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Abstract 

Ageing is defined as a system-wide, gradual loss in overall organ and tissue 

function across the lifespan of an organism, and in humans is the single largest 

risk factor for most chronic diseases. Thanks to ongoing improvements in 

healthcare, human life expectancy is steadily rising, but the proportion of life 

spent free of chronic disease (known as healthspan) is not extending concurrently 

in our increasingly aged population. Socio-economic costs are growing, both in 

terms of healthcare spending and quality of life. A central goal of ageing research 

therefore is to find methods of extending healthspan. However, ageing is a 

complex, heterogeneous process and the underlying mechanisms of ageing and 

determinants of lifespan/healthspan are still not well understood.  

RNA regulators of gene expression are important factors in the ageing process, 

and I hypothesise that they may have potential to affect healthspan, or act as 

biomarkers of ageing. In this thesis, I have examined some of these RNA 

regulatory factors and their associations with ageing and lifespan in mammals. In 

order to do this, I assessed the expression patterns of RNA regulatory factors in 

two mouse models and a human cohort. In one mouse model, I found that both 

mRNA splicing regulatory factors and microRNAs are associated with strain-

specific longevity during normal ageing, and that it is possible that these 

regulators play a causal role in determining strain lifespan. In the second mouse 

model, I showed these splicing factors to be associated with dietary restriction (a 

known treatment for extension of lifespan) and provided evidence that they could 

be mechanistically involved in the lifespan response to dietary restriction. I also 

showed that expression levels of these splicing factors were associated with 

cognitive decline and reduction in physical ability in humans. 
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These results indicate that correct RNA regulation is a key component of the 

ageing process and suggests that the factors that govern these processes may 

represent useful future targets for healthpan intervention in ageing people. 
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mTOR Mechanistic Target of Rapamycin (H. Sapiens) 

mTORC1 Mechanistic Target of Rapamycin Complex 1 

mTORC2 Mechanistic Target of Rapamycin Complex 2 

M. musculus Mus musculus 

MYC 
V-Myc Avian Myelocytomatosis Viral Oncogene 
Homolog (H. Sapiens) 

NAD Nicotinamide Adenine Dinucleotide 

ncRNA Non-Coding RNA 

NER Nucleotide Excision Repair 

NFKB1 
Nuclear Factor Kappa-light-chain-enhancer of 
activated B cells Subunit 1 (H. Sapiens) 

NFQ Non-Fluorescent Quencher 

NF-κB 
Nuclear Factor Kappa-light-chain-enhancer of 
activated B cells 

NHEJ Non-homologous End Joining 

PCR Polymerase Chain Reaction 

piRNA Piwi-Interacting RNA 

PNISR/Pnisr 

PNN Interacting Serine And Arginine Rich 
Protein (NB. New designation of 
SFRS18/Sfrs18)  
(H. Sapiens/M.musculus) 

PolyA Poly-adenine 

PPIA/Ppia 
Peptidylprolyl Isomerase A (H. 
Sapiens/M.musculus) 

PPT Purdue Pegboard Test 

pre-mRNA Precursor Messenger RNA 

Pten Phosphatase And Tensin Homolog 

qRT-PCR 
Quantitative Real-Time Polymerase Chain 
Reaction 
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Ran Ras-related Nuclear Protein 

RISC RNA Induced Silencing Complex 

RNA Ribonucleic Acid 

RNP Ribonucleoprotein 

ROS Reactive Oxygen Species 

Rps6ka3 Ribosomal Protein S6 Kinase A3 (M.musculus) 

RT Reverse Transcription 

SASP Senescence Associated Secretory Phenotype 

siRNA Small Interfering RNA 

SF1 Splicing Factor 1 

SF3B1/Sf3b1 
Splicing Factor 3b Subunit 1 
(H. Sapiens/M.musculus) 

SFRS18/Sfrs18 

Splicing Factor, Arginine/Serine-Rich 18  
(NB. Nomenclature has changed to 
PNISR/Pnisr)  
(H. Sapiens/M.musculus) 

Smad4 SMAD Family Member 4 (M.musculus) 

snoRNA Small Nucleolar RNA 

snRNA Small Nuclear RNA 

snRNP Small Nuclear Ribonucleoproteins 

SR Serine and Arginine Rich 

SRSF1/Srsf1 
Serine And Arginine Rich Splicing Factor 1  
(H. Sapiens/M.musculus) 

SRSF2/Srsf2 
Serine And Arginine Rich Splicing Factor 2  
(H. Sapiens/M.musculus) 

SRSF3/Srsf3 
Serine And Arginine Rich Splicing Factor 3  
(H. Sapiens/M.musculus) 

SRSF6/Srsf6 
Serine And Arginine Rich Splicing Factor 6  
(H. Sapiens/M.musculus) 

SRSF7/Srsf7 
Serine And Arginine Rich Splicing Factor 7  
(H. Sapiens/M.musculus) 

SS Splice Site 

STAT1 
Signal Transducer And Activator Of 
Transcription 1 (H. Sapiens) 
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SYBR Green I 

N',N'-dimethyl-N-[4-[(E)-(3-methyl-1,3-
benzothiazol-2-ylidene)methyl]-1-
phenylquinolin-1-ium-2-yl]-N-propylpropane-1,3-
diamine 

TAC Taqman™ Array Cards 

Taq polymerase Thermus aquaticus DNA polymerase 

TGF-beta 
Transforming Growth Factor Beta 1 
(H. Sapiens) 

Tm Melting Temperature 

TMT Trail Making Test 

TNF Tumor Necrosis Factor (H. Sapiens) 

TRA2β/Tra2β 
Transformer 2 Beta Homolog  
(H. Sapiens/M.musculus) 

TRP53 Tumor Protein P53 (H. Sapiens) 

ULT Ultra-Low Temperature 

UTR Untranslated Region 

UV Ultraviolet 

VCAN Versican (H. Sapiens) 

VILO™ Variable In, Linear Out 

WRN Werner Syndrome RecQ Like Helicase 

XPC 
XPC Complex Subunit, DNA Damage 
Recognition And Repair Factor 

Zfhx3 Zinc Finger Homeobox 3 (M.musculus) 
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1.1 Impact of an ageing population 

It is widely recognised that human life expectancy is increasing worldwide (Figure 

1.1a)1, and as a consequence there is a strong trend towards greater numbers of 

elderly individuals in the general population1. Although the lower-income 

countries lag behind those with higher income, the same trend is beginning to 

show in the projected figures for the year 21001. Globally, this increase in 

numbers of the elderly is almost universally coupled with a downturn in birth rates, 

resulting in a progressively larger old-age dependency ratio (Figure 1.1b)1. The 

importance of this increase in the dependency ratio becomes apparent when we 

consider the socio-economic impact of a populace that is projected to be 

increasingly biased in numbers of older individuals. As can be seen in Figure 

1.1c, according to the 2018 figures from the Office of Budget Responsibility, in 

the UK the overwhelming majority (≈75%) of expenditure in terms of health and 

adult social care is concentrated in the 65-and-over age group2. Given this fact, 

along with the predicted increase in the elderly and reduction in numbers of 

working-age individuals, it is not unreasonable to conclude that increased strain 

will be placed on healthcare providers and their funding systems in the 

foreseeable future.  

Of course, the view presented above is purely economical and does not consider 

the human and quality of life aspects of such a change in demographics. There 

is little doubt that ageing is the largest single risk factor for a host of common 

ailments including cancer, cardiovascular disease, neurodegeneration etc.3; the 

observed trend towards increased numbers of more elderly individuals goes 

hand-in-hand with increased incidence of such diseases and so decreased 

quality of life.  
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Figure 1.1: Historic and predicted population dynamics  

Shown here are plots of worldwide life expectancy and dependency ratios, along with recent UK 
healthcare spending. Panel a shows worldwide life expectancy in years at birth from 1955 to 2100. 
Panel b shows worldwide dependency ratio calculated as the number of over 65s per 100 
“working age” individuals (20-64 years old). Panel c shows stacked plots of 2018 figures for 
healthcare spending and adult social care spending by age group, in pounds per capita in the UK. 
Data for panels a & b were taken from the United Nations World Population Prospects 20171, 
while data for panel c were taken from the Office of Budget Responsibility (OBR) Fiscal 
Sustainability Report, July 20182. 
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Gerontologists have therefore been working for many years towards a greater 

understanding of the ageing process and the underlying determinants of later life 

health, in a bid to improve outcomes and potentially alleviate some of the future 

negative socio-economic impact. 

1.2 Mechanisms of ageing 

Ageing is generally defined as a progressive loss of physiological function leading 

to reduced survival and is a process which affects most living organisms4. 

However, the fact that there are some exceptions to this observation whereby 

certain species appear to show negligible ageing (data from AnAge database5), 

coupled with the fact that large amounts of variation in lifespan exist between 

biologically very similar organisms, rules out the idea that ageing is simply a result 

of wear-and-tear over time6. There is still debate surrounding the basic causes of 

ageing and discussion also continues into the reason why organisms age at all. 

Several theories exist which each go some way toward an answer to these 

questions. These theories are not mutually exclusive7, and it seems plausible that 

a unifying theory of ageing mechanisms could include aspects drawn from many. 

In the next sections, I will discuss the development of evolutionary theories of 

ageing, followed by a brief description of the popular mechanistic hypotheses 

thought to contribute to ageing, grouped into the error-based theories and 

programmed theories. 

1.3 Evolutionary theories of ageing 

Theories relating to the evolution of ageing have been discussed since the mid-

19th century shortly after the publication of Darwin’s On the Origin of Species8, 

since it was not immediately apparent how observations of ageing processes and 
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species-specific lifespan could comfortably fit Darwin’s natural selection 

hypothesis. Around the turn of the century, August Weismann presented a series 

of hypotheses in an effort to explain ageing in the context of natural selection 

(reviewed by Kirkwood & Cremer9). His initial ideas were centred around species-

level selection and proposed that once an individual had performed “its share in 

this work […towards the maintenance of the species…] it has fulfilled its duty and 

it may die”9. This was later shown to be a somewhat circular argument and did 

not account for within-species selection, so is now largely disregarded as a 

workable theory. However, two of Weismann’s central arguments proved to be 

pivotal to subsequent theories of ageing: the first was the recognition that there 

is a fundamental difference between the ‘immortal’ germ line and ‘mortal’ soma10, 

while the second was the suggestion of a limit to the reproductive potential of 

somatic cells. His views were opposed by other scholars at the time and did not 

attain wide recognition, however although his theories were incomplete in certain 

respects, these concepts provided a basis for several strands of the later theories 

of ageing, including disposable soma, programmed longevity and replicative 

senescence (see sections 1.3.3, 1.5.1 and 1.6.1). 

Modern evolutionary theories of ageing generally fit into one of three categories; 

mutation accumulation, antagonistic pleiotropy and disposable soma. Although 

there have been a number of refinements to these theories, the basic arguments 

as initially described in each case are still valid. 

1.3.1 Mutation accumulation 

In the years following Weismann’s death in 1914, few hypotheses regarding the 

mechanism of ageing were proposed, and it was not until 1952 that a further in-

depth examination of the evolution of ageing was undertaken by Peter Medawar. 
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In a lecture given at University College London (later published as ‘An Unsolved 

Problem of Biology’11), he proposed a theory which underpins all modern 

evolutionary theories of ageing, in that the forces of natural selection decline with 

age, particularly after the organism has reached an age at which it would have 

the ability to reproduce. 

The basic premise is that since all organisms will eventually die, whether through 

disease, starvation, cold, predation, accident etc., traits conferring an early-life 

advantage will be actively selected for, rather than those with late-life beneficial 

effects, simply due to progressively smaller numbers of individuals on which 

natural selection can act. He also argued that this effect would only be apparent 

after reaching reproductive age, as natural selection can only act upon inherited 

traits. For example, a mutant allele causing death before reproductive age would 

be very strongly selected against, as few (if any) individuals would survive long 

enough to pass this to their offspring, whereas a mutant allele with fatal effect 

after reproduction would have reduced selection pressure upon it, as it would be 

inherited by the offspring and would thus only affect the organism’s ability to have 

more descendants.  

In short, Medawar suggested that declining survivorship and fertility during 

normal lifespan causes selection forces to progressively weaken until there is 

little or no opposition to the accumulation of mutant alleles with deleterious effects 

in late life, and that ageing is effectively a by-product of the build-up of these late-

acting harmful mutations. 

1.3.2 Antagonistic pleiotropy 

George Williams’ paper of 19576 expanded on Medawar’s hypothesis, adding the 

concept of antagonistic pleiotropy. Pleiotropy occurs when one gene affects two 
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seemingly unrelated traits. In the context of antagonistic pleiotropy in relation to 

ageing theory, a special kind of effect is assumed whereby an allele of a gene 

has opposite effects on evolutionary fitness at different ages. With this 

assumption in mind alongside Medawar’s idea of selection pressure declining 

over time, it becomes evident that an allele which has a beneficial early-life effect 

would be positively selected for despite any late-life deleterious effects, and vice 

versa. Logically, this would lead to a similar accumulation of late-life harmful 

effect alleles as proposed in Medawar’s theory, but also provides a more robust 

explanation for the persistence of such harmful alleles in a population. Several 

genes have since been shown to act in this manner, with late-life links to 

increased risk of cancer, Huntingdon’s disease and osteoporosis but early-life 

advantages in terms of increased fertility and decreased risk of other illnesses12. 

1.3.3 Disposable soma 

The disposable soma theory of ageing was first proposed in the late 1970s by 

Thomas Kirkwood13,14, although the basis of his theory owes something to the 

earlier ideas of Weismann, Medawar and Williams. This hypothesis relies on 

recognition that somatic cells and reproductive cells in a multicellular organism 

have diverging requirements in order to maximise whole-organism fitness. 

Effectively this can be thought of as the soma playing a support role in order for 

the reproductive cells to fulfil their ultimate purpose of continuing the germ line 

through reproduction. A second observation fundamental to the disposable soma 

theory is that organisms have a requirement to allocate resources in such a way 

that maximises their evolutionary fitness. 

Given that each individual somatic cell has a limited life expectancy (as proposed 

by Medawar) and upon death all the resources invested into it are lost, logically 
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the amount of investment in the repair and maintenance of the soma will be some 

amount less than that required for it to last indefinitely. The optimal amount of 

investment will vary from species to species depending on the surrounding 

environment, but in all cases too low an investment will result in degradation of 

the soma before reproduction has taken place (which is clearly an unacceptable 

outcome in terms of fitness), while any investment in maintaining the soma over 

and above that required for it to reach its expected lifespan confers no additional 

advantage. In the latter situation it would actually improve overall fitness to reduce 

investment in somatic maintenance and use those resources elsewhere, for 

example faster growth or increased fecundity. 

As with the preceding theories of ageing, the disposable soma hypothesis 

predicts that ageing is a result of an accumulation of harmful late-life traits, 

although it arrives at this point through a different mode of action, i.e. 

accumulation of cellular damage due to reduced maintenance rather than 

differential selective pressures on harmful alleles. 

1.4 Error-based theories of ageing 

1.4.1 Rate of living 

The rate of living hypothesis is based on the observations made in 1908 by Max 

Rubner15 that the lifespan of mammals increases with size, and that mass-

specific metabolic rates decrease with size. Formalised by Raymond Pearl in 

192816, the theory states that lifespan and metabolic rate are inversely correlated 

due to a limited supply of “inherent vitality” being available throughout life. While 

this theory still holds some attraction thanks to its apparent logic, there are many 

examples of animals which do not conform to the proposed negative correlation 
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between metabolism and lifespan17, casting doubt on the validity of this theory as 

originally presented by Pearl. However, there have been substantial refinements 

to the basic theory which have led to the more widely accepted free radical and 

oxidative stress theories of ageing as I will discuss in the following sections. 

1.4.2 Free radicals 

In 1956, Denham Harman proposed a mechanism which could potentially explain 

the observations underlying the rate of living theory without relying on the 

assumption of a finite lifetime supply of energy. He argued that oxygen free 

radicals produced during normal metabolic oxygen consumption cause damage 

to biological molecules (proteins, nucleic acids and lipids etc.), leading to ageing 

and ultimately death through accumulation of this oxidative damage18. The fact 

that the production rate of free radicals is strongly correlated with metabolic 

activity provided the necessary link to the rate of living theory, however Harman’s 

mechanistic insight did not address any of the shortcomings of the rate of living 

theory discussed in section 1.4.1. 

1.4.3 Oxidative stress 

The oxidative stress theory builds upon the free radical concept but includes 

some important refinements. Firstly, the recognition that other reactive molecules 

produced by normal metabolism can also cause oxidative damage; these 

damaging molecules along with the free radicals are collectively termed reactive 

oxygen species (ROS). Secondly, the fact that organisms have mechanisms to 

both prevent and repair oxidative damage caused by ROS19. These additional 

considerations give the oxidative stress model greater capacity to explain 

observations of ageing and lifespan, although a number of exceptions exist where 

this theory does not hold true15. Further research in this field has implicated 
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membrane fatty acid composition as a potential determinant of distinct species 

lifespans, which is plausible given the known variability in sensitivity to oxidative 

damage shown by different fatty acids15,20. 

1.4.4 Protein damage and autophagy 

Protein damage has often been postulated as a driver of the ageing process. 

Perhaps the earliest instance is the cross-linking theory of Johan Bjorksten, 

originally proposed in the early 1940s and expanded in later work21,22, essentially 

arguing that intra- or inter-molecular bonds between macromolecules (with 

particular reference to proteins) formed either through the action of naturally 

occurring small molecules or direct reaction between molecules, would lead to a 

build-up of immobilised, non-functional proteins, resulting in the ageing 

phenotype. 

Leslie Orgel later developed a theory encompassing both DNA and protein 

machinery23,24 which stated that errors in proteins (particularly those involved in 

translating genetic information) could potentially reduce their specificity, thereby 

causing increased error rates in subsequent protein synthesis. This would 

produce a positive feedback loop, eventually leading to an “error catastrophe” 

situation at which point the cell would no longer be viable. While careful not to 

claim that it was the direct cause of organismal ageing, he argued that this loss 

of viability could be contributing to the ageing process.  

Since these early theories, there has been less focus on protein damage as a 

central cause of ageing in and of itself (indeed Orgel’s hypothesis has largely 

been disproven through experimental testing), however it is widely recognised 

that loss of proteostasis is a key element of the ageing phenotype25 and also 

plays a major role in many age-related diseases26. 
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One important aspect of the proteostasis network implicated in ageing and 

lifespan is autophagy – an evolutionarily conserved protein degradation system 

in eukaryotic cells allowing for the destruction of unnecessary or damaged cellular 

components27. In model organisms, autophagy has been found to decline with 

age, and experimental over- or under-expression of key components of the 

autophagy machinery have been shown to respectively increase or decrease 

lifespan (reviewed by Bareja et al.28), all of which suggests that autophagy is an 

important influence in the ageing phenotype. 

1.4.5 DNA damage 

Since DNA is central to all life, it was inevitable that it should be implicated in the 

ageing process. The first mentions of DNA having a role in the context of ageing 

were in a 1958 paper by Gioacchino Failla29 and another a year later from Leo 

Szilard30 which introduced the idea that DNA could potentially play an important 

role in ageing, however these early theories focused entirely on DNA mutations 

as the potential ageing mechanism.  

It was later recognised that DNA alterations could take two distinct forms, and 

have varying effects dependant on the severity and genomic location31-33: 

1. Mutations; defined as changes in the nucleotide sequence (deletions, 

insertions, substitutions or rearrangements) which can lead to functional 

changes to proteins. 

2. DNA damage; defined as a change to the structure of the DNA molecule, 

which can cause changes to gene expression and cellular function, 

impairment of transcription, cell cycle arrest and can in certain cases lead 

to apoptosis. 
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The realisation that DNA damage (as described in point 2) can also lead to 

mutations during the process of DNA repair and/or replication led to an expansion 

in the framework of the DNA-oriented theories of ageing and a shift towards the 

now more widely accepted DNA damage theory of ageing (reviewed by Gensler 

& Bernstein31, Vijg & Dollé32, Hoeijmakers33, Freitas & de Magalhães34 and Ou & 

Schumacher35). 

DNA damage can be caused by both exogenous influences, including chemicals, 

radiation, viruses etc. as well as endogenous factors such as spontaneous 

chemical reactions and ROS34. Damage can take the form of abasic sites, inter- 

and intra-strand crosslinks, bulky chemical adducts, UV-induced photoproducts, 

deamination or oxidative modifications of bases and DNA strand breaks. All of 

these types of damage have the potential to induce mutations through incorrect 

repair or replication of the damaged DNA, which can lead to cancer, cell-cycle 

arrest, senescence or apoptosis. It is also possible for certain types of DNA 

damage to act as barriers to transcription or arrest replication, which can cause 

cell death or senescence33,34. 

While it is estimated that many thousands of instances of DNA damage occur in 

every human cell on a daily basis36, it is also the case that several highly 

conserved and effective DNA repair mechanisms exist to rapidly deal with the 

damage, maintaining genomic integrity within the cell thereby avoiding apoptosis 

or senescence. These include non-homologous end joining (NHEJ), homologous 

recombination (HR), base excision repair (BER), nucleotide excision repair (NER) 

and several other more specialised mechanisms (all of these genome 

maintenance pathways have been reviewed in depth by Hoeijmakers33, Freitas & 

de Magalhães34 and Ou & Schumacher35). 
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There is a compelling case for DNA damage to be regarded as a factor in the 

ageing process. Experiments in both model organisms37 and in humans38 have 

shown that DNA damage accumulates during life, and there is also evidence that 

activity of DNA repair pathways declines with age39. It is also notable that 

defective DNA repair genes are implicated in all known diseases characterised 

by accelerated ageing (known as progeroid syndromes). Werner Syndrome, 

Hutchison-Gilford Progeria, Xeroderma Pigmentosum, Bloom Syndrome, 

Cockayne Syndrome, Ataxia Telangiestasia and several others are all 

characterised by progeroid phenotypes, and in each case the gene(s) disrupted 

are known to be either directly involved in, or closely linked to, DNA repair 

pathways39. Finally, there have been numerous experiments showing that 

manipulation of genes in these pathways can cause changes in ageing and/or 

lifespan phenotypes in model organisms39 lending further weight to the argument 

that DNA damage plays a significant role in the mechanisms of ageing. 

All the above arguments refer to the nuclear DNA complement, however there is 

also some evidence that DNA damage in the mitochondrial genome (mtDNA) 

may also play a part in the ageing process. It has been shown that mtDNA 

mutations increase with age and that transgenic mice engineered for artificially 

high mtDNA mutation rates show shortened lifespan and premature ageing 

phenotypes. That being said, there is still debate as to whether such mtDNA 

damage is a causal factor or simply correlated with ageing40. 
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1.5 Programmed theories of ageing 

1.5.1 Programmed longevity 

The idea of programmed longevity relies on the assumption that the declines 

seen in function and reproductive capacity during ageing are the result of 

genetically predetermined processes (in a similar manner to early life 

developmental processes) and therefore must fulfil some adaptive role in order 

to be favoured by natural selection41. Arguments in favour of an evolutionary 

advantage conferred by ageing as a fixed programme usually revolve around a 

perceived need to prevent over-population, to remove older individuals that may 

compete for resources with younger (fitter/more fertile) kin, or to promote turnover 

of generations, thus enhancing evolutionary change42.  

The theory of programmed longevity can be traced back to the work of 

Weismann9 and his assertion that the contribution to survival of the species (i.e. 

reproduction) is the overriding reason for the existence of the individual. In 

general however, most gerontologists do not subscribe to the idea of 

programmed longevity as the fundamental mechanism of ageing due to its 

reliance on species-level or group-level selection, which is accepted to be a 

weaker evolutionary force than selection at the individual level43. 

Programmed longevity is an attractive premise as it offers a simple explanation 

for the observation that ageing is essentially universal and appears to be 

relatively uniform in its effects within species. It also theoretically allows for the 

existence of clearly defined ageing genes or pathways which could potentially be 

switched off, thereby opening the door to the concept of a ‘magic bullet’ cure for 

ageing which has its own rather obvious appeal44. However, it remains a 
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controversial standpoint, generating a huge amount of debate and little 

consensus between proponents from both sides of the argument41,42,44-49.  

1.5.2 Endocrine system 

It has long been known that hormonal regulation is imperative to the maintenance 

of homeostasis and stress responses, and that during the ageing process there 

is a functional decline of the endocrine system in terms of hypothalamic sensitivity 

and responsiveness, hormone production and tissue sensitivity to hormonal 

signals50-52. Based on this knowledge, Vladimir Dilman proposed the 

Neuroendocrine Theory of Ageing53,54 in which he argued that the ageing 

phenotype is driven by this decline in function, and by extension the loss of 

homeostasis caused by the decline. However, he also postulated that the 

progressive deterioration of endocrine function is a continuation of the necessary 

deviation from homeostasis required for growth and development during early 

life, and so can be categorised as a programmed cause of ageing. While Dilman’s 

somewhat controversial theory is not widely accepted as likely to be a 

fundamental cause of ageing, there is ample evidence that the endocrine system 

has an critical role in the ageing process55. 

Age-related changes in levels of sex hormones are of course associated with the 

menopause in females and the less dramatic andropause in males, both of which 

have been linked to increased risk of several chronic diseases common in the 

elderly including osteoporosis, heart disease and declining cognitive function. 

Decreases in adrenal steroid hormones have been correlated with conditions 

such as depression, type 2 diabetes and Alzheimer’s disease. Dysfunction of 

hormone production by the thyroid also results in increased risk of certain 

pathologies, e.g. atrial fibrillation, reduced bone-mineral density and dementia56.  
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However, the most persuasive evidence for endocrine involvement in the 

underlying mechanisms of ageing is found in the nutrient sensing pathways: 

1. Insulin and insulin-like growth factor signalling 

The ‘insulin and insulin-like growth factor signal cascade’ (usually shortened to 

Insulin/IGF-1 signalling or IIS) is a well conserved system which regulates growth, 

metabolism and stress resistance in response to nutrient availability57,58. This 

pathway was first linked to ageing and lifespan in Caenorhabditis elegans; it was 

found that mutations in daf-2 (an IIS receptor ortholog), in the presence of a 

functional daf-16 gene (a downstream FOXO-family transcription factor which 

regulates hundreds of genes involved in stress resistance, immune function and 

metabolism58), led to a doubling of the animals’ lifespan59. It was later shown that 

mutations in IIS receptor orthologs in Drosophila melanogaster and mice resulted 

in similar lifespan increases60-62. In mammals, IGF-1 production is regulated by 

growth hormone (GH) (which does not have an ortholog in the simple model 

organisms), and several mutant mouse strains exist with reduced GH signalling, 

all of which display increased lifespan63. Additionally, both upstream regulators 

and downstream effectors of the IIS have been shown to affect lifespan and the 

ageing process in model organisms57. 

2. Mechanistic target of rapamycin 

The mechanistic (formerly “mammalian”) target of rapamycin (mTOR) is a 

serine/threonine kinase which acts as the catalytic subunit in two protein 

complexes, mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2)64. 

These two complexes have somewhat different functions; mTORC1 regulates 

protein synthesis, lipid, nucleotide and glucose metabolism, as well as protein 

turnover in response to levels of growth factors, nutrients, oxygen and DNA 
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damage. mTORC2 is involved in the regulation of other kinases in several 

pathways related to proliferation and survival, primarily in response to signals 

from the IIS. Both complexes are central effectors in a number of pathways critical 

to cell growth, proliferation and survival65. 

Once again, experiments in C. elegans first indicated that mTOR was involved in 

the ageing process, where it was found that RNAi knockdowns of the mTOR 

ortholog, let-363, more than doubled the worms’ lifespan66. Subsequently, 

mutations in mTOR and other components of the mTORC1 pathway, as well as 

the use of rapamycin to directly target mTOR were shown to extend lifespan in 

yeast, fruit flies and mice (reviewed by Johnson et al.64). Finally, it has been 

shown that mTOR signalling is involved in the lifespan increases seen with dietary 

restriction in model organisms65,67,68. 

1.5.3 Immunosenescence and inflamm-ageing 

Age-related changes in the immune system are well documented69, and the 

progressive decline in naïve cells coupled with the increase in memory cells 

during this process would appear indicative of a ‘programmed’ function in ageing. 

These changes bring reduced ability to respond appropriately to infections and 

cancer, impaired wound-healing capacity and a predisposition towards increased 

tissue inflammation70. While the idea of a progressively weakening immune 

system would appear to be a reasonable mechanism for the development of 

ageing phenotypes per se, it is actually the case that few morbidities can be 

directly attributable to infection in the elderly and many age-related diseases start 

in young to middle age while the immune system remains efficient71. 

More likely as a direct candidate for mechanistic involvement in the ageing 

process is the chronic, sterile, low-grade inflammation seen during advancing 
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age, known as inflamm-ageing72. Certainly inflamm-ageing is a risk factor for 

many age-related diseases, e.g. heart failure, atherosclerosis, obesity, diabetes 

and neurodegenerative conditions73, however there is ample evidence that the 

increasing inflammatory background associated with advancing age is at least in 

part a product of senescent cells74 (see also section 1.6). 

Once again, it is not clear whether immunosenescence and inflamm-ageing can 

be classified as root causes of the ageing phenotype, however they undoubtedly 

play an important role in the process. 

1.6 Cellular senescence 

In most of the mechanisms outlined above, the late-life accumulation of 

deleterious traits is thought to manifest a negative effect (at least partially) 

through cellular senescence. Cellular senescence is defined as a permanent† 

state of cell-cycle arrest in response to different damaging stimuli75. The basic 

premise was first proposed by Weismann, who suggested the existence of a limit 

to the reproductive potential of somatic cells9, but it was not until Leonard Hayflick 

and Paul Moorhead showed this experimentally in their 1961 paper76, and coined 

the term ‘cellular senescence’, that the idea became more widely accepted. 

Senescent cells are known to be important in several biological processes, i.e. 

tumour suppression, wound healing, tissue repair and embryonic development, 

but in all these cases the presence of senescent cells is transient, and the cells 

are subsequently cleared by the immune system. During ageing however, there 

is a gradual accumulation of senescent cells, which is thought to be a potential 

source of late-life deleterious effects74. 

† This is the classical definition of senescence. As I will discuss in section 1.7.2, 
recent research from our group calls the permanence of senescence into question. 
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Apart from the suspension of the cell-cycle, senescence is characterised by 

altered cellular morphology, gene expression, metabolism, epigenome and 

secretory phenotype77. The senescence associated secretory phenotype (SASP) 

is a cocktail of pro-inflammatory cytokines, chemokines, growth factors and 

extracellular matrix-degrading proteins78 which is thought to serve as a signal to 

enable immune clearance of senescent cells and/or promote tissue repair77, 

however chronic SASP has been shown to induce senescence in neighbouring 

young cells as well as promoting chronic inflammation and tissue dysfunction79. 

Senescence can also affect cells that are normally non-proliferative (neurons, 

cardiomyocytes etc.) and while cell-cycle arrest is obviously not a defining feature 

of senescence in these cell types, they can display the other features of 

senescence, including secretion of SASP80. 

These features of senescent cells make them a good candidate for a driver of the 

ageing process as first proposed by Hayflick and Moorhead76, however it was not 

until the emergence of two pieces of work by Darren Baker in 2011 and 2016 that 

this idea was supported empirically. In his first set of experiments, a novel 

transgene was introduced into BubR1 progeroid mice allowing drug-inducible 

selective elimination of senescent cells. Life-long removal of senescent cells 

resulted in delayed onset of age-related disorders, while late-life removal 

attenuated the progression of existing age-related pathologies81. In his later work 

using the same transgenic system, it was found that clearance of senescent cells 

in wild-type mice resulted in extended median lifespan and delayed the age-

related deterioration of several organs82. 

Senescent cells have been implicated in a variety of age-related diseases, 

including cardiovascular disease, idiopathic pulmonary fibrosis, chronic 

obstructive pulmonary disease, insulin resistance, macular degeneration and 
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many more83,84. Along with the experimental evidence as described in the 

previous paragraph, there is a strong case for cellular senescence having a 

central role in the mechanism of ageing. 

1.6.1 Replicative senescence 

Replicative senescence, as originally described by Hayflick and Moorhead, is the 

suspension of cell cycle due to serial passage of cells in culture76,85, however in 

their works at the time no mechanism was described for this phenomenon. It was 

later discovered that telomere length plays an important role in senescence, both 

in vitro and in vivo86,87. Telomeres are non-coding chromosomal ‘caps’ consisting 

of hundreds to thousands of TTAGGG repeats which, along with specific 

telomere-associated proteins, serve to protect the ends of chromosomes88. In 

most mammalian cells (with the notable exception of the germ-line cells), 

telomere length is genetically determined during development and is not 

extended during adulthood due to stringent repression of telomerase, a 

specialised ribonucleoprotein responsible for telomere maintenance and 

extension89. Successive rounds of cell division therefore result in gradual 

shortening of the telomeres, eventually leading to disruption of the protective cap 

which in turn elicits a DNA damage response, leading to cell-cycle arrest and 

senescence87. 

1.6.2 Stress-induced senescence 

Senescence can also be induced by factors other than repeated cell divisions. 

Stressors such as DNA damage, oxidative stress and expression of oncogenes 

have all been shown to cause premature senescence through activation of the 

p53/p21 or p38/p16/Rb cell cycle arrest pathways90-93. It was originally thought 

that these causes were independent of telomere length, however more recent 
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evidence suggests that the routes to replicative and stress-induced senescence 

are not mutually exclusive93. 

1.7 The Hallmarks of ageing 

1.7.1 Current perspective 

In a landmark paper published in 2013, Carlos López-Otin et al. described a set 

of molecular and cellular hallmarks of ageing in an effort to outline the defining 

characteristics of ageing and the mechanisms involved94. The authors used a 

specific set of criteria to determine these hallmarks, as follows: 

1. Each hallmark should manifest during normal ageing. 

2. Each hallmark should accelerate ageing when experimentally aggravated. 

3. Each hallmark should retard ageing when experimentally ameliorated. 

The hallmarks that they identified as fulfilling all these criteria are summarised in 

Figure 1.2. 

I have already described most of these hallmarks as they fall under one or more 

of the theories of ageing in the preceding sections, with the exception of 

‘Epigenetic alterations’ and ‘Stem cell exhaustion’, which I shall address briefly 

here: 

1. Epigenetic alterations 

Several different epigenetic alterations have been implicated in the ageing 

process; however, these largely appear to exert their effects through one of the 

mechanisms described above. 

Histone modifications meet the criteria for a hallmark, however they appear to act 

through regulation of genes in the IIS pathway described in section 1.5.295. The 
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sirtuin class of deacetylases, which act on histone markers, have also been 

implicated in determination of lifespan, although again they seem to exert their 

influence through pathways such as IIS, NF-κB signalling, glucose homeostasis 

and genomic stability94.  

  

Figure 1.2: Hallmarks of ageing 

The nine hallmarks of ageing proposed to determine the ageing phenotype, as described in Carlos 
López-Otin’s 2013 publication (reproduced from López-Otin et al.94, with permission from 
Elsevier; © 2013). 

 

Patterns of DNA methylation at CpG dinucleotides change significantly during 

ageing. These changes are remarkably consistent to the extent that they can be 

used to predict biological age from the methylation status at a relatively small 
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subset of CpG sites. In 2013, Steve Horvath used this predictable shift in DNA 

methylation to develop an epigenetic clock96 algorithm, which is highly accurate 

in its predictions of age across multiple tissues, using information from just 353 

CpG sites. Other epigenetic clock models have since been developed with 

varying levels of accuracy in different tissues97, and DNA methylation has also 

been found to be a promising marker for estimation of the number of stem cell 

divisions in tissues, a metric known as the ‘mitotic clock’, which is useful in both 

estimation of tissue ageing and also for predicting cancer risk98.  However, while 

it is true that DNA methylation is strongly correlated with advancing age and may 

be seen to play an important role in the ageing process, it would appear to do so 

through the regulation of gene expression (see section 1.8.2). For example, 

around half of the 353 CpGs used in Horvath’s clock are in gene promoter 

regions, and the remainder are in enhancer sequences97. It is also the case that 

there is currently no compelling evidence that these patterns of methylation 

change directly affect lifespan. 

A number of microRNAs (miRNAs) have also been shown to associate with 

lifespan99 (see also chapter 4100), however by the very nature of miRNAs as 

regulatory non-coding RNAs, their method of action is through the modulation of 

other mechanistic pathways. I discuss these in more detail in section 1.8.9. 

2. Stem cell exhaustion 

Declining ability to regenerate tissues is a defining characteristic of the ageing 

process, and one that is largely driven by reduced competence of stem cells. 

While this is without doubt a highly important factor in the development of age-

associated phenotypes, the loss of stem cell capacity is thought to be driven by 

one or more of the age-associated damages as described previously94. 



54 

1.7.2 Adding a 10th hallmark: Altered control of gene expression. 

Our group’s research and the work contained within this thesis have brought us 

to the conclusion that a 10th hallmark could potentially be added to the list as 

described by López-Otin et al., namely ‘Altered control of gene expression’. 

Although altered control of gene expression is, to an extent, implied in the 

‘Epigenetic alterations’ hallmark, we feel that it fulfils the criteria (as laid out in 

López-Otin’s paper) in its own right. 

It has been found in several studies that changes in levels of key regulators of 

gene expression are associated with normal ageing101-103, lifespan (see chapters 

3104, 4100 and 5105) and with future age-related clinical outcomes (chapter 6106). 

Much of our group’s work has focused specifically on the factors regulating 

alternative mRNA splicing (see section 1.8.4), and we have also shown that it is 

possible to restore replicatively senescent cells to an apparently more youthful, 

proliferative state through modulation of splicing factor expression using 

resveratrol and its analogues, as well as specific hydrogen sulphide donors107,108. 

Given this evidence, it seems that there is a strong case for altered control of 

gene expression to be included as one of the fundamental hallmarks of ageing. 

1.8 Control of gene expression 

Not only does the control of gene expression satisfy the criteria of a hallmark of 

ageing, it is also known to be a key player in the development of ageing 

phenotypes. Adaptive, plastic patterns of gene expression are vital to 

maintenance of homeostasis and to effective cellular responses to stress109, 

which are known to be highly important factors in the ageing process110,111. 
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There are several ways by which gene expression can be regulated, which I will 

describe in turn: 

1.8.1 Histone modifications 

Human genomic DNA is packaged in the nucleus as chromatin, a highly 

compacted state necessary to retain order and enable the entire genome to fit 

inside. The basic unit of chromatin is the ‘nucleosome core particle’, in which 145-

147 base pairs of DNA are wrapped around an octamer of histone proteins112. 

Nucleosomes tend to block transcription either physically or by making sections 

of DNA unavailable for transcription factor binding, however mechanisms exist 

which can alter nucleosome positioning and thus affect gene expression113. Apart 

from these remodelling mechanisms, individual histones can be post-

translationally modified in many ways including methylation, acetylation, 

phosphorylation etc. which are able not only to affect gene expression, but can 

also have other downstream effects on pathways such as DNA repair and 

apoptosis112. 

1.8.2 DNA methylation 

DNA methylation is well known to affect gene expression. The majority of DNA 

methylation in mammals can be defined as the presence of a methyl group on 

the cytosine of a CpG dinucleotide. CpGs tend to be concentrated in CpG islands, 

found commonly around promotor sites. CpG islands are predominantly 

hypomethylated in the case of actively transcribed genes and conversely are 

hypermethylated when a gene is silenced114. There is also increasing evidence 

that DNA methylation within the gene body can also impact on gene 

expression115. 
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1.8.3 Transcriptional regulation 

An important aspect of gene expression lies in the control of transcription of the 

genomic DNA to RNA. This can be at the level of chromatin state and thus 

availability of a gene for transcription112, sequence and strength of promoter 

elements116, DNA polymerase activity117, presence or binding of transcriptional 

enhancers118, genomic landscape119 and post-transcriptional alterations120. The 

fact that such levels of fine control over expression exist is testament to the vital 

role that tight regulation of expression plays in maintenance of a stable cellular 

environment while also allowing for adaptive responses to external challenges. 

1.8.4 mRNA processing 

Once transcribed, a precursor mRNA (pre-mRNA) must be processed into a 

mature mRNA for correct and efficient translation. The DNA templates (and 

therefore the transcribed pre-mRNAs) of the vast majority of eukaryotic genes 

contain both non-coding intronic sequences and coding exonic sequences. In 

order to produce a mature mRNA, the introns must be removed by RNA splicing, 

a 5’ cap is added, and the molecule is polyadenylated via addition of a polyA tail 

at the 3’ end (see Figure 1.3). All these steps are subject to regulatory processes 

that can impact the eventual expression profile of the gene121-123. 
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Figure 1.3 mRNA processing 

Shown here are the steps involved in processing of a pre-mRNA transcript to a mature mRNA 
molecule; removal of introns by splicing, addition of 5’ cap and polyadenylation. 

 

1.8.5 RNA splicing 

As mentioned in section 1.8.4, most eukaryotic genes contain non-coding introns 

which are spliced out during mRNA processing, and the coding exons are ligated 

to form the mature mRNA. RNA splicing is catalysed by the spliceosome, a large, 

dynamic ribonucleoprotein (RNP) complex which is recruited to splice sites 

through recognition of short, highly conserved sequences at the 5’ splice site 

(SS), 3’ SS, branch site and polypyrimidine tract124,125. Splice site choice is also 

determined by a set of cis-acting auxiliary splice site elements and trans-acting 
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splicing factors which act to increase or decrease the likelihood of a particular 

splice event going ahead. The cis-acting sequence elements are known as exonic 

splicing enhancers (ESE), exonic splicing silencers (ESS), intronic splicing 

enhancers (ISE) and intronic splicing silencers (ISS). The trans-acting splicing 

factors are split into two classes, the serine/arginine rich (SR) proteins and the 

heterogeneous nuclear ribonucleoproteins (hnRNP). Generally, the SR proteins 

bind to ESE and ISE sequences and are splice enhancing, while the hnRNPs 

bind to ESS and ISS sequences and are splice inhibitory. However, there are 

incidences where these splicing factors can in fact exert effects in the opposite 

direction, indeed it is usually the combinatorial effect of binding multiple different 

splicing factors (both enhancers and inhibitors) and thus the exact balance 

achieved at any given splice site that ultimately determines the outcome of the 

splicing event126. 

There are in fact two spliceosome complexes in eukaryotes, the U2-dependent 

and the U12-dependent spliceosome. The U12-dependent spliceosome is often 

referred to as the ‘minor’ spliceosome, as U12-type introns account for less than 

0.5% of introns in any given genome127. While slightly less efficient than U2-

dependent splicing, the U12-dependent spliceosomal components are analogous 

and the reaction occurs in a similar manner. For this reason, I will focus on the 

U2-dependent spliceosome in this text. 

1.8.6 The spliceosome and catalysis of splicing 

The U2-dependent spliceosome is assembled from five uridine-rich small nuclear 

ribonucleoproteins (snRNPs) known as U1, U2, U4, U5 and U6, along with a large 

number of non-snRNP proteins. The assembly is a multi-stage process with 

several remodelling and conformational changes throughout, leading from a 
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recognition stage through two consecutive transesterification reactions to the final 

spliced mRNA (Figure 1.4). 

Spliceosome assembly begins with formation of the E complex, via recruitment 

of the U1 snRNP to the 5’ SS and the interaction of the non-snRNP factors SF1, 

U2AF65 and U2AF35 with the branch point (BP), polypyrimidine tract (PPT) and 

3’ SS respectively124,125,128. The U2 snRNP then binds to the BP, producing the 

A complex (or prespliceosome). The U2AF heterodimer and SF1 then detach and 

the tri-snRNP (made up of the U5 and U4/U6 snRNPs in a heterotrimer) joins U1 

and U2 to form the B complex (or pre-catalytic spliceosome). Subsequent 

conformation changes and the disengagement of the U1 and U4 snRNPs leads 

to the active B complex (Bact complex), followed by a further activation reaction 

giving rise to the catalytically active B* complex, in which the U2/U6 structure is 

responsible for the first catalytic step129; cleaving the 5’SS and forming the lariat 

structure of the intron124,125. 

This reaction generates the C complex, consisting of the U2, U5 and U6 snRNPs 

bound to the free exon and the exon/lariat intermediate. Further conformational 

changes occur followed by the second catalytic step, whereby the lariat is cleaved 

from the 3’SS and the two exons are ligated to form the spliced mRNA 

molecule124,125 (Figure 1.4). 
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Figure 1.4 Pre-mRNA splicing by the U2-dependent spliceosome 

Steps involved in the recruitment of snRNPs, conformational changes and catalysis of intron 
removal by the U2-dependent spliceosome. Several spatial alterations occur to the spliceosome, 
along with changes in the milieu of subunits involved, in order to recognise the splice sites and 
enact the transesterification reactions necessary to produce a fully spliced mRNA. See section 
1.8.6 for full details. SS: Splice Site, BP: Branch Point, PPT: Polypyrimidine tract. 
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1.8.7 Constitutive and alternative splicing 

Constitutive splicing is the process by which introns are removed in the same 

manner every time for a given transcript, whereas alternative splicing is a 

departure from the canonical splicing pattern, allowing for a single gene to give 

rise to multiple mature mRNA products and therefore multiple protein isoforms. 

Over 95% of human genes have been shown to be alternatively spliced130, and 

alternative splicing is thought to be the major mechanism behind the discrepancy 

between the number of genes observed in the human genome (≈19,000), and the 

number of proteins produced (>90,000)131.  

The most common form of alternative splicing involves cassette-type exons, 

which are either included or skipped in the final mRNA, however several other 

types of alternative splicing have been identified, including; alternative 3’ and 5’ 

SS, intron retention, mutually exclusive exons, alternative promoters and 

alternative polyadenylation sites132. These different types of alternative splicing 

are illustrated in Figure 1.5. 

Apart from conferring the ability to produce an extended proteome, alternative 

splicing can also play a regulatory role. For example, alternate isoforms may 

contain non-coding sequence which can regulate translational efficiency133, or the 

inclusion of a ‘poison’ exon with an in-frame premature stop codon can trigger 

nonsense-mediated decay pathways, as can several other splicing events134, 

leading to degradation of the transcript. 
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Figure 1.5 Alternative splicing events 

Schematic showing the various types of alternative splicing events, and how these can produce 
many distinct variations of mature mRNA transcripts from a single pre-mRNA (reproduced from 
Blencowe132, with permission from Elsevier; © 2006). 
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1.8.8 Non-coding RNAs 

It is known that most transcripts produced from eukaryotic genomes are in fact 

non-coding114. Several classes of non-coding RNA (ncRNA) exist; small 

interfering RNAs (siRNA), long non-coding RNAs (lncRNA), long intergenic non-

coding RNAs (lincRNA), piwi-interacting RNAs (piRNA) and microRNAs 

(miRNA). All of these classes have been found to affect gene expression at 

different stages, from transcription to splicing, mRNA degradation and 

translation114,135. ncRNA biogenesis and modes of action have been reviewed 

extensively elsewhere135,136, however for the purposes of this thesis I will describe 

miRNAs in more detail in the following section. 

1.8.9 MicroRNA biogenesis and action 

MiRNAs are short (usually 21-25 nucleotides) regulatory ncRNA molecules which 

exert their effect on gene expression largely by targeting mRNA transcripts for 

translational repression or degradation137.  

MiRNAs are transcribed as long, primary miRNAs (pri-miRNA) by RNA 

polymerase II (Pol II) or RNA polymerase III (Pol III)138. MiRNA genes are often 

in the form of clusters of individual miRNAs which are expressed in a poly-

cistronic manner, and can be found in intergenic regions, introns and in some 

cases in exons137. The pri-mRNA transcript is then cleaved within the nucleus by 

the Drosha RNase III enzyme into a short stem-loop precursor miRNA (pre-

miRNA) structure, which is then exported to the cytoplasm through the action of 

the Exportin 5-Ran-GTP complex137-139. Once in the cytoplasm, the pre-miRNA 

is further cleaved by another RNAse III enzyme known as Dicer, leaving a linear 

miRNA duplex which is bound by the Argonaute 2 (Ago2) protein. Ago2 facilitates 

the unwinding of the miRNA duplex so that the active ‘guide’ strand can be 
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separated from the ‘passenger’ strand (which in most cases is subsequently 

degraded). The Ago2 and guide strand then recruit diverse groups of proteins in 

order to form various RNA-induced silencing complexes (RISC)138,139. The RISC 

is then guided to target transcripts by virtue of a 6-8 base ‘seed sequence’ of the 

bound miRNA. Complementary base pairing of this sequence with the 3’ 

untranslated region (UTR) of the target mRNA leads to its repression or 

degradation137,139 (see Figure 1.6 for schematic of this process). 

 

Figure 1.6 MicroRNA biogenesis and processing 

Schematic of the steps involved in production of a mature miRNA from primary transcript. Pri-
miRNA is transcribed from DNA template, cleaved by Drosha within the nucleus and exported via 
Exportin 5. Cytoplasmic Dicer then cleaves the stem-loop structure and the mature miRNA is 
loaded into the RISC via the action of Ago2. 

 

A single miRNA can target multiple mRNAs and many mRNAs have multiple 

miRNA binding sites in their 3’ UTR140. In this manner, miRNAs have the capacity 

to regulate complex networks such as those implicated in ageing and longevity141. 

1.9 Manipulation of ageing processes 

The desire to change the way we age is not a new phenomenon, indeed a 

‘Fountain of Youth’ has featured in mythological tales for thousands of years142. 
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However as alluded to in section 1.1, considering the current trends in worldwide 

demographics, there is a clear and growing need to develop means to improve 

healthy ageing before the socio-economic cost of age-related morbidities 

becomes an overwhelming pressure on our society and healthcare providers. 

1.9.1 Ageing, lifespan and healthspan 

Thus far, I have described the theories and mechanisms of ageing according to 

current observations. It is implied in such a narrative that ageing is heavily 

involved in the determination of lifespan, however there are two schools of 

thought on this. The more traditional viewpoint is that longevity is genetically 

determined and due to antagonistic pleiotropy there is an upper limit on lifespan 

even in the absence of age-related disease143-145, while ageing as a process is a 

product of the random accumulation of damage as described in section 1.4. The 

second, perhaps more controversial outlook is that lifespan is entirely a function 

of age-related damage, and therefore effective repair strategies could 

theoretically lead to extreme longevity146. 

Whichever of these ultimately proves to be true, arguably the more relevant 

consideration from the current perspective of public health and quality of life is 

healthspan. Healthspan can be defined as the period of life spent free from 

chronic age-related disease147. While healthspan is difficult to quantify in any 

meaningful sense147, conceptually it is self-evident that any treatments which 

could positively affect healthspan would be highly desirable. It is however almost 

certainly true that ageing, lifespan and healthspan are all intimately linked, 

therefore interventions designed to improve healthspan are likely to have effects 

on the ageing process and/or lifespan148. 
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1.9.2 Compression of morbidity 

The idea of compression of morbidity as a consequence of both social and 

scientific progress was introduced by James Fries in 1980149, and in essence 

refers to a postponement of the onset of chronic age-related illnesses, i.e. an 

increase in healthspan. However, when considering the case of an intervention 

to extend lifespan, this definition must be qualified. Figure 1.7 shows a theoretical 

situation whereby an intervention has been used which doubles the lifespan of 

an organism. 

 

Figure 1.7 Schematic showing different scenarios for lifespan extension 

Shown here are potential effects on healthspan in a theoretical example of lifespan extension 
(reproduced from Hansen & Kennedy150, with permission from Elsevier; © 2016). 

 

As can be seen, there are a range of possible outcomes of such a lifespan 

increase; 

A. No extension of healthspan; morbidity effectively tripled 

B. Healthspan extended; lifespan and morbidity extended by the same 

amount therefore morbidity doubled 

C. Healthspan extended; morbidity remains the same as before intervention 

D. Healthspan extended; true compression of morbidity 
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Logically, the reduction in time spent suffering from any morbidities should be the 

ultimate goal of any treatment for ageing, whether or not increased lifespan is a 

factor. Therefore the desirability of the outcome increases from top to bottom of 

this list, with scenario D being the best result for any treatment designed to 

increase lifespan150. However, it must also be said that a treatment which has no 

effect on lifespan extension yet confers a compression of morbidity would be just 

as important from a socio-economic perspective. The arguments for desirability 

of treatments that may have effects in the B or C categories are less clear-cut. 

1.9.3 Potential targets for intervention 

It has not been until relatively recently that the idea of treating ageing, rather than 

the symptoms of ageing (i.e. individual age-related diseases) has gained traction 

in medical and scientific fields151. However, it is now widely accepted that ageing 

is the process which gives rise to many late-life pathologies152, and much 

attention has turned to identifying potential target pathways and interventions to 

enhance healthy ageing. 

Several promising avenues are currently being investigated as therapeutic 

strategies, as summarised in Table 1.1: 
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Table 1.1 Therapeutic strategies for ageing interventions 

Key targets and pathways with potential for lifespan and/or healthspan extension (Data taken 
from Trounson & McDonald153, Martinez & Blasco154, Campisi et al.155 and Hodgson et al.156). 

Intervention Pathway Mechanism/effect 

Rapamycin mTOR 

Central to nutrient sensing pathways 

and shown to affect lifespan and 

healthspan in model organisms 

Metformin Mitochondria 

Targets several ageing pathways, 

diabetic patients prescribed metformin 

display increased lifespan and reduced 

incidence of cancer 

Senolytics Senescent cells 

Senescence known to be associated 

with several age-related pathologies 

and clearance of senescent cells shown 

to affect lifespan and healthspan in 

model organisms 

Sirtuin activators Sirtuins 

Modifier of epigenetic marks on histone 

proteins, shown to be associated with 

lifespan and healthspan in model 

organisms  

NAD precursors NAD metabolism 

Critical coenzyme for sirtuins and other 

important enzymes, NAD+ levels known 

to decline with age - supplementation 

shown to be protective during ageing 

Telomerase Shortened telomeres 

Well known marker of ageing, transient 

activation has been shown to improve 

healthspan in model organisms 

Stem cells Stem cell exhaustion 

Key to regenerative capacity of tissues, 

several stem cell therapies currently in 

clinical trials with promising outlook 

Exercise Unknown 

Known to be essential for healthy 

ageing, associated with increased 

lifespan and healthspan in humans 

Dietary restriction 
Several, including 

mTOR & sirtuins 

Affects nutrient-sensing pathways, most 

robust method for increasing lifespan 

and healthspan in model organisms 
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1.10 Conclusion 

As discussed, ageing is a complex and heterogeneous process which is still 

relatively poorly understood. It is likely that the underlying cause of ageing is a 

network or combination of many of the aspects described in the preceding 

sections, therefore much work remains to be done to disentangle the effects of 

different pathways and mechanisms in the overall phenotype. It is also apparent 

that ageing, lifespan and healthspan are all intimately linked, so increasing our 

knowledge of any one of these could be expected to yield insights into other 

aspects. Previous findings from our research group lead us to postulate a central 

role for the regulation of gene expression in the ageing process and thus 

determination of lifespan and healthspan, however to date little is known about 

how these two complex networks interact with each other. Greater understanding 

of the role of RNA regulation in the ageing process could provide attractive targets 

for novel interventions or potential biomarkers of age-related disease. 

1.11 Research hypothesis 

We believe that regulators of gene expression (specifically mRNA splicing 

factors and microRNAs) are fundamentally involved in the ageing process 

and determination of lifespan in mammals, and that therefore these 

regulators may have potential either as biomarkers of ageing phenotypes 

or as targets for intervention to improve healthspan.  

1.12 Aims and objectives of thesis 

The overarching objective of this thesis was to increase our knowledge of the 

involvement of mRNA splicing factors and miRNAs in ageing and lifespan, from 

a mechanistic and predictive perspective, both in murine models and in humans. 
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1.12.1 Chapter 3: Changes in the expression of splicing factor transcripts and 

variations in alternative splicing are associated with lifespan in mice and humans. 

In this chapter, the aim was to characterise transcript expression profiles of 

splicing factors and alternatively spliced transcripts in mouse strains of varying 

median lifespan. 

To do this, transcript expression levels of a panel of splicing factors were to be 

measured in spleen and muscle tissues from both young and old mice of six 

different strains with median lifespan ranging from 623 to 1005 days. Expression 

levels would then be tested for correlations with age and strain lifespan. 

Following this, expression levels of two separate tissue-specific panels of 

alternatively spliced transcript isoforms would be measured in the same mice, 

and similarly tested for correlations with age and strain lifespan. 

Based on the results from these experiments, bioinformatic analysis of 

transcriptome-wide expression levels from a human cohort was to be carried out 

to assess whether any associations seen in the mouse model were also found in 

humans. 

1.12.2 Chapter 4: MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are 

associated with median strain lifespan in mice. 

The experiments in this chapter were intended to determine whether miRNAs 

may be associated with median strain lifespan in the spleen tissue taken from the 

same mouse collection as used in chapter 3. 

For this, a high-throughput approach was to be used for discovery; expression 

levels of 521 miRNAs would be tested in a subset of young animals from the 

longest- and shortest-lived strains. The top ten miRNAs displaying the most 



71 

significant differences in the discovery phase were then to be taken forward into 

a validation phase. Validation would consist of measuring expression levels of 

these ten miRNAs in all available spleen samples from young and old mice from 

all six strains of different median lifespan. Expression levels would then be tested 

for associations with median strain lifespan. 

For any miRNAs showing significant associations, bioinformatic analysis was to 

be carried out to identify pathways targeted by these miRNAs. Exemplar target 

genes would then be identified from these pathways in order to measure mRNA 

expression levels in the same samples to identify whether it was likely that 

miRNA-mediated regulation was taking place. 

1.12.3 Chapter 5: Dietary restriction in ILSXISS mice is associated with 

widespread changes in splicing regulatory factor expression levels. 

For this chapter, the aim was to determine whether splicing factor expression in 

a mouse model was mechanistically associated with dietary restriction (DR), an 

established modifier of lifespan. 

To achieve this, three strains of ILSXISS mice would be used as they have been 

shown to have reproducibly variable responses to DR, one displaying lifespan 

extension, one lifespan reduction and a third showing no change. Brain, heart 

and kidney tissues were to be collected both from mice fed ad libitum (AL) and 

from mice under 40% DR conditions, for two different lengths of treatment; two 

months and ten months. 

Transcript expression levels of a panel of splicing factors would then be 

measured in all samples and tested for associations with responder strain and 

DR regime. Furthermore, the data would be assessed for potential statistical 
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interactions between these two variables, which could indicate a mechanistic 

involvement of splicing factors in the different strain responses to DR. 

1.12.4 Chapter 6: The transcript expression levels of HNRNPM, HNRNPA0 and 

AKAP17A splicing factors may be predictively associated with ageing phenotypes 

in human peripheral blood. 

The aim of this chapter was to assess whether splicing factor transcript 

expression levels were an indicator of future health outcomes and as such could 

have potential applications as biomarkers 

To do this, an existing resource would be used; the InCHIANTI longitudinal study 

of human ageing. In this cohort, RNA from peripheral blood along with detailed 

anthropometric data from over 400 individuals is available for multiple follow-up 

study visits. 

Transcript expression levels of a panel of splicing factors would be measured in 

a set of samples from a baseline time-point and this data would then be used to 

test for associations with changes over time in age-related health measures. 

The health measures to be assessed initially would be the Mini Mental State 

Exam (MMSE) to evaluate cognitive decline, and mean hand-grip strength as one 

of the accepted measures of frailty. Any splicing factors found to be significantly 

associated with change in these outcomes would then be validated within the 

same cohort, using other measures of cognitive ability and frailty as well as 

testing for associations in specific subsets of the cohort.  
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2.1 Samples 

2.1.1 Mouse tissues 

Two collections of mouse tissues were used in this thesis, both of which were 

kindly provided to us by collaborators. 

The first of these collections was used to generate the data in chapters 3 & 4 and 

was supplied by Professor Luanne Peters of the Jackson Laboratory Nathan 

Shock Center of Excellence in the Basic Biology of Aging, Bar Harbor, ME, USA. 

The tissues used in the studies described here were collected as part of a much 

larger cross-sectional and longitudinal study into lifespan and ageing phenotypes 

across 31 strains of inbred mouse157-159. The animal husbandry and sample 

collection methodologies have been described at length in the 2009 publication 

reporting the study design and initial findings from the larger study157. Abridged 

versions of these procedures are given in sections 3.7.1, 4.7.1 and 

Supplementary data S1. 

The second collection was used to generate the data for chapter 5 and was 

supplied by Professor Colin Selman of the Institute of Biodiversity Animal Health 

& Comparative Medicine, University of Glasgow, UK. These tissues were 

collected as part of a study into the effects of dietary restriction on metabolic 

function in mice160,161. Again, animal husbandry/sample collection have been 

covered in detail elsewhere160,161, with an abridged version given in section 5.5.1. 

2.1.2 Human blood samples 

Peripheral blood from a human cohort was used to generate the data in chapters 

3 & 6. Blood samples were made available through a collaboration with the 

InCHIANTI study of Aging, a longitudinal study of ageing that has been running 
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since 1998 in the Tuscany region of Italy. The InCHIANTI study has collected a 

vast quantity of data on a host of different aspects of ageing – to date over 350 

primary research papers have been published based on data from this 

resource162. Full details of participant recruitment, follow-up procedures, 

assessments and tests performed during the study etc. have all previously been 

described in many publications deriving from this invaluable resource163,164. 

Excerpts of the procedures used which pertain to this thesis are given in sections 

3.7.8, 6.5.1 and 6.5.6. 

2.2 RNA extractions 

2.2.1 RNA protection strategies 

As RNA is a particularly labile molecule and subject to rapid degradation by 

ubiquitous, naturally occurring RNase enzymes, steps must be taken to preserve 

the integrity of the transcriptome in any study that concerns gene expression. The 

most effective method for stabilisation of RNA is to snap-freeze samples in liquid 

nitrogen (-196°C) on collection, however there are additional reagents and 

procedures that are designed to enhance and/or replace this rapid freezing. 

Three different strategies were used in this thesis, one for each of the sample 

sets described above in section 2.1, as each one was from a different source. 

For the mouse tissue samples from the Jackson Laboratory Nathan Shock Center 

of Excellence in the Basic Biology of Aging, RNAlater® (a commercial RNA 

stabilisation solution: Thermo Fisher, Waltham, MA, USA) was used; RNAlater® 

is a combination of sodium citrate, EDTA and ammonium sulphate which 

permeates tissues and cells rapidly in order to protect the cellular RNA while 

inactivating RNases, and has been shown to be effective for up to one week at 
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room temperature. In this case, the samples were submerged in the solution at 

the point of dissection followed by snap-freezing using liquid nitrogen. Samples 

were then kept in Ultra-Low Temperature (ULT) storage (-80°C) before being 

shipped to the UK on dry ice. On receipt, the samples were returned to ULT 

storage until RNA extractions could be performed. As the RNAlater® protects the 

RNA at higher temperatures, it is not necessary to work on dry ice with frozen 

tissue and samples can be allowed to defrost within the solution, therefore 

handling and preparation of tissue for RNA extractions is greatly simplified. 

The tissue samples from the Institute of Biodiversity Animal Health & 

Comparative Medicine were snap-frozen in liquid nitrogen at the point of 

dissection and kept in ULT storage until shipping without use of additional RNA 

stabilisation measures. In order to preserve RNA integrity prior to and during the 

extraction process, another commercial RNA stabilisation solution, RNAlater®-

ICE Frozen Tissue Transition Solution (Thermo Fisher, Waltham, MA, USA) was 

used. RNAlater®-ICE is based on RNAlater® but is designed specifically to protect 

RNA during the transition of snap-frozen tissues to a thawed state which 

facilitates handling during RNA extraction. RNAlater®-ICE was cooled to -80°C 

and added to the frozen tissue samples in small batches (to avoid excessive 

thawing during this step), after which the samples were then allowed to thaw 

overnight at -20°C. Samples were then returned to ULT storage until RNA 

extractions were performed, and as with RNAlater®, the ability to work with the 

samples at room temperature during extraction without the potential for RNA 

degradation is highly beneficial. 

Finally, the peripheral blood samples from the InCHIANTI cohort were collected 

into PAXgene Blood RNA Tubes (IVD) (PreAnalytiX GmbH, Hombrechtikon, 

Switzerland). These are commercially available tubes which form part of a 
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workflow specifically designed to stabilise RNA from blood samples. The tubes 

contain a stabilisation reagent, which must be mixed with the blood. After blood 

samples were collected into PAXgene tubes, the tubes were inverted 8-10 times 

and then left at room temperature for a minimum of 2 hours and a maximum of 

72 hours before transfer to -20°C for 24 hours, and finally into ULT storage. Blood 

samples were then shipped to the UK on dry ice and returned to ULT storage 

before RNA extraction using the PAXgene workflow as detailed below in section 

2.2.3. 

2.2.2 Tissue extractions 

RNA was extracted from mouse spleen, skeletal muscle, brain, heart and kidney 

tissue for subsequent analysis in chapters 3, 4 & 5, using a classical phenol-

chloroform methodology. TRI Reagent® Solution was used for all these 

extractions. TRI Reagent® contains phenol and guanidine thiocyanate which 

assist with cell lysis, assure immediate inhibition of RNase activity and partition 

the RNA into the aqueous phase. In the protocol used in this thesis, 10mM MgCl2 

was added to the TRI Reagent® before use, as it has previously been reported 

that when using phenol-chloroform extraction, certain low-GC content 

microRNAs are selectively lost during extraction (in comparison to other column-

based methods). The addition of Mg2+ ions stabilises RNA-RNA interactions and 

allows longer cellular RNAs to act as ‘carriers’ for microRNAs during 

precipitation165.  

In all extractions performed, tissue samples and a 5mm stainless steel bead were 

added to 1ml of TRI Reagent® (with MgCl2) in a round-bottomed Eppendorf tube. 

Samples were then placed into a Retsch Bead Mill (Retsch Technology GmbH, 

Haan, Germany) and tissue completely homogenised at a frequency of 30 cycles 
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per second. 15 minutes was sufficient for all tissues except skeletal muscle, which 

required 30 minutes to achieve complete homogenisation. Samples were then 

centrifuged at 13,872 x g at 4°C for 10 minutes to pellet the remaining larger cell 

debris. The supernatant was transferred to a new Eppendorf tube and 200μl of 

chloroform was added to assist with phase separation. A further centrifugation at 

21,100 x g at 4°C for 20 minutes resulted in full separation of the phases, after 

which the upper aqueous phase containing the RNA was transferred to another 

new Eppendorf tube. 1.2μl of GlycoBlue™ Coprecipitant (Thermo Fisher, 

Waltham, MA, USA) was added (final concentration ≈40μg/ml) along with 500μl 

of 100% isopropanol, prior to an overnight precipitation step at -20°C. Following 

precipitation, samples were centrifuged at 21,100 x g at 4°C for 1 hour to pellet 

the RNA. The pellet was washed twice in 75% ethanol, air-dried for ≈15 minutes 

and re-suspended in either RNase-free dH2O or 1X TE Buffer pH8.0 (Thermo 

Fisher, Waltham, MA, USA). 

2.2.3 Blood extractions 

RNA was extracted from human blood samples using the PAXgene Blood RNA 

Kit (Qiagen, Hilden, Germany) and the QIAcube robotic semi-automated 

extraction protocol. PAXgene Blood RNA Tubes were completely thawed and 

allowed to stand at room temperature for at least 2 hours before extraction. The 

tubes were centrifuged at 5000 x g for 10 minutes, the supernatant was removed 

and 4ml of RNase-free water added to the cell pellet. To wash the cell pellet, it 

was re-suspended by vortexing and then re-pelleted by a further centrifugation at 

5000 x g for 10 minutes. Supernatant was once again discarded and 350μl of 

lysis buffer was added. At this point, the lysed cells were transferred to the 

QIAcube robot, which handled the remainder of the protocol. Briefly, the QIAcube 

performed a proteinase K incubation then passed the resultant treated lysate 



79 

through a PAXgene shredder column to further fragment cell debris. Ethanol was 

added to the flow-through from the shredder column to create conditions which 

favour RNA binding. This flow-through was then applied to a PAXgene RNA spin 

column, in which a silica membrane captures the RNA while contaminants can 

pass through. Several wash steps and a DNase I treatment were then performed 

before RNA was eluted in a proprietary elution buffer and heat denatured. 

2.2.4 RNA quantification 

All RNA samples were quantified using a NanoDrop spectrophotometer 

(NanoDrop, Wilmington, DE, USA), and where appropriate, diluted to a final 

concentration of ≈500ng/μl (using the appropriate elution buffer) in order to 

facilitate downstream normalisation of RNA input quantities. 

2.3 Reverse transcription 

Reverse transcription (RT) is the process whereby single-stranded 

complementary DNA (cDNA) is synthesised from an RNA template. This process 

serves two main purposes; firstly, the cDNA is much more stable than RNA 

therefore after processing, samples are much more robust. Secondly, most 

downstream workflows such as quantitative real-time polymerase chain reaction 

(qRT-PCR) etc. rely on enzymes which require a DNA substrate. 

RT reactions are catalysed by reverse transcriptases, a class of enzymes most 

commonly used by retroviruses to replicate their genomes but also found in some 

non-retroviruses as well as eukaryotes. Commercially available kits generally 

contain recombinant versions of Avian Myeloblastosis Virus (AMV) Reverse 

Transcriptase or Moloney Murine Leukemia Virus (M-MuLV or MMLV) Reverse 



80 

Transcriptase, engineered for specific desirable qualities such as greater 

temperature stability or higher processivity. 

In this thesis, three different RT kits were used: for the gene expression analyses, 

Invitrogen™ SuperScript™ VILO™ cDNA Synthesis Kit (Thermo Fisher, 

Waltham, MA, USA) was used in chapters 3, 4 & 6 while EvoScript Universal 

cDNA Master kit (Roche LifeScience, Burgess Hill, West Sussex, UK) was used 

in chapter 5. Applied Biosystems™ TaqMan™ MicroRNA Reverse Transcription 

Kit was used for the microRNA analysis in chapter 4. 

2.3.1 SuperScript™ VILO™ reverse transcription 

Invitrogen™ SuperScript™ VILO™ cDNA Synthesis Kit is a two-tube format kit, 

with an “Enzyme mix” tube containing SuperScript™ III reverse transcriptase (a 

genetically engineered MMLV-derived enzyme with reduced RNase H activity 

and improved thermostability), RNaseOUT™ Recombinant Ribonuclease 

Inhibitor, and a proprietary helper protein. A second “Reaction mix” tube contains 

random primers, MgCl2, and dNTPs in a proprietary buffer. 

Different input quantities of RNA were used in each chapter of this thesis, 

dependant on the availability of starting material and the planned usage of the 

cDNA, however as a general rule all RNA samples were normalised to a specified 

concentration before being added to an RT reaction containing 1X “Enzyme mix”, 

1X “Reaction mix” and RNase-free dH2O to a final volume of 20μl. Reactions 

were placed onto a thermal cycler where the following incubations were carried 

out: 25°C for 10 minutes, 42°C for 60 minutes, 85°C for 5 minutes and a final hold 

at 4°C. 
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Full details of RNA input quantities and any subsequent cDNA dilutions for the 

different approaches used in each chapter are given in sections 3.7.5, 4.7.9 and 

6.5.4. 

2.3.2 EvoScript Universal cDNA reverse transcription 

EvoScript Universal cDNA Master kit is also a two-tube format kit, with an 

“Enzyme mix” tube containing a proprietary enzyme blend and Protector RNase 

Inhibitor. A second “Reaction buffer” tube contains random primers, anchored 

oligo(dT)18, dNTP, and Mg(OAc)2. Unlike the SuperScript™ III reverse 

transcriptase, EvoScript reverse transcriptase retains RNase H activity which 

removes the RNA template after cDNA synthesis, allowing PCR primers to more 

easily bind the cDNA. As this is the case, extra care must be taken to add the 

“Enzyme mix” just before incubation to avoid digestion of the sample. 

RNA samples were normalised to 500ng/μl, and 1μl of this was added to an RT 

reaction containing 1X “Reaction buffer” and RNase-free dH2O to a final volume 

of 18μl, samples were then placed on ice for 5 minutes to allow primers to anneal 

to the RNA, after which 2μl of “Enzyme mix” was added to give a 1X concentration 

in a final volume of 20μl. Reactions were placed onto a thermal cycler where the 

following incubations were carried out: 42°C for 30 minutes, 85°C for 5 minutes, 

65°C for 15 minutes and a final hold at 4°C. cDNA samples were then diluted to 

ensure sufficient material for further analysis; details are given in section 5.5.4. 

2.3.3 TaqMan™ MicroRNA reverse transcription 

Applied Biosystems™ TaqMan™ MicroRNA Reverse Transcription Kit is a multi-

component kit including MultiScribe™ reverse transcriptase (a recombinant 

MMLV-derived enzyme with reduced RNase H activity), and other requisite 
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reagents in separate tubes such that the kit can be used for different applications, 

depending on the priming strategy used. In chapter 4, this kit was used for two 

different RT approaches, one for high-throughput microRNA screening and 

another for targeted microRNA expression measurement. 

For the high-throughput screening, Megaplex™ RT Primers, Rodent Pool Set 

v3.0 (Thermo Fisher, Waltham, MA, USA) were used. The Megaplex™ RT Primer 

pool set is supplied as separate A and B pools, which between them contain all 

the primers necessary to reverse transcribe 521 unique microRNAs. Due to this, 

the following procedure was carried out twice, once for pool A and once for pool 

B: RNA samples were normalised to 400ng/μl, and 1μl of this was added to an 

RT reaction containing 1X Megaplex™ RT Primers, 20mM dNTPs with dTTP, 

75U MultiScribe™ Reverse Transcriptase, 1X RT Buffer, 3mM MgCl2, 2U RNase 

Inhibitor and RNase-free dH2O to a final volume of 7.5μl. Reactions were 

incubated on ice for 5 minutes, after which they were placed onto a thermal cycler 

where the following steps were carried out: 40 cycles of 16°C for 2 minutes, 42°C 

for 1 minute and 50°C for 1 second, followed by a single step of 85°C for 5 

minutes and a final hold at 4°C. 

For the targeted expression measurement, specific RT primers were used. These 

are provided when purchasing individual TaqMan™ microRNA qRT-PCR assays 

and can be multiplexed into an RT pool which can then be used in a similar 

manner to the Megaplex™ pools described in the previous paragraph. For the 

experiments described here, equal volumes of 13 microRNA RT primers (listed 

in Supplementary table S19) were combined into a multiplex pool for use in the 

RT. RNA samples were normalised to 60ng/μl, and 1μl of this was added to an 

RT reaction containing 13μl of the RT primer multiplex (as described above), 

10 mM dNTPs (with dTTP), 100 U MultiScribe™ Reverse Transcriptase, 1X RT 
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Buffer, 7.6U RNase Inhibitor and RNase-free dH2O to a final volume of 30μl. 

Reactions were placed onto a thermal cycler where the following incubations 

were carried out: 16 °C for 30 minutes, 42 °C for 30 minutes, 85 °C for 5 minutes 

and a final hold at 4 °C. 

2.4 Quantitative Real-Time Polymerase Chain Reaction  

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) is a method by 

which gene expression levels can be directly quantified in cDNA which has been 

reverse transcribed from cellular RNA samples. The basis of qRT-PCR is the 

polymerase chain reaction (PCR), a technique first devised in the early 1980s to 

amplify specific short regions of DNA through thermal cycling with a DNA 

polymerase enzyme. PCR requires a template DNA molecule to amplify and 

uses; 1) a pair of oligonucleotide primers (each one designed to opposite strands 

of the DNA molecule and specific to the target region in question), 2) a 

thermostable DNA polymerase enzyme (most commonly Taq polymerase, so 

called due to its origin in the thermophilic Thermus aquaticus bacteria), 3) 

deoxynucleoside triphosphates (dNTPs, which will form the base-pairs of the new 

DNA strand), 4) magnesium ions (usually in the form of MgCl2, a required cofactor 

for Taq polymerase) and 5) an aqueous buffer to provide optimum stability and 

activity of the Taq polymerase. With all these components present in a reaction, 

repeated cycles of heating and cooling to predefined temperatures (thermal 

cycling) serve to sequentially denature the template DNA, anneal the primers and 

extend new DNA strands complementary to the target region of the template, 

resulting in an exponential amplification of said target until a plateau is reached 

due to accumulation of amplification products (amplicons)166 (Figure 2.1a & 2.1b). 
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While this technique is extremely useful for the amplification of DNA, the fact that 

all reactions using a given set of primers will reach a similar plateau level, as an 

end-point assay it is not suitable for measurement of the input quantity of template 

DNA. However, in the early 1990s researchers realised that the kinetics of 

accumulation of amplicons during a PCR reaction is directly related to the starting 

number of copies of the template DNA molecule and thus the dynamics of the 

amplification curve differ with template input concentration. Given this knowledge, 

it was discovered that by tracking a reaction in real-time using a fluorescent DNA 

marker it was indeed possible to determine the input quantity of DNA, based on 

the number of cycles at which the fluorescence produced crosses a pre-defined 

threshold167 (Figure 2.1c). Subsequent refinements to this technique led to the 

development of several chemistries for detection and measurement of 

amplification, collectively known as quantitative Real-Time PCR or qRT-PCR. 

There are two relatively broad categories of qRT-PCR chemistry: 

2.4.1 Intercalating dyes 

Intercalating dyes, such as SYBR Green I and similar DNA-binding dyes, 

fluoresce preferentially when bound to double-stranded DNA (ds-DNA), therefore 

giving an increase in fluorescence proportional to the increasing numbers of ds-

DNA amplicons produced during each round of amplification. While these dyes 

benefit from simplicity and only require the design of a single pair of sequence-

specific primers, they have a major drawback in their lack of specificity. Any ds-

DNA present in the reaction will fluoresce, thus non-specific amplicons or primer-

dimers will cause an increase in fluorescence, reducing the accuracy of the 

quantification. 
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Figure 2.1: Schematic representation of PCR/qRT-PCR kinetics 

Shown here are depictions of a theoretical PCR reaction. Panel a. shows the process by which a 
target region of DNA is amplified in successive cycles of a reaction, panel b. shows the overall 
reaction kinetics indicating the three phases of an amplification reaction and panel c. shows the 
kinetics of two theoretical qRT-PCR reactions with differing input quantities of template DNA. 
(Panel a. adapted from royalty-free online resource: https://slideplayer.com/slide/13784204/) 
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2.4.2 Oligonucleotide probes 

Oligonucleotide probes are short oligonucleotides, complementary to a specific 

target sequence within the PCR amplicon which are added to the reaction along 

with standard PCR primers. These usually utilise both a fluorescent reporter and 

some means of quenching the reporter, which serve to ensure that fluorescence 

is detected only when the amplicon of interest is present. Detection is normally 

achieved through some type of conformational or spatial change in the 

reporter/quencher relationship, allowing the reporter to fluoresce. By virtue of the 

specific design of the probe and the fact that they will only produce fluorescence 

when the target amplicon is detected, they benefit from hugely increased 

accuracy in comparison to intercalating dye chemistries. There are many probe-

based chemistries available, but probably the most commonly used is a 

combination of forward and reverse PCR primer along with a fluorescent 

hydrolysis probe, which together are more widely known as TaqMan™ assays (a 

brand name of Roche Diagnostics and Applied Biosystems which has become 

synonymous with the chemistry itself). The hydrolysis probes employed in 

TaqMan™ assays carry a reporter fluorophore covalently attached to the 5’ end, 

a non-fluorescent quencher (NFQ) at the 3’ end and a Minor Groove Binding 

(MGB) domain attached via a flexible linker. The MGB acts to stabilise probe 

binding to its complementary sequence and raises the melting temperature (Tm) 

of the probe by up to 10°C, allowing for shorter oligonucleotides to be designed 

which in turn gives both higher specificity and lower background fluorescence. In 

their native conformation, the fluorophore and quencher are in close proximity 

therefore very little fluorescence is detectable. During the annealing step of 

thermal cycling, these probes will bind to the target along with the PCR primers. 

During the extension step of PCR, the probe is cleaved by the 5’ to 3’ exonuclease 
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activity of Taq polymerase, leading to the fluorophore and quencher being 

decoupled. As these are no longer close enough together to allow quenching to 

occur, the result is a fluorescent signal proportional to the number of cleaved 

probes and also therefore the number of amplicons in the reaction (Figure 2.2). 

In this thesis, qRT-PCR has been carried out exclusively using Taqman™ 

assays. 

 

Figure 2.2: Schematic of hydrolysis probe qRT-PCR chemistry 

Shown here is the principle by which Taqman™ assays detect a specific amplicon during a qPCR 
reaction. Taqman™ probes have a Minor Groove Binding domain attached at the 3’ end (not 
shown). Fluorescence is denoted by the lightning bolt icons (reproduced from Yuan et al.168, with 
permission from American Association for Clinical Chemistry, Inc; © 2000). 
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2.4.3 Measurement of gene expression 

Perhaps one the most important recent developments in the field of gene 

expression was the marriage of reverse transcription with qRT-PCR in the mid-

1990s, which for the first time allowed true quantitative analysis of expression 

levels of mRNA transcripts. By quantifying the amount of cDNA reverse-

transcribed from a cellular RNA sample, this technique allows researchers to 

determine the amount of transcription taking place (gene expression), at a 

specific time-point, for any given gene or genes. 

As alluded to in section 2.4, quantification is achieved through the capture of 

fluorescence data, specifically the point at which the fluorescence produced by a 

given sample crosses a pre-defined threshold (Figure 2.1c). This point is termed 

the cycle threshold or CT value, and forms the basic unit of measurement of all 

qRT-PCR analyses. The threshold is arbitrarily defined independently for each 

gene in a particular study, however two rules must be obeyed when placing a 

threshold; 1) it must be sufficiently far above the baseline fluorescence so as not 

to be affected by background noise, and 2) it must be within the linear portion of 

the exponential phase of the amplification curve. Assuming these rules are 

adhered to, the exact positioning of the threshold is irrelevant, as the relative 

difference between CT values will remain equal. For most analyses, proprietary 

software provided by qRT-PCR instrument manufacturers will set the baseline 

and threshold parameters automatically, with baseline measurements usually 

being averaged across all samples between cycles 3 and 15, and the threshold 

being set in the linear phase a minimum of ten standard deviations above the 

baseline value. In certain cases in this thesis, it was necessary to alter these 

default settings, however descriptions of any alterations are provided in the 

supplementary data wherever this has been done. 
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There are two methods for measuring gene expression using qRT-PCR; absolute 

and relative quantification. 

Absolute quantification relies on use of a standard curve prepared via a serial 

dilution from a stock containing a known number of template molecules. CT values 

from this standard curve are plotted on a log-scale graph in order to produce a 

straight-line plot against which CT values of unknown samples are compared, 

giving a measurement of number of copies per sample169. The absolute 

quantification approach is useful in certain cases where exact number of copies 

is required (for example in the calculation of viral load170), but more often relative 

quantification of expression will suffice. 

Relative quantification compares CT values of one set of samples relative to CT 

values of a second set (for example treated vs control samples or similar) and 

gives a measurement in fold-change in expression between the two sample sets. 

This approach dispenses with the time-consuming step of preparing a highly 

accurate, precisely quantified standard curve for each set of reactions as is 

required in absolute quantification. 

In both of these methodologies, some means of normalising potential 

discrepancies in input quantity of total RNA is required. Such variance can arise 

from inherent technical variability in the accuracy of RNA measurement, or from 

(human) pipetting error during the RT and/or qRT-PCR set-up steps and, if not 

accounted for, could potentially result in gross over- or under-estimation of gene 

expression changes. Such correction is achieved through the inclusion of 

endogenous control genes in the experimental design. These are also known as 

housekeeping genes as they are usually involved in pathways or structural 

elements that are fundamental to cellular processes and/or survival and therefore 
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likely to be expressed at stable levels across different experimental conditions. 

CT values for endogenous control genes are collected from the samples in the 

experiment (along with the CT values for the genes of interest), and these are 

used for downstream normalisation. This normalisation is discussed in more 

detail in section 2.4.6. 

In this thesis, relative quantification has been the method of choice for 

quantification of gene expression. 

2.4.4 Taqman™ Array qRT-PCR 

Taqman™ Array microfluidics cards (Thermo Fisher, Waltham, MA, USA) were 

used to generate data for chapters 3, 4 & 6. The Taqman™ Array system consists 

of a foil-backed card overlaid with an arrangement of plastic microfluidic channels 

connecting 384 reaction chambers of 1μl volume, each of which contains a 

lyophilised Taqman™ assay. The cards can be purchased in several pre-

configured layouts or alternatively can be custom designed to contain any 

required selection of Taqman™ assays. Up to eight samples can be loaded onto 

a card, with differing numbers of assays per sample according to the chosen 

layout.  

The Taqman™ MicroRNA Arrays used in this thesis contain a single reaction per 

assay for each sample, whereas the Taqman™ Low Density Arrays custom gene 

expression cards contain duplicate reactions per assay for each sample. 

RNA samples were first reverse transcribed using the SuperScript™ VILO™ 

cDNA Synthesis Kit as described in section 2.3.1. The resulting 20μl of cDNA 

was mixed with 50μl of TaqMan™ Universal Master Mix II, no UNG (Thermo 

Fisher, Waltham, MA, USA) and 30μl RNase-free dH2O. The resulting reaction 
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mixture was then loaded onto the array through a loading port at one end of the 

card. Once loaded, the Taqman™ Array cards were centrifuged twice for 1 minute 

at 216 x g in order to distribute the mixture through the microfluidics channels and 

into each of the reaction chambers. The chambers were then sealed using a 

proprietary tool and the card loaded onto a qRT-PCR machine with correct 

capability to run this format of array. In this thesis, Taqman™ Array cards were 

all run on an Applied Biosystems™ 7900HT Fast Real-Time PCR System 

(Thermo Fisher, Waltham, MA, USA). Cycling conditions were a single cycle of 

50°C for 2 minutes followed by a single cycle of 94.5°C for 10 minutes then 40-

50 cycles of 97°C for 30 seconds and 59.7°C for 1 minute. Details of array types 

used, specific assay configurations, cycling conditions and endogenous controls 

for the arrays run in each chapter are given in sections 3.7.6, 4.7.4, 6.5.4, 

Supplementary Data S2 and Supplementary tables S18 & S27. 

NB. Taqman™ Arrays are referred to in this thesis as both Taqman™ MicroRNA 

Arrays and Taqman™ Low Density Arrays (TLDA) depending on the format in 

use (pre-designed microRNA cards or custom gene expression cards), however 

all array cards have recently been renamed by Thermo Fisher as Taqman™ 

Array Cards (TAC). 

2.4.5 Manual 384-well qRT-PCR  

Single-tube Taqman™ Assays (Thermo Fisher, Waltham, MA, USA) were used 

to generate data for chapters 4 & 5. Experiments using these assays were 

performed in manually loaded 384-well plates and run on either an Applied 

Biosystems™ 7900HT Fast Real-Time PCR System, Applied Biosystems™ 

QuantStudio 12K Flex Real-Time PCR System or Applied Biosystems™ 

QuantStudio 6 Flex Real-Time PCR System. Minor variations in the exact 
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contents of each reaction exist between the experiments in different chapters, 

dependent on the RNA availability and the type of assay being used for each 

experiment. Full details of reaction mixes for each experiment are given in 

sections 4.7.5, 4.7.9 and 5.5.5. In general, cDNA, Taqman™ Assay, TaqMan™ 

Universal Master Mix II, no UNG and RNase-free dH2O were mixed in appropriate 

volumes to give a 5μl final reaction volume per well. Individual cDNA samples 

were run using three technical replicates, with these replicates mixed as a single 

large volume before being loaded onto the 384-well plate to minimise pipetting 

error. Cycling conditions were a single cycle of 95°C for 10 minutes, followed by 

40-50 cycles of 95°C for 15 seconds and 60°C for 1 minute. Details of Taqman™ 

Assays and endogenous controls used in each chapter are given in 

Supplementary tables S19, S20 & S21. 

2.4.6 Relative quantification 

There are three approaches for calculating relative gene expression levels from 

qRT-PCR data; the 2-ΔΔCT method, the Pfaffl method171 and sigmoidal curve-

fitting.  

The 2-ΔΔCT method is the simplest and most commonly used form of relative 

quantification calculation. As mentioned in section 2.4.3, CT values are collected 

from each sample for the genes of interest (GOI) and endogenous control (EC) 

gene(s). It is worth noting that more than one EC is often included in the 

experimental design and an average (or geometric mean) of the CT values of 

these genes may be used. The first part of the 2-ΔΔCT calculation is within-sample 

normalisation using the EC gene(s) to account for any variation in RNA/cDNA 

input. This is achieved by subtracting the EC CT value from the GOI CT value, 

resulting in a ΔCT value. The next step is to calculate the change in ΔCT value 
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relative to a calibrator sample or samples; the calibrator(s) are not a fixed entity 

and will be different depending on the experimental design and aim. For example, 

a set of control samples, zero time-point samples, or even a population median 

are all potentially valid calibrators for particular data sets. Subtracting each 

sample’s ΔCT value from the chosen calibrator(s) ΔCT value gives the ΔΔCT value 

for each sample (and effectively sets the calibrator(s) to zero). The ΔΔCT value 

represents the change in expression of each sample relative to the calibrator, but 

in its current state is a function of the number of cycles difference, so requires 

transformation to give a more understandable fold-change measurement. 

Assuming a doubling of PCR product in every cycle, the formula 2-ΔΔCT converts 

this cycle difference value into a fold-change value, which can then be used for 

statistical analysis. The main disadvantage of the 2-ΔΔCT method is that it relies on 

the assumption that all assay efficiencies are approximately equivalent, and 

preferably in the region of 100%. 

The Pfaffl method is based on the same equations as the 2-ΔΔCT method but also 

incorporates the PCR efficiency of each assay into the fold-change calculations, 

which is particularly useful when measurements have been carried out with 

assays with variable efficiencies. However, this approach does require 

construction of standard curves to test assay efficiencies, although unlike 

absolute quantification it does not require the standards to be present alongside 

every set of reactions171.  

Sigmoidal curve-fitting dispenses with the need for any standard curves by fitting 

the fluorescence data to a non-linear regression model, resulting in a quantitative 

measure of target quantity in arbitrary units. The disadvantage of sigmoidal curve-

fitting is the complexity of calculation and that each reaction must be fitted to the 

model individually, so analysis of this type requires specialist software. Some 
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examples of this type of software are now available but are generally targeted at 

more high-throughput applications172. 

Throughout this thesis, the 2-ΔΔCT method was the analysis type employed for 

relative quantification of gene expression. This method was used since all qRT-

PCR was performed using either inventoried Taqman™ Assays from Thermo 

Fisher (Waltham, MA, USA) which are validated to perform at an efficiency 

between 95% and 105%, or if custom assays were used, these were 

experimentally validated to be within the same range. 

In the case of the manual 384-well qRT-PCR analyses, prior to the 2-ΔΔCT step 

standard deviations of the three technical replicate CT values were manually 

checked and any samples showing a deviation >0.5 cycles had outlying CT values 

removed. However, this step was not possible for either type of Taqman™ Array 

used in this thesis as they contained a maximum of two technical replicates per 

sample. 

2.5 Statistical approaches 

2.5.1 Transformations 

qRT-PCR data was subject to transformations appropriate to the dataset in each 

chapter. In chapters 3 & 4, a log10 transformation was used, whereas a natural 

log was used in chapters 5 & 6. Transformations were chosen based on visual 

inspection of the data in each case as empirical tests of normality such as 

Kolmogorov-Smirnov or Shapiro-Wilk tests tend to overestimate non-normality on 

larger datasets, such as those in this thesis173. 
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2.5.2 Outlier detection 

In chapters 3 & 4, due to the smaller relative size of the datasets involved, no 

formal outlier detection strategy was applied beyond the removal of any samples 

missing >50% of data points across all genes measured. For chapters 5 & 6 

(which correspondingly have larger datasets), a combination of univariate and 

multivariate outlier detection was used. Univariate detection was carried out first 

using standardised z-scores followed by multivariate detection by means of a 

Mahalanobis distance calculation. Full details of outlier detection approaches are 

given in sections 5.5.6 and 6.5.5. 

2.5.3 Student’s t-test 

The Student’s t-test was used in chapter 3 to compare mean gene expression 

values. Details are given in section 4.7.10. 

2.5.4 Linear regressions 

Data analyses in chapters 3, 4, 5 and 6 were carried out using linear regression 

models including varying numbers of covariates. In all cases, gene expression 

was entered into the model as the dependent variable and all other relevant 

covariates added as independent variables. Exact details of the regression 

parameters and the software used to run the models are given in sections 3.7.6, 

3.7.8, 4.7.11, 5.5.7 and 6.5.8. 

2.5.5 Binary logistic regressions 

Binary logistic regression was used as a secondary analysis in chapter 3 in order 

to assess the potential effects of non-linearity on the results of the linear 

regressions. Details are given in section 3.7.6. 
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2.5.6 Interaction terms 

Interaction terms were included between two categorical variables in certain 

regression models to determine whether one variable could potentially be 

mediating the effect of the other variable on gene expression levels (see Figure 

5.5). Full details of interaction analyses used in this thesis are given in sections 

3.7.6, 4.7.6 and 5.5.7. 

2.5.7 ANCOVA 

Analyses of covariance (ANCOVA) were used in chapter 5 to test for differences 

in mean gene expression across different groups with the inclusion of a single 

covariate. Details are given in section 5.5.7. 

2.5.8 Multiple testing 

Different strategies were employed in order to account for increased potential for 

Type I errors due to multiple testing. 

No p-value correction was used in chapter 3, as the genes in question were 

chosen a priori based on previous work and only one phenotype was tested. 

In chapter 4, Bonferroni correction174 was used for the two microRNA analyses 

carried out: n=279 tests, p=0.000179 for the discovery set, and n=10 tests, 

p=0.005 for the validation set. However, no correction was made for the mRNA 

target follow-up analyses as the genes tested were chosen a priori based on the 

microRNA target predictions. 

A false discovery rate (FDR) control method proposed by Benjamini, Krieger and 

Yekutieli175 was used for the data in chapter 5. As the potential for correlations 

within and between the results was particularly high in the inbred recombinant 
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mouse strains used in this chapter, Bonferroni correction was not appropriate due 

to the fact that a lack of inter-dependence between findings is assumed for correct 

implementation of this procedure.  

Chapter 6 also used Bonferroni correction, although in this case the correction 

was limited to the number of phenotypes tested (n=6, p=0.00833), as the genes 

tested were once again chosen a priori based on previous findings. Although the 

human cohort in this chapter would most likely present fewer correlations than 

the inbred mice from chapter 5, the phenotypes tested had potential to show a 

degree of correlation, so proper handling of multiple testing in this case was not 

straight-forward. Both full Bonferroni or FDR-type correction may well have been 

too stringent, so the approach taken was deemed to be a satisfactory 

compromise. 
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3.3 Abstract 

Dysregulation of splicing factor expression and altered alternative splicing are 

associated with ageing in humans and other species, and also with replicative 

senescence in cultured cells. Here, we assess whether expression changes of 

key splicing regulator genes and consequent effects on alternative splicing are 

also associated with strain longevity in old and young mice, across 6 different 

mouse strains with varying lifespan (A/J, NOD.B10Sn-H2b/J, PWD.Phj, 

129S1/SvlmJ, C57BL/6J and WSB/EiJ). Splicing factor expression and changes 

to alternative splicing were associated with strain lifespan in spleen and to a 

lesser extent in muscle. These changes mainly involved hnRNP splicing inhibitor 

transcripts with most changes more marked in spleens of young animals from 

long-lived strains. Changes in spleen isoform expression were suggestive of 

reduced cellular senescence and retained cellular proliferative capacity in long-

lived strains. Changes in muscle isoform expression were consistent with 

reduced pro-inflammatory signalling in longer-lived strains. Two splicing 

regulators, HNRNPA1 and HNRNPA2B1, were also associated with parental 

longevity in humans, in the InCHIANTI ageing study. Splicing factors may 

represent a driver, mediator or early marker of lifespan in mouse, as expression 

differences were present in the young animals of long-lived strains. Changes to 

alternative splicing patterns of key senescence genes in spleen and key 

remodelling genes in muscle suggest that correct regulation of alternative splicing 

may enhance lifespan in mice. Expression of some splicing factors in humans 

was also associated with parental longevity, suggesting that splicing regulation 

may also influence lifespan in humans.  
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3.4 Introduction 

Ageing is a dynamic, multisystem process, which is highly heterogeneous in 

humans with some people surviving disease-free until advanced age whilst 

others succumb to age-related conditions in mid-life. The factors underlying 

individual lifespan are currently unclear, but increasing our understanding of 

determinants of longevity and ‘healthspan’ are key aims for the future. 

Correct expression and regulation of genes is critical for maintenance of cellular 

and organismal function. Alternative splicing, the process by which single genes 

can make multiple gene products in an adaptive and reactive fashion is a key part 

of this process176. Indeed, breakdown in the regulation of mRNA splicing is a 

prominent feature in many age-related diseases such as Alzheimer’s disease, 

Parkinson’s disease and several tumour types177-180. This may indicate that 

defects in the splicing machinery may cause the cellular response to stress to be 

less specific, with effects on cellular resiliency and accumulation of DNA damage. 

We have previously identified deregulation of splicing factor expression and 

alternative splicing as a key factor in normal human and cellular ageing101,103. 

Alternatively expressed isoforms also demonstrate tissue-specific differences in 

ageing, as they do for many other phenomena103. Splicing factors themselves 

demonstrate high species conservation181, whereas patterns of alternative 

splicing are partially determined by genetic differences and may be species 

specific. Splicing patterns show drastically more interspecies variability than gene 

expression with only 50% of alternatively expressed isoforms being conserved 

between species182. Alternatively regulated splice sites demonstrating temporal, 

spatial or reactive expression are less likely to show species conservation183. 
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Several splicing factors have been suggested to be involved in organismal 

lifespan. The pre-mRNA processing factor 19 homologue (SNEV) protein, 

important for spliceosome assembly and mRNA processing, has been shown to 

suppress cellular senescence and suppress apoptosis when phosphorylated by 

the ataxia-telangiectasia (ATM) kinase in endothelial cells184. The DNA damage 

protein ATM also appears to be an important regulator of splicing factor 

expression in our previous work, since targeted gene knockdown of the ATM 

gene resulted in increased levels of splicing factor expression in fibroblasts103. 

There is also evidence from systemic models. A network-based model of genes 

altered by calorific restriction across 17 tissues in mice revealed that the largest 

and most responsive gene regulatory module was associated with mRNA 

processing, with a disproportionally large number of genes being involved in 

splicing, metabolism, processing and biosynthesis of mRNA185. Finally, a study 

of the relationship between copy number variation (CNV) and longevity in humans 

revealed that lifespan-associated CNVs were preferentially located in or near 

genes encoding proteins involved in splicing control. This led them to conclude 

that genetic variation that disrupts the processes of alternative splicing may have 

long-term effects on lifespan186. 

The study of inbred strains of mice has proven fruitful in uncovering factors 

associated with lifespan, as for other phenotypes. The Jackson Laboratory has 

characterized 30 strains of mice, for ageing and longevity-related traits157,158. 

Initial work with this resource identified that plasma IGF1 levels were related to 

lifespan in rodents157. This collection, together with the associated repository of 

mouse phenome data, represents a rich resource187. Here, we have harnessed 

this resource to assess the contribution of regulation of alternative splicing to 

longevity in mice. 
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We have systematically assessed the expression of splicing factors previously 

demonstrated to be altered in human ageing in relation to lifespan in six mouse 

strains of different longevities. Our study design is illustrated in Figure 3.1. 

Splicing factor expression and alternative splicing of key genes are associated 

with lifespan in mouse spleen tissue and to a lesser extent in mouse muscle, 

suggesting that ageing effects may be driven by immune tissues. Some strain 

differences in expression are most marked in the young mice, suggesting that 

they may represent determinants or early markers of longevity rather than 

representing secondary effects of ageing. We also identified differences in 

expression levels of alternatively expressed isoforms of key ageing genes 

indicative of reduced cellular senescence, maintained cellular proliferative 

capacity (spleen) and reduced pro-inflammatory signalling (muscle) in long-lived 

mouse strains. Two splicing factors, HNRNPA2B1 and HNRNPA1, were also 

associated with parental longevity in a large population study of ageing, 

suggesting that regulation of splicing may also be involved in lifespan in human 

populations. 
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Figure 3.1: Schematic of study design 

This figure shows the experimental strategy employed to assess the effects of strain longevity 
and mouse age on the expression of an a priori panel of splicing factors (SFs). 
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3.5 Results 

3.5.1 Splicing factor transcript expression is associated with lifespan in mouse 

spleen and to a lesser extent in muscle tissues 

We assessed splicing factors that we have previously demonstrated to be altered 

in human ageing in relation to lifespan in 6 mouse strains of different longevities 

and in samples from both old and young mice as in Figure 3.1. The expression 

of 8/15 and 3/15 splicing factors was associated with strain lifespan in mouse 

spleen and muscle tissue, respectively. 

In spleen, we found associations between strain lifespan and the expression of 

the Hnrnpa1, Hnrnpa2b1, Hnrnpk, Hnrnpm, Hnrnpul2, Sf3b1, Srsf3 and Tra2b 

genes (beta coefficients -0.40, -0.26, -0.32, -0.31, -0.22, -0.13 and -0.36; P = 

0.01, 0.02, 0.003, 0.003, 0.04, 0.05, 0.02 and 0.02, respectively; Figure 3.2A, 

Supplementary table S1). When an analysis was carried out to assess 

interactions between strain lifespan and mouse age, we found effects in both 

young and old mice of long-lived strains for all associated genes except Hnrnpul2. 

In the case of Hnrnpa1 and Hnrnpa2b1 genes, these differences were more 

marked in the young mice of long-lived strains (beta coefficients -0.14 and -0.19, 

P = 0.001 and <0.0001 in the young long-lived mice compared with -0.09 and -

0.12; P = 0.01 and 0.02 for the old long-lived mice for Hnrnpa1 and Hnrnpa2b1, 

respectively; Supplementary table S9). For Srsf3, the associations between 

splicing factor expression/age and splicing factor expression/strain median 

lifespan appear to be comparable, whereas for Tra2b, our data suggest that the 

effects of age are stronger than those of lifespan (Supplementary table S9). The 

majority (5/8) of the splicing factors demonstrating association of expression 

differences with lifespan belonged to the hnRNP class of splicing inhibitors, with 
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only 2 splicing activators (Srsf3 and Tra2b) showing expression changes with 

lifespan. The remaining associated splicing factor, Sf3b1, encodes a component 

of the U2 snRNP in the core spliceosome complex, rather than a splicing 

regulator. When data were assessed by binary logistic regression to allow for 

nonlinearity of response, all but one (Hnrnpul2) of the splicing regulators 

associated with lifespan in spleen remained associated with median strain 

lifespan (Supplementary table S10). 

Fewer splicing factors were associated with strain lifespan in muscle tissue 

(Figure 3.2B, Supplementary table S2). Hnrnpa0 expression was found to be 

positively correlated with long life (beta coefficient 0.36; P = 0.01), whereas 

Hnrnpd and Srsf3 transcripts both demonstrated reduced expression (beta 

coefficients -0.24 and -0.40; P = 0.03 and 0.02, respectively). Interaction analysis 

revealed that the Srsf3 effect was again driven by effects in the young animals of 

the long-lived strains (beta coefficient -0.14, P = 0.01 in the young long-lived mice 

compared with beta coefficient -0.05, P = 0.28 in the old long-lived mice; 

Supplementary table S9). Again 2/3 lifespan-associated splicing factors 

represented hnRNP splicing inhibitors rather than SRSF splicing activators. 

When data were assessed by binary logistic regression to allow for nonlinearity 

of response, all of the splicing regulators associated with lifespan in muscle 

remained associated with median strain lifespan (Supplementary table S11). 

Effects were tissue specific, with little overlap between lifespan-associated 

splicing factors in spleen and those in muscle, with only Srsf3 common to both 

data sets. 
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Figure 3.2: Splicing factor expression according to mouse lifespan 

This plot illustrates association between median lifespan and splicing factor expression in total 
RNA from spleen (A) or muscle (B) tissues in mice of 6 strains of different longevities, as assessed 
by linear regression against median strain lifespan. The identity of specific splicing factors is given 
on the x-axis. The log10 P-values for associations between lifespan and splicing factor expression 
from mice of strains with different lifespans and of different ages are given on the y-axis. Direction 
of effect is also indicated; data appearing above the zero line on the y-axis represent positive 
associations, whilst data appearing below the zero line represent negative associations. Analysis 
including all animals in the sample is given by dark grey bars, in young animals only by medium 
grey bars and in old animals only by light grey bars. The dotted line refers to a P-value cut-off for 
statistical significance of P = 0.05. 
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3.5.2 Alternatively spliced genes demonstrate longevity-associated isoform 

changes in mouse spleen and muscle tissue 

In spleen, we found splicing differences in association with lifespan for 4/8 genes 

tested (Figure 3.3A; Supplementary table S3). Both uc008toi.1 and uc008toh.1 

transcripts encoding p16INK4A and p14ARF isoforms of the Cdkn2a gene were 

expressed at lower levels in the long-lived strains (beta coefficients -0.43 and -

0.59; P = 0.002 and <0.0001 for uc008toi.1 [p16INK4A] and uc008toh.1 

[p14ARF], respectively). Analysis of the interaction of strain longevity and mouse 

age revealed that although the effects on Cdkn2a isoform expression increased 

with age as expected in both average-lived and long-lived mice, the increase in 

expression was much less marked in the old long-lived mice than in old mice of 

average lifespan (beta coefficients 0.44 and 0.50, P = <0.0001 and <0.0001 for 

the old average-lived mice compared with beta coefficients 0.22 and 0.27, P = 

0.01 and 0.001 for the old long-lived mice; Supplementary table S9). 

We also found expression of the uc007bju.2 isoform only of the Fn1 gene to be 

increased in the long-lived strains (beta coefficient 0.25, P = 0.02). There is 

increased expression of the long isoform of the Trp53 gene encoding full-length 

p53 (uc007jql.2/uc007jqn.2), but reduced expression of the truncated p53AS 

isoforms (uc011xww.1/uc007jqm.2; beta coefficients 0.41 and -0.35, P = 0.009 

and 0.03 for full-length Trp53 and truncated p53AS isoforms, respectively). 

Assessment of the interaction between strain longevity and mouse age revealed 

that expression of the full-length p53 isoform is only significantly increased in the 

young animals of long-lived strains (in comparison with young animals of short-

lived strains P = 0.004; the older animals were not significantly different to young 

short-lived strains P > 0.05) and that diminished expression of p53AS was only 

significantly decreased in the old animals of long-lived strains (P = 0.009, in 
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comparison with young animals of short-lived strains; other groups were P > 0.05, 

Supplementary table S9). Finally, expression of the full-length uc007rjg.1 isoform 

of the Vcan gene is upregulated (beta coefficient 0.34, P = 0.001). 

In mouse muscle, expression of isoforms of all five genes tested in relation to 

lifespan was altered (Figure 3.3B, Supplementary table S4). First, expression of 

the full-length uc008mht.1 isoform of the Il1b gene was reduced in the long-lived 

strains (beta coefficient -0.46, P = 0.007), whilst the intron-retained uc008mhu.1 

Il1b isoform was unaffected. Interaction analysis revealed that this difference was 

limited to the young mice of the long-lived strains (P = 0.004 for young long-lived 

mice compared with P = 0.34 for the old long-lived mice). Expression levels of 

the intron-retained uc008wuv.1 and full-length uc008wuw.1 isoforms of the Il6 

gene were also reduced (beta coefficient -0.48, P = 0.006 and -0.28, P = 0.01, 

respectively). Interaction analyses revealed that the effects on the intron-retained 

isoform were significant in the young long-lived mice only (P = 0.04 for young 

long-lived mice compared with P = 0.72 for old long-lived mice; Supplementary 

table S9). 

Expression of the uc012cyg.1/uc008rlx.1 isoforms which encode the long full-

length forms of the Nfkb1 gene was greater in long-lived strains (beta coefficient 

0.31, P = 0.005). No difference was seen in the expression of the noncoding 

truncated uc012cyf.1 Nfkb1 isoform. Isoform usage for the Stat1 gene in long-

lived strains differed; the uc007axz.1 and uc007aya.2 isoforms of Stat1 that both 

encode ‘variant 2’ of the STAT1 protein demonstrated diminished expression in 

the long-lived strains (beta coefficients -0.63, P = <0.0001), whereas the Stat1 

uc007ayc.2 isoform encoding ‘variant 1’ demonstrated increased expression in 

the long-lived strains (beta coefficient 0.46, P = 0.007). Interaction analysis 

revealed that the decrease in Stat1 variant 2 expression was present only in the 
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old long-lived mice (P = 0.01 in old long-lived mice compared with P = 0.28 in the 

young long-lived mice; Supplementary table S9). The greater Stat1 variant 1 

expression was driven by effects in the young long-lived mice (P = 0.03 in young 

long-lived mice compared with P = 0.95 in old long-lived mice). Transcript 

uc007ayb.2, encoding Stat1 ‘variant 3’, was also upregulated (beta coefficient 

0.33, P = 0.005) although this was seen in both young and old animals of long-

lived strains. Finally, expression of both the uc012arb.2 and uc008cgs.2 isoforms 

of the Tnf gene which encode TNF variants 1 and 2 were reduced in muscle (beta 

coefficients -0.27 and -0.18, P = 0.02 and 0.04 for uc012arb.2 and uc008cgs.2, 

respectively). Interaction analyses revealed that the effect for Tnf variant 1 is most 

marked in the old long-lived animals (P = 0.008 in the old long-lived animals 

compared with P = 0.05 in the young long-lived animals, Supplementary table 

S9). 
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Figure 3.3: The expression of alternative isoforms of key genes according 
to mouse lifespan 

This plot illustrates association between median lifespan and the expression of alternatively 
expressed isoforms of key genes in total RNA from spleen (A) or muscle (B) tissues in mice of 6 
strains of different longevities as assessed by linear regression against median strain lifespan. 
The identity of specific splicing factors is given on the x-axis. The log10 P-values for associations 
between lifespan and splicing factor expression from mice of strains with different lifespans and 
of different ages are given on the y-axis. Direction of effect is also indicated; data appearing above 
the zero line on the y-axis represent positive associations, whilst data appearing below the zero 
line represent negative associations. Analysis including all animals in the sample is given by dark 
grey bars, in young animals only by medium grey bars and in old animals only by light grey bars. 
The dotted line refers to a P-value cut-off for statistical significance of P = 0.05. 



113 

3.5.3 Few splicing factors are associated with age in mouse spleen and muscle 

tissues 

Associations between mouse age and splicing factor expression were less 

marked than those seen for strain longevity (Figure 3.4A, 3.4B, Supplementary 

tables S5 and S6). In spleen, we found reduced expression of the Hnrnpa2b1, 

Srsf1, Srsf3 and Tra2b transcripts in old mice (beta coefficients -0.46, -0.34, -0.45 

and -0.53; P = 0.005, 0.05, 0.007 and 0.008, respectively). Effects on Srsf1, Srsf3 

and Tra2b expression were evident in old animals of both average-lived and long-

lived strains, but interaction analysis revealed that the age-associated difference 

in Hnrnpa2b1 expression was most marked in the old animals of strains of 

average lifespan (beta coefficients -0.11, P = 0.02 in the old long-lived animals 

compared to beta coefficient -0.13 P = <0.0001 in the old average-lived animals). 

Age-associated changes to splicing factor expression were much less evident in 

muscle tissue, with only Hnrnpa1 demonstrating increased expression (beta 

coefficient 0.22, P = 0.05). Analysis of cluster patterns for age revealed 

considerable inter- and intrastrain heterogeneity in splicing factor expression 

(Supplementary figure S1). 
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Figure 3.4: Splicing factor expression according to mouse age 

This plot illustrates association between age and splicing factor expression in total RNA from 
spleen (A) or muscle (B) tissues in young (6 months) vs. old (20–22 months) mice. The identity 
of specific splicing factors is given on the x-axis. The log10 P-values for associations between age 
and splicing factor expression from mice of different ages and of different strains are given on the 
y-axis. Direction of effect is also indicated; data appearing above the zero line on the y-axis 
represent positive associations, whilst data appearing below the zero line represent negative 
associations. Analysis including all animals in the sample is given by dark grey bars, in animals 
of average-lived strains only by medium grey bars and in long-lived animals only by light grey 
bars. The dotted line refers to a P-value cut-off for statistical significance of P = 0.05. 
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3.5.4 Alternatively expressed isoforms demonstrate differential expression with 

age in mouse spleen and muscle tissue 

Despite the small numbers of splicing factors demonstrating age-associated 

differences in splicing factor expression, we noted differences in alternative 

splicing in both spleen and muscle from aged mice (Figure 3.5A, 3.5B, 

Supplementary tables S7 and S8). 

In mouse spleen, we identified increased expression of both uc008toi.1 and 

uc008toh.1 transcripts encoding p16INK4A and p14ARF isoforms of the Cdkn2a 

gene in the old animals as expected (beta coefficients 0.40 and 0.53, P = <0.0001 

and <0.0001, respectively). Interaction analyses revealed the age-associated 

increase in both Cdkn2a isoforms to be significantly reduced in old animals of 

long-lived strains as described above. We also identified decreased expression 

of both uc008yrw.1 (full length) and uc008yrx.1 (exon skipped) isoforms of the 

Chek2 gene with increasing age (beta coefficients -0.33 and -0.35, P = 0.02 and 

0.01, respectively). Interaction analyses between mouse age and strain longevity 

revealed that reduced expression of the full-length Chek2 isoform was more 

marked in the old animals of the long-lived strains (beta coefficient -0.26, P = 

<0.0001 in the old long-lived animals compared with beta coefficient -0.24, P = 

0.003 in the old average-lived animals; Supplementary table S9). Trp53 isoforms 

also demonstrated effects with age in mouse spleen. With age, there was a 

reduction in levels of transcripts encoding both full-length p53 

(uc007jql.2/uc007jqn.2) and also those encoding the truncated alternatively 

spliced p53AS (uc007jqm.2) isoform (beta coefficients -0.24 and -0.24, P = 0.02 

and 0.03, respectively). 
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In mouse muscle, we found increased expression of both the full-length 

(uc008mht.1) and the intron-inclusion (uc008mhu.1) Il1b transcripts with age 

(beta coefficients 0.37 and 0.39, P = 0.001 and <0.0001). The old animals also 

demonstrated elevated expression of the uc008wuv.1 isoform of the Il6 gene, 

which contains a retention of intron 4 relative to the consensus transcript (beta 

coefficient 0.44, P = 0.003). Old animals also demonstrated reduction of 

uc007ayd.2, uc007aya.2, uc007ayb.2 and uc007ayc.2 isoforms of the Stat1 

gene, with the effects on uc007aya.2 being revealed by interaction analysis 

between mouse age and strain lifespan to be present exclusively in the old 

animals of long-lived strains (beta coefficient -0.17, P = 0.01; Supplementary 

table S9). 
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Figure 3.5: The expression of alternative isoforms of key genes according 
to mouse age 

This plot illustrates association between the expression of age and the expression of alternatively 
expressed isoforms of key genes in total RNA from spleen (A) or muscle (B) tissues in young (6 
months) vs. old (20–22 months) mice. The identity of isoforms is given on the x-axis. The log10 P-
values for associations between age and the expression of alternative isoforms from mice of 
different ages and of different strains are given on the y-axis. Direction of effect is also indicated; 
data appearing above the zero line on the y-axis represent positive associations, whilst data 
appearing below the zero line represent negative associations. Analysis including all animals in 
the sample is given by dark grey bars, in animals of average-lived strains only by medium grey 
bars and in long-lived animals only by light grey bars. The dotted line refers to a P-value cut-off 
for statistical significance of P = 0.05. 
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3.5.5 The expression of some splicing factors is associated with parental 

longevity in a large human population 

We examined the expression of 15 splicing factors identified through the mouse 

work described in this study and previous analyses103 and determined that 2 

genes, HNRNPA2B1 and HNRNPA1, demonstrated associations of their 

expression with parental longevity, as defined in Dutta et al.188 in the human 

InCHIANTI population study as well as in mice (Table 3.1). HNRNPA2B1 

transcripts demonstrated increased expression in the offspring of long-lived 

parents (beta coefficient 0.12, P = 0.017), whereas HNRNPA1 demonstrated 

reduced expression in the offspring of long-lived parents (beta coefficient -0.09; 

P = 0.035, respectively; Table 3.1). Hnrnpa1 demonstrates reduced expression 

in association with longevity in both man and mouse, whereas Hnrnpa2b1 shows 

elevated expression with longevity in people, but reduced expression with 

longevity in mice. 
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Table 3.1: Associations between splicing factor expression and parental 
longevity in humans (the InCHIANTI population) 

The relationship of parental longevity with expression of 15 unique splicing factors in 405 
individuals by multivariate linear regression. Genes demonstrating significant associations at P = 
<0.05 are indicated in bold underlined text. 

 

Gene name Probe ID 
Beta 

coefficient 

95% Confidence 

intervals 
P-value 

HNRNPA2B1 ILMN_1886493 0.116 0.020 0.212 0.017 

HNRNPA1 ILMN_1676091 -0.091 -0.176 -0.006 0.035 

HNRNPA2B1 ILMN_2369682 0.088 0.002 0.175 0.044 

TRA2B ILMN_1742798 0.092 -0.001 0.186 0.051 

HNRNPA1 ILMN_1661346 0.069 -0.004 0.143 0.065 

SRSF1 ILMN_1795341 0.082 -0.008 0.171 0.073 

HNRNPD ILMN_2321451 0.088 -0.010 0.186 0.078 

HNRNPK ILMN_1701753 -0.066 -0.176 0.043 0.232 

HNRNPUL2 ILMN_2072091 0.076 -0.053 0.205 0.246 

HNRNPK ILMN_2378048 0.060 -0.058 0.178 0.319 

SRSF18 ILMN_2161357 0.068 -0.072 0.209 0.341 

HNRNPUL2 ILMN_1810327 0.055 -0.066 0.176 0.374 

HNRNPA1 ILMN_2220283 0.034 -0.051 0.119 0.432 

SRSF2 ILMN_1696407 0.047 -0.074 0.167 0.446 

HNRNPD ILMN_1751368 -0.034 -0.137 0.068 0.511 

SRSF6 ILMN_1697469 0.033 -0.077 0.143 0.552 

SRSF6 ILMN_1754304 0.030 -0.078 0.138 0.585 

HNRNPA0 ILMN_1753279 -0.035 -0.164 0.095 0.598 

HNRNPA1 ILMN_1663447 -0.034 -0.168 0.101 0.624 

HNRNPA1 ILMN_1720745 0.025 -0.080 0.131 0.637 

HNRNPM ILMN_2385173 -0.029 -0.161 0.103 0.668 

SRSF6 ILMN_1805371 -0.026 -0.149 0.096 0.673 

SF3B1 ILMN_1712347 -0.022 -0.151 0.107 0.738 

SF3B1 ILMN_1705151 0.017 -0.091 0.125 0.754 

HNRNPM ILMN_1745385 -0.016 -0.119 0.086 0.756 

HNRNPA1 ILMN_2175075 -0.012 -0.126 0.102 0.838 

SRSF3 ILMN_2389582 0.004 -0.118 0.125 0.951 
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3.5.6 Genetic variation within Hnrnpa2b1 and Hnrnpa1 that is discrepant between 

strains is unlikely to contribute to differences in gene expression 

We have carried out a bioinformatic analysis of the potential for genetic variation 

that is discrepant between strains of mice to affect the regulation of the 

Hnrnpa2b1 and Hnrnpa1 genes. These genes were selected because their 

expression is associated with longevity in both mouse and man. The Hnrnpa2b1 

gene harbours 14 genetic variants that are discordant between strains. Two of 

these variants, rs51031918 and rs252413833, are associated with changes to 

the binding efficiencies of SRSF2 and SRSF5 splicing enhancers (see 

Supplementary table S12). These changes are, however, very subtle and may 

not adversely affect SRSF2 or SRSF5 binding. Similarly, two Hnrnpa1 variants 

(rs32398879 and rs50030666) are discordant between the strains. One of these, 

rs50030666, lies in a cassette exon which is intronic in some Hnrnpa1 isoforms, 

but coding in others (see Supplementary table S12). The coding change causes 

the substitution of glycine residue for a similarly sized serine residue with 

equivalent charge. No other predicted effects of genetic variation on transcription 

factor binding, RNA regulatory elements (A-rich elements, C to U RNA editing 

sites or microRNA binding sites) were identified for any variant studied. 
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3.6 Discussion 

Splicing factor expression has been shown to be conclusively associated with 

chronological age in humans101 and also with cellular senescence in multiple 

human primary cell lines in culture103, indicating that these factors may be linked 

with cellular plasticity and adaptability during the ageing process. Here, we have 

assessed the potential relationships between splicing factor expression and 

alternative splicing with strain longevity across 6 mouse strains of variable 

medium to long lifespans, in both young and old animals. We also assessed 

associations between splicing factor expression and parental longevity in the 

offspring of long-lived parents in humans.  

We have found that over half of the splicing factors tested are associated with 

longevity in mouse spleen, and to a lesser extent in mouse muscle and that these 

changes are accompanied by alterations to the profile of selected alternatively 

expressed isoforms in both tissues. Two splicing factors, HNRNPA1 and 

HNRNPA2B1, also showed evidence of an association with parental longevity in 

humans. These results, to our knowledge, represent the first link between the 

regulation of alternative splicing and inherited longevity traits in mammals. 

In spleen, 7/15 splicing factors tested demonstrated associations with strain 

longevity in both young and old animals, with effects being predominant in the 

young animals of longer-lived strains suggesting that these differences in splicing 

factor expression are not the end result of ageing processes as such, but rather 

may represent fundamental differences in factor expression that drive or 

contribute to the ageing process. It is possible that changes happening early on 

in life may set the scene for future longevity, which is an interesting concept given 

that several genes such as Foxo1, known to be associated with extended 
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lifespan, are developmental genes189. It is very difficult to predict what the 

consequence of these changes will be to the overall level or pattern of splicing in 

long-lived mice or humans, since splice site choice at any given exon: intron 

junction is determined by the balance of activators and repressors, and that this 

balance is individually determined for each splice site in each gene176. However, 

diminished splicing factor expression may be beneficial in younger animals, since 

both SRSF and hnRNP splicing factors are known to have oncogenic features190-

192. Lower splicing factor expression in younger animals may thus protect against 

an earlier death from malignancy. 

We also found clear evidence to suggest tissue specificity of effect which is very 

common in studies of splicing with 8/15 (53%) splicing factors showing 

associations with strain longevity in spleen, but only 3/15 (20%) in muscle. It 

would be interesting to determine whether the splicing events targeted by these 

sets of splicing factors also show associations between median strain lifespan 

and splice site usage, but such analysis would be very difficult due to degeneracy 

of splicing factor binding sites, potential for compensation by other splicing factors 

and the fact that splice site usage is dependent on the balance of enhancers and 

silencers rather than on the binding of a specific splicing factor per se. The pattern 

of longevity-associated splicing regulator transcripts showed little overlap 

between the spleen and muscle data sets, with only changes to Srsf3 expression 

being common to both tissues. This is in line with our previous findings, as we 

have previously shown that although fibroblasts and endothelial cells that have 

undergone in vitro senescence both show deregulation of splicing factors, the 

patterns of precisely which regulators are altered show quite marked differences 

between cell types103. Spleen is a lymphoid organ, consisting of large numbers 

of white blood cells. Most of the transcripts extracted from spleen will arise from 
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B cells, T cells and mononuclear phagocytes. Our findings may thus reflect the 

hypothesis that ageing of the immune system is one of the drivers of development 

of ageing phenotypes193. It should also be considered that the preponderance of 

splicing factor expression changes in spleen compared with muscle could also 

reflect an accelerated rate of ageing and more extensive tissue modification in 

spleen compared to muscle. White blood cells are also highly heterogeneous, 

reactive and proliferative but relatively unspecialized compared to the highly 

differentiated non-proliferative muscle cells. It may be that muscle requires less 

adaptive response than spleen cells, since it has a defined and tightly regulated 

function with less need to respond to environmental challenge. 

Previous work from our group has identified that offspring of long-lived parents 

may have better health188,194. In the current study, two of the associations 

between splicing factor expression and longevity were also seen in RNA samples 

derived from the peripheral blood of participants in the InCHIANTI study163, where 

we found relationships between expression of the HNRNPA2B1 and HNRNPA1 

transcripts and parental longevity. HNRNPA2B1 demonstrated increased 

expression in blood RNA from people with at least one long-lived parent, whereas 

parental longevity (as a continuous trait reflecting the combined age at death of 

both parents) was associated with lower HNRNPA1 expression (Table 3.1). 

Hnrnpa1 is also downregulated with greater lifespan in mouse splenocytes, but 

the HNRNPA2B1 effect in humans is reversed compared to what we observe in 

the mice. This may be because the association between Hnrnpa2b1 expression 

and longevity is most marked in the young animals of the long-lived strains, and 

our human subjects are mostly elderly, with a mean age of approximately 75 

years101. Interestingly, both Hnrnpa2b1 and Hnrnpa1 are known to be 

determinants of lifespan in Drosophila species, by virtue of their regulation of the 
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TDP-43 protein195. TDP-43 is crucial in fruit flies for correct splicing and regulation 

of mRNA stability and is associated with amyotrophic lobar sclerosis and 

frontotemporal lobar degeneration in humans196,197. Mutations have also been 

described in age-related diseases such as Alzheimer’s, Parkinson’s and 

Huntington’s diseases198. Recent studies have shown that the action of TDP-43 

relies on its ability to tether hnRNPA2B1 and hnRNPA1 proteins, and disruption 

or abolition of this association dramatically reduces lifespan in Drosophila195. 

The consequences of altered splicing in spleen give a broad picture of altered 

expression and processing of genes involved in reduced cell senescence, 

superior DNA repair and retained cellular proliferative capacity in the long-lived 

strains. Old animals of long-lived strains of mice expressed reduced amounts of 

Cdkn2a isoforms compared with old animals of average-lived strains. Cdkn2a is 

an important marker of cellular senescence199 and ablation of Cdkn2a expression 

reverses ageing phenotypes in klotho mice200, indicating that old animals of long-

lived strains may have lower levels of senescent cells. Young animals of longer-

lived strains also expressed profiles of Trp53 isoforms consistent with enhanced 

transcription and cell growth properties compared to young animals of average-

lived strains, since they express higher levels of full-length p53 and lower levels 

of truncated p53AS which is thought to have antagonistic function201-203. Altered 

splicing of inflammatory genes involved in muscle remodelling produces a picture 

consistent with lower levels of pro-inflammatory signalling by virtue of lower levels 

of Il1b and Il6 expression in young animals and reduced Tnf signalling in the older 

animals of long-lived strains. 

We saw fewer associations of splicing factor expression with chronological age 

than we expected based on our previous human data. Our previous work 

suggests that splicing factor expression is strongly associated with age in humans 
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and with cellular senescence in human cell models101,103. In our human work, the 

per-year age-related changes in splicing factor expression were also relatively 

small (beta coefficients ranging from -0.01 to 0.005)103, which may explain why 

strong effects were not seen in the current mouse study where our sample 

numbers were much smaller. There is also considerable interstrain heterogeneity 

for most splicing factors; the young animals of one strain may express lower basal 

levels of splicing factors than the older animals of another and effects of ageing 

may thus be difficult to detect in small numbers of samples (Supplementary figure 

S1). These data suggest that the associations of splicing factor expression with 

longevity across strains may actually be considerably larger than effects of age 

alone on splicing factor expression within strains. Again, most changes seen in 

this study were seen in spleen, which is consistent with a key role in senescence 

for immune-mediated drivers of ageing and ageing phenotypes. 

The limitations of our study include the relatively small sample sizes, restriction 

of our analyses to a small number of tissues, and the fact that we have assessed 

splicing patterns only at the mRNA level. Gene expression is a highly variable 

parameter in biological systems, so future experiments are likely to need larger 

sample sizes and assessment of potential effects in other tissue types, as well as 

assessment of effects on protein levels. Although the genes tested were selected 

a priori and therefore do not require adjustment for multiple testing, one must 

recognize that this does not entirely remove the possibility of false positives. It 

must also be considered that differences in splicing factor and isoform expression 

may arise not only from changes in the amount of transcription, but also from 

differences in the relative stabilities of different isoforms. These changes may 

form part of the mechanistic basis for our associations, as we would not expect 

stability changes unrelated to longevity to associate statistically with strain 
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median lifespan. Finally, in the human follow up work described here, we were 

also restricted by the availability of expression data for all interesting splicing 

factors on the array and the likelihood that any effects were likely to be moderate 

on a per-year basis as they were in our previous human age data. This is likely 

to have reduced our power in the human study, and thus further work in larger 

populations is now required to definitively explore this possibility in human 

subjects. 

Another potential caveat is that the splicing factor expression differences we have 

discovered in this study reflect other strain differences that are unrelated to 

longevity. Whilst this is a possibility, the links between splicing factor expression 

and ageing in humans and other animals are well documented from our previous 

work101,103 and that of other groups204. Our observation that the lifespan-

associated expression changes relating to Hnnrpa2b1 and Hnrnpa1 we observe 

in mice are also translatable to humans is also supportive of our conclusions. 

More broadly, the importance of splicing factors in determination of lifespan is 

also suggested by studies of the effects of calorific restriction in mice185 and 

studies of the relationship between copy number variant (CNV) polymorphisms 

and longevity in humans186. 

Some of the genetic differences between strains may actually contribute 

mechanistically to the differences in strain median lifespan. To that effect, we 

carried out a bioinformatic analysis on the potential for genetic variation 

discordant between strains to lead to gene regulation differences for Hnrnpa2b1 

and Hnrnpa1, where we also found effects in man. We discovered some minor 

changes to the bioinformatically predicted strength of SRSF2 and SRSF5 binding 

within Hnrnpa2b1 and a potential amino acid change for an alternatively 

expressed isoform of Hnrnpa1. Although these predictions are interesting, the 
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predicted effects of the changes on Hnrnpa2b1 or Hnrnpa1 expression or activity 

are likely to be slight. The splicing effects cause only a slight alteration to 

predicted binding efficiency of SRSF2 or SRSF5, and the coding change involves 

the substitution of a serine for a glycine in an alternatively spliced cassette exon 

of Hnrnpa1, which may not comprise the major isoform at this locus. These amino 

acids are in any case of similar size and charge and may not cause much change 

to protein functionality. It is likely the effects on median strain longevity arise from 

multiple changes in many genes. 

To be able to assign definitive causality for a role for splicing factors as 

determinants of longevity, it would be necessary to carry out detailed functional 

experiments in vivo and in vitro, which could form the basis for future studies. 

Such studies could comprise constitutive or conditional knockout or 

overexpression studies in animal models followed by assessment of effects on 

lifespan, or in vitro manipulation of splicing factor levels followed by investigation 

of effects on cellular senescence. Such an approach has previously been 

employed for the Hnrnpa1 and Hnrnpa2b1 genes where upregulation of the 

Hnrnpa1 gene or the Hnrnpa2 isoform of the Hnrnpa2b1 gene in mouse 

hepatocarcinoma cells was shown to cause activation of the RAS-MAPK-ERK 

pathway205. This is potentially important since a recent study has shown that 

activation of the RAS-ERK-ETS pathway is a key determinant of lifespan in 

Drosophila species206. 

Both in vivo and in vitro studies to moderate the levels or activity of splicing factors 

in relation to longevity would not be without caveat. Splice site choice is a 

complex phenomenon and relies upon the balance of splicing activators or 

silencers, rather than the activity of a single splicing factor per se176. This finding, 

together with observations that exon and intron splicing enhancers and silencers 
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often cluster near splice sites, raises the possibility of compensation between 

splicing regulatory factors. Selective modulation of a single splicing factor may 

not then show direct effects on longevity, effects would most probably only be 

noted after knockdown or overexpression of multiple splicing factors which would 

have technical challenges both in vitro and in vivo.  

This study reports the first evidence of a link between expression of splicing 

regulator genes and strain lifespan in mice, together with data in support of 

potential roles for HNRNPA1 and HNRNPA2B1 in parental longevity in humans. 

We hypothesize that an influence of splicing factor expression on longevity may 

be mediated by slower immune ageing and a protection from malignancy in the 

young mice of long-lived strains by virtue of restricting expression of SR and 

hnRNP proteins which have oncogenic potential in young animals. Both of the 

splicing factor transcripts demonstrating reduced expression in the old long-lived 

mice belonged to the hnRNP class of splicing regulators, indicating that these 

mice may have less inhibition of splice site usage and be better able to maintain 

splicing, and therefore cellular plasticity into older age. The changes in splicing 

factor expression in the spleen are accompanied by changes in alternatively 

spliced genes indicative of reduced cell senescence, superior DNA repair and 

retained cellular proliferative capacity, and changes in splicing factor expression 

in muscle are indicative of lower pro-inflammatory signalling. Our data highlight 

the importance of regulation of mRNA processing in determination of lifespan and 

suggest that splicing factors may provide novel points of intervention for future 

therapies to reduce disease burden in old age. Moreover, since some of these 

strains (e.g. C57BL/6J, A/J) are commonly used for the creation and cross-

breeding of genetically modified mice, strain-specific alterations in alternative 
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splicing could account for unexpected contributions to the final phenotype arising 

from the genetic background. 

3.7 Experimental Procedures 

3.7.1 Mouse strains used for analysis 

Strains were chosen on the basis of differential lifespan (A/J, NOD.B10Sn-H2b/J, 

PWD.Phj, 129S1/SvlmJ, C57BL/6J and WSB/EiJ; see Table 3.2 for lifespan 

details) that were measured in a longitudinal study157-159 at Jackson Laboratory 

Nathan Shock Center of Excellence in the Basic Biology of Aging. Strains with 

extremely short lifespans (median lifespan less than 600 days) were excluded on 

the basis that a short lifespan may be associated with significant comorbidities. 

Characteristics of the mice and the numbers of animals used in each category 

are given in Table 3.2. All mice used in this study were male. All tissues were 

obtained from the mice of a cross-sectional study that was conducted at the same 

period of time and in the same mouse room with the longitudinal study. Animal 

housing conditions have been fully described previously157,159. Briefly, mice were 

fed ad libitum an autoclaved pellet diet with 6% fat and acidified water (pH 2.8–

3.1). Animals were kept on a 12:12-h light/dark cycle at 50% relative humidity at 

21–23 °C, in a restricted access specific pathogen-free barrier facility. Mice were 

housed four animals per pen in individually ventilated polycarbonate cages 

supplied with HEPA-filtered air and were tested quarterly for (and were free of) 

common viral, bacterial and mycoplasmal species. Mice were inspected daily and 

excluded if ill. At 6 or 20/22 months of age, mice were euthanized by CO2 

asphyxiation, followed by blood collection via cardiac puncture and cervical 

dislocation. A detailed description of the tissue collection procedure is given in 

Supplementary table S1. Immediately after death, spleen and quadriceps muscle 
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tissues were excised and snap-frozen in vapour-phase liquid nitrogen for storage 

within 5 min of collection. Tissues were stored at -80 °C. 

3.7.2 Splicing factor candidate genes for analysis 

An a priori list of splicing factor candidate genes were chosen on the basis that 

they were associated with human ageing in populations and in primary human 

cell lines that had undergone in vitro senescence in our previous work101,103. The 

list of genes included the positive regulatory splicing factors Srsf1, Srsf2, Srsf3, 

Srsf6, Srsf18 and Tra2b, the negative regulatory splicing inhibitors Hnrnpa0, 

Hnrnpa1, Hnrnpa2b1, Hnrnpd, Hnrnph3, Hnrnpk, Hnrnpm, Hnrnpul2 and the 

Sf3b1 subunit of the U2 spliceosome snRNP, which we have previously shown 

to be associated with age-related altered DNA methylation207. Assays were 

obtained in custom TaqMan low-density array (TLDA) format from Life 

Technologies (Foster City, CA, USA). Assay Identifiers are given in 

Supplementary table S2. 

3.7.3 Alternatively spliced target genes in spleen 

Genes were chosen for assessment of alternative splicing in spleen on the basis 

of potential roles in cellular senescence (Cdkn2a), cell cycle regulation (Trp53, 

Myc), extracellular matrix (Fn1, Vcan) or DNA damage response (Atm, Chek2), 

since these genes may also be important in determination of lifespan. We 

designed TaqMan quantitative real-time PCR assays to identify specific isoforms 

or groups of isoforms (if large numbers of common regions rendered the design 

of specific probes impossible). Assays were obtained in custom TaqMan low-

density array (TLDA) format from Life Technologies. Assay Identifiers are given 

in Supplementary data S2. A list of transcripts captured by each assay are given 

in Supplementary data S3.
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Table 3.2: Characteristics of mouse strains 

The mean lifespan and the maximum lifespan (20% longest lived) are given for each strain used in this study. All mice used in this study were male. Young mice were 
6 months old, and old mice were 20–22 months old. Muscle tissue was taken from the quadriceps. 

*Strain Max Age = the mean of the longest lived 20% within each strain. Data for median and maximum lifespans are given in Yuan et al. (2011) from a longitudinal 
study that was performed in conjunction with the cross-sectional study described in the present paper. 

 

Strain Strain Median lifespan (days) Strain Max Age (days)* Longevity class N Young N Old 

A/J 623 785 Average lifespan 
Spleen - 7 

Muscle - 8 

Spleen - 7 

Muscle - 7 

NOD.B10Sn-H2b/J 696 954 Average lifespan 
Spleen - 4 

Muscle - 4 

Spleen - 6 

Muscle - 6 

PWD/PhJ 813 956 Average lifespan 
Spleen - 5 

Muscle - 4 

Spleen - 6 

Muscle - 6 

129S1/SvlmJ 882 1044 Long-lived 
Spleen - 10 

Muscle - 4 

Spleen - 10 

Muscle - 10 

C57BL/6J 901 1061 Long-lived 
Spleen - 10 

Muscle - 10 

Spleen - 8 

Muscle - 9 

WSB/EiJ 1005 1213 Long-lived 
Spleen - 5 

Muscle - 5 

Spleen - 10 

Muscle - 10 

 



132 
 

3.7.4 Alternatively spliced target genes in muscle 

Genes were selected for analysis of alternative splicing in muscle on the basis of 

potential roles in inflammatory processes relating to muscle remodelling since we 

have shown in our previous work that these processes are key determinants of 

muscle strength in older humans208,209. Our gene list included isoforms of the Il1b, 

Il6, Nfkb1, Stat1 and Tnf genes. As above, TaqMan quantitative real-time PCR 

assays were designed to identify specific isoforms or groups of isoforms (if large 

numbers of common regions rendered the design of specific probes impossible). 

Assays were obtained in custom TaqMan low-density array (TLDA) format from 

Life Technologies. Assay Identifiers are given in Supplementary data S2. 

3.7.5 RNA extraction and reverse transcription 

Tissue samples were removed from storage and placed in 1 mL TRI Reagent® 

solution supplemented with the addition of 10 mM MgCl2 to aid recovery of 

microRNAs for future analysis165. Samples were then completely homogenized 

(15mins for spleen samples, 30mins for muscle samples) using a bead mill 

(Retsch Technology GmbH, Haan, Germany). Phase separation was carried out 

using chloroform. Total RNA was precipitated from the aqueous phase by means 

of an overnight incubation at -20 °C with isopropanol. RNA pellets were then 

ethanol-washed twice and resuspended in RNase-free dH2O. RNA quality and 

concentration was assessed by Nanodrop spectrophotometry (Wilmington, DE, 

USA). Complementary DNA (cDNA) was then reverse transcribed from 100 ng 

total RNA using the Invitrogen VILO cDNA synthesis kit (Life Technologies) in 20 

μL reactions according to manufacturer’s instructions. 
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3.7.6 Quantitative real-time PCR and data analysis 

Quantitative RT–PCRs were performed on the ABI 7900HT platform (Life 

Technologies) on the TaqMan low-density array (TLDA) platform. Cycling 

conditions were 50 °C for 2 min, 94.5 °C for 10 min and 50 cycles of 97 °C for 30 

s and 57.9 °C for 1 min. The reaction mixes included 50 μL TaqMan® Universal 

PCR Mastermix II (no AmpErase® UNG) (Life Technologies), 30 μL dH2O and 20 

μL cDNA template. 100 μL reaction solution was dispensed into the TLDA card 

chamber and centrifuged twice for 1 min at 216  g to ensure distribution of 

solution to each well. The expression of transcripts in each sample was measured 

in duplicate replicates. The comparative CT technique was used to calculate the 

expression of each test transcript210. Expression was assessed relative to the 

global mean of expression and normalized to the median level of expression for 

each individual transcript. Data were log-transformed to ensure normal 

distribution of data. Associations of transcript expression were assessed by linear 

regression against age, or lifespan as appropriate. Associations of transcript 

expression with mouse age were assessed in all animals and in animals of 

average-lived or long-lived strains individually, and associations of transcript 

expression with strain lifespan were assessed in all animals and in young and old 

groups individually. We also assessed the effect of potential nonlinearity of 

response for the splicing factor genes in spleen and muscle by a secondary 

analysis using binary logistic regression on data split by the median lifespan of 

all the strains. These statistical analyses were carried out using SPSS v.22 (IBM, 

North Castle, NY, USA). Interaction between strain longevity and mouse age was 

assessed using data categorized into average-lived or long-lived on the basis of 

interstrain median lifespan and was carried out in STATA v.14 (StataCorp, 

College Station, TX, USA). 
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3.7.7 Gene expression cluster analysis for heterogeneity of splicing factor 

expression with age 

The expression of each gene was z-transformed to be on the scale of standard 

deviations from the mean, and then the expression values for each gene were 

plotted against the corresponding sample to generate a heat map. Hierarchical 

clustering methods were used to group similar expression profiles together. This 

analysis was done using the ‘HEATMAP.2’ package in R statistical software 

package v3.1.1 (Vienna, Austria). 

3.7.8 Association between splicing factor expression and parental longevity in the 

InCHIANTI population 

The participants in the InCHIANTI study aged 65+ years were categorized based 

on the age at death of their parents, the parental longevity score (PLS). 

Participants (total n = 405) were classified as either ‘two short-lived parents’ (n = 

17), ‘one short- and one intermediate-lived parent’ (n = 140), ‘two intermediate-

lived parents’ (n = 190) or ‘any long-lived parents’ (n = 58). Short-, intermediate- 

and long-lived cut-offs were calculated separately for mothers and fathers based 

on the normal distribution of age at death in the cohort, as described in Dutta et 

al.188. The cut-offs for mothers were as follows: short-lived (49–72 years), 

intermediate-lived (72–95 years) and long-lived (> 95 years); mothers aged < 49 

years at death were classed as premature and excluded. The cut-offs for fathers 

were: short-lived (52–67 years), intermediate-lived (68–89 years) and long-lived 

(> 89 years); fathers aged < 52 years at death were classed as premature and 

excluded. 

To assess the association between the gene expression levels of the 15 splicing 

factor genes in whole blood as defined in our previous work103 and parental 
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longevity score, linear regression models were carried out using R statistical 

software package v3.1.1 (Vienna, Austria), with gene expression as the 

dependent variable. Models were adjusted for age, sex, waist circumference, 

highest education level attained, smoking (pack-years), study site, batches and 

cell counts (neutrophils, monocytes, basophils, eosinophils and whole white 

blood cell count). Gene expression data were rank-normalized prior to analysis 

to remove any skew. 

3.7.9 Bioinformatic assessment of potential regulatory effects of genetic variation 

within Hnrnpa2b1 and Hnrnpa1 genes 

To assess the potential for genetic variation to contribute to splicing factor 

expression differences that we observe between strains, we have carried out a 

detailed examination of the strain-discordant genetic differences in the splicing 

factor genes Hnrnpa2b1 and Hnrnpa1, which demonstrate links with longevity in 

both mouse and man. Complete genome sequence data were available for 4 of 

the strains we have used in our analysis (C57BL/6J, 129S1/SvImJ, A/J and 

WSB/EiJ). SNPs discordant between strains were examined for evidence of 

effects on gene regulation by a variety of bioinformatic approaches. Firstly, SNPs 

located in the 5’ UTR of the Hnrnpa2b1 or Hnrnpa1 genes were assessed for 

position relative to known transcription factor binding sites using REGRNA2.0 

(http://regrna2.mbc.nctu.edu.tw/), an integrated web server tool that allows 

screening for potential regulatory elements. Secondly, intronic SNPs were 

assessed for their ability to interrupt exon and intron splicing enhancer and 

silencer loci using REGRNA2.0 and ESEFINDER (http://rulai.cshl.edu/cgi-

bin/tools/ESE3/esefinder.cgi?process=home), a specific tool for the identification 

of splicing regulatory elements. Finally, sequences in the 3’ untranslated region 
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were screened for ability to disrupt elements with potential to disrupt elements 

important for mRNA stability (A-rich elements, C to U RNA editing sites and 

miRNA binding sites) using REGRNA2.0. 
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4.3 Abstract 

MicroRNAs (miRNAs) are small non-coding RNA species that have been shown 

to have roles in multiple processes that occur in higher eukaryotes. They act by 

binding to specific sequences in the 3’ untranslated region of their target genes 

and causing the transcripts to be degraded by the RNA-induced silencing 

complex (RISC). MicroRNAs have previously been reported to demonstrate 

altered expression in several ageing phenotypes such as cellular senescence 

and age itself. Here, we have measured the expression levels of 521 small 

regulatory microRNAs (miRNAs) in spleen tissue from young and old animals of 

6 mouse strains with different median strain lifespans by quantitative real-time 

PCR. Expression levels of 3 microRNAs were robustly associated with strain 

lifespan, after correction for multiple statistical testing (miR-203-3p [β-

coefficient = −0.6447, p = 4.8  10−11], miR-664-3p [β-coefficient = 0.5552, 

p = 5.1  10−8] and miR-708-5p [β-coefficient = 0.4986, p = 1.6  10−6]). Pathway 

analysis of binding sites for these three microRNAs revealed enrichment of target 

genes involved in key ageing and longevity pathways including mTOR, FOXO 

and MAPK, most of which also demonstrated associations with longevity. Our 

results suggest that miR-203-3p, miR-664-3p and miR-708-5p may be implicated 

in pathways determining lifespan in mammals. 
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4.4 Introduction 

Although lifestyle and environmental factors are the major influences on lifespan, 

inherited factors remain important, with approximately 25% of the variation in 

lifespan attributable to genetics211,212. This is reflected in the observation that 

children of longer-lived parents have lower levels of age-related disease, lower 

all-cause mortality and greater life expectancy than those with shorter-lived 

parents188,194. In addition to the contribution of ‘conventional’ genetics, there is 

increasing evidence that epigenetic factors such as DNA methylation, histone 

modifications, and fine tuning of gene expression by small non-coding RNA 

regulators such as microRNAs (miRNAs) may also contribute significantly to 

ageing and longevity213,214. 

MicroRNAs (miRNAs) are short, non-coding RNAs that regulate mRNA 

expression215. Targets are recognized by virtue of sequence complementarity 

between specific sequences in the 3’ untranslated region (3’ UTR) of mRNA 

transcripts. Once bound, miRNAs act to either repress translation of the mRNA 

or target it for degradation. A single miRNA can target multiple mRNAs and many 

mRNAs have multiple miRNA binding sites in their 3’ UTR140. In this manner, 

miRNAs have the capacity to regulate complex networks such as those 

implicated in ageing and longevity141. Several of the ‘hallmarks’ of ageing94 

including cellular senescence and genomic instability have been shown to be 

associated with multiple miRNAs216. Moreover, in several cases, individual 

miRNAs (or families of miRNAs) are associated with more than one of these 

processes216. Nevertheless, while several studies have implicated miRNAs in 

prediction of lifespan in C. elegans217-219, less is known about their potential role 
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in mammalian lifespan. Identification of determinants of longevity is a key aim in 

identifying biomarkers of healthy ageing. 

Inbred strains of mice, with very well defined phenotypic characteristics and fully 

characterized genetics have proved a useful tool in understanding complex 

phenotypes such as ageing104,157,158. In the present study, we assessed the 

potential role of miRNAs in longevity using spleen tissue from 6 inbred strains of 

mice of different median strain lifespans104,157,158. These mice have median strain 

lifespans ranging from 623 days to 1005 days and as a result we have previously 

used them for our studies of the factors influencing lifespan104,187. We carried out 

a high-throughput screen of 521 miRNAs in the young animals of the 2 strains at 

the extremes of the lifespan range, to identify candidate miRNAs associated with 

longer lifespan. We then tested for associations between median strain lifespan 

and the expression of the emerging miRNAs in young and old mice of all 6 strains, 

to determine whether these were robust associations. We found that 3 miRNAs, 

miR-203-3p, miR-664-3p and miR-708-5p, were all associated with lifespan in 

these mice. Subsequent bioinformatic analyses of pathways predicted to be 

targeted by these miRNAs included several that are known to be involved in 

determining lifespan e.g. FoxO220, mTOR221 and stem cell pluripotency pathways. 

Furthermore, genes predicted to be targeted by these miRNAs also show 

evidence of associations with median strain longevity. Our results suggest that 

differential regulation of key ageing and longevity pathways by miRNAs may 

underpin some of the phenotypic variation in lifespan in mammals. 
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4.5 Results 

4.5.1 High-throughput MicroRNA Arrays 

We carried out a near-global, high throughput screen of expression of 521 

miRNAs in spleen samples of young animals culled at 6 months of age from the 

2 mouse strains from our collection showing the most marked divergence in 

lifespan (A/J; 623 days and WSB/EiJ; 1005 days) by qRT-PCR using TaqMan® 

MicroRNA Array cards. 279 miRNAs were found to be expressed above the limit 

of detection and of these, 5 (miR-297b-5p, miR-708-5p, miR-224-5p, miR-203-3p 

and miR-327) were shown to be differentially expressed between average-lived 

and long-lived strains after correction for multiple testing (significance cutoff: 

p <0.0002). Five additional miRNAs (miR-664-3p, miR-592-5p, miR-484, miR-

687 and miR-192-5p) showed expression differences which were close to 

significance (significance cut-off: p <0.002). The results for these 10 miRNAs are 

summarized in Table 4.1. See Supplementary table S13 for results of the full 

analysis. 
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Table 4.1: MicroRNAs with strongest association between expression and 
lifespan in spleen tissue from young mice of shortest-lived and longest-
lived strains (A/J and WSB/EiJ respectively) 

MicroRNAs significantly associated below the Bonferroni-corrected significance threshold 
(p <0.0002) are shown in bold italics. The ten most strongly associated microRNAs followed up 
in the targeted analysis are shown in italics. P-values were determined using independent sample 
t-tests on log-transformed relative expression data from TaqMan® MicroRNA Array cards. 

 

MicroRNA Assay ID Mean Difference 
95% CI of the difference 

p-value 
Upper Lower 

mmu-miR-297b-5p 4.29 4.53 4.05 1.64x10-11 

mmu-miR-708 0.47 0.59 0.36 5.80x10-6 

mmu-miR-224 -0.97 -0.63 -1.30 0.0001 

mmu-miR-203 -0.55 -0.35 -0.75 0.0002 

rno-miR-327 -3.70 -2.33 -5.07 0.0002 

mmu-miR-664 0.46 0.66 0.27 0.0005 

mmu-miR-592 0.50 0.73 0.27 0.0008 

mmu-miR-484 0.33 0.49 0.17 0.001 

mmu-miR-687 5.02 7.58 2.46 0.002 

mmu-miR-192 0.31 0.47 0.15 0.002 

 

 

4.5.2 Targeted microRNA Expression 

We then measured the expression levels of the 10 miRNAs demonstrating 

significant or near significant associations with median strain lifespan in spleen 

samples from both young and old animals of all 6 mouse strains. We found that 

3 miRNAs; miR-203-3p, miR-664-3p and miR-708-5p were associated with 

median strain lifespan (Supplementary table S14). These 3 miRNAs were also 

associated with strain median lifespan in a replication sub analysis excluding all 

animals included in the discovery analysis (Supplementary table S15). Analysis 

of expression in relation to age of the animals revealed that miR-203-3p was not 

significantly associated with age whereas both miR664-3p and miR-708-5p were 

positively associated (see Supplementary table S16). This finding led us to 
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perform an analysis to detect interactions between miRNA expression, age, and 

median strain lifespan, results of which are given in Supplementary table S17. 

MicroRNA miR-203-3p showed significantly reduced expression in both young 

and old animals of strains of longer lifespan when considered separately, as well 

as in the analysis of old and young animals of different median strain lifespans 

combined, after correction for multiple testing (β-coefficients = −0.64, −0.67 and 

−0.67; p = 4.78  10−11, 3.60  10−6 and 4.74  10−7 for all, young and old analyses 

respectively, see Supplementary table S14 and Figure 4.1a-c). Interaction 

analysis revealed no significant difference between young and old animals of 

average-lifespan strains (β-coefficient = −0.05; SE = 0.08; p = 0.55, see 

Supplementary table S17 and Figure 4.2). However, significant expression 

differences were seen between strains of average lifespan and long lifespan, with 

the most marked differences occurring in the young animals of long-lived strains 

(β-coefficient = −0.29; SE = 0.08; p = 0.004 compared with β-coefficient = −0.17; 

SE = 0.08; p = 0.03 in the old animals of long-lived strains, see Supplementary 

table S17 and Figure 4.2). 

Conversely, miR-664-3p demonstrated increased expression in strains of longer 

lifespan in both old and young animals, after correction for multiple testing (β-

coefficient = 0.56, p = 5.12  10−8, see Supplementary table S14 and Figure 4.1d). 

When expression was analyzed in young animals only, a trend was observed but 

this did not meet multiple testing criteria (β-coefficient = 0.42, p = 0.008, see 

Supplementary table S14 and Figure 4.1e) while in the analysis of old animals 

only, a significant association with lifespan was seen (β-coefficient = 0.75, 

p = 3.93  10−9, see Supplementary table S14 and Figure 4.1f). Analysis of strain 

lifespan and age interactions for miR-664-3p showed significant differences in 
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expression between young and old animals of average lifespan (β-

coefficient = 0.15; p = 0.04, see Supplementary table S17 and Figure 4.2). 

Significant differences were also apparent when comparing expression of miR-

664-3p between strains of average lifespan and long lifespan, although the effect 

was much more marked in the old animals of long-lived strains (β-

coefficient = 0.18; p = 0.01 in young long-lived animals compared with β-

coefficient = 0.46; p = 6.59  10−10, see Supplementary table S17 and Figure 4.2). 

MicroRNA miR-708-5p also showed increased expression in strains of longer 

lifespan in the combined analysis of old and young animals, after correction for 

multiple testing (β-coefficient = 0.50; p = 1.61  10−6, see Supplementary table 

S14 and Figure 4.1g). Again, when expression was analyzed in young animals 

only, a trend was observed that did not meet multiple testing criteria (β-

coefficient = 0.36; p = 0.02, see Supplementary table S14 and Figure 4.1h) while 

the analysis of old animals only showed a significant association with lifespan (β-

coefficient = 0.64, p = 2.70  10−6, see Supplementary table S14 and Figure 4.1i). 

Interaction analysis for miR-708-5p showed no significant difference in 

expression between young and old animals of average lifespan (β-

coefficient = 0.12; p = 0.33, see Supplementary table S17 and Figure 4.2). 

Significant differences were observed between average-lived and long-lived 

strains, but these were only present in the old animals (β-coefficient = 0.08; 

p = 0.49 in young long-lived animals compared with β-coefficient = 0.31; p = 0.007 

in the old animals of long-lived strains, see Supplementary table S17 and Figure 

4.2). 
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Figure 4.1: MicroRNA expression against lifespan as measured in targeted 
assessment of all available mouse strains 

Box-and-whisker plots of relative microRNA expression for the 3 microRNAs found to be 
significantly associated with strain lifespan in the targeted assessment. Strains and median 
lifespan in days are given on the x-axis, while the y-axis shows mean log-transformed relative 
expression. Dark grey boxes show data for all mice analyzed, mid-grey boxes show data for 
young mice only and light grey boxes show data for old mice only. (a,b and c) expression data 
for miR-203-3p; (d,e and f) miR-664-3p; (g,h and i) miR-708-5p. 
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Figure 4.2: Longevity:Age interactions for microRNAs significantly 
associated with strain lifespan 

This graph shows the relative expression changes in all mouse strains, categorized based on 
whether the median individual strain lifespan was above or below the median lifespan calculated 
across all strains, with ‘Average-lived’ being <847.5 days and ‘Long-lived’ >847.5 days. Young 
mice are 6 months and old mice are 20–22 months old. All changes are shown in relation to the 
young animals of the average-lived strains. Average-lived/old mice are shown in light grey, long-
lived/young in mid-grey and long-lived/old animals in dark grey. Error bars denote the 95% 
confidence intervals and statistical significance is indicated by stars, where: *p < 0.05, **p < 0.01 
and ***p < 0.001. 

 

 

4.5.3 Pathways Analysis 

The lifespan effects of miR-203-3p, miR-664-3p and miR-708-5p are probably 

mediated by altered regulation of their target genes. We therefore used a gene 

set enrichment bioinformatic prediction approach specialized for miRNA 

targets222 to determine the biochemical and functional pathways that are enriched 

for genes targeted by the 3 microRNAs significantly associated with strain 

lifespan. We identified 15 pathways that were predicted to be enriched in miR-

203-3p, miR-664-3p or miR-708-5p target genes, many of which are known to be 

associated with ageing or longevity (see Table 4.2). Prominent pathways targeted 
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by all 3 miRNAs include the ‘FoxO signalling pathway (mmu04068)’ and ‘mTOR 

signalling pathway (mmu04150)’, which contain 16 and 11 genes with predicted 

miR-203-3p, miR-664-3p and miR-708-5p binding sites (FDR-adjusted p-

values = 0.02 and 0.01 respectively). Also predicted to be enriched for miR-203-

3p, miR-664-3p and miR-708-5p binding sites are the ‘Pathways in cancer 

(mmu05200)’ pathway, the ‘MAPK signalling pathway (mmu04010), the 

‘signalling pathways regulating pluripotency of stem cells (mmu04550)’ pathway 

and the ‘TGF-beta signalling pathway (mmu04350)’, with 33, 26, 14 and 10 genes 

targeted respectively (FDR-adjusted p-values = 0.03, 0.005, 0.05 and 0.0001 

respectively). To provide empirical evidence that the genes identified to lie within 

these pathways also showed associations with longevity, we characterized the 

expression of selected target genes in relation to median strain lifespan. We 

identified that the 7/9 of these target genes were indeed associated with longevity 

in the mouse spleen samples (Table 4.3). 
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Table 4.2: Pathways affected by longevity-associated microRNAs 

DIANA-mirPath v3.0 software222 was used to determine pathways targeted by the microRNAs 
associated with strain lifespan, using predicted targets from the DIANA-microT-CDS v5.0 
algorithm. Pathways are listed in order of the number of genes which are predicted to interact 
with these microRNAs. 

 

KEGG Pathway p-value 
Number of 

genes 

Number 
of 

miRNAs 

Pathways in cancer (mmu05200) 0.03 33 3 

MAPK signalling pathway (mmu04010) 0.005 26 3 

FoxO signalling pathway (mmu04068) 0.016 16 3 

Transcriptional misregulation in cancer 

(mmu05202) 
0.03 15 3 

Signalling pathways regulating pluripotency of 

stem cells (mmu04550) 
0.05 14 3 

Thyroid hormone signalling pathway 

(mmu04919) 
0.002 12 2 

mTOR signalling pathway (mmu04150) 0.01 11 3 

Long-term potentiation (mmu04720) 0.01 11 3 

TGF-beta signalling pathway (mmu04350) 0.0001 10 3 

Long-term depression (mmu04730) 0.002 10 2 

Chronic myeloid leukaemia (mmu05220) 0.02 9 3 

Amphetamine addiction (mmu05031) 0.02 8 2 

Thyroid hormone synthesis (mmu04918) 0.0004 6 3 

ECM-receptor interaction (mmu04512) 0.023 6 2 

Glycosphingolipid biosynthesis - lacto and 

neolacto series (mmu00601) 
1.46x10-9 4 2 
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Table 4.3: Association of predicted target mRNA expression and lifespan in mouse spleen tissue across 6 strains of different 
longevities 

Data from mice of all ages, young mice only (6 months) and old mice only (20–22 months) are given separately. For each gene, the associated pathway is given, along 
with the microRNA predicted to target the transcript. mRNAs significantly associated below the significance threshold (p < 0.05) are shown in bold italics. P-values 
were determined from linear regression of log-transformed relative expression data. 

 

  
Predicted 

Target Gene 

  
KEGG Pathway 

  
MicroRNA 

ALL MICE YOUNG MICE ONLY OLD MICE ONLY 

Beta 
coefficient 

Std. 
Error 

P-value 
Beta 

coefficient 
Std. 
Error 

P-value 
Beta 

coefficient 
Std. 
Error 

P-value 

Acvr2a 
Signalling pathways regulating 
pluripotency of stem cells (mmu04550) 

mmu-miR-664-3p -0.12 0.00 0.26 -0.38 0.00 0.01 0.19 0.00 0.19 

Dusp5 MAPK signalling pathway (mmu04010) mmu-miR-203-3p -0.17 0.00 0.11 -0.37 0.00 0.02 0.03 0.00 0.84 

Fgf7 
Pathways in cancer (mmu05200) 

mmu-miR-664-3p -0.08 0.00 0.48 -0.24 0.00 0.14 0.11 0.00 0.45 
MAPK signalling pathway (mmu04010) 

Gabarapl1 FoxO signalling pathway (mmu04068) mmu-miR-203-3p -0.12 0.00 0.26 -0.48 0.00 0.001 0.29 0.00 0.05 

Mmp9 Pathways in cancer (mmu05200) mmu-miR-664-3p 0.45 0.00 <0.001 0.35 0.00 0.02 0.59 0.00 <0.001 

Pten 

FoxO signalling pathway (mmu04068) 

mmu-miR-664-3p 0.18 0.00 0.09 -0.17 0.00 0.29 0.40 0.00 0.004 mTOR signalling pathway (mmu04150) 

Pathways in cancer (mmu05200) 

Rps6ka3 
mTOR signalling pathway (mmu04150) 

mmu-miR-664-3p 0.07 0.00 0.54 -0.16 0.00 0.31 0.31 0.00 0.03 
MAPK signalling pathway (mmu04010) 

Smad4 

Pathways in cancer (mmu05200) 

mmu-miR-664-3p -0.36 0.00 <0.001 -0.38 0.00 0.02 -0.41 0.00 0.004 
FoxO signalling pathway (mmu04068) 

Signalling pathways regulating 
pluripotency of stem cells (mmu04550) 

Zfhx3 
Signalling pathways regulating 
pluripotency of stem cells (mmu04550) 

mmu-miR-664-3p 
0.03 0.00 0.80 -0.02 0.00 0.90 0.03 0.00 0.82 

mmu-miR-203-3p 



151 
 

4.6 Discussion 

Even once the effects of lifestyle and environment are considered, conventional 

genetics cannot account for all of the variation in mammalian lifespan and other 

factors, such as epigenetic regulation of key genes, have also been suggested to 

play a role. Here we show that three miRNAs; miR-203-3p, miR-664-3p and miR-

708-5p, are significantly associated with strain lifespan in mouse spleen. 

The expression of miR-203-3p was negatively correlated with longer lifespan. 

Although effects were seen in both young and old animals of long-lived strains, 

the most marked effects were noted in the young animals, suggesting that 

modulated expression of this miRNA may be a determining factor in longevity 

rather than simply a consequence of advancing age. Elevated levels of miR-203-

3p have previously been shown to suppress “stemness” in mouse keratinocytes 

with several studies finding that higher levels of miR-203-3p expression promote 

terminal differentiation, repress proliferation and induce senescence in human 

melanoma cells223-225. This microRNA has also been shown to be up-regulated in 

senescence in human in vitro models using WI-38 human diploid fibroblast 

cells226 and human melanoma cells227. The p63 and caveolin genes are known 

to be targets of miR-203-3p228. p63 is a member of the p53 family of transcription 

factors and the absence of expression of one of its isoforms, TAp63, has been 

shown to lead to senescence and premature ageing of epidermal and dermal 

precursors229. Caveolin is thought to have a tumor-suppressor function at early 

stages of malignant transformation230, to contribute to immune senescence231 

and the ability of aged cells to respond to oxidative stress232. Our finding of 

reduced miR-203-3p expression in long-lived mouse strains may be indicative of 

a phenotype in which cells have greater proliferative and adaptive capacity 
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alongside a reduced propensity to become senescent, all of which could create 

favorable conditions for increased longevity. miR-203 was also one of the 

miRNAs demonstrated to be inversely associated with lifespan in a longitudinal 

study of human serum samples from the Baltimore Longitudinal Study of Aging 

(BLSA)233. 

Conversely, expression of miR-664-3p showed a positive correlation with longer 

lifespan in our data. In contrast to miR-203-3p, the changes we noted were most 

evident in the old animals of the long-lived strains, suggesting that increased 

expression of miR-664-3p may be a later life effect on longevity. In comparison 

with miR-203-3p, miR-664-3p has not been extensively studied, with conflicting 

conclusions having been drawn by different research groups. It has been linked 

to both pro- and anti-proliferative action in different tumor types234,235, which 

complicates any attempts at prediction of putative function in terms of longevity. 

However, elevated hsa-miR-664 expression has been noted in human blood 

samples from nonagenarians and centenarians compared with samples from 

younger individuals236, indicating that in human populations, the expression of 

this miRNA also correlates with longevity. 

MicroRNA miR-708-5p was also positively correlated with longer lifespan. Again, 

the changes we noted were most evident in the old animals of the long-lived 

strains, suggesting that increased expression of miR-708-5p may also be a later 

life effect on longevity. In human cells, hsa-miR-708 has been shown to have a 

tumor-suppressor function in several human cancer types237-239. Reduced 

expression of hsa-miR-708 expression has also been seen in blood taken from 

old individuals in comparison to young individuals240. In our data, elevated, rather 

than decreased miR-708-5p expression was found to be associated with longer 
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lifespan. This may be partially explained if the effects on miR-708-5p expression 

reflect a balance between protection from malignancy and maintained 

proliferative capacity. 

The effects of altered miRNA expression on median strain lifespan will be 

mediated by altered regulation of their target genes. Gene set enrichment 

analysis using the DIANA miRPath webtool222 reveals 15 pathways that are 

enriched for miR-203-3p, miR-664-3p and miR-708-5p target genes. The 

expression of the majority of the genes enriched for longevity-associated miRNA 

binding sites also demonstrated associations with longevity (Table 4.3). Although 

not all of these relationships were entirely straightforward in terms of the direction 

of effect one would predict based on expression differences of the specific 

miRNAs, this is to be expected, since transcripts will be targeted by many 

miRNAs in addition to the one tested, and several of our candidates are targeted 

by multiple miRNAs, often with antagonistic relationships with longevity. For 

example, Zfhx3, in the ‘pluripotency of stem cells’ pathway is targeted by both 

mmu-miR-203-3p and mmu-664-3p, one of which is negatively associated with 

lifespan and the other positively. MicroRNAs have also been previously reported 

to be associated with both positive and negative associations with the expression 

of their target genes241. 

Most notable amongst the pathways we found were FoxO signalling, mTOR, 

MAPK signaling, pathways regulating pluripotency of stem cells, TGF-beta 

signaling and pathways involved in cancer. FoxO is well known to be involved in 

the regulation of lifespan, with strong evidence that alterations in proteins in this 

pathway can radically increase lifespan in several model organisms as well as 

humans, while mTOR inhibition has also been shown to increase lifespan in 
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several species, from yeast to mice242. The observation that many of the 

pathways implicated contain genes that are known to control shared outcomes 

such as apoptosis, cell cycle regulation, differentiation, proliferation, cell survival, 

autophagy and DNA repair adds strength to the hypothesis that miR-203-3p, miR-

664-3p and miR-708-5p may have functionality in terms of longevity. Our group 

has previously shown that other aspects of RNA processing and regulation are 

important in ageing and longevity in humans, in animal models and in 

vitro101,103,104. The results of the present study provide further evidence that post-

transcriptional control of mRNA expression is a key factor in the ageing process 

and determination of lifespan. 

The use of mouse tissues from very well characterized inbred strains is a strength 

of our study and allows us to be precise about the genetics and phenotypes 

associated with each strain, and allows assessment of median strain lifespan with 

some confidence. Spleen is an appropriate tissue for analysis, given the known 

role of the immune system and inflammation as drivers of ageing193. However, 

our study cannot comment on the potential tissue-specificity of the effects we 

have seen and may not be representative of mechanism elsewhere in the 

organism. We also recognize that there are both strain-specific and age-related 

differences in the cellular composition of the spleen. While strain differences in 

the cell types found in mouse spleen are apparent, the kinetics of change of cell 

composition with age are similar at different stages of life in separate mouse 

strains where this has been measured243. It must also be mentioned that there is 

a relatively large amount of inter-individual cell-type variation, in some cases 

more pronounced than the inter-strain variability243,244. Unfortunately, data on 

splenic cellular composition for the strains used in this paper are not available, 

however while we cannot definitively state that all of our findings are not linked to 
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age-related cell-type changes in the splenic make-up, the associations that are 

present only in the young mice are far less likely to be influenced by such 

changes. Our use of a wide-spectrum discovery phase in a limited sample set, 

followed by targeted validation and replication of results in a larger inclusive 

cohort ensures robust results, but we recognize that for some of the mouse 

strains analyzed, low numbers of samples may have affected the statistical power 

to detect more subtle changes. The use of pathways analysis also allows a larger 

‘systems’-based assessment of the effects of deregulation of modules of miRNAs 

in determination of longevity. Of course, it must be recognized that these results 

are from an in silico predictive algorithm and are not necessarily indicative of 

actual interactions in vivo or in vitro. Finally, it is possible that the effects we see 

may derive from differences between the strains unrelated to longevity. However, 

evidence suggests that there are links between both miR-664-3p and miR-203-

3p and lifespan in human studies233,236, suggesting that unrelated strain 

differences alone probably do not account for our observations, at least for these 

microRNAs. 

In conclusion, we present evidence that three miRNAs, miR-203-3p, miR-664-3p 

and miR-708-5p are robustly associated with median strain lifespan in 6 well-

characterized inbred strains of mice, and that both early life (miR-203-3p) and 

later life (miR-664-3p and miR-708-5p) changes in their expression may 

modulate the expression of target genes in several very well-known ageing and 

longevity pathways. These studies demonstrate the importance of miRNAs in 

determination of mammalian longevity and raise the possibility that they may 

have utility as biomarkers of healthy ageing in the future. 
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4.7 Methods 

4.7.1 Mouse tissue used in the study 

Samples of spleen tissue were obtained from mice of six strains (A/J, 

NOD.B10Sn-H2b/J, PWD/PhJ, 129S1/SvImJ, C57BL/6J and WSB/EiJ), selected 

for having variable life expectancy (see Table 4.4 for details of lifespan, numbers 

of animals used in each category and their respective characteristics). Median 

lifespan was measured in a longitudinal study157,159 at Jackson Laboratory 

Nathan Shock Center of Excellence in the Basic Biology of Aging. All tissues used 

in the present study were taken from male animals which were part of a cross 

sectional study being run at the same time, in the same mouse room as the 

longitudinal study mentioned above. All experiments were carried out in 

accordance with National Institutes of Health Laboratory Animal Care Guidelines 

and was approved by the Animal Care and Use Committee (ACUC) of The 

Jackson Laboratory. Details of mouse strains used and animal husbandry have 

been previously published104. Spleen tissue was excised immediately after death, 

placed into RNA-later storage solution (Sigma-Aldrich, St. Louis, MO, USA) and 

snap-frozen in vapor phase liquid nitrogen for storage within 5 minutes of 

collection. 
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Table 4.4: Mouse strains and characteristics 

Median lifespan and maximum age (average of longest-surviving 20% of animals) are given for 
each strain in the present study. All mice used were male. 

 

Strain 
Strain Median 

Lifespan (days) 

Strain 
Maximum 
Age (days) 

Longevity 
Category 

n Young    
(6 

months) 

n Old         
(20/22 

months) 

A/J 623 785 Average 
lifespan 

7 6 

NOD.B10Sn-
H2b/J 

696 954 
Average 
lifespan 

3 6 

PWD/PhJ 813 956 
Average 
lifespan 

5 6 

129S1/SvlmJ 882 1044 Long-lived 8 8 

C57BL/6J 901 1061 Long-lived 10 9 

WSB/EiJ 1005 1213 Long-lived 5 10 

 

 

4.7.2 MicroRNA candidate transcripts for analysis 

To determine which microRNA transcripts to assess for association with 

longevity, an initial high-throughput array analysis was performed to measure the 

expression of a wide spectrum of microRNAs. In an attempt to ensure the best 

possible chance of detecting differences with lifespan, the arrays were run using 

all available samples from young animals (sacrificed at 6 months old) of A/J and 

WSB/EiJ, the two strains at either extreme of lifespan (623 days for A/J and 1005 

days for WSB/EiJ). The top 10 most significantly associated microRNAs from this 

analysis were followed up with targeted microRNA expression experiments in old 

and young animals from all 6 strains. 
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4.7.3 RNA Extraction 

Tissue samples were removed from RNA-later storage solution and placed in 

1 mL TRI Reagent® Solution (Thermo Fisher, Waltham, MA, USA) supplemented 

with the addition of 10 mM MgCl2 to aid recovery of microRNAs165. Samples were 

then completely homogenized for 15 mins in a bead mill (Retsch Technology 

GmbH, Haan, Germany). Phase separation was carried out using chloroform. 

Total RNA was precipitated from the aqueous phase by means of an overnight 

incubation at −20 °C with isopropanol. RNA pellets were then ethanol-washed 

twice and re-suspended in RNase-free dH2O. RNA quality and concentration was 

assessed by NanoDrop spectrophotometry (NanoDrop, Wilmington, DE, USA). 

4.7.4 High-throughput MicroRNA Arrays 

MegaPlex Reverse Transcription 400ng of RNA per reaction was reverse 

transcribed using the TaqMan® MicroRNA Reverse Transcription Kit and 

Megaplex™ RT Primers, Rodent Pool Set v3.0 (Thermo Fisher, Waltham, MA, 

USA) in separate reactions for Pool A and Pool B, according to the 

manufacturer’s instructions. 

MicroRNA Array qRT-PCR Expression of a wide spectrum of microRNAs was 

measured using Quantitative RT-PCR, performed on the ABI 7900HT platform 

(Thermo Fisher, Waltham, MA, USA), using both TaqMan® Rodent MicroRNA A 

Array v2.0 and TaqMan® Rodent MicroRNA Array B cards (Thermo Fisher, 

Waltham, MA, USA). Supplementary table S18 lists the 521 unique microRNAs 

tested using this approach. Reaction mixes included 415 μl Taqman® Universal 

PCR Master Mix II (no AmpErase® UNG) (Thermo Fisher, Waltham, MA, USA), 

407.5 μl dH2O and 7.5 μl cDNA template from Pool A or Pool B Megaplex™ 

reverse transcriptions as appropriate. 100 μl of reaction solution for each sample 
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was dispensed into all chambers of an array card (again, A or B accordingly), 

then centrifuged twice for 1 minute at 1000 rpm to ensure distribution of solution 

to each well. Amplification conditions were 50 °C for 2 minutes, 94.5 °C for 

10 minutes, followed by 50 cycles of 97 °C for 30 seconds and 57.9 °C for 

1 minute. 

4.7.5 Targeted MicroRNA Expression 

Multiplex Reverse Transcription 60 ng of RNA per reaction was reverse 

transcribed using the TaqMan® MicroRNA Reverse Transcription Kit and RT 

primers provided with the TaqMan® MicroRNA Assays detailed in Supplementary 

table S19 (Thermo Fisher, Waltham, MA, USA). Each reaction contained 1 μl 

each of all the RT primers of the microRNAs to be analyzed, 10 mM dNTPs (with 

dTTP), 100 U MultiScribe™ Reverse Transcriptase, 1X Reverse Transcription 

Buffer, 7.6U RNase Inhibitor and dH2O to a final volume of 30 μl. The thermal 

profile for the reactions was 16 °C for 30 minutes, 42 °C for 30 minutes, 85 °C for 

5 minutes and a final hold at 4 °C. 

Individual microRNA qRT-PCR MicroRNA expression was measured using 

Quantitative RT-PCR, performed on the ABI 7900HT platform (Thermo Fisher, 

Waltham, MA, USA), using the TaqMan® MicroRNA Assays detailed in 

Supplementary table S19 (Thermo Fisher, Waltham, MA, USA). Reactions were 

run in triplicate on 384-well plates, using one assay per plate containing all 

samples. Each reaction included 2.5 μl TaqMan® Universal Master Mix II (no 

AmpErase® UNG) and 0.25 μl TaqMan® MicroRNA Assay (Thermo Fisher, 

Waltham, MA, USA), 0.5 μl cDNA (multiplex reverse transcribed as indicated 

above) and dH2O to a final volume of 5 μl. Amplification conditions were a single 



160 
 

cycle of 95 °C for 10 minutes, followed by 50 cycles of 95 °C for 15 seconds and 

60 °C for 1 minute. 

4.7.6 Interaction analysis 

Analyses of interactions between mouse age and strain longevity were carried 

out for the three significantly associated microRNAs using data categorized 

based on whether the median individual strain lifespan was above or below the 

median lifespan calculated across all strains, with ‘average-lived’ being <847.5 

days and ‘long-lived’ >847.5 days (see Table 4.4 for details). Interaction terms for 

the relationship between age and median strain longevity were included. 

Analyses were carried out in STATA 14 (StataCorp, College Station, TX, USA). 

4.7.7 Pathway analysis 

Pathway analysis was carried out with DIANA-miRPath v3.0222, using predicted 

microRNA targets from the DIANA-microT-CDS v5.0 algorithm245 and Gene 

Ontology genesets derived from KEGG. The p-value threshold was set to 0.05 

and MicroT threshold to 0.8. 

4.7.8 Predicted target mRNA candidates for analysis 

Target genes for validation were selected based on the MiTG scores taken from 

the DIANA-microT-CDS v5.0 algorithm245. We elected to assess the two genes 

with the highest MiTG score from each of the three pathways with the highest 

numbers of genes predicted to be targeted by the microRNAs in question; 

‘Pathways in cancer’ (mmu05200), ‘MAPK signalling pathway’ (mmu04010) and 

‘FoxO signalling pathway’ (mmu04068). We also decided to assess the two 

genes with the highest MiTG score from the ‘mTOR signalling pathway’ 

(mmu04150) and ‘Signalling pathways regulating pluripotency of stem cells’ 
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(mmu04550), as these were likely to be of interest in relation to lifespan. One 

other gene was picked (Smad4), as it is the only one to be present in 3 of the 5 

pathways we had elected to pursue and is also present in 5 of the 15 pathways 

identified from DIANA-miRPath222. 

4.7.9 Predicted Target mRNA Expression 

Reverse Transcription 200 ng of RNA per reaction was reverse transcribed 

using the SuperScript® VILO™ cDNA Synthesis Kit (Thermo Fisher, Waltham, 

MA, USA) in 20 μl reactions, according to the manufacturer’s instructions. Each 

cDNA was then diluted with 10 μl of water to give sufficient volume to carry out 

the necessary qPCR reactions. 

Predicted target mRNA qRT-PCR Predicted target mRNA expression was 

measured using Quantitative RT-PCR, performed on the QuantStudio 12 K Flex 

platform (Thermo Fisher, Waltham, MA, USA), using the TaqMan® Gene 

Expression Assays detailed in Supplementary table S20 (Thermo Fisher, 

Waltham, MA, USA). Reactions were run in triplicate on 384-well plates, using 

one assay per plate containing all samples. Each reaction included 2.5 μl 

TaqMan® Universal Master Mix II (no AmpErase® UNG) and 0.25 μl TaqMan® 

Gene Expression Assay (Thermo Fisher, Waltham, MA, USA), 0.5 μl cDNA 

(reverse transcribed as indicated above) and dH2O to a final volume of 5 μl. 

Amplification conditions were a single cycle of 95 °C for 10 minutes, followed by 

40 cycles of 95 °C for 15 seconds and 60 °C for 1 minute. 

4.7.10 Relative quantification 

In all experiments described here, the ∆∆Ct method was used to calculate relative 

expression levels of the microRNAs tested210. Expression was assessed relative 
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to the global mean of the 279 expressed microRNAs and normalized to the mean 

level of expression of each individual transcript in the shorter lifespan animals 

(A/J) for the high-throughput microRNA arrays. Data were log transformed to 

ensure normal distribution and differences in expression were tested with 

independent t-tests, using SPSS v22 (IBM, North Castle, NY, USA). For the 

targeted microRNA experiments, expression was assessed relative to the mean 

expression of three endogenous control small RNA species (snoRNA202, U6 

snRNA and U87 snRNA) and normalized to the median level of expression for 

each individual transcript across all samples. Data were log10 transformed to 

ensure normal distribution. For the predicted target mRNA experiments, 

expression was assessed relative to the mean expression of two endogenous 

control genes (Gusb and Idh3b) and normalized to the median level of expression 

for each individual transcript across all samples. Data were log10 transformed to 

ensure normal distribution. 

4.7.11 Statistical approach 

Associations between both miRNA and mRNA target expression and median 

strain lifespan were assessed using linear regression. The relationships between 

these parameters were assessed in both young and old animals of all 6 strains. 

We also assessed the relationship between median strain lifespan and miRNA 

expression in the animals not originally tested in the global analysis, to comprise 

an independent replication. Regressions were carried out using SPSS v22 (IBM, 

North Castle, NY, USA). 
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5.3 Abstract 

Dietary restriction (DR) represents one of the most reproducible interventions to 

extend lifespan and improve health outcomes in a wide range of species, but 

substantial variability in DR response has been observed, both between and 

within species. The mechanisms underlying this variation in effect are still not well 

characterised. Splicing regulatory factors have been implicated in the pathways 

linked with DR-induced longevity in C. elegans and are associated with lifespan 

itself in mice and humans.  

We used qRT-PCR to measure the expression levels of a panel of 16 age- and 

lifespan-associated splicing regulatory factors in brain, heart and kidney derived 

from three recombinant inbred strains of mice with variable lifespan responses to 

short-term (2 months) or long-term (10 months) 40% DR to determine their 

relationship to DR-induced longevity. 

We identified 3 patterns of association; i) splicing factors associated with DR 

alone, ii) splicing factors associated with strain alone or iii) splicing factors 

associated with both DR and strain. Tissue specific variation was noted in 

response to short-term or long-term DR, with the majority of effects noted in brain 

following long-term DR in the positive responder strain TejJ89. Association in 

heart and kidney were less evident, and occurred following short-term DR. 

Splicing factors associated with both DR and strain may be mechanistically 

involved in strain-specific differences in response to DR. We provide here 

evidence concordant with a role for some splicing factors in the lifespan 

modulatory effects of DR across different mouse strains and in different tissues. 
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5.4 Introduction 

Since the lifespan extension effects of dietary restriction (DR) were first reported 

in the early 1900s246,247, intensive effort has focused on characterisation of the 

underlying mechanism(s) in model organisms248-250. Several studies have shown 

the beneficial effects of DR in terms of extended lifespan to be conserved across 

many species ranging from single-celled organisms to non-human primates251-

254. To date no lifespan data are available in humans, although there are many 

opinions as to the potential for DR to affect human lifespan250,255-258. 

Notwithstanding the reported effects on lifespan, there remains clear evidence 

that DR results in multiple health benefits in many organisms including 

humans258-261. These benefits could contribute to extended ‘health span’ (the 

period of life spent free from age-related chronic diseases) in ageing human 

populations, which is arguably far more relevant from a public health perspective 

than increasing lifespan alone. However, the exact nature of the mechanism(s) 

which lead to such benefits remains the subject of discussion. There is therefore 

a need to elucidate the pathways underlying the actions of DR in order to better 

understand how it could potentially be used to extend ‘health span’ in human 

populations. 

When discussing DR as a potential intervention, it must be recognised that the 

universality of the beneficial effects is far from clear cut. In animal models, 

lifespan extension results vary with the experimental methodology used; animal 

husbandry conditions, level of DR imposed, age at initiation of DR and method of 

introduction of DR may all influence the amount of extension reported262-264. 

Genetics is clearly also an important factor to be considered, especially given that 

studies conducted across different species show highly variable effects, with 
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several reports showing dietary restriction to have no effect, or even a negative 

effect on lifespan250,262,265. However, such disparity is not limited to cross-species 

differences; two studies from 2010266,267 tested a large number of ILSXISS 

recombinant inbred mouse strains and reported wide variability in lifespan 

response to 40% DR, both lifespan extension and lifespan reduction were 

observed in similar numbers of strains in each of these experiments. It is currently 

unclear as to what caused the variation in response to DR, although a number of 

reasons have been suggested262. However, the simple fact that such variation 

exists presents valuable opportunities to study the molecular mechanisms 

involved in differential lifespan response to dietary restriction. 

One molecular mechanism with potential to play a role in the DR response is 

alternative mRNA splicing; components of the machinery that regulates this 

process have previously been implicated in DR in C.elegans67 . Alternative 

splicing is known to be a contributor to cellular plasticity and is a key element of 

the homeostatic stress response, both of which are important factors in the 

ageing process110,268. Dysregulated splicing is also a major feature of age-related 

diseases including Alzheimer’s disease, Parkinson’s disease and several tumour 

types177-179. Regulation of alternative splicing events is complex and 

multifactorial, however trans-acting splicing factors are necessary to determine 

the outcome of any particular splicing event126. The Serine Arginine-rich (SR) 

family of splicing factors and the heterogeneous nuclear ribonucleoprotein 

(HNRNP) family of splicing factors usually, but not exclusively, have stimulatory 

and inhibitory roles respectively in the determination of splice site usage176. We 

have previously shown that alternative splicing and splicing factor expression are 

deregulated during normal human ageing101 and that splicing factor expression 

levels are associated with lifespan in mice and humans104. We have also 
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demonstrated changes in splicing factor expression in senescent cells from 

multiple human tissue types in vitro103,108 and recently we reported the reversal 

of several senescent cell phenotypes through moderation of splicing factor 

expression levels using resveratrol analogues, hydrogen sulfide donors or 

inhibition of the ERK or AKT signalling pathways in cultured human cells107,269,270. 

Given the emerging importance of splicing factors in the ageing phenotype and 

links to longevity, we hypothesised that their expression may be altered under 

DR conditions, and may present some insight into the role of alternative splicing 

in the effects of DR. To explore this, we measured splicing factor transcript 

expression levels in three recombinant ILSXISS mouse strains with differential 

responses to short-term or long-term 40% DR. We identified striking tissue 

specificity in expression profiles. The expression of some splicing factors was 

associated with exposure to either short-term or long-term DR, or both, but 

demonstrated no associations with strain. Others demonstrated strain specific 

responses but were unrelated to DR status. Some splicing factors however 

demonstrated interactions between both strain and DR, and may underlie the 

observed strain specificity in DR response. 

5.5 Materials and Methods 

5.5.1 ILSXISS Mice 

The mouse strains used in the present study have been extensively described 

elsewhere161,266,267,271,272. In brief, the ILSXISS recombinant inbred (RI) mouse 

strains were originally derived from a cross between inbred long sleep (ILS) and 

inbred short sleep (ISS) mice. These two strains were developed from an original 

eight-way cross using heterogeneous stock; A, AKR, BALB/c, C3H/2, C57BL, 
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DBA/2, IsBi and RIII, the offspring of which were subsequently bred for differential 

ethanol sensitivity, giving the long and short sleep models. Over 20 successive 

generations of inbreeding of these progenitor strains (ILS X ISS) resulted in >75 

ILSXISS RI lines, each genetically distinct from each other266. These lines have 

previously been shown to have variable lifespan responses to DR, making them 

ideal for exploration of the mechanisms underlying DR-induced lifespan 

extension266,267.  

Mice from three of these strains were chosen for use in the present study, on the 

basis of replicable responses to 40% DR across two previous independent 

studies with no significant strain-specific differences in median lifespan under AL 

conditions266,267. Only female mice were used in the present study for consistency 

since one previous study267 did not include male mice. Lifespan measurements 

from the Liao study266 therefore could not be corroborated for both sexes. Mice 

were maintained in groups of 4 post-weaning in shoebox cages (48 cm × 15 cm 

× 13 cm), with AL access to water and standard chow (CRM(P), Research Diets 

Services, LBS Biotech, UK; Atwater Fuel Energy-protein 22%, carbohydrate 

69%, fat 9%) and maintained on a 12L/12D cycle (lights on 0700–1900h) at 22 ± 

2 °C.  

One of the strains chosen showed an extension of lifespan under life-long 40% 

DR (TejJ89), one showed a lifespan reduction response to 40% DR (TejJ114) 

and one exhibited no response to 40% DR (TejJ48) relative to strain-specific ad 

libitum fed controls. There is some debate as to whether these strain responses 

truly reflect each strain’s true potential for lifespan extension or simply that a 40% 

DR regime is sub-optimal in the cases of TejJ48 and TejJ114262. However for 

purposes of clarity, the strains will be referred to as positive-, negative- and non-
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responder strains since these are the responses that have previously been 

reported under 40% DR161,266,267. Mice were introduced to DR in a graded fashion; 

at 10 weeks of age mice were exposed to 10% DR (90% of AL feeding), at 11 

weeks this was increased to 20% DR, and from 12 weeks of age until the 

termination of the experiment mice were exposed to 40% DR, relative to their 

appropriate strain-specific AL controls. Mice were given either ad libitum (AL) 

feed or short- (2 months) or long-term (10 months) 40% DR, as previously 

published161. Brain, heart and kidney tissue samples were collected as part of a 

previous study, therefore full details of animal husbandry conditions, DR 

protocols and treatment of dissected tissues have all been previously described 

in Mulvey et al161. All experiments were carried out under a licence from the UK 

Home Office (Project Licence 60/4504) and followed the “principles of laboratory 

animal care” (NIH Publication No.86-23, revised 1985). 

5.5.2 Splicing factor candidate genes for analysis 

An a priori list of splicing factor candidate genes were chosen based on 

associations previously seen in multiple human ageing cohorts and in senescent 

primary human cell lines101,103,107,108. Some of the splicing factors in this list have 

also been shown to associate with lifespan in both mice and humans104. The list 

of genes included the negative regulatory splicing factors Hnrnpa0, Hnrnpa1, 

Hnrnpa2b1, Hnrnpd, Hnrnph3, Hnrnpk, Hnrnpm, Hnrnpul2, the positive 

regulatory splicing enhancers Pnisr, Srsf1, Srsf2, Srsf3, Srsf6, Tra2b and the core 

components of the spliceosome Sf1 and Sf3b1. Expression assays were 

obtained in single-tube TaqMan® Assays-on-Demand™ format (ThermoFisher, 

Waltham, MA, USA). Assay Identifiers are given in Supplementary table S21. 
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5.5.3 RNA extraction 

Snap-frozen tissues were first treated with RNAlater™-ICE Frozen Tissue 

Transition Solution (ThermoFisher, Waltham, MA, USA) according to the 

manufacturer’s instructions, in order to allow handling of the tissue without RNA 

degradation occurring due to thawing of sample. Tissue sections were then 

placed in 1 ml TRI Reagent® Solution (ThermoFisher, Waltham, MA, USA) 

supplemented with the addition of 10mM MgCl2 to aid recovery of microRNAs165. 

Samples were then completely homogenised in a bead mill (Retsch Technology 

GmbH, Haan, Germany) at a frequency of 30 cycles per second for 15 mins. 

Phase separation was carried out using chloroform. Total RNA was precipitated 

from the aqueous phase by means of an overnight incubation at -20°C with 

isopropanol. 1.2µl Invitrogen™ GlycoBlue™ Coprecipitant (ThermoFisher, 

Waltham, MA, USA) was added prior to incubation to aid pellet recovery. RNA 

pellets were then ethanol-washed twice and re-suspended in 1 x TE buffer, 

pH8.0. RNA quality and concentration were assessed by NanoDrop 

spectrophotometry (NanoDrop, Wilmington, DE, USA).  

5.5.4 Reverse transcription 

500ng of total RNA was reverse transcribed using EvoScript Universal cDNA 

Master kit (Roche LifeScience, Burgess Hill, West Sussex, UK) in 20µl reactions, 

according to the manufacturer’s instructions except for a change to the extension 

phase of the reaction: a step of 30 min at 65°C was used instead of 15 min at 

65°C. Resulting cDNA was then diluted to a final volume of 80µl with dH2O to 

ensure sufficient volume for all subsequent qRT-PCR reactions. 
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5.5.5 Quantitative real-time PCR 

1.0µl cDNA (reverse transcribed as indicated above) was added to a 5µl qRT-

PCR reaction including 2.5µl TaqMan® Universal Master Mix II, no UNG 

(ThermoFisher, Waltham, MA, USA) and 0.125µl TaqMan® Assays-on-

Demand™ probe and primer mix (corresponding to 450nM each primer and 

125nM probe). Reactions were run in triplicate on 384-well plates using the 

QuantStudio 6 Flex Real-Time PCR System (ThermoFisher, Waltham, MA, 

USA). Amplification conditions were a single cycle of 95°C for 10 min followed by 

40 cycles of 95°C for 15 s and 60°C for 1 min. As this study consisted of a 

collection of 288 samples, three separate plates were required to run all samples 

with each Taqman® assay. To mitigate the effects of plate-to-plate variation, two 

approaches were used. Firstly, samples were randomised before being assigned 

to a plate such that any given plate did not contain all the samples from one strain, 

tissue or DR condition. Secondly, internal calibrator samples were used: 6 

samples were chosen at random from the collection and separate to the main 

workflow, each sample was reverse-transcribed 3 times and diluted as described 

above. The 3 resulting cDNA samples were then pooled for each sample, mixed 

thoroughly and added as extra samples to each plate. These internal calibrator 

samples were used in the downstream analysis to normalise across plates. 

5.5.6 Data preparation 

EDS files were uploaded to the ThermoFisher Cloud (ThermoFisher, Waltham, 

MA, USA) and analysed using the Relative Quantification qPCR App within the 

software (https://www.thermofisher.com/uk/en/home/cloud.html). This platform was used 

to manually set Baseline and Threshold for each assay (see Supplementary table 

S21 for values) and to ensure there were no apparent outliers before further 
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analysis. One sample was excluded from the TejJ89 dataset at this stage as 

expression data was missing for >50% of all genes measured. Output was 

imported into Excel (Microsoft, Redmond, WA, USA) and the CT values used for 

analysis using the comparative CT method. First, raw CT values were corrected 

using the internal calibrator samples from each of the three plates. Corrected CT 

data from all genes measured, endogenous controls, calculated averages and 

geometric means of these controls along with calculated ‘global’ averages and 

geometric means across all genes measured were then uploaded to the 

RefFinder webtool273 to establish the most stable gene(s). This returned the 

‘global’ geometric mean value across all genes measured as the most stable and 

thus the most appropriate for the ΔCT normalisation step. At this point, ΔΔCT 

expression calculations were performed for each strain separately; expression 

for each transcript was calculated relative to the average expression in the ad-

libitum fed animals, for each tissue individually and separately for long-term and 

short-term treatments. Following the ΔΔCT normalisation, the fold-changes were 

calculated using the 2-ΔΔCT method, followed by an additional normalisation using 

the geometric mean expression of the non-responder strain (TejJ48) as a 

baseline.  

This final normalisation step was intended to account for any minor changes in 

splicing factor expression caused by DR, but presumably unrelated to the 

lifespan-alteration response seen in the positive (TejJ89) and negative (TejJ114) 

responder strains. The expression profiles of splicing factors in the non-

responder strain (TejJ48) under DR conditions are shown in Supplementary 

figure S2 and Supplementary table S22. As can be seen, there are very few 

significant alterations in expression levels (and none that meet multiple testing 

criteria), although a certain amount of deviation from zero can be seen. These 
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deviations in expression are likely to be brought about through the imposition of 

a DR regime, however owing to the lack of response in this strain it is reasonable 

to assume that they are highly unlikely to be contributory to the responses seen 

in the other strains. As such, normalisation using these minor deviations should 

merely remove a certain amount of ‘background’ from the positive- and negative-

responder strain data. As a consequence of this normalisation, the data from 

TejJ48 were effectively set as a zero point against which TejJ89 and TejJ114 

were compared, so results for TejJ48 are presented only in supplementary data. 

Data were log transformed to ensure normal distribution and outlier detection was 

then performed in SPSS (IBM, Armonk, NY, USA). Univariate outliers were 

identified using standardised z-scores, with any individual measures for each 

gene falling outside the cut-off (set at 3 standard deviations from the mean) being 

discarded. Multivariate outliers were identified using a regression model with 

Mahalanobis distance as an output, followed by comparison of the calculated 

Mahalanobis distances with the critical χ2 value for the dataset274. One sample 

from the TejJ89 dataset for which the Mahalanobis distance exceeded the critical 

χ2 was discarded, leaving a total of n = 286 samples to take forward for statistical 

testing. The characteristics of this final set of samples are summarised in Table 

5.1. 

5.5.7 Statistical analysis 

Differences in gene expression were tested using ANCOVA between 1) DR and 

AL feeding regimes and 2) TejJ89 and TejJ114 positive and negative responder 

strains under DR conditions. qRT-PCR plate was included as a co-variate in order 

to control for any batch effects across the 3 plates used for each gene expression 

assay. Linear regression models were then performed using DR status and 
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responder strain as independent variables and including an interaction term to 

determine the presence of moderating effects between the two variables. 

ANCOVAs and regressions were carried out in STATA v15.1 (StataCorp, College 

Station, TX, USA). Benjamini, Krieger and Yekutieli false discovery rate (FDR) 

calculations175 were performed using GraphPad Prism 8.1.1 (GraphPad 

Software, San Diego, CA, USA), with the q-value set at 5%. 
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Table 5.1: Details of mice used in the study 

Shown here are the numbers of animals included in each feeding regime and diet for each tissue 
in each strain of mouse used in the current study. 

 

  

Strain Tissue Diet Regime n 

TejJ48 

Brain 

AL 
2 month 8 

10 month 8 

DR 
2 month 8 

10 month 8 

Heart 

AL 
2 month 8 

10 month 7 

DR 
2 month 8 

10 month 8 

Kidney 

AL 
2 month 7 

10 month 8 

DR 
2 month 7 

10 month 8 

TejJ89 

Brain 

AL 
2 month 8 

10 month 8 

DR 
2 month 8 

10 month 8 

Heart 

AL 
2 month 8 

10 month 8 

DR 
2 month 9 

10 month 8 

Kidney 

AL 
2 month 8 

10 month 10 

DR 
2 month 8 

10 month 6 

TejJ114 

Brain 

AL 
2 month 8 

10 month 8 

DR 
2 month 8 

10 month 8 

Heart 

AL 
2 month 8 

10 month 8 

DR 
2 month 8 

10 month 8 

Kidney 

AL 
2 month 8 

10 month 7 

DR 
2 month 9 

10 month 8 
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5.6 Results 

5.6.1 Splicing factors demonstrate altered expression levels under DR conditions 

(‘DR associated factors’) 

We identified that several splicing factors displayed differential expression levels 

with short-term or long-term DR, and that these differences displayed striking 

tissue specificity (Figure 5.1, Supplementary tables S22, S23 and S24). In brain, 

most of the expression changes we observed were associated with long-term 

40% DR, mainly in the positive responder strain TejJ89 and largely belonging to 

the Hnrnp class of splicing inhibitors. Expression levels of over half (9/16) of the 

splicing factors tested were significantly altered with DR at a nominal level, with 

4 of these (Hnrnpa0, Hnrnpa1, Hnrnph3 and Hnrnpk) remaining statistically 

significant after correction for multiple testing. Conversely, following short-term 

40% DR in brain, differences were seen equally frequently in positively and 

negatively responding strains and mainly involved Srsf splicing activators or core 

spliceosome components, although only one (Srsf6) met multiple testing criteria 

(Figure 5.2a & 5.2b). In heart, we identified most alterations in conjunction with 

short-term DR, with almost all differences being found in the negative responder 

strain TejJ114, involving both Srsf and Hnrnp splicing factors, the majority of 

which (Hnrnpa1, Hnrnpa2b1, Hnrnpd, Srsf6 and Sf1) were significant after 

correcting for multiple testing (Figure 5.3a & 5.3b). Finally, in kidney, as we saw 

in the heart, most of the changes we identified were in conjunction with short-

term DR but occurred in both positively and negatively responsive strains. 

Differences found involved mainly Srsf splicing activators or core components of 

the spliceosome, and 5 out of 14 of these (Hnrnpa1, Srsf1, Srsf6, Tra2b and Sf1) 

remained significant after correction for multiple testing. (Figure 5.4a & 5.4b). 
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Figure 5.1 Tissue-specificity of splicing factor expression under 40% DR 
conditions 

Heatmaps depicting post-ANCOVA marginal effects for log fold-change in 40% DR expression 
levels of each transcript (when compared to AL). Data from short-term and long-term 40% DR 
regimes are shown for each tissue separately. Panel a shows data for the positive responder 
(TejJ89) and panel b for the negative responder (TejJ114). Transcripts up-regulated in 40% DR 
are shown in green while those that are down-regulated are shown in red. 
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Figure 5.2: Effects of 40% DR on splicing factor expression in brain tissue 

Shown here are transcript expression levels in ILSXISS mouse brain tissue under short-term and 
long-term DR conditions. Panel a shows expression under short-term 40% DR, panel b shows 
expression under long-term 40% DR. Plots show post-estimation marginal effects from the linear 
regressions used for interaction analysis. Data points represent log fold-change in DR expression 
levels of each transcript (when compared to AL), separately for the two mouse strains. Significant 

differences are denoted with stars:  = p<0.05,  = p<0.01,  = p<0.001. Stars indicated in 

black denote associations which meet the multiple testing threshold, while those in grey represent 
nominal associations. Data for the positive responder strain (TejJ89) is shown as solid points and 
line in black, while the negative responder strain (TejJ114) is shown as open points and dashed 
line in grey. The null point is indicated by a dotted line. Error bars represent 95% confidence 
intervals. 
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Figure 5.3: Effects of 40% DR on splicing factor expression in heart tissue  

Shown here are transcript expression levels in ILSXISS mouse heart tissue under short-term and 
long-term DR conditions. Panel a shows expression under short-term 40% DR, panel b shows 
expression under long-term 40% DR. Plots show post-estimation marginal effects from the linear 
regressions used for interaction analysis. Data points represent log fold-change in DR expression 
levels of each transcript (when compared to AL), separately for the two mouse strains. Significant 

differences are denoted with stars:  = p<0.05,  = p<0.01,  = p<0.001. Stars indicated in 

black denote associations which meet the multiple testing threshold, while those in grey represent 
nominal associations Data for the positive responder strain (TejJ89) is shown as solid points and 
line in black, while the negative responder strain (TejJ114) is shown as open points and dashed 
line in grey. The null point is indicated by a dotted line. Error bars represent 95% confidence 
intervals. 
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Figure 5.4: Effects of 40% DR on splicing factor expression in kidney tissue  

Shown here are transcript expression levels in ILSXISS mouse kidney tissue under short-term 
and long-term DR conditions. Panel a shows expression under short-term 40% DR, panel b 
shows expression under long-term 40% DR. Plots show post-estimation marginal effects from the 
linear regressions used for interaction analysis. Data points represent log fold-change in DR 
expression levels of each transcript (when compared to AL), separately for the two mouse strains. 

Significant differences are denoted with stars:  = p<0.05,  = p<0.01,  = p<0.001. Stars 

indicated in black denote associations which meet the multiple testing threshold, while those in 
grey represent nominal associations. Data for the positive responder strain (TejJ89) is shown as 
solid points and line in black, while the negative responder strain (TejJ114) is shown as open 
points and dashed line in grey. The null point is indicated by a dotted line. Error bars represent 
95% confidence intervals. 
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5.6.2 Splicing factors demonstrate different patterns of expression with DR in 

positive and negative responder strains (‘strain-associated factors’) 

We next identified splicing factors that demonstrated differences in expression 

patterns between the positive and negative responder strains under short-term 

or long-term 40% DR. With the exception of brain, most of the differential 

expression levels in the two strains were present under short-term DR conditions 

(Supplementary table S25). In brain, only expression of Hnrnpa0 and Srsf2 

differed between strains under short-term DR, and only Srsf2 remained 

significant after correction for multiple testing (Figure 5.2a). Many more 

incidences where the positive and negative responder strains demonstrated 

differences in splicing factor expression were evident in brain in response to long-

term DR; 11/16 genes exhibited differential expression between strains under 

these conditions, with 6 of these (Hnrnpa2b1, Hnrnpd, Hnrnph3, Hnrnpk, Srsf6 

and Sf1) meeting the multiple testing threshold (Figure 5.2b). Several differences 

between strains were apparent in heart under conditions of short-term DR, which 

involved both Srsf and Hnrnp transcripts (Figure 5.3a), although only one of these 

(Hnrnpd) was significant when corrected for multiple testing. Fewer expression 

differences were apparent overall under long-term DR in heart (Figure 5.3b), 

however 2 of these (Hnrnpul2 and Srsf3) met multiple testing criteria. Kidney 

demonstrated fewer alterations than either brain or heart, with differences seen 

only in response to short-term DR, although 2 of these (Hnrnpa1 and Sf1) met 

the multiple testing threshold (Figure 5.4a & 5.4b). 
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5.6.3 Expression levels of some splicing factors are associated with both lifespan 

effects and DR (‘interacting factors’) 

Some of the most interesting associations are those in which splicing factor 

expression is associated with both DR and strain. In such cases it is reasonable 

to postulate that those transcripts may be involved in pathways which contribute 

to the observed responses to 40% DR within each strain, but are also playing 

some part in the differences seen in strain-specific lifespan response, and so 

these splicing factors may comprise part of the molecular mechanism behind the 

response to DR. We therefore sought to identify situations where a statistical 

interaction was apparent between DR, strain and splicing factor expression 

(Supplementary table S26). In brain, only Srsf2 displayed a nominal interaction 

under short-term DR conditions (Figure 5.2a), whereas under long-term DR, 9 of 

16 splicing factors tested showed at least nominal interactions, with 4 of these 

(Hnrnpa1, Hnrnpa2b1, Hnrnph3 and Hnrnpk) significant after correction for 

multiple testing (Figure 5.2b). In heart, far fewer interactions were apparent 

overall, with 3 of the 16 splicing factors having nominally significant interactions 

under short-term DR (Figure 5.3a) and only 1 nominal interaction was detected 

under long-term DR conditions (Figure 5.3b), however none of these were 

significant after correction for multiple testing. Finally, in kidney tissue only 2 

transcripts were found to show interactions, and only under conditions of short-

term DR, with one of these (Sf1) meeting the criteria for multiple testing (Figure 

5.4a & 5.4b). 
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5.7 Discussion 

Lifespan extension as a result of dietary restriction (DR) has been recognised for 

over a century246,247 and has since been the subject of intensive research. The 

relationship between DR and lifespan is however sometimes unclear, with 

variation in the lifespan effect reported both across and within species250,262,265-

267. It is apparent therefore that our understanding of the mechanistic basis 

underpinning responses to DR is not complete, and that other influences exist 

which may explain some of the observed strain heterogeneity. One such 

influence may be the interface between the environmental stimulus (DR) and 

factors moderating the expression or activity of gene expression. While many 

such factors exist, one that is highly likely to play a part is alternative splicing, as 

it is a fundamental component of the response of cells to external and internal 

stimuli121, and components of the splicing machinery have previously been 

implicated in response to DR67,185. Here, we have measured transcript expression 

levels of an a priori panel of age- or senescence-related splicing regulatory 

factors in brain, heart and kidney tissue taken from three ILSXISS recombinant 

inbred mouse strains with previously reported different lifespan responses to 40% 

DR. Animals were exposed to both short-term and long-term 40% DR and 

subsequent analyses were performed to characterise expression differences 

related to DR alone, differences only related to strain, and effects attributable to 

both. Our results show that expression levels of several splicing factor transcripts 

are significantly affected by either short-term or long-term DR, that there are 

significant differences in expression levels of some transcripts between positive 

and negative responder strains, and that there are strong tissue specific 

influences on both effects. Furthermore, some splicing factors demonstrate 

statistical interactions between their expression, DR and strain lifespan response, 
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which may indicate mechanistic involvement in the divergent lifespan response 

to DR observed in these mouse strains under DR conditions. 

Dietary restriction has been shown to be linked to lifespan, with multiple pathways 

involved including those involved in genomic stability, proteostasis, inflammation, 

autophagy, mitochondrial function, oxidative damage and nutrient signalling 

pathways (IIS, IGF-1, SIRT, AMPK and mTOR)242,275. It is known that the ability 

to respond to internal and external sources of cellular stress is an important factor 

in successful ageing110, and that transcriptomic responsiveness plays a large part 

in this, including the plasticity of response that is achieved through alternative 

splicing268. A recent study has shown that the splicing factor SF1 is necessary for 

lifespan extension by DR in C. elegans, specifically through the modulation of 

TORC1 pathway components67. Our previous work has shown that both 

alternative splicing and more specifically the expression levels of splicing 

regulatory factors that control it, are associated with ageing in humans101, cellular 

senescence in vitro103,108 and lifespan in animal models104. Recently we also 

showed that alteration of splicing factor levels using small molecules such as 

resveratrol analogues, hydrogen sulfide donors or inhibitors of ERK or AKT 

signalling can reverse senescence phenotypes in vitro107,269,270. Given this 

evidence, it is reasonable to hypothesise that regulation of alternative splicing 

may play a role in the lifespan modification response following DR.  

The results presented here are consistent with a hypothesis that altered splicing 

regulation may form part of the mechanistic response to DR in mice. We propose 

that the splicing factors we tested can be classified into three broad classes: 1) 

DR-associated factors. Expression of these splicing factors is significantly 

affected by DR, but no differences are apparent between strains, suggesting that 

although they may have some association to DR, they are unlikely to contribute 
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to any strain-specific differences seen in the DR response. 2) Strain-associated 

factors. Expression of these splicing factors is significantly different between 

strains but do not differ between AL and DR. 3) Interacting factors. Splicing 

factors showing statistically significant interactions between DR and strain 

lifespan response in terms of their expression. Where such interactions exist, the 

associations between splicing factor expression and either DR or responder 

strain (or both), coupled with a statistically significant mediation effect between 

the two variables (Figure 5.5), suggests that these splicing factors may be 

mechanistically involved in defining the divergent lifespan response observed in 

these mouse strains under 40% DR. 

 

Figure 5.5: Directionality of effects and potential moderating interactions 

This figure shows the likely interplay between the variables measured in the present study. Direct 
effects are shown as solid black arrows, while interactions where one variable could be 
moderating the effect exerted between other variables are shown as dashed arrows. 

 

Splicing factors showing statistical interactions between strain and DR were very 

common in brain, particularly in response to long-term DR. This may reflect a 

more pressing need for the brain to moderate gene output to maintain 
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homeostatic control than is necessary in the other tissues. It is interesting to note 

that within the splicing factors affected in the brain, a preponderance of the 

differences noted between AL and DR (7 out of 8) are observed in the positive 

responder strain while only 3 of 8 are altered in the negative responder. Few 

associations were shared between tissues, with only Srsf6 and Hnrnpa1 showing 

patterns that were shared between brain and heart (Srsf6) or brain and kidney 

(Hnrnpa1).  

Our study has several strengths, including a comprehensive assessment of 

strain-, tissue- and duration effects. There are of course also limitations to this 

work; it would have been advantageous to measure alternative isoform 

expression of target genes of these splicing factors to determine whether they 

could actively be affecting alternative splicing. Another caveat to the work is that 

optimally, protein levels of splicing factors would be informative. Unfortunately 

this was not possible due to limits on starting material. We have used an FDR 

approach to account for multiple testing, following the two-stage linear step-up 

procedure of Benjamini, Krieger and Yekutieli175. However, it must be recognised 

that although relatively modest, correlations do exist between expression levels 

of many splicing factors (Figure 5.6) and that further correlations are likely to exist 

between different DR treatments and indeed to an extent between the different 

mouse strains. All of this suggests that the tests performed here are not 

completely independent, which in turn greatly complicates any sensible 

application of multiple testing criteria. In addition, while groups of 8 animals per 

condition is reasonable for a study of this type, there may be an impact on 

statistical power which could result in Type II errors. Therefore, we recognise that 

the multiple testing threshold applied here may be overly severe, and as such 
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have presented nominal findings alongside those which are FDR-corrected, 

although we recognise that careful interpretation must be applied to such results. 

In summary, this study has shown that the expression of splicing factor transcripts 

shows widespread alterations in response to dietary restriction, and that these 

are highly tissue specific. It is also apparent that certain transcripts show 

interactions between the effects of DR, expression levels and strain lifespan 

response, which could therefore be involved in the mechanisms driving lifespan 

modulation via DR.



191 
 

 

Figure 5.6 Correlations between splicing factor expression levels 

Pearson correlations of relationships between expression levels of all splicing factors measured. Positive correlations are shown in green and negative correlations in 
red.
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6.3 Abstract 

Dysregulation of splicing factor expression is emerging as a driver of human 

ageing; levels of transcripts encoding splicing regulators have previously been 

implicated in ageing and cellular senescence both in vitro and in vivo. We 

measured the expression levels of an a priori panel of 20 age- or senescence-

associated splicing factors by qRT-PCR in peripheral blood samples from the 

InCHIANTI Study of Aging, and assessed longitudinal relationships with human 

ageing phenotypes (cognitive decline and physical ability) using multivariate 

linear regression. AKAP17A, HNRNPA0 and HNRNPM transcript levels were all 

predictively associated with severe decline in MMSE score (p = 0.007, 0.001 and 

0.008 respectively). Further analyses also found expression of these genes was 

associated with a performance decline in two other cognitive measures; the Trail 

Making Test and the Purdue Pegboard Test. AKAP17A was nominally associated 

with a decline in mean hand-grip strength (p = 0.023), and further analyses found 

nominal associations with two other physical ability measures; the Epidemiologic 

Studies of the Elderly – Short Physical Performance Battery and calculated speed 

(m/s) during a timed 400m fast walking test. These data add weight to the 

hypothesis that splicing dysregulation may contribute to the development of some 

ageing phenotypes in the human population. 
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6.4 Introduction 

There is an intimate relationship between stress responses and successful 

ageing110 yet the ability to respond appropriately to stressful environments and to 

maintain systemic homeostasis declines with age in multiple species276-278. 

Cellular responses to external and internal stressors are mediated at the level of 

genomic plasticity, in particular at the level of the transcriptome. Several 

mechanisms are known to play a part in the diversity of response, including 

transcriptional regulation at the level of polymerase activity117, post-

transcriptional regulation120, epigenetics279 and genomic landscape119. 

Alternative splicing comprises a key part of the homeostatic response to 

stress121,280,281, and dysregulation of this process is now emerging as a new and 

important driver of cellular ageing101,103,282. Over 95% of genes are capable of 

producing more than one mRNA product under different conditions and 

alternatively-expressed mRNAs can have profoundly different temporal or spatial 

expression patterns, or demonstrate major differences in functionality283-285. 

Alternative splicing decisions are made by a series of trans-acting splicing 

regulatory proteins termed splicing factors. These are the Serine Arginine-rich 

(SR) family of splicing factors which usually, but not exclusively, promote splice 

site usage, and the heterogeneous nuclear ribonucleoprotein (HNRNP) family of 

splicing factors which are usually, but not exclusively, associated with inhibition 

of splice site usage176. SR proteins and HNRNPs bind to exon/intron splicing 

enhancer (ESE/ISE) or silencer (ESS/ISS) elements in the vicinity of the splice 

sites and the balance of activators and inhibitors at any given splice site regulates 

splice site usage126. The expression levels of splicing regulators is known to be 

associated with ageing; of 7 gene ontology pathways robustly associated with 
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age in a large cross-sectional population study of human ageing, 6 were directly 

involved in mRNA splicing processes101. Splicing factor expression is also 

associated with lifespan in mice and humans104. Alterations in splicing factor 

expression have also been reported in senescent human cells of multiple tissue 

types103,108 and restoration of splicing factor expression to levels consistent with 

a younger profile was sufficient to reverse multiple senescent cell phenotypes in 

senescent human fibroblasts in vitro107. 

We have previously observed disruption of splicing factor expression in human 

senescent cells103,108, and demonstrated that experimental manipulation of 

splicing factor expression is capable of inducing rescue from the senescent cell 

phenotype107,269,270. Although we have demonstrated epidemiological links with 

ageing itself, and reversal of cellular senescence in vitro, evidence that the 

phenomena we observe in vitro is linked with downstream ageing phenotypes is 

lacking. In this study, we addressed this question by measurement of the 

expression of an a priori panel of age- and senescence-related splicing factor 

genes in human peripheral blood mRNA from the InCHIANTI study of Aging. We 

used samples from two follow-up visits (FU3; 2007 – 2010 and FU4; 2012 - 2014) 

of the InCHIANTI study of Aging, and related their expression to changes in 

recorded measures of two important human ageing phenotypes; cognitive and 

physical function. We initially used the Mini Mental State Exam (MMSE) score 

and mean hand-grip strength to identify putative associations between splicing 

factor expression and changes in cognitive or physical ability respectively. We 

then assessed expression of these transcripts against other cognitive and 

physical measures available in the dataset. In each case, a set of sub-analyses 

were also performed to test the robustness of the findings. 
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We found that the expression of three splicing factor genes, HNRNPM, 

HNRNPA0 and AKAP17A may be predictive for change in this population; all 

three genes were associated with cognitive decline as measured by the Mini-

Mental State Examination (MMSE), Trail-Making Tests part A and B (TMT A/B), 

and the Purdue Pegboard Test (PPT). AKAP17A was also associated with a 

decline in physical ability as measured by hand-grip strength, the Epidemiologic 

Studies of the Elderly – Short Physical Performance Battery (EPESE-SPPB) and 

calculated speed during a timed 400m fast walking test. Our data suggest that 

age-associated dysregulation of splicing factor expression in ageing humans may 

contribute to the development of downstream ageing outcomes. 

6.5 Methods 

6.5.1 InCHIANTI cohort and selection of participants 

The InCHIANTI study of Aging is a population study of ageing163. Participants 

undertook detailed assessment of health and lifestyle parameters at baseline, 

and again at 3 subsequent follow-ups (FU2; 2004 – 2006, FU3; 2007 – 2010 and 

FU4; 2012 - 2014). The present study used participants from the third and fourth 

follow-up visits (FU3 and FU4). RNA samples and clinical/phenotypic data were 

already available for 698 participants at FU3. The collection of the FU4 samples 

and data comprise part of this study. During the FU4 interviews in 2012/13, blood 

and clinical/phenotypic data were collected from 455 study participants. These 

data were cross-checked against RNA samples and clinical/phenotypic data 

already held from FU3, to ensure that sample and phenotypic data was available 

from both collections. 393 individuals fitted these criteria, of which 9 died shortly 

after the FU4 visit and so were excluded from the analysis. From the remaining 
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384 eligible samples, 300 were randomly selected from the cohort to be analysed 

for expression of splicing factor genes. Anthropometric parameters and blood cell 

subtypes in FU4 were measured as previously163. 

6.5.2 Splicing factor candidate genes for analysis 

An a priori list of splicing factor candidate genes were chosen based on 

associations we had documented with human ageing in multiple populations and 

in senescent primary human cell lines in our previous work101,103,107. We have 

also found associations of components of this gene set with lifespan in both mice 

and humans104. The list of genes included the positive regulatory splicing factors 

AKAP17A, SRSF1, SRSF2, SRSF3, SRSF6, SRSF7, PNISR and TRA2B, the 

negative regulatory splicing inhibitors HNRNPA0, HNRNPA1, HNRNPA2B1, 

HNRNPD, HNRNPH3, HNRNPK, HNRNPM, HNRNPUL2 and the IMP3, 

LSM14A, LSM2 and SF3B1 core components of the spliceosome. Expression 

assays were obtained in custom TaqMan® low-density array (TLDA) format 

(ThermoFisher, Waltham, MA, USA). Assay Identifiers are given in 

Supplementary table S27. 

6.5.3 RNA Collection and Extraction 

2.5ml of peripheral blood was collected from each participant into PAXgene Blood 

RNA Tubes (IVD) (PreAnalytiX GmbH, Hombrechtikon, Switzerland). Blood tubes 

were then treated according to the manufacturer’s instructions and subsequently 

cold-chain shipped to the UK. RNA extractions were then carried out using the 

PAXgene Blood mRNA Kit (Qiagen, Hilden, Germany), according to 

manufacturer’s instructions. Samples were assessed for RNA quality and 

quantity by Nanodrop spectrophotometry (NanoDrop, Wilmington, DE, USA). 
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6.5.4 Reverse Transcription and quantitative RT-PCR 

100ng of total RNA was reverse transcribed using SuperScript® VILO™ cDNA 

Synthesis Kit (ThermoFisher, Waltham, MA, USA) in 20μl reactions, according to 

the manufacturer’s instructions. 20μl cDNA (reverse transcribed as indicated 

above) was added to 50μl TaqMan® Universal Master Mix II, no UNG 

(ThermoFisher, Waltham, MA, USA) and 30μl RNase-free dH2O, then loaded 

onto TaqMan® Low-Density Array 384-Well Microfluidic cards. 100μL reaction 

solution was dispensed into each TLDA card chamber and the card centrifuged 

twice for 1 min at 216 x g to ensure distribution of solution to each well. The 

expression of transcripts in each sample was measured in duplicate replicates. 

Cards were run on the 7900HT Fast Real-Time PCR System (ThermoFisher, 

Waltham, MA, USA). Amplification conditions were as follows: a single cycle of 

50°C for 2 minutes, a single cycle of 94.5°C for 10 minutes followed by 40 cycles 

of 97°C for 30 seconds and 59.7°C for 1 minute. 

6.5.5 Data preparation 

SDS files were uploaded to the ThermoFisher Cloud (ThermoFisher, Waltham, 

MA, USA) and analysed using the Relative Quantification qPCR App 

encompassed within the software (https://www.thermofisher.com/uk/en/home/cloud.html). 

This platform was used to manually set Baseline and Threshold for each assay 

(see Supplementary table S27 for values) and to ensure there were no apparent 

outliers before further analysis. One sample was excluded at this stage as 

expression data was missing for all genes measured. Output was imported into 

Excel (Microsoft, Redmond, WA, USA) and the CT values used for analysis using 

the comparative CT method. The most stable genes for use as endogenous 

controls were determined from the raw data using the RefFinder webtool273, 
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which returned the geometric mean value across all genes measured as the most 

stable control, and thus the most appropriate for the ΔCT normalisation step. 

Expression was then calculated relative to the median expression for each 

individual transcript. Data were log transformed to ensure normal distribution. 

Outlier detection was performed in SPSS (IBM, Armonk, NY, USA). Univariate 

outliers were identified using standardised z-scores, with any individual measures 

for each gene falling outside the cut-off (set at 3 standard deviations from the 

mean) being discarded. Multivariate outliers were identified using a regression 

model with Mahalanobis distance as an output, followed by comparison of the 

calculated Mahalanobis distances with the critical χ2 value for the dataset274. One 

sample for which the Mahalanobis distance exceeded the critical χ2 was 

discarded, leaving a total of n=298 samples to take forward for statistical testing. 

The characteristics of this final subset of participants are summarised in Table 

6.1. 
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Table 6.1: Participant details  

Characteristics of the InCHIANTI participants used in the present study. Panel A shows summary 
of non-clinical details, panel B shows summary results of clinical/laboratory tests and panel C 
shows summary results of phenotypic measures used for analysis. 

A. 

  Follow-up 3 Follow-up 4 

  n % n % 

Participants  298 100 298 100 

Age (years) 

30-39 21 7.05 11 3.69 

40-49 31 10.40 28 9.40 

50-59 31 10.40 28 9.40 

60-69 35 11.74 34 11.41 

70-79 111 37.25 38 12.75 

80-89 67 22.48 142 47.65 

90-100 2 0.67 17 5.70 

Gender 
Male 136 45.64 136 45.64 

Female 162 54.36 162 54.36 

Pack years 
smoked 
(lifetime) 

None 159 53.36 NO DATA 

<20 79 26.51 NO DATA 

20-39 44 14.76 NO DATA 

40+ 16 5.37 NO DATA 

Site 
Greve 140 46.98 140 46.98 

Bagno a Ripoli 158 53.02 158 53.02 

Education 
level attained 

Nothing 28 9.4 24 8.05 

Elementary 121 40.6 125 41.95 

Secondary 51 17.11 59 19.80 

High School 46 15.44 58 19.46 

Professional school 33 11.07 11 3.69 

University or 
equivalent 

19 6.38 21 7.05 

 

B. 

 Follow-up 3 Follow-up 4 

 Mean 
Std. 
Dev. 

Min Max Mean 
Std. 
Dev. 

Min Max 

Age (years) 67.69 15.68 30.00 94.00 72.92 15.68 35.00 
100.0

0 

BMI 26.97 4.27 15.01 42.99 26.86 4.42 13.39 41.19 

White blood cell 
count (n, K/ul) 

6.39 1.60 2.10 13.00 6.16 1.72 2.30 16.59 

Neutrophils (%) 56.61 8.61 26.20 81.20 56.50 9.23 22.20 88.40 

Lymphocytes (%) 31.56 8.04 9.80 59.90 32.47 8.70 8.30 63.30 

Monocytes (%) 8.08 2.22 3.70 21.30 7.36 2.28 1.60 24.40 

Eosinophils (%) 3.19 2.20 0.00 21.50 3.21 2.02 0.00 13.00 

Basophils (%) 0.55 0.20 0.10 1.30 0.47 0.29 0.00 2.10 
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Table 6.1 (cont.) 
 
C. 

  Follow-up 3 Follow-up 4 
 

n Mean 
Std. 
Dev. 

Min Max Mean 
Std. 
Dev. 

Min Max 

Corrected MMSE 
score 

296 27.22 3.18 14.00 30.00 25.71 5.11 0.00 30.00 

Trail-Making Test 
Part A (mins) 

268 0.91 0.62 0.23 5.00 1.13 0.83 0.25 5.00 

Trail-Making Test 
Part B (mins) 

179 1.56 1.02 0.47 5.00 1.91 1.19 0.52 5.00 

Mean hand-grip 
strength (Kg) 

285 29.67 12.28 10.00 70.75 28.11 12.14 5.00 65.50 

 
 

6.5.6 Phenotypic outcomes for analysis 

The current study analysed the associations of splicing factor gene expression at 

FU3 with the following cognitive phenotypic outcomes; MMSE score, Trail-

Making-Test (TMT A&B) and Purdue Pegboard Test (as measures of cognitive 

function), along with hand-grip strength, EPESE-SPPB composite score and 

calculated speed during a 400m fast walk (as measures of physical ability). 

MMSE score was measured at both FU3 and FU4 using the standard test, after 

which the data was corrected to adjust for incomplete tests. This was calculated 

using the score attained as a proportion of the maximum possible points for the 

parts of the test that were completed. Decline in MMSE score was calculated by 

subtracting the score at FU4 from the score at FU3. Time taken to complete the 

Trail-Making-Tests part A and B were measured in seconds at both FU3 and FU4 

using the standard tests. Decline in performance on the tests was calculated by 

subtracting the score at FU4 from the score at FU3. Decline in seconds was then 

converted to a decline in fractions of a minute prior to analysis. The Purdue 

Pegboard Test was administered as standard (although data for the assembly 

portion of the test was not available), and scores for number of pegs placed in 

the board for right-hand, left-hand and both-hands were summed to give a total 
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number of pegs placed during the test. Decline in performance on the test was 

calculated by subtracting the total number of pegs placed at FU4 from the total 

number of pegs placed at FU3. 

Hand-grip strength was measured in kilograms at both FU3 and FU4 using a 

dynamometer, with two separate measurements taken for each hand. Mean 

hand-grip strength was used for the analyses in this study, and was calculated 

as the mean of all 4 hand-grip strength measurements across both hands. 

Decline in mean hand-grip strength was calculated by subtracting the 

measurement at FU4 from the measurement at FU3. The EPESE-SPPB was 

administered and scored as described elsewhere286, and a composite score 

generated from the sub-scores of the 3 activities performed: repeated chair-

stand, standing balance and 4m normal pace walk. Decline in performance was 

calculated by subtracting the composite score at FU4 from the composite score 

at FU3. The 400m fast walk was performed by completing 20 laps of a 20m circuit 

with a maximum of 2 stops if the subject required. Speed in m/s was calculated 

over the entire distance (any individuals who did not complete the test were 

excluded from further analysis), and decline in performance was calculated by 

subtracting the speed at FU4 from the speed at FU3. 

6.5.7 Sub-analyses for robustness testing 

For all phenotypes, any associations found in the full cohort were then tested for 

robustness through four sub-analyses on different subsets of the data. 

First, individuals with the lowest initial scores (at FU3) were excluded from the 

analysis, to avoid confounding due to the inclusion of participants already on a 

trajectory to decline. For MMSE score, the cut-off was set at >=28, as a score 

above 28 is clearly indicative of a lack of cognitive impairment. In the case of 
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mean hand-grip strength, the cut-offs used were those previously reported as a 

consensus definition of sarcopenia by The European Working Group on 

Sarcopenia in Older People (EWGSOP)287, i.e. <20kg for females and <30kg for 

males. For all the other phenotypes analysed, the dataset at FU3 was divided 

into quintiles, with the lowest scoring quintile being excluded from this sub-

analysis. 

Second, an analysis was carried out using only the eldest participants aged >= 

70 years at FU3 to exclude any potential confounding effects from younger 

participants. Declining cognitive and physical ability are predominantly features 

of ageing, and measures such as mean hand-grip strength and MMSE are likely 

to perform poorly in measuring change of function in young, non-compromised 

individuals. 

Third, some individuals measured showed an apparent improvement in 

performance over time between FU3 and FU4, which may reflect a degree of 

measurement error. To test this, we first calculated an allowed error of 5% (as a 

fraction of the total range of change measured), then removed any individuals 

with scores showing an increase greater than the allowed error between the 

follow-ups, for each phenotype. 

Finally, participants were categorised into mild or severe decline classes, to 

assess whether the associations seen were specific to either group of individuals. 

Decline in MMSE score was categorised for sub-analysis as follows; ‘No decline’ 

(score change of -1 to +7, based on a 5% allowable error calculated as described 

above), ‘Mild decline’ (-2 to -8), and ‘Severe decline’ (-9 to -22). While opinion 

differs as to what amounts to a significant rate of change in MMSE during 

cognitive decline, we chose to classify a severe decline as a drop in MMSE score 
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of >3 per annum on average, based on information from several previous studies 

288-290. Analysis of categorised MMSE decline was carried out using the ‘No 

decline’ class as the comparator. 

Decline in mean hand-grip strength was categorised as follows; quintiles of 

change in mean hand-grip were calculated separately for males and females, 

after which the respective 20% of males and females displaying the largest 

decline in mean hand-grip strength were together designated as the ‘Severe 

decline’ class (mean hand-grip change of -3.75kg to -22kg). The remainder of the 

cohort was divided into ‘No decline’ (-1kg to +15.5kg, based on a 5% allowable 

error calculated as described above) and ‘Mild decline’ (-1.25kg to -6kg) 

categories. Analysis of categorised mean hand-grip strength decline was carried 

out using the ‘No decline’ class as the comparator. 

For all other measures used for analysis, categorisation was carried out by 

dividing using the cohort into quintiles based on the change in score, and the 

quintile with the greatest decline in performance designated as the ‘Severe 

decline’ class. The remainder of the cohort was divided into ‘No decline’ and ‘Mild 

decline’ classes using the same method as described above for MMSE and mean 

hand-grip strength. Analysis of categorised variables was carried out using the 

‘No decline’ class as the comparator in all cases. 

6.5.8 Statistical Analysis 

Associations of gene expression with cognitive and physical phenotype 

measures were assessed using multivariate linear regression models. All models 

were adjusted for age, sex, BMI, smoking (lifetime pack-years), highest education 

level attained, study site, TLDA batch and cell counts (neutrophils, lymphocytes, 

monocytes, eosinophils and overall white blood cell count). Regressions were 
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carried out in STATA SE v15.1 (StataCorp, College Station, TX, USA). Pearson 

correlation tests were carried out in SPSS (IBM, Armonk, NY, USA) to assess 

relationships between splicing factor expression levels, phenotypic measures 

and established biomarkers of ageing. 

6.6 Results 

6.6.1 AKAP17A, HNRNPA0 and HNRNPM transcript levels are associated with 

change in MMSE score 

MMSE is a commonly used measure of cognitive decline288-290. HNRNPM 

expression showed a significant association with decline in MMSE score in the 

entire cohort (β-coefficient -0.005, p = 0.006), with HNRNPA0 also showing a 

nominal association (β-coefficient -0.003, p = 0.019). In both cases individuals 

with lower expression levels at the early time-point (FU3) had subsequently 

experienced a greater drop in MMSE score (Figure 6.1, Supplementary table 

S28). The remaining splicing factor genes did not demonstrate associations 

between MMSE and expression. 
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Figure 6.1: Associations of splicing factor expression with MMSE score and 
mean hand-grip strength 

Forest plots showing splicing factor expression in relation to (a.) decline in corrected MMSE 
scores and (b.) mean hand-grip strength in the InCHIANTI human ageing cohort. Individual 
splicing factors are indicated on the y-axis while β-coefficients of change in log expression per 
unit change in measurements are given on the x-axis. Positive values denote an increase in 
expression with larger decline in score while negative values denote a decrease in expression 
with larger decline in score. Error bars denote 95% confidence intervals, significance is shown 
using stars as follows: * = p<0.05, ** = p<0.01. Stars indicated in black denote associations which 
meet multiple testing thresholds, while those in grey represent nominal associations 

 

To test the robustness of our findings we carried out four sub-analyses. Similar 

sub-analyses were also used on all other associations found in the present study 

and full details can be found in the Methods. In brief, regression models were 

repeated on the following subsets of data: firstly we removed individuals with low 

starting scores, secondly only individuals over 70 years of age were included, 

thirdly any individuals showing an increase in performance over time were 

excluded, and finally participants were categorised into ‘mild’ or ‘severe’ decline 

classes.  

Although AKAP17A showed only a trend with MMSE decline in the initial analysis, 

the observation that it had the largest β-coefficient, coupled with a suggestive p-

value of 0.077 merited its inclusion in these further analyses. As can be seen in 

Figure 6.2a, 6.3a and 6.4a (Supplementary table S29), both HNRNPA0 and 
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HNRNPM remained at least nominally associated with decline in MMSE score 

across all sub-analyses, and significantly associated with severe decline in the 

categorised analysis. AKAP17A on the other hand was only nominally associated 

with decline in MMSE in the sub-analysis excluding the individuals displaying an 

apparent improvement over time, but in the categorised analysis a significant 

association was also seen between AKAP17A expression and severe decline. 

To assess whether these findings represent independent effects or could be 

driven by co-ordinate expression of the three genes, we carried out correlation 

analysis. Correlations between the 3 genes in question were only moderate (R 

values: HNRNPA0 & HNRNPM: 0.282, HNRNPA0 & AKAP17A: 0.239, HNRNPM 

& AKAP17A: 0.440 (Supplementary table S30). 

6.6.2 Expression of HNRNPA0, HNRNPM and AKAP17A transcripts are also 

associated with two other measures of cognitive ability 

The Trail Making Test (TMT) is another widely used test for cognitive assessment 

which addresses visual scanning, graphomotor speed and executive function291. 

Figure 6.2b&c, 6.3b&c and 6.4b&c (Supplementary table S31) show AKAP17A 

and HNRNPA0 transcript levels were at least nominally associated with increased 

time to complete TMT-A, both in the full cohort (β-coefficients 0.057 and 0.028, p 

= 0.009 and 0.004 for AKAP17A and HNRNPA0 respectively) and in all sub-

analyses with the exception of the categorised analysis for AKAP17A. HNRNPM 

expression was nominally associated with increased time to complete TMT-B, but 

only in the full cohort (β-coefficient 0.026, p = 0.036) and categorised analyses. 

In all cases, lower expression levels were associated with an increase in the time 

taken to complete the test (i.e. a decline in performance). 
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The Purdue Pegboard Test (PPT) was originally developed as a tool to evaluate 

fine manual dexterity but has since been used for assessments of cognitive 

function292,293. As shown in Figure 6.2d, 6.3d and 6.4d (Supplementary table 

S31), all three transcripts were nominally associated with a performance decline 

in the full cohort (β-coefficients -0.005, -0.002 and -0.002, p = 0.012, 0.047 and 

0.044 for AKAP17A, HNRNPA0 and HNRNPM respectively). While AKAP17A 

and HNRNPA0 transcript levels were found to be significantly associated with 

performance decline in some of the sub-analyses, HNRNPM showed no such 

further associations. 

Pearson correlations were also carried out to assess relationships between the 

aspects of cognition being measured by MMSE, TMT and PPT. Correlations 

between the measures were relatively weak (R values range from -0.381 to 

0.322, see Supplementary table S32a). 
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Figure 6.2: Sub-analyses of AKAP17A associations with measures of 
cognitive function 

Bar charts showing the associations between expression of AKAP17A and change in 
performance in tests of cognitive function. Panel (a.) shows associations with MMSE score, panel 
(b.) shows associations with TMT-A, panel (c.) shows associations with TMT-B and panel (d.) 
shows associations with PPT. Different sub-analyses are plotted separately as indicated in the 
figure legend. Error bars denote 95% confidence intervals, significance is shown using stars as 
follows: * = p<0.05, ** = p<0.01. Stars indicated in black denote associations which meet multiple 
testing thresholds, while those in grey represent nominal associations 
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Figure 6.3: Sub-analyses of HNRNPA0 associations with measures of 
cognitive function 

Bar charts showing the associations between expression of HNRNPA0 and change in 
performance in tests of cognitive function. Panel (a.) shows associations with MMSE score, panel 
(b.) shows associations with TMT-A, panel (c.) shows associations with TMT-B and panel (d.) 
shows associations with PPT. Different sub-analyses are plotted separately as indicated in the 
figure legend. Error bars denote 95% confidence intervals, significance is shown using stars as 
follows: * = p<0.05, ** = p<0.01. Stars indicated in black denote associations which meet multiple 
testing thresholds, while those in grey represent nominal associations 
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Figure 6.4: Sub-analyses of HNRNPM associations with measures of 
cognitive function 

Bar charts showing the associations between expression of HNRNPM and change in 
performance in tests of cognitive function. Panel (a.) shows associations with MMSE score, panel 
(b.) shows associations with TMT-A, panel (c.) shows associations with TMT-B and panel (d.) 
shows associations with PPT. Different sub-analyses are plotted separately as indicated in the 
figure legend. Error bars denote 95% confidence intervals, significance is shown using stars as 
follows: * = p<0.05, ** = p<0.01. Stars indicated in black denote associations which meet multiple 
testing thresholds, while those in grey represent nominal associations 
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6.6.3 Expression of AKAP17A transcript is associated with mean hand-grip 

strength 

Hand-grip strength, a measure of muscle weakness, is a useful indicator of 

physical functioning and health-related quality of life in the elderly294. Of the 

transcripts tested, only AKAP17A transcript levels were nominally associated with 

decline in hand-grip strength between FU3 and FU4 (β-coefficient -0.006, p = 

0.023) (Figure 6.1, Supplementary table S33). As shown in Figure 6.5a 

(Supplementary table S34), robustness testing of this finding revealed one 

nominal and one significant association in the sub-analyses, and no associations 

with the categorised data. 

6.6.4 Expression of AKAP17A transcript is also associated with two other 

measures of physical ability 

The Epidemiologic Studies of the Elderly – Short Physical Performance Battery 

(EPESE-SPPB) is a validated measure of lower body function and is predictive 

of several important health outcomes, including mortality295. AKAP17A 

expression was found to be nominally associated with decline in the EPESE-

SPPB composite score (β-coefficient -0.011, p = 0.048), and as can be seen in 

Figure 6.5b (Supplementary table S35), subsequent testing showed it also to be 

nominally associated in two of the sub-analyses. 

Another measure of physical ability that was available in the data set was the 

calculated speed (m/s) during a timed 400m fast walking test. Once again, 

AKAP17A expression was found to be nominally associated with decline in 

walking speed (β-coefficient -0.252, p = 0.013). Figure 6.5c (Supplementary table 

S35) shows that this nominal association only held true in one sub-analysis. 
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Finally, Pearson correlations were carried out to assess relationships between 

the aspects of physical ability being measured. Again, correlations between the 

measures were relatively weak (R values range from 0.217 to 0.357, see 

Supplementary table S32b). 

Figure 6.5: Sub-analyses of AKAP17A associations with measures of 
physical ability 

Bar charts showing the associations between expression of AKAP17A and change in 
performance in tests of physical ability. Panel (a.) shows associations with mean hand-grip 
strength, panel (b.) shows associations with the EPESE-SPPB composite score and panel (c.) 
shows associations with calculated speed (m/s) during a 400m fast walking test. Different sub-
analyses are plotted separately as indicated in the figure legend. Error bars denote 95% 
confidence intervals, significance is shown using stars as follows: * = p<0.05, ** = p<0.01. Stars 
indicated in black denote associations which meet multiple testing thresholds, while those in grey 
represent nominal associations 
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6.6.5 HNRNPA0, HNRNPM and AKAP17A transcripts show correlations with 

known biomarkers of ageing 

To test whether these transcripts might share expression patterns with levels of 

recognised biomarkers of ageing296, where such measures were available in our 

dataset, we carried out Pearson correlations between transcript expression levels 

and measurements of interleukin-6 (IL-6), albumin and total erythrocyte numbers. 

Significant correlations were found between: AKAP17A expression and IL-6 

levels (R value = 0.144, p = 0.013); HNRNPA0 expression and both IL-6 and 

erythrocyte number (R values = -0.200 and 0.115, p = 0.001 and 0.048 

respectively); HNRNPM expression and albumin levels (R value = -0.137, p = 

0.018). 

6.7 Discussion 

The human genome is equipped with mechanisms to generate transcriptomic 

diversity from a relatively small DNA complement130. This transcriptomic diversity 

underpins our ability to respond appropriately to internal and external 

environmental challenges, while the failure of such cellular stress responses 

contributes to ageing itself and to age-related diseases110. Alternative splicing is 

one of the major mechanisms for generation of such diversity268, and is regulated 

by the combinatorial binding of a set of trans-acting activating and inhibitory 

proteins termed splicing factors to cis- sequence control elements126. 

Dysregulation of splicing factor expression occurs with human ageing at the 

epidemiological and cellular levels 101,103, and is also associated with longevity in 

animal models 104. These changes are drivers of cellular ageing, since restoration 

of splicing factor levels is able to reverse multiple senescence phenotypes in 

aged human cells in vitro 107,269,270. In the work described here, we provide 
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evidence that changes in splicing factor expression are not only present in in vitro 

data, but may also contribute to the development of downstream ageing 

phenotypes in older people. We report predictive associations between the 

transcript expression levels of three splicing factor genes, HNRNPM, HNRNPA0 

and AKAP17A with ageing phenotypes in a human population study, the 

InCHIANTI study of Aging163. 

HNRNPM, HNRNPA0 and AKAP17A transcript levels were predictively 

associated with a decline in MMSE score as well as a decline in performance on 

the Trail-Making Test parts A & B and the Purdue Pegboard Test. Associations 

between transcript expression of all 3 genes and ageing phenotypes were 

strongest in the individuals with severe cognitive decline as measured by MMSE. 

It is possible that these three splicing factors are not independently associated 

with the traits in question, but correlations between them are only moderate. 

HNRNPM and HNRNPA0 encode splicing inhibitor proteins that have roles in 

determining the splicing patterns of several genes with relevance to brain 

physiology. TDP-43 is one of the major proteins involved with Amyotrophic lateral 

sclerosis (ALS) and Frontotemporal Dementia (FTD) in humans297. HNRNPM 

and HNRNPA0 are both known to interact with TDP-43298, and mutations in other 

HNRNPs have been described in patients with ALS299. In Drosophila species, 

depletion of the fly homologue of HNRNPM (Rump) is associated with loss of 

neuronal dendritic terminal branches; a phenotype that could be partially restored 

by the addition of a Rump transgene300. HNRNPM has also been demonstrated 

to directly regulate alternative splicing of the dopamine receptor 2 (DRD2) gene, 

whereby it inhibits the inclusion of exon 6301. DRD2 splice variants have 

previously been implicated with schizophrenia and impaired cognitive function in 

humans302,303. Similarly, increased protein expression of Hnrnpa0 in 
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hippocampus has been shown to be associated with memory formation and 

consolidation in mice304. AKAP17A, otherwise known as SFSR17A, is an X-linked 

gene encoding a splicing regulatory factor that also has roles in targeting protein 

kinase A anchoring protein to splicing factor compartments305. It is a poorly 

characterised gene, but has been previously associated with the development of 

Alzheimer’s disease; sequences deriving from this gene appear twice amongst 

probes that best differentiate Alzheimer’s disease brain samples from controls306.  

AKAP17A was also found to be associated with decline over time in measures of 

physical function, although the sporadic nature of replication of this association 

in the sub-analyses suggests that either this finding is less robust, or the 

measurements themselves are more subject to variation. No functional role for 

AKAP17A has previously been reported in relation to muscle function. 

Although the changes reported here represent changes in peripheral blood, 

similar changes to splicing regulation have been reported in senescent cell lines 

from other, less accessible tissues107,108. Splicing factor expression is ubiquitous, 

although changes in the exact composition of the splicing factor milieu will occur 

from tissue to tissue. We postulate that the expression patterns of splicing factors 

in peripheral blood may at least partly reflect changes in less accessible tissues. 

We previously demonstrated that senescence-related changes in splicing factor 

expression in endothelial cells and cardiomyocytes are preserved in human 

peripheral blood, and resultant changes in the alternative splicing of the VEGFA 

gene are associated with incident and prevalent coronary artery disease108. Both 

cognitive decline and deterioration in muscle strength also have a significant 

inflammatory component208,307. 
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Our study has several strengths; the use of a longitudinal population study has 

allowed some assessment of causality of effect. Placed in the context of the 

known dysregulation of splicing factor expression in human and animal ageing, 

their associations with longevity in both animals and humans67,104 and the 

observation that correction of splicing factor levels is sufficient to reverse 

senescence phenotypes in vitro107 suggests that these changes may be a driver 

of ageing rather than an effect. The data presented here suggest that the 

presence of dysregulated splicing factor transcripts before the emergence of 

overt disease in peripheral blood may contribute to the development of age-

related phenotypes such as cognitive decline. Our finding that expression of 

these transcripts correlate with established biomarkers of ageing is also 

suggestive that they may be indicative of future outcomes. Our study is not 

without limitations however; we have only assessed splicing factor expression at 

the level of the mRNA transcript for reasons of practicality. It is possible that 

processes such as post-transcriptional regulation of mRNA transcripts or altered 

protein kinetics may also contribute and would not be identified in our study. 

However, the observation of phenotypic changes in senescent cells in vitro 

strongly suggests that these changes may also occur at the protein level. Our 

study cohort is also relatively small in comparison to some resources. It is 

however exquisitely well characterised and features longitudinal waves of 

samples which many other studies do not. These observations require replication 

in an additional dataset in the future. However, we have measures from two 

waves of the study, which although they comprise the same people, represent 

completely separate sample collection, sample handling and analytical subsets.  

We recognise that although an adjustment for multiple testing has been applied 

at the level of phenotype (i.e. accounting for 6 measurements) throughout this 
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study, there remains a risk of Type I error in the results presented by using a 

significance level of p=0.0083 as the corrected threshold. However, the genes 

tested represented an a priori list on the basis of known associations with age or 

cellular senescence101,103, and we show here that although moderate, 

correlations do exist between splicing factor expression levels as well as between 

the measured phenotypic outcomes (Supplementary tables S30 & S32), all of 

which complicate a sensible implementation of multiple testing criteria. It is also 

possible that the statistical power of this study may be limited given the number 

of samples and the observed effect sizes, leading to potential inflation of Type II 

error. Therefore, either Bonferroni or Benjamini-Hochberg correction for both the 

number of genes and phenotypes seem likely to be overly stringent for this 

dataset, however the issue of multiple testing persists, so without independent 

validation of the findings presented here, we must be conservative with any 

interpretation of these results. 

We present here evidence to suggest that expression levels of HNRNPM, 

HNRNPA0 and AKAP17A genes may be associated with cognitive decline, whilst 

AKAP17A levels may be associated with decline in physical performance in a 

human population. These findings suggest that the age-related splicing factor 

changes we have previously reported in vitro and in vivo may contribute to the 

development of downstream ageing phenotypes in older humans. Given 

validation of these findings in an independent data set, splicing factor expression 

could comprise a relatively non-invasive biomarker of cognitive decline or 

physical ability in the future, which could be assessed from samples collected 

from routine screening of the vulnerable people in the population. 
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7.1 Summary of thesis 

Current demographic trends predict that the elderly will make up an ever-

increasing proportion of the world’s population, and that dependency ratios will 

increase because of this. Advancing age is known to be the largest risk factor for 

most chronic diseases, therefore the progressive ageing of the population will 

bring increased incidence of morbidities and the associated socio-economic 

impact. 

Ageing is a complex and heterogeneous process with a host of potential 

pathways contributing to the process. Understanding the interplay between these 

mechanisms and their regulation will be essential to the development of 

strategies aimed at increasing healthspan and alleviating the negative effects of 

age-related disease. 

I have investigated the role of RNA regulatory processes in ageing and lifespan, 

both in model organisms and in humans, to provide some insight into the ways in 

which this regulation could be involved in the development of the ageing 

phenotype and determination of lifespan/healthspan. 

7.2 Summary of data chapters 

7.2.1 Chapter 3: Changes in the expression of splicing factor transcripts and 

variations in alternative splicing are associated with lifespan in mice and humans. 

Summary 

In chapter 3, I investigated the relationship of splicing factor transcript expression 

and alternatively expressed isoforms with age and strain lifespan in mice. The 

mouse husbandry and determination of median strain lifespan were carried out 
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by collaborators at the Jackson laboratory Nathan Shock Centre of Excellence in 

the Basic Biology of Aging, who provided flash-frozen tissue for RNA extractions. 

We were supplied with spleen and quadriceps muscle samples from both young 

(6 month old) and old (20-22 month old) animals from six strains with varying 

median lifespan (range: 623 days to 1005 days). I measured expression levels of 

splicing factors and alternative isoforms using qRT-PCR on custom Taqman™ 

Low Density Arrays (TLDA) and tested this data for associations with age and 

median strain lifespan. 

It was found that several splicing factors were associated with both age and strain 

lifespan, in a highly tissue-specific manner. Importantly, these expression 

differences were apparent in young animals of the long-lived strains, suggesting 

that splicing factors may represent a determinant of lifespan. It was also shown 

that shifts in isoform expression seemed to be indicative of reduced cellular 

senescence and pro-inflammatory signalling in long-lived strains, potentially 

contributing to the longevity phenotype. 

The splicing factors that had shown significant results in the mouse work were 

then tested in pre-existing microarray-based gene expression data from a human 

cohort, to assess whether they were associated with parental longevity score (as 

a proxy measure for longevity188). Two of the splicing factors also showed 

associations in humans, strengthening the case that splicing factors are central 

to the pathways involved in mammalian ageing. 

Limitations to this chapter were the relatively small number of animals available 

for testing from each strain, and the fact that splicing patterns were only assessed 

at the level of mRNA expression. 
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Importance of findings 

To my knowledge, this work represented the first reported indication that 

regulation of alternative splicing may be involved in determination of longevity in 

mammals. Shortly after publication of this work, Will Mair’s lab at Harvard 

published a study showing that the splicing factor SF1 modulates longevity in C. 

elegans67, further strengthening our argument. 

Future work 

To address the limitations of this study, it would be advantageous to extend the 

current experiments to include a larger sample size, a greater number of tissues, 

as well as analysis of splicing patterns at the level of protein synthesis. 

Further in vitro and in vivo experiments could also be performed to establish 

causality and mechanism in terms of the role of splicing factors in determining 

lifespan. These could take the form of manipulation of splicing factor expression 

in cell culture and/or conditional knockout studies in model organisms. 

7.2.2 Chapter 4: MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are 

associated with median strain lifespan in mice. 

Summary 

In chapter 4, I examined the relationship between miRNA expression levels and 

median strain lifespan in mice. The spleen tissue used was from the same 

collection of six strains (and two ages) as used in chapter 3 (see section 7.2.1). I 

measured near-global miRNA expression in a subset of samples using a high-

throughput qRT-PCR approach, followed by a targeted validation step in all 
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available samples. Expression levels of three miRNAs were found to be robustly 

associated with strain lifespan by this method. 

Pathway analysis was carried out for these three miRNAs and target genes from 

several of the predicted target pathways were chosen for further analysis. I then 

measured expression levels of the mRNAs of the chosen genes and tested for 

associations of these with lifespan. Almost all of the genes in question also 

proved to show expression levels associated with lifespan, suggesting that these 

miRNAs are having some functional effect in the determination of lifespan. 

Limitations to this chapter were the relatively small number of animals available 

for testing from each strain, the use of a single tissue for analysis and the potential 

for cell-type variations due to the plastic nature of splenic tissue. 

Importance of findings 

While miRNAs had already been implicated in lifespan regulation of C. elegans 

and Drosophila prior to this work, only a very small number of miRNAs were 

known to have roles in longevity in mice, and these had usually been discovered 

in a single strain. This study represents a screen of six independent strains and 

has found associations of miRNAs with lifespan that had not previously been 

described. These findings add to the evidence suggesting that RNA regulation of 

gene expression is important in determining lifespan. 

Future work 

Similar to chapter 3, to address the limitations of this study it would be 

advantageous to extend the current experiments to include a larger sample size 

and a greater number of tissues. 
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To assess the importance of these miRNAs in the ageing process, further 

experiments using miRNA mimics or antagomirs could be carried out, either in 

vitro using primary cells - measuring cellular senescence as an output, or in 

model organisms to determine whether any effects on lifespan could be detected 

in vivo. 

7.2.3 Chapter 5: Dietary restriction in ILSXISS mice is associated with 

widespread changes in splicing regulatory factor expression levels. 

Summary 

In chapter 5, I investigated the relationship between splicing factor expression 

and strain lifespan response to dietary restriction (DR) in mice. The mouse 

husbandry was carried out by collaborators at the Institute of Biodiversity Animal 

Health & Comparative Medicine at the University of Glasgow, who provided flash-

frozen tissue for RNA extractions. We were supplied with brain, heart and kidney 

tissues from three strains of mice known to show differing lifespan responses to 

DR treatment. Tissues were taken from a set of animals allowed ad libitum (AL) 

feeding and a second set kept under 40% DR conditions, for two separate lengths 

of treatment; two months and ten months. I measured splicing factor transcript 

expression levels in all of these samples and tested for associations with DR in 

short- and long-term treatments, as well as associations with strain response. 

Three distinct groups of associations were found: 

1. Splicing factors associated with DR only 

2. Splicing factors associated with strain only 

3. Splicing factors associated with both DR and strain 
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The third group represent splicing factors which could be involved in the 

mechanisms determining strain-specific lifespan response to DR. The 

associations found were both tissue- and duration-specific. 

Limitations to this chapter were the fact that only levels of splicing factors were 

measured, and not alternatively spliced isoforms or protein. 

Importance of findings 

At the time of publication of this chapter, post-transcriptional RNA processing and 

alternative splicing had previously been linked to ageing and lifespan in model 

organisms308, and the aforementioned publication from the Mair lab67 (see section 

7.2.1) had shown that a splicing factor was directly involved in the lifespan 

extension seen under DR in C. elegans. However, to my knowledge this is the 

first study to examine the role of splicing factors during DR in multiple tissues 

from mice displaying variable lifespan response to the treatment and therefore 

able to offer mechanistic insights into the role of splicing in determination of 

lifespan in a mammalian system. 

Future work 

To address the limitations of this study, it would be useful to assess splicing factor 

expression at the protein level, and to test expression levels of alternatively 

spliced isoform transcripts. Considering the shifts seen in splicing factors, it is 

likely that changes would be apparent in isoform expression of alternatively 

spliced genes. It would therefore be highly informative to obtain transcriptome-

wide isoform level data from these samples to determine which transcripts are 

showing isoform ratio shifts in the different responder strains. If candidate genes 

were revealed by such work, it would also be interesting to deliver splice-
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switching oligos into model organisms, in a tissue-specific manner, to assess 

potential non-autonomous effects on longevity from isoform shifts of key genes 

in different tissues. 

7.2.4 Chapter 6: The transcript expression levels of HNRNPM, HNRNPA0 and 

AKAP17A splicing factors may be predictively associated with ageing phenotypes 

in human peripheral blood. 

Summary 

In chapter 6, I examined the relationship between splicing factor expression and 

a set of measures of two human ageing phenotypes; cognitive decline and 

reduced physical ability. Peripheral blood samples and detailed anthropometric 

data were collected from participants by collaborators involved in the InCHIANTI 

study of Aging, a longitudinal population study of human ageing in the Chianti 

region of Italy163 which has been running since 1998. We were supplied with 

blood samples and data from two of the follow-up visits in the study. I measured 

splicing factor transcript expression levels in the blood samples from the earlier 

time-point and tested for associations with decline in measures of cognitive 

function and physical ability. 

Expression levels of three splicing factors were found to predict change in 

cognitive performance, and one of these also predicted change in physical 

performance. Correlations were also found between expression levels of these 

three splicing factors and established biomarkers of ageing. These findings 

further reinforce the idea that splicing factors are central to the ageing process 

and also provide evidence that altered regulation of alternative splicing may be a 

driver in the development of ageing phenotypes. 
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Limitations to this chapter were that our findings were based on a single human 

cohort, also that measurements were only carried out for splicing factors at the 

mRNA level, and not alternatively spliced isoforms or protein. 

Importance of findings 

To my knowledge, this is the first report of a link between the expression of 

splicing regulatory factors and future health outcomes in a human population. The 

fact that these splicing factors display altered expression levels before overt 

changes in phenotype suggests that they may be mechanistically involved in the 

development of age-related phenotypes, and opens the possibility that they could 

serve as non-invasive biomarkers of declining health. 

Future work 

To address the limitations of this chapter, it would be desirable to find a separate 

longitudinal cohort study of ageing with RNA samples and similarly detailed 

anthropometric data available at multiple time-points in order to validate these 

findings. It would also be useful to assess splicing factor expression at the protein 

level. Measurements of isoform expression levels of alternatively spliced genes 

in these samples could add further valuable insights into mechanisms underlying 

development of age-related phenotypes. 

7.3 Discussion of thesis 

This thesis investigates the ways in which aspects of RNA regulation contribute 

to the ageing process and determination of lifespan in mammals. To achieve this, 

I have used two different murine models and a human cohort to identify 

associations and patterns of change in expression levels of splicing factor 

transcripts, miRNAs and alternatively expressed mRNAs. In the first mouse 
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model, I assessed the role of splicing factors, alternative splicing and miRNAs in 

normal ageing and with strain lifespan. In the second mouse model, I considered 

splicing factors under DR conditions, a well-known modifier of lifespan. In the 

human cohort, I validated findings from the first mouse model as well as 

assessing splicing factors as predictive markers of future health outcomes. 

Through this work I have shown that splicing factors are associated with lifespan 

in mice, and with parental longevity score in human peripheral blood. I then 

showed that alternatively spliced isoforms of key age-related genes are 

expressed differently according to mouse strain lifespan. Given that some of 

these associations were found in the young mice, further investigation into 

potential age/lifespan interactions suggested that these expression patterns 

could be determinants of longevity. Following on from this, I showed that three 

specific miRNAs are robustly longevity-associated in these mice. In silico 

pathway analysis of the predicted gene targets of these microRNAs implicated 

signalling cascades known to be involved in ageing, and expression levels of 

selected mRNA transcripts from these pathways were also shown to associate 

with strain lifespan, suggesting that the three miRNAs are affecting the 

determination of lifespan through modulation of gene expression levels in 

important age-related pathways. Once again, the presence of these associations 

in young mice and subsequent interaction analyses suggested that these effects 

could be determining lifespan. 

I then showed that splicing factor transcripts are associated with variable lifespan 

response in tissues taken from mice housed under 40% DR conditions. 

Expression patterns were highly tissue-specific and showed distinct differences 

with short- and long-term DR exposure. Interaction analyses between strain 
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response and DR status revealed that splicing factor expression may have a 

mechanistic involvement in determining lifespan response and perhaps suggests 

a splicing-driven homeostatic adaptation to DR conditions.  

Finally, I showed that expression levels of three splicing factor transcripts were 

predictively associated with future declines in several different measures of 

cognitive and physical ability in a human cohort, indicating that patterns of mRNA 

splicing regulation may create conditions which determine healthspan and/or 

lifespan. 

Disrupted splicing is a feature of many human diseases309-311, and several age-

related disorders are known to be directly caused by altered splicing 

patterns312,313, for example: 

• Mutations in the ABCR gene have been shown to disrupt splice sites, resulting 

in age-related macular degeneration314-316.  

• Retention of intronic sequences in the ENG and ANKRD1 genes cause 

vascular disease317  and heart disease318 respectively.  

• Alternative splicing of exon 10 in the MAPT gene disturbs the 3R-tau:4R-tau 

protein ratio which in turn causes a set of neurodegenerative diseases 

collectively known as ‘tauopathies’ including frontotemporal dementia and 

Alzheimer’s disease319.  

• A panel of genes known to be involved in alternative splicing are also 

implicated in the onset of amyotrophic lateral sclerosis320,321. 

It is also the case that many of the progeroid syndromes can be caused by 

splicing defects in key genes. Hutchinson-Gilford Progeria is caused by a 

mutation in the LMNA gene which creates a cryptic splice site in exon 11 and thus 

produces ‘progerin’, a pathogenic form of the lamin A nuclear envelope protein322. 
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Around half of the pathogenic mutations in the WRN helicase gene responsible 

for Werner syndrome are either truncations due to exon skipping or splicing 

mutations323. Branch-point site mutations in the XPC gene cause skipping of exon 

4, reduced protein levels, and have been associated with pathogenesis of 

xeroderma pigmentosum324. All known Cockayne syndrome subtypes are 

associated with mutations in either the ERCC6 or ERCC8 gene, which include 

splicing alterations325. Finally, ataxia telangiectasia is caused by mutations in the 

ATM gene, which in ≈90% of cases either truncate the transcript or affect 

splicing326. 

Added to this, many key genes in the age-related signalling pathways are 

alternatively spliced. In the IIS pathway, the insulin receptor gene (IR) is known 

to produce two alternative splice isoforms; IR-A and IR-B327, while IGF-1 

produces at least three isoforms, IGF-1Ea, IGF-1Eb and IGF-1Ec, each of which 

activates IIS in a different manner328. The mTOR pathway is known to feature at 

least 20 alternatively spliced genes, including mTOR itself312. The tumour 

suppressor transcription factor p53 is involved in several age-related processes91 

and is also a regulator of the IIS and mTOR pathways329. Alternative splicing of 

p53 produces a truncated isoform (p44 in mice, p47 in humans), increased 

expression of which shortens healthspan and lifespan in mice330. 

All the above evidence points to a central role for alternative splicing in ageing, 

lifespan and healthspan. The work that I have presented in this thesis goes a step 

further and suggests not only that alternative splicing and its regulation are 

associated with ageing and longevity, but also that there is a strong likelihood 

that they play a causal role in the determination of lifespan in mammals. 
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Very large numbers of miRNAs are known to be both correlated with and/or 

causative of progression of many diseases, both age-related and otherwise331-

335. A smaller number have also been shown to affect expression of the genes 

causing the premature ageing phenotypes seen in Hutchinson-Gilford progeria336 

and Werner syndrome337. 

It is also recognised that many miRNAs interact with genes in the signalling 

pathways involved in ageing and lifespan. A number of miRNAs have been shown 

to modulate ageing and/or lifespan by targeting genes in the IIS pathway99, and 

others are known to target elements of the mTOR pathway338. Several of these 

miRNAs and their functions are also well conserved from invertebrates through 

to mammals99, implying a key role in the regulation of these pathways. 

A review by Lorna Harries216 describes 85 miRNAs currently known to be involved 

in the ageing process, and how these relate to López-Otin’s hallmarks of 

ageing94. Interestingly, over 20% of the miRNAs described potentially target 

genes involved in more than one of the hallmarks, raising the possibility that 

networks of miRNAs may act in a coordinate fashion to allow fine control over 

several different aspects of the ageing process at once. 

Once again, existing evidence strongly suggests miRNAs play an important role 

in ageing longevity. The work presented in this thesis strengthens this hypothesis, 

implicates miRNAs that had not previously been associated with lifespan and 

indicates that they could be a causal factor in determination of lifespan. 

7.4 Conclusion 

Regulation of gene expression at the RNA level is clearly an important factor in 

ageing and determination of lifespan/healthspan. This thesis reinforces the 
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current knowledge and builds upon it, providing novel insights into the roles of 

splicing factors, alternative splicing and miRNAs in these processes.  

The finding that aspects of the RNA regulatory network show differential patterns 

of expression in young mice of different strain lifespan, coupled with the discovery 

that levels of specific splicing factors are predictive of human ageing phenotypes, 

raises the exciting possibility that direct modulation of RNA regulatory processes 

could potentially be harnessed to improve human healthspan. Alternatively, 

elements of the RNA regulatory machinery may have use as biomarkers of future 

health outcomes, allowing for application of health maintenance interventions at 

an earlier stage. 

This work, along with existing and currently unpublished data, constitute a 

growing body of evidence underlining the importance of RNA regulation in ageing. 

Taken together with the fact that López-Otin’s criteria have largely been met in 

terms of defining core mechanisms of ageing, I feel that there may be a case for 

‘Altered control of gene expression’ to be added as a 10th hallmark of ageing. 
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Supplementary Figures 

 

Supplementary Figure S1 (Chapter 3): Heat maps demonstrating inter- and 
intra-strain heterogeneity in splicing factor expression by age.  

Splicing factor expression is given along the bottom of each heat map. Mouse age is given on the 
Y-axis. No clustering of expression signatures in young or old mice is noted. Data are Z-scored, 
and each transcript is expressed as standard deviation from the mean. 
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Supplementary Figure S2 (Chapter 5): Changes in splicing factor 
expression in non-responder strain (TejJ48) under DR conditions  

Plots illustrating changes in splicing factor expression with DR in the non-responder strain of 
ILSXISS mice (TejJ48). Plot a shows mean differences between AL and DR in brain tissue under 
short-term DR, b shows mean differences between AL and DR in brain tissue under long-term 
DR, c shows mean differences between AL and DR in heart tissue under short-term DR, d shows 
mean differences between AL and DR in heart tissue under long-term DR, e shows mean 
differences between AL and DR in kidney tissue under short-term DR and f shows mean 
differences between AL and DR in kidney tissue under long-term DR. Error bars represent 95% 
confidence intervals and significant differences in splicing factor expression are denoted by stars: 

* = p<0.05. 
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Supplementary Tables 

Supplementary Table S1 (Chapter 3): Splicing factor expression in mouse spleen tissue by lifespan, across 6 strains of different 
longevities 

Data from mice of all ages, young mice only (6 months) and old mice only (20-22 months) are given separately. Data with statistically-significant effects at <0.05 are 

given in bold, underlined italic text. Tra2β was not expressed in PWD/Phj mice so this strain was excluded from the analysis for this marker. P values were determined 

from linear regression of logged data. 

 All Ages Young mice only Old mice only 

Gene 
Beta 

coefficient 
Std Error P value 

Beta 

coefficient 
Std Error P value 

Beta 

coefficient 
Std Error P value 

Hnrnpa0 0.175 0.01 0.10 0.297 0.02 0.06 0.075 0.02 0.62 

Hnrnpa1 -0.151 0.01 0.16 -0.396 0.01 0.01 0.061 0.01 0.69 

Hnrnpa2b1 -0.256 0.01 0.02 -0.578 0.01 <0.0001 0.036 0.01 0.81 

Hnrnpd -0.021 0.01 0.85 0.020 0.12 0.90 -0.045 0.02 0.76 

Hnrnph3 -0.133 0.01 0.22 -0.193 0.01 0.23 -0.098 0.02 0.513 

Hnrnpk -0.316 0.01 0.003 -0.288 0.02 0.07 -0.337 0.02 0.02 

Hnrnpm -0.310 0.01 0.003 -0.307 0.01 0.051 -0.312 0.01 0.03 

Hnrnpul2 -0.223 0.01 0.04 -0.214 0.01 0.18 -0.231 0.01 0.12 

Sf3b1 -0.212 0.01 0.05 -0.267 0.01 0.09 -0.174 0.01 0.24 

Srsf18 0.062 0.01 0.57 0.041 0.02 0.80 0.073 0.02 0.63 

Srsf1 -0.092 0.01 0.39 -0.253 0.02 0.11 0.047 0.02 0.76 

Srsf2 -0.208 0.01 0.052 -0.224 0.02 0.16 -0.189 0.02 0.20 

Srsf3 -0.130 0.01 0.23 -0.362 0.02 0.02 0.125 0.01 0.40 

Srsf6 -0.157 0.01 0.14 -0.132 0.02 0.41 -0.176 0.01 0.24 

Tra2β -0.122 0.01 0.26 -0.361 0.01 0.02 0.081 0.01 0.59 
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Supplementary Table S2 (Chapter 3): Splicing factor expression in mouse muscle tissue by lifespan across 6 strains of different 
longevities 

Data from mice of all ages, young mice only (6 months) and old mice only (20-22 months) are given separately. Data with statistically-significant effects at <0.05 are 

given in underlined, bold, italic text. Tra2β was not expressed in PWD/Phj mice so this strain was excluded from the analysis for this marker. P values were determined 

from linear regression of logged data. 

 All Ages Young mice only Old mice only 

Gene 
Beta 

coefficient 
Std Error P value 

Beta 

coefficient 
Std Error P value 

Beta 

coefficient 
Std Error P value 

Hnrnpa0 0.124 0.02 0.27 -0.086 0.03 0.62 0.357 0.02 0.01 

Hnrnpa1 -0.093 0.01 0.40 -0.200 0.01 0.25 -0.037 0.01 0.80 

Hnrnpa2b1 0.005 0.02 0.96 -0.166 0.03 0.34 0.231 0.02 0.11 

Hnrnpd -0.238 0.01 0.03 -0.177 0.01 0.31 -0.321 0.01 0.03 

Hnrnph3 -0.048 0.02 0.67 -0.227 0.03 0.19 0.115 0.02 0.44 

Hnrnpk -0.146 0.01 0.19 -0.030 0.02 0.86 -0.239 0.02 0.10 

Hnrnpm -0.019 0.01 0.86 -0.211 0.02 0.23 0.168 0.01 0.25 

Hnrnpul2 -0.050 0.02 0.66 -0.223 0.03 0.20 0.152 0.02 0.30 

Sf3b1 -0.165 0.02 0.14 -0.298 0.03 0.08 -0.008 0.02 0.96 

Srsf18 -0.180 0.01 0.10 -0.315 0.03 0.07 -0.047 0.02 0.75 

Srsf1 0.147 0.02 0.19 0.209 0.03 0.23 0.092 0.02 0.54 

Srsf2 -0.177 0.01 0.11 -0.264 0.01 0.13 -0.134 0.01 0.36 

Srsf3 -0.093 0.01 0.40 -0.396 0.01 0.02 0.105 0.01 0.48 

Srsf6 -0.066 0.02 0.55 -0.136 0.03 0.44 0.023 0.02 0.88 

Tra2β 0.030 0.03 0.80 0.054 0.05 0.77 0.013 0.03 0.94 
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Supplementary Table S3 (Chapter 3): Alternative isoform expression in mouse spleen tissue by lifespan across 6 strains of 
different longevities 

Data from mice of all ages, young (6 months) and old (24 months) are given separately. UCSC transcript Identities identified by each probe set are given under the 
gene names. Data with statistically-significant effects at <0.05 are given in bold, underlined italic text. P values were determined from linear regression on logged data. 

 All mice Young mice only Old mice only 

Isoform 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Atm-1,3 
uc009pme.2 
uc009pmd.2 

0.038 0.01 0.73 0.151 0.05 0.35 -0.054 0.01 0.71 

Atm-2 
uc012gtj.1 

-0.001 0.01 0.99 0.148 0.02 0.36 -0.162 0.01 0.27 

Cdkn2a-1 
Uc008toi.1 

-0.164 0.02 0.13 0.186 0.02 0.26 -0.433 0.03 0.002 

Cdkn2a-2 
uc008toh.1 

-0.247 0.02 0.02 0.108 0.02 0.51 -0.590 0.02 <0.0001 

Chek2-1 
uc008yrw.1 

-0.102 0.02 0.34 -0.281 0.02 0.08 0.070 0.02 0.63 

Chek2-2 
uc008yrx.1 

-0.066 0.01 0.54 -0.292 0.02 0.07 0.154 0.02 0.29 

Fn1-1 
uc007bju.2 

0.253 0.01 0.02 0.349 0.02 0.03 0.166 0.02 0.25 

Fn1-2,5 
uc007bjv.2 
uc007bjy.2 

-0.044 0.02 0.68 -0.030 0.02 0.86 -0.064 0.03 0.66 

Lmna-1 
uc008pvj.3 

-0.022 0.02 0.84 -0.070 0.03 0.67 0.033 0.02 0.82 

Lmna-1,3 
uc008pvj.3 
uc008pvl.3 

-0.114 0.02 0.29 -0.237 0.02 0.14 0.017 0.02 0.91 
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Supplementary Table S3 (cont.) 

 All mice Young mice only Old mice only 

Isoform 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Myc-1 
uc007vyh.2 

-0.098 0.01 0.36 -0.242 0.01 0.13 0.000 0.01 0.99 

Myc-1,2,3 
uc007vyh.2 
uc007vyg.2 
uc007vyi.1 

-0.124 0.01 0.25 -0.243 0.02 0.13 -0.037 0.01 0.80 

Trp53-1,3,4 
uc007jql.2 

uc007jqm.2 
uc007jqn.2 

0.144 0.02 0.18 0.406 0.01 0.009 -0.025 0.01 0.86 

Trp53-2 
uc011xww.1 

-0.236 0.01 0.03 -0.250 0.01 0.12 -0.214 0.07 0.14 

Trp53-3 
uc007jqm.2 

-0.230 0.01 0.03 -0.352 0.01 0.03 -0.121 0.01 0.41 

Vcan-1 
uc007rjg.1 

0.365 0.02 0.001 0.570 0.03 <0.0001 0.243 0.04 0.09 

Vcan-2 
uc011zck.1 

0.109 0.04 0.422 -0.058 0.05 0.77 0.220 0.06 0.24 
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Supplementary Table S4 (Chapter 3): Alternative isoform expression in mouse muscle tissue by lifespan across 6 strains of 
different longevities 

Data from mice of all ages, young (6 months) and old (20-22 months) are given separately. Data with statistically-significant effects at <0.05 are given in bold, underlined 
italic text. P values were determined from linear regression of logged data. 

 All mice Young mice only Old mice only 

Isoform 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Il1b-2 
uc008mht.1 -0.193 0.03 0.09 -0.458 0.04 0.007 -0.053 0.04 0.73 

Il1b-2,3 
uc008mht.1 
uc008mhu.1 

-0.138 0.03 0.23 -0.306 0.04 0.08 -0.074 0.03 0.63 

IL6-1,2 
uc008wuu.1 
uc008wuv.1 

-0.225 0.03 0.052 -0.482 0.04 0.006 -0.100 0.04 0.52 

Il6-1,3 
uc008wuu.1 
uc008wuw.1 

-0.279 0.03 0.01 -0.268 0.05 0.13 -0.281 0.04 0.06 

Nfkb1-1,4,5 
uc008rly.1 
uc012cyg.1 
uc008rlx.1 

0.264 0.01 0.02 0.370 0.01 0.03 0.186 0.01 0.22 

Nfkb1-1,5 
uc008rly.1 
uc008rlx.1 

0.076 0.02 0.51 -0.071 0.03 0.69 0.294 0.01 0.05 

Nfkb1-2 
uc012cyf.1 0.160 0.02 0.16 0.082 0.02 0.65 0.213 0.02 0.16 

Nfkb1-3,4,5 
uc008rlw.1 
uc012cyg.1 
uc008rlx.1 

0.268 0.01 0.02 0.283 0.01 0.11 0.275 0.01 0.07 
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Supplementary Table S4 (cont.) 

 All mice Young mice only Old mice only 

Isoform 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Nfkb1-4,5 
uc012cyg.1 
uc008rlx.1 

0.313 0.01 0.005 0.257 0.02 0.15 0.371 0.01 0.01 

Stat1-1 
uc007axy.1 -0.066 0.03 0.57 0.069 0.05 0.70 -0.171 0.04 0.26 

Stat1-3,4 
uc007axz.1 
uc007aya.2 

-0.472 0.01 <0.0001 -0.234 0.02 0.19 -0.625 0.01 <0.0001 

Stat1-2,3,4,5 
uc007ayd.2 
uc007axz.1 
uc007aya.2 
uc007ayb.2 

0.088 0.01 0.44 0.241 0.01 0.18 -0.014 0.01 0.92 

Stat1-2,4,5,6 
uc007ayd.2 
uc007aya.2 
uc007ayb.2 
uc007ayc.2 

0.219 0.01 0.052 0.429 0.01 0.01 0.096 0.01 0.53 

Stat1-5 
uc007ayb.2 0.332 0.01 0.005 0.378 0.02 0.03 0.299 0.02 0.04 

Stat1-6 
uc007ayc.2 0.338 0.03 0.003 0.460 0.03 0.007 0.271 0.04 0.08 

Tnf-1,2 
uc008cgr.2 
uc012arb.2 

-0.269 0.02 0.02 -0.282 0.03 0.11 -0.256 0.02 0.09 

Tnf-1,3 
uc008cgr.2 
uc008cgs.2 

-0.233 0.02 0.04 -0.183 0.03 0.31 -0.280 0.02 0.06 

Tnf-3 
uc008cgs.2 -0.177 0.02 0.121 -0.139 0.03 0.44 -0.199 0.03 0.19 
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Supplementary Table S5 (Chapter 3): Splicing factor expression in mouse spleen tissue by age in young (6 months) and old (20-
22 months) mice 

Data from mice of all strains, average-lived strains (median age <847.5 days) and long-lived (median lifespan >847.5 days) strains are given separately. Data with 

statistically-significant effects at <0.05 are given in bold, underlined italic text. Tra2β was not expressed in PWD/Phj mice so this strain was excluded from the analysis 

for this marker. P values were determined from linear regression analysis of logged data. 

 All strains Average-lived strains only Long-lived strains only 

Gene 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Hnrnpa0 -0.031 0.04 0.77 0.018 0.05 0.92 -0.053 0.05 0.70 

Hnrnpa1 -0.015 0.03 0.89 -0.278 0.04 0.11 0.134 0.03 0.34 

Hnrnpa2b1 -0.035 0.04 0.74 -0.460 0.05 0.005 0.248 0.04 0.07 

Hnrnpd 0.038 0.03 0.73 -0.043 0.06 0.81 0.094 0.04 0.50 

Hnrnph3 -0.170 0.03 0.11 -0.278 0.06 0.11 -0.09 0.04 0.54 

Hnrnpk 0.012 0.04 0.91 0.081 0.07 0.64 -0.104 0.03 0.46 

Hnrnpm -0.034 0.03 0.75 -0.108 0.05 0.54 -0.001 0.04 0.99 

Hnrnpul2 0.018 0.03 0.87 -0.042 0.06 0.81 0.059 0.04 0.68 

Sf3B1 0.000 0.03 0.99 -0.073 0.05 0.68 0.05 0.04 0.72 

Srsf18 0.158 0.04 0.14 0.098 0.06 0.58 0.193 0.06 0.17 

Srsf1 -0.157 0.04 0.14 -0.341 0.06 0.05 -0.042 0.05 0.76 

Srsf2 -0.178 0.04 0.10 -0.266 0.07 0.12 -0.150 0.04 0.284 

Srsf3 -0.215 0.04 0.04 -0.449 0.07 0.007 -0.007 0.04 0.96 

Srsf6 -0.082 0.04 0.45 -0.124 0.06 0.48 -0.068 0.03 0.63 

Tra2β -0.221 0.03 0.053 -0.526 0.06 0.008 -0.050 0.04 0.73 
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Supplementary Table S6 (Chapter 3): Splicing factor expression in mouse muscle tissue by age in young (6 months) and old (20-
22 months) mice 

Data from mice of all strains, average-lived strains (mean lifespan <847.5 days) and long-lived strains (mean lifespan >847.5 days) are given separately. Data with 

statistically-significant effects at <0.05 are given in bold, underlined italic text. Tra2β was not expressed in PWD/Phj mice so this strain was excluded from the analysis 

for this marker. P values were determined from linear regression of logged data. 

 All Ages Average-lived strains only Long-lived strains only 

Gene 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Hnrnpa0 0.123 0.05 0.27 -0.057 0.08 0.75 0.236 0.07 0.11 

Hnrnpa1 0.217 0.03 0.05 0.174 0.04 0.32 0.267 0.05 0.07 

Hnrnpa2b1 -0.048 0.06 0.67 -0.228 0.08 0.19 0.075 0.07 0.61 

Hnrnpd 0.123 0.03 0.27 0.221 0.04 0.20 0.113 0.04 0.44 

Hnrnph3 -0.001 0.06 0.99 -0.184 0.08 0.29 0.122 0.08 0.41 

Hnrnpk -0.046 0.04 0.68 0.086 0.07 0.62 -0.128 0.05 0.39 

Hnrnpm 0.187 0.04 0.09 0.040 0.05 0.82 0.281 0.05 0.053 

Hnrnpul2 0.029 0.05 0.80 -0.134 0.07 0.44 0.128 0.08 0.39 

Sf3B1 0.017 0.06 0.88 -0.146 0.08 0.40 0.127 0.08 0.39 

Srsf18 0.095 0.05 0.39 -0.055 0.07 0.76 0.222 0.07 0.13 

Srsf1 -0.046 0.06 0.68 0.016 0.10 0.93 -0.114 0.07 0.44 

Srsf2 0.084 0.03 0.45 0.134 0.04 0.44 0.083 0.05 0.58 

Srsf3 0.100 0.04 0.37 -0.086 0.05 0.62 0.272 0.04 0.06 

Srsf6 -0.100 0.06 0.37 -0.159 0.08 0.36 -0.063 0.09 0.67 

Tra2β -0.06 0.10 0.61 -0.018 0.18 0.93 -0.082 0.13 0.58 
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Supplementary Table S7 (Chapter 3): Alternative isoform expression in mouse spleen tissue by age in young (6 months) and old 
(20 -22 months) mice 

Data from mice of all strains, average-lived strains (mean lifespan <847.5 days) and long-lived strains (mean lifespan (>847 days) are given separately. UCSC transcript 
Identities identified by each probe set are given under the gene names. Data with statistically-significant effects at <0.05 are given in bold, underlined italic text. P 
values were determined from linear regression of logged data. 

 All strains Average-lived strains only Long-lived strains only 

Isoform 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Atm-1,3 
uc009pme.2 
uc009pmd.2 

-0.044 0.04 0.69 0.127 0.06 0.47 -0.156 0.05 0.36 

Atm-2 
uc012gtj.1 

-0.072 0.04 0.50 0.163 0.06 0.35 -0.277 0.05 0.10 

Cdkn2a-1 
uc008toi.1 

0.399 0.06 <0.0001 0.659 0.09 <0.0001 0.224 0.08 0.10 

Cdkn2a-2 
uc008toh.1 

0.529 0.06 <0.0001 0.815 0.06 <0.0001 0.346 0.08 0.007 

Chek2-1 
uc008yrw.1 

-0.331 0.05 0.002 -0.499 0.07 0.002 -0.227 0.07 0.10 

Chek2-2 
uc008yrx.1 

-0.349 0.05 0.001 -0.542 0.06 0.001 -0.232 0.06 0.10 

Fn1-1 
uc007bju.2 

0.065 0.07 0.55 0.164 0.08 0.35 -0.004 0.06 0.98 

Fn1-2,5 
uc007bjv.2 
uc007bjy.2 

0.105 0.05 0.33 0.167 0.06 0.34 0.086 0.08 0.54 

Lmna-1 
uc008pvj.3 

-0.047 0.06 0.66 -0.147 0.11 0.40 0.047 0.06 0.73 

Lmna-1,3 
uc008pvj.3 
uc008pvl.3 

-0.198 0.05 0.06 -0.335 0.09 0.05 -0.101 0.06 0.47 

Myc-1 
uc007vyh.2 

0.03 0.03 0.76 -0.027 0.07 0.88 0.109 0.03 0.43 
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Supplementary Table S7 (cont.) 

 All strains Average-lived strains only Long-lived strains only 

Isoform 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Myc-1,2,3 
uc007vyh.2 
uc007vyg.2 
uc007vyi.1 

0.062 0.04 0.56 0.000 0.08 0.99 0.155 0.03 0.26 

Trp53-1,3,4 
uc007jql.2 

uc007jqm.2 
uc007jqn.2 

-0.243 0.02 0.02 0.007 0.03 0.97 -0.407 0.02 0.002 

Trp53-2 
uc011xww.1 

-0.114 0.02 0.29 -0.06 0.03 0.73 -0.147 0.03 0.29 

Trp53-3 
uc007jqm.2 

-0.240 0.03 0.03 -0.313 0.05 0.07 -0.194 0.04 0.16 

Vcan-1 
uc007rjg.1 

0.063 0.09 0.56 0.198 0.11 0.26 0.004 0.13 0.98 

Vcan-2 
uc011zck.1 

-0.034 0.13 0.80 -0.217 0.21 0.31 0.129 0.15 0.47 
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Supplementary Table S8 (Chapter 3): Alternative isoform expression in mouse muscle tissue by age in young (6 months) and old 
(20 -22 months) mice 

Data from mice of all strains, average-lived strains (mean lifespan <847.5 days) and long-lived strains (mean lifespan (>847 days) are given separately. UCSC transcript 
Identities identified by each probe set are given under the gene names. Data with statistically-significant effects at <0.05 are given in bold, underlined italic text. P 
values were determined from linear regression of logged data. 

 All strains Average-lived mice only Long-lived mice only 

Isoform 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Il1b-2 
uc008mht.1 0.373 0.10 0.001 0.139 0.17 0.44 0.601 0.10 <0.0001 

Il1b-2,3 
uc008mht.1 
uc008mhu.1 

0.393 0.10 <0.0001 0.231 0.15 0.20 0.544 0.11 <0.0001 

IL6-1,2 
uc008wuu.1 
uc008wuv.1 

0.230 0.11 0.05 -0.008 0.20 0.97 0.435 0.13 0.003 

Il6-1,3 
uc008wuu.1 
uc008wuw.1 

-0.196 0.12 0.09 -0.247 0.18 0.17 -0.161 0.16 0.30 

Nfkb1-1,4,5 
uc008rly.1 
uc012cyg.1 
uc008rlx.1 

0.015 0.03 0.90 0.066 0.05 0.71 -0.050 0.04 0.74 

Nfkb1-1,5 
uc008rly.1 
uc008rlx.1 

0.083 0.06 0.45 -0.110 0.06 0.54 0.161 0.09 0.29 

Nfkb1-2 
uc012cyf.1 -0.070 0.06 0.54 -0.149 0.08 0.41 -0.029 0.08 0.85 

Nfkb1-3,4,5 
uc008rlw.1 
uc012cyg.1 
uc008rlx.1 

-0.088 0.03 0.44 -0.165 0.04 0.36 -0.070 0.05 0.64 
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Supplementary Table S8 (cont.) 

 All strains Average-lived mice only Long-lived mice only 

Isoform 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Nfkb1-4,5 
uc012cyg.1 
uc008rlx.1 

-0.107 0.04 0.35 -0.170 0.07 0.34 -0.091 0.05 0.55 

Stat1-1 
uc007axy.1 0.040 0.11 0.73 0.171 0.18 0.34 -0.071 0.14 0.64 

Stat1-3,4 
uc007axz.1 
uc007aya.2 

-0.105 0.05 0.36 0.221 0.04 0.22 -0.207 0.07 0.17 

Stat1-2,3,4,5 
uc007ayd.2 
uc007axz.1 
uc007aya.2 
uc007ayb.2 

-0.053 0.04 0.64 0.064 0.05 0.73 -0.130 0.05 0.39 

Stat1-2,4,5,6 
uc007ayd.2 
uc007aya.2 
uc007ayb.2 
uc007ayc.2 

-0.203 0.03 0.07 -0.014 0.04 0.94 -0.321 0.05 0.03 

Stat1-5 
uc007ayb.2 -0.059 0.05 0.61 0.242 0.04 0.17 -0.020 0.07 0.89 

Stat1-6 
uc007ayc.2 -0.121 0.09 0.30 -0.139 0.15 0.44 -0.155 0.11 0.32 

Tnf-1,2 
uc008cgr.2 
uc012arb.2 

-0.058 0.06 0.61 0.040 0.08 0.83 -0.082 0.09 0.59 

Tnf-1,3 
uc008cgr.2 
uc008cgs.2 

0.053 0.06 0.64 0.178 0.09 0.32 0.002 0.08 0.99 

Tnf-3 
uc008cgs.2 -0.076 0.07 0.51 0.145 0.10 0.42 -0.219 0.09 0.15 
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Supplementary Table S9 (Chapter 3): Analyses of potential interactions 
between mouse strain longevity and mouse age 

Std. Err = standard error, 95% Ci = 95% Confidence intervals. Average lived strains have a 
lifespan of <847.5 days, long-lived strains have a mean lifespan of >847.5 days. Young mice are 
6 months, old mice are 20-22 months old. Statistically significant results are indicated in bold 
underlined text. 

 
Longevity:age interactions - splicing factors 

(Spleen) 
 

Gene Beta 
coefficient 

Std. Err 95% CI P value 

Hnrnpa1 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

-0.06 
-0.14 
-0.09 

 
 

0.04 
0.04 
0.04 

 
 

-0.14 to 0.18 
-0.21 to -0.56 
-0.02 to 0.02 

 
 

0.13 
0.001 
0.01 

Hnrnpa2b1 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

-0.15 
-0.19 
-0.12 

 
 

0.05 
0.05 
0.05 

 
 

-0.26 to -0.05 
-0.29 to -0.10 
-0.21 to -0.02 

 
 

0.005 
<0.0001 

0.02 

Hnrnpk  
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

0.03 
-0.18 
-0.20 

 
 

0.05 
0.05 
0.05 

 
 

-0.07 to 0.13 
-0.27 to -0.08 
-0.29 to -0.10 

 
 

0.52 
<0.0001 
<0.0001 

Hnrnpm 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

-0.03 
-0.15 
-0.14 

 
 

0.05 
0.05 
0.05 

 
 

-0.12 to 0.06 
-0.23 to -0.05 
-0.23 to -0.08 

 
 

0.52 
0.002 
0.001 

Sf3b1 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

-0.02 
-0.11 
-0.09 

 
 

0.05 
0.05 
0.05 

 
 

-0.12 to 0.07 
-0.20 to -0.02 
-0.19 to -0.01 

 
 

0.64 
0.02 
0.04 

Srsf3 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 

 
 

-0.19 
-0.17 
-0.17 

 
 

0.05 
0.05 
0.05 

 
 

-0.30 to -0.08 
-0.28 to -0.07 
-0.28 to -0.08 

 
 

0.001 
0.001 
0.001 

 

Tra2β 

 
Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

-0.18 
-0.13 
-0.14 

 
 

0.06 
0.05 
0.05 

 
 

-0.30 to -0.07 
-0.23 to -0.26 
-0.24 to -0.04 

 
 

0.002 
0.02 
0.01 
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Supplementary Table S9 (cont.) 

 
Longevity:age interactions - splicing factors 

 (Muscle) 
 

Gene Beta 
coefficient 

Std. Err 95% CI P value 

Srsf3 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 

 
 

-0.03 
-0.14 
-0.05 

 
 

0.05 
0.05 
0.05 

 
 

-0.13 to 0.07 
-0.24 to -0.03 
-0.14 to 0.04 

 
 

0.61 
0.01 
0.28 

 
Longevity:age interactions - Isoforms 

 (Spleen) 
 

Gene Beta 
coefficient 

Std. Err 95% CI P value 

Cdkn2a-1 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

0.44 
0.09 
0.22 

 
 

0.10 
0.09 
0.09 

 
 

0.25 to 0.63 
-0.09 to 0.27 
0.06 to 0.40 

 
 

<0.0001 
0.34 
0.01 

Cdkn2a-2 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

0.50 
0.04 
0.27 

 
 

0.09 
0.08 
0.08 

 
 

0.32 to 0.67 
-0.12 to 0.20 
0.11 to 0.43 

 
 

<0.0001 
0.66 

0.001 

Chek2-1 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

-0.24 
-0.15 
-0.26 

 
 

0.08 
0.07 
0.07 

 
 

-0.39 to -0.08 
-0.30 to 0.001 
-0.40 to -0.12 

 
 

0.003 
0.05 

<0.0001 

Trp53-134 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 

 
 

0.001 
0.08 

0.007 

 
 

0.03 
0.03 
0.03 

 
 
 

 
 

-0.06 to 0.06 
0.03 to 0.14 
-0.05 to 0.06 

 
 

0.97 
0.004 
0.79 

 
 

Trp53-3 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

-0.09 
-0.06 
-0.11 

 
 

0.04 
0.04 
0.04 

 
 

-0.18 to 0.01 
-0.15 to 0.03 
-0.19 to -0.03 

 
 

0.06 
0.18 
0.01 
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Supplementary Table S9 (cont.) 

 
Longevity:age interactions - Isoforms 

 (Muscle) 
 

Gene Beta 
coefficient 

Std. Err 95% CI P value 

Il1b-2 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

0.13 
-0.42 
0.10 

 
 

0.14 
0.14 
0.13 

 
 

-0.15 to 0.41 
-0.70 to -0.14 
-0.17 to 0.36 

 
 

0.36 
0.004 
0.452 

Il6-2 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

-0.01 
-0.36 
0.05 

 
 

0.17 
0.17 
0.15 

 
 

-0.35 to 0.33 
-0.70 to -0.02 
-0.25 to 0.36 

 
 

0.96 
0.04 
0.72 

Stat1-34 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

0.05 
-0.07 
-0.17 

 
 

0.07 
0.07 
0.06 

 
 

-0.08 to 0.18 
-0.20 to 0.06 
-0.29 to -0.05 

 
 

0.44 
0.28 
0.01 

Stat1-2456 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

-0.003 
0.11 

0.003 

 
 

0.05 
0.05 
0.05 

 
 

-0.10 to 0.10 
0.12 to 0.21 
-0.09 to 0.09 

 
 

0.95 
0.03 

0.951 

Tnf-2 
 

Average-lived/old 
Long-lived/young 

Long-lived/old 
 

 
 

0.02 
-0.18 
-0.23 

 
 

0.09 
0.09 
0.08 

 
 

-0.16 to 0.20 
-0.16 to 0.001 
-0.39 to -0.06 

 
 

0.85 
0.06 

0.008 
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Supplementary Table S10 (Chapter 3): Splicing factor expression in mouse spleen tissue by lifespan, across 6 strains of different 
longevities by binary logistic regression 

Data from mice of all ages, young mice only (6 months) and old mice only (20-22 months) are given separately. Data with statistically-significant effects at <0.05 are 

given in bold, underlined italic text. Tra2β was not expressed in PWD/Phj mice so this strain was excluded from the analysis for this marker. P values were determined 

from binary logistic regression of logged data. P values marked by stars are also significant in linear regression analysis. 

 All Ages Young mice only Old mice only 

Gene 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Hnrnpa0 1.80 1.31 0.17 2.27 1.95 0.24 1.40 1.78 0.43 

Hnrnpa1 -5.78 2.05 0.005 -10.40 3.63 0.004* -2.50 2.53 0.32 

Hnrnpa2b1 -2.89 1.47 0.05* -10.23 3.36 0.002* 1.38 1.91 0.47 

Hnrnpd -0.90 1.42 0.54 -3.11 1.28 0.26 -0.06 1.62 0.98 

Hnrnph3 1.00 1.43 0.49 -1.19 2.85 0.67 1.83 1.76 0.30 

Hnrnpk -9.50 2.28 <0.0001* -9.42 7.05 0.008 -9.55 2.99 0.001* 

Hnrnpm -8.23 2.34 <0.0001* -10.67 6.72 0.01 -6.70 5.49 0.02* 

Hnrnpul2 -2.88 3.37 0.07* -4.70 2.95 0.09 -1.84 1.90 0.33 

Sf3b1 -4.79 1.81 0.008* -8.00 3.44 0.02 -3.17 2.11 0.13 

Srsf18 -1.96 1.18 0.10 -2.57 1.79 0.15 -1.47 1.62 0.36 

Srsf1 -2.45 1.36 0.07 -5.28 2.46 0.03 -0.766 1.76 0.66 

Srsf2 -5.96 1.63 <0.0001 -8.01 3.03 0.008* -5.18 2.09 0.01 

Srsf3 -2.61 1.35 0.054 -6.16 2.35 0.009 0.49 2.03 0.81 

Srsf6 -6.07 1.98 0.002 -6.90 3.11 0.03 -5.55 2.63 0.04 

Tra2β -1.67 1.72 0.33 -7.48 3.32 0.02* 1.95 2.29 0.39 
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Supplementary Table S11 (Chapter 3): Splicing factor expression in mouse muscle tissue by lifespan across 6 strains of different 
longevities by binary logistic regression analysis 

Data from mice of all ages, young mice only (6 months) and old mice only (20-22 months) are given separately. Data with statistically-significant effects at <0.05 are 

given in underlined, bold, italic text. Tra2β was not expressed in PWD/Phj mice so this strain was excluded from the analysis for this marker. P values were determined 

from binary logistic regression of logged data. P values marked by stars are also significant in linear regression analysis. 

 All Ages Young mice only Old mice only 

Gene 
Beta 

coefficient 
Std Error P value 

Beta 
coefficient 

Std Error P value 
Beta 

coefficient 
Std Error P value 

Hnrnpa0 2.20 1.11 0.05 0.33 1.21 0.79 6.08 2.30 0.008* 

Hnrnpa1 -2.39 1.60 0.13 -3.70 2.48 0.14 -1.91 2.22 0.39 

Hnrnpa2b1 0.66 0.95 0.49 -0.48 1.11 0.62 3.60 2.01 0.07 

Hnrnpd -6.27 2.09 0.003* -4.29 2.64 0.10 -9.40 3.45 0.006* 

Hnrnph3 0.16 0.89 0.86 -1.06 1.31 0.42 1.44 1.33 0.23 

Hnrnpk -4.52 1.47 0.002 -2.55 1.90 0.18 -6.99 2.49 0.005 

Hnrnpm -0.02 1.42 0.99 -1.55 1.90 0.41 2.15 2.50 0.39 

Hnrnpul2 0.08 0.94 0.93 -0.79 1.19 0.51 1.67 1.64 0.31 

Sf3b1 -0.71 0.89 0.43 -1.34 1.25 0.28 0.34 1.55 0.83 

Srsf18 -1.76 1.06 0.10 -2.63 1.68 0.12 -1.05 1.62 0.52 

Srsf1 0.94 0.88 0.29 1.16 1.19 0.33 0.72 1.34 0.59 

Srsf2 -3.32 1.62 0.04 -4.02 2.74 0.14 -3.14 2.03 0.12 

Srsf3 -2.99 1.52 0.05 -7.90 3.24 0.02* -0.95 1.82 0.61 

Srsf6 -0.39 0.79 0.63 -0.43 1.03 0.68 -0.22 1.27 0.86 

Tra2β -0.04 0.58 0.95 0.10 0.69 0.88 -0.28 1.05 0.79 

  



275 
 

Supplementary Table S12 (Chapter 3): Genetic variation within the mouse Hnrnpa2b1 and Hnrnpa1 genes and its predicted effect 
on gene regulation 

This table gives the SNP identifiers, chromosomal location, gene position and predicted effect on amino acid sequence or parameters of gene regulation for the mouse 
Hnrnpa2b1 and Hnrnpa1 genes. 5’ UTR = 5’ untranslated region, I = intron, C = coding, SRE = splicing regulatory element, 3’ UTR = 3’ untranslated region. ARE = A-
rich element, C>U = C to U RNA editing site, miR = microRNA binding, TF = transcription factor binding. Where 2 alternative gene position is given, this is due to the 
possibility that the SNP is located in different genetic regions for different isoforms. ‘/ ‘= not applicable. 

SNP name Chromosomal 
location 

Position 
in gene 

TF Coding 
change 

SRE ARE C>U miR 

Hnrnpa2b1 

rs46028062 6:51461052 3’UTR / / / NO NO NO 

rs48993060 
 

6:51465149 I 
3’UTR 

/ 
/ 

/ 
/ 

NO 
/ 

/ 
NO 

/ 
NO 

/ 
NO 

rs224637794 
 

6:51461566 I 
3’UTR 

/ 
/ 

/ 
/ 

NO 
/ 

/ 
NO 

/ 
NO 

/ 
NO 

rs234970481 6:51465354 I / / NO / / / 

rs229198021 6:51465605 I / / NO / / / 

rs250280372 6:51465935 I / / NO / / / 

rs226722250 6:51466015 I / / NO / / / 

rs47522479 6:51466888 I / / NO / / / 

rs51031918 6:51467084 I / / POSSIBLE / / / 

rs252413833 6:51467157 I / / POSSIBLE / / / 

rs235452001 6:51469308 I / / NO / / / 

rs239268432 6:51469567 I / / NO / / / 

rs228820180 6:51469765 5’UTR NO / / / / / 

rs257262812 6:51470336 Intergenic NO / / / / / 

Hnrnpa1 

rs32398879 15:103242334 I / / NO / / / 

rs50030666 
 

15:103242939 I 
C 

/ 
/ 

/ 
Gly257Ser 

NO 
/ 

/ 
/ 

/ 
/ 

/ 
/ 
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Supplementary Table S13 (Chapter 4): Association of MicroRNA expression 
and lifespan in spleen tissue from young mice of shortest-lived and 
longest-lived strains (A/J and WSB/EiJ respectively) 

MicroRNAs significantly associated above the Bonferroni-corrected significance threshold 
(p<0.000179) are shown in bold italics. The ten most strongly associated microRNAs followed up 
in the targeted analysis are shown in italics. Shown in plain bold are the 6 small RNAs commonly 
used as endogenous controls. P-values were determined using independent sample t-tests on 
log-transformed relative expression data from TaqMan® MicroRNA Array cards. 

    95% CI of the difference   

MicroRNA Assay ID Mean Difference Upper Lower P-value 

mmu-miR-297b-5p 4.29 4.53 4.05 1.63E-11 

mmu-miR-708 0.47 0.58 0.36 5.46E-06 

mmu-miR-224 -0.97 -0.64 -1.30 0.0001 

mmu-miR-203 -0.55 -0.35 -0.74 0.0001 

rno-miR-327 -3.70 -2.33 -5.08 0.0002 

rno-miR-664 0.46 0.66 0.27 0.0005 

mmu-miR-592 0.50 0.73 0.27 0.0008 

mmu-miR-484 0.33 0.49 0.17 0.0014 

mmu-miR-687 5.02 7.58 2.46 0.0016 

mmu-miR-192 0.31 0.47 0.15 0.0018 

mmu-miR-760 -0.25 -0.11 -0.38 0.003 

mmu-miR-186* 0.31 0.49 0.14 0.003 

mmu-miR-690 0.39 0.63 0.15 0.005 

mmu-miR-31 0.43 0.69 0.16 0.005 

mmu-miR-126-5p 0.26 0.42 0.09 0.006 

mmu-miR-10a -0.23 -0.08 -0.38 0.007 

mmu-miR-130b* 0.36 0.59 0.12 0.007 

mmu-miR-20b 0.17 0.28 0.06 0.008 

mmu-miR-455* 0.25 0.42 0.08 0.009 

mmu-miR-449a -0.49 -0.15 -0.84 0.010 

mmu-miR-434-3p -0.28 -0.08 -0.49 0.011 

mmu-miR-376c -0.40 -0.10 -0.69 0.013 

mmu-miR-24-2* 0.17 0.29 0.04 0.013 

mmu-miR-511 -0.40 -0.09 -0.72 0.018 

rno-miR-20b-5p 0.26 0.47 0.05 0.020 

mmu-miR-210 0.21 0.37 0.04 0.020 

mmu-miR-194 0.18 0.32 0.03 0.021 

mmu-miR-411 -0.34 -0.06 -0.63 0.022 

mmu-miR-875-5p 1.20 2.19 0.21 0.023 

mmu-miR-340-3p -0.27 -0.05 -0.49 0.023 

mmu-miR-365 -0.17 -0.03 -0.32 0.023 

mmu-miR-186 0.20 0.36 0.03 0.023 

mmu-miR-539 -2.80 -0.48 -5.12 0.023 

mmu-miR-140 0.12 0.23 0.01 0.030 

mmu-miR-136 -0.42 -0.04 -0.79 0.033 

mmu-miR-130b 0.21 0.41 0.02 0.035 

mmu-miR-148b -0.31 -0.02 -0.59 0.036 

mmu-miR-31* 2.28 4.39 0.16 0.038 

mmu-miR-217 -2.76 -0.15 -5.37 0.040 

snoRNA135 -0.11 0.00 -0.21 0.042 

mmu-miR-193b 0.20 0.39 0.01 0.045 

mmu-miR-470* -1.83 -0.01 -3.66 0.049 

mmu-miR-877* 0.19 0.37 0.00 0.051 

mmu-miR-674* 0.16 0.31 0.00 0.051 

mmu-miR-193* 0.37 0.75 -0.01 0.055 

mmu-miR-700 -0.13 0.01 -0.26 0.059 



277 
 

Supplementary Table S13 (cont.) 

    95% CI of the difference   

MicroRNA Assay ID Mean Difference Upper Lower P-value 

mmu-miR-15a -0.23 0.01 -0.46 0.060 

mmu-miR-152 -0.19 0.01 -0.40 0.061 

rno-miR-743a -1.29 0.08 -2.66 0.062 

mmu-miR-197 2.26 4.68 -0.16 0.064 

mmu-miR-34b-3p -0.22 0.02 -0.45 0.065 

mmu-miR-574-3p 0.15 0.31 -0.01 0.067 

mmu-miR-297a* 0.17 0.36 -0.02 0.067 

mmu-miR-674 2.44 5.12 -0.24 0.070 

mmu-miR-682 2.28 4.83 -0.26 0.072 

mmu-miR-720 -0.13 0.02 -0.27 0.081 

mmu-miR-92a 0.12 0.26 -0.02 0.089 

mmu-miR-149 0.10 0.22 -0.02 0.095 

mmu-miR-32 -0.24 0.05 -0.54 0.096 

mmu-miR-218 -0.14 0.04 -0.32 0.103 

mmu-miR-183* -0.35 0.09 -0.79 0.106 

mmu-miR-296-5p 0.22 0.49 -0.06 0.109 

mmu-miR-467b* -0.27 0.08 -0.62 0.119 

mmu-miR-345-5p -1.78 0.56 -4.12 0.119 

mmu-miR-335-5p 0.14 0.32 -0.04 0.120 

mmu-miR-29b -0.13 0.04 -0.30 0.129 

MammU6 0.19 0.45 -0.07 0.130 

mmu-miR-322 -0.17 0.06 -0.40 0.132 

mmu-miR-547 -1.25 0.48 -2.98 0.138 

mmu-miR-467a 0.16 0.37 -0.06 0.138 

mmu-miR-503 0.21 0.49 -0.08 0.141 

mmu-miR-322* -0.17 0.07 -0.40 0.142 

mmu-miR-184 -0.25 0.10 -0.61 0.143 

mmu-miR-195 -0.09 0.04 -0.21 0.145 

mmu-miR-685 0.11 0.28 -0.05 0.147 

mmu-miR-18a -0.14 0.06 -0.33 0.152 

mmu-miR-132 -0.09 0.04 -0.21 0.154 

mmu-miR-135a 1.25 3.08 -0.58 0.156 

mmu-miR-125b-5p -0.09 0.04 -0.21 0.156 

mmu-miR-129-3p 1.54 3.80 -0.73 0.159 

mmu-miR-25 0.12 0.30 -0.06 0.163 

mmu-miR-451 -0.18 0.09 -0.46 0.170 

mmu-miR-744* 1.13 2.88 -0.62 0.178 

mmu-miR-7a -1.04 0.57 -2.66 0.178 

mmu-miR-29a 0.07 0.18 -0.04 0.186 

mmu-miR-15b* 0.14 0.36 -0.08 0.191 

mmu-miR-148a -0.22 0.13 -0.58 0.192 

mmu-miR-384-5p 1.12 2.93 -0.69 0.194 

mmu-let-7c -0.15 0.09 -0.38 0.194 

mmu-miR-17 0.07 0.18 -0.04 0.197 

mmu-miR-211 -0.08 0.05 -0.22 0.204 

mmu-miR-188-5p 0.25 0.67 -0.17 0.205 

mmu-let-7b -0.16 0.11 -0.43 0.208 

mmu-miR-361 1.12 2.99 -0.76 0.211 

mmu-miR-409-3p 1.00 2.69 -0.70 0.217 

mmu-miR-9 1.04 2.81 -0.73 0.218 

mmu-miR-425* -0.16 0.11 -0.42 0.222 

mmu-miR-494 -0.25 0.19 -0.70 0.229 

mmu-miR-130a 0.15 0.40 -0.11 0.230 

snoRNA429 0.46 1.28 -0.36 0.236 
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Supplementary Table S13 (cont.) 

    95% CI of the difference   

MicroRNA Assay ID Mean Difference Upper Lower P-value 

mmu-miR-103 -0.11 0.09 -0.31 0.236 

mmu-miR-29b* -0.36 0.28 -1.01 0.237 

mmu-miR-133a 0.12 0.34 -0.10 0.237 

mmu-miR-125a-5p 0.10 0.27 -0.08 0.238 

rno-miR-463 -0.10 0.08 -0.27 0.239 

mmu-miR-29a* 0.20 0.56 -0.16 0.244 

mmu-miR-29c* -0.11 0.09 -0.30 0.245 

mmu-miR-342-3p 0.09 0.26 -0.08 0.247 

mmu-miR-467c 1.16 3.28 -0.97 0.249 

mmu-miR-326 0.12 0.33 -0.10 0.252 

mmu-miR-342-5p 0.16 0.47 -0.14 0.253 

mmu-miR-30e* 0.09 0.27 -0.08 0.256 

mmu-miR-542-5p 0.89 2.56 -0.78 0.257 

mmu-miR-331-3p -0.08 0.07 -0.23 0.259 

mmu-miR-425 0.08 0.22 -0.07 0.268 

mmu-miR-467b 0.10 0.28 -0.09 0.268 

mmu-miR-30c -0.08 0.07 -0.23 0.270 

mmu-miR-128a 0.94 2.76 -0.88 0.274 

mmu-miR-410 -0.80 0.78 -2.38 0.283 

mmu-miR-7a* 0.09 0.27 -0.09 0.289 

mmu-miR-503* -0.15 0.16 -0.46 0.295 

mmu-miR-181a-1* 0.88 2.68 -0.92 0.299 

mmu-miR-335-3p 0.11 0.33 -0.12 0.303 

mmu-miR-20a* 0.16 0.49 -0.17 0.306 

mmu-miR-100 0.12 0.37 -0.13 0.309 

mmu-miR-190b 0.38 1.19 -0.42 0.313 

mmu-miR-878-3p -1.30 1.45 -4.05 0.313 

mmu-miR-30b -0.07 0.08 -0.22 0.313 

rno-miR-352 -0.93 1.04 -2.90 0.315 

mmu-miR-19b -0.08 0.09 -0.24 0.316 

rno-miR-224 -1.36 1.54 -4.27 0.317 

mmu-miR-143 -0.09 0.10 -0.27 0.319 

mmu-miR-652 0.11 0.34 -0.12 0.319 

mmu-miR-351 0.12 0.39 -0.14 0.322 

mmu-miR-804 0.75 2.36 -0.87 0.322 

mmu-miR-486 -0.16 0.19 -0.52 0.323 

mmu-miR-93* -0.08 0.09 -0.24 0.324 

mmu-miR-125a-3p 0.16 0.51 -0.19 0.326 

rno-miR-345-3p -0.17 0.21 -0.56 0.328 

mmu-miR-30a -0.08 0.10 -0.27 0.328 

mmu-miR-101b 0.07 0.22 -0.08 0.329 

rno-miR-136* -1.16 1.42 -3.74 0.337 

mmu-miR-28* -0.06 0.07 -0.19 0.339 

mmu-let-7g* 0.76 2.47 -0.96 0.343 

mmu-miR-466b-3-3p 0.82 2.69 -1.04 0.344 

mmu-miR-21* -0.17 0.23 -0.58 0.357 

mmu-miR-98 -0.14 0.18 -0.45 0.358 

rno-miR-351 0.05 0.17 -0.07 0.360 

mmu-miR-34a 0.95 3.21 -1.30 0.363 

mmu-miR-324-3p -0.11 0.16 -0.38 0.364 

mmu-miR-877 -0.08 0.11 -0.27 0.364 

mmu-miR-127 -0.27 0.38 -0.92 0.369 

mmu-miR-362-3p -0.25 0.36 -0.87 0.370 

mmu-miR-30e 0.08 0.27 -0.11 0.371 
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Supplementary Table S13 (cont.) 

    95% CI of the difference   

MicroRNA Assay ID Mean Difference Upper Lower P-value 

mmu-miR-30a* -0.05 0.07 -0.16 0.377 

mmu-miR-27b -0.09 0.12 -0.30 0.377 

mmu-miR-324-5p -0.12 0.18 -0.43 0.384 

mmu-miR-680 -0.07 0.10 -0.24 0.388 

rno-miR-190b -0.74 1.11 -2.60 0.390 

mmu-miR-669a 0.82 2.87 -1.24 0.393 

mmu-miR-133b 0.14 0.49 -0.21 0.394 

mmu-miR-126-3p 0.06 0.22 -0.10 0.398 

rno-miR-7a* -0.04 0.07 -0.16 0.412 

mmu-miR-497 0.10 0.37 -0.17 0.414 

mmu-miR-30d -0.06 0.09 -0.21 0.420 

mmu-let-7a* -0.11 0.19 -0.42 0.425 

mmu-miR-155 -0.06 0.11 -0.24 0.428 

mmu-miR-350 0.10 0.36 -0.17 0.432 

mmu-miR-218-1* -0.77 1.36 -2.91 0.432 

mmu-miR-15a* 0.08 0.31 -0.15 0.438 

mmu-miR-187 -0.04 0.08 -0.16 0.441 

rno-miR-30d* -0.11 0.20 -0.42 0.441 

mmu-miR-146a -0.06 0.12 -0.24 0.446 

Y1 0.06 0.23 -0.11 0.447 

mmu-miR-135a* -0.08 0.15 -0.31 0.448 

mmu-miR-135b 0.19 0.72 -0.35 0.455 

rno-miR-148b-5p 0.12 0.49 -0.24 0.455 

mmu-miR-28 -0.12 0.23 -0.46 0.457 

rno-miR-1 0.64 2.50 -1.22 0.457 

mmu-miR-672 -0.11 0.21 -0.43 0.462 

mmu-miR-532-5p 0.09 0.34 -0.17 0.462 

mmu-miR-151-3p -0.05 0.10 -0.21 0.464 

mmu-miR-221 0.70 2.82 -1.43 0.478 

mmu-miR-181a 0.08 0.31 -0.16 0.483 

mmu-miR-532-3p 0.06 0.25 -0.13 0.486 

mmu-miR-676* 0.50 2.06 -1.07 0.491 

mmu-miR-378 0.11 0.47 -0.25 0.492 

mmu-miR-331-5p -0.09 0.19 -0.37 0.493 

mmu-miR-27a* -0.08 0.18 -0.35 0.497 

mmu-miR-106b* 0.09 0.37 -0.20 0.504 

mmu-miR-320 -0.06 0.14 -0.26 0.508 

mmu-miR-339-5p -0.06 0.15 -0.27 0.510 

mmu-miR-99b* -0.62 1.51 -2.75 0.526 

mmu-miR-214 -0.07 0.18 -0.33 0.532 

mmu-miR-338-3p 0.65 2.97 -1.67 0.540 

mmu-miR-34c* -0.10 0.26 -0.46 0.540 

mmu-miR-214* 0.07 0.32 -0.18 0.541 

mmu-miR-671-3p 0.08 0.38 -0.21 0.542 

mmu-miR-21 -0.03 0.09 -0.15 0.547 

mmu-let-7f -0.04 0.10 -0.18 0.548 

rno-miR-196c 0.25 1.14 -0.65 0.550 

mmu-let-7e -0.05 0.14 -0.25 0.568 

mmu-miR-124 0.76 3.65 -2.14 0.568 

snoRNA202 -0.05 0.15 -0.25 0.571 

mmu-miR-16 -0.03 0.10 -0.16 0.577 

mmu-miR-200a 0.16 0.81 -0.48 0.582 

mmu-miR-15b -0.04 0.13 -0.22 0.590 

mmu-miR-145 0.05 0.23 -0.14 0.591 
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Supplementary Table S13 (cont.) 

    95% CI of the difference   

MicroRNA Assay ID Mean Difference Upper Lower P-value 

mmu-miR-376b* -0.24 0.73 -1.20 0.594 

mmu-miR-744 -0.05 0.15 -0.25 0.601 

mmu-miR-467d 0.43 2.21 -1.36 0.602 

mmu-miR-99a -0.05 0.17 -0.28 0.602 

mmu-miR-23b -0.07 0.21 -0.35 0.604 

mmu-miR-141 -0.10 0.32 -0.52 0.605 

mmu-miR-301a 0.06 0.32 -0.20 0.609 

mmu-miR-146b 0.05 0.26 -0.16 0.615 

mmu-miR-223 0.06 0.30 -0.19 0.618 

mmu-miR-106b -0.05 0.17 -0.26 0.634 

mmu-miR-339-3p -0.05 0.17 -0.26 0.643 

mmu-miR-872 -0.07 0.28 -0.43 0.646 

rno-miR-673 -0.14 0.51 -0.78 0.646 

mmu-miR-196b 0.05 0.32 -0.21 0.652 

mmu-miR-429 0.13 0.81 -0.56 0.679 

mmu-miR-26b* 0.04 0.27 -0.19 0.681 

mmu-miR-19a 0.04 0.24 -0.17 0.685 

mmu-miR-7b -0.12 0.56 -0.80 0.693 

mmu-miR-142-5p -0.03 0.14 -0.21 0.695 

mmu-miR-340-5p -0.04 0.16 -0.23 0.696 

mmu-miR-374 0.04 0.24 -0.16 0.697 

mmu-miR-676 0.04 0.27 -0.19 0.701 

mmu-miR-93 -0.03 0.15 -0.22 0.704 

rno-miR-204* 0.08 0.55 -0.39 0.709 

mmu-miR-500 0.55 3.78 -2.68 0.710 

mmu-let-7a -0.04 0.22 -0.31 0.713 

mmu-miR-101a 0.03 0.19 -0.13 0.717 

mmu-let-7g -0.03 0.13 -0.18 0.719 

mmu-miR-134 0.07 0.48 -0.35 0.724 

mmu-miR-99b 0.04 0.26 -0.19 0.726 

mmu-miR-16* -0.07 0.39 -0.53 0.727 

mmu-miR-301b 0.04 0.30 -0.22 0.728 

mmu-miR-805 -0.04 0.20 -0.27 0.739 

rno-miR-339-3p -0.03 0.19 -0.26 0.744 

mmu-miR-706 -0.04 0.22 -0.30 0.747 

mmu-miR-33* -0.04 0.25 -0.34 0.753 

mmu-miR-704 0.41 3.30 -2.47 0.753 

mmu-miR-27b* -0.07 0.43 -0.57 0.754 

mmu-miR-204 0.02 0.18 -0.14 0.757 

mmu-miR-673-5p 0.40 3.26 -2.46 0.757 

U87 -0.03 0.16 -0.21 0.759 

mmu-miR-125b* -0.06 0.38 -0.50 0.763 

mmu-miR-27a 0.03 0.23 -0.17 0.769 

mmu-miR-185 0.02 0.21 -0.16 0.774 

mmu-miR-26b 0.02 0.17 -0.13 0.774 

mmu-miR-1 0.06 0.58 -0.45 0.784 

mmu-miR-206 -0.18 1.37 -1.73 0.799 

mmu-miR-150 -0.02 0.15 -0.19 0.801 

mmu-miR-193 0.04 0.44 -0.35 0.805 

mmu-miR-199a-3p -0.02 0.15 -0.19 0.807 

mmu-miR-142-3p -0.02 0.19 -0.23 0.812 

mmu-miR-181c 0.04 0.45 -0.37 0.816 

mmu-miR-182 -0.05 0.43 -0.52 0.819 

mmu-miR-139-5p -0.02 0.14 -0.18 0.823 
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Supplementary Table S13 (cont.) 

    95% CI of the difference   

MicroRNA Assay ID Mean Difference Upper Lower P-value 

mmu-miR-200b -0.06 0.54 -0.67 0.824 

mmu-miR-466d-3p -0.03 0.25 -0.30 0.827 

mmu-miR-22* 0.03 0.30 -0.24 0.828 

mmu-miR-222 0.02 0.19 -0.16 0.845 

mmu-miR-200c 0.03 0.38 -0.32 0.847 

mmu-miR-24 -0.01 0.14 -0.17 0.852 

mmu-miR-138 0.02 0.23 -0.19 0.863 

mmu-miR-26a -0.01 0.15 -0.17 0.874 

mmu-miR-20a 0.01 0.13 -0.11 0.877 

mmu-miR-138* -0.04 0.65 -0.74 0.888 

mmu-let-7d -0.01 0.19 -0.22 0.896 

mmu-miR-667 -0.17 2.75 -3.10 0.897 

mmu-miR-328 -0.01 0.16 -0.18 0.900 

mmu-miR-191 -0.01 0.19 -0.21 0.900 

mmu-miR-872* 0.01 0.18 -0.16 0.907 

mmu-miR-29c -0.01 0.21 -0.24 0.909 

mmu-miR-696 -0.02 0.32 -0.36 0.909 

mmu-miR-376a 0.04 1.07 -0.98 0.928 

mmu-miR-18a* 0.01 0.31 -0.29 0.940 

mmu-miR-106a 0.01 0.19 -0.18 0.951 

mmu-miR-491 -0.01 0.38 -0.39 0.974 

mmu-let-7i 0.00 0.20 -0.21 0.975 

mmu-miR-678 -0.03 2.67 -2.72 0.982 
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Supplementary Table S14 (Chapter 4): Association of MicroRNA expression and lifespan in mouse spleen tissue across 6 strains 
of different longevities 

Data from mice of all ages, young mice only (6 months) and old mice only (20-22 months) are given separately. MicroRNAs significantly associated below the 
Bonferroni-corrected significance threshold (p<0.005) are shown in bold italics. P-values were determined from linear regression of log-transformed relative expression 
data. 

  ALL MICE YOUNG MICE ONLY OLD MICE ONLY 

  

Beta 
coefficient 

Std. Error P-value 
Beta 

coefficient 
Std. Error P-value 

Beta 
coefficient 

Std. Error P-value 

miR-192-5p 0.16 0.00 0.14 0.12 0.00 0.49 0.20 0.00 0.20 

miR-203-3p -0.64 0.00 <0.001 -0.67 0.00 <0.001 -0.67 0.00 <0.001 

miR-224-5p -0.09 0.00 0.44 -0.23 0.00 0.16 0.02 0.00 0.91 

miR-297b-5p 0.16 0.00 0.15 0.14 0.00 0.41 0.18 0.00 0.22 

miR-484 -0.07 0.00 0.55 -0.21 0.00 0.21 0.08 0.00 0.61 

miR-592 0.16 0.00 0.15 0.08 0.00 0.65 0.23 0.00 0.13 

miR-664-3p 0.56 0.00 <0.001 0.42 0.00 0.01 0.75 0.00 <0.001 

miR-687 0.20 0.00 0.11 0.17 0.00 0.39 0.23 0.00 0.18 

miR-708-5p 0.50 0.00 <0.001 0.37 0.00 0.02 0.64 0.00 <0.001 

miR-327 -0.21 0.00 0.06 -0.38 0.00 0.02 -0.09 0.00 0.54 
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Supplementary Table S15 (Chapter 4): Sub analysis of the relationship between miRNA expression and median strain longevity 
in spleen samples from animals not included in the initial global analysis 

Data from mice of all ages, young mice only (6 months) and old mice only (20-22 months) are given separately. MicroRNAs significantly associated below the 
Bonferroni-corrected significance threshold (p<0.005) are shown in bold italics. P-values were determined from linear regression of log-transformed relative expression 
data. 

  ALL MICE YOUNG MICE ONLY OLD MICE ONLY 

  

Beta 
coefficient 

Std. Error P-value 
Beta 

coefficient 
Std. Error P-value 

Beta 
coefficient 

Std. Error P-value 

miR-192-5p 0.08 0.00 0.50 -0.21 0.00 0.30 0.20 0.00 0.20 

miR-203-3p -0.51 0.00 <0.001 -0.10 0.00 0.64 -0.70 0.00 <0.001 

miR-224-5p 0.17 0.00 0.16 0.82 0.00 <0.001 0.02 0.00 0.90 

miR-297b-5p 0.11 0.00 0.38 -0.20 0.00 0.33 0.19 0.00 0.22 

miR-484 0.12 0.00 0.30 0.31 0.00 0.12 0.08 0.00 0.61 

miR-592 0.10 0.00 0.41 -0.38 0.00 0.06 0.22 0.00 0.15 

miR-664-3p 0.56 0.00 <0.001 0.47 0.00 0.02 0.75 0.00 <0.001 

miR-687 0.17 0.00 0.21 0.02 0.01 0.93 0.23 0.00 0.18 

miR-708-5p 0.41 0.00 <0.001 -0.50 0.01 0.01 0.64 0.00 <0.001 

rno-miR-327 -0.18 0.00 0.14 -0.54 0.00 0.004 -0.10 0.00 0.54 
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Supplementary Table S16 (Chapter 4): Association of MicroRNA expression and age in mouse spleen tissue across 6 strains of 
different longevities 

Data from mice of all ages, ‘Average-lived’ mice only (<847.5 days) and ‘Long-lived’ mice only (>847.5 days) are given separately. MicroRNAs significantly associated 
below the Bonferroni-corrected significance threshold (p<0.005) are shown in bold italics. P-values were determined from linear regression of log-transformed relative 
expression data.  

  ALL MICE AVERAGE-LIVED MICE ONLY LONG-LIVED MICE ONLY 

  

Beta 
coefficient 

Std. Error P-value 
Beta 

coefficient 
Std. Error P-value 

Beta 
coefficient 

Std. Error P-value 

miR-192-5p 0.12 0.04 0.27 0.00 0.07 0.99 0.20 0.05 0.16 

miR-203-3p 0.18 0.06 0.11 0.09 0.10 0.63 0.30 0.05 0.03 

miR-224-5p -0.01 0.11 0.95 -0.14 0.17 0.44 0.09 0.13 0.55 

miR-297b-5p -0.09 0.08 0.41 -0.10 0.15 0.58 -0.09 0.09 0.55 

miR-484 0.10 0.04 0.35 0.04 0.06 0.81 0.14 0.05 0.33 

miR-592 0.44 0.05 <0.001 0.37 0.07 0.03 0.57 0.06 <0.001 

miR-664-3p 0.04 0.41 0.77 0.12 0.41 0.58 0.02 0.62 0.90 

miR-687 0.26 0.08 0.02 0.12 0.17 0.49 0.50 0.06 <0.001 

miR-708-5p 0.03 0.09 0.77 -0.05 0.17 0.78 0.13 0.08 0.38 

rno-miR-327 -0.08 0.12 0.46 -0.07 0.22 0.72 -0.11 0.13 0.43 
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Supplementary Table S17 (Chapter 4): Analyses of potential interactions 
between mouse strain longevity and mouse age 

Std. Error = standard error, 95% CI = 95% confidence intervals. Mouse strains were categorised 
for this analysis based on whether the median individual strain lifespan was above or below the 
median lifespan calculated across all strains, with ‘Average-lived’ being <847.5 days and ‘Long-
lived’ >847.5 days. Young mice are 6 months and old mice are 20-22 months old. Statistically 
significant results are indicated in bold italic text. 

Longevity:age interactions - microRNAs associated with lifespan 

MicroRNA Sub-category β coefficient Std. Error 95% CI p-value 

mmu-miR-203-3p 

          

Average-lived/Young 0       

Average-lived/Old 0.05 0.08 -0.11 to 0.21 0.55 

Long-lived/Young -0.29 0.08 -0.44 to -0.13 0.0004 

Long-lived/Old -0.17 0.08 -0.32 to -0.02 0.03 

          

mmu-miR-664-3p 

          

Average-lived/Young 0       

Average-lived/Old 0.15 0.07 0.01 to 0.29 0.04 

Long-lived/Young 0.18 0.07 0.04 to 0.31 0.01 

Long-lived/Old 0.46 0.07 0.33 to 0.60 6.59E-10 

          

mmu-miR-708-5p 

          

Average-lived/Young 0       

Average-lived/Old 0.12 0.12 -0.12 to 0.36 0.33 

Long-lived/Young 0.08 0.12 -0.15 to 0.31 0.49 

Long-lived/Old 0.31 0.11 0.09 to 0.53 0.007 
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Supplementary Table S18 (Chapter 4): Taqman® Low Density Array card 
contents 

Assay names and unique assay IDs are given for all microRNAs tested using each array layout. 
 

Rodent A Array v2.0 

Assay ID Assay Name Assay ID Assay Name Assay ID Assay Name 

000377 mmu-let-7a 002592 mmu-miR-291a-3p 002456 mmu-miR-503 

000378 mmu-let-7b 002537 mmu-miR-291b-5p 002084 mmu-miR-504 

000379 mmu-let-7c 002593 mmu-miR-292-3p 001655 mmu-miR-505 

002283 mmu-let-7d 001794 mmu-miR-293 002521 mmu-miR-509-3p 

002406 mmu-let-7e 001056 mmu-miR-294 002520 mmu-miR-509-5p 

000382 mmu-let-7f 000189 mmu-miR-295 002549 mmu-miR-511 

002282 mmu-let-7g 002101 mmu-miR-296-3p 002355 mmu-miR-532-3p 

002221 mmu-let-7i 000527 mmu-miR-296-5p 001518 mmu-miR-532-5p 

002222 mmu-miR-1 001626 mmu-miR-297b-5p 001286 mmu-miR-539 

000437 mmu-miR-100 002480 mmu-miR-297c 001310 mmu-miR-540-3p 

002253 mmu-miR-101a 002598 mmu-miR-298 002561 mmu-miR-540-5p 

000439 mmu-miR-103 002112 mmu-miR-29a 001284 mmu-miR-542-3p 

002465 mmu-miR-105 000413 mmu-miR-29b 002563 mmu-miR-542-5p 

002459 mmu-miR-106a 000587 mmu-miR-29c 002376 mmu-miR-543 

000442 mmu-miR-106b 000528 mmu-miR-301a 002550 mmu-miR-544 

000443 mmu-miR-107 002600 mmu-miR-301b 001312 mmu-miR-546 

000387 mmu-miR-10a 000529 mmu-miR-302a 002564 mmu-miR-547 

002218 mmu-miR-10b 000531 mmu-miR-302b 001535 mmu-miR-551b 

002245 mmu-miR-122 002558 mmu-miR-302c 002349 mmu-miR-574-3p 

001182 mmu-miR-124 000535 mmu-miR-302d 002567 mmu-miR-582-3p 

002199 mmu-miR-125a-3p 000417 mmu-miR-30a 002566 mmu-miR-582-5p 

002198 mmu-miR-125a-5p 000602 mmu-miR-30b 001984 mmu-miR-590-5p 

002378 mmu-miR-125b-3p 000419 mmu-miR-30c 002476 mmu-miR-598 

000449 mmu-miR-125b-5p 000420 mmu-miR-30d 001960 mmu-miR-615-3p 

002228 mmu-miR-126-3p 002223 mmu-miR-30e 002353 mmu-miR-615-5p 

000451 mmu-miR-126-5p 000185 mmu-miR-31 002352 mmu-miR-652 

000452 mmu-miR-127 002109 mmu-miR-32 002239 mmu-miR-654-3p 

002216 mmu-miR-128a 002277 mmu-miR-320 002522 mmu-miR-654-5p 

001184 mmu-miR-129-3p 001076 mmu-miR-322 002607 mmu-miR-665 

000590 mmu-miR-129-5p 002227 mmu-miR-323-3p 001952 mmu-miR-666-5p 

000454 mmu-miR-130a 002509 mmu-miR-324-3p 001949 mmu-miR-667 

000456 mmu-miR-130b 000539 mmu-miR-324-5p 001947 mmu-miR-668 

000457 mmu-miR-132 002510 mmu-miR-325 001683 mmu-miR-669a 

002246 mmu-miR-133a 000543 mmu-miR-328 002020 mmu-miR-670 

002247 mmu-miR-133b 000192 mmu-miR-329 002322 mmu-miR-671-3p 

001186 mmu-miR-134 002230 mmu-miR-330 002327 mmu-miR-672 

000460 mmu-miR-135a 000545 mmu-miR-331-3p 002021 mmu-miR-674 

002261 mmu-miR-135b 002233 mmu-miR-331-5p 001941 mmu-miR-675-3p 

002511 mmu-miR-136 002185 mmu-miR-335-3p 001940 mmu-miR-675-5p 

001129 mmu-miR-137 000546 mmu-miR-335-5p 001959 mmu-miR-676 

002284 mmu-miR-138 002532 mmu-miR-337-3p 001660 mmu-miR-677 

002546 mmu-miR-139-3p 002515 mmu-miR-337-5p 001662 mmu-miR-679 

002289 mmu-miR-139-5p 002252 mmu-miR-338-3p 001664 mmu-miR-680 

001187 mmu-miR-140 002533 mmu-miR-339-3p 001666 mmu-miR-682 

000463 mmu-miR-141 002257 mmu-miR-339-5p 001668 mmu-miR-683 

000464 mmu-miR-142-3p 002259 mmu-miR-340-3p 001669 mmu-miR-684 

002248 mmu-miR-142-5p 002258 mmu-miR-340-5p 001670 mmu-miR-685 

002249 mmu-miR-143 002260 mmu-miR-342-3p 001672 mmu-miR-686 

002278 mmu-miR-145 002527 mmu-miR-342-5p 001674 mmu-miR-687 

000468 mmu-miR-146a 001063 mmu-miR-344 002341 mmu-miR-708 

001097 mmu-miR-146b 002529 mmu-miR-345-3p 002457 mmu-miR-741 

002262 mmu-miR-147 002528 mmu-miR-345-5p 002038 mmu-miR-742 

000470 mmu-miR-148a 001064 mmu-miR-346 002469 mmu-miR-743a 

000471 mmu-miR-148b 000426 mmu-miR-34a 002471 mmu-miR-743b-3p 

000473 mmu-miR-150 002618 mmu-miR-34b-3p 002470 mmu-miR-743b-5p 
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Supplementary Table S18 (cont.) 

Rodent A Array v2.0 

Assay ID Assay Name Assay ID Assay Name Assay ID Assay Name 

001190 mmu-miR-151-3p 000428 mmu-miR-34c 002324 mmu-miR-744 

000475 mmu-miR-152 002530 mmu-miR-350 002027 mmu-miR-770-3p 

001191 mmu-miR-153 001067 mmu-miR-351 000268 mmu-miR-7a 

000477 mmu-miR-154 000554 mmu-miR-361 002555 mmu-miR-7b 

002571 mmu-miR-155 002616 mmu-miR-362-3p 002029 mmu-miR-802 

000389 mmu-miR-15a 001271 mmu-miR-363 002354 mmu-miR-871 

000390 mmu-miR-15b 001020 mmu-miR-365 002264 mmu-miR-872 

000391 mmu-miR-16 000555 mmu-miR-367 002356 mmu-miR-873 

002308 mmu-miR-17 000557 mmu-miR-369-3p 002268 mmu-miR-874 

000480 mmu-miR-181a 001021 mmu-miR-369-5p 002547 mmu-miR-875-3p 

000482 mmu-miR-181c 002275 mmu-miR-370 002464 mmu-miR-876-3p 

002599 mmu-miR-182 000564 mmu-miR-375 002463 mmu-miR-876-5p 

002269 mmu-miR-183 001069 mmu-miR-376a 002540 mmu-miR-878-5p 

000485 mmu-miR-184 002452 mmu-miR-376b 002472 mmu-miR-879 

002271 mmu-miR-185 002450 mmu-miR-376c 002609 mmu-miR-881 

002285 mmu-miR-186 000566 mmu-miR-377 002461 mmu-miR-883a-3p 

001193 mmu-miR-187 001138 mmu-miR-379 002611 mmu-miR-883a-5p 

002106 mmu-miR-188-3p 001071 mmu-miR-380-3p 002565 mmu-miR-883b-3p 

002320 mmu-miR-188-5p 002601 mmu-miR-380-5p 000583 mmu-miR-9 

002422 mmu-miR-18a 000571 mmu-miR-381 000430 mmu-miR-92a 

002466 mmu-miR-18b 000572 mmu-miR-382 001090 mmu-miR-93 

000489 mmu-miR-190 001767 mmu-miR-383 000186 mmu-miR-96 

002299 mmu-miR-191 002603 mmu-miR-384-3p 000577 mmu-miR-98 

000491 mmu-miR-192 002602 mmu-miR-384-5p 000435 mmu-miR-99a 

002250 mmu-miR-193 002332 mmu-miR-409-3p 000436 mmu-miR-99b 

002467 mmu-miR-193b 002331 mmu-miR-409-5p 002064 rno-miR-1 

000493 mmu-miR-194 001274 mmu-miR-410 002078 rno-miR-17-3p 

000494 mmu-miR-195 001610 mmu-miR-411 002048 rno-miR-190b 

002215 mmu-miR-196b 002340 mmu-miR-423-5p 002049 rno-miR-196c 

000497 mmu-miR-197 001516 mmu-miR-425 001315 rno-miR-207 

002304 mmu-miR-199a-3p 001077 mmu-miR-429 002052 rno-miR-20b-3p 

000498 mmu-miR-199a-5p 001979 mmu-miR-431 002077 rno-miR-219-1-3p 

000395 mmu-miR-19a 001028 mmu-miR-433 002390 rno-miR-219-2-3p 

000396 mmu-miR-19b 002604 mmu-miR-434-3p 000599 rno-miR-224 

000502 mmu-miR-200a 002581 mmu-miR-434-5p 001328 rno-miR-327 

002251 mmu-miR-200b 001029 mmu-miR-448 001329 rno-miR-333 

002300 mmu-miR-200c 001030 mmu-miR-449a 001331 rno-miR-336 

002578 mmu-miR-201 002539 mmu-miR-449b 002059 rno-miR-339-3p 

001195 mmu-miR-202-3p 002303 mmu-miR-450a-5p 001344 rno-miR-343 

000507 mmu-miR-203 001962 mmu-miR-450b-5p 001332 rno-miR-344-3p 

000508 mmu-miR-204 001141 mmu-miR-451 002060 rno-miR-344-5p 

000509 mmu-miR-205 001032 mmu-miR-452 002061 rno-miR-345-3p 

001198 mmu-miR-207 002484 mmu-miR-453 001333 rno-miR-346 

000511 mmu-miR-208 002455 mmu-miR-455 001334 rno-miR-347 

002290 mmu-miR-208b 001081 mmu-miR-464 001335 rno-miR-349 

000580 mmu-miR-20a 002040 mmu-miR-465a-3p 002063 rno-miR-351 

001014 mmu-miR-20b 001082 mmu-miR-465a-5p 001320 rno-miR-377 

000397 mmu-miR-21 002485 mmu-miR-465b-5p 001322 rno-miR-381 

000512 mmu-miR-210 002516 mmu-miR-466h 001317 rno-miR-409-5p 

001199 mmu-miR-211 002587 mmu-miR-467a 001343 rno-miR-421 

002306 mmu-miR-214 001671 mmu-miR-467b 001345 rno-miR-450a 

001200 mmu-miR-215 002517 mmu-miR-467c 002066 rno-miR-466b 

002220 mmu-miR-216a 002518 mmu-miR-467d 002067 rno-miR-466c 

002326 mmu-miR-216b 002568 mmu-miR-467e 001316 rno-miR-505 

002556 mmu-miR-217 001085 mmu-miR-468 002051 rno-miR-532-5p 

000521 mmu-miR-218 001086 mmu-miR-469 002065 rno-miR-543 

000522 mmu-miR-219 002588 mmu-miR-470 002053 rno-miR-598-5p 
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Supplementary Table S18 (cont.) 

Rodent A Array v2.0 

Assay ID Assay Name Assay ID Assay Name Assay ID Assay Name 

002468 mmu-miR-220 001821 mmu-miR-484 002054 rno-miR-673 

000524 mmu-miR-221 001278 mmu-miR-486 002055 rno-miR-742 

002276 mmu-miR-222 001285 mmu-miR-487b 002068 rno-miR-743b 

002295 mmu-miR-223 001659 mmu-miR-488 001990 rno-miR-758 

002553 mmu-miR-224 001302 mmu-miR-489 002057 rno-miR-760-5p 

000399 mmu-miR-23a 001037 mmu-miR-490 002069 rno-miR-871 

000400 mmu-miR-23b 001630 mmu-miR-491 002070 rno-miR-878 

000402 mmu-miR-24 002519 mmu-miR-493 002072 rno-miR-881 

000403 mmu-miR-25 002365 mmu-miR-494 000338 ath-miR159a 

000405 mmu-miR-26a 001663 mmu-miR-495 001973 Mamm U6  

000407 mmu-miR-26b 001953 mmu-miR-496 001230 snoRNA135 

000408 mmu-miR-27a 001346 mmu-miR-497 001232 snoRNA202 

000409 mmu-miR-27b 001352 mmu-miR-499 001712 U87 

000411 mmu-miR-28 002606 mmu-miR-500 001727 Y1 

002591 mmu-miR-290-3p 001651 mmu-miR-501-3p     

 

Rodent Array B 

Assay ID Assay Name Assay ID Assay Name Assay ID Assay Name 

002478 mmu-let-7a* 002498 mmu-miR-30b* 001642 mmu-miR-707 

002479 mmu-let-7c-1* 002495 mmu-miR-31* 001646 mmu-miR-711 

001178 mmu-let-7d* 002506 mmu-miR-322* 001961 mmu-miR-712* 

002492 mmu-let-7g* 001060 mmu-miR-325* 001648 mmu-miR-713 

002507 mmu-miR-101a* 001061 mmu-miR-326 001649 mmu-miR-715 

002531 mmu-miR-101b 002481 mmu-miR-327 001652 mmu-miR-717 

002572 mmu-miR-10b* 002136 mmu-miR-33* 001656 mmu-miR-718 

002508 mmu-miR-125b* 001062 mmu-miR-330* 001673 mmu-miR-719 

002229 mmu-miR-127* 002483 mmu-miR-343 001629 mmu-miR-720 

002460 mmu-miR-130b* 002584 mmu-miR-34c* 001657 mmu-miR-721 

001637 mmu-miR-133a* 002043 mmu-miR-374* 002034 mmu-miR-759 

002512 mmu-miR-136* 002482 mmu-miR-376a* 002028 mmu-miR-762 

002554 mmu-miR-138* 002451 mmu-miR-376b* 002033 mmu-miR-763 

002513 mmu-miR-141* 002523 mmu-miR-376c* 002032 mmu-miR-764-3p 

002514 mmu-miR-145* 001078 mmu-miR-433* 002031 mmu-miR-764-5p 

002453 mmu-miR-146b* 002525 mmu-miR-450a-3p 002044 mmu-miR-804 

002570 mmu-miR-150* 002582 mmu-miR-463* 002045 mmu-miR-805 

002488 mmu-miR-15a* 002586 mmu-miR-466a-3p 002542 mmu-miR-872* 

002489 mmu-miR-16* 002500 mmu-miR-466b-3-3p 002548 mmu-miR-877* 

002543 mmu-miR-17* 002534 mmu-miR-466d-5p 002541 mmu-miR-878-3p 

002270 mmu-miR-183* 001826 mmu-miR-467a* 002473 mmu-miR-879* 

002574 mmu-miR-186* 001684 mmu-miR-467b* 002475 mmu-miR-881* 

002490 mmu-miR-18a* 002569 mmu-miR-467e* 002231 mmu-miR-9* 

002576 mmu-miR-191* 002589 mmu-miR-470* 002496 mmu-miR-92a* 

002577 mmu-miR-193* 002560 mmu-miR-483* 001351 rno-miR-1* 

002477 mmu-miR-196a* 001943 mmu-miR-485* 002074 rno-miR-125b* 

001131 mmu-miR-199b* 002014 mmu-miR-488* 002075 rno-miR-135a* 

002544 mmu-miR-19a* 002536 mmu-miR-503* 002058 rno-miR-148b-5p 

002491 mmu-miR-20a* 002017 mmu-miR-592 002076 rno-miR-204* 

002524 mmu-miR-20b* 002449 mmu-miR-673-3p 001336 rno-miR-20a* 

002493 mmu-miR-21* 001956 mmu-miR-674* 002079 rno-miR-24-1* 

002293 mmu-miR-214* 001958 mmu-miR-676* 002080 rno-miR-25* 

002552 mmu-miR-218-1* 001675 mmu-miR-688 002082 rno-miR-29b-1* 

002494 mmu-miR-24-2* 001677 mmu-miR-690 001339 rno-miR-352 

002545 mmu-miR-28* 001678 mmu-miR-691 002081 rno-miR-379* 

002538 mmu-miR-291b-3p 001679 mmu-miR-692 001354 rno-miR-382* 

001055 mmu-miR-292-5p 002036 mmu-miR-693-3p 001353 rno-miR-489 

002594 mmu-miR-293* 001681 mmu-miR-694 001323 rno-miR-664 

002595 mmu-miR-294* 001627 mmu-miR-695 002056 rno-miR-743a 

002454 mmu-miR-297a* 001628 mmu-miR-696 002062 rno-miR-7a* 
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Supplementary Table S18 (cont.) 

Rodent Array B 

Assay ID Assay Name Assay ID Assay Name Assay ID Assay Name 

000600 mmu-miR-299* 001631 mmu-miR-697 002073 rno-miR-99a* 

002497 mmu-miR-29b* 001632 mmu-miR-698 000338 ath-miR159a 

000191 mmu-miR-300 001634 mmu-miR-700 001973 Mamm U6  

002613 mmu-miR-300* 001635 mmu-miR-701 001230 snoRNA135 

002615 mmu-miR-302a* 001636 mmu-miR-702 001232 snoRNA202 

001307 mmu-miR-302b* 001639 mmu-miR-704 001712 U87 

002557 mmu-miR-302c* 001641 mmu-miR-706 001727 Y1 
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Supplementary Table S19 (Chapter 4): MicroRNA assays used for targeted 
analysis 

Assay names, IDs and miRBase/NCBI information are given for the assays used to follow up the 
ten most strongly associated microRNAs from the TaqMan® MicroRNA Array analysis. 
Endogenous control small RNA assays used for this analysis are shown in italics. 

miRBase ID Assay Name Assay ID 
miRBase/NCBI 
Accession Number 

mmu-miR-192-5p hsa-miR-192 000491 MIMAT0000517 

mmu-miR-203-3p hsa-miR-203 000507 MIMAT0000236 

mmu-miR-224-5p mmu-miR-224 002553 MIMAT0000671 

mmu-miR-297b-5p mmu-miR-297b 001626 MIMAT0003480 

mmu-miR-484 hsa-miR-484 001821 MIMAT0003127 

mmu-mir-592-5p mmu-mir-592 002017 MIMAT0003730 

mmu-miR-664-3p rno-miR-664 001323 MIMAT0012774 

mmu-miR-687 mmu-miR-687 001674 MIMAT0003466 

mmu-miR-708-5p mmu-miR-708 002341 MIMAT0004828 

rno-miR-327 rno-miR-327 001328 MIMAT0000561 

N/A snoRNA202 001232 AF357327 

N/A U6 snRNA 001973 NR_004394 

N/A U87 001712 AF272707 
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Supplementary Table S20 (Chapter 4): mRNA assays used for predicted 
target analysis 

Assay IDs and NCBI information are given for the assays used to follow up the genes predicted 
to be targeted by the candidate microRNAs as determined by the DIANA-miRPath analysis. 
Endogenous control assays used for this analysis are shown in italics. 

Gene Symbol Assay ID NCBI Accession Number 

Acvr2a Mm01331097_m1  NM_007396.4 

Dusp5 Mm01266106_m1  NM_001085390.1 

Fgf7 Mm00433292_m1  NM_008008.4 

Gabarapl1  Mm00457880_m1  NM_020590.4 

Mmp9 Mm00442991_m1 NM_013599.3 

Pten Mm01212530_m1  NM_008960.2 

Rps6ka3  Mm00455829_m1 NM_148945.2 

Smad4  Mm01262405_m1  NM_008540.2 

Zfhx3 Mm01240016_m1  NM_007496.2 

Gusb Mm01197698_m1  NM_010368.1 

Idh3b  Mm00504589_m1  NM_130884.4 
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Supplementary Table S21 (Chapter 5): Taqman® Assays 

Splicing factor target genes, assay IDs and qPCR software settings for each transcript included 
in the current study. Endogenous control genes used are shown in bold italics. 

Target Assay ID Threshold Baseline Start Baseline End 

Hnrnpa0 Mm03809085_s1 0.075 3 22 

Hnrnpa1 Mm02528230_g1 0.098 3 18 

Hnrnpa2b1 Mm01325931_g1 0.145 3 18 

Hnrnpd Mm01201314_m1 0.112 3 21 

Hnrnph3 Mm01032120_g1 0.095 3 24 

Hnrnpk Mm01349462_m1 0.129 3 18 

Hnrnpm Mm00513070_m1 0.068 3 21 

Hnrnpul2 Mm01230949_m1 0.114 3 21 

Pnisr Mm01219239_m1 0.052 3 20 

Srsf1 Mm00557620_m1 0.123 3 21 

Srsf2 Mm00448705_m1 0.040 3 20 

Srsf3 Mm00786953_s1 0.044 3 23 

Srsf6 Mm00471475_m1 0.074 3 21 

Tra2b Mm00833637_mH 0.031 3 21 

Sf1 Mm00496060_m1 0.104 3 19 

Sf3b1 Mm00473100_m1 0.044 3 19 

Gusb Mm01197698_m1 0.092 3 21 

Idh3b Mm00504589_m1 0.112 3 18 

Ppia Mm03024003_g1 0.068 3 17 
 

  



293 
 

Supplementary Table S22 (Chapter 5): Changes in splicing factor 
expression with long-term and short-term 40% DR in non-responder mice 

Changes in splicing factor expression levels with long-term and short-term DR in brain, heart and 
kidney tissues from mice which display no change in lifespan under 40% DR conditions (TejJ89), 
by ANCOVA. A positive mean difference denotes an increase in expression levels under 40% DR 
conditions when compared to AL feeding. Transcripts showing nominal associations (p<0.05) are 
shown in italic and underlined. SE: standard error, 95% CI: 95% confidence intervals. 

  Brain – Short-term DR Brain – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 0.360 0.203 0.102 0.803 -0.083 0.188 0.208 0.383 0.641 -0.264 

Hnrnpa1 0.326 0.187 0.109 0.739 -0.086 -0.175 0.204 0.407 0.269 -0.619 

Hnrnpa2b1 0.029 0.192 0.882 0.447 -0.389 0.161 0.113 0.182 0.408 -0.086 

Hnrnpd 0.200 0.121 0.123 0.463 -0.063 0.194 0.121 0.136 0.459 -0.070 

Hnrnph3 -0.192 0.135 0.181 0.103 -0.487 -0.063 0.161 0.701 0.287 -0.413 

Hnrnpk 0.082 0.112 0.482 0.329 -0.165 -0.131 0.131 0.335 0.153 -0.416 

Hnrnpm -0.220 0.211 0.318 0.240 -0.679 0.150 0.136 0.293 0.447 -0.147 

Hnrnpul2 0.027 0.121 0.830 0.291 -0.238 0.179 0.125 0.178 0.451 -0.094 

Pnisr -0.181 0.161 0.284 0.171 -0.532 0.305 0.186 0.126 0.709 -0.099 

Srsf1 -0.257 0.235 0.294 0.254 -0.769 0.044 0.144 0.766 0.357 -0.270 

Srsf2 -0.130 0.168 0.456 0.237 -0.496 -0.157 0.186 0.414 0.248 -0.562 

Srsf3 0.283 0.137 0.063 0.584 -0.018 -0.252 0.197 0.225 0.177 -0.681 

Srsf6 0.837 0.297 0.015 1.483 0.190 -0.187 0.251 0.470 0.359 -0.734 

Tra2b -0.190 0.133 0.179 0.100 -0.480 -0.188 0.100 0.085 0.030 -0.406 

C
o

re
 

Sf1 0.232 0.163 0.183 0.590 -0.127 -0.070 0.146 0.638 0.247 -0.388 

Sf3b1 -0.170 0.168 0.330 0.195 -0.536 -0.162 0.191 0.414 0.255 -0.578 

  Heart – Short-term DR Heart – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 -0.135 0.111 0.249 0.108 -0.378 0.077 0.161 0.642 0.430 -0.277 

Hnrnpa1 -0.115 0.146 0.448 0.204 -0.433 0.112 0.190 0.566 0.531 -0.306 

Hnrnpa2b1 0.135 0.158 0.411 0.480 -0.210 -0.205 0.121 0.119 0.062 -0.473 

Hnrnpd 0.115 0.104 0.292 0.341 -0.112 -0.029 0.117 0.810 0.228 -0.286 

Hnrnph3 0.000 0.114 0.997 0.247 -0.248 0.056 0.113 0.630 0.303 -0.192 

Hnrnpk -0.065 0.153 0.681 0.269 -0.398 -0.156 0.157 0.340 0.189 -0.501 

Hnrnpm -0.195 0.193 0.332 0.225 -0.615 -0.029 0.080 0.721 0.149 -0.208 

Hnrnpul2 0.003 0.104 0.980 0.230 -0.224 -0.096 0.196 0.632 0.334 -0.527 

Pnisr 0.023 0.102 0.826 0.244 -0.199 0.109 0.171 0.535 0.485 -0.266 

Srsf1 -0.020 0.297 0.948 0.627 -0.666 0.280 0.290 0.355 0.918 -0.358 

Srsf2 -0.109 0.131 0.423 0.176 -0.394 0.208 0.154 0.205 0.547 -0.132 

Srsf3 0.113 0.142 0.439 0.422 -0.195 0.318 0.171 0.091 0.695 -0.059 

Srsf6 0.143 0.210 0.511 0.601 -0.316 0.020 0.212 0.928 0.487 -0.448 

Tra2b -0.086 0.093 0.375 0.117 -0.288 -0.091 0.143 0.541 0.229 -0.410 

C
o

re
 

Sf1 -0.239 0.190 0.232 0.174 -0.652 -0.219 0.213 0.327 0.250 -0.687 

Sf3b1 -0.021 0.175 0.905 0.363 -0.406 -0.048 0.214 0.826 0.423 -0.519 

  Kidney – Short-term DR Kidney – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 -0.371 0.176 0.064 0.027 -0.769 0.028 0.199 0.891 0.462 -0.406 

Hnrnpa1 0.263 0.143 0.096 0.581 -0.056 0.141 0.130 0.300 0.426 -0.143 

Hnrnpa2b1 -0.137 0.153 0.395 0.210 -0.483 0.117 0.145 0.436 0.435 -0.201 

Hnrnpd -0.230 0.155 0.168 0.115 -0.575 -0.196 0.086 0.041 -0.010 -0.383 

Hnrnph3 -0.182 0.151 0.254 0.154 -0.519 0.088 0.174 0.624 0.467 -0.292 

Hnrnpk -0.360 0.165 0.054 0.007 -0.727 -0.082 0.074 0.290 0.079 -0.242 

Hnrnpm -0.047 0.213 0.829 0.428 -0.522 -0.129 0.090 0.178 0.067 -0.325 

Hnrnpul2 -0.101 0.256 0.703 0.469 -0.671 -0.403 0.134 0.011 -0.112 -0.695 

Pnisr 0.237 0.182 0.222 0.643 -0.169 -0.170 0.103 0.124 0.054 -0.394 

Srsf1 -0.148 0.141 0.316 0.165 -0.461 -0.016 0.100 0.874 0.202 -0.235 

Srsf2 0.316 0.191 0.128 0.740 -0.109 0.299 0.102 0.012 0.521 0.077 

Srsf3 -0.035 0.231 0.882 0.479 -0.549 0.154 0.165 0.367 0.513 -0.205 

Srsf6 -0.179 0.202 0.398 0.272 -0.630 0.093 0.133 0.500 0.383 -0.198 

Tra2b -0.424 0.225 0.089 0.077 -0.925 -0.041 0.136 0.769 0.255 -0.336 

C
o

re
 

Sf1 0.420 0.145 0.016 0.744 0.097 0.178 0.132 0.202 0.465 -0.109 

Sf3b1 0.400 0.151 0.025 0.737 0.063 -0.092 0.137 0.514 0.206 -0.390 

 



294 
 

Supplementary Table S23 (Chapter 5): Changes in splicing factor 
expression with long-term and short-term 40% DR in positive responder 
mice 

Changes in splicing factor expression levels with long-term and short-term DR in brain, heart and 
kidney tissues from mice which display lifespan extension under 40% DR conditions (TejJ89), by 
ANCOVA. A positive mean difference denotes an increase in expression levels under 40% DR 
conditions when compared to AL feeding. Transcripts showing nominal associations (p<0.05) are 
shown in italic and underlined, those which meet correction for multiple testing (p<0.0045) are 
shown in bold italic and underlined. SE: standard error, 95% CI: 95% confidence intervals. 
 

  Brain – Short-term DR Brain – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 -0.424 0.252 0.119 -0.974 0.126 -0.954 0.235 0.002 -1.478 -0.429 

Hnrnpa1 -0.240 0.187 0.223 -0.647 0.167 1.554 0.389 0.004 0.658 2.450 

Hnrnpa2b1 0.128 0.125 0.324 -0.143 0.400 0.508 0.228 0.047 0.007 1.009 

Hnrnpd 0.021 0.179 0.909 -0.370 0.412 0.360 0.204 0.106 -0.090 0.810 

Hnrnph3 0.085 0.135 0.542 -0.210 0.380 -1.595 0.293 <0.001 -2.272 -0.918 

Hnrnpk -0.312 0.179 0.107 -0.703 0.079 1.512 0.343 0.002 0.736 2.287 

Hnrnpm 0.061 0.164 0.717 -0.296 0.418 -0.167 0.195 0.409 -0.597 0.262 

Hnrnpul2 0.039 0.134 0.777 -0.254 0.331 0.122 0.142 0.407 -0.190 0.435 

Pnisr 0.078 0.168 0.651 -0.287 0.443 0.024 0.268 0.929 -0.566 0.615 

Srsf1 0.316 0.214 0.166 -0.150 0.783 -0.828 0.272 0.011 -1.427 -0.229 

Srsf2 -0.187 0.139 0.202 -0.489 0.115 -0.510 0.390 0.220 -1.379 0.359 

Srsf3 -0.433 0.128 0.005 -0.712 -0.154 -1.020 0.507 0.079 -2.189 0.148 

Srsf6 -0.674 0.220 0.010 -1.153 -0.195 -0.742 0.363 0.065 -1.540 0.056 

Tra2b 0.100 0.091 0.290 -0.097 0.298 0.160 0.159 0.335 -0.189 0.510 

C
o

re
 

Sf1 -0.290 0.126 0.040 -0.564 -0.016 -0.637 0.188 0.007 -1.055 -0.219 

Sf3b1 0.373 0.155 0.033 0.035 0.710 0.737 0.254 0.016 0.172 1.302 

  Heart – Short-term DR Heart – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 -0.331 0.180 0.089 -0.720 0.058 0.091 0.158 0.574 -0.254 0.436 

Hnrnpa1 0.210 0.199 0.310 -0.219 0.639 -0.208 0.156 0.206 -0.548 0.132 

Hnrnpa2b1 -0.022 0.109 0.841 -0.257 0.212 0.287 0.129 0.046 0.006 0.569 

Hnrnpd -0.017 0.115 0.884 -0.265 0.231 0.169 0.120 0.184 -0.092 0.431 

Hnrnph3 -0.123 0.086 0.173 -0.309 0.062 -0.007 0.157 0.964 -0.349 0.334 

Hnrnpk 0.234 0.191 0.244 -0.180 0.647 0.142 0.151 0.367 -0.188 0.471 

Hnrnpm -0.149 0.293 0.621 -0.783 0.485 -0.127 0.137 0.372 -0.425 0.171 

Hnrnpul2 -0.126 0.151 0.420 -0.453 0.201 -0.266 0.195 0.197 -0.692 0.159 

Pnisr -0.402 0.135 0.011 -0.694 -0.110 -0.156 0.177 0.396 -0.541 0.229 

Srsf1 -0.241 0.235 0.323 -0.748 0.266 0.004 0.269 0.988 -0.581 0.589 

Srsf2 0.171 0.178 0.353 -0.212 0.555 0.115 0.175 0.523 -0.266 0.496 

Srsf3 -0.103 0.135 0.458 -0.396 0.189 -0.051 0.131 0.704 -0.336 0.234 

Srsf6 -0.064 0.201 0.753 -0.498 0.369 0.607 0.220 0.017 0.128 1.086 

Tra2b 0.230 0.130 0.100 -0.051 0.511 0.220 0.181 0.247 -0.174 0.614 

C
o

re
 

Sf1 -0.147 0.155 0.361 -0.482 0.188 0.044 0.111 0.702 -0.198 0.285 

Sf3b1 0.323 0.300 0.301 -0.326 0.972 -0.160 0.166 0.355 -0.522 0.202 

  Kidney – Short-term DR Kidney – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 0.203 0.214 0.362 -0.264 0.669 0.152 0.088 0.108 -0.039 0.343 

Hnrnpa1 -0.438 0.093 <0.001 -0.640 -0.237 -0.332 0.216 0.150 -0.803 0.138 

Hnrnpa2b1 -0.158 0.085 0.086 -0.343 0.026 -0.205 0.196 0.315 -0.632 0.221 

Hnrnpd 0.063 0.087 0.483 -0.129 0.256 0.012 0.132 0.928 -0.276 0.301 

Hnrnph3 -0.085 0.075 0.277 -0.248 0.078 -0.627 0.212 0.012 -1.088 -0.166 

Hnrnpk -0.025 0.066 0.715 -0.169 0.119 -0.020 0.150 0.898 -0.346 0.307 

Hnrnpm 0.330 0.140 0.037 0.024 0.635 0.098 0.195 0.625 -0.327 0.522 

Hnrnpul2 -0.237 0.105 0.043 -0.465 -0.008 -0.192 0.161 0.258 -0.545 0.162 

Pnisr -0.289 0.121 0.034 -0.552 -0.026 0.522 0.149 0.004 0.198 0.846 

Srsf1 0.133 0.066 0.068 -0.012 0.278 -0.189 0.057 0.006 -0.314 -0.064 

Srsf2 0.069 0.101 0.509 -0.151 0.288 0.353 0.232 0.155 -0.153 0.859 

Srsf3 0.094 0.160 0.569 -0.256 0.444 -0.186 0.180 0.322 -0.578 0.206 

Srsf6 0.692 0.144 <0.001 0.378 1.005 0.054 0.175 0.763 -0.327 0.435 

Tra2b 0.343 0.109 0.008 0.106 0.580 -0.265 0.173 0.152 -0.641 0.112 

C
o

re
 

Sf1 0.064 0.115 0.592 -0.188 0.315 0.147 0.122 0.251 -0.118 0.413 

Sf3b1 -0.327 0.150 0.049 -0.653 -0.001 0.328 0.151 0.050 0.000 0.656 
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Supplementary Table S24 (Chapter 5): Changes in splicing factor 
expression with long-term and short-term 40% DR in negative responder 
mice 

Changes in splicing factor expression levels with long-term and short-term DR in brain, heart and 
kidney tissue from mice which display lifespan reduction under 40% DR conditions (TejJ114), by 
ANCOVA. A positive mean difference denotes an increase in expression levels under 40% DR 
conditions when compared to AL feeding. Transcripts showing nominal associations (p<0.05) are 
shown in italic and underlined, those which meet correction for multiple testing (p<0.0045) are 
shown in bold italic and underlined. SE: standard error, 95% CI: 95% confidence intervals. 
 

  Brain – Short-term DR Brain – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 0.062 0.200 0.761 -0.373 0.497 0.258 0.332 0.453 -0.472 0.988 

Hnrnpa1 0.032 0.215 0.886 -0.436 0.499 -0.254 0.314 0.435 -0.937 0.430 

Hnrnpa2b1 0.268 0.114 0.037 0.019 0.517 -0.437 0.153 0.014 -0.769 -0.104 

Hnrnpd 0.093 0.116 0.436 -0.158 0.345 -0.462 0.186 0.028 -0.867 -0.058 

Hnrnph3 0.089 0.100 0.392 -0.129 0.307 -0.342 0.151 0.043 -0.670 -0.013 

Hnrnpk -0.281 0.159 0.102 -0.627 0.065 -0.196 0.269 0.481 -0.781 0.390 

Hnrnpm 0.010 0.147 0.949 -0.310 0.329 0.163 0.255 0.535 -0.393 0.719 

Hnrnpul2 0.112 0.086 0.214 -0.074 0.298 -0.193 0.166 0.266 -0.554 0.168 

Pnisr -0.008 0.174 0.965 -0.388 0.372 0.123 0.184 0.517 -0.278 0.524 

Srsf1 -0.247 0.317 0.453 -0.945 0.451 0.222 0.235 0.365 -0.291 0.734 

Srsf2 0.348 0.157 0.046 0.007 0.689 0.237 0.277 0.408 -0.366 0.840 

Srsf3 -0.334 0.184 0.094 -0.735 0.067 0.172 0.204 0.417 -0.273 0.616 

Srsf6 -0.808 0.208 0.002 -1.262 -0.354 0.261 0.149 0.105 -0.064 0.586 

Tra2b -0.037 0.102 0.727 -0.259 0.186 0.156 0.189 0.427 -0.257 0.568 

C
o

re
 

Sf1 -0.407 0.125 0.007 -0.680 -0.134 -0.023 0.213 0.916 -0.487 0.441 

Sf3b1 0.417 0.213 0.074 -0.047 0.882 -0.009 0.340 0.979 -0.750 0.732 

  Heart – Short-term DR Heart – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 0.067 0.174 0.705 -0.312 0.447 -0.344 0.099 0.005 -0.561 -0.127 

Hnrnpa1 0.407 0.113 0.004 0.161 0.653 -0.236 0.170 0.189 -0.606 0.134 

Hnrnpa2b1 -0.287 0.073 0.002 -0.448 -0.127 0.258 0.151 0.114 -0.071 0.587 

Hnrnpd -0.316 0.087 0.003 -0.505 -0.127 0.005 0.156 0.975 -0.334 0.344 

Hnrnph3 0.010 0.077 0.895 -0.158 0.178 -0.015 0.116 0.899 -0.268 0.238 

Hnrnpk -0.006 0.165 0.971 -0.365 0.353 0.368 0.181 0.066 -0.028 0.763 

Hnrnpm 0.567 0.187 0.011 0.158 0.975 -0.221 0.249 0.393 -0.763 0.321 

Hnrnpul2 -0.202 0.135 0.159 -0.495 0.091 0.275 0.126 0.049 0.001 0.550 

Pnisr 0.060 0.166 0.724 -0.305 0.425 0.043 0.120 0.725 -0.218 0.304 

Srsf1 0.054 0.189 0.779 -0.357 0.465 -0.079 0.126 0.543 -0.353 0.196 

Srsf2 0.460 0.166 0.017 0.099 0.821 0.071 0.111 0.531 -0.170 0.313 

Srsf3 0.147 0.205 0.489 -0.301 0.594 -0.005 0.107 0.967 -0.240 0.231 

Srsf6 -0.685 0.151 <0.001 -1.014 -0.355 0.318 0.151 0.057 -0.012 0.648 

Tra2b 0.092 0.144 0.534 -0.221 0.405 0.338 0.195 0.109 -0.088 0.763 

C
o

re
 

Sf1 -0.511 0.138 0.003 -0.812 -0.211 -0.342 0.187 0.092 -0.750 0.065 

Sf3b1 -0.259 0.205 0.230 -0.705 0.188 -0.305 0.253 0.252 -0.857 0.247 

  Kidney – Short-term DR Kidney – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 0.147 0.195 0.466 -0.276 0.569 0.202 0.194 0.320 -0.225 0.630 

Hnrnpa1 -0.129 0.100 0.216 -0.345 0.086 -0.325 0.125 0.025 -0.600 -0.050 

Hnrnpa2b1 -0.105 0.129 0.433 -0.384 0.175 -0.419 0.125 0.007 -0.698 -0.140 

Hnrnpd -0.095 0.098 0.350 -0.307 0.117 0.013 0.103 0.905 -0.214 0.239 

Hnrnph3 -0.122 0.111 0.293 -0.362 0.118 -0.345 0.201 0.120 -0.800 0.110 

Hnrnpk 0.198 0.128 0.146 -0.079 0.474 0.134 0.170 0.448 -0.240 0.507 

Hnrnpm 0.148 0.109 0.196 -0.087 0.384 -0.054 0.215 0.805 -0.527 0.419 

Hnrnpul2 -0.314 0.135 0.037 -0.605 -0.022 0.171 0.129 0.212 -0.113 0.454 

Pnisr -0.261 0.144 0.094 -0.573 0.051 0.182 0.224 0.432 -0.310 0.674 

Srsf1 0.285 0.073 0.002 0.128 0.442 -0.015 0.081 0.857 -0.193 0.164 

Srsf2 0.151 0.139 0.297 -0.149 0.451 0.048 0.134 0.728 -0.247 0.343 

Srsf3 0.456 0.140 0.006 0.155 0.758 0.126 0.218 0.574 -0.354 0.606 

Srsf6 0.449 0.177 0.025 0.066 0.832 0.283 0.191 0.168 -0.139 0.704 

Tra2b 0.487 0.119 0.001 0.228 0.746 0.015 0.307 0.961 -0.660 0.691 

C
o

re
 

Sf1 -0.495 0.104 <0.001 -0.720 -0.270 0.173 0.145 0.257 -0.145 0.491 

Sf3b1 -0.557 0.168 0.005 -0.919 -0.195 0.223 0.204 0.297 -0.225 0.672 
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Supplementary Table S25 (Chapter 5): Splicing factor expression according 
to mouse strain 

Differences in splicing factor expression between the lifespan extension (TejJ89) and lifespan 
reduction (TejJ114) responder strains under 40% DR by ANCOVA. A positive mean difference 
denotes higher expression levels in TejJ89 relative to TejJ114 under 40% DR conditions. 
Transcripts showing nominal associations (p<0.05) are shown in italic and underlined, those 
which meet correction for multiple testing (p<0.0045) are shown in bold italic and underlined. SE: 
standard error, 95% CI: 95% confidence intervals. 
 

  Brain – Short-term DR Brain – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 -0.446 0.170 0.022 -0.816 -0.077 -1.150 0.358 0.011 -1.960 -0.340 

Hnrnpa1 0.089 0.208 0.675 -0.364 0.542 1.788 0.510 0.008 0.613 2.963 

Hnrnpa2b1 -0.044 0.156 0.780 -0.384 0.295 0.963 0.199 <0.001 0.526 1.400 

Hnrnpd 0.032 0.127 0.808 -0.245 0.309 0.825 0.215 0.003 0.351 1.300 

Hnrnph3 -0.105 0.125 0.418 -0.377 0.168 -1.289 0.314 0.003 -2.014 -0.565 

Hnrnpk 0.102 0.160 0.534 -0.246 0.450 1.691 0.411 0.003 0.761 2.621 

Hnrnpm -0.281 0.148 0.082 -0.604 0.041 -0.200 0.264 0.465 -0.780 0.381 

Hnrnpul2 -0.017 0.109 0.876 -0.254 0.220 0.309 0.109 0.016 0.070 0.549 

Pnisr -0.119 0.160 0.471 -0.468 0.230 0.144 0.190 0.465 -0.274 0.562 

Srsf1 0.229 0.278 0.426 -0.377 0.836 -0.881 0.294 0.012 -1.528 -0.234 

Srsf2 -0.533 0.133 0.002 -0.823 -0.243 -0.801 0.371 0.056 -1.628 0.026 

Srsf3 -0.219 0.135 0.131 -0.513 0.076 -1.281 0.431 0.018 -2.274 -0.288 

Srsf6 -0.084 0.227 0.718 -0.578 0.410 -1.180 0.286 0.002 -1.810 -0.550 

Tra2b 0.008 0.103 0.940 -0.216 0.231 -0.119 0.143 0.424 -0.434 0.196 

C
o

re
 

Sf1 0.186 0.138 0.204 -0.115 0.487 -0.687 0.184 0.004 -1.098 -0.276 

Sf3b1 0.245 0.155 0.141 -0.094 0.584 0.715 0.398 0.103 -0.172 1.602 

  Heart – Short-term DR Heart – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 -0.374 0.165 0.041 -0.731 -0.017 0.516 0.175 0.012 0.134 0.899 

Hnrnpa1 -0.039 0.164 0.817 -0.393 0.316 -0.230 0.167 0.194 -0.593 0.134 

Hnrnpa2b1 0.194 0.130 0.162 -0.089 0.478 -0.015 0.108 0.893 -0.249 0.220 

Hnrnpd 0.344 0.088 0.002 0.154 0.534 0.107 0.121 0.393 -0.156 0.371 

Hnrnph3 -0.168 0.093 0.096 -0.369 0.034 -0.001 0.130 0.996 -0.284 0.283 

Hnrnpk 0.214 0.163 0.211 -0.138 0.566 -0.093 0.146 0.535 -0.412 0.225 

Hnrnpm -0.733 0.255 0.013 -1.283 -0.183 0.159 0.243 0.526 -0.371 0.690 

Hnrnpul2 0.056 0.158 0.731 -0.286 0.397 -0.572 0.134 0.001 -0.863 -0.282 

Pnisr -0.457 0.183 0.028 -0.856 -0.058 -0.248 0.139 0.099 -0.550 0.054 

Srsf1 -0.338 0.144 0.035 -0.648 -0.028 0.165 0.217 0.462 -0.307 0.636 

Srsf2 -0.224 0.173 0.219 -0.599 0.151 0.073 0.144 0.624 -0.241 0.386 

Srsf3 -0.248 0.152 0.126 -0.576 0.080 0.359 0.093 0.002 0.156 0.561 

Srsf6 0.425 0.172 0.028 0.053 0.797 0.429 0.177 0.032 0.043 0.815 

Tra2b 0.022 0.177 0.904 -0.361 0.404 0.034 0.156 0.834 -0.307 0.374 

C
o

re
 

Sf1 0.191 0.169 0.279 -0.175 0.557 0.402 0.183 0.048 0.005 0.800 

Sf3b1 0.657 0.234 0.015 0.151 1.162 0.008 0.231 0.974 -0.495 0.510 

  Kidney – Short-term DR Kidney – Long-term DR 

    
Mean 

Difference SE p-value 
95% CI 
lower 

95% CI 
upper 

Mean 
Difference SE p-value 

95% CI 
lower 

95% CI 
upper 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 -0.013 0.208 0.950 -0.463 0.436 -0.264 0.153 0.115 -0.604 0.076 

Hnrnpa1 -0.371 0.092 0.001 -0.569 -0.173 -0.206 0.156 0.217 -0.554 0.142 

Hnrnpa2b1 -0.065 0.150 0.672 -0.389 0.259 -0.001 0.156 0.996 -0.354 0.352 

Hnrnpd 0.123 0.089 0.191 -0.070 0.316 -0.022 0.120 0.856 -0.289 0.245 

Hnrnph3 0.055 0.103 0.605 -0.169 0.278 -0.148 0.247 0.566 -0.718 0.422 

Hnrnpk -0.151 0.132 0.274 -0.436 0.135 0.229 0.148 0.154 -0.101 0.559 

Hnrnpm 0.188 0.111 0.114 -0.051 0.427 0.193 0.237 0.435 -0.335 0.721 

Hnrnpul2 0.093 0.147 0.538 -0.224 0.410 -0.177 0.153 0.274 -0.518 0.164 

Pnisr -0.059 0.149 0.698 -0.381 0.263 0.259 0.160 0.136 -0.097 0.614 

Srsf1 -0.174 0.086 0.065 -0.361 0.012 -0.089 0.100 0.394 -0.311 0.133 

Srsf2 -0.112 0.116 0.352 -0.362 0.138 0.282 0.224 0.236 -0.217 0.781 

Srsf3 -0.280 0.115 0.030 -0.528 -0.033 -0.006 0.234 0.979 -0.527 0.514 

Srsf6 0.279 0.186 0.157 -0.122 0.681 0.072 0.143 0.627 -0.247 0.390 

Tra2b -0.059 0.090 0.525 -0.254 0.137 0.096 0.263 0.724 -0.491 0.682 

C
o

re
 

Sf1 0.552 0.116 <0.001 0.301 0.802 -0.031 0.112 0.785 -0.281 0.218 

Sf3b1 0.178 0.160 0.285 -0.167 0.524 -0.102 0.187 0.597 -0.520 0.315 
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Supplementary Table S26 (Chapter 5): Interactions between strain effects 
and 40% DR effects on splicing factor expression 

Shown here are the interaction coefficients between strain effects and DR effects on splicing 
factor transcript expression. A positive coefficient denotes combinatorial effects contributing to 
higher expression levels in TejJ89 relative to TejJ114 under 40% DR conditions. Also shown are 
the postestimation marginal effects for each strain. Positive margins denote an increase in 
expression levels in the respective strain under 40% DR conditions when compared to AL feeding. 
Transcripts showing nominal associations (p<0.05) are shown in italic and underlined, those 
which meet correction for multiple testing (p<0.0045) are shown in bold italic and underlined. SE: 
standard error, 95% CI: 95% confidence intervals. 

Brain – Short-term DR 

   Coefficient SE 95% CI 
lower 

95% CI 
upper 

p-value 

Sp
lic

in
g 

Fa
ct

o
rs

 

Hnrnpa0 Interaction coefficient -0.495 0.308 -1.128 0.138 0.120 
 TejJ89 – Predictive margins -0.407 0.148 -0.711 -0.103  
 TejJ114 – Predictive margins 0.056 0.149 -0.251 0.362  

Hnrnpa1 Interaction coefficient -0.175 0.289 -0.769 0.418 0.549 
 TejJ89 – Predictive margins -0.112 0.139 -0.397 0.172  
 TejJ114 – Predictive margins -0.204 0.140 -0.491 0.083  

Hnrnpa2b1 Interaction coefficient -0.083 0.179 -0.452 0.285 0.646 
 TejJ89 – Predictive margins 0.153 0.086 -0.024 0.330  
 TejJ114 – Predictive margins 0.198 0.087 0.020 0.377  

Hnrnpd Interaction coefficient -0.026 0.211 -0.460 0.409 0.904 
 TejJ89 – Predictive margins 0.048 0.101 -0.160 0.257  
 TejJ114 – Predictive margins 0.012 0.102 -0.199 0.222  

Hnrnph3 Interaction coefficient -0.055 0.170 -0.406 0.295 0.748 
 TejJ89 – Predictive margins 0.087 0.082 -0.081 0.255  
 TejJ114 – Predictive margins 0.175 0.082 0.005 0.344  

Hnrnpk Interaction coefficient -0.012 0.230 -0.485 0.462 0.960 
 TejJ89 – Predictive margins -0.278 0.111 -0.505 -0.051  
 TejJ114 – Predictive margins -0.394 0.112 -0.624 -0.165  

Hnrnpm Interaction coefficient 0.019 0.212 -0.418 0.455 0.930 
 TejJ89 – Predictive margins -0.085 0.102 -0.294 0.125  
 TejJ114 – Predictive margins 0.189 0.103 -0.022 0.400  

Hnrnpul2 Interaction coefficient -0.081 0.155 -0.400 0.238 0.607 
 TejJ89 – Predictive margins 0.080 0.074 -0.073 0.233  
 TejJ114 – Predictive margins 0.107 0.075 -0.048 0.261  

Pnisr Interaction coefficient -0.002 0.257 -0.530 0.526 0.994 
 TejJ89 – Predictive margins 0.075 0.123 -0.178 0.329  
 TejJ114 – Predictive margins 0.192 0.124 -0.064 0.448  

Srsf1 Interaction coefficient 0.493 0.368 -0.265 1.251 0.193 
 TejJ89 – Predictive margins 0.287 0.174 -0.072 0.646  
 TejJ114 – Predictive margins 0.110 0.175 -0.252 0.471  

Srsf2 Interaction coefficient -0.491 0.206 -0.914 -0.067 0.025 
 TejJ89 – Predictive margins -0.254 0.099 -0.457 -0.051  
 TejJ114 – Predictive margins 0.305 0.100 0.100 0.510  

Srsf3 Interaction coefficient -0.061 0.218 -0.509 0.387 0.782 
 TejJ89 – Predictive margins -0.548 0.105 -0.763 -0.333  
 TejJ114 – Predictive margins -0.335 0.106 -0.552 -0.118  

Srsf6 Interaction coefficient 0.249 0.320 -0.409 0.907 0.444 
 TejJ89 – Predictive margins -0.913 0.154 -1.228 -0.597  
 TejJ114 – Predictive margins -0.850 0.155 -1.169 -0.532  

Tra2b Interaction coefficient 0.189 0.152 -0.123 0.502 0.224 
 TejJ89 – Predictive margins -0.049 0.073 -0.199 0.102  
 TejJ114 – Predictive margins -0.038 0.074 -0.189 0.114  

C
o

re
 

Sp
lic

e
o

so
m

e
 Sf1 Interaction coefficient 0.134 0.170 -0.215 0.482 0.439 

 TejJ89 – Predictive margins -0.276 0.081 -0.444 -0.109  
 TejJ114 – Predictive margins -0.474 0.082 -0.643 -0.305  

Sf3b1 Interaction coefficient -0.012 0.260 -0.546 0.522 0.964 
 TejJ89 – Predictive margins 0.485 0.125 0.229 0.741  
 TejJ114 – Predictive margins 0.212 0.126 -0.046 0.471  
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Supplementary Table S26 (cont.) 

Heart – Short-term DR 

   Coefficient SE 95% CI 
lower 

95% CI 
upper 

p-value 
Sp

lic
in

g 
Fa

ct
o

rs
 

Hnrnpa0 Interaction coefficient -0.407 0.242 -0.904 0.090 0.104 
 TejJ89 – Predictive margins -0.310 0.121 -0.560 -0.061  
 TejJ114 – Predictive margins 0.023 0.125 -0.233 0.279  

Hnrnpa1 Interaction coefficient -0.197 0.221 -0.651 0.258 0.383 
 TejJ89 – Predictive margins 0.242 0.111 0.015 0.470  
 TejJ114 – Predictive margins 0.284 0.114 0.050 0.518  

Hnrnpa2b1 Interaction coefficient 0.280 0.144 -0.016 0.575 0.063 
 TejJ89 – Predictive margins -0.019 0.071 -0.165 0.126  
 TejJ114 – Predictive margins -0.281 0.078 -0.440 -0.121  

Hnrnpd Interaction coefficient 0.291 0.151 -0.018 0.600 0.064 
 TejJ89 – Predictive margins -0.017 0.075 -0.172 0.138  
 TejJ114 – Predictive margins -0.371 0.077 -0.530 -0.212  

Hnrnph3 Interaction coefficient -0.148 0.127 -0.410 0.113 0.254 
 TejJ89 – Predictive margins -0.153 0.064 -0.284 -0.022  
 TejJ114 – Predictive margins 0.023 0.066 -0.111 0.158  

Hnrnpk Interaction coefficient 0.277 0.247 -0.230 0.785 0.272 
 TejJ89 – Predictive margins 0.231 0.124 -0.023 0.486  
 TejJ114 – Predictive margins 0.068 0.127 -0.194 0.329  

Hnrnpm Interaction coefficient -0.750 0.339 -1.446 -0.054 0.036 
 TejJ89 – Predictive margins -0.176 0.170 -0.525 0.173  
 TejJ114 – Predictive margins 0.603 0.175 0.244 0.961  

Hnrnpul2 Interaction coefficient 0.059 0.196 -0.344 0.462 0.767 
 TejJ89 – Predictive margins -0.140 0.098 -0.342 0.063  
 TejJ114 – Predictive margins -0.205 0.101 -0.412 0.003  

Pnisr Interaction coefficient -0.441 0.205 -0.864 -0.019 0.041 
 TejJ89 – Predictive margins -0.417 0.102 -0.626 -0.208  
 TejJ114 – Predictive margins 0.026 0.113 -0.206 0.259  

Srsf1 Interaction coefficient -0.338 0.294 -0.942 0.267 0.262 
 TejJ89 – Predictive margins -0.270 0.148 -0.573 0.033  
 TejJ114 – Predictive margins 0.064 0.152 -0.247 0.375  

Srsf2 Interaction coefficient -0.275 0.233 -0.753 0.203 0.249 
 TejJ89 – Predictive margins 0.183 0.117 -0.056 0.423  
 TejJ114 – Predictive margins 0.446 0.120 0.199 0.692  

Srsf3 Interaction coefficient -0.219 0.238 -0.708 0.270 0.366 
 TejJ89 – Predictive margins -0.113 0.120 -0.358 0.133  
 TejJ114 – Predictive margins 0.202 0.123 -0.050 0.454  

Srsf6 Interaction coefficient 0.584 0.248 0.074 1.093 0.026 
 TejJ89 – Predictive margins -0.131 0.125 -0.386 0.125  
 TejJ114 – Predictive margins -0.576 0.128 -0.838 -0.314  

Tra2b Interaction coefficient 0.138 0.189 -0.250 0.525 0.472 
 TejJ89 – Predictive margins 0.198 0.095 0.004 0.392  
 TejJ114 – Predictive margins 0.205 0.097 0.006 0.404  

C
o

re
 

Sp
lic

e
o

so
m

e
 Sf1 Interaction coefficient 0.335 0.203 -0.082 0.751 0.111 

 TejJ89 – Predictive margins -0.174 0.102 -0.383 0.035  
 TejJ114 – Predictive margins -0.466 0.105 -0.681 -0.252  

Sf3b1 Interaction coefficient 0.604 0.351 -0.117 1.324 0.097 
 TejJ89 – Predictive margins 0.367 0.176 0.006 0.729  
 TejJ114 – Predictive margins -0.354 0.181 -0.725 0.017  
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Supplementary Table S26 (cont.) 

Kidney – Short-term DR 

   Coefficient SE 95% CI 
lower 

95% CI 
upper 

p-value 
Sp

lic
in

g 
Fa

ct
o

rs
 

Hnrnpa0 Interaction coefficient 0.051 0.280 -0.523 0.625 0.856 
 TejJ89 – Predictive margins 0.196 0.142 -0.094 0.486  
 TejJ114 – Predictive margins 0.171 0.134 -0.104 0.445  

Hnrnpa1 Interaction coefficient -0.310 0.132 -0.580 -0.039 0.027 
 TejJ89 – Predictive margins -0.496 0.067 -0.633 -0.359  
 TejJ114 – Predictive margins -0.081 0.063 -0.210 0.049  

Hnrnpa2b1 Interaction coefficient -0.054 0.153 -0.368 0.260 0.725 
 TejJ89 – Predictive margins -0.172 0.077 -0.331 -0.013  
 TejJ114 – Predictive margins -0.112 0.073 -0.262 0.038  

Hnrnpd Interaction coefficient 0.152 0.131 -0.117 0.422 0.255 
 TejJ89 – Predictive margins 0.036 0.069 -0.107 0.179  
 TejJ114 – Predictive margins -0.082 0.062 -0.209 0.045  

Hnrnph3 Interaction coefficient 0.033 0.136 -0.246 0.312 0.812 
 TejJ89 – Predictive margins -0.086 0.069 -0.227 0.055  
 TejJ114 – Predictive margins -0.133 0.065 -0.266 0.000  

Hnrnpk Interaction coefficient -0.226 0.146 -0.526 0.074 0.133 
 TejJ89 – Predictive margins -0.004 0.074 -0.155 0.148  
 TejJ114 – Predictive margins 0.171 0.070 0.028 0.314  

Hnrnpm Interaction coefficient 0.192 0.178 -0.173 0.558 0.290 
 TejJ89 – Predictive margins 0.336 0.090 0.151 0.521  
 TejJ114 – Predictive margins 0.136 0.085 -0.039 0.311  

Hnrnpul2 Interaction coefficient 0.088 0.177 -0.275 0.452 0.622 
 TejJ89 – Predictive margins -0.254 0.090 -0.438 -0.070  
 TejJ114 – Predictive margins -0.349 0.085 -0.523 -0.175  

Pnisr Interaction coefficient -0.029 0.183 -0.405 0.346 0.873 
 TejJ89 – Predictive margins -0.284 0.093 -0.474 -0.094  
 TejJ114 – Predictive margins -0.251 0.088 -0.431 -0.072  

Srsf1 Interaction coefficient -0.159 0.105 -0.375 0.057 0.143 
 TejJ89 – Predictive margins 0.127 0.053 0.018 0.237  
 TejJ114 – Predictive margins 0.280 0.050 0.177 0.383  

Srsf2 Interaction coefficient -0.077 0.178 -0.443 0.289 0.668 
 TejJ89 – Predictive margins 0.079 0.090 -0.106 0.264  
 TejJ114 – Predictive margins 0.169 0.085 -0.006 0.344  

Srsf3 Interaction coefficient -0.363 0.204 -0.781 0.055 0.086 
 TejJ89 – Predictive margins 0.119 0.103 -0.092 0.331  
 TejJ114 – Predictive margins 0.445 0.097 0.245 0.645  

Srsf6 Interaction coefficient 0.238 0.225 -0.223 0.699 0.298 
 TejJ89 – Predictive margins 0.744 0.114 0.511 0.978  
 TejJ114 – Predictive margins 0.444 0.107 0.224 0.664  

Tra2b Interaction coefficient -0.145 0.156 -0.466 0.177 0.364 
 TejJ89 – Predictive margins 0.382 0.078 0.222 0.542  
 TejJ114 – Predictive margins 0.461 0.078 0.301 0.621  

C
o

re
 

Sp
lic

e
o

so
m

e
 Sf1 Interaction coefficient 0.554 0.153 0.241 0.867 0.001 

 TejJ89 – Predictive margins 0.091 0.077 -0.068 0.249  
 TejJ114 – Predictive margins -0.488 0.073 -0.637 -0.338  

Sf3b1 Interaction coefficient 0.219 0.222 -0.236 0.674 0.332 
 TejJ89 – Predictive margins -0.346 0.112 -0.576 -0.115  
 TejJ114 – Predictive margins -0.526 0.106 -0.744 -0.309  

 

  



300 
 

Supplementary Table S26 (cont.) 

Brain – Long-term DR 

   Coefficient SE 95% CI 
lower 

95% CI 
upper 

p-value 
Sp

lic
in

g 
Fa

ct
o

rs
 

Hnrnpa0 Interaction coefficient -1.057 0.408 -1.902 -0.213 0.016 
 TejJ89 – Predictive margins -0.941 0.212 -1.379 -0.503  
 TejJ114 – Predictive margins 0.134 0.197 -0.273 0.541  

Hnrnpa1 Interaction coefficient 1.652 0.479 0.659 2.644 0.002 
 TejJ89 – Predictive margins 1.478 0.296 0.865 2.091  
 TejJ114 – Predictive margins -0.208 0.208 -0.639 0.223  

Hnrnpa2b1 Interaction coefficient 0.896 0.258 0.365 1.426 0.002 
 TejJ89 – Predictive margins 0.507 0.130 0.239 0.775  
 TejJ114 – Predictive margins -0.408 0.120 -0.655 -0.161  

Hnrnpd Interaction coefficient 0.717 0.270 0.161 1.273 0.014 
 TejJ89 – Predictive margins 0.385 0.136 0.104 0.666  
 TejJ114 – Predictive margins -0.370 0.126 -0.629 -0.112  

Hnrnph3 Interaction coefficient -1.241 0.296 -1.855 -0.627 <0.001 
 TejJ89 – Predictive margins -1.536 0.183 -1.915 -1.156  
 TejJ114 – Predictive margins -0.272 0.129 -0.539 -0.005  

Hnrnpk Interaction coefficient 1.632 0.421 0.760 2.504 0.001 
 TejJ89 – Predictive margins 1.515 0.232 1.035 1.995  
 TejJ114 – Predictive margins -0.063 0.180 -0.436 0.309  

Hnrnpm Interaction coefficient -0.164 0.326 -0.834 0.507 0.620 
 TejJ89 – Predictive margins -0.175 0.165 -0.514 0.164  
 TejJ114 – Predictive margins -0.042 0.152 -0.354 0.271  

Hnrnpul2 Interaction coefficient 0.376 0.210 -0.055 0.808 0.084 
 TejJ89 – Predictive margins 0.096 0.106 -0.122 0.314  
 TejJ114 – Predictive margins -0.239 0.098 -0.440 -0.038  

Pnisr Interaction coefficient 0.026 0.318 -0.629 0.681 0.936 
 TejJ89 – Predictive margins 0.040 0.161 -0.291 0.371  
 TejJ114 – Predictive margins -0.048 0.148 -0.353 0.257  

Srsf1 Interaction coefficient -0.876 0.366 -1.629 -0.123 0.024 
 TejJ89 – Predictive margins -0.776 0.185 -1.157 -0.396  
 TejJ114 – Predictive margins 0.136 0.170 -0.214 0.487  

Srsf2 Interaction coefficient -0.845 0.433 -1.738 0.049 0.063 
 TejJ89 – Predictive margins -0.504 0.237 -0.993 -0.014  
 TejJ114 – Predictive margins 0.247 0.198 -0.161 0.655  

Srsf3 Interaction coefficient -1.204 0.449 -2.135 -0.274 0.014 
 TejJ89 – Predictive margins -0.976 0.272 -1.539 -0.412  
 TejJ114 – Predictive margins 0.224 0.184 -0.158 0.606  

Srsf6 Interaction coefficient -1.052 0.367 -1.807 -0.296 0.008 
 TejJ89 – Predictive margins -0.795 0.185 -1.176 -0.413  
 TejJ114 – Predictive margins 0.408 0.171 0.056 0.760  

Tra2b Interaction coefficient -0.064 0.239 -0.555 0.428 0.792 
 TejJ89 – Predictive margins 0.163 0.121 -0.086 0.411  
 TejJ114 – Predictive margins 0.236 0.111 0.007 0.465  

C
o

re
 

Sp
lic

e
o

so
m

e
 Sf1 Interaction coefficient -0.481 0.274 -1.047 0.085 0.092 

 TejJ89 – Predictive margins -0.603 0.150 -0.914 -0.293  
 TejJ114 – Predictive margins 0.024 0.125 -0.235 0.282  

Sf3b1 Interaction coefficient 0.665 0.422 -0.206 1.536 0.128 
 TejJ89 – Predictive margins 0.658 0.224 1.120 0.000  
 TejJ114 – Predictive margins -0.013 0.193 -0.412 0.386  
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Supplementary Table S26 (cont.) 

Heart – Long-term DR 

   Coefficient SE 95% CI 
lower 

95% CI 
upper 

p-value 
Sp

lic
in

g 
Fa

ct
o

rs
 

Hnrnpa0 Interaction coefficient 0.368 0.199 -0.043 0.778 0.077 
 TejJ89 – Predictive margins -0.025 0.096 -0.222 0.172  
 TejJ114 – Predictive margins -0.557 0.096 -0.754 -0.360  

Hnrnpa1 Interaction coefficient 0.016 0.221 -0.437 0.470 0.941 
 TejJ89 – Predictive margins -0.395 0.108 -0.617 -0.172  
 TejJ114 – Predictive margins -0.172 0.108 -0.394 0.051  

Hnrnpa2b1 Interaction coefficient 0.019 0.191 -0.374 0.412 0.922 
 TejJ89 – Predictive margins 0.238 0.094 0.045 0.431  
 TejJ114 – Predictive margins 0.258 0.094 0.065 0.451  

Hnrnpd Interaction coefficient 0.180 0.192 -0.215 0.574 0.358 
 TejJ89 – Predictive margins 0.109 0.094 -0.084 0.303  
 TejJ114 – Predictive margins 0.019 0.094 -0.175 0.212  

Hnrnph3 Interaction coefficient -0.008 0.193 -0.406 0.390 0.968 
 TejJ89 – Predictive margins -0.052 0.095 -0.247 0.143  
 TejJ114 – Predictive margins -0.036 0.095 -0.231 0.159  

Hnrnpk Interaction coefficient -0.247 0.235 -0.730 0.236 0.303 
 TejJ89 – Predictive margins 0.212 0.115 -0.025 0.450  
 TejJ114 – Predictive margins 0.284 0.115 0.047 0.521  

Hnrnpm Interaction coefficient 0.109 0.276 -0.458 0.675 0.696 
 TejJ89 – Predictive margins -0.068 0.135 -0.346 0.210  
 TejJ114 – Predictive margins -0.235 0.135 -0.513 0.043  

Hnrnpul2 Interaction coefficient -0.547 0.236 -1.033 -0.062 0.029 
 TejJ89 – Predictive margins -0.342 0.116 -0.581 -0.104  
 TejJ114 – Predictive margins 0.261 0.116 0.023 0.499  

Pnisr Interaction coefficient -0.228 0.207 -0.652 0.197 0.280 
 TejJ89 – Predictive margins -0.217 0.101 -0.426 -0.009  
 TejJ114 – Predictive margins 0.051 0.101 -0.157 0.259  

Srsf1 Interaction coefficient 0.079 0.281 -0.499 0.657 0.780 
 TejJ89 – Predictive margins 0.034 0.138 -0.250 0.318  
 TejJ114 – Predictive margins -0.112 0.138 -0.396 0.171  

Srsf2 Interaction coefficient 0.051 0.196 -0.351 0.453 0.796 
 TejJ89 – Predictive margins 0.136 0.096 -0.062 0.333  
 TejJ114 – Predictive margins 0.070 0.096 -0.127 0.267  

Srsf3 Interaction coefficient -0.014 0.166 -0.357 0.329 0.934 
 TejJ89 – Predictive margins 0.069 0.080 -0.096 0.233  
 TejJ114 – Predictive margins -0.314 0.080 -0.478 -0.149  

Srsf6 Interaction coefficient 0.303 0.253 -0.217 0.824 0.242 
 TejJ89 – Predictive margins 0.710 0.124 0.454 0.965  
 TejJ114 – Predictive margins 0.266 0.124 0.011 0.521  

Tra2b Interaction coefficient -0.089 0.257 -0.618 0.441 0.733 
 TejJ89 – Predictive margins 0.352 0.126 0.092 0.612  
 TejJ114 – Predictive margins 0.307 0.126 0.047 0.566  

C
o
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Sp
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 Sf1 Interaction coefficient 0.411 0.225 -0.052 0.874 0.079 

 TejJ89 – Predictive margins 0.073 0.111 -0.154 0.301  
 TejJ114 – Predictive margins -0.307 0.110 -0.534 -0.080  

Sf3b1 Interaction coefficient 0.109 0.298 -0.504 0.723 0.717 
 TejJ89 – Predictive margins -0.290 0.146 -0.591 0.011  
 TejJ114 – Predictive margins -0.257 0.146 -0.558 0.044  
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Supplementary Table S26 (cont.) 

Kidney – Long-term DR 

   Coefficient SE 95% CI 
lower 

95% CI 
upper 

p-value 
Sp

lic
in

g 
Fa

ct
o

rs
 

Hnrnpa0 Interaction coefficient -0.067 0.211 -0.501 0.368 0.755 
 TejJ89 – Predictive margins -0.016 0.108 -0.237 0.206  
 TejJ114 – Predictive margins 0.306 0.095 0.110 0.503  

Hnrnpa1 Interaction coefficient 0.014 0.245 -0.490 0.519 0.954 
 TejJ89 – Predictive margins -0.486 0.125 -0.744 -0.229  
 TejJ114 – Predictive margins -0.164 0.111 -0.392 0.064  

Hnrnpa2b1 Interaction coefficient 0.184 0.239 -0.309 0.677 0.449 
 TejJ89 – Predictive margins -0.277 0.120 -0.524 -0.030  
 TejJ114 – Predictive margins -0.300 0.112 -0.531 -0.069  

Hnrnpd Interaction coefficient -0.045 0.170 -0.396 0.305 0.792 
 TejJ89 – Predictive margins 0.064 0.087 -0.114 0.243  
 TejJ114 – Predictive margins 0.105 0.077 -0.053 0.264  

Hnrnph3 Interaction coefficient -0.336 0.284 -0.924 0.252 0.250 
 TejJ89 – Predictive margins -0.509 0.139 -0.796 -0.222  
 TejJ114 – Predictive margins -0.414 0.149 -0.722 -0.107  

Hnrnpk Interaction coefficient -0.146 0.218 -0.595 0.303 0.508 
 TejJ89 – Predictive margins 0.162 0.111 -0.067 0.391  
 TejJ114 – Predictive margins -0.050 0.099 -0.253 0.153  

Hnrnpm Interaction coefficient 0.106 0.280 -0.472 0.683 0.709 
 TejJ89 – Predictive margins 0.202 0.143 -0.092 0.497  
 TejJ114 – Predictive margins 0.009 0.127 -0.251 0.270  

Hnrnpul2 Interaction coefficient -0.385 0.216 -0.831 0.061 0.087 
 TejJ89 – Predictive margins 0.074 0.106 -0.145 0.294  
 TejJ114 – Predictive margins 0.259 0.093 0.067 0.452  

Pnisr Interaction coefficient 0.384 0.257 -0.145 0.913 0.147 
 TejJ89 – Predictive margins 0.436 0.131 0.167 0.706  
 TejJ114 – Predictive margins 0.155 0.116 -0.084 0.394  

Srsf1 Interaction coefficient -0.212 0.107 -0.432 0.008 0.058 
 TejJ89 – Predictive margins -0.127 0.054 -0.239 -0.015  
 TejJ114 – Predictive margins -0.012 0.048 -0.111 0.088  

Srsf2 Interaction coefficient 0.365 0.296 -0.245 0.975 0.229 
 TejJ89 – Predictive margins 0.218 0.151 -0.093 0.529  
 TejJ114 – Predictive margins -0.076 0.134 -0.351 0.200  

Srsf3 Interaction coefficient -0.307 0.269 -0.862 0.248 0.265 
 TejJ89 – Predictive margins -0.062 0.137 -0.345 0.221  
 TejJ114 – Predictive margins -0.068 0.122 -0.319 0.182  

Srsf6 Interaction coefficient -0.237 0.251 -0.754 0.279 0.353 
 TejJ89 – Predictive margins 0.180 0.128 -0.083 0.444  
 TejJ114 – Predictive margins 0.093 0.113 -0.140 0.327  

Tra2b Interaction coefficient -0.269 0.329 -0.946 0.408 0.421 
 TejJ89 – Predictive margins -0.072 0.168 -0.417 0.273  
 TejJ114 – Predictive margins -0.173 0.149 -0.479 0.133  

C
o
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o
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 Sf1 Interaction coefficient -0.049 0.180 -0.421 0.322 0.787 

 TejJ89 – Predictive margins 0.154 0.092 -0.036 0.343  
 TejJ114 – Predictive margins 0.176 0.082 0.008 0.344  

Sf3b1 Interaction coefficient 0.114 0.250 -0.400 0.629 0.651 
 TejJ89 – Predictive margins 0.170 0.127 -0.092 0.432  
 TejJ114 – Predictive margins 0.281 0.113 0.048 0.513  
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Supplementary Table S27 (Chapter 6): Taqman® Low Density Array card 
contents  

Splicing factor target genes, assay IDs and qPCR software settings for each transcript included 
on the Taqman® Low Density Array cards. Endogenous control genes used are shown in bold 
italics. 

Target Assay ID Threshold Baseline Start Baseline End 

HNRNPA0 Hs00246543_s1 0.315 9 21 

HNRNPA1 Hs01656228_s1 0.377 9 24 

HNRNPA2B1 Hs00242600_m1 0.270 9 18 

HNRNPD Hs01086914_g1 0.249 4 21 

HNRNPH3 Hs01032113_g1 0.345 3 21 

HNRNPK Hs00829140_s1 0.360 3 21 

HNRNPM Hs00246018_m1 0.234 3 22 

HNRNPUL2 Hs00859848_m1 0.470 3 21 

AKAP17A Hs00946624_m1 0.145 9 22 

PNISR Hs00369090_m1 0.305 3 19 

SRSF1 Hs00199471_m1 0.191 3 20 

SRSF2 Hs00427515_g1 0.092 3 24 

SRSF3 Hs00751507_s1 0.195 3 22 

SRSF6 Hs00607200_g1 0.293 3 22 

SRSF7 Hs00196708_m1 0.217 3 20 

TRA2B Hs00907493_m1 0.165 3 21 

IMP3 Hs00251000_s1 0.259 3 23 

LSM14A Hs00385941_m1 0.146 3 21 

LSM2 Hs01061967_g1 0.191 3 23 

SF3B1 Hs00202782_m1 0.424 3 20 

18S Hs99999901_s1 0.189 2 6 

GUSB Hs00939627_m1 0.249 8 22 

IDH3B Hs00199382_m1 0.249 3 22 

PPIA Hs04194521_s1 0.332 3 23 
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Supplementary Table S28 (Chapter 6): Associations of splicing factor 
expression with decline in corrected MMSE score as a continuous measure 

Relationships of splicing factor expression levels with decline in corrected MMSE score by 
multivariate linear regression. β-coefficients represent change in log expression per unit change 

in MMSE score. Transcripts showing nominally statistically significant associations (p<0.05) are 
shown in italic and underlined. Those which satisfy Bonferroni correction for multiple testing 
(p<0.0083) are shown in bold italic and underlined. 

MMSE: DECLINE IN TEST SCORE (n = 296) 

  
β-coefficient SE p-value 

95% CI 
lower 

95% CI 
upper 

S
p

li
c
in

g
 F

a
c
to

rs
 

HNRNPA0 -0.003 0.001 0.019 -0.006 -0.001 

HNRNPA1 -0.001 0.002 0.476 -0.005 0.002 

HNRNPA2B1 0.000 0.001 0.783 -0.003 0.002 

HNRNPD 0.000 0.001 0.917 -0.003 0.003 

HNRNPH3 -0.001 0.002 0.577 -0.004 0.002 

HNRNPK -0.001 0.002 0.488 -0.005 0.002 

HNRNPM -0.005 0.002 0.006 -0.008 -0.001 

HNRNPUL2 -0.002 0.002 0.137 -0.005 0.001 

AKAP17A -0.005 0.003 0.077 -0.011 0.001 

PNISR 0.001 0.001 0.359 -0.002 0.004 

SRSF1 -0.001 0.001 0.176 -0.003 0.001 

SRSF2 -0.001 0.003 0.612 -0.006 0.004 

SRSF3 0.001 0.002 0.732 -0.004 0.005 

SRSF6 -0.003 0.002 0.076 -0.007 0.000 

SRSF7 0.001 0.001 0.375 -0.002 0.004 

TRA2B 0.002 0.002 0.222 -0.001 0.006 

C
o

re
 

S
p
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c

e
o

s
o

m
e

 

IMP3 0.002 0.001 0.190 -0.001 0.005 

LSM14A 0.000 0.002 0.964 -0.003 0.003 

LSM2 0.004 0.002 0.111 -0.001 0.008 

SF3B1 0.001 0.002 0.717 -0.003 0.004 
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Supplementary Table S29 (Chapter 6): Further analysis of associations of 
splicing factor expression found with decline in MMSE score 

Relationships of splicing factor expression levels with different subsets of the cohort by 
multivariate linear regression. β-coefficients represent change in log expression per unit change 
in MMSE score. Transcripts showing nominally statistically significant associations (p<0.05) are 
shown in italic and underlined. Those which satisfy Bonferroni correction for multiple testing 
(p<0.0083) are shown in bold italic and underlined. 

SPLICING FACTORS ASSOCIATED WITH DECLINE IN MMSE SCORE 

AKAP17A n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  296 -0.005 0.003 0.077 -0.011 0.001 

FU3 MMSE score >=28  174 -0.012 0.007 0.070 -0.025 0.001 

FU3 Age >= 70  178 -0.005 0.004 0.133 -0.013 0.002 

Non-decliners removed  260 -0.008 0.004 0.036 -0.015 -0.001 

Full cohort - categorised 
Mild decline 103 -0.017 0.025 0.486 -0.066 0.031 
Severe decline 13 -0.153 0.056 0.007 -0.264 -0.041 

HNRNPA0 n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  296 -0.003 0.001 0.019 -0.006 -0.001 

FU3 MMSE score >=28  174 -0.007 0.003 0.010 -0.012 -0.002 

FU3 Age >= 70  178 -0.004 0.002 0.028 -0.007 0.000 

Non-decliners removed  260 -0.004 0.002 0.007 -0.008 -0.001 

Full cohort - categorised 
Mild decline 103 0.004 0.011 0.702 -0.018 0.026 
Severe decline 13 -0.083 0.025 0.001 -0.133 -0.033 

HNRNPM n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  296 -0.005 0.002 0.006 -0.008 -0.001 

FU3 MMSE score >=28  174 -0.009 0.003 0.011 -0.016 -0.002 

FU3 Age >= 70  178 -0.005 0.002 0.011 -0.009 -0.001 

Non-decliners removed  260 -0.006 0.002 0.005 -0.009 -0.002 

Full cohort - categorised 
Mild decline 103 -0.010 0.013 0.454 -0.036 0.016 
Severe decline 13 -0.082 0.031 0.008 -0.143 -0.022 
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Supplementary Table S30 (Chapter 6): Correlation between different splicing factor expression levels 

Pearson correlations of relationships between expression levels of all splicing factors measured. 
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HNRNPA0 1                                      

HNRNPA1 0.161 1                                    

HNRNPA2B1 -0.228 -0.026 1                                  

HNRNPD -0.021 -0.043 0.028 1                                

HNRNPH3 -0.214 -0.096 0.281 0.189 1                              

HNRNPK -0.188 -0.352 0.039 0.221 0.338 1                            

HNRNPM 0.282 -0.049 -0.012 -0.031 -0.292 0.028 1                          

HNRNPUL2 0.226 -0.034 0.062 0.393 0.366 0.201 0.143 1                        

AKAP17A 0.239 -0.117 0.096 -0.246 -0.180 0.131 0.440 -0.047 1                      

PNISR -0.330 0.045 0.027 0.074 0.419 0.126 -0.317 -0.023 -0.270 1                    

SRSF1 0.107 0.152 -0.133 -0.154 0.108 -0.229 -0.164 0.011 -0.241 0.131 1                  

SRSF2 0.080 0.005 -0.189 -0.134 -0.353 -0.017 0.243 0.009 0.179 -0.188 0.071 1                

SRSF3 -0.493 -0.125 0.007 -0.149 -0.030 0.186 -0.205 -0.401 -0.078 0.361 -0.077 -0.038 1              

SRSF6 0.126 0.024 0.143 -0.159 -0.224 -0.216 0.005 -0.143 0.076 -0.308 0.045 -0.025 -0.269 1            

SRSF7 -0.241 0.158 -0.060 -0.179 -0.140 -0.368 -0.218 -0.204 -0.369 0.107 0.195 0.035 0.232 -0.019 1          

TRA2B -0.386 0.107 0.018 -0.192 -0.068 -0.193 -0.369 -0.369 -0.289 0.176 0.058 -0.103 0.451 -0.026 0.498 1        

IMP3 -0.080 0.131 -0.318 -0.090 -0.312 -0.362 -0.125 -0.327 -0.292 -0.068 0.064 0.015 0.246 0.013 0.326 0.318 1      

LSM14A 0.149 -0.126 0.109 -0.020 0.238 -0.181 -0.095 0.362 -0.071 -0.135 0.185 -0.264 -0.507 0.125 -0.174 -0.280 -0.239 1    

LSM2 -0.126 0.120 -0.171 -0.186 -0.337 -0.296 -0.088 -0.441 0.024 -0.104 -0.057 -0.015 -0.006 0.076 0.134 0.156 0.265 -0.050 1  

SF3B1 -0.344 -0.195 -0.049 0.014 0.476 0.260 -0.441 0.009 -0.421 0.505 0.229 -0.257 0.426 -0.287 0.158 0.302 -0.114 0.036 -0.258 1 
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Supplementary Table S31 (Chapter 6): Associations of splicing factor 
expression with alternate measures of cognitive ability 

Relationships between expression levels of splicing factors implicated in decline in MMSE score 
and results of the Trail Making Test A, Trail Making Test B and the Purdue Pegboard Test, by 

multivariate linear regression. For the Trail Making Tests, β-coefficients represent change in log 

expression per minute increased time taken to complete the tests. For the Purdue Pegboard Test, 

β-coefficients represent change in log expression per unit change in total number of pegs placed 

on the board. Transcripts showing nominally statistically significant associations (p<0.05) are 
shown in italic and underlined. Those which satisfy Bonferroni correction for multiple testing 
(p<0.0083) are shown in bold italic and underlined. 

ASSOCIATIONS WITH INCREASE IN TIME TO COMPLETE TRAIL MAKING TEST A 

AKAP17A n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  268 0.057 0.022 0.009 0.014 0.099 

FU3 Lowest quintile removed  224 0.067 0.031 0.035 0.005 0.128 

FU3 Age >= 70  151 0.070 0.027 0.010 0.017 0.124 

Non-decliners removed  247 0.074 0.025 0.004 0.024 0.123 

Full cohort - categorised 
Mild decline 21 0.048 0.045 0.289 -0.041 0.136 
Severe decline 57 -0.049 0.031 0.117 -0.110 0.012 

HNRNPA0 n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  268 0.028 0.009 0.004 0.009 0.046 

FU3 Lowest quintile removed  224 0.033 0.013 0.015 0.007 0.059 

FU3 Age >= 70  151 0.029 0.011 0.014 0.006 0.051 

Non-decliners removed  247 0.031 0.011 0.005 0.009 0.052 

Full cohort - categorised 
Mild decline 21 -0.013 0.020 0.506 -0.053 0.026 
Severe decline 57 -0.027 0.014 0.044 -0.054 -0.001 

HNRNPM n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  268 0.012 0.011 0.299 -0.010 0.033 

FU3 Lowest quintile removed  224 0.020 0.016 0.214 -0.012 0.051 

FU3 Age >= 70  151 0.021 0.012 0.092 -0.003 0.046 

Non-decliners removed  247 0.024 0.013 0.064 -0.001 0.049 

Full cohort - categorised 
Mild decline 21 0.015 0.023 0.506 -0.030 0.060 
Severe decline 57 -0.005 0.016 0.770 -0.036 0.027 
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Supplementary Table S31 (cont.) 

ASSOCIATIONS WITH INCREASE IN TIME TO COMPLETE TRAIL MAKING TEST B 

AKAP17A n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  179 0.034 0.025 0.174 -0.015 0.083 

FU3 Lowest quintile removed  159 0.015 0.031 0.636 -0.047 0.077 

FU3 Age > 70  67 -0.007 0.042 0.863 -0.097 0.082 

Non-decliners removed  160 0.019 0.030 0.523 -0.040 0.078 

Full cohort - categorised 
Mild decline 52 0.028 0.035 0.422 -0.041 0.097 
Severe decline 37 -0.001 0.045 0.982 -0.089 0.088 

HNRNPA0 n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  179 0.011 0.011 0.315 -0.011 0.033 

FU3 Lowest quintile removed  159 0.002 0.013 0.894 -0.024 0.027 

FU3 Age > 70  67 -0.013 0.018 0.463 -0.051 0.024 

Non-decliners removed  160 0.005 0.012 0.672 -0.019 0.030 

Full cohort - categorised 
Mild decline 52 0.002 0.015 0.909 -0.028 0.031 
Severe decline 37 -0.032 0.019 0.084 -0.069 0.004 

HNRNPM n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  179 0.026 0.012 0.036 0.002 0.051 

FU3 Lowest quintile removed  159 0.021 0.015 0.182 -0.010 0.051 

FU3 Age >= 70  67 0.010 0.019 0.629 -0.032 0.051 

Non-decliners removed  160 0.016 0.015 0.288 -0.014 0.045 

Full cohort - categorised 
Mild decline 52 0.006 0.017 0.749 -0.029 0.040 
Severe decline 37 -0.051 0.022 0.022 -0.095 -0.007 

 

ASSOCIATIONS WITH DECLINE IN TOTAL NUMBER OF PEGS PLACED IN PURDUE PEGBOARD TEST 

AKAP17A n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  257 -0.005 0.002 0.012 -0.008 -0.001 

FU3 Lowest quintile removed  212 -0.004 0.002 0.079 -0.008 0.000 

FU3 Age > 70  141 -0.009 0.003 0.002 -0.015 -0.004 

Non-decliners removed  204 -0.005 0.003 0.060 -0.010 0.000 

Full cohort - categorised 
Mild decline 87 -0.062 0.027 0.024 -0.116 -0.008 
Severe decline 48 -0.094 0.035 0.008 -0.164 -0.024 

HNRNPA0 n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  257 -0.002 0.001 0.047 -0.003 0.000 

FU3 Lowest quintile removed  212 -0.001 0.001 0.101 -0.003 0.000 

FU3 Age > 70  141 -0.004 0.001 0.002 -0.006 -0.001 

Non-decliners removed  204 -0.003 0.001 0.002 -0.005 -0.001 

Full cohort - categorised 
Mild decline 87 -0.004 0.012 0.751 -0.027 0.020 
Severe decline 48 -0.035 0.015 0.025 -0.065 -0.004 

HNRNPM n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  257 -0.002 0.001 0.044 -0.004 0.000 

FU3 Lowest quintile removed  212 -0.002 0.001 0.073 -0.004 0.000 

FU3 Age >= 70  141 -0.002 0.001 0.081 -0.005 0.000 

Non-decliners removed  204 -0.002 0.001 0.242 -0.004 0.001 

Full cohort - categorised 
Mild decline 87 -0.001 0.014 0.926 -0.029 0.027 
Severe decline 48 -0.021 0.019 0.259 -0.058 0.016 
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Supplementary Table S32 (Chapter 6): Correlations between trajectories in 
phenotypic test scores 

Pearson correlations of relationships between calculated change variables for the different 
cognitive and physical measures used in the current study. Part a. shows correlations seen 
between the cognitive measures and part b. the physical measures. 

a. 

  

MMSE: DECLINE IN 
TEST SCORE 

TMT-A: INCREASE 
IN TIME TO 
COMPLETE 

TMT-B: INCREASE 
IN TIME TO 
COMPLETE 

PURDUE PEGBOARD: 
DECLINE IN TOTAL 
NUMBER OF PEGS 

PLACED 

MMSE: DECLINE IN 
TEST SCORE 1      

TMT-A: INCREASE IN 
TIME TO COMPLETE -0.381 1   

TMT-B: INCREASE IN 
TIME TO COMPLETE 

-0.188 0.322 1   

PURDUE PEGBOARD: 
DECLINE IN TOTAL  
NUMBER OF PEGS 
PLACED 

0.295 -0.329 -0.157 1 

 

b. 

  

MEAN HAND-GRIP 
STRENGTH: DECLINE IN 

EXERTED FORCE (kg) 

EPESE SPPB: DECLINE IN 
COMPOSITE SCORE 

400m FAST WALK: DECLINE 
IN CALCULATED SPEED (m/s) 

MEAN HAND-GRIP 
STRENGTH: DECLINE IN 
EXERTED FORCE (kg) 

1    

EPESE SPPB: DECLINE IN 
COMPOSITE SCORE 0.217 1  

400m FAST WALK: DECLINE 
IN CALCULATED SPEED (m/s) 

0.265 0.357 1 
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Supplementary Table S33 (Chapter 6): Associations of splicing factor 
expression with mean hand-grip strength as a continuous measure 

Relationships of splicing factor expression levels with mean hand-grip strength by multivariate 
linear regression. β-coefficients represent change in log expression per Kg change in mean hand-

grip strength. Transcripts showing nominally statistically significant associations (p<0.05) are 
shown in italic and underlined. 

MEAN HAND-GRIP – DECLINE (n = 285) 

  
β-coefficient SE p-value 

95% CI 
lower 

95% CI 
upper 

S
p

li
c
in

g
 F

a
c
to

rs
 

HNRNPA0 0.001 0.001 0.664 -0.002 0.003 

HNRNPA1 0.000 0.002 0.885 -0.003 0.003 

HNRNPA2B1 -0.002 0.001 0.134 -0.004 0.001 

HNRNPD 0.002 0.001 0.198 -0.001 0.004 

HNRNPH3 0.001 0.001 0.667 -0.002 0.003 

HNRNPK 0.001 0.002 0.333 -0.002 0.004 

HNRNPM -0.002 0.001 0.256 -0.004 0.001 

HNRNPUL2 0.002 0.001 0.111 0.000 0.005 

AKAP17A -0.006 0.003 0.023 -0.011 -0.001 

PNISR 0.000 0.001 0.707 -0.002 0.003 

SRSF1 -0.001 0.001 0.480 -0.002 0.001 

SRSF2 0.001 0.002 0.771 -0.004 0.005 

SRSF3 0.000 0.002 0.932 -0.004 0.004 

SRSF6 -0.001 0.002 0.469 -0.004 0.002 

SRSF7 0.001 0.001 0.547 -0.002 0.003 

TRA2B -0.002 0.002 0.278 -0.005 0.001 

C
o

re
 

S
p

li
c

e
o

s
o

m
e

 

IMP3 0.001 0.001 0.672 -0.002 0.003 

LSM14A 0.000 0.001 0.759 -0.002 0.003 

LSM2 0.000 0.002 0.876 -0.004 0.004 

SF3B1 0.002 0.001 0.179 -0.001 0.005 
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Supplementary Table S34 (Chapter 6): Further analysis of associations of 
splicing factor expression found with decline in mean hand-grip strength 

Relationships of splicing factor expression levels with different subsets of the cohort by 
multivariate linear regression. β-coefficients represent change in log expression per Kg change in 

mean hand-grip strength. Transcripts showing nominally statistically significant associations 
(p<0.05) are shown in italic and underlined. Those which satisfy Bonferroni correction for multiple 
testing (p<0.0083) are shown in bold italic and underlined. 

ASSOCIATIONS WITH DECLINE IN MEAN HAND-GRIP STRENGTH 

AKAP17A n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  285 -0.006 0.003 0.023 -0.011 -0.001 

Mean FU3 hand-grip >= 
EWGSOP cutoffs 

 204 -0.007 0.003 0.035 -0.013 0.000 

FU3 Age >= 70  169 -0.011 0.004 0.008 -0.018 -0.003 

Non-decliners removed  229 -0.005 0.004 0.190 -0.012 0.002 

Full cohort - categorised 
Mild decline 74 -0.026 0.029 0.370 -0.084 0.031 
Severe decline 52 -0.053 0.031 0.094 -0.115 0.009 
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Supplementary Table S35 (Chapter 6): Associations of splicing factor 
expression with alternate measures of physical ability 

Relationships between expression levels of splicing factors implicated in decline in mean hand-
grip strength and physical performance as measured by the Epidemiologic Studies of the Elderly 
– Short Physical Performance Battery (EPESE SPPB) and a timed 400m fast walk, by multivariate 
linear regression. For the EPESE SPPB, β-coefficients represent change in log expression per 
unit decline in composite score. For the 400m fast walk, β-coefficients represent change in log 
expression per unit decline in speed calculated in m/s. Transcripts showing nominally statistically 
significant associations (p<0.05) are shown in italic and underlined. Those which satisfy 
Bonferroni correction for multiple testing (p<0.0083) are shown in bold italic and underlined. 

ASSOCIATIONS WITH DECLINE IN EPESE SPPB COMPOSITE SCORE 

AKAP17A n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  276 -0.011 0.006 0.048 -0.022 0.000 

FU3 Lowest quintile removed  216 -0.002 0.009 0.810 -0.020 0.016 

FU3 Age >= 70  160 -0.014 0.007 0.042 -0.027 -0.001 

Non-decliners removed  244 -0.012 0.006 0.068 -0.024 0.001 

Full cohort - categorised 
Mild decline 61 0.028 0.031 0.356 -0.032 0.089 
Severe decline 46 -0.087 0.034 0.011 -0.155 -0.020 

 

ASSOCIATIONS WITH DECLINE IN CALCULATED SPEED (m/s) DURING 400m FAST WALK 

AKAP17A n β-coefficient SE p-value 
95% CI 
Lower 

95% CI 
upper 

Full cohort  206 -0.252 0.101 0.013 -0.451 -0.053 

FU3 Lowest quintile removed  183 -0.277 0.112 0.015 -0.499 -0.055 

FU3 Age >= 70  93 -0.172 0.182 0.348 -0.539 0.194 

Non-decliners removed  194 -0.189 0.117 0.109 -0.421 0.043 

Full cohort - categorised 
Mild decline 126 -0.053 0.034 0.118 -0.120 0.014 
Severe decline 39 -0.084 0.046 0.068 -0.174 0.006 
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Supplementary Data 

Supplementary Data S1 (Chapter 3): Tissue collection procedure for the 
mouse strain comparison study 

Mice were housed in duplex "shoebox" cages. Two to three days prior to sacrifice 

and tissue collection, mouse cages were moved from the mouse room to the 

procedure room. All the mice from one pen (n = 4–5 mice) were sacrificed within 

1–6 minutes of initial disturbance of the home cage. The mice in the remaining 

pen of the home cage were returned to the mouse room and sacrificed 2–4 weeks 

later. Each mouse to be sacrificed was removed from its cage and immediately 

euthanized by CO2 asphyxiation. As soon as the mouse stopped breathing and 

did not exhibit a reflex to a foot pinch, it was bled by cardiac puncture. The liver, 

spleen, kidneys and heart were removed in that order. Next, the skin sample, 

thigh muscle and thymus were removed. Portions of liver, spleen, kidney, skin, 

heart, and skeletal muscle were placed into RNAlater (SigmaAldrich) and 

immediately frozen in liquid nitrogen; the remainder of each tissue was placed in 

Cryo-tubes and frozen directly in liquid nitrogen. Four technicians participated in 

the dissection of each mouse to minimize the time from death to freezing the 

tissue (less than 2 minutes for liver, and less than 3 minutes for each of the 

remaining tissues). All tissues were stored at –80° C.
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Supplementary Data S2 (Chapter 3): Assay identifiers and sequence details for qRT–PCR assays used in this study. 

 

Splicing factors  

Transcript TaqMan® Assay 

Hnrnpa0 Mm03809085_s1 
Hnrnpa1 Mm01303205_g1 
Hnrnpa2b1 Mm01325931_g1 
Hnrnpd Mm01201314_m1 
Hnrnph3 Mm01032120_g1 
Hnrnpk Mm01349462_m1 
Hnrnpm Mm00513070_m1 
Hnrnpul2 Mm01230949_m1 

Sf3b1 Mm00473100_m1 
Sfrs18 Mm01219239_m1 
Srsf1 Mm00557620_m1 
Srsf2 Mm00448705_m1 

Srsf3 Mm00786953_s1 
Srsf6 Mm00471475_m1 
Tra2b Mm00833637_mH 
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Supplementary Data S2 (cont.) 

Spleen     
Isoform Target(s) - 
UCSC ID 

Assay Name Forward Primer Reverse Primer Probe 

uc009pme.2 ; 
uc009pmd.2 

ATM_13 CGACCTGGGTTTGCATTGG GTGCTAGACTCATGGTTTAAGATTTCAGA CCTCACCGCTGCATTC 

uc012gtj.1 ATM_2 TGCTCTGCAGTGTCTAAGAAACAG TGCCCTTACTCAACTCTTCAACTTC TTTCACCCTGGCATATCG 

uc008toi.1 CDKN2A_1 GCCGCACCGGAATCCT AAGAGCTGCTACGTGAACGT CCCATCATCATCACCTGGTC 

uc008toh.1 CDKN2A_2 CAACGCCCCGAACTCTTTC AAGAGCTGCTACGTGAACGT CCCGATTCAGGTGATGAT 

uc008yrw.1 CHEK2_1 AAGAGACGAATACATCATGTCAAAAACTCT CACTTTCTGACATGTCTTCCTCTCAA ACACGCACCACTTCCA 

uc008yrx.1 CHEK2_2 TGAGTAACAACTCTGAAATCGCACTT CACTTTCTGACATGTCTTCCTCTCAA ACACGCACCACTTTAT 

uc007bju.2 FN1_1 CCCTACTACACTGACACAGCAA GTGTCTGGACCGATATTGGTGAAT ACGGCTGTCCCTCCTC 

uc007bjv.2 ; 
uc007bjy.2 

FN1_25 AGCCCCTGATTGGGAGGAA GTCATACCCAGGGTTGGTGAT AAGACAGTTCAAAAGACCC 

uc008pvj.3 LMNA_1 GACGACGAGGATGGAGAAGAG CGTGAGCGCAGGTTGTACT CCGTGGTTCCCACTGCA 

uc008pvj.3 ; 
uc008pvl.3 

LMNA_13 GTGCGTGAGGAGTTCAAGGA CTGCGCAGCCAACAAGTC AAGGCTCGCAACACCA 

uc008pvk.3 LMNA_2 AAGGCCTTGCTCTCTCTGG CTGCGCAGCCAACAAGTC CTTGGTGTTGCGGCCCT 

uc007vyh.2 MYC_1 GGATTTCCTTTGGGCGTTGGA GGTCATAGTTCCTGTTGGTGAAGTT AACCCCGACAGCCACG 

uc007vyh.2 ; 
uc007vyg.2 ; 
uc007vyi.1 

MYC_123 CTAGTGCTGCATGAGGAGACA ACAGACACCACATCAATTTCTTCCT CAGCGACTCTGAAGAAG 

uc007jql.2 ; 
uc007jqm.2 ; 
uc007jqn.2 

TRP53_134 GCAGGGTGTCACGCTTCT TCCGACTGTGACTCCTCCAT CAGTCATCCAGTCTTCG 

uc011xww.1 TRP53_2 GCAGGGTGTCACGCTTCT GCTTCAGGCTTTTCTTGGATTTTCT ACTGGCCGCTTCTC 

uc007jqm.2 TRP53_3 GTTAAAGGATGCCCATGCTACAGA AGTTTGGGCTTTCCTCCTTGATC TCCAGCCTCCAGCCTAG 

uc007rjg.1 VCAN_1 CCAAGTTCCACCCTGACATAAATGT GGATGACCACTTACAATCATATCACTCA ATCGACCTGTCTTGTTTTC 

uc011zck.1 ; 
uc007rji.2 

VCAN_23 CCAAGTTCCACCCTGACATAAATGTTTATATTAT CGTTGAGGCATGGGTTTGTTTTG ACAGGACCTGATCTCTG 
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Supplementary Data S2 (cont.) 

Muscle     
Isoform Target(s) - 
UCSC ID 

Assay Name Forward Primer Reverse Primer Probe 

uc012cdt.1 IL1B_1 TGAAAGCTCTCCACCTCAATGG GCTCATGGAGAATATCACTGGAGAAA TCAACCAACAAGACTCCTC 

uc008mht.1 IL1B_2 GTTCCTGAACTCAACTGTGAAATGC CGTCAACTTCAAAGAACAGGTCATT TCATCACTGTCAAAAGGTG 

uc008mht.1 ; 
uc008mhu.1 

IL1B_23 GACAGTGATGAGAATGACCTGTTCT AGCCCAGGTCAAAGGTTTGG AAGCAGCCCTTCATCTTT 

uc008wuu.1 ; 
uc008wuv.1 

IL6_12 TCAATTCCAGAAACCGCTATGAAGT GTCCCAAGAAGGCAACTGGAT TCTGCAAGAGACTTCC 

uc008wuu.1 ; 
uc008wuw.1 

IL6_13 GCCAGAGTCCTTCAGAGAGATACA GCTTATCTGTTAGGAGAGCATTGGA TCAACCAAGAGGTAAAAGA 

uc008rly.1 ; 
uc012cyg.1 ; 
uc008rlx.1 

NFKB1_145 GCATTCTGACCTTGCCTATCTACAA CCTGGCGGATGATCTCCTT CTCTGTCTGTGAGTTGCC 

uc008rly.1 ; 
uc008rlx.1 

NFKB1_15 GAGCCTCTAGTGAGAAGAACAAGAA TTTGCAGGCCCCACATAGTT ACAGGTCAAAATTTGC 

uc012cyf.1 NFKB1_2 CTGCTCCTTCTAAAACTCTCATGGA TCTCCACACCACTGTCACAGA CCCGGAGTTCATCTCAT 

uc008rlw.1 ; 
uc012cyg.1 ; 
uc008rlx.1 

NFKB1_345 TCTGCCTCTCTCGTCTTCCT TCTCCACACCACTGTCACAGA CCCGGAGTTCATCTATG 

uc012cyg.1 NFKB1_4 GAGCCTCTAGTGAGAAGAACAAGAA GCCCCACATAGTTGCAAATCTG CAGGTCAAAAGGCCCC 

uc012cyg.1 ; 
uc008rlx.1 

NFKB1_45 GGAAACTAGTGAACCGAAACCCTTT GCGTTTCCTTTGCACTTCCT CCCTGAAATCAAAGACAAAG 

uc007axy.1 STAT1_1 GGAGCTGGACAGTAAAGTCAGAAAT CTCTTCGCCACACCATTGG TCACCTTCATGACTTGATCC 

uc007axy.1 ; 
uc007axz.1 ; 
uc007aya.2 

STAT1_134 CCTGCGTGCAGTGAGTGA GCCGGCTCAGGGTATGG CTGAAACGACTGGCTCTCA 

uc007ayd.2 ; 
uc007axz.1 ; 
uc007aya.2 ; 
uc007ayb.2 

STAT1_2345 CTCTTAGCTTTGAAACCCAGTTGTG AGATCACCACGACAGGAAGAGA TTGACCTGGAGACCACC 
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Supplementary Data S2 (cont.) 

Muscle     
Isoform Target(s) - 
UCSC ID 

Assay Name Forward Primer Reverse Primer Probe 

uc007ayd.2 ; 
uc007aya.2 ; 
uc007ayb.2 ; 
uc007ayc.2 

STAT1_2456 CGAACTGGATACATCAAGACTGAGT GTTGTCTGTGGTCTGAAGTCTAGAA CTGTGTCTGAAGTCCACCC 

uc007ayb.2 STAT1_5 GCAGAGAGATTTGCCCAGACT GCCGGCTCAGGGTATGG CAGAGCTGAAACGATCACT 

uc007ayc.2 STAT1_6 CTCTTATCCTGCCGTTCTCACTTC GCCGGCTCAGGGTATGG TAGGTCGTTTCAGCTCTGC 

uc008cgr.2 ; 
uc012arb.2 

TNF_12 CACGCTCTTCTGTCTACTGAACTT CTGATGAGAGGGAGGCCATTTG AAGGGATGAGAAGTTCC 

uc008cgr.2 ; 
uc008cgs.2 

TNF_13 CAAAATTCGAGTGACAAGCCTGTAG GCTGCTCCTCCACTTGGT CACGTCGTAGCAAACC 

uc012arb.2 TNF_2 GCCTCCCTCTCATCAGTTCTATG CCAGCTGCTCCTCCACTT CACACTCACAAACCACC 

uc008cgs.2 TNF_3 CACGCTCTTCTGTCTACTGAACTTC TCTGGGCCATAGAACTGATGAGA CCATTTGGGAACTCATCC 
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Supplementary Data S3 (Chapter 3): Alternatively expressed isoforms 
captured by quantitative real‐time PCR assays. 

Additional information describing precisely which alternatively expressed isoforms of analysed 
genes are captured by each probe set. 

ATM TRP53 STAT1 
   
Atm-1,3 Trp53-1,3,4 Stat1-1 
uc009pme.2 uc007jql.2 uc007axy.1 
uc009pmd.2 uc007jqm.2 Stat1-3,4 
Atm-2 uc007jqn.2 uc007axz.1 
uc012gtj.1 Trp53-2 uc007aya.2 
 uc011xww.1 Stat1-2,3,4,5 
CDKN2A Trp53-3 uc007ayd.2 
 uc007jqm.2 uc007axz.1 
Cdkn2a-1  uc007aya.2 
uc008toi.1 VCAN uc007ayb.2 
Cdkn2a-2  Stat1-2,4,5,6 
uc008toh.1 Vcan-1 uc007ayd.2 
 uc007rjg.1 uc007aya.2 
CHEK2 Vcan-2 uc007ayb.2 
 uc011zck.1 uc007ayc.2 
Chek2-1  Stat1-5 
uc008yrw.1 IL1B uc007ayb.2 
Chek2-2  Stat1-6 
uc008yrx.1 Il1b-2 uc007ayc.2 
 uc008mht.1  
FN1 Il1b-2,3 TNF 
 uc008mht.1  
Fn1-1 uc008mhu.1 Tnf-1,2 
uc007bju.2  uc008cgr.2 
Fn1-2,5 IL6 uc012arb.2 
uc007bjv.2  Tnf-1,3 
uc007bjy.2 IL6-1,2 uc008cgr.2 
 uc008wuu.1 uc008cgs.2 
LMNA uc008wuv.1 Tnf-3 
 Il6-1,3 uc008cgs.2 
Lmna-1 uc008wuu.1  
uc008pvj.3 uc008wuw.1  
Lmna-1,3   
uc008pvj.3 NFKB1  
uc008pvl.3   
 Nfkb1-1,4,5  
MYC uc008rly.1  
 uc012cyg.1  
Myc-1 uc008rlx.1  
uc007vyh.2 Nfkb1-1,5  
Myc-1,2,3 uc008rly.1  
uc007vyh.2 uc008rlx.1  
uc007vyg.2 Nfkb1-2  
uc007vyi.1 uc012cyf.1  
 Nfkb1-3,4,5  
 uc008rlw.1  
 uc012cyg.1  
 uc008rlx.1  
 Nfkb1-4,5  
 uc012cyg.1  
 uc008rlx.1  
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