncertainty that is associated with the

transition prediction.

Besides the fact that in DS1 15.6% and 16.3% in DS2 of transitions could not be

predicted due to the framework’s logic, both prediction schemes performed better on

DS1 than on DS2. A tendency for better predictability of vehicle data was expected

as the data indicated a higher degree of regularity, as has been discussed in Section
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3 and will be further analysed in Section 4.8.3.

The transition prediction accuracy (fraction of correct predictions over the to-

tal number of predictions) for both methods is slightly lower than stated in other

publications, for instance in [149]. However, note that the results are obtained from

predictions for an entire week, thus up to seven days into the future. Results illus-

trated in [149] for transition accuracy refer to intervals of one to three hours. Taking

error propagation into account, both introduced models performed satisfactorily on

DS1 and DS2.

Details of both scheme’s transition prediction precision, recall and F1-Score dis-

tribution are depicted in the Appendix.

4.8.3 Spatial Accuracy

The spatial accuracy is defined as the proportion of predicted time instances in which

the individual/vehicle was present at the location that has been predicted and the

total number of predicted time instances. For an individual with typical travel

behaviour, a separated test week would be a good representation of the remaining

six weeks. However, this does not apply to individuals that show atypical travel

behaviour. A source of error for the performance measure is that there is a risk of

separating a week that has no similarities to the remaining six weeks. For instance

due to holidays, the end of a semester, etc. In the best-case scenario, the test

week shares 100% similarity with the previous weeks. However, any deviation from

regular behaviour in the test week would lead to a decrease in accuracy, even if an

algorithm learned the past behaviour correctly. To provide a general indication of the

predictions scheme’s performance and to ensure comparability to other prediction

schemes, three di↵erent methods for the comparison of the prediction outcome to

the input data are introduced:

• One Day comparison (1Day): In this metric, the first day of prediction is

compared to the first day of the test week regarding the location accuracy. This

measure indicated the framework’s ability to provide short term predictions.

However, the measure is prone to errors as the selected day could be a poor
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representation of the user’s mobility.

• One Week comparison(1Week): For this metric, an entire predicted week

is compared to the test week regarding its location accuracy. This measure

indicates the framework’s ability to provide medium-term predictions, how-

ever, similar as in 1Day, there is a risk of selecting a poor representation of

the user’s mobility, for instance, a week of holiday etc.

• Seven Weeks (7Weeks): In this metric, the predicted week is compared

to the average of the seven recorded profile weeks. More specifically, the

normalised fraction of correct overlap accounts for the achieved accuracy. This

corresponds to an in-sample test.

By using three di↵erent, instead of just one comparison method, the impact

of inconsistency in the test data can be lowered. For instance, if an atypical test

week would have been selected for the “One week comparison” the prediction per-

formances would be significantly lower than in the “Seven weeks comparison”. This

would falsify any assumption about the prediction method’s performance. Similarly,

the outcome of the “One day comparison” should be better than for the two other

methods due to error propagation in the medium-term prediction. If the “One day”

performance were significantly lower, this would be an indication for an atypical test

day.

For a direct comparison, Table 18 shows the achieved accuracy results for the

proposed models for DS1, while Table 19 shows the achieved accuracy results for

the proposed models for DS2.

In general, the mode method achieves higher accuracy in all three accuracy

metrics for both DS1 and DS2. The Mode in conjunction with WCD achieves a

slightly higher accuracy for 1Week and 7Weeks than the Mode based on WCI. This

can be attributed to the fact that most profiles show a weekly cycle based rhythm.

Only for the one-day comparison, the Mode with WCI in DS1 achieves a comparably

high accuracy as the Mode with WCD.

Based on the exhaustive search approach, the framework calculates each intra-

day prediction for both inter-day predictions. The better performing inter-day pre-
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Table 18: Achieved prediction accuracy on DS1.

Approach 1 Day 1 Week 7 Weeks

WCD + MM/KDE
Mean 52% 36% 34%
Median 53% 34% 34%

WCI + MM/KDE
Mean 53% 41% 38%
Median 56% 37% 35%

Auto-Select + MM/KDE
Mean 60% 44% 41%
Median 66% 41% 38%

WCD + Mode
Mean 76% 68% 71%
Median 81% 72% 72%

WCI + Mode
Mean 77% 66% 66%
Median 86% 70% 68%

Auto-Select + Mode
Mean 83% 70% 69%
Median 86% 75% 70%

Table 19: Achieved prediction accuracy on DS2.

Approach 1 Day 1 Week 7 Weeks

WCD + MM/KDE
Mean 46% 32% 28%
Median 45% 31% 30%

WCI + MM/KDE
Mean 46% 38% 34%
Median 47% 35% 32%

Auto-Select + MM/KDE
Mean 53% 40% 35%
Median 56% 36% 33%

WCD + Mode
Mean 53% 55% 57%
Median 57% 56% 57%

WCI + Mode
Mean 49% 49% 49%
Median 52% 49% 48%

Auto-Select + Mode
Mean 58% 56% 55%
Median 61% 58% 57%

diction is chosen (Auto-Select) based on the average prediction accuracy (of 1Day,

1Week, 7Weeks). The selection is executed individually for each user profile.

The results show that location-dependent prediction is more prone to errors

caused by atypical travel behaviour. In 60% of the data profiles (DS1 and DS2), the

ANN improved the prediction accuracy by 13.9% on average. Location-independent

prediction is less prone to atypical movement, as the accuracy for 22% of data profiles

was improved by 5.8% on average through the ANN approach.

Figure 56 shows a detailed distribution of the achieved accuracy per user profile

over the profile’s respective entropy. The plots marked with (a) in Figure 56, 57

and 58 correspond to the data in row “Auto-Select + MM/KDE” of Table 18 and
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19, while the plots marked with (b) in Figure 56, 57 and 58 correspond to the data

from row “Auto-Select + Mode” of Table 18 and 19. The coloured marking of the

data is used to distinguish between DS1 and DS2.

To illustrate the di↵erences in performance, Figure 56, 57 and 58 illustrate the

location accuracy over the corresponding profile entropy with the previously defined

measurement methods.
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Figure 56: Accuracy over entropy: a) 1Day MM/KDE, b) 1Day Mode.
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Figure 57: Accuracy over entropy: a) 1Week MM/KDE, b) 1Week Mode.

Figure 56 illustrates the correlation between prediction accuracy and entropy for

the introduced accuracy metrics. Vehicle data (blue cross) shows a systematically

lower entropy and hence a better prediction accuracy compared to smartphone data

(red circle). Better predictability for vehicle data can be concluded as vehicles

are “less mobile” compared to human beings in terms of freedom of movement.
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Figure 58: Accuracy over entropy: a) 7Weeks MM/KDE, b) 7Weeks Mode.

Furthermore, fewer detection errors can be assumed for DS1 as it, other than DS2,

requires no assumption about the transportation mode and hence should provide a

better base for prediction.

The three di↵erent performance measures visualise the challenge of choosing an

adequate performance indicator for location prediction data. While a day by day

comparison of observation and prediction data is prone to outliers (Figure 56 (a)

and (b)) for both MM/KDE and Mode, a comparison with the movement of an

entire week shows a stronger correlation between entropy and prediction accuracy.

The “limits of predictability” become most obvious in Figure 58 (a) and (b), where

one week of prediction data is compared to seven weeks of observation data. A

decrease in prediction accuracy has to be expected for longer predictions due to

error propagation.

4.8.4 Temporal Accuracy

The analysis of departure time accuracy reveals that the introduced KDE-based de-

parture time prediction performs better than a location independent departure time

prediction (mode-based). The results underline that the separation of the transi-

tion prediction task and the departure time prediction task increases the temporal

prediction performance significantly. Figure 59 depicts the KDE-based departure

time prediction error in minutes for both DS1 and DS2. The error is calculated

as the di↵erence of observed and predicted departure time of correctly predicted
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transitions. A negative error is the result of a too early predicted departure time.

Table 20 shows key statistics for the tested prediction schemes.

Table 20: Mean and standard deviation for departure time prediction

KDE Mode

Mean DS1 - 17.7 minutes 24.7 minutes

Standard deviation DS1 188.9 minutes 382.3 minutes

Mean DS2 - 66.0 minutes 20.4 minutes

Standard deviation DS2 249.2 minutes 385.5 minutes

The departure time prediction for DS1 has fewer and smaller errors than for DS2

with the KDE-based method. Recall that DS1 has higher predictability than DS2,

as illustrated in Section 4.8.3. The histogram in Figure 59 and Figure 60 illustrate

5-minute bins. The results are obtained from an out of sample test in which six

weeks of individual user data is used to train the model. The prediction is tested

on a separated seventh week.

The KDE-based prediction method underestimates departure time by 17.7 min-

utes for DS1 and 66.0 minutes for DS2 on average. This means that the prediction

scheme expects departures on average earlier than observed in the test data. An

underestimation is considered as less critical as an overestimation since a charging

event that is finished earlier than necessary is less disruptive than an unfinished

charging event.

Note that values illustrated in Table 20 are obtained from spatio-temporal pre-

dictions of seven consecutive days, hence already including propagation errors.

The standard deviation for mode-based departure time prediction is higher for

both DS1 and DS2 in comparison to the KDE-based prediction. Figure 60 illustrates

that the error values are more distributed than in Figure 59. Based on the almost

random distribution of mode-based departure time prediction error, this method

fails to provide a su�cient departure time prediction for charging purposes.
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KDE-based departure time prediction
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Figure 59: Temporal accuracy for KDE-based departure time prediction. Departure
time deviations from 2192 samples.

4.9 Discussion and Conclusion

This chapter introduces a mobility prediction scheme that combines a location de-

pendent and a location independent transition prediction method. Furthermore,

the introduced scheme combines both transition prediction methods with a WCD

or a WCI inter-day prediction. The framework is configured to select the individ-

ual better performing combination automatically and to adjust the corresponding

framework output leading to better real-world applicability.

With the help of real-world data sets, it has been demonstrated that not in

all cases a weekday-specific prediction, which is used by several state-of-the-art

prediction methods, leads to the best user-specific mobility prediction. Instead, for

individuals that follow atypical travel patterns, a feature-related clustering method

outperforms the weekday-specific prediction method. For 22% of individuals in the
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Mode-based departure time prediction
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Figure 60: Temporal accuracy for mode-based departure time prediction. Departure
deviations from 1914 samples.

available data sets, the framework improves the prediction accuracy by choosing the

weekday independent prediction method.

Overall, the framework achieves a median location prediction accuracy of 75%

for vehicle-based mobility profiles and 58% for smartphone-based mobility profiles

for a one-week mobility forecast and demonstrates that the prediction outcome cor-

responds to the individual’s profile entropy. The location prediction accuracy is

an important indicator for a smart charging framework. It contains information

about the framework’s ability to correctly predict a vehicle’s destination but also

the corresponding departure times. Incorrect departure time prediction will lower

the location prediction accuracy. A high location prediction accuracy also indi-

cates a good estimation regarding the required energy for transitioning between the

predicted locations.

On average, for 75% of time in a seven-day period, vehicles are parked at the

location that the framework expected. A high location prediction accuracy improves

the chance to schedule a charging event at a location and in a period in which the
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location is in fact visited.

The introduced KDE-based departure time prediction demonstrates good per-

formance. In relation to other publications, which predict departure events for short

periods, the introduced prediction method creates small errors for departure time

prediction of an entire week. On vehicle data, the mean error is �17.7 minutes on

a seven-day mobility prediction. On less predictable smartphone data, the average

error is �66.0 minutes. Both the mean prediction accuracy and the standard devi-

ation could be used for the subsequent scheduling task. For individuals with small

departure time deviations, the scheduling scheme can schedule charging events close

to the corresponding predicted departure time. For individuals with high standard

deviations in the historic departure time prediction, the charging schedule can be

created more conservatively.

Independent from the prediction method, the subsequent scheduling task requires

a predicted schedule for the vehicle parking and driving times. The predicted sched-

ule must include charging parameters, such as trip associated energy requirements,

the available charging power at charging location, etc.
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Chapter 5: Prediction Based Charging Schedules

This chapter introduces the third part of the conceptual smart charging framework,

which schedules charging events based on the preceding mobility prediction, as pre-

sented in Chapter 4. The scheduling scheme’s concept is deduced from findings in

the field of human travel behaviour and requirements that are derived from exist-

ing smart charging implementations. To this end, EV charging related scheduling

schemes are introduced and reviewed in Section 5.1. Aspects that can be transferred

to a smart charging framework will be highlighted specifically.

The applied methodology of this chapter is explained in Subsection 5.2. Building

upon findings in human travel behaviour, power grid requirements, current charging

infrastructure and EV communication protocols, the introduced scheduling scheme

follows a generic design. The generic design enables to adapt the scheduling scheme

to di↵erent inputs, which allows a continuous adaption to changes in both vehicle

and infrastructure development. The introduced framework is also able to process

user preferences, given they are provided manually by the EV user. The proposed

concept is tested and validated in a simulation experiment in Section 5.3.

The scheduling schemes performance is illustrated and discussed in Section 5.4.

Section 5.5 concludes this chapter.

5.1 Introduction

Scheduling charging events based on predicted travel behaviour should be treated

as unidirectional process. This means that a charging schedule must not cause any

changes in an EV user’s predicted mobility. In this context, the quality of a predicted

charging schedule is dependent on the travel prediction accuracy. Wrong predictions

about destinations will result in inaccurate assumptions about the vehicle’s energy

demand, the expected dwell times, potential charging times as well as the available

charging infrastructure. Furthermore, inaccuracies about the departure and arrival

time can lead to insu�cient charging due to too short dwell times. However, the

process is explicitly treated as unidirectional, since a bidirectional treatment would

151



potentially compromise an individual’s mobility. Recall that some individuals’ mo-

bility behaviour is challenging to predict and prediction outcomes can be vague.

Therefore the concept of the scheduling scheme is supposed to embrace uncertain-

ties of the preceding prediction and adapt the charging schedule accordingly.

The scheduling concept in Chapter 5 is designed to account for the specific

requirements that are derived from human travel patterns and EV specific charging

demands. Di↵erent scheduling schemes for EV charging (and discharging) were part

of di↵erent proposals in the context of smart charging. Based on corresponding

publications, existing scheduling schemes can be separated into di↵erent classes,

according to their original motivation. One class of scheduling scheme in the context

of EV charging is designed to reduce waiting time on charging stations [213]. These

systems must not be confused with the original concept of smart charging as they

limit their focus on the optimisation of one parameter. Aspects such as the grid

load and/or charging prices are neglected in these schemes.

Another class of scheduling frameworks focuses on the utilisation of EV batteries

to mitigate grid constraints and congestion [214]. Motivated by the impact assess-

ment of charging EVs on the power grid, these scheduling schemes rely on potential

monetary benefits that could be created by grid friendly charging behaviour (see

Section 2.3). These systems require an infrastructure that can forward price infor-

mation towards the user and rely on a user’s price sensitivity. Besides all associated

user interaction requirements, the incentive must be great enough to compensate the

e↵ort to provide smart charging relevant data (required energy, desired departure

time, etc.) and potentially losings in terms of range.

The review of existing scheduling schemes in Chapter 2 reveals a bias towards

infrastructure-centric approaches. Independent from the original purpose of existing

charging scheduling schemes, the proposed systems rely on a few basic inputs, which

are explained and discussed in the upcoming sections. The assessment of existing

and transferable scheduling schemes reveals two major deficits, which restrains their

suitability for the intended automated smart charging framework. One deficit is

characterised by the strong entanglement of smart charging and monetary benefits
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(see Subsection 5.1.1), the second is the dependency on manual user input (see

Subsection 5.1.3). Both aspects are described and discussed in detail in the following

subsections.

5.1.1 Background

Charging an EV is a means to an end and thus is originally engineered to be as

simple as possible. Functions such as “Plug and Charge” (PnC) are developed to

simplify a user’s authentication process at charging infrastructure to save time and

make charging more comfortable. Automated wireless charging (AWC) systems are

developed to eliminate the necessity of plugging in a vehicle, to relieve a user and

to streamline the charging task.

Existing smart charging concepts oppose the tendency to streamline EV charging

processes by creating an additional task, independent from the actual smart charg-

ing realisation. This task consists at least of the provision of charging requirements

and/or preferences. Hence, a user must be encouraged to participate in smart charg-

ing. The majority of scientific investigations focus on charging costs, which can be

minimised by shifting charging sessions into periods of cheap power availability. Re-

lying on the availability of flexible price information limits the applicability of smart

charging to locations which o↵er an interface for price information. The dissemina-

tion of price incentives in private infrastructure requires additional smart metering

equipment and energy management systems (EMS) that can coordinate power con-

sumers or can relay price information to an EV in conjunction with flexible tari↵s.

In Germany, for instance, the roll-out of required smart metering hardware will not

be finished until 2032 (see Chapter 2).

Di↵erences in national regulations and power prices make it challenging to pro-

vide a general assumption about the response to price incentives and customer-

willingness to install the aforementioned systems. Moreover, as users are used to

virtually omnipresent and instant mobility from their ICEV, it must be questioned

that compromised mobility by EVs due to smart charging solutions would be widely

accepted. Smart charging solutions that rely on flexible tari↵s lack a motivation
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to be used when no flexible tari↵s are available. Hence, it is argued that the at-

tractiveness of smart charging could be improved by the decoupling of charging

and monetary incentives. Instead, monetary incentives should be considered as an

additional benefit, that could be enabled if flexible tari↵s in conjunction with the

required infrastructure are available.

5.1.2 Motivation

The realisation of an automated smart charging scheduling scheme is motivated by

the original purpose of smart charging and drawbacks of existing smart charging

solutions. This includes environmental as well as monetary and technical aspects.

An additional aspect, which refers to the drawbacks of existing methods, addresses

the user experience that is associated with smart charging. Seamless integration

of smart charging technology is considered to contribute to a widespread adaption,

similar to other technology that is developed to facilitates EV charging and prevalent

adaption to environmentally-friendly electric mobility.

5.1.3 Review of Existing Methods

Existing scheduling schemes require detailed information about the location, the

time, the level of power and the amount of energy that is related to a charging

event. The provision of these information creates user engagement for every single

charging event [215]. For this reason, other works elaborated user interfaces which

intend to make charging calibrations “intuitive and easy” to handle [38]. Figure 61

provides an example for a simplified interface for smart charging calibration.

Even tough the choice of charging settings, as illustrated in Figure 61, can be

provided in a reasonable simple interface, the selection of corresponding charging

choices creates a charging related task for a user. This task must be assessed crit-

ically. Under the consideration of the aforementioned influencing factors, it should

be assumed that charging choices are not always made rationally. EV-related range

anxiety has been identified as one reason for opportunistic charging behaviour which

could lead to charging decisions which do not reflect an “optimal” charging choice

[38].
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Figure 61: Example for charging choices. Example taken from [38].

Charging choices as proposed in [38] do not consider a user’s individual travel

patterns. Thus, there is always a risk of not o↵ering a charging choice that satisfies

a user’s mobility demand. Forcing an EV user to choose from a set of charging

choices that mismatches an individual’s mobility behaviour is comparable to situ-

ations presented in [216] in which EV user’s were reported to be forced to extend

working hours to be able to charge their vehicle su�ciently.

Ideally, a smart charging framework is able to schedule charging without the

necessity of user interactions while also being able to respect a user’s mobility wishes

in case they are communicated. More specifically, a smart charging framework

should anticipate a user’s charging preferences and provide the deduced information

to the infrastructure if the information is not provided by a user.

5.1.4 Preliminary Conditions and Requirements

An EV charging process involves at least two parties which are the vehicle and

infrastructure. Smart charging requires communication between these parties to

organise the exchange of electrical energy. With the upcoming relevance of intelligent

vehicle to grid integration, there are several e↵orts to standardise the communication

between the involved instances [217].

In the context of a vehicle to grid integration, the following communication

interfaces are of specific relevance:

• IEC 62196 - which defines the types of plugs, socket outlets, vehicle connectors

and vehicle inlets for conductive charging,
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• IEC 61851 - which standardises EV conductive charging systems based on

either AC or DC and defines general EV and EV Supply Equipment (EVSE)

requirements and di↵erent modes for charging,

• ISO/IEC 15118 - which defines a complementary Vehicle-to-Grid Communi-

cation Interface to IEC 16851-1 for bi-directional digital communication based

on Internet Protocols.

Features of charging infrastructure, that comply with the standardisation protocols,

can be used to evaluate a charging infrastructure’s compatibility for a specific EV.

For instance, according to the plug definition in IEC 62196, a system can verify

if charging infrastructure is, in general, usable for a specific vehicle. Likewise, an

infrastructure that complies with ISO 15118 will be able to provide bi-directional

communication, which is required to make use of flexible tari↵s. The following

subsections will give an overview of protocol features which are of specific interest

for the intended smart charging framework. As these features are part of defined

standards, they can be used to compare charging infrastructures with each other.

Being able to compare infrastructure and corresponding charging events will be an

essential part of the introduced scheduling scheme. The scheme follows the concept

of scoring infrastructure according to its features. An infrastructure that o↵ers suit-

able user/vehicle-specific features will receive a higher score than an infrastructure

that o↵ers less valuable features. After the introduction of existing charging related

standards and an assessment of their features, the aforementioned scoring scheme is

deduced and explained in detail in Section 5.2.2.

5.1.4.1 IEC 62196

The IEC 62196 standard specification defines a series of plug types and charging

modes, specifically for EVs. Regarding charging modes, IEC 62196 describes four

di↵erent variants. Mode 1 - single-phase charging. Mode 2 - allows charging with

up to three phases and currents up to 32 Ampere or up to 70 Ampere on a single

phase. Mode 3 - charging on three phases with up to 250 Ampere and Mode 4 -

DC charging with up to 400 Ampere.
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The assignment of a charging location to one of the IEC charging modes can be

used to make assumptions about the available charging power. Furthermore, the

mode allows excluding specific charging locations for vehicles which do not support

the corresponding plug type.

5.1.4.2 ISO 15118

The main purpose of ISO 15118 is to establish a more advanced and autonomously

working charge control mechanism between EVs and charging infrastructures [217].

Summary of charging parameters included in ISO 15118 are:

• Charging station service: AC, DC, wireless power transfer, automatic

connection device.

• Charge Parameter Discovery: max/min/target Energy, max/min Current and

max Voltage. These values are used to determine the maximum charging

power and can be used to communicate the requested energy transfer.

• Plug and Charge (PnC): as function to ensure a secured communication be-

tween infrastructure and vehicle for billing purposes via digital certificates and

public-key infrastructures. This function enables to exchange all necessary cre-

dentials to start a charging event automatically.

• Load management (smart charging) for all charging modes (as described in

IEC 62196), which includes the provision of dynamic price information.

• Renegotiation of charging schedules while charging to react upon unforeseen

changes in the grid.

For more details regarding the content of the communication interfaces, the reader

is advised to [217].

5.2 Methodology

The scheduling scheme’s task is to identify periods in which a vehicle should be

charged and to what level it should be charged while respecting di↵erent factors.
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Some of these factors are mandatory, such as a vehicle compatible charging infras-

tructure. Other factors are optional, such as a low energy price. Hence, it is required

to di↵erentiate between factors that enable charging in the first place and factors

which improve a charging schedule in terms of, for instance, e�ciency or comfort.

The following sections introduce relevant factors and how they are processed in the

scheduling scheme.

5.2.1 Charging Time Identification

Assuming a user’s mobility and corresponding energy demand does not exceed a

vehicle’s energy-storing capabilities, charging periods can be described as a subset

of parking periods (dwell periods at known locations). Note that this assumption

describes a scenario in which no stops need to be made purposely for charging. The

subset is created under consideration of various variables.

For instance, the subset excludes parking periods at locations where no or no

suitable charging infrastructure is available. Information about the presence of cor-

responding charging infrastructure can be obtained from di↵erent sources: The vehi-

cle’s individual parking/charging history records or any kind of information platform

e.g. navigation system, online platform, etc. The quality of information could be

enriched with real-time information, such as the charging station’s occupation sta-

tus.

In its simplest iteration, the identification of charging periods is defined by pre-

dicted parking periods at locations, at which the vehicle has been charged in the

past. Figure 62 gives a simplified overview of the proposed charging periods identi-

fication scheme.

5.2.2 Scheduling Concepts

As mentioned earlier, mobility data serves as input for an EV’s charging schedule.

Recall that mobility can be expressed with dwell times at personal POIs and transi-

tions between these POIs, which more specifically can be organised as a set of trips

(see Section 3.2.3). To this end, the definition of mobility features, as introduced in

Chapter 3 and 4 are resumed and extended. As illustrated in Figure 37, the Data

158



Charging possible

Infrastructure available
(No Occupation)

Infrastructure capable
of providing required

energy

Yes

No

No

No

Yes

No

Yes

SOC < SOCrequired

Consider parking
period

Consider other
parking period

Yes

e.g. according to IEC 62196

e.g. via online platform, 
operator’s backend

e.g. according to ISO 15118

Figure 62: Charging period identification.

Collection and Processing phase is used to aggregate charging related data. These

features include but are not limited to:

1. Vehicle compatible charging infrastructure

2. Available charging power

3. Infrastructure’s ability to conduct smart charging (Infrastructure requirements

are discussed in Subsection 5.1.4.2)

The third point is mainly concerned with soft- and hardware requirements which

enable communication between infrastructure and vehicle (see Subsection 5.1.4).

Charging infrastructure is characterised by di↵erent factors, for instance the “avail-

able charging power” or “occupation status”. Some infrastructures, for example in

the private environment, will usually o↵er less power than a public charging infras-

tructure. Also, the occupation status of a private infrastructure that is installed

exclusively for one vehicle will be more reliable than the occupation’s status of pub-

lic charging infrastructure. Both factors should have an impact on the scheduling

process of a charging event.
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The assessment of variables that influence the appropriateness of charging peri-

ods suggests, that some factors should be treated as “static”, e.g. the presence of

charging infrastructure at known locations and some as “dynamic”, e.g. the infras-

tructure’s occupation status or the price for charging. Furthermore, the variables

can be separated into two classes. One class should be considered as a binary vari-

able, which either allows charging in the first place (see Figure 62) and variables

that decrease the “attractiveness” of a charging session.

More specifically, a charging location may allow charging a vehicle based on the

infrastructure, however, the predicted parking time may be too short to ensure the

required energy transfer under the consideration of the available charging power. A

charging event at such location would be less attractive as it would require additional

charging within the prediction horizon to satisfy the mobility demand or cause user

disutility [38]. The latter is a factor that is influenced by the predicted mobility

behaviour rather than the charging location.

Considering the two involved parties of a smart charging event (see. Section

5.1.4), the scheduling task could be described as a process that finds the best trade-

o↵ between the interests of both parties. In this process, two variables should

be considered as given: the user’s mobility demand (in the form of the predicted

demand) and the available charging infrastructure. The user’s mobility should be

considered as given as it ensures a user-centric smart charging solution.

Based on findings regarding human mobility behaviour that were presented in

Chapter 3, EV dwell times would allow several di↵erent charging schedules. Based

on this assumption, some schedules may combine the interests of involved parties

better than others. To select the most appropriate charging schedule, two conditions

must be satisfied:

1. All possible charging schedules must be known to the system.

2. Charging schedules must be comparable to each other.

A charging schedule can consist of multiple charging events. Hence the sum of the

ratings of single charging events provides the score for an entire charging schedule.
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The introduced method to identify charging periods in Section 5.2.1 can be con-

sidered as a preceding step which ensures that the predicted mobility demand can

be fulfilled. After successful identification and rating of potential charging periods,

the charging event can be scheduled according to “traditional” optimisation schemes

(cost optimisation, peak shaving, etc.), that are described as smart charging solu-

tions.

5.2.3 Automated Scheduling of Charging

This section describes variables that need to be considered to rate charging periods

in the predicted mobility behaviour of an individual. Note that this di↵erentiates

the proposed scheduling scheme from other smart charging scheduling systems, that

were presented in other research work (see Section 2.3.1).

In general, periods in which a vehicle is predicted to be parked can be considered

for scheduled charging events. Given that information about the existing charging

infrastructure is available, features of the installed charging infrastructure can be

consulted to rate a charging event at the corresponding location. The features

include but are not limited to:

• Availability of Automated wireless charging (AWC)

• The available charging power

• Availability of renewable energy

• Dynamic price information

• Preferred parking location (e.g. Home)16

To account for these charging parameters, the proposed scheduling scheme rates

potential charging locations and the predicted dwell time according to location-

specific charging features. Note that the rating scheme is designed generically and

the listed features, such as AWC, are examples. Features that may be discovered by

other research work can arbitrarily be included and assigned to a rating accordingly.

16A user might prefer to charge at home (the most visited location) to make use of infrastructure
that has been installed specifically for the EV.
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The rating of di↵erent charging infrastructure features influences the charging

schedule. In the process, the scheduling task needs to respect multiple objectives.

Referring to the aforementioned aspects, the scheduling task can pursue a strategy

that minimises the cost of charging. Similarly, the strategy to form a charging

schedule could aim to schedule charging events in a manner that maximises the

comfort of an EV user. This could be achieved by planning to charge preferably

at locations which o↵er AWC, thus making it unnecessary to plug-in the vehicle.

Referring to [38], the scheduling task could also pursue the minimisation of range

anxiety and create a schedule that maximises the vehicle range at any time. Di↵erent

optimisation goals, however, can lead to conflicting goals. For instance, cost-optimal

charging may require shorter, thus more charging events, which reduces comfort.

Similarly, a cost-optimal charging schedule could require to use more of the vehicle’s

range, which may result in range anxiety.

5.2.4 Model Description

An “expert system” is developed that scores every predicted POI based on a de-

fined rating system naming it POI Rating Algorithm (PRA). Exemplary ratings

for predicted parking periods are illustrated in Figure 63. The concept of PRA is

to schedule a charging event in periods in which the vehicle will be present at the

highest rated POI. In Figure 63, for instance, the POI with a rating score of 3.9

would have been selected and the charging event would have been scheduled in the

night between Monday and Tuesday. Note that for simplicity the vehicle’s simulated

battery capacity is 100 kWh in the following examples. A SOC of 10% corresponds

to a SOE of 10 kWh.

The predicted dwell time and available charging power is used to calculate the

chargeable energy and the achievable SOC at every POI. Therefore the arrival SOE

at the POI is determined by the predicted schedule and the chargeable energy

(Echargable)is defined by the following equation:

Echargable = min((dwellT ime⇥ availablePower),

EBat � SOEarrival).
(39)
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Figure 63: The course of a vehicle’s predicted state of charge (SOC). The SOC
stagnates when the vehicle is parked and decreases when it is on a trip. Numbers
show exemplary ratings for POIs that are eligible for charging.

The scheduling scheme in this section is designed to respect a user’s individual pref-

erences. To respect a user’s preferences, it is possible to convey an initial calibration

for the framework. In contrast to most existing methods, this calibration is only nec-

essary once; however, a user would be free to change it at any time. For convenience,

a user could also provide a minimum SOC (minSOC), that is not undercut in the

scheduling process. If no minSOC is provided, a lower threshold > 0 is applicable

to ensure that the system does not allow the battery to be completely emptied. For

consistency, the minSOC, by definition in percent, is replaces with minSOE in kWh.

Users may have di↵erent preferences regarding comfort and flexibility. Stud-

ies also observed a change in EV user behaviour and range awareness the more

experience they gained with EVs [218] [219]. Hence, their preferences regarding

charging priorities may also change over time. The system is designed to account

for these di↵erences by prioritising comfort or flexibility. While a charging schedule

with comfort as priority aims for a minimum number of charging events, a charging
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schedule with maximum flexibility aims for high SOC at any time, providing maxi-

mum range at any time. Based on this definition, comfort and flexibility oppose each

other. Therefore their calibration is realised with a slider, as illustrated in Figure

64. For the scheduling task, the slider generates linear values between 1 (maximum

comfort) and 0 (maximum flexibility). The slider value Sv is used to generate a

flexibility SOC (FlexSOC) with:

FlexSOC =
(EBat �minSOE)⇥ (1� Sv) +minSOE

EBat

(40)

where EBat is the battery’s capacity in kWh and minSOE is the minimum required

energy in kWh. To respect a user’s flexibility preference, the vehicle’s scheduled

SOC should not fall below the flexSOC. Therefore, POIs with charging possibility

are scored higher when they can be reached with a predicted SOC above the flexSOC.

Note that, other than for the minSOC, the predicted SOC curve is allowed to fall

below the flexSOC. However, Figure 64 illustrates higher ratings for POIs that are

reached with a SOC higher than the flexSOC.

The proposed POI’s rating score consists of a static and a dynamic part.

RatingPOI = Ratingstatic +Ratingdynamic. (41)

A POI’s static rating remains identical for as long as the charging infrastructure is

not changed, for instance through a subsequent installation of an AWC system. The

dynamic rating is a function of the predicted dwell time and the vehicle’s SOC at

arrival. However, both the static and dynamic rating outcome depends on a user’s

preset preferences. The static value can be understood as a representation of the

POI’s charging feature’s quality. Therefore every POI is checked for the availability

of AWC and PnC. Furthermore, the assignment of a POI to the most visited location

is checked and rated. Charging the vehicle wirelessly can provide flexibility without

compromising comfort, hence POIs with AWC infrastructure receive the highest

static rating, followed by the most visited POI (MVP), given the user prefers to

charge at this location, for instance at home. Both conditions are rated binary.
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Figure 64: POI rating illustration
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RatingPOI (41)

Ratingstatic (42) Ratingdynamic (43)
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× 𝑥 (46, 47, 48)× 𝑥× 𝑥
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Figure 65: POI rating scheme overview. The illustrated numbers (41-48) next to
the Ratings refer to the equation numbers.

Ratingstatic = RatingAWC +RatingPnC +RatingMV P . (42)

The dynamic rating evaluates a potential charging session. Hence, the vehicle’s

expected SOC at arrival and the available energy at the corresponding POI influence
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the score.

Ratingdynamic = RatingSOC +RatingEnergy. (43)

The available energy (Eavailable) is a function of the available power and the predicted

dwell time at a POI. Dwell time defines the time between predicted arrival and

departure time at the reviewed POI. To rate the available energy (RatingEnergy) a

linear equation (44) is chosen.

Ratingenergy =
Eavailable

EBat ⇥ (1� minSOE

100
)
. (44)

Note that RatingEnergy becomes greater with the available energy. Hence, a pre-

dicted stop at a location at which more energy is available than necessary will be

preferred over a location which may o↵er just enough energy. This is done to address

uncertainties in Eavailable for instance due to fluctuations in the power production.

The rating of the SOC at the arrival is divided into three di↵erent sections, as dis-

played in Figure 66. For a SOC higher than the flexSOC a linear rating is used.

By charging the EV at the flexSOC two objectives can be reached: the user’s de-

sired flexibility and a great SOC-swing. A great SOC-swing is wanted as it reduces

the necessary number of charging events. Thus, an arrival SOC that equals the

flexSOC achieves the highest rating. A similar e↵ect is wanted for SOCs between

the minSOC and the flexSOC. As a SOC in this area falls below a user’s desired

flexibility it must be rated with a significantly lower value.

The dotted interpolation line in Figure 66 is supposed to rate this area with

an empirically determined rating of 0.7 at the flexSOC and a rating of 0 at 0%

SOC. A drop below the flexSOC was implemented to rate SOCs below the flexSOC

significantly lower then SOCs above the flexSOC. To achieve a continuous rating

the following equation is chosen to rate the values between the minSOC and the

flexSOC (in this illustration between 20% and 38%).

RatingSOC = 1.31 ⇤ 10�7
⇤ x5

� 9.12 ⇤ 10�6
⇤ x4+

1.75 ⇤ 10�4
⇤ x3 + 2.25 ⇤ 10�5

⇤ x2.
(45)
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The equation was created by interpolating a function with six equally distributed

values between the flexSOC and the minSOC. Note that this equation was chosen to

get a function that is close to the interpolation line while fulfilling the requirement

of being significantly below the rating factor of the flexSOC. However, any other

function can be chosen that creates a similar rating for a SOC between min and

flexSOC. The value 0.7 at the flexSOC is substituted by the highest possible rating.

This is because it is wanted that charging events are scheduled when the battery’s

SOC is equal to the flexSOC. Recall that the flexSOC represents the user’s charging

preferences. As SOCs below the minSOC must not occur they are rated with 0.

Figure 66 displays the rating for the entire SOC range [0-100]. To respect the

Figure 66: Key features of the arrival SOC rating at a POI: SOC smaller than the
minSOC are rated with 0. SOC between the minSOC and the flexSOC is rated
according to Equation (45). The highest rating factor is achieved at the flexSOC.

user’s preferences, the rating of di↵erent factors have to be weighted. In Figure 65

these factors are named with xn. Therefore the slider position shifts the maximum

value that can be scored by the di↵erent factors, with respect to their weight. As

AWC combines both comfort and flexibility it receives the highest score. If AWC is

available at one POI in the predicted schedule, the corresponding POI receives the

doubled maximum value of all dynamic factors combined to ensure that it outweighs

all other factors. Furthermore, if charging at the most frequently visited POI has

been prioritised, the theoretic maximum dynamic rating will be added to the most

167



visited POI’s rating.

All influencing factors are ranked in a hierarchy that represents their weight to

the scheduling part. Thereby AWC is rated twice as high as all other dynamic

factors plus the availability of PnC.

Rating = AWC � MV P > (Ratingdynamic + PnC). (46)

RatingSOC = RatingSOC ⇥ (slidervalue⇥ 3 + 1). (47)

RatingEnergy = RatingEnergy ⇥ (slidervalue⇥ 2 + 1). (48)

5.3 Simulation Experiments

To demonstrate the framework’s functionality and to evaluate its performance, the

scheduling scheme is tested with predicted mobility data. Real driving data, which

has been introduced in Chapter 3, was used to create “predicted driving schedules”.

These predicted schedules consist of a user-specific sequence of predicted departure

times, predicted energy demand (per trip) and predicted destinations. The corre-

sponding charging schedules are created under the assumption of di↵erent flexible

prices and with di↵erent priorities. Details about the simulation set up are given in

the subsequent sections.

5.3.1 Scenarios and Experiment Conditions

The scheduling framework is tested with three di↵erent priorities on 12 di↵erent pre-

dicted mobility data profiles. As previously described, the available mobility data

does not contain any information about the availability of charging infrastructure.

Hence the availability of charging infrastructure at the visited locations needs to

be estimated. The probabilities to find charging infrastructure at visited locations

are insinuated (denoted as POI) displayed in Table 21. Note that the probability

of finding a charging infrastructure in the individual’s network of POIs can be con-

sidered as generic input. Values in Table 21 are estimated based on the current

development and roll-out of charging infrastructure. Also, note that true charging
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power availability is subject to several dynamic factors. Other power consumers can

lower the charging power output in private infrastructures. Hence, the probability

to have access to little charging power (3.6 kW) is assumed to be greater than high

charging power (7.2 kW - 22 kW). However, the geographic area in which the corre-

sponding user lives and travels influences power availability. To this end, Table 21

should be understood as an example only.

Note that the probability distribution in Table 21 is assigned to every individual

mobility network, created by the Markov model. Charging infrastructure is only

simulated at POIs and not “en-route” to investigate if predicted parking periods

are su�cient to cover the predicted charging demand.

Table 21: Probabilities for di↵erent charging infrastructure

Probabilities Charging Infrastructure

(Semi-)Public Charging POI

50% no charging possibility

12.5% 3.6 kW

12.5% 7.2 kW

12.5% 11 kW

12.5% 22 kW

Most frequently visited POI

(25% wireless)

62.5% 3.6 kW

12.5% 7.2 kW

12.5% 11 kW

12.5% 22 kW

To implement the possibility to schedule charging events based on minimal (av-

erage) costs, di↵erent dynamic energy prices are provided to the framework. Note

that dynamic prices are used as input parameter as they are often referred to as

greatest motivation to participate in smart charging. For simplification, other fac-

tors such as charging service fees are excluded from this consideration but could be
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added in a real world application.

To demonstrate the impact of energy prices on the framework’s scheduling re-

sults, three di↵erent price curves are implemented. Tari↵ 1 is based on average unit

prices from 2017 on the German spot market17. Prices per kWh are displayed as a

function of time in Figure 67.
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Figure 67: Tari↵ 1, 2 and 3 over the course of 24 hours. The single dotted line marks
the fixed part of Tari↵ 1 (Tari↵ 3 has been converted from Dollar to Euro with a
conversion rate of 0.86).

Note that, due to the price structure in Germany, only 20% of Tari↵ 1 is consid-

ered as dynamic. The average price per kWh for Tari↵ 1 is 0.29 Euros at the time

of writing. As the German price structure is an example for little spreads in power

prices, the framework is also tested with a more volatile price curve, represented

as Tari↵ 2. The gradient of Tari↵ 2 is based on Tari↵ 1, however, the fixed basic

costs are removed and the whole price per unit is considered as dynamic. Thereby

the price minimum is lowered from 0.28 to 0.10 Euros, the price maximum is raised

from 0.31 to 0.47 Euros, the average remains 0.29 Euros.

At last a third price curve is generated, based on a Time of Use (TOU) tari↵

that is currently, at the time of writing, available in California18 specifically for

EV-owners. The average price per kWh is 0.33 Dollar. The displayed curve shows

the price converted to Euros per kWh on working days during summertime (June

1 - October 31). Starting with a SOC of 50%, charging is scheduled based on the

17https://transparency.entsoe.eu/
18https://www.sdge.com/residential/pricing-plans/about-our-pricing-plans/electric-vehicle-

plans
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corresponding predicted schedule for one week with priority on Comfort (Comf.),

Flexibility (Flex.) and Costs (Cost).

• Scenario 1: Since it is considered to be most comfortable when a user must

not charge more often than necessary to fulfil its mobility wishes, it is aimed to

minimise the number of charging events disregarding the costs for the charging

event in this scenario. Inherently, scheduling with this priority requires fewer

but longer charging events. Therefore long parking duration or shorter parking

duration with high charging power receive high ratings.

• Scenario 2: A user’s flexibility is prioritised by providing the maximum range

in every situation possible. The framework schedules a charging event at every

location that o↵ers the possibility of charging, disregarding the charging costs

and number of plug-in events. This scenario is comparable to a situation in

which a user charges every time he can due to range-anxiety.

• Scenario 3: Charging events are scheduled with respect of available price infor-

mation, aiming for minimum average costs per kWh for the entire predicted

schedule, disregarding the number of necessary charging events or location.

Note that in this scenario the tari↵ function could be replaced by other fac-

tors, such as renewable energy availability.

5.3.2 Simulation Results

Figure 68 shows the predicted and scheduled SOC for User 3 for all of the three

di↵erent optimisation goals (Scenario 1-3.) with Tari↵ 1. This user is chosen since

all optimisation goals led to di↵erent charging schedules. The red graph shows

the predicted and scheduled SOC with the framework’s priority set on comfort

(Scenario 1). According to the system’s response, the vehicle is only scheduled

to be charged once from around 25% SOC up to around 70% within the predicted

time. Note that in this scenario, the flexSOC is ignored and only the adjusted

minSOC (dotted line) is of relevance.

The green graph shows the SOC that is based on the same predicted schedule

of User 3, however, the framework’s priority was set to schedule charging events for
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maximum flexibility. Therefore a charging event is scheduled for every parking event

in a location that o↵ers charging possibilities, resulting in eight charging events and

a high SOC at any time. In this scenario the flexSOC is set to 100% SOC, the

minSOC remains at 20% (20 kWh SOE).

The blue graph accordingly displays the predicted energy demands of User 3 but

with priority set on minimal costs. It can be seen that other than in Scenario 1 and

2, charging events are scheduled into time slots in which charging is relatively cheap.

In this scenario, a minimum average price per kWh is prioritised, disregarding the

number of charging events but with respect of the adjusted minSOC.

Figure 68: Comparison of scheduled SOC curves for the three scenarios.

The di↵erent curves per scenario illustrate that di↵erent optimisation goals lead

to di↵erent charging schedules and may have an e↵ect on the system’s recommen-

dations to the user. It also demonstrates that the framework can prevent, in any

scenario, that the vehicle undercuts the calibrated minSOC. For simplification, the

SOC curve for charging events in Figure 68 is illustrated as a linear function between

the beginning and end of the parking event.

5.3.3 Performance Analysis

Di↵erent charging strategies on similar predicted travel behaviour are expected to

translate to di↵erent charging schedules. Thus, a cost-related charging strategy’s

e↵ectiveness should be evaluated according to the average price per unit energy

that it achieved. Likewise, the e↵ectiveness of a comfort-related charging strategy is
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reflected by a minimum number of scheduled charging events. Hence, the associated

number of charging events per charging strategy is also compared and evaluated.

5.3.3.1 Average Price

By comparing the total costs it must be taken into account, that the amount of

charged energy di↵ers per scenario and the price per kWh is dynamic. For a repre-

sentative comparison, the average price per kWh per scenario is displayed to evaluate

the benefit that can be created by the framework’s scheduling strategy. Note that

the displayed average price per kWh takes into account a system e�ciency of 85%

and therefore represents the price a user would have to pay for the actual stored

kWh energy in the battery including losses19. The expected results for the order of

charging strategies regarding the average price per kWh is Cost < Flex. 6 Comf.

• Tari↵ 1: The results show that, given the German price structure with little

price dynamics, the achievable benefit per kWh is marginal. Only two out of

12 users achieve a positive price di↵erence for the average kWh of 0.01 Euros

compared to both other scheduling strategies. For six users, there is a price

benefit compared to one other scheduling strategy, however, the average price

di↵erence is 0.01 Euro only. With an average energy demand of 0.22 Wh/km

and a yearly driven distance of 15,000 km, this would result in a di↵erence of

33 Euros per year (0.22 Wh/km * 15000 km * 0.01 Euro/Wh).

• Tari↵ 2: Compared with Tari↵ 1, Tari↵ 2 o↵ers a higher price spread between

energy price maximum and minimum. As a result, the framework can create a

relevant price benefit for five out of 12 users. Note that for four further users

the framework achieves a price advantage compared to one other scheduling

strategy.

• Tari↵ 3: Apart from o↵ering a greater price spread than Tari↵ 1, Tari↵ 3

creates a price benefit for two out of twelve users as well. Similarly for six out

of the remaining ten, the framework achieves a price benefit compared to one

other scheduling strategy. However, the price di↵erence between the cheapest

19Typical value for EV charging systems including battery e�ciency.
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and the most expensive scheduling strategy per user is 0.02 Euro per kWh on

average.

5.3.3.2 Number of charging events

The expected result for the number of charging events is Comf. 6 Cost < Flex.

• Tari↵ 1: The results show that the target of reducing the number of charg-

ing events for the first scenario can always be achieved. For seven users the

framework was able to create a charging schedule that required fewer charg-

ing events than the other charging strategies would have required. For four

users the most comfortable charging strategy resulted in an equal number of

charging events as the most cost-e�cient strategy. User 5 is an exception as

the predicted SOC would not have dropped below the minSOC within the

predicted time, which is why the framework did not schedule a charging event

for the entire week.

• Tari↵ 2: For the number of required charging events the framework achieved

similar results for Tari↵ 2 and Tari↵ 1 as the gradient of Tari↵ 1 and 2 is

identical.

• Tari↵ 3: With the less dynamic Tari↵ 3 the framework was able to create

a benefit for even more users than with Tari↵ 1. Eight users would have

benefited from a comfort-oriented charging strategy, for three users the number

of scheduled charging events with priority on comfort would be equal as for a

priority set on costs.

5.4 Discussion

In contrast to most existing work, the scheduling scheme was tested with real driving

data, which allows gaining practical results. By using travel behaviour that has

been captured with ICEV it has been demonstrated that all users would not have

been compromised by an EV, given that there is a charging possibility in at least

one location that is frequently visited by the user. Relating to the probability
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distribution of charging infrastructure in Table 21, the predicted parking periods

would have been su�cient to cover the charging demand, even if it is assumed that

50% of (predicted) POIs would not o↵er any charging possibility and 62.5% of the

individual MVP o↵ers 3.6 kW charging power only.

The di↵erent results for Tari↵ 1, 2 and 3 emphasise that the user-benefit of smart

charging solutions is directly connected to the available price structure. The results

show that the automated smart charging framework can schedule charging events for

all users, in all scenarios and with all tari↵s. With Tari↵ 1, the maximum di↵erence

in average price per kWh between di↵erent optimisation strategies is 0.01 Euros.

This is a relevant finding as it emphasises that, assuming a required infrastructure

is in place, smart charging o↵ers very little monetary benefit for an EV-user when

the tari↵’s price spread is small and hence should not be considered as the only

reasonable motivation to participate in smart charging. In reverse, a greater price

spread can create relevant benefits. The higher price spread for Tari↵ 2 led to

di↵erences of up to 0.13 Euros per kWh between di↵erent charging scenarios.

Tari↵ 3 is the only tari↵ in this simulation that is available for EV-users. How-

ever, the di↵erence between an “expensive” and a “cheap” charging schedule with

Tari↵ 3 is only marginal. Only two users benefited from a charging schedule that

prioritises low average costs per kWh. With this specific TOU tari↵, the energy

supplier may create a motivation to influence a user towards a grid friendly load

generation. Users, however, would only benefit marginally from the o↵ered tari↵,

given the recorded travel behaviour.

The little monetary advantage that can be created confirms the initial statement

that the existing price structures are not adequate to justify a user’s e↵ort to par-

ticipate in smart charging, even with an automated framework. Given a user has to

analyse power price forecasts and provide all necessary smart charging information

manually, the benefit may become even smaller.

Based on real-world mobility data (see Section 3) it is known that vehicles are

only used for a small fraction of time per day. The remaining time during the day

can be used to shift charging of EVs according to di↵erent charging strategies, given

175



a suitable charging infrastructure is available.

Mobility can be broken down into a binary variable that indicates predicted

periods in which a vehicle can be charged or not. Furthermore, predicted mobility

creates a time-dependant energy demand which serves as input for a charging sched-

ule. A charging schedule can be created with respect to di↵erent charging strategies,

which may pursue various goals, such as low charging costs, little grid impact, high

renewable energy proportion, etc.

The provision of individual charging schedules contributes to an advanced smart

charging concept. Based on the expected energy demand and time of load, the grid

operator and utilities can prepare the grid for the corresponding charging event.

Although the load of a single charging EV creates a rather insignificant impact on

a grid, the aggregation of multiple charging schedules could be used as an e�cient

tool for the mitigation of congestion and utilisation of renewable energy.

5.5 Conclusion

Based on the identified input parameters, this chapter introduced an expert system,

which is designed to create charging schedules based on rated potential charging

periods. The chapter has discussed and identified di↵erent generic inputs that can be

consulted to schedule charging with respect to an individual’s mobility and existing

charging infrastructure. A charging schedule is created by scheduling charging events

which achieved the highest ratings. The rating mechanism is designed to be biased

towards a user’s preferences. If a user prefers to charge with minimal costs, the

system will rate charging periods with low costs higher than others.

Besides the framework’s functionality to prioritise a user’s mobility demand, it

is designed to combine di↵erent interests. A grid operator can forward his interests

in the form of a price signal via flexible tari↵s. A user’s predicted mobility serves as

a basis for the scheduling task and ensures that the user’s interests are taken into

account.

The framework’s functionality is demonstrated with a combination of real-world

data and generic variables. Generic inputs, such as the probability distribution
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of charging infrastructure in an individual’s network of POI’s allows the network

to be applicable in di↵erent geographic regions, which may o↵er di↵erent coverage

regarding the charging infrastructure.

The PRA is designed to process generic mobility data to ensure that it could be

used in conjunction with other prediction methods. Predicted charging schedules

can be utilised for di↵erent purposes, such as providing charging guidance or rec-

ommendations to the EV user. Another benefit is created when a charging schedule

is communicated to the charging infrastructure that is capable of smart charging.

Finally, the individually predicted charging and energy demand could also serve

utilities to organise their resources e�ciently and early in advance.

177



Chapter 6: Conclusions and Future Work

EVs have the potential to play an essential role in the decarbonisation of the trans-

portation sector. The technology that is used for EV charging is a key element that

influences their impact on the environment for multiple reasons. Electric mobility

is only sustainable if renewable energy is used for charging EVs. A second aspect

is the potentially harmful impact that charging vehicles can create on the existing

electric power grids.

Both aspects are being addressed with the concept of smart charging. Smart

charging concepts apply di↵erent strategies to mitigate stress on power grids and

aim to shift charging events into periods of cheap and/or excessive renewable power

production. A shortcoming of existing smart charging solutions is their dependency

on user involvement. Regardless of the smart charging strategy on hand, basic

information about the required energy and the time at which the EV will be driven

are mandatory to ensure that the vehicle can fulfil its original purpose: providing

mobility to its user.

The e↵ectiveness of smart charging solutions can be facilitated by designing them

seamless and attractive to use. A high priority must be set on the indemnification of

a user’s mobility, since the creation of smart charging related disutility contradicts

the purpose of an EV.

6.1 Summary and Conclusions

This thesis explores the possibilities to advance existing smart charging schemes.

The focus is set on a solution that combines the interests of all parties that are

involved in a smart charging process.

An EV’s charging demand is a function of the EV user’s mobility demand. To

this end, real-world mobility data is collected, reviewed and analysed. The repre-

sentativeness of the collected data is ensured by a comparison of key indicators with

other mobility data sets. The collected mobility data is used to investigate typical

and atypical travel patterns and sets the groundwork for the subsequent design of
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an enhanced mobility prediction mechanism. Furthermore, the collected mobility

data set is used to simulated EV energy demand with the help of a vehicle dynamic

model.

The analysis of mobility data is also used to answer the research question: What

characterises human travel behaviour and are these characteristics eligible to make

useful assumptions about smart charging parameters? The characterisation of hu-

man mobility shows that the majority of human travel behaviour, more specifically

repetitive and long dwell times at relevant locations, create su�cient flexibility re-

garding potential charging times. Smart charging can be shifted towards a more

user-centric approach by utilising this flexibility. However, this can be accomplished

without a user’s involvement. With an advanced smart charging framework an EV

user is not required to hand over charging parameters such as departure times or

required energy. This task can be eliminated when a smart charging framework has

access to an EV- and user-specific travel history to anticipate future mobility and

corresponding energy demand.

Human mobility is characterised by transitions between regular visited locations

and location characteristic dwell time. The second part of the framework picks up

identified travel characteristics and introduces a combination of location-dependent

and location-independent mobility prediction methods. A combination of LD and

LI prediction methods is implemented to benefit from the individually better per-

forming scheme on the characteristics of individual travel patterns. Further, the

introduced prediction scheme is designed to be independent of weekly periodicity

in travel behaviour and to provide a holistic spatio-temporal mobility prediction,

consisting of departure time, route information and arrival time. To be independent

from weekly periodicity, an ANN is explored to predict the sequence of characteristic

travel patterns. The framework’s independence from week cycles improved the pre-

diction accuracy for 60% of the investigated data profiles by 13.9% on average. The

prediction scheme provides a detailed “predicted mobility schedule”, which allows

deducing a location and time-dependant EV energy demand.

A predicted driving schedule provides the basis for the third part of the intro-
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duced smart charging framework. Predicted parking time and parking locations

in conjunction with a time-dependant energy demand are used to identify sensible

charging periods. The introduced scheduling scheme rates potential parking peri-

ods and follows a generic design, adaptable to personal preferences or new scientific

findings and methods. The analysis of the rating scheme in conjunction with the

mobility prediction data is used to illustrate relevant findings. First, vehicle-related

travel behaviour is eligible for smart charging and, as demonstrated with the avail-

able data set, o↵ers su�cient flexibility for shifting charging into di↵erent periods of

the day. With its features, the scheduling scheme takes into account the uncertainty

that is associated with human mobility prediction. In rare occasions, in which in-

dividuals deviate from regular hence predictable mobility behaviour, the scheduling

scheme adapts quickly by recalculating the charging schedule every time the vehicle

stops at a location.

Another finding is that available tari↵s, even if they forward the stock market

prices for electric energy to the end-user, do barely justify the application of smart

charging strategies. This finding implies necessary changes to energy tari↵ structures

to create a convincing smart charging benefit.

The scheduling scheme successfully scheduled charging events in periods of cheap

power production while respecting a user’s predicted mobility demand. The intro-

duced smart charging scheme can also pursue a strategy that minimises the number

of necessary charging events. For all tested mobility profiles, the framework reduces

the number of scheduled charging events compared with an opportunistic charging

plan. In average, the number of charging events was reduced by 67%.

The introduction of the scheduling scheme answers the fourth research question:

What characterises a scheduling scheme that combines individual predicted mobility,

predicted energy demand, and charging infrastructure features to a smart “charging

schedule”? It eliminates the necessity of handing over charging preferences manually,

which is necessary for existing smart charging schemes to apply smart charging

strategies.

A strength of the introduced framework is its compatibility with existing smart

180



charging proposals. Other works, which introduced di↵erent methods for shifting EV

charging concerning dynamic prices or renewable energy generation, will apply to the

introduced framework. However, both a user as well as grid operators would benefit

from an automatic provision of charging requirements. This is because individual EV

charging requirements could not only be provided for every single parking event but

also early in advance, as a predicted schedule contains energy-related information

for several days in advance. While EV-users are liberated from manual charging

calibration, utilities could aggregate power demands from a fleet of EVs to organise

their resources e�ciently or create dynamic power prices, based on the expected

grid load.

6.2 Limitations

The framework’s e↵ectiveness is limited by several factors. The impact of a single

charging EV is usually too small to create threat to a power grid, nor will smart

charging of a single vehicle make a significant impact to the utilisation of renewable

energy. To this end, a su�cient number of predicted schedules and detailed fore-

casts about power availability for a specific region are required to create measurable

positive impacts.

Furthermore, the introduced smart charging scheme is designed to be robust

against a great variation in travel patterns, which includes typical and atypical

travel behaviours. However, as demonstrated in several research projects [151] [165],

mathematical limits regarding the predictability of human travel behaviour exist.

These limits as well as unpredictable mobility behaviour may a↵ect the generation

of a sensible charging schedule, which may limit the framework’s applicability to

predictable user groups.

The simulation results regarding the achievable monetary benefits imply neces-

sary changes in power price policies. A greater variance in dynamic power prices

increases the e↵ectiveness of smart charging solution and the implementation of a

smart charging framework. At the time of writing, barely any available flexible tari↵

provided a su�cient motivation to participate in smart charging. This is even more
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relevant when the costs for the required communication and smart charging infras-

tructure are considered. Without su�cient monetary incentives, the motivation to

use a smart charging framework is limited to environmental awareness and potential

comfort gains.

6.3 Future Work

During the writing of this thesis, the EV market has experienced significant growth.

With more EVs on the market, new insights and findings regarding technology and

user experience were made available.

In the course of this research, the influence of charging behaviour and battery

wear became significantly more relevant. Studies regarding charging behaviour im-

plied that the opportunistic charging behaviour of many EV users leads to greater

battery wear than originally expected [220]. Using the introduced smart charging

framework as a basis, this e↵ect could be part of future investigations.

Furthermore, this thesis was intentionally set to prioritise a user’s mobility in the

design of the charging scheduling mechanism. EVs, however, could also be utilised

as energy storage, which could feed back to power grids in times of low energy

generation. This process is referred to as bi-directional charging. Bi-directional

charging requires specific infrastructure and is regulated by national laws but could

be investigated as part of future iterations of this smart charging framework.

EV charging o↵ers further potential for improvement. With “smart charging

hardware”, the introduced smart charging framework could help to establish a physi-

cal connection between vehicle and infrastructure. Automated hardware in conjunc-

tion with individually scheduled charging events would make any user involvement

redundant for charging events.

Further potential for EV sharing concepts is given by the possibility to connect

individuals who share similar mobility demand. A centralised system that combines

individual travel patterns, humans with complementing mobility demands could be

motivated to share EV and charging infrastructure. The promotion of ride-sharing

concepts could contribute to a reduction in the number of required vehicles.
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A subject for further research is the secure operation of a smart charging frame-

work. As has been discussed and demonstrated, EV user mobility prediction requires

sensitive user data. A system that reveals or predicts a home owner’s absence, for

instance, must be operated securely.
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bourg Verlag, 2011.

[11] J. Dickert and P. Schegner, “Residential load models for network planning

purposes,” in 2010 Modern Electric Power Systems. IEEE, 2010, pp. 1–6.

[12] S. W. Edison and G. L. Geissler, “Measuring attitudes towards general tech-

nology: Antecedents, hypotheses and scale development,” Journal of targeting,

Measurement and Analysis for Marketing, vol. 12, no. 2, pp. 137–156, 2003.

[13] M. Modahl, Now or never: How companies must change today to win the battle

for internet consumers. HarperCollins Publishers, 1999.

[14] O. Egbue and S. Long, “Barriers to widespread adoption of electric vehicles:

An analysis of consumer attitudes and perceptions,” Energy policy, vol. 48,

pp. 717–729, 2012.

[15] B. K. Sovacool and R. F. Hirsh, “Beyond batteries: An examination of the

benefits and barriers to plug-in hybrid electric vehicles (phevs) and a vehicle-

to-grid (v2g) transition,” Energy Policy, vol. 37, no. 3, pp. 1095–1103, 2009.

[16] D. Dallinger, Plug-in electric vehicles integrating fluctuating renewable elec-

tricity. kassel university press GmbH, 2013, vol. 20.

[17] M. Duvall et al., “Comparing the benefits and impacts of hybrid electric ve-

hicle options for compact sedan and sport utility vehicles,” Final Report, vol.

1006892, 2002.

[18] G. Nischler, C. Gutschi, M. Beermann, and H. Stigler, “Auswirkungen von

elektromobilität auf das energiesystem,” e & i Elektrotechnik und Informa-

tionstechnik, vol. 128, no. 1-2, pp. 53–57, 2011.

[19] R. Kasper and M. Schünemann, “Elektrische fahrantriebe topologien und

wirkungsgrad,” MTZ-Motortechnische Zeitschrift, vol. 73, no. 10, pp. 802–

807, 2012.

185



[20] “Worldwide number of electric cars 2018.” [Online]. Avail-

able: https://www.statista.com/statistics/270603/worldwide-number-of-

hybrid-and-electric-vehicles-since-2009/

[21] M. Lackner, F. Winter, and B. Geringer, “Chemie im motor: Verbren-

nungsmotoren versus brennsto↵zelle und elektromotor,” Chemie in unserer

Zeit, vol. 39, no. 4, pp. 246–254, 2005.

[22] A. Pina, P. Baptista, C. Silva, and P. Ferrão, “Energy reduction potential

from the shift to electric vehicles: The flores island case study,” Energy Policy,

vol. 67, pp. 37–47, 2014.

[23] C. Holman, R. Harrison, and X. Querol, “Review of the e�cacy of low emission

zones to improve urban air quality in european cities,” Atmospheric Environ-

ment, vol. 111, pp. 161–169, 2015.

[24] A. D’Avignon, F. A. Carloni, E. L. La Rovere, and C. B. S. Dubeux, “Emission

inventory: An urban public policy instrument and benchmark,” Energy Policy,

vol. 38, no. 9, pp. 4838–4847, 2010.

[25] W. Sierzchula, S. Bakker, K. Maat, and B. Van Wee, “The influence of finan-

cial incentives and other socio-economic factors on electric vehicle adoption,”

Energy Policy, vol. 68, pp. 183–194, 2014.

[26] M. A. Tamor, P. E. Moraal, B. Reprogle, and M. Milačić, “Rapid estimation
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[68] R. V. Solé, M. Rosas-Casals, B. Corominas-Murtra, and S. Valverde, “Robust-

ness of the european power grids under intentional attack,” Physical Review

E, vol. 77, no. 2, p. 026102, 2008.

[69] S. Meier, S. Norrga, and H.-P. Nee, “New voltage source converter topology

for hvdc grid connection of o↵shore wind farms,” Citeseer, 2004.

[70] M. Braun, T. Stetz, R. Bründlinger, C. Mayr, K. Ogimoto, H. Hatta,

H. Kobayashi, B. Kroposki, B. Mather, M. Coddington et al., “Is the dis-

tribution grid ready to accept large-scale photovoltaic deployment? state of

the art, progress, and future prospects,” Progress in photovoltaics: Research

and applications, vol. 20, no. 6, pp. 681–697, 2012.

[71] A. B. Pedersen, A. Aabrandt, J. Ostergaard, and B. Poulsen, “Generating

geospatially realistic driving patterns derived from clustering analysis of real

ev driving data,” in Innovative Smart Grid Technologies-Asia (ISGT Asia),

2014 IEEE. IEEE, 2014, pp. 686–691.

191



[72] J. Taylor, A. Maitra, M. Alexander, D. Brooks, and M. Duvall, “Evaluations

of plug-in electric vehicle distribution system impacts,” in IEEE PES General

Meeting. IEEE, 2010, pp. 1–6.

[73] G. Graditi, M. L. Di Silvestre, R. Gallea, and E. R. Sanseverino, “Heuristic-

based shiftable loads optimal management in smart micro-grids,” IEEE Trans-

actions on Industrial Informatics, vol. 11, no. 1, pp. 271–280, 2014.

[74] J. A. Jardini, C. M. Tahan, M. Gouvea, S. U. Ahn, and F. Figueiredo, “Daily

load profiles for residential, commercial and industrial low voltage consumers,”

IEEE Transactions on Power Delivery, vol. 15, no. 1, pp. 375–380, 2000.

[75] J. V. Paatero and P. D. Lund, “A model for generating household electricity

load profiles,” International Journal of Energy Research, vol. 30, no. 5, pp.

273–290, 2006.

[76] C. Fünfgeld and R. Tiedemann, Anwendung der repräsentativen VDEW-
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[181] T. Gnann, P. Plötz, S. Funke, and M. Wietschel, “What is the market po-

tential of plug-in electric vehicles as commercial passenger cars? a case study

from germany,” Transportation Research Part D: Transport and Environment,

vol. 37, pp. 171–187, 2015.

[182] D. Ambuhl and L. Guzzella, “Predictive reference signal generator for hybrid

electric vehicles,” IEEE transactions on vehicular technology, vol. 58, no. 9,

pp. 4730–4740, 2009.

[183] E. Apostolaki-Iosifidou, P. Codani, and W. Kempton, “Measurement of power

loss during electric vehicle charging and discharging,” Energy, vol. 127, pp.

730–742, 2017.

[184] G. A. McCoy and J. G. Douglass, “Premium e�ciency motor selection and

application guide–a handbook for industry,” Washington State University En-

ergy Program, Tech. Rep., 2014.

[185] M. Allen, “Real-world range ramifications: Heating and air conditioning,”

FleetCarma., 2014.

[186] C. McLaren, J. Null, J. Quinn et al., “Heat stress from enclosed vehicles:

moderate ambient temperatures cause significant temperature rise in enclosed

vehicles,” Pediatrics-English Edition, vol. 116, no. 1, p. e109, 2005.

[187] J. Rugh, A. Pesaran, and K. Smith, “Electric vehicle battery thermal issues

and thermal management techniques (presentation),” National Renewable En-

ergy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2013.

204



[188] I. Almanjahie, “Temperature variations in a parked car,” Masters in Math.

Stat. Sc, University of Western Australia, 2008.

[189] M. Mitschke and H. Wallentowitz, Dynamik der kraftfahrzeuge. Springer,

1972, vol. 4.

[190] A. Kreim, “Modellierung und parameteroptimierung einer permanenterregten
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Figure A1: Transition precision for DS1 and DS2 with MM/KDE
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Figure A2: Transition precision for DS1 and DS2 with Mode
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Figure A3: Transition recall for DS1 and DS2 with with MM/PDF
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Figure A4: Transition recall for DS1 and DS2 with with Mode
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Figure A5: Transition F1 Score for DS1 and DS2 with with MM/PDF
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Figure A6: Transition F1-score for DS1 and DS2 with Mode
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Appendix B

Table B1 shows the number of scheduled charging events which corresponds with the

number of times a user would have to plug in the vehicle or place it above an AWC

ground plate, assuming the availability of Tari↵ 1. Table B2 and B3 illustrate the

framework’s results regarding the costs and number of charging events for Tari↵ 2

and Tari↵ 3 respectively.

Table B1: Scheduling results for user profiles (Price curve 1)

Total costs [Euro] Average price
per kWh [Euro]

Total charged
energy [kWh]

Number of
charging events

User Comf. Flx. Cst. Comf. Flx. Cst. Comf. Flx. Cos. Comf. Flx. Cst.
1 25.58 32.83 25.58 0.35 0.34 0.34 76 89.44 76 1 8 1
2 72.41 84.71 84.71 0.34 0.33 0.33 214.00 253.00 253.00 3 7 7
3 15.47 35.83 28.19 0.33 0.33 0.32 47.10 109.00 87.70 1 8 2
4 28.20 40.18 40.18 0.34 0.33 0.33 82.10 121.00 121.00 1 10 10
5 - 24.20 - - 0.33 - - 73.10 - - 4 -
6 14.88 26.51 10.78 0.34 0.34 0.34 44.10 78.60 32.10 2 4 2
7 28.56 42.10 42.10 0.34 0.33 0.33 82.90 126.00 126.00 1 8 1
8 10.46 27.54 19.53 0.32 0.33 0.32 32.30 84.40 60.50 1 3 1
9 21.23 35.65 27.10 0.34 0.34 0.33 63.00 106.00 80.90 3 5 3
10 26.36 34.74 34.74 0.34 0.33 0.33 77.80 105.00 105.00 1 3 1
11 38.10 48.66 38.10 0.32 0.32 0.32 119.00 149.00 119.00 2 4 2
12 54.19 66.26 66.26 0.33 0.33 0.33 161.00 198.00 198.00 3 5 4

Table 1: Table B2: Scheduling results for user profiles (Price curve 2)

Total costs [Euro] Average price
per kWh [Euro]

Total charged
energy [kWh]

Number of
charging events

User Comf. Flx. Cst. Comf. Flx. Cst. Comf. Flx. Cos. Comf. Flx. Cst.
1 26.70 30.49 16.06 0.35 0.34 0.22 76.00 89.2 74.5 1 8 1
2 64.70 80.79 64.70 0.30 0.32 0.30 214.00 253.00 214.00 3 7 7
3 16.05 33.77 28.24 0.34 0.31 0.26 47.10 109.00 109.00 1 8 3
4 27.12 39.93 38.36 0.33 0.33 0.32 82.10 121.00 121.00 1 10 3
5 - 19.23 - - 0.26 - - 73.10 - - 4 -
6 15.14 27.30 15.14 0.34 0.35 0.34 44.10 78.60 32.10 2 4 2
7 29.05 41.39 28.86 0.35 0.33 0.29 82.90 126.00 99.20 1 8 2
8 10.69 28.07 19.11 0.33 0.33 0.33 32.30 84.40 58.20 1 3 2
9 22.54 32.70 18.21 0.36 0.32 0.29 63.00 103.00 62.30 3 5 3
10 15.72 32.41 13.37 0.20 0.31 0.20 77.80 105.00 67.30 1 7 1
11 40.07 45.01 44.71 0.33 0.30 0.30 119.00 149.00 149.00 2 5 4
12 55.28 66.82 66.82 0.34 0.34 0.34 161.00 198.00 198.00 3 5 5
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Table B3: Scheduling results for user profiles (Price curve 3, Cost Curve 3 Electric
Vehicle Time-of-Use Plans - SUMMER (June 1 - October 31) (23 - 54 Cent))

Total costs [Euro Average price
per kWh [Euro]

Total charged
energy [kWh]

Number of
charging events

User Comf. Flx. Cst. Comf. Flx. Cst. Comf. Flx. Cos. Comf. Flx. Cst.
1 22.90 26.38 26.38 0.30 0.30 0.30 76.00 89.20 74.50 1 8 8
2 65.13 72.41 72.41 0.30 0.29 0.29 214.00 253.00 214.00 3 7 6
3 13.36 29.20 23.24 0.28 0.27 0.26 47.10 109.00 109.00 1 8 3
4 26.65 33.68 33.68 0.32 0.28 0.28 82.10 121.00 121.00 1 10 10
5 - 21.34 - - 0.29 - - 73.10 - - 4 -
6 13.91 22.78 9.08 0.29 0.29 0.28 44.10 78.60 32.10 2 4 2
7 24.98 35.19 35.19 0.30 0.28 0.28 82.90 126.00 99.20 1 8 8
8 8.94 23.11 15.38 0.26 0.27 0.26 32.30 84.40 58.20 1 3 2
9 18.25 30.47 18.25 0.29 0.29 0.29 63.00 103.00 62.30 3 5 3
10 25.21 29.38 29.38 0.32 0.28 0.28 77.80 105.00 67.30 1 7 7
11 32.26 41.37 32.26 0.27 0.28 0.27 119.00 149.00 149.00 2 5 2
12 45.23 55.02 55.02 0.28 0.28 0.28 161.00 198.00 198.00 3 5 5
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