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Abstract 

Machine Learning (ML) techniques offer exciting new avenues for leadership 

research. In this paper we discuss how ML techniques can be used to inform predictive and 

causal models of leadership effects and clarify why both types of models are important for 

leadership research. We propose combining ML and experimental designs to draw causal 

inferences by introducing a recently developed technique to isolate “heterogeneous treatment 

effects.” We provide a step-by-step guide on how to design studies that combine field 

experiments with the application of ML to establish causal relationships with maximal 

predictive power. Drawing on examples in the leadership literature, we illustrate how the 

suggested approach can be applied to examine the impact of, for example, leadership 

behavior on follower outcomes. We also discuss how ML can be used to advance leadership 

research from theoretical, methodological and practical perspectives and consider limitations. 

 

 

Key words: Leadership Effectiveness, Leadership Processes, Machine Learning, Artificial 

Intelligence, Causality, Experiments, Big Data, Heterogeneous Treatment Effects 
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Introduction 

The ability to apply Machine Learning (ML) techniques to data collected in 

organizations holds great promise for application in leadership and management research 

more generally (e.g., Chaffin et al., 2017; Wenzel & Quaquebeke, 2018). ML is a subfield of 

computer science, referring to algorithms with ability to learn from patterns in data to make 

predictions of outcomes without constant supervision and reprogramming by a human (e.g., 

Mikalef, Pappas, Krogstie, & Giannakos, 2018). This type of approach can be highly 

effective when large amounts of data are available to analyze and is often  – especially in 

disciplines outside of Computer Science and in practice – referred to as “Big Data Analytics” 

(e.g., Mikalef et al., 2018; Oswald, Behrend, Putka, Sinar, 2020). Enormous amounts of data 

can be fed into ML models, which, if trained accordingly, can result in prediction models, 

that are produced quickly and free from some types of human bias (e.g., George, Osinga, 

Lavie, & Scott, 2016).  

The use of ML in organizations has received increased interest (in research and 

practice) which can be partly attributed to the fact that “sophisticated technologies for 

collecting and storing data allow for an exponential increase in organizational data that can 

be collected” (Oswald et al., 2020, p. 506). Data gathered from these sources require more 

powerful processing and offer opportunities for exploration of research questions that in the 

past were not easily accessible. For instance, ML techniques have been widely applied to 

disease prognosis and prediction, such as predicting cancer susceptibility, recurrence and 

survival (e.g., Kourou, Exarchos, Exarchos, Karamouzis, & Fotiadis, 2015). Such predictive 

models can be transferred to an organizational setting where ML has been used to predict, for 

example, employee turnover (e.g., de Oliveira, Zylka, Gloor, & Joshi, 2019), return to work 

after sick leave (e.g., Na & Kim, 2019), physiological markers of stress (e.g., Bacciu, 
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Colombo, Morelli, & Plans, 2018; Reddy, Thota, & Dharun, 2018), and employee 

performance (Kirimi, & Moturi, 2016). For leadership scholars who are interested in 

understanding relationships between leadership and follower, team, or organizational 

outcomes, the application of ML to data collected in the field represents an opportunity to 

examine exactly such relationships and build powerful leadership models.  

Leadership researchers primarily seek to understand leadership phenomena and 

processes to be able to predict the occurrence of leader and follower behaviors and/or explain 

the effects that leaders have and describe its causal underpinnings. Thus, leadership scholars 

typically attempt to answer two key questions that are of high theoretical and practical 

relevance: first, how can we best predict the behaviors, decisions, and performance of 

individuals, groups, or firms based on leader characteristics or behaviors? Second, identify 

the causes of those outcomes – for example, what interventions in leadership behavior would 

cause positive improvements in team performance?  

 The application of ML can help to address both questions related to prediction and 

causality in leadership research. However, while advanced analytical techniques such as ML 

have developed at pace to deal effectively with large datasets (e.g., Oswald & Putka, 2015), 

they are usually designed to solve prediction problems (Kleinberg, Ludwig, Mullainathan, & 

Obermeyer, 2015). They do so by learning from large quantities of data how to make 

predictions on “out of sample” data with high accuracy. Moreover, while ML approaches can 

do well in addressing prediction problems they are not often applied (correctly) to answer 

causal questions. 

This paper will discuss the potential of using ML in research (and practice) to inform 

and extend leadership research and theory. We will discuss the application of ML in 

leadership research questions, addressing both prediction and causality questions through 

different research designs. As opportunities for using ML in organizations often go in tandem 
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with the availability of Big Data (e.g., Oswald et al., 2020) our discussion will pay specific 

attention to the application of ML to Big Data in organizations. ML can, however, be applied 

to data that do not fall within common definitions of “Big Data” (see discussion of definition 

further below). 

Researchers have recently begun to introduce ML tools designed to address questions 

of causal inference (Athey & Imbens, 2016; Wager & Athey 2018). With these methods, it is 

possible to delve deeper into causal inference by combining ML techniques with 

experimental methods. Thus, a key objective of this paper is to propose steps to establish 

causal inference between variables in the realm of leadership research using randomized 

controlled experimental designs —the gold standard for causal inference (Antonakis, 

Bendahan, Jacquart, & Lalive, 2010; Hauser, Linos & Rogers, 2017) —and incorporate novel 

statistical techniques (Pearl & Mackenzie, 2018) to gain a deeper understanding of the 

inferences that can be drawn from the application and outcomes of experimental methods. 

We propose that combining the application of predictive algorithms and experimental designs 

to draw causal inferences through a recently developed technique to isolate heterogeneous 

treatment effects (Athey & Imbens 2016; Wager & Athey 2018) can help advance leadership 

theory, methodological approaches and create research with strong policy and practical 

implications (Antonakis, 2017). 

By reviewing the application of ML (specifically, but not exclusively applied to Big 

Data) in the leadership domain, focusing on issues of prediction and causality, we seek to 

make three contributions to the literature. First, we disentangle how ML techniques can be 

used to inform predictive and causal models of leadership effects, respectively, and clarify 

why both types of models are important for leadership research. In discussing both predictive 

and causal models we provide guidance on how ML techniques can be used to extend our 

understanding of leadership effects on outcome variables such as follower performance and 
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affect. Second, whereas previous research in management has focused on the use of ML 

(often in conjunction with Big Data) to inform predictive models, we highlight the potential 

for future research to extend these approaches to causal models and discuss the state-of-the-

art techniques to apply ML to experimental designs. With these new methods, ML techniques 

can be used to delve deeper into causal mechanisms when combined with experimental 

methods. Thus, in addition to understanding if a leadership intervention will improve, for 

example, team performance or employee well-being, we highlight how ML tools can identify 

for which leaders and team members the intervention is likely to work particularly well (or 

badly). Third, in addition to discussing the theoretical implications of using ML to understand 

causal models, we provide practical guidance for how this can be done. In doing so, we seek 

to provide impetus for future research in this area and encourage researchers to consider these 

techniques to answer leadership questions for the range of study designs being used.  

The remainder of this review is organized as follows. We begin by introducing 

concepts of ML and Big Data and discussing their application in management and leadership 

research. We then discuss how ML techniques can be used to explore leadership processes in 

both predictive and causal models. Finally, we identify key areas for future research that can 

help to produce a reliable and systematic body of evidence to serve as a platform for 

leadership theory development and trustworthy policy recommendations. 

Machine Learning and Big Data  

Both ML and Big Data are terms that tend to be used rather casually with differing 

definitions across academic disciplines and the business community. In order to understand 

their definitions (and perhaps misconceptualizations) and current applications in research and 

practice better, we briefly review the origins of these terms below. 
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ML has become a catch-all term for algorithms that predict anything. Often credited 

to Arthur Samuel (Samuel, 1959), the term ML first appeared much later (Koza et al. 1996) 

and refers to a computer program that learns patterns from data without being explicitly 

programmed. In his 1959 paper, Samuel suggested that a computer can be programmed so 

that it will learn to play a better game of checkers better than can be played by the person 

who wrote the program (Samuel, 1959). Today, ML algorithms sift through vast numbers of 

variables, looking for combinations that reliably predict outcomes. In some ways, this process 

resembles using the use of traditional regression models1, but ML is adept at handling 

enormous numbers of predictors and combining them in nonlinear and highly interactive and 

complex ways (Obermeyer & Emanuel, 2016). This functionality allows the application to 

new kinds of data, whose sheer volume or complexity would previously have made analyzing 

them difficult or impossible. In this paper we use the term ML synonymously with 

“Predictive Modeling” as defined by Donoho (2015; 2017): the application of algorithms 

trained on data with a focus on accurately predicting a specific outcome. The concept harkens 

back to the statistician Leo Breiman’s call for more focus on predictive algorithms in addition 

to the traditional focus among statisticians on generative algorithms, where the attention 

instead lies in identifying the proper stochastic model for a process and examining the 

parameters resulting fitting that model with the data (Donoho, 2015; 2017; Breiman, 2001). 

Donoho (2017) credits to Breiman (2001) that “the relatively recent discipline of ML, often 

sitting within computer science departments… [is] the epicenter of the Predictive Modeling 

culture.” (p.751). Popular use of the term ML is in this vein, a class of algorithms focused on 

                                                
1 In fact, standard regression techniques, such as ordinary least squares (OLS), can be viewed 
more appropriately as a special case of a more general set of ML techniques (Kleinberg et al. 
2015). 
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estimating an outcome, with less focus on interpretation of the parameterization of the model 

itself.  

ML algorithms are often grouped into categories such as supervised algorithms, 

unsupervised algorithms, and reinforcement learning algorithms (e.g., Hastie, Tibshirani, & 

Friedman, 2009). Simply put, supervised algorithms are those with a clearly defined 

dependent variable (i.e., an outcome, or target variable) which is described as a function of 

independent variables (i.e., covariates, predictive variables, or features) given a specified 

probability and loss functions (Hastie et al., 2009). Examples of supervised models include 

the linear regression model, classification tree, and artificial neural network. Unsupervised 

models, by contrast, lack a unique target variable on which to focus the optimization of the 

model training procedure. Instead, unsupervised models seek to describe all variables in a 

dataset by uncovering multivariate relationships. Examples of unsupervised models include 

Principal Components Analysis, the association rules algorithms (e.g., the a-priori algorithm), 

and clustering algorithms including k-means, hierarchical clustering, and Gaussian mixture 

models.  Reinforcement learning is often considered a separate branch of ML, where an agent 

learns the behavior of a system through trial and error (Kaelbling, Littman, & Moore 1996). 

Compared to supervised and unsupervised algorithms which work on static datasets, 

reinforcement learning relies on the dynamic ability to posit a new case and retrieve 

feedback, learning the outcome associated with the case. Reinforcement learning is an area of 

artificial intelligence at the forefront of current research (Dabney et al. 2020).  

In this paper, our discussion of ML focuses on supervised ML for two reasons. First, 

while the literature on unsupervised ML and causality has seen some recent advancements 

(see An et al. 2019), uncovering causality in supervised ML has garnered more attention and, 

as a result, a more comprehensive toolkit is readily available (which we will be introducing in 

this paper). Second, the field of leadership research has traditionally studied well-defined 
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outcome variables (such as specific leaders’ or followers’ behaviors or traits), which is the 

focus of supervised ML. 

      Like ML, Big Data has been defined in various ways but, in contrast to ML, there 

is no single well-accepted definition. The extensive use of digital technologies and the wide 

range of data-reliant applications have made the term “Big Data” pervasive across a range of 

disciplines including sociology, medicine, biology, economics, management, and information 

science (De Mauro, Greco, & Grimaldi, 2016). However, the popularity of this phenomenon 

has not been accompanied by the development of an accepted definition. Donoho’s (2015; 

2017) historical charting of the term helps understand the development of various 

conceptualizations of Big Data. Most studies that discuss Big Data treat the term as a “catch-

all, amorphous phrase that assumes that all Big Data share a set of general traits” (Kitchin & 

McArdle, 2016, pg., 2016). For instance, it is common for researchers to suggest that Big 

Data possesses three traits (Laney, 2001): volume (consisting of enormous quantities of data), 

velocity (created in real-time), and variety (being structured, semi-structured and 

unstructured) – the “three Vs.” However, analysis of 26 datasets revealed that Big Data do 

not all share the same characteristics and that there are multiple forms of Big Data (Kitchin & 

McArdle, 2016). Many authors use a wide range of defining characteristics which exceed the 

much cited three Vs (e.g., Shaffer, 2017). Kitchin and McArdle (2016) argue that to be 

considered “Big Data” datasets should possess the majority of the seven traits set out in 

Kitchin’s (2013; 2014) typology of Big Data (volume, velocity, variety, exhaustivity, 

resolution and indexicality, relationality, extensionality and scalability), of which velocity 

and exhaustivity are the most important. For instance, rather than data being occasionally 

sampled (either on a one-off basis or with a temporal gap between samples), Big Data are 

typically produced much more continually. Exhaustive data sets refer to those where an entire 
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system (such as an organization) is captured, rather than being sampled (Mayer-Schonberger 

& Cukier, 2013).  

Within the field of organizational behavior and industrial/organizational psychology, 

new technologies have greatly expanded the type and amount of data that is accessible to 

researchers and practitioners (Guzzo, Fink, Tonidandel, King, & Landis, 2015; Oswald et al., 

2020). For instance, the use of wearable devices to capture, simultaneously and rapidly, large 

quantities of data can be used to examine research questions that were previously difficult to 

address in the field. As highlighted by Wenzel and Van Quaquebeke (2018) in a review of 

Big Data in organizational and management research: “the act of gathering, analyzing, and 

interpreting Big Data is, by and large, unfamiliar territory” (p. 201) for management and 

leadership researchers. In these fields the lack of a clear and widely applicable definition is 

often acknowledged and has resulted in rather pragmatic approaches (with many authors 

adopting definitions encompassing three or four characteristic traits). Wenzel and Van 

Quaquebeke (2018), for example, define Big Data as “observational records that may be 

exceptionally numerous, highly heterogeneous, and/or generated at high rate and 

systematically captured, aggregated, and analyzed to useful ends” (p. 550) and also point to 

key drivers of Big Data: instrumentation (technological instruments that emit a range of data 

modalities), interaction (temporal interactions resulting in ordered records), and 

interconnection (communication, collaboration and creation of content). In their focal article 

on “Big Data recommendations for Industrial and Organizational Psychology,” Guzzo and 

colleagues (2015) define Big Data “by more than just the volume, variety, and velocity of 

electronic records, however. It also encompasses new sets of tools and techniques for 

statistical analysis” (p. 493).  

Acknowledging this definitional challenge, Oswald et al. (2020) propose to “remain 

practical and problem-focused as a way to accumulate practical intelligence on Big Data 
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questions from a more bottom-up approach” (p. 506). In the realm of strategic Human 

Resource Management, Minbaeva (2017) advocates that evidence based, strategic decision-

making in organizations requires “smart data” rather than Big Data, with smart data referring 

to “data that is organized, structured, and continuously updated” (p. 112). Notwithstanding 

these definitional issues, we will discuss various types of data that organizations collect as 

examples and would like to emphasize that for the purpose of our paper, it is the application 

of “learning” algorithms (i.e., ML) in leadership research  — not Big Data by itself —that is 

fundamental.  

Examples of continuously collected data in organizations include selection and 

assessment data (e.g., psychometric testing data, selection interview records), salary, 

performance data, promotion records, absence data, employee turnover data, or employees’ 

and managers’ free-text responses in annual performance appraisals. Indeed, a “defining 

characteristic of contemporary organizations is the rapid pace at which massive amounts of 

information are collected and stored” (McAbee, Landis, & Burke, 2017, p. 278). With 

increased application of sophisticated technology in Human Resource Management 

processes, data that are being collected continuously have grown dramatically in terms of 

volume and complexity, which explains why such data are typically labelled Big Data. For 

example, electronic performance monitoring—i.e., the use of technological means to observe, 

record, and analyze information that directly or indirectly relates to employee job 

performance (Bhave, 2014)—is now common within many organizations (Ravid, Tomczak, 

White & Behrend, 2020). Examples include call monitoring, wearable sensors, e-mail and 

internet usage monitoring. Such information can be analyzed by ML tools to predict, for 

instance, employee personality, job attitudes, health, and performance (e.g., Kosinski, 

Bachrach, Kohli, Stillwell, & Graepel, 2014; Kozlowski, Chao, Chang, & Fernandez, 2015). 

Furthermore, Hauser and Luca (2015) argue that “data audits” in organizational research 
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should be accompanied by increasingly readily available external data sources. Examples 

include collecting information from social networking websites (e.g., Facebook, Twitter) to 

evaluate/screen applicants during the selection process for employee recruitment (e.g., Brown 

& Vaughn, 2011; Roulin & Bangerter, 2013) or for research purposes to predict personality 

profiles (Kosinski, Stillwell, & Graepel, 2013). For leadership scholars who are interested in 

understanding relationships between, for example, leader and follower variables, the 

application of ML to Big Data has created major opportunities to examine exactly such 

relationships in organizations in the field. In the section below we will discuss how ML, 

especially applied to Big Data, can inform the development of predictive leadership models. 

 

Machine Learning, Big Data, and Predictive Models in Leadership Research 

The ability to apply ML in field research, coupled with the availability of “Big Data” 

in organizations, has the potential to expand our understanding of leadership processes and 

models. The reason for this is simple: as leadership researchers we are often interested in 

prediction; we want to know, for example, which leadership characteristics or behaviors will 

predict future, for example, employee performance (e.g., Cavazotte, Moreno, & Hickmann, 

2012) or well-being (Inceoglu, Thomas, Chu, Plans & Gerbasi, 2018). We are interested in 

predicting who is likely to be promoted to a leadership position and become an effective 

leader (e.g., Reichard et al., 2011). The application of ML is a powerful tool that can aid 

leadership scholars with optimizing such prediction models. For example, we know that 

certain leadership styles correlate with outcomes such as followers’ job satisfaction and 

performance (e.g., Lee, Lyubovnikova, Tian, & Knight, 2020; Piccolo et al., 2012). ML can 

contribute to leadership research by identifying more, disparate, sets of variables that are 

predictive of effective leadership and have a positive effect on followers. For instance, a 
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study by Spisak, van der Laken, and Doornenbal (2019) used ML to examine multiple 

personality and contextual predictors of leader effectiveness across a range of analytical 

methods, testing competing leadership theories at a level of complexity that was previously 

not conceived as being possible. Such tests allow for “naïve” data exploration without 

needing to specify a theoretical model beforehand. In fact, many contemporary applications 

of ML do not have a priori expectations, theories, or hypotheses about the underlying 

relations, but rather find patterns in the data to build predictive models (McAbee et al., 2017). 

This data-driven approach has similarities to inductive reasoning – representing a departure 

from typical approaches in leadership research which are theory-led and deductive, using 

quantitative data, or emphasize theory building and are inductive, using qualitative data. 

Observation-driven, exploratory approaches may identify patterns and highlight boundary 

conditions, thereby generating novel research questions (Woo, O’Boyle, & Spector, 2017). 

Such approaches can also be abductive: starting from an initial idea or “hunch” which is used 

to interpret empirical findings and generate plausible explanations (e.g., Van Maanen, 

Sørensen, & Mitchell, 2007). These insights (inductively or abductively derived) can provide 

new theoretical directions for future research in leadership, for example, by considering 

specific contextual variables which are receiving increasing attention and can be complex to 

model (e.g., Oc, 2018). 

While ML algorithms excel at identifying patterns in data, they can suffer from 

“overfitting” – learning patterns within a given dataset so well that the algorithm will not 

make accurate predictions on another dataset stemming from the same process (Cawley & 

Talbot, 2010).  To guard against overfitting, ML models are often iteratively trained and 

tested on separate datasets using methods such as bootstrapping, cross validation, or the 

jackknife method (Efron & Gong, 1983). These iterative steps aim to ensure that the resulting 

ML model is robust and, as much as possible, generalizable to new data which will be fed 
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into the model in the future (Hastie et al., 2009). This iterative process makes ML techniques 

better equipped to handle and predict outcome(s) on new “unseen” data, allowing them to be 

employed across different contexts, datasets, and decision problems. While many ML 

techniques do require human-led decisions, one critical insight from the ML literature is that 

these models use an empirically automated way to minimize out-of-sample error, using the 

data itself to create a model and test it iteratively (Kleinberg et al. 2015). That is, while 

bootstrapping, cross validation, and jackknife work differently, the goal is the same: to 

estimate the variability of the predictions from the ML models on “out-of-sample" data. The 

bootstrap resamples observations with replacement, the jackknife holds out a single 

observation from training, and cross validation breaks the data into “folds” (i.e., non-

overlapping subsets of the data), where the model is trained on some folds and predictions are 

made on the remaining folds. Although different mechanically, these methods ensure that the 

model is not overfitted on just one dataset while performing poorly when new data are added, 

but quite the opposite: the “train–test” processes ensure that ML models are optimized to do 

well in “out of sample” data (Kleinberg et al. 2015; Hastie et al., 2009). 

Clearly ML can extend our understanding of leadership processes, for example by 

allowing us to test variables that predict leadership emergence, or which leader characteristics 

or behaviors predict follower outcomes. However, as with many analytical approaches, the 

use of ML is not without limitations, posing, for instance, risks of biased sampling or 

deceiving data quality (see review by Wenzel & Van Quaquebeke, 2018). Further, the 

application of ML to Big Data does not solve the fundamental problem of drawing causal 

inferences from observational data sets. This is, of course, an old issue in the social sciences, 

from psychology to economics to management: the ability “to explain behavior—that is, to 

accurately describe its causal underpinnings—and to predict behavior—that is, to accurately 

forecast behaviors that have not yet been observed” (Yarkoni & Westfall, 2017, p. 1).  
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While the goal of some leadership studies is prediction, for many it is causation. For 

instance, a common leadership study involves the examination a leadership variable (e.g., a 

leader’s behavior of style), a distal outcome (e.g., team performance) and a more proximate 

mediating construct, such as follower motivation (Fischer, Dietz, & Antonakis, 2017). This 

type of study design attempts to explain the link between the leadership variable and outcome 

through some underlying mechanism that explains the causal relationship, following an 

input-process-output logic (see Fischer et al., 2017). One critical problem remains in a world 

of data science, ML and Big Data: the research designs used in the majority of such studies 

typically suffer from endogeneity issues (i.e., the predictor variable is correlated with the 

error term of the outcome, and/or mediator variable), and do not allow us to determine the 

causal relationships of the variables of interest, or whether the causal effects even exist at all 

(e.g., Antonakis et al., 2010; Hughes, Lee, Tian, Newman, & Legood, 2018). An endogenous 

predictor is related to the measured outcome/mediator in multiple ways, as a meaningful 

antecedent, but also in some unanticipated way(s) (e.g., common method bias, reciprocal 

effects, relationship with a common cause). Despite ever more data (access) and sophisticated 

statistical techniques, endogeneity problems are not solved with the application of ML. ML 

may be good at predicting outcomes, but the identified predictors are not typically causes 

(and even in those cases where they are, standard “out of the box” ML methods are not apt to 

identify them as such, requiring other ways to demonstrate causality). Thus, the usual caveats 

about not confusing correlation with causation still apply; in fact, they become even more 

important as researchers begin including potentially thousands or even millions of variables 

in statistical models (Obermeyer & Emanuel, 2016). Big Data may involve ongoing 

observations of discrete events with temporal ordering, which can facilitate more nuanced 

examinations of direction, magnitude, frequency, speed, and points of change associated with 

a phenomenon (Wenzel & Van Quaquebeke, 2018). However, although time series data can 
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help support causal claims, which require that X precedes Y temporally and that X and Y are 

correlated beyond chance, many temporally ordered observations do not inherently 

demonstrate causality (Antonakis et al., 2010). This is because the third condition that is 

required to demonstrate causality is often not met: ruling out any other causes that could 

explain the relationship between X and Y (Kenny, 1979).   

As with all organizational and management research, it is therefore imperative to 

clarify the objectives of one’s research (what is the problem we want to address?) and to 

explicitly distinguish between issues of prediction and causality before deciding whether ML 

is an appropriate tool for examining this research question. The ability to predict an outcome 

or phenomenon using ML (without establishing causal relationships between variables) can 

of course be a valuable objective.  As an illustrative example, consider team performance as 

an outcome variable of interest. Viewed as a prediction problem alone, an organization might 

ask – do we need to set aside a big pot of performance bonuses this year? We do not need to 

focus on the causes of good team performance in this case; instead we want to know what the 

outcome will be in a year’s time and how much money to set aside. With enough historical 

data to train on, ML can help us get an accurate answer. However, viewed as a causal 

problem, one could ask: does a certain leadership behavior make it more likely that the team 

will perform well? This is a causal question – for example, whether a certain leadership 

behavior causes team performance to change. If so, identifying these behaviors can help 

inform recruitment and leadership development processes in the organization (therefore 

addressing a different issue). 

More recently, advances in econometrics and statistics have introduced the use of ML 

tools for estimating causal effects within subsets of the data (Athey & Imbens, 2016; Wager 

& Athey 2018; Athey, Tibshirani, & Wager, 2019). With these new methods, ML techniques 

can be used to delve deeper into causal inference by combining them with experimental 
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methods. So, in addition to understanding if a leadership intervention will improve team 

performance, these causal ML tools can identify for which leader and team characteristics the 

intervention works particularly effectively.  

 

Machine Learning, Big Data and Causal Models in Leadership Research  

Randomized controlled experiments are the gold standard for establishing causal 

inference (Hauser et al., 2017; Lonati, Quiroga, Zehnder, & Antonakis, 2018). Rigorously 

designed experiments, with randomly assigned treatment and control groups can establish 

that a treatment has a causal impact on an outcome through the direct manipulation of that 

treatment; for example, finding that a leader’s charismatic speech caused an increase in 

workers’ task output by about 17%, compared to workers who listened to a standard 

motivational speech (Antonakis, d’Adda, Weber, Zehnder, 2014). However, while ML tools 

are often used to inform predictive models based on observational (a.k.a., non-experimental) 

data, until recently they have been seldom used to improve the ability of lab or field 

experiments to understand causal effects and draw inferences. Here we first discuss the 

foundation of experimental design before diving into the potential that ML offers 

experimentalists interested in examining causal relationships. 

Causal inference has a simple premise – to understand whether a variable X has a 

causal effect on variable Y. We typically consider the role of an “intervention” (or 

“treatment”) that manipulates X and we are interested in any change in Y as a result of 

manipulating X exogenously (for detailed information and background on experiments in 

management and leadership research, see, for example, Antonakis et al. 2010, Hauser et al. 

2017; Hughes et al., 2018; here we summarize some key points). Rubin and collaborators 

first postulated and explored the “potential outcomes” framework (Rubin, 1974; Rosenbaum 
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1984 a,b; Rubin & Rosenbaum, 1983, a,b; Holland and Rubin 1983; 1987), providing a 

mathematical foundation for causal inference. Rubin noted that different outcomes exist for 

an individual observation – one outcome if the intervention is applied and one if withheld – 

however, in reality, only one of these potential outcomes can ever be observed; either the 

outcome for the observation when it was treated, or the outcome when it was not treated. 

While it will never be possible to observe both potential outcomes for the same individual 

observation (nobody can be “treated” and “not treated” at the same time), we can compare 

groups of individuals where one did receive the intervention (the “treatment” group) and one 

did not (“control” group). If the groups are similar enough before the treatment is applied, 

any difference in the outcome can then be attributed to the treatment. One intuitive method 

for creating similar groups is to randomly assign the treatment – i.e., individuals do not 

choose whether to receive the intervention. As a result of randomizing, the control and 

treatment groups are, in expectation, comparable (or exchangeable) in all possible dimensions 

(at least in expectation across both observable characteristics, such as gender, race or age, and 

unobservable factors, such as attitudes, behaviors or motivations). Thus, after the experiment 

is completed, it is then possible to compare the outcome of interest between the two groups 

and attribute the difference in outcome to the treatment, thereby establishing causality. The 

difference observed in the outcome between the groups is known as the average treatment 

effect (Angrist & Pischke, 2008; Glennerster & Takavarasha, 2013; Rubin 1974). Today, this 

causal framework underpins much scientific discovery where randomized control trials and 

propensity score methods are deployed, having built on and displaced previous methods 

attributed to Fisher (1935), Kempthorne (1952), Cochran and Chambers (1965), and Cox 

(1958; see Holland 1986). This rigorous definition of causality supplants previous methods 

such as those suggested by Granger (1969) that temporal considerations can indicate 
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causality. While some approaches to understanding causality can use temporal separation, 

Granger’s approach is not appropriate in all situations (Holland, 1988). 

When randomization is not possible, other frameworks have been proposed for 

drawing causal inferences (for an overview, see Angrist & Pischke 2008), such as regression 

discontinuity, instrumental variables, special instances of time series, leveraging graphical 

models (see Pearl 2019), and propensity score matching (Rubin 1974; Imbens & Rubin, 

2015). These methods often rely on data that are akin to randomization, or where quasi-

randomization can be inferred, even if the setting was not designed or implemented as a 

randomized experiment (see Antonakis et al. 2010 for an overview). For example, if a 

training course were offered to potential future leaders based on performance ratings, these 

approaches might focus on leaders just above and below the cut-off for admittance to the 

course. For simplicity, in this paper we focus on the experimental results of randomized 

control trials but most of our discussion of the methods proposed below can be extended to 

quasi-experimental methods as well. 

Even when randomized control trials are used, leadership researchers are left with a 

conundrum. Experimental methods focus on the average treatment effect – that is, the impact 

of a treatment on average in a study population. Of further interest, researchers might want to 

know for whom the treatment works particularly well (or badly) – since there may be a 

distribution of smaller and larger effects around the average treatment effect in a population. 

For example, say a leadership researcher wants to understand the impact of bonuses on 

performance. Consider that a hypothetical study finds that the introduction of a one-time annual 

bonus improves performance by 10% on average in the treatment group, relative to the control 

group (or using another method mentioned above). A researcher may then also explore 

“heterogeneous treatment effects”: treatment effects within specific groups of interest. For 

example, do bonuses improve performance more for women or men? Is performance boosted 
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by bonuses more for experienced employees compared to less experienced employees? 

Traditionally, researchers would need to hypothesize in advance that an intervention is going 

to be useful for a specific subpopulation (guided by theory or prior empirical literature) to test 

for heterogeneous treatment effects. Alternatively, some do not pre-specify the analysis and 

engage in “data mining”, a process that is frowned upon as the researcher could exploit 

“researcher’s degrees of freedom” (Simmons, Nelson & Simonsohn, 2011) – searching the data 

for any statistically significant results, which may result in spurious and non-replicable findings 

(Simmons et al., 2011). Even with prior theorizing and pre-specification, it is plausible that 

researchers may not hypothesize all relevant subgroups that would benefit from the population 

– perhaps in part because some groups are very specific (e.g. the bonuses may especially boost 

the performance of female hires with an engineering background) and would be missed, even 

though they may be practically and/or theoretically relevant. 

Athey and Imbens (2016) and Wager and Athey (2018) proposed a novel solution to 

this problem using ML (which we collectively refer to as the Casual Forests method 

henceforth). Because ML methods excel at finding patterns by searching through data, guarded 

against overfitting by the methods described above (such as cross validation, bootstrapping or 

the jackknife), they are appropriate for empirically guided data exploration – and they enable 

researchers to do so while not exploiting researchers’ degrees of freedom  (Simmons, Nelson 

& Simonsohn, 2011), as much of the model testing and validation process is automated. In 

short, this method estimates heterogeneous treatment effects by casting a wide net of 

potentially relevant predictor variables to locate subpopulations that differ in the extent to 

which they respond to the treatment. This enables new kinds of causal insights: for example, 

what would have been the causal effect of the intervention for an individual (based on certain 

covariates) had they been in the treatment group, not in the control group? For which 

individuals (based on certain covariates) was there no effect, or even a negative effect? 
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Answering these questions can help in the application of future treatments into the field, 

deploying interventions where they will be most effective and least detrimental. 

The Casual Forests method offers an empirical ML-enabled way to answer these 

questions. This approach usually starts with the application of a randomized experiment and 

then uses ML to discover and estimate treatment effect heterogeneity within relevant 

subpopulations. Specifically, an experiment would randomly assign an intervention to a 

treatment group while the control would group not receive the intervention. For example, a 

leadership development training could be tested as an intervention for managers to improve 

employee-manager relationships (we will discuss this example below further). Once the 

experiment has concluded, a ML method referred to as “Causal Random Forests” (Wager & 

Athey, 2018; Athey, Tibshirani, & Wager, 2019) can then be applied to identify those for 

whom the treatment worked most effectively (or least). This technique works by identifying 

comparable groups of individuals in both the control and treatment groups. The algorithm 

splits the data into partitions based on covariates, aiming to maximize the causal treatment 

effect between the treatment and control groups within a partition (i.e., the difference in 

outcomes between employees similar on covariates but who happen to be in either the control 

or treatment group). Intuitively, this method applies the same iterative process described 

above to answer the question: which variables (i.e., covariates) are most indicative of large 

treatment effects in the population? The result of applying the algorithm is that every 

individual in the study population receives an estimated “individualized” treatment effect – a 

measure of how large (or small) the treatment effect would have been had that individual 

been treated. This method allows researchers to identify heterogeneity in treatment effects, 

answering the question: for whom—based on ML-identified characteristics—did the 

treatment work particularly well (or badly)?  



22 

USING MACHINE LEARNING IN CAUSAL LEADERSHIP RESEARCH  

 

While this paper focuses on the Casual Forests method, it is worth noting that 

determining causality through ML is a growing area of interest, with other approaches having 

been studied as well. For example, the Transformed Outcome Trees (Beygelzimer & 

Langford 2009; Sigovitch, 2007; Weisberg & Pontes, 2015), Fit Based Trees (Zeileis, 

Hothorn, & Hornik 2008), and Squared t-statistic trees (Su, Tsai, Wang, Nickerson, & Li, 

2009) all share the goal to make causal inferences but with differing technical approaches.  

One reason we focus on the Casual Forests method is because it is a natural extension 

of Rubin’s original causal model which offers desirable characteristics for causality, which 

we reviewed above. However, two well-known other approaches that have found widespread 

application include Granger Causality (Granger, 1969) and probabilistic graphical models 

(Koller & Friedman, 2009). Granger Causality is a specific approach used with time-series 

data that tests for similarity in time-lagged variation. In this context, causality means that a 

change in a variable temporally precedes the change in another variable. While still widely 

applied as causal method, Granger’s formulation does not exclude the possibility of a third 

confounding variable that may cause both variables to change (Antonakis et al., 2010), 

making it less stringent than the Rubin causal model. Nonetheless, Granger Causality has 

found widespread appeal, and is sometimes referred to as a “predictive causality” (Diebold, 

1998) because this time-series technique can be applied with great success to problems where 

time-lagged predictable variation is common, such as in neuroscience (Chockanathan, 

DSouza, Abidin, Schifitto, & Wismüller, 2019). Probabilistic graphical models, on the other 

hand, operate on a statistical basis; learning and drawing inferences from observational (i.e., 

non-experimental) datasets in which relationship between variables are statistically likely or 

unlikely to be causal linkages (Dawid, 2010). The Graphical Causal Bayesian Model, for 

example, uses a Bayesian score (Sucar, 2015, p. 243) to calculate the reliability of a causal 

relation between two variables. However, these models do not proceed from the potential 
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outcomes framework and do not rely on randomized assignment to infer causality; instead, 

they offer a probabilistic pathway to causality (for a broader discussion of probabilistic 

causality and related concepts, see Hausman, 2010). While these approaches are useful, both 

Granger Causality and probabilistic graphical models suffer from a shortcoming common to 

other discussions of causality in statistics – outside of ML – that an unobserved confounding 

variable may be the ultimate cause for the observed change. Or, that these models are not 

counterfactual – where two groups are compared directly but for the applied intervention. 

This issue cannot be resolved without a proper, randomized control group – i.e., using the 

counterfactual logic of what would have happened in the absence of treatment, which 

prompted Pearl (2000) to introduce the language of the “do” operator. The “do” operator is a 

formalization in Pearl’s Causal Calculus framework to explicitly convey the random 

(exogenous) variation of a variable of interest (in contrast to an endogenous variation often 

found in non-experimental data). Therefore, while the above approaches are often useful, we 

believe that Rubin’s causal framework offers the most compelling basis to extend into 

machine learning – which is the proposition of the Casual Forests method. 

Another reason to focus on the Casual Forests method is its effectiveness in 

determining causal relationships. Athey and Imbens (2016) quantitatively evaluated many 

well-known algorithms that aim to uncover causal effects using simulated datasets. The 

Causal Tree (Athey & Imbens 2016) performs best at recovering the heterogeneous causal 

effects in point estimate and coverage. Wager and Athey (2018) further describe other 

research in the area include applying transformations to the outcome variable and applying 

the LASSO algorithm (Tian, Alizadeh, Gentles, & Tibshirani 2014; Tibshirani 1996, 2011), 

using the Random Forest algorithm to separately model outcomes for treated and control 

groups (Foster, Taylor, & Ruberg 2011), using LASSO for estimating interaction effects 

(Imai & Ratkovic 2013), with Bayesian additive regression trees (Green & Kern 2012), and 
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exploring linear outcomes under interactions with the treatment (Taddy, Gardner, Chen, & 

Draper 2015). Other methods for exploring causality with ML include using targeted learning 

(Van Der Laan & Rose, 2011), explicitly using experimental design principles (Rosenblum & 

Van Der Laan 2011), adjusting confidence intervals to account for adaptive estimation 

(Wager & Walther 2015), and brute force methods such as exhaustive search (e.g., Chisholm 

& Tadepalli, 2002). When directly compared, the Casual Forests method outperforms other 

methods in simulation comparisons (Wager & Athey 2018; Athey et al., 2019; Athey, 

Imbens, Pham, & Wager, 2017; Athey, Imbens & Wager 2016). 

Step-by-Step Guides 

In the following, we offer a short and practical guide on to how the Casual Forests can 

be used. The focus of this guide is to introduce this method for practical application in 

leadership research. However, for completeness, we also cover the basic principles of a 

typical “ML prediction” approach and a typical “experimental” approach before explaining 

how the two can be combined in the Casual Forests method.  

1. Machine Learning Approach 

The traditional supervised ML approach aims to predict outcomes – to understand which 

variables predict an outcome variable. We will briefly outline how a researcher might go about 

testing and validating a ML algorithm for this prediction exercise. We accompany each step 

with an illustrative (hypothetical) example that is relevant to leadership scholars. For example, 

a leadership researcher may want to know what variables predict employees’ well-being. 

1. Define the problem. Commonly leadership researchers are interested in predicting 

individual, team or organizational outcome variables; such as employee, or team 

performance, well-being, attitudes or turnover. In addition to conventional measures of 

these outcomes (e.g., observational data in the form of questionnaires), technological 
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devices enable the use of Big Data such as physiological indicators of well-being 

(Henning, & van de Ven, 2017) or geospatial and verbal tracking data (Pentland, 2012). 

2. Define a study population, of those individuals on whom we want to make predictions. 

For example, we focus on employees in an organization.2 

3. Define the outcome variable. In our example, we focus on the employees’ well-being, 

which we assume is measured on a scale from 1-5 through an employment engagement 

survey on an annual basis.3  

4. Choose ML algorithms. The choice of algorithm depends on multiple factors such as 

the goal of prediction, the volume and nature of the data, and the outcome variable. 

Further, multiple algorithms can be compared for performance. For example, our 

outcome variable (employee well-being) could be interpreted as a continuous variable 

or an ordinal categorical variable. Appropriate models should be selected for 

comparison given the goals of the analysis and outcome variable, such as Ordinary 

Least Squares (OLS) for continuous or ordered probit in case of ordinal categorical. 

Further, if we operate under the assumption that we have a large number of potentially 

relevant predictors (i.e., covariates) in our dataset, an algorithm with coefficient-

shrinkage, such as LASSO (Tibshirani, 1996, 2011) or Elastic Net (Zhou & Hastie, 

2005), may be an appropriate choice. Random Forests (Breiman 2001), on the other 

hand, may be preferred if the number of predictors is particularly large, or we want an 

                                                
2 As with all empirical research, the study population is usually a sample from a much larger 
set. For example, even if we include all managers in one organization in our study, this is not 
the same as the population of all managers. Generalizability issues continue to exist and are 
not eliminated with ML or experiments. 
3 For simplicity, we focus on one time period only. Repeated measures as well as lagged 
variables from prior periods can be integrated but this goes beyond our simple guide; for 
more information and recommendations, see Ahmed, Atiya, Gayar, & El-Shishiny, (2010) 
and Karch (2016). 



26 

USING MACHINE LEARNING IN CAUSAL LEADERSHIP RESEARCH  

 

algorithm that requires little tuning and works well out-of-the-box, or the outcome 

variable is categorical in nature. While some algorithms such as artificial neural 

networks or “deep learning” networks work best with large datasets, others such as 

Gaussian processes or some types of Bayesian analyses are challenged computationally 

in the face of large amounts of data, working best with smaller datasets.  As with any 

statistical model, choose an algorithm that best fits the problem. For an excellent 

introduction to a variety of models and their application in the social sciences, see 

Athey and Imbens (2019). Today, there exist many implementations of ML algorithms 

in for all popular statistical software programs; for first-time users, the “caret” package 

in R, the Python-based libraries such as scikit-learn or Keras (https://keras.io), are a 

good place to start, bringing together a large variety of ML algorithms with ample of 

documentation, tutorials and online help available. 

5. Divide the data into “folds” (or use another “train–test” or validation technique). In 

cross validation—a popular validation technique—folds are k non-overlapping, 

randomly partitioned subsets of the data (in our example, employees with all available 

covariates). A common choice is k = 10, so that the data are split into 10 equally sized 

folds. To prepare the data for the training and testing procedure, the dataset must 

contain a column for the outcome variable (e.g., well-being) and J additional columns 

(covariates, or “features” in ML) that could be potential predictors of the outcome 

variable.4 There can be a large number of J predictors, possibly even more than there 

                                                
4 Unlike in traditional analyses where theoretical frameworks guide variable selection, there 
is no need to prune or select which predictors may be relevant. One critical achievement of 
ML algorithms is that they use empirical methods to select and retain variables based on their 
predictive power.  
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are M rows or observations5.  Some software packages, such as Python scikit-learn, will 

perform this cross-validation procedure for the user automatically. 

6. Train and test the algorithm on the data. Each of the k folds is then used, in turn, for 

testing purposes with the others to train the model, which reduces the risk that the model 

is overfit. First, model parameters are estimated where the kth fold (for example, the 1st 

fold) is held as the test data. The model is trained on all other folds (in our example, 

folds 2 through 10) combined together. Next, the model is tested on the kth fold (which 

was held for test purposes) to see how well it does “out of sample.” Then the algorithm 

moves on to the next fold (e.g., 2nd fold), which is held as the test data, where parameters 

are again estimated using the remaining k–1 folds (e.g., 1, 3, 4, 5, …, 10), and so forth.  

7. Define a measure of “success”. Unlike typical regression models based on frequentist 

statistics, ML algorithms do not usually evaluate success by returning p-values. This is 

in part because, given a large enough dataset, almost anything might be statistically 

significant (as defined by frequentist statistics) and no valuable insight would be 

gained. Instead, some ML algorithms, such as Random Forests, return lists of “variable 

importance” (Archer & Kimes, 2008) that aim to give the researcher an insight into 

which predictors play a particularly important role in predicting the outcome variable.  

Once the algorithm has been tested the researcher is left with a list of “important” 

variables that are predictive of the outcome variable. For example, the researcher might find 

                                                
5 While the possibility of the number of predictors exceeding the number of 

observations may seem odd at first, a number of applications suffer from this unfortunate 
condition such as genomics or image and video processing. Unlike the classic Ordinary Least 
Squares (OLS) regression, a number of ML algorithms are able to operate when there are 
more covariates than observations, such as LASSO regression and Decision Trees. 



28 

USING MACHINE LEARNING IN CAUSAL LEADERSHIP RESEARCH  

 

that a good employee-manager relationship, regular working hours and level of seniority are 

predictive of employee well-being at the firm. 

2. Experimental Approach 

The experimental approach aims to test the causal effect of an intervention – to 

explain what changes an outcome. Here we briefly describe how a researcher might go about 

testing an intervention using an experiment. We continue with the example of employee well-

being introduced above. Based on the (hypothetical) finding above that a good employee-

manager relationship is an important predictor of employee well-being, a researcher might 

hypothesize that developing certain leadership qualities could improve the relationship 

between employee and manager and thereby improve employee well-being A leadership 

scholar might ask, for example, whether a novel leadership development training can 

improve a manager’s ability to connect with their employees and, as a result, increase 

employee well-being. (This guide is a shortened version of Hauser and Luca (2015) and 

Hauser et al. (2017), which discuss each step in more detail, especially within a field 

organizational context.)  

1. Define a study population, among whom the intervention will be tested. For example, 

we focus on managers (i.e., leaders) and employees (i.e., followers) in an organization. 

Note that the study population here is different from the ML example above, since the 

intervention will be delivered to managers, but the outcome measured at the employee 

level. For simplicity, we assume that every follower in our sample has exactly one 

leader and leaders supervise exactly one follower, not an entire team.6 

                                                
6 These simplifying assumptions can be relaxed but doing so requires a hierarchical statistical 
model with clustered standard errors. While it is possible to introduce these modifications, we 
chose to keep it simple to illustrate the main concept without complications. 
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2. Define the outcome variable. In our example, we are interested in employees’ (i.e., 

followers’) well-being (e.g., measured through a regular employee engagement survey 

on a scale from 1-5). 

3. Design an intervention. The intervention (i.e., treatment) is typically of primary 

interest to scholars, and the aim of the study is to identify the causal effect of the 

intervention on an outcome variable of interest. In our example, we assume that the 

intervention is a novel leadership development program that aims to make managers 

more empathetic to employees’ concerns (for an overview of theories of behavior 

change using experimental treatments, see also Hauser, Gino & Norton, 2018 and 

Rogers & Frey, 2014).  

4. Divide the study population in two, randomly assigning half of the participants (in 

our example, randomly selected managers) into the treatment group and the other half 

into the control group. The treatment group receives the intervention, the control group 

does not. 

5. Define the hypothesis to be tested. We might hypothesize that the leadership 

development training (our intervention) among leaders has a causal effect on followers’ 

well-being (our outcome variable). 

6. Define a measure of “success”. In frequentist statistics, which are still predominant in 

the social sciences, if the p-value of the coefficient in front of the intervention dummy 

(treatment = 1, control = 0) in a standard OLS regression is below 5%, researchers 

typically declare the result to be statistically significant and the intervention to have 

been successful. 
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Thus, once the experiment has been run, we would simply run an ANOVA analysis or 

an ordinary least square (OLS) regression predicting employee well-being based on whether 

the manager has randomly been assigned to receive the intervention (leadership development 

training). The coefficient associated with the intervention dummy in the OLS regression is 

our measure of success. For example, the researcher might find that the p-value is below 5% 

(and the direction of the coefficient is in the predicted direction) and therefore conclude that 

the treatment on average had a causal effect on employee well-being (i.e., managers 

attending the training display more empathic behavior towards their employees, which has a 

positive impact on the employees’ well-being). 

 

3. The Combined Experimental-Machine Learning Approach 

The Casual Forests method is a combination of the aforementioned ML and 

experimental approach. Where ML focuses on prediction and the experimental approach 

isolates the causal pathway, the combination of both enables researchers to answer additional 

questions. For example, for whom (based on available covariates) did the treatment work 

particularly well? Assuming highly granular data on participants, the interpretation of the 

estimates from this method might no longer be described as an “average treatment effects” (at 

the study population level). Instead, this method edges closer to what one might describe as 

“individual treatment effects” (which has been described in the medical literature as 

“personalized medicine” or “precision medicine”: Ghahramani, 2015; Mesko, 2017) and in 

marketing as “personalized advertising” (Matz et al. 2017; 2019). Real “individualization” is, 

of course, not technically possible: as Rubin (1974) observed, no individual can ever be in 

two states at the same time (receiving the treatment and not receiving the treatment). 
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However, given enough information (covariates) about every individual and a large enough 

sample size, the causal effect of a treatment on similar individuals can be estimated.  

The general procedure of this method is as follows. First, the researcher runs an 

experiment with randomized control and treatment groups, as described above. As before, the 

experiment returns a (causal) average treatment effect of the intervention on an outcome 

variable. Then a similar ML algorithm is applied, using many potential predictors – but not to 

predict the outcome variable as before but to predict the response to the treatment (the 

difference between the control and treatment groups’ outcome variable). For each individual, 

an estimate can be calculated – the extent to which an individual (identified by a large number 

of covariates) would respond to the treatment, compared to other individuals with similar 

covariates in the control group. The data can thus be partitioned into individuals who have (or 

would have, had they been in the treatment group) experienced large treatment effects, and 

those who have (or would have) experienced small, no or even negative treatment effects.  

We explain this with the below step-by-step guide, continuing the example of employee 

well-being as the outcome of interest. Using the Casual Forests method, we are not only 

interested in understanding the average treatment effect of a leadership development training 

intervention but also the heterogenous treatment effects (based on leaders’ and/or employees’ 

covariates) for whom the intervention had the largest causal effects and which covariates were 

important in differentiating the heterogeneous treatment effects. 

1. Define a study population, among whom the intervention will be tested. We again 

focus on managers (i.e., leaders) and employees (i.e., followers) in an organization.  

2. Define the outcome variable. We continue with the focus on employees’ (i.e., 

followers’) well-being, measured on a continuous scale from 1 to 5. 
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3. Design an intervention. We assume the same intervention as before: a novel leadership 

development program that aims to make managers more empathetic to employees’ 

concerns.  

4. Divide the study population in two, randomly assigning half of the participants (here, 

managers) into the treatment group which receives the intervention and the other half 

into the control group which does not receive the intervention. 

5. Run the experiment. At the end of the experiment, each employee-manager pair is 

associated with a column that contains the treatment status of the manager (1 = 

treatment, 0 = group) and the outcome variable of the employee (a continuous measure 

between 1 and 5), assessed at the end of the experiment.  

6. Apply the Casual Forests algorithm. In principle, this algorithm follows a similar 

procedure as discussed above. Instead of predicting well-being directly, however, it 

estimates the difference in the potential outcomes were the individual assigned to the 

control and treatment groups. Based on the Random Forest algorithm (Breiman, 

2001), the Causal Forest algorithm searches through the covariates, looking for the 

variables and splits that maximize the difference in the outcome between the treated 

and control groups. The process is iterated many times using different subsets of the 

data, resulting in a forest of decision trees. The algorithm is available for free in the R 

package “grf” (https://grf-labs.github.io/grf/; https://CRAN.R-

project.org/package=grf; Athey, Tibshirani, & Wager, 2019). In addition to estimating 

the treatment effect for each individual, the algorithm estimates the variance of the 

treatment effect, allowing the researcher to evaluate if each individual treatment effect 

is non-zero. For our example, while the training might lead to higher average 

employee well-being, the Casual Forests method can identify a subset of the 
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employees where the intervention substantially increased well-being (for example, 

due to low a priori well-being), and a subset where the well-being is not impacted 

(say, those who already report the highest well-being before the treatment was 

applied). In addition to estimating the individual treatment effects, the Causal Forest 

algorithm provides a variable importance measure – a numerical value for each 

covariate, representing how important each variable is in differentiating the treatment 

effects. For example, the Causal Forest might indicate that the most important 

variables in determining treatment effects are due to manager experience, and 

personality traits of the employees such as introversion. These importance metrics can 

provide leadership researchers with insights into future areas of research. 

7. Define a measure of “success”. The outcome of this method is a quantifiable measure 

of treatment heterogeneity at an individual level – or, put differently, the extent to which 

an individual would respond to the treatment, as estimated by their covariates. In this 

setting, there is no well-defined concept of “success” as the information is the 

heterogeneity of the treatment success across individuals. (Although, arguably, general 

measures of model fit should be considered in evaluating whether the covariates are 

important and practically useful in the exercise.) The interpretation of these estimates 

is of interest, however. One way to look at the results is to split the data into partitions, 

by the magnitude to which the treatment would have improved (or worsened) the 

outcome for different individuals, relative to control.  

The result of the Casual Forests method is an insight into the heterogeneity of causal 

treatment effects. While heterogeneity analyses have been done many times for specific 

subsamples in the past (for example, for men or women only; for low-income households; or 

for experienced or inexperienced managers), this approach gives the researcher a 
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comprehensive and systematic approach to identify subsets of data that she would likely not 

be able to access otherwise or test for (or if she did, one might fear that she was “data 

mining” or “p-hacking” the data, which is not an issue when using the Casual Forests 

approach).  

Furthermore, this approach not only provides the researcher with an empirical overview 

at the causal relationship of the treatment for specific subsets of the data, but also with a clear 

prediction for whom this causal relationship might hold in the future, bringing causal 

explanations together with prediction. For example, the researcher would not only be able to 

conclude that the intervention—the leadership development training—has on average had an 

effect on improve followers’ well-being but she might also be able to show that it works best 

for inexperienced leaders who lead teams with introverts (an area of the organization where 

this intervention could be rolled out to with likely success), whereas the intervention does little 

to help experienced leaders or a team with many extroverts. Finally, this approach also enables 

the researcher to find pockets of the organization where the intervention could backfire – for 

example, if the team is composed of all male followers led by a female manager – providing 

both practically and theoretically relevant insights.  

Discussion and Future Research 

The aim of our paper was to highlight the application of ML in leadership research by 

focusing on questions of prediction and causal inference. We discussed and proposed 

practical steps for combining the application of predictive algorithms and experimental 

designs to examine causal relationships using a recently developed technique to isolate 

heterogeneous treatment effects (Athey & Imbens 2016; Wager & Athey 2018). We paid 

specific attention to the application of ML to Big Data as interest in this area by researchers 

and practitioners in management and organizational/industrial psychology has grown 
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enormously with the advancement of technological devices and systems in organizations to 

collect, store and retrieve data.  

We have also drawn attention to the enduring issue of confounding prediction and 

causation models in leadership and social science research more generally (e.g., Obermeyer 

& Emanuel, 2016; Yarkoni & Westfall, 2017) which is not resolved by merely applying ML. 

We observed that, for the most part, the use of ML (often applied to Big Data) within 

Organizational/Industrial Psychology and Management Research has been discussed in 

relation to predictive models based on correlational data. While such data can be useful for 

building predictive models, these models typically suffer from issues of endogeneity, not 

permitting us to use ML to make (strong) causal claims (Antonakis et al., 2010). To help 

clarify the distinction between prediction and causation models in the application of ML, our 

paper provided an overview of some key approaches available to examine prediction and 

causality using ML and considered limitations of these approaches.  

We argue that the application of ML techniques combined with randomized 

experimental designs in order to isolate heterogeneous treatment effects can move the field in 

leadership research forward from both theoretical, practical and methodological perspectives. 

We have provided a step-by-step guide on how to design studies that combine experiments 

with the application of ML to establish causal relationships with maximal predictive power. 

By doing so, we aim to introduce these ideas that have been established in other disciplines 

(such as computer science) to the application in leadership research. Below we discuss the 

implications of our review for future leadership research.  

1. Theoretical implications 

Theory testing and refinement. Our suggested step-by-step guides provides the 

basis for leadership research to apply ML to Big Data to address questions related to both 
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prediction and causality. Such techniques offer the opportunity for stringent theory testing of 

causal relationships in a deductive way, which can be followed by abductive or inductive 

approaches for subsequent theory refinement or new theory building. Specifically, causal 

models can be tested in a deductive way by first examining a treatment effect in a field 

experiment (for example, does training leaders to become more charismatic result in higher 

follower satisfaction with leadership; does training leaders in job design for increasing 

employee health/well-being improve the well-being of their employees). As discussed, 

isolating heterogeneous treatment effects can, for example, help to better understand which 

leaders or future leaders will benefit the most from a specific leadership training. This can be 

done using abductive (for example, we have a hunch that there are personality differences in 

how people react to charisma or stressors at work but we do not know which combination of 

traits, so the enquiry could focus on follower personality profiles) or inductive approaches 

(using all person-related data available to test if any profiles emerge).  

Theory building through exploratory approaches. New types of data and the 

ability to combine diverse (and numerous) data sources can help inform theory building, 

using inductive and abductive approaches. This can be done by drawing on quantitative data 

and qualitative data (e.g., text analysis of written documents, speech, email data, or image 

analysis of facial expression). Such approaches have started to emerge in leadership research, 

for example, by examining an exploratory question guided by theory which reflects an 

abductive approach (e.g., Spisak et al., 2019), or combining deductive approaches with 

inductive (e.g., Doldor, Wyatt & Silvester, 2019). Purely exploratory approaches (e.g., letting 

patterns emerge from the data in predicting leadership effectiveness) can also be the starting 

point for new theory, or theory refinement - these can then be followed by a deductive 

approach, testing theory and causal models as suggested above. It appears that such 

approaches are being applied in practice in organizations (e.g., aiming to predict leadership 
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performance in recruitment and selection processes using all available data) but a more 

systematic, scientific overall approach is needed to inform theory and practice, and 

transparency by publishing findings. We propose a more conscious choice of approach and 

systematic research design and agenda, where the research enquiry and research findings 

build on each other.  

Modelling time. Time is integral to leadership development and performance and 

leadership phenomena reflect dynamic processes (Fischer et al., 2017; Shamir, 2011). ML 

techniques can be used to explore leadership processes in more complex ways than 

incorporate longitudinal data (e.g., Gruda, & Hasan, 2019). New technologies (e.g., sensors) 

allow for more continuous measurement of data, drawing on a range of data sources (e.g., 

physiological data measuring stress response; behavioral data reflected in email patterns, 

performance), which can help examine leadership processes and phenomena better through 

consideration of time such as the unfolding of leadership development and performance (e.g., 

Fischer et al., 2017) or leadership behavior and employee well-being (Arnold, 2017; Inceoglu 

et al., 2018). Other areas in management research have begun to examine the role of time in 

more depth conceptually and empirically (e.g., Organizational Citizenship Behavior: Methot, 

Lepak, Shipp, & Boswell, 2017; newcomer identification: Zhu, Tatachari, & Chattopadhyay, 

2017; motivation and performance: Roe, 2014) but research on leadership processes and 

phenomena is still emergent (e.g., Castillo & Trinh, 2018; Lang, Bliese, & de Voogt, 2018; 

Shamir, 2011). Complex question relating to how leadership processes emerge and have 

effects over time can be answered with a combination of ML and Big Data.  

Modelling context. Attempts to specify situational/context variables in leadership in 

theoretical models (e.g., Fiedler, 1967) have only been moderately successful with empirical 

evidence not (fully) supporting these models (e.g., Peters, Hartke, & Pohlman, 1985). As a 

result, situational approaches of leadership have somewhat faded from the literature, most 
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likely because of the inherent complexity of developing models that capture key situational 

factors that are relevant in predicting, for example, leadership effectiveness. While many 

studies consider boundary conditions in the form of moderator variables, we do not have 

robust, empirically supported theoretical models for incorporating context into leadership 

theory. Contextual approaches to leadership have started to develop again, by analyzing 

contextual factors that may influence the leadership process in more detail as proposed by the 

integrative framework linking context to leadership by Oc (2018). Applying ML to leadership 

research can help model such complex contextual variables and contingencies, also in 

combination with time (context change over time) especially when developing and testing 

causal models.   

2. Methodological Implications 

Identifying instrumental variables. A criticism that is often levelled at the 

leadership literature is the failure to address issues of endogeneity between independent and 

dependent variables (e.g., Antonakis et al., 2010; Hughes et al., 2018). Researchers typically 

model survey data using random effects and multilevel models, which assume that the 

random effects are uncorrelated with the regressors. Violation of this assumption creates an 

endogeneity problem (e.g., Antonakis et al., 2010). While the ideal solution to address this 

issue is the use of randomized controlled experiments, for many research questions, the use 

of experimental designs may not be practical, ethical, or suitable. Such methods can also 

suffer from a lack of ecological validity if not well designed. An alternative approach to 

addressing endogeneity issues in correlational data is to adopt the instrumental-variable 

estimation otherwise known as the two-stage least squares (2SLS) procedure. 2SLS uses 

instrumental variables – exogenous predictors of the endogenous predictor (X) which will be 

associated with the outcome (Y) but only through the endogenous predictor (X) (Antonakis et 
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al., 2010). Instrumental variables are widely used in other disciplines, such as economics, but 

have had limited use within organizational research, including in the field of leadership. This 

is perhaps partly because identifying appropriate instrumental variables can be difficult, and 

poorly chosen instruments (especially if not strongly related to the endogenous predictor) can 

bias findings (cf. Larcker & Rusticus, 2010). Big Data has the potential to help with this issue 

by providing a range of potential instruments that can be incorporated into leadership 

research. Furthermore, ML techniques can be useful in identifying such instrumental 

variables. With careful consideration it is likely that many instrumental variables could be 

extracted from Big Data and be incorporated within ML predictive model to help to address 

issues of endogeneity. For example, combining Big Data and research from genetics, it is 

very possible that we will be able to estimate the causal effects of genetic markers of, for 

example, intelligence on outcomes such as leadership effectiveness (e.g., see DiPrete, Burik, 

& Koellinger, 2018; von Hinke, Smith, Lawlor, Propper, & Windmeijer, 2016).  

Making use of new/additional data sources. Big Data and ML provide an 

opportunity to explore a wider range of variables and allows for more complex testing of 

different variable profiles and situational characteristics. For instance, the leader trait 

paradigm can be further explored using a range of ML methods allowing optimal sets of 

potential leader trait covariates to be identified, examining the effects of multiple interactions 

simultaneously, and incorporating non-linear relationships (e.g., Spisak et al., 2019). Big 

Data may also allow for leadership researchers to make greater use of a variety of objective 

data to reduce common method bias. To date, the leadership literature has largely relied on 

survey data (e.g., Hughes et al., 2018), not making use of the data that many organizations 

collect with regularity that could help us build predictive models of leadership. For example, 

using ML expansions in computer science, such as social sensing (e.g., analysis of emotional 

and behavioral cues) and natural language processing, have grown in popularity (LeCun, 



40 

USING MACHINE LEARNING IN CAUSAL LEADERSHIP RESEARCH  

 

Bengio, & Hinton, 2015). For example, research has explored how algorithms can give 

managers awareness of how their employees are feeling (Waddell, 2016) and research has 

examined how automatically sensed behavior can predict job performance (Schmid Mast, 

Gatica-Perez, Frauendorfer, Nguyen, & Choudhury, 2015). Incorporating more diverse data, 

like this, into our leadership models may help build new theory and better understand our 

current theories.   

Data quality and interpretation of results. Throughout this paper, we have posited 

potential benefits of applied ML techniques to Big Data. It is important to caveat our 

suggestions and highlight that more data does not necessarily mean good data (Tonidandel, 

King, & Cortina, 2018; see also Minbaeva, 2017: “smart data”). Furthermore, it is important 

to highlight the fact that many leadership researchers will be unfamiliar with ML techniques. 

Previous reviews have been quick to highlight both the benefits and drawbacks of using ML 

and Big Data (e.g., Tonidandel et al., 2018; Wenzel & Van Quaquebeke, 2018). For instance, 

the inclusion of multi-faceted measures (i.e., physiological data, location monitoring, non-

linguistic social signals) can create issues surrounding data integrity and difficulties 

combining data of different types. An additional concern with some of the measures used in 

Big Data studies is construct validity (see Tonidanel et al., 2018). If not carefully managed, 

Big Data has the potential to exacerbate the “Garbage-In, Garbage-Out” phenomenon.  

Technical skills required for the application of ML: The effective use of ML to inform 

leadership research requires training in certain areas with software with which many of us are 

unfamiliar (e.g., Hadoop, MapReduce, Python) and statistical techniques we have likely had 

no previous exposure to (Tonidanel et al., 2018). These issues make the use of multidisciplinary 

teams even more essential in the future.  

3. Practical implications 
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Developing interventions: Determining causal factors through experimental research 

and isolating heterogenous treatment effects can help develop more targeted evidence-based 

interventions in organizations. For example, subpopulations can be dynamically targeted 

using ML algorithms, in order to make policies or organizational interventions more effective 

and efficient (see for example, Einav et al. 2018; Hauser et al. 2018). In leadership research, 

there exist many potential applications: leadership training to increase team effectiveness 

could be more focused on aspects of leadership behavior (e.g. charisma) and the leadership 

process (e.g. specific types of interactions with the team, the quality of the leader-follower 

relationship) that have been shown to have a positive effect on teams in (a specific) 

organization. We would also know which leaders would benefit most from a specific type of 

training (e.g. extroverts) and could tailor the training accordingly. Such an evidence-based 

approach would be more effective compared to one-size-fits all approaches and save costs by 

focusing trainings on desired outcomes. Additional positive “side effects” could include 

higher training motivation of leaders and employees which in itself is likely to increase 

training success.  

Collaborations between organizations and researchers: Organizations have started 

using ML approaches to address a wide range of business issues, for example in Human 

Resource Management (e.g. Minbaeva, 2018). Leadership researchers need to be more 

closely involved in developing research with organizations in that area to help with the 

choice of research approach (e.g. data driven, inductive or starting with initial ideas using an 

abductive approach), data and research design (e.g. designing field experiments). Closer 

collaboration requires a dialogue with organizations in which researchers also need to learn 

about available data and contextual variables, help organizations to understand the benefits of 

differentiating between prediction and causation models and, quite crucially, to identify the 

research questions at hand (What issue are we trying to solve? How can existing or new data 
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help address a specific issue?). More systematic, evidence-based theory guided approaches 

will help organizations move from operational data reporting to using data for strategic 

decision-making (Minbaeva, 2017). The need for closer collaboration between organizations 

and researchers to improve evidence-based interventions and applied science is not new, but 

with the rapid development ML applications and use of Big Data we argue that such close 

collaborations will become even more important. 

Training in organizations to use ML effectively and understand Big Data better: 

Organizations have started to employ data scientists to apply ML to Big Data (e.g. in HRM) 

to address business issues and make work processes more efficient. One common challenge 

observed in practice is the interpretation of data outputs by other business functions, by 

leaders and employees without a technical background (e.g. Sinar, Ray & Canwell, 2018). 

Using ML to address business issues and move leadership research forward, requires training 

of researchers but also practitioners, leaders and stakeholders in organizations to be able to 

interpret and communicate findings for decision-making. This involves, for example, 

understanding basic principles of ML, and forms of data used for ML (including limitations 

and pitfalls), the distinction between prediction and causation and the application of Big Data 

and ML for examining prediction and causal relationships. 

4. Limitations of approaches and issues to consider 

Spurious findings: ML methods applied to very large data sets can lead researchers 

to falsely reject the null hypothesis and may uncover many significant relationships that are 

spurious (Fan, Han, & Liu, 2014), although many ML techniques are now able to guard 

against spurious findings with appropriate penalization (for more details, see Tibshirani 1996, 

2011). Even when statistically significant results are not spurious, researchers have to 

examine critically whether a result also has practical (i.e. economic) significance. As Yarkoni 
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and Westfall (2017) put it, despite the hyped-up Big Data revolution and the use of 

increasingly sophisticated methods, “explanatory utility of a massively complex model fitted 

to enormous amounts of data remains somewhat unclear” (p. 9). 

Issues of (cross-) validation: Despite being praised for their ability to do well in “out 

of sample” prediction, ML algorithms are not universally applicable to all datasets and all 

problems after conducting an initial training and validation exercise. “Out of sample” does 

have its limits. Within the realm of ML, “out of sample” narrowly refers to the ability to 

predict behaviors in a dataset that is similarly structured, similarly sourced, and has similar 

properties (such as patterns of behaviors that have been identified). This, conversely, means 

that data that has different predictors or data structures, comes from a different source, or 

shows different patterns of behavior altogether. For example, an algorithm trained and tested 

on human resource data in a large financial firm to predict employee turnover does not 

necessarily (and not likely) do well in predicting employee turnover in a dataset from a 

manufacturing company or marketing agency. Furthermore, similar predictors may not be 

available or comparable across industries – and even if comparable predictors can be found, 

questions related to specific predictions and the size of coefficients arise. For example, 

should the weight on the coefficient of a trader’s stock performance, be the same as a plant 

manager’s processing efficiency or a marketing agent’s creative portfolio? Furthermore, the 

patterns (such as a list of important coefficients that predict employee turnover) that the ML 

algorithm has learned in the financial firm dataset will likely not hold in other industries. 

Finally, while it seems plausible that an algorithm trained and tested on one financial firm’s 

data may be relevant for another financial firm’s data, it is still advisable to treat them as 

separate to examine distinct problems/questions – the availability of predictors may vary, 

internal politics and interpersonal dynamics within a firm may play more or less a role, or 

different financial incentives might alter behavior in unexpected ways. Thus, while it is 
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technically possible to use the method with data that comes from multiple firms, whether 

doing so would be useful depends on how similar or different the firms are. ML is both 

powerful and limited in this context: powerful because it allows you to predict future events 

but limited that it only does so within the confines of the historic, representative data. That is 

not to say that experience with an algorithm in one industry or firm does not help inform 

practices in another. From practical experience, we can attest to the fact that many similar 

algorithms can be applied to disparate problems, although they require model selection and 

parameter tuning as if it were a completely new problem. 

Ethical issues: Accessing certain types of data for research purposes and practical 

application in organizations might be sensitive (e.g. email, using social network data for 

selection processes in non-standardized processes) (see Tonidanel et al., 2018). There is 

variation in legislation across countries with some of these being more stringent in terms of 

boundaries and protection of employee data (e.g. the General Data Protection Regulation in 

European Union countries) than in others.  

Moreover, the application of ML to Big Data in leadership research can bring with it 

new questions that might not be covered by clear legislative guidance. For example, if we 

establish causal relationships between a specific type of leadership training to increase 

leadership effectiveness (e.g. by increasing charisma) and, by isolating heterogenous 

treatment effects, know which leaders or potential/aspiring leaders (e.g. with a specific 

personality profile) benefit from this type of training most or least, do we only offer this 

training to some leaders (those with a specific personality profile)? Or to everyone but 

communicate clearly that not everyone might benefit equally from the training? Another 

example is the examination of relationships between leadership behavior and employee 

stress-responses using physiological data: if we know that a certain type of leadership 

behavior is more likely to have negative effects on an employees’ health and which 
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employees are most likely to show a higher stress response, what is the responsibility of the 

organization to intervene and the leader to take action?  

Furthermore, combining Big Data and research from genetics to predict, for example, 

leadership effectiveness (e.g., see DiPrete et al., 2018; von Hinke et al., 2016) would 

certainly be powerful research, but raises ethical questions of whether we should, for 

example, select leaders based on genetically encoded information.  

Conclusion 

The application of ML has opened up exciting new avenues for leadership research, 

especially applied to Big Data. Yet, while ML offers new tools to solve new problems, the 

fundamental question of causality remains as important as ever in the social sciences. 

Randomized controlled experiments are the gold standard to address causality. In this paper, 

we hope to have equipped researchers with the practical toolkits they need to study different 

questions – questions of either prediction (for which we refer them to our step-by-step ML 

guide) or causality (using the step-by-step experiment guide) or both (using the joint step-by-

step ML-experiment guide). Taken together, these methods will move the field of leadership 

research into new directions, providing a more comprehensive and nuanced understanding of 

what, why and who will benefit from different kinds of leadership. 
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