PhD Thesis

Improve the Understanding of Uncertainties in Numerical Analysis of Moored Floating Wave Energy Converters

Submitted by Andrew William Vickers to the University of Exeter as a Thesis for the degree of Doctor of Philosophy in Earth Resources in June 2012.

This Thesis is available for Library use on the understanding that it is copyright material and that no quotation from this Thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature...

July 30, 2013
Abstract

The wave energy industry, still in its infancy compared to similar activities offshore, must look to the oil and gas industry for guidelines on design criteria for survival, safety and operational optimisation for installations at sea. Numerical analysis tools for prediction of the response of floating moored structures have become an important part of the design task for the offshore industry offering a low cost and low risk option compared to scale tank testing. However, rather than having only a task of station keeping and survival, the moorings for a wave energy converters (WECs) would also be required to provide the ability of not adversely affecting the power capture task. The main aim of this work is to gain an understanding and reduce the uncertainties in the numerical modelling of WECs.

Experimental work designed and performed under the HydraLab III project of which the author was a member were used to evaluate the response characteristics of a 1:20 scale “generic WEC” device with a 3 point mooring system. The investigation was enhanced through further tests implemented by the author at Heriot-Watt wave tank using a single WEC device. The outcomes from these experiments were used to aid in the implementation of the aim identified above.

Two numerical model categories were set up to understand the uncertainties apparent to the mooring simulations. The first category included only the calculation of the mooring line response using experimental data to inform the motion of the floating body. The second category included the motion response of the floating body coupling the complex behaviour to the moored system. The mooring tension results for the first category shows an error between the numerical prediction and the experimental results up to 16 times that of the experimental value. This was mainly during slack conditions where the mooring line tension was lower than the pretension in the line at still water. During the higher tension events the average error was 26%. For the second category it was found that the numerical predictions of the WEC motion response in six degree of freedom (6DOF) were generally over predicted. The tension predictions for the coupled simulations identified an error of between 1.4 and 4.5%.

The work presented here contributed to the understanding of uncertainties in numerical simulations for WEC mooring designs. The disparity between the simulation and experimental results re-enforced the requirement for a better understanding of highly dynamic responding moored coupled systems. From this work it is clear that the numerical models used to approximate the response of moored WECs could provide a good first design step. Whilst this work contributed to the understanding of uncertainties and consequently reduced some of these, further work is recommended in chapter 6 to investigate the definition of some of the mechanical and hydrodynamic properties of the mooring line. It is also suggested that external functions should be included.
that would allow to model the coupled effect of Power-Take-Off (PTO) system. It is intended to conduct future work deriving a fully dynamic mooring simulation including the effects of PTO.
Acknowledgements

This thesis represents research I have carried out over the last four years within the Renewable Energy Group at the University of Exeter, Cornwall campus. It has been the most challenging and rewarding experience I have ever been through and I would like to thank all those who have made it possible.

I would like to thank my primary and secondary supervisors Dr Lars Johanning and the late Prof George Smith. Without their guidance and dedication I would have been lost in the early stages of my work. As my project progressed they were there to guide me through and fought to make themselves available when I needed them. Sadly Prof George Smith passed away before getting the chance to read this thesis and I can only hope that the final product would have met his approval.

I would also like to thank David Parish and Dr Ian Ashton who were always there to help both professionally and personally, mentoring me through my PhD. They both helped me with many aspects of my work and were always on hand to bounce ideas off of.

My PhD project was one of many that were part of the SuperGen Marine Energy Research Consortium. As a result of this I had the privilege to meet many different researchers from many different backgrounds. Many of these researchers have also helped me to complete my project in one way or another and I would like to thank everyone involved with SuperGen.

I could not have made it through the difficult time in my studies without the love and support of my family and I would like to thank them all for putting up with me over last four years.

The final stages of this project have been the most stressful and challenging. I was however, blessed when I met my partner Lucy Cruse who has helped me so much over the last few years, keeping me positive and uplifting me on a daily basis. Within the final months of the thesis and after a very difficult and dangerous pregnancy and birth we had our son Owen Andrew Michael Vickers, who is to become the next great chapter in my life.
CONTENTS

1 Introduction .. 16
 1.1 Introduction ... 17
 1.2 Wave Energy Converters 18
 1.3 Moorings ... 20
 1.3.1 Motion independent device (MID) and Motion dependent device (MDD) ... 22
 1.4 Design Criteria for a floating moored system 26
 1.4.1 First order oscillating forces on small structures ... 27
 1.4.2 Radiation and added mass ... 35
 1.5 Theoretical Response Amplitude Operators (RAOs) 36
 1.5.1 Mean drift forces on a small structure ... 37
 1.6 Experimental Mooring line damping 38
 1.6.1 HydraLab III ... 43

2 Numerical modelling .. 46
 2.1 Introduction to Numerical model of a moored structure 47
 2.1.1 Simple Analytical Models ... 49
 2.1.2 Dynamic analysis ... 51
 2.2 Dynamic time domain modelling ... 53
2.2.1 Environment .. 54
2.2.2 The mooring system model 55
2.2.3 Floating body response 63
2.2.4 Experimental RAOs 65
2.2.5 Numerical RAOs and QTFs using diffraction theory 65
2.2.6 Numerical RAOs using 6D buoy approximation 70
2.2.7 Mean drift forces 70

3 Mooring properties 72
3.1 Introduction to mooring line property characterisation 73
3.2 Attachment method 73
3.3 Preliminary Tests 75
 3.3.1 Outcome of Preliminary tests 78
3.4 Chosen load extension test method 78
 3.4.1 Test schedule 79
 3.4.2 Discussion of load extension results 79

4 Mooring line tension prediction 83
4.1 Introduction to Mooring line tension prediction study 84
 4.1.1 Wave Basins 85
 4.1.2 Generic WEC 93
 4.1.3 Motion capture system 95
 4.1.4 Mooring systems 96
 4.1.5 WEC Instrumentation setup 99
4.2 Test methodologies 101
 4.2.1 Decay tests 101
4.3 Time domain analysis of mooring system 103
 4.3.1 Vessel representation of the floating body 104
 4.3.2 Mooring approximation 105
 4.3.3 Marker buoy approximation 105
 4.3.4 Simulation condition 106
 4.3.5 Wave field 106
 4.3.6 Simulation scheme 107
4.4 Discussion on comparison between experimental and numerically predicted mooring loads .. 110

5 Motion and tension prediction ... 124

5.1 Introduction to coupled simulation study ... 125

5.2 Experimental RA O s ... 125
 5.2.1 RAO tests with different amplitudes .. 127
 5.2.2 Different mooring arrangements ... 129
 5.2.3 Power take-off system ... 131

5.3 Numerical RA O s .. 132

5.4 Time domain simulation of coupled system ... 134
 5.4.1 Floating body .. 135
 5.4.2 Wave environment ... 139

5.5 Discussion on comparison between experimental and numerically predicted tension and response of coupled system .. 140
 5.5.1 Regular Wave Comparison ... 140
 5.5.2 Irregular wave comparison ... 143

6 Conclusions .. 158

6.1 Further work .. 162

A Heriot-Watt test results .. 167

B Trondheim MarinTek test results ... 172

C RA O s .. 182
 C.1 RA O s .. 183

D Geometric data file for Trondheim WEC .. 185
 D.0.1 Functions defining Shapes .. 186

E Numerical RA O s of simple cylinders ... 195
 E.0.2 Simple Cylinder .. 196
 E.0.3 Modified simple cylinder .. 196