Assessing how rainfall and other environmental factors affect the level of *E. coli* contamination in two species of bivalve.

Submitted by Charlotte Teague

To the University of Exeter as a thesis for the degree of Masters by Research in Geography, November 2012.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

C Teague

(Signature)..
Abstract
The purpose of this study was to obtain an understanding of the association between environmental variables, particularly rainfall and the faecal contamination of bivalve shellfish. Diffuse pollution is an important source of this contamination, in which the transfer of faecal bacteria from land downstream to coastal waters is exacerbated by the magnitude of rainfall and other environmental factors. Oysters (*Crassostrea gigas*) and mussels (*Mytilus edulis*) were set up on a small intertidal oyster farm that received inputs from two streams draining a headwater agricultural catchment. The oysters/mussels, stream and seawater were sampled under rainfall event and baseline conditions for bacteriological quality using the faecal indicator bacteria *Escherichia coli*. Turbidity (NTU) and total suspended solids (TSS, mg l\(^{-1}\)) were also monitored. Further, in situ measurements were recorded which included; temperature (°C), salinity (ppt) flow rate (ms\(^{-1}\)) and flow depth (m).

Flow rate, flow depth, turbidity and TSS were significantly correlated with rainfall in both streams and regression analysis showed that the preceding 12 hour rainfall and turbidity could explain 68.3% of the variability of *E. coli* found in stream one (F = 21.51, p = <0.001), whereas in stream two, preceding 12 hour rainfall and total suspended solids could explain 66.5% of the *E. coli* present (F = 19.86, p = <0.001). Levels of *E. coli* in the surrounding seawater were significantly correlated with preceding 12 hour rainfall (R = 0.530, p = <0.05). No significant relationships were found between rainfall and levels of *E. coli* in mussels and seawater (F = 8.22, p = <0.05). Overall, oysters exhibited higher levels of *E. coli* than Mussels but no significant relationship could be found with environmental variables to explain these elevated *E. coli* values. The data highlights the need for future sampling strategies to be tailored to individual species (Oysters, Mussels or other bivalves) and suggests that several rainfall events are required in order to capture the variability in bivalve response to rainfall through the year.
Contents

Contents.. 2
List of table and figures ... 4
Section one – Literature Review ... 6
1. Introduction .. 7
2. Aims and Objectives .. 11
3. Factors influencing transport of E. coli from land to water ... 12
 3.1 Rainfall characteristics .. 12
 3.2.1 Sewage treatment plants, combined sewer overflows and other sewage sources. 14
 3.3 Diffuse pollution, land use and land management ... 17
 3.3.1 Diffuse septic systems .. 17
 3.3.2 Wildlife .. 19
 3.3.2 Livestock ... 20
 3.3.3 Farm Yard Manures (FYM) Slurries and Dirty Water Runoff 23
 3.3.4 Application of faecal bacteria to land. .. 26
 3.3.6 Soil erosion and topography ... 29
4. Factors affecting the survival of E. coli in water ... 29
 4.1 Sediment properties/ characteristics .. 29
 4.2 Salinity ... 31
 4.3 Potential Hydrogen (pH) ... 33
 4.4 Sunlight and Temperature .. 34
 4.5 Turbidity and Total Suspended Solids ... 36
 4.6 Predation .. 37
 4.7 Hydrographic Factors .. 38
5. Factors affecting the uptake and elimination of E. coli in bivalves. 39
 5.1 Temperature and filtration rate .. 39
 5.2 Salinity ... 41
7. Conclusions ... 42
8. References ... 44
Section two – Research Project ... 53
Abstract ... 54
1. Introduction ... 55
2. Materials and methods ... 59
 2.1 Study Area ... 59
 2.2 Site selection criteria .. 60
2.3 Site Set-up .. 67
2.3 Sampling .. 69
 2.3.1 Water quality monitoring .. 69
 2.3.2 Shellfish sampling .. 71
 2.3.3 Sediment sampling .. 71
2.4 Laboratory Analysis ... 72
 2.4.1 Water samples ... 72
 2.4.2 Shellfish samples ... 72
 2.4.3 Sediment samples ... 73
 2.4.4 Transport of samples ... 73
2.5 Data Analysis .. 74
 2.5.1 Quality control and exploration of the data .. 74
 2.5.2 Hypothesis testing using stream data ... 75
 2.5.3 Hypothesis testing using seawater and shellfish data 77
3. Results ... 78
 3.1 Water and Shellfish Quality .. 78
 3.2 Sediments .. 88
 3.3 Summary of results ... 90
4. Discussion ... 92
 4.1 Effects if the selected environmental factors on the levels of E. coli found in streams
 one and two (addressing hypotheses H1-H4) ... 92
 4.2 Effects of selected environmental factors on the levels of E. coli in seawater and the
 uptake in oysters and mussels (addressing hypotheses H5-H10). 96
 4.3 Sediments and E. coli levels, before and after rainfall (addressing hypotheses H11 –
 H12) .. 100
5. Conclusions ... 102
6. Limitations to study and further work ... 103
7. Acknowledgements .. 104
8. References .. 105
Appendix one ... 110
Appendix two .. 116
Appendix three .. 117
List of table and figures

Section One:

Figures

Figure 1: Conceptual diagram of the transfer and fate of *E. coli* ..10

Tables

Table 1: Summary of levels of faecal coliforms discharging from different sewage treatment processes..15
Table 2: Faecal coliform output of four Gull species ...20
Table 3: Faecal and total coliforms discharged from different animal species per day22
Table 4: Survival times of *E. coli* O157:H7 in different types of manure storage methods.......25
Table 5: Field capacity, wilting points and available water values for different soil types......26
Table 6: Levels of faecal coliforms found between sediment and the overlying water31
Table 7: Filtration rates of Mussels (*M. edulis*) and Pacific oysters (*C. gigas*).........................40

Section Two:

Figures

Figure 1: Map of study area ..59
Figure 2: Distribution of daily rainfall by month from Skipness house (2003-2007)62
Figure 3: Daily rainfall values from Skipness house (September, October, November)63
Figure 4: Survey map of catchment (sources of contamination) ...65
Figure 5: Map of sampling locations ...68
Figure 6: Time series plot of rainfall and relationship between *E. coli* and flow rate in stream one and two ..79
Figure 7: Time series plot of rainfall and *E. coli* levels found in oysters, mussels and seawater ..85
Figure 8: Geometric mean of *E. coli* levels found in seawater, oyster and mussel samples...87
Figure 9: Daily rainfall values from Lochgilphead and onsite weather station88

Tables

Table 1: Scientific and logistical criteria used for site selection...60-61
Table 2: Field and sanitary survey observations ...66
Table 3: Geometric mean of E. coli results for the identified areas of contamination78
Table 4: Summary statistics of environmental variables measured in both streams80
Table 5: Correlation coefficients between E. coli concentrations
and environmental variables ..82
Table 6: Spearman rank correlations between environmental variables in both streams .. 83
Table 7: Regression analysis for stream one and two...84
Table 8: Faecal loadings per day for stream one and two...84
Table 9: Correlation coefficients between preceding rainfall and levels of E. coli in
seawater, oysters and mussels..86
Table 10: Analysis of E. coli levels found in different sediment types...........................89
Table 11: Analysis of E. coli levels found in sediment before and after rainfall...............90