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Abstract
Past abrupt ‘regime shifts’ have been observed in a range of ecosystems due to 
various forcing factors. Large-scale abrupt shifts are projected for some terrestrial 
ecosystems under climate change, particularly in tropical and high-latitude regions. 
However, there is very little high-resolution modelling of smaller-scale future pro-
jected abrupt shifts in ecosystems, and relatively less focus on the potential for 
abrupt shifts in temperate terrestrial ecosystems. Here, we show that numerous 
climate-driven abrupt shifts in vegetation carbon are projected in a high-resolution 
model of Great Britain's land surface driven by two different climate change sce-
narios. In each scenario, the effects of climate and CO2 combined are isolated from 
the effects of climate change alone. We use a new algorithm to detect and classify 
abrupt shifts in model time series, assessing the sign and strength of the non-linear 
responses. The abrupt ecosystem changes projected are non-linear responses to 
climate change, not simply driven by abrupt shifts in climate. Depending on the sce-
nario, 374–1,144 grid cells of 1.5 km × 1.5 km each, comprising 0.5%–1.5% of Great 
Britain's land area show abrupt shifts in vegetation carbon. We find that abrupt 
ecosystem shifts associated with increases (rather than decreases) in vegetation 
carbon, show the greatest potential for early warning signals (rising autocorrelation 
and variance beforehand). In one scenario, 89% of abrupt increases in vegetation 
carbon show increasing autocorrelation and variance beforehand. Across the sce-
narios, 81% of abrupt increases in vegetation carbon have increasing autocorrela-
tion and 74% increasing variance beforehand, whereas for decreases in vegetation 
carbon these figures are 56% and 47% respectively. Our results should not be taken 
as specific spatial or temporal predictions of abrupt ecosystem change. However, 
they serve to illustrate that numerous abrupt shifts in temperate terrestrial ecosys-
tems could occur in a changing climate, with some early warning signals detectable 
beforehand.
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1  | INTRODUC TION

Tipping points, where a small change makes a big difference to the 
state and/or fate of a system, can occur in a variety of complex sys-
tems including the climate system (Lenton et al., 2008) and eco-
systems (Scheffer, Carpenter, Foley, Folke, & Walker, 2001). More 
broadly, abrupt changes—where a system responds much faster than 
it is forced—can occur in the climate (Alley, 2000; Alley et al., 2003) 
and ecosystems (Ratajczak et al., 2018). Catastrophic shifts are a 
subset of abrupt changes, which are large and inherently difficult to 
reverse, as they involve tipping points between alternative stable 
states. Evidence of abrupt change in the climate system has been 
found in both palaeo-records (Alley, 2000) and general circulation 
model projections of future climate change (Drijfhout et al., 2015). 
Past abrupt changes have also been observed in a range of aquatic 
and terrestrial ecosystems due to a range of forcing factors, includ-
ing pollution, land-use change and over-exploitation of populations 
(Scheffer, 2009). Climate change may already have contributed to 
abrupt shifts in terrestrial ecosystems, notably widespread forest 
dieback, including due to bark beetle outbreaks in the Canadian 
boreal forest (Bentz et al., 2010; Kurz et al., 2008) and increased 
wildfires preventing forest regeneration (Davis et al., 2019). There 
is a widespread expectation that future climate change poses a 
threat to many species and could cause abrupt changes in some 
ecosystems (Ibáñez et al., 2006; Ratajczak et al., 2018; Thomas 
et al., 2004).

At the relatively large spatial scale of global climate model projec-
tions, multiple abrupt shifts have been found in parts of the physical 
climate system and in some biomes, mostly in the tropics and polar 
regions (Drijfhout et al., 2015). Candidates include possible abrupt 
shifts in tropical forest-savannah systems and boreal forest-tundra 
systems (Lenton et al., 2008). The potential for large-scale abrupt 
shifts in temperate terrestrial ecosystems is less recognized—either 
in the historical record or in future projections—perhaps because the 
strength of feedback coupling to the atmosphere is generally weaker 
than in the tropics and high latitudes. However, at smaller spatial 
scales, more localized self-amplifying feedbacks can propel abrupt 
change (Lenton, 2013)—for example, involving disturbance factors 
such as pest infestation (Kurz et al., 2008) or fires (Hirota, Holmgren, 
Van Nes, & Scheffer, 2011; Staver, Archibald, & Levin, 2011) and/
or interactions between vegetation types, even positive ones 
(Kéfi, Holmgren, & Scheffer, 2016)—potentially across all latitudes. 
Furthermore, threshold behaviour (rather than positive feedback) 
can lead to abrupt shifts—notably drought thresholds for temper-
ate forest dieback (Allen et al., 2010; Hoffman, Marchin, Abit, & 
Lau, 2011).

That said, high-resolution, process-based modelling of climate 
change-driven abrupt shifts in ecosystems is limited. Hence we 
set out to examine whether a state-of-the-art land surface and 
ecosystem model run at high resolution over GB, under different 
climate change scenarios, would show abrupt changes or linear 
response to climate forcing. Current thinking is that GB peat-
lands are most vulnerable to abrupt disappearance under climate 

change (Gallego-Sala & Prentice, 2012), but the model we use does 
not represent peatlands well; so our focus instead is on lowland 
woodlands and grasslands. There are few previous suggestions of 
climate change driving abrupt shifts in these GB ecosystems, and 
those that exist focus on forest dieback in one location (Evans 
et al., 2017; Martin, Newton, Cantarello, & Evans, 2017), mak-
ing the spatial extent of our results surprising. The results here 
complement previous studies of temperate aquatic systems that 
are well known to exhibit abrupt shifts, which in that case are 
also catastrophic (Carpenter & Kinne, 2003; Scheffer et al., 2001; 
Scheffer & Jeppesen, 2007). Our definition of abruptness here 
does not require a shift to be large in magnitude or irrevers-
ible, just anomalous in rate. Furthermore, we consider whether 
abrupt increases in vegetation could be triggered, particularly by 
CO2 fertilization. Our results also help inform consideration of 
changes in vegetation carbon stores in national carbon account-
ing, and proposals in the UK to plant more trees to remove atmo-
spheric CO2.

2  | MATERIAL S AND METHODS

We drove the Joint UK Land Environment Simulator (JULES) with 
different climate change projections and then analysed the output 
with a novel, automated abrupt change detection algorithm (Boulton 
& Lenton, 2019).

2.1 | Climate scenarios

For UK climate change scenarios, we use two different perturbed 
parameter configurations of the HadRM3-PPE-UK model (Hadley 
Centre for Climate Prediction & Research, 2014), run under the same 
SRES A1B ‘balanced’ climate forcing scenario from 1998 to 2100. 
This perturbed physics ensemble (PPE) was designed to simulate UK 
regional climate change as part of the ‘UK-Climate Projections’ pro-
ject (UKCP09; Murphy et al., 2009). PPEs are used to explore uncer-
tainty in parameters that control the physical processes within the 
model by perturbing them within experts’ opinions of their ranges. 
Here, we use the standard, unperturbed run which has an equivalent 
climate sensitivity of 3.5K globally and another that is more sensi-
tive, having a climate sensitivity of 7.1K globally—noting that this 
does not necessarily mean that a proportionally larger temperature 
increase is found within the UK. These runs consist of daily data at 
a 25 km × 25 km spatial resolution which has been spatially inter-
polated to a 1.5 km × 1.5 km resolution for use in the land surface 
model (detailed below).

2.2 | JULES runs and variables

JULES is the land surface model component of the UK Met 
Office's Unified Model (Best et al., 2011; Clark et al., 2011). It 
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calculates fluxes of CO2, heat, water and momentum between the 
land surface and atmosphere, and models five plant functional 
types (PFTs; Broadleaf and Needleleaf trees, C3 and C4 grasses, 
and shrubs) using the TRIFFID vegetation model (Cox, 2001; Cox 
et al., 2001). Photosynthesis and plant respiration are calculated 
for each PFT, and then the fractional coverage of each plant type 
within a grid box is updated. Competition between plant types 
is simulated using Lotka–Volterra-type equations. Key equations 
detailing carbon uptake and allocation within a plant type are 
given in Appendix S1. JULES has been shown to perform well 
at simulating vegetation globally when compared with observa-
tions (Harper et al., 2018). We use an agricultural land mask to 
partition part of each grid box such that trees cannot grow in 
areas set aside for farming. This land mask is created from land-
use data derived from the June Agricultural Cencus (JAC) panel 
from EDINA (agcencus.edina.ac.uk) at 2 km × 2 km resolution. 
Land use does not change over the simulation. JULES is run at 
1.5 km × 1.5 km resolution with GB comprising 77,980 land grid 
boxes.

For each of the two different climate change scenarios, we un-
dertake a run of fixed, ‘present day’ level (386.5 ppm) CO2 and a 
run with changing CO2 corresponding to the SRES A1B scenario, 
leading to four different runs of JULES. A recent study has shown 
that significant greening in a quarter of Earth's vegetated areas 
over the last 35 years is due to rising atmospheric CO2 levels 
(Zhu et al., 2016). Thus these different CO2 pathways allow us to 
explore how the CO2 fertilization effect, where increased atmo-
spheric CO2 increases photosynthesis whilst reducing evapotrans-
piration, affects the number of abrupt shifts we find. Our analysis 
focuses on total vegetation carbon (CVeg) per grid box (kg/m2) as 
initial analysis showed evidence of abrupt shift behaviour (see 
below). To ensure that the abrupt shifts we detect are not due to 
abrupt shifts in the driving data, we also focus on rainfall (mm/day) 
and surface temperature (°C). In these climate data, we look for 
both abrupt shifts and potential thresholds that may have caused 
this behaviour in CVeg.

2.3 | Abrupt shift detection

Our method to detect abrupt shifts in time series is based around 
searching for anomalous rates of change in a system (i.e. the gradi-
ent of the time series) over time. We give a brief overview here but 
more detail can be found elsewhere (Boulton & Lenton, 2019). We 
begin by separating the time series into sections of a predetermined 
length, l, and then fit linear regression models through each section. 
An anomalous rate of change is defined as a gradient that is more 
than three median absolute deviations away from the median gradi-
ent. Wherever this occurs in time it is recorded by adding or sub-
tracting (depending on which direction the anomaly was in) a value 
of 1 from a ‘detection times series’ that is the same length as the 
original time series. This process is repeated for a range of section 
lengths, l, from a lower bound up to a length less than or equal to 

one third of the total length of the time series (such that there are 
a minimum of three segments used). We then divide the ‘detection 
time series’ by the number of lengths used, giving the proportion 
that a time point was considered part of an abrupt shift.

We run our abrupt shift detection algorithm over annually av-
eraged data (101 years), with l spanning from 5 to 33 years in in-
cremental steps of 1 and use the maximum absolute value of the 
abrupt shift detection time series to determine if an abrupt shift has 
occurred. We use annual data for detecting abrupt shifts as this is 
computationally efficient. However we use monthly data when cal-
culating potential early warning signals in those time series that ex-
hibit abrupt shifts, as there are not enough data to detect a signal in 
the annual data.

Because the maximum absolute value of the detection time se-
ries can be influenced by factors such as the amplitude of noise in 
the time series tested, we determine a threshold value by ranking 
time series by their maximum detection value and randomly observ-
ing CVeg time series with certain maximum detection values. From 
this, we deduced that a threshold of 0.4 is appropriate to detect an 
abrupt shift, that is, at least 40% of the window lengths used de-
tected an anomalous gradient at the specific time point. We focus 
only on the most strongly detected abrupt shift within a time series 
for this analysis, even if there is more than one abrupt shift detected 
in a given time series.

2.4 | Abrupt shift classification

We detected a number of distinct types of shift in the time series 
data which we have classified. First we separate out time series 
with abrupt shifts within the first 20 years, from those where they 
occur later. Abrupt shifts that were detected in the first 20 years 
are classed as ‘start’. They are necessarily hard to predict using 
early warning signals and may have little to do with future climate 
change, and more to do with imperfect initialization of the model. 
Furthermore, by using a lowest l of 5 years in the detection algo-
rithm, if a maximum rating is found within the first 20 years, most of 
the time the maximum detection is found in the first year.

We determine if the time series has increased or decreased over-
all by comparing the means of the first and last 10 years. For those 
time series where the abrupt change is found after the first 20 years, 
and is in the same direction as the overall change of the time series, 
we call these ‘traditional’ abrupt shifts as they follow the typical pat-
tern of abrupt shifts in ecosystems. If the abrupt shift is in the oppo-
site direction (e.g. there is growth overall but an abrupt downwards 
shift), we call these ‘against’ abrupt shifts.

Our algorithm detects a flat section in an otherwise increas-
ing or decreasing time series. We filter out time series that have 
these flat sections detected in them. To find them we compare 
the gradient of a regression model fitted on 20 years centred on 
the detected shift with the final full time series. If the gradient 
around the detected shift is smaller than the full time series we 
consider a flat section has been detected. All of the flat sections 
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were detected at the start of the time series, with an increase or 
decrease afterwards.

The combinations of factors above give rise to six classes of de-
tected abrupt shift (AS), relative to the overall trend (D):

● Traditional: Overall increase, abrupt shift positive (T: D > 0, 
AS > 0)

● Traditional: Overall decrease, abrupt shift negative (T: D < 0, 
AS < 0)

● Against: Overall increase, abrupt shift negative (A: D > 0, AS < 0)
● Against: Overall decrease, abrupt shift positive (A: D < 0, AS > 0)
● Start: Negative abrupt shift (S: AS < 0)
● Start: Positive abrupt shift (S: AS > 0)

All time series can be classified as long as they are not con-
stant with a small ‘spike’ within, which would cause the overall 
growth/decline to be 0. This only occurs in grid boxes that contain 
no vegetation carbon but a small rounding error causes a negligi-
ble spike for a single year in the time series. However, by setting a 
threshold for detection, these types of series can be disregarded. 
We note that our 20 year boundary for determining an abrupt 
shift at the start could be separating classes that are caused by 
the same dynamics. However, we separate them because when 
calculating early warning indicators, we need at least 20 years’ 
worth of data.

2.5 | Early warning indicators

We test for early warning signals consistent with tipping point dy-
namics on the ‘traditional’ abrupt shifts detected in the CVeg time 
series, by searching for critical slowing down (Scheffer et al., 2009). 
We note that abrupt shifts can have a number of causes and only 
some are due to a weakening of negative feedbacks before a posi-
tive feedback takes over at a tipping point—that is, the phenom-
enology that causes critical slowing down. Hence, this search for 
tipping point early warning signals can be viewed as one way of 
trying to establish the nature of the underlying dynamics of the de-
tected abrupt shifts. We look for an increasing AR(1) (the lag-1 au-
tocorrelation) and variance signal over time in monthly data, which 
can be indicators of critical slowing down occurring, first by remov-
ing the mean annual cycle, and then detrending each time series 
with a Kernal smoothing function with a bandwidth of 250. We use 
monthly data for measuring these indicators as we need more time 
points than we would have using only annual data. AR(1) and vari-
ance are calculated on a moving window equal to 20 years which 
moves across the time series 1 month at a time to create a time 
series of each indicator (Dakos et al., 2008; Held & Kleinen, 2004). 
Trends of each indicator are measured using a Mann–Kendall test 
(Dakos et al., 2008), a rank correlation test with one variable being 
time and the other the indicator. A Mann–Kendall τ of 1 means the 
time series of the indicator is always increasing, −1 always decreas-
ing and 0 no overall trend.

3  | RESULTS

3.1 | Changes in climate over the century

We begin by looking at changes in the inputted climate variables 
(rainfall and temperature) in each forcing configuration. The start-
ing climate (over the first 10 years) and difference at the end of the 
model runs (last 10 years) are shown in Figure 1. For rainfall changes, 
there is no difference between those from the constant CO2 runs 
and those from the A1B CO2 runs under the same climate sensitivity. 
However, there are small differences in surface temperature changes 
due to feedbacks between the vegetation and the atmosphere. In 
particular, CO2 fertilization causing stomatal closure reduces evapo-
transpiration. Hence, Figure 1 shows future changes in temperature 
from both constant CO2 and increased CO2 configurations.

The starting rain for the 3.5K sensitivity configuration (Figure 1a) 
shows that the west is wetter than the east, with the most rain oc-
curring in the north-west, on the Scottish coastline. This pattern 
is more extreme for the 7.1K sensitivity configuration (Figure 1b), 
with a greater south-to-north gradient than is observed under 3.5K 
sensitivity. Over the century, an increase in rainfall is observed in 
the north-west but a decrease in the south-east in the 3.5K config-
uration (Figure 1c). This is also observed in the 7.1K configuration 
(Figure 1d), but the area of drying is smaller.

Starting temperatures show similar patterns for the two climate 
sensitivities (Figure 1e,f), with the 7.1K configuration being generally 
warmer. We see warmer surface temperatures in the southeast and 
in urban areas, notably London. Cooler temperatures are found in 
the north and north-west. Changes in temperature in all the config-
urations (Figure 1g–j) show warming everywhere, which is strongest 
in the south-east and weakest in the north-west.

3.2 | Changes in vegetation carbon (CVeg) 
over the century

Over the first 10 years, there are only small differences in CVeg be-
tween our two CO2 configurations, hence starting CVeg is only shown 
for the constant CO2 configurations (Figure 2). We find similar patterns 
in CVeg for the 3.5K (Figure 2a) and 7.1K (Figure 2b) configurations; 
the majority of grid boxes have a CVeg of between 0.1 and 2 kg/m2,  
mostly C3 grasses (Figure S1). Values of CVeg less than 0.1 kg/m2 
relate mainly to urban areas and mountainous regions in the north. 
There are areas of higher CVeg found throughout Great Britain, which 
relate to broadleaf tree forests (Figure S1). More noticeable in the 
south, the starting CVeg of the 3.5K configuration is higher in the 
broadleaf tree areas (those with the higher CVeg; Figure S1) than in 
the 7.1K configuration. We reiterate that the growth of vegetation, 
specifically trees, is limited to certain areas due to the land mask ap-
plied to our model runs.

For each forcing configuration, we analyse the change in CVeg 
over the century by comparing the mean CVeg in the final 10 years 
to the first 10 years (Figure 3). When considering the effects of 
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climate change alone (i.e. keeping CO2 at constant present day 
levels), for both climate sensitivities (3.5K; Figure 3a and 7.1K; 
Figure 3c) we find a mixture of increases and decreases in CVeg 
over the century. Most losses occur in the south east, extending 
further north in the 7.1K sensitivity run (Figure 3c). However, 

there are also ‘hotspots’ of CVeg loss found in the north in the 3.5K 
sensitivity run (Figure 3a).

When CO2 is allowed to increase following the A1B pathway with 
an associated fertilization effect on vegetation, we find increases in CVeg 
nearly everywhere under both 3.5K (Figure 3b) and 7.1K (Figure 3d) 

F I G U R E  1   Starting climate and change in climate for different global climate sensitivities (3.5K; 7.1K) and with/without CO2 effects on 
vegetation: (a, b) initial rainfall averaged over 1998–2007; (c, d) change in rainfall averaged over 2089–2098 (identical for constant CO2 and 
A1B CO2); (e, f) initial surface temperature (1998–2007); (g–j) change in surface temperature with (g, i) fixed CO2; (h, j) A1B CO2 averaged 
over 2089–2098
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climate sensitivities. Thus, in this model, increases in CO2 can increase 
vegetation biomass in areas where temperature increases would other-
wise cause dieback and loss of carbon. Note that there is no change in 
CVeg in areas such as London or Birmingham because there is very little 
vegetation to begin with (Figure 2) and it is unable to grow due to the 
fractional area of these grid boxes made up of mainly urban.

3.3 | Examples of classes of abrupt change

We use the 3.5K, constant CO2 configuration to illustrate all the 
types of abrupt change classified in Section 2. Figure 4 shows typi-
cal examples of time series that were classified as each type (using a 

threshold in the detection time series of 0.4). Our ‘traditional’ abrupt 
shifts (Figure 4a,b) are well defined, while our ‘against’ examples 
(Figure 4c,d) show clear sharp, temporary changes in the direction 
of CVeg given its overall change. Our algorithm classifies time series 
based on the strongest abrupt change observed. For example, in the 
case of our increasing abrupt shift in an otherwise decreasing CVeg 
(Figure 4d), one may argue that there is another increasing abrupt 
shift near the end. However this one is less prominent than the one 
we focus on. Decreasing and increasing abrupt shifts found at the 
beginning (within the first 20 years; Figure 4e,f) show what is most 
likely spin-up problems with the model, that is, the original starting 
point of the variables in the model did not quite match the climate 
and the model reacted quickly to the sudden forcing. Whether or 

F I G U R E  2   Starting (mean of first 
10 years: 1998–2007) CVeg values for 
the (a) 3.5K and (b) 7.1K constant CO2 
configurations

3.5K 7.1K

0 0.1 2 4 6 8 10

CVeg (kg/m2)

(a) (b)

F I G U R E  3   Projected changes in CVeg 
(last 10 years: 2089–2098, compared with 
starting 10 years: 1998–2007) for the  
(a) 3.5K, constant CO2, (b) 3.5K, A1B CO2, 
(c) 7.1K, constant CO2, and (d) 7.1K, A1B 
CO2 configurations
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A1B CO2
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(c) (d)
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not this is the cause, we exclude these in our analysis of early warn-
ing indicators as there are not enough data to calculate them on be-
fore the abrupt shift. We note that the absolute values of CVeg in the 
decreasing abrupt shift at the start time series (Figure 4e) are very 
small but these are filtered out as results in the next section and only 
shown here for illustrative purposes.

3.4 | Spatial distribution of abrupt shifts

We now look at the spatial distribution of these classes of abrupt 
shift. Figure 5 shows the CVeg abrupt shift classifications of grid boxes 
where the maximum detection was greater than 0.4. We also remove 
those grid boxes where the change in CVeg across the abrupt shift (the 
difference between the mean CVeg for the 5 years after the abrupt 
shift and the 5 years before) is less than 0.01 kg/m2 as we assume 
such small shifts are less ecologically interesting and would be hard to 
spot in reality. We discuss the range in sizes of abrupt shifts later on.

In the 3.5K constant CO2 run (Figure 5a), we find areas in the 
Scottish Highlands and East Midlands that contain decreasing abrupt 
shifts, regardless of whether CVeg is increasing or decreasing over-
all (red and dark green). We also find areas of increasing abrupt 
shifts in otherwise decreasing CVeg (orange) around the south-east 
of England. Scattered upland areas in Wales and Scotland showed 
abrupt CVeg shifts at the start (blue and purple).

By introducing varying, A1B CO2 to the 3.5K run (Figure 5b), the 
majority of abrupt shifts can now be found in south-east England, 
north of London, in the form of increasing abrupt shifts in increas-
ing CVeg time series (light green). There are a number of starting 
shifts found on the England–Wales border, with much less found in 
Scotland than with the constant CO2. We also find less decreasing 
abrupt shifts in Scotland than with the constant CO2.

In the 7.1K, constant CO2 run (Figure 5c), we still find areas of 
decreasing abrupt shifts (red and dark green) in Scotland, but they 
do not necessarily match up with those areas found in the 3.5K, 
constant CO2 run. There are also regions of increasing abrupt shifts 
in generally increasing CVeg (light green) found on the east and 
north-west Scottish coasts. These are also now found around the 
coast of Wales and in various places in the south-west of England. 
Concentrated areas of starting abrupt shifts can be found in the ex-
treme south of Cornwall and Devon, as well as spaced around the 
south and midlands of England.

Less specific areas can be picked out in the 7.1K, A1B CO2 run 
(Figure 5d), with the main finding being increasing abrupt shifts in in-
creasing CVeg (light green) around the coasts of Scotland and Wales, 
as well as in central Scotland.

These results are summarized in Table 1. Surprisingly, the higher 
global climate sensitivity simulation generally shows fewer abrupt 
shifts in GB than the lower climate sensitivity simulation. Less sur-
prisingly, for a given climate sensitivity there are fewer abrupt shifts 

F I G U R E  4   Examples of CVeg abrupt shift classes found in the 3.5K, constant CO2 configuration of JULES. Typical examples are shown 
of (a) Traditional: D > 0, AS > 0, (b) Traditional: D < 0, AS < 0, (c) Against: D > 0, AS < 0, (d) Against: D < 0, AS > 0, (e) Start: AS < 0, (f) Start: 
AS > 0. Explanations of these labels can be found in the main text. Solid black lines show the time series of the vegetation carbon and the 
dotted lines, the corresponding detection time series. Dotted horizontal lines refer to a detection of ±0.4, above (or below −0.4) this a time 
series will be flagged as having an abrupt shift
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under increasing A1B CO2 than constant CO2. Traditional type de-
creasing abrupt shifts disappear in the increasing A1B CO2 runs, 
presumably because predicted overall declines in CVeg become very 
rare. With rising A1B CO2 there is an overall increase in number of 
grid boxes that have abrupt shifts associated with growth generally, 
whether they be at the start or not (T: D > 0, AS > 0, S: AS > 0), pre-
sumably because predicted overall increases in CVeg become more 
widespread.

3.5 | Abrupt shifts in the climate time series

To determine whether or not the abrupt shifts observed in CVeg are 
due to nonlinear behaviour and not a linear response to a nonlinear 

change in the drivers, we ran the same analysis on the climate time 
series (rainfall and surface air temperature).

Using the annual time series of both the rainfall and temperature 
time series and the same detection threshold as for CVeg of 0.4, we 
only find a single time series (one spatial location) that has an abrupt 
shift: an ‘against’, decrease in temperature in an overall increasing 
temperature for the 3.5K, A1B CO2 run.

To find more shifts in the climate time series, we have to reduce 
our detection threshold level, which amounts to picking up less ob-
vious abrupt changes than those found for CVeg (e.g. Figure 4). We 
find shifts in the temperature time series with a detection threshold 
of 0.3, and in the rainfall time series with a detection threshold of 
0.2. Figure S2 shows a map of shifts with these detection values. 
Examples of these shifts are shown in Figure S3, which serve to 

F I G U R E  5   Abrupt shift classifications 
for grid box CVeg in configurations (a) 3.5K, 
constant CO2, (b) 3.5K, A1B CO2, (c) 7.1K, 
constant CO2 and (d) 7.1K, A1B CO2. Grid 
boxes are coloured grey if there is no 
detection rating above 0.4

3.
5K

Const. CO2
(a)

A1B CO2
(b)

7.
1K

(c) (d)

Traditional
D > 0, AS > 0

Traditional
D < 0, AS < 0

Against
D > 0, AS < 0

Against
D < 0, AS > 0

Start
AS < 0

Start
AS > 0

 

3.5K 7.1K

Const. CO2 A1B CO2 Const. CO2 A1B CO2

Traditional
D > 0, AS > 0

13 545 474 296

Traditional
D < 0, AS < 0

143 0 91 0

Against
D > 0, AS < 0

434 108 225 41

Against
D < 0, AS > 0

290 0 0 0

Start
AS < 0

22 0 60 0

Start
AS > 0

242 112 9 37

Total 1,144 (1.5%) 765 (1.3%) 859 (1.1%) 374 (0.5%)

TA B L E  1   The number of the 
77,980 land grid boxes in each JULES 
configuration that were classified as each 
abrupt shift type with a detection rating 
greater than 0.4
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illustrate that these detection levels are too low to find shifts that 
are obviously abrupt.

There is very little spatial overlap between where CVeg abrupt 
shifts are detected and where rainfall or temperature shifts are de-
tected (with the lowered detection thresholds). When comparing 
CVeg, to temperature and precipitation within the four runs, the larg-
est overlap of the eight resultant combinations, is that in the 3.5K, 
A1B CO2 simulation, where 18.1% of CVeg abrupt shifts coincide spa-
tially with detected rainfall shifts. In 3.5K, constant CO2, CVeg and 
rainfall shifts have 6.9% spatial overlap. In 7.1K, A1B CO2, CVeg and 
rainfall shifts have 6.4% overlap. The other five combinations have 
less than 4% overlap. This indicates that the majority of CVeg abrupt 
shifts are not due to corresponding shifts in climate drivers.

3.6 | Early warning signals of CVeg abrupt shifts

The results of looking for early warning signals of tipping point 
dynamics before the ‘traditional’ abrupt shifts in CVeg time series 
(both increases and decreases), for all four of the configurations, are 
summarized in Figure 6. This shows histograms of Kendall τ values 
(measuring the tendency of the indicator time series; see Section 2). 
The top row is for lag-1 autocorrelation (AR(1)) as an indicator, the 
bottom row for variance, and the columns are the four different con-
figurations. The blue histograms are for traditional increasing abrupt 

shifts and the red histograms for traditional decreasing abrupt shifts. 
We note that there were no traditional decreasing abrupt shifts for 
the 3.5K or 7.1K, A1B CO2 configurations.

We find that 81.0% of the increasing abrupt shifts have increasing 
AR(1) values (3.5K, const. CO2: 30.8%, 3.5K, A1B CO2: 95.0%, 7.1K, 
const. CO2: 90.1%, 7.1K, A1B CO2: 42.9%) and 73.9%, increasing vari-
ance values (30.8%, 71.4%, 95.8%, 45.6%). This is compared with 59.4% 
(3.5K, const. CO2: 60.8%, 7.1K, const. CO2: 57.1%) and 49.1% (48.3%, 
50.5%) for decreasing abrupt shifts respectively. For a true early warn-
ing signal, we would expect both increasing AR(1) and variance values. 
This is true of 70.0% of the increasing abrupt shift time series (3.5K, 
const. CO2: 23.1%, 3.5K, A1B CO2: 71.4%, 7.1K, const. CO2: 89.2%, 
7.1K, A1B CO2: 38.9%). For decreasing abrupt shifts, this is only true of 
49.1% of time series (3.5K, const. CO2: 48.3%, 7.1K, const. CO2: 50.5%). 
Kolmogorov–Smirnov tests on increasing and decreasing abrupt shifts 
for both AR(1) and variance show that in all four cases, the distribu-
tions are not normal (p < .001), which would be expected with no early 
warning. The distribution of the AR(1) values for increasing abrupt 
shifts are strongly negatively skewed (−1.16), with moderate skewness 
also observed for the variance values (−0.54). Skewness for decreasing 
abrupt shifts are less (−0.17 and 0.10 respectively). Overall we find that 
increasing CVeg abrupt shifts show greater prospects for early warning 
signals than decreasing ones, and with the exception of the 3.5K, con-
stant CO2 run (which only contains 13 examples of increasing abrupt 
shifts), those prospects are quite promising.

F I G U R E  6   Histogram of Kendall τ values of (a–d) AR(1) and (e–h) variance time series calculated from grid box CVeg time series for tipping 
points classified as (blue) traditional, D > 0, AS > 0 and (red) traditional, D < 0, AS < 0 with a detection rating over 0.4 in JULES configurations 
(a, e) 3.5K, constant CO2, (b, f) 3.5K, A1B CO2, (c, g) 7.1K, constant CO2 and (d, h) 7.1K, A1B CO2. For comparison, the density (such that the 
summed areas of the bars equals 1 for each configuration) rather than the counts are shown due to the variation in the number of grid boxes 
in each classification
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3.7 | Size of the abrupt shifts

Given the surprising number of abrupt shifts it is interesting to con-
sider how large they are. We reiterate here that we have already 
excluded changes which are less than 0.01 kg/m2. Figure 7 shows 
the change in CVeg across the two classes of traditional abrupt shift 
(those we measure early warning signals for). These are calculated 
as the difference between 5 year means; 5 years before and after 
the year the shift was detected. In the rare case that the shift was 
detected less than 5 years before the end of the run, we take values 
up to the end of the run. Note that these differences are associ-
ated with the abrupt shift itself rather than the overall change in 
CVeg across the run.

In Figure 7a, we can see that abrupt shifts are capable of increas-
ing CVeg by more than 1 kg/m2 and decreases of more than 0.5 kg/
m2. There are 25 grid boxes that have CVeg increases of more than 
0.5 kg/m2 across the detected abrupt shift within them, and seven 
that have decreases of more than 0.5 kg/m2. The large increases 
come from the 7.1K runs, whereas the large decreases come from 
the constant CO2 runs. Given that GB is dominated by grasslands 
rather than woodland these are significant changes in CVeg.

Because we find a range of baseline CVeg (Figure 2) and of 
changes in CVeg (Figure 3) and thus a wide range of differences in 
CVeg across the runs, we decided to look at the percentage change in 
CVeg across the abrupt shift (Figure 7b), defined as a percentage of 
the starting value of CVeg (mean first 5 years). We find that increas-
ing abrupt shifts account for a mean 13.4% increase on the starting 
value of CVeg. Decreasing abrupt shifts account for a mean 9.6% de-
crease relative to the starting CVeg. A caveat here is that CVeg values 
are lower bounded at 0 and as such decreases are bounded by how 
much starting vegetation there is to begin with.

4  | DISCUSSION

4.1 | Differences in results between configurations

We find differences in how CVeg changes over the 21st century and 
what classification of abrupt shift we observe between our four 
configurations. As Figure 3 shows, with increasing CO2 and climate 
change, CVeg is generally projected to increase, whilst climate change 

alone forces high losses of CVeg in certain areas. This is consistent 
with a strong CO2 fertilization effect on plant growth in the JULES-
TRIFFFID model. This manifests somewhat in the classes of abrupt 
shifts detected in CVeg (Figure 5), where there are many abrupt shifts 
involving increases in CVeg (Table 1). However, this is also true under 
7.1K climate sensitivity when CO2 is held constant. That pattern of 
climate change alone causes abrupt increases in CVeg, particularly in 
the highlands of Scotland in this model.

In simulations without increases in CO2, we find more increasing 
abrupt shifts in the 7.1K climate sensitivity simulation, with less de-
creasing shifts when compared with the 3.5K simulation. This could 
suggest that in some places, the vegetation growth is limited by the 
smaller temperature increases in the 3.5K simulation. In simulations 
where CO2 changes are included, we see more increasing abrupt 
shifts in the 3.5K simulation, despite seeing more increases in CVeg 
in the 7.1K run. However, the increases in CVeg in the 7.1K run are 
not detected by our algorithm, suggesting that they are non-abrupt 
increases.

4.2 | Mechanisms for abrupt shifts found in CVeg 
time series

We examined several possible causes of the abrupt shifts in CVeg. 
Having established that they are not generally due to abrupt shifts in 
climate drivers, we also considered whether the spatial patterns of 
changes in temperature or rainfall bore any relation to the location 
of abrupt shifts. We calculated the first four principal components of 
temperature and rainfall change (Figure S4), but none of these pat-
terns clearly relate to the patterns of abrupt shifts (Figure 5).

Hence we focused attention on the equations and parameters 
of the vegetation and soil models, looking for non-linear dynamics 
or threshold behaviour within them that could give rise to abrupt 
shifts in response to smooth forcing. Here we note that bifurca-
tions, where there is a loss of stability in the state of a system 
such that the system moves to an alternative stable state, do not 
necessarily have to occur to observe abrupt shifts and detect 
early warning signals of them (Kéfi, Dakos, Scheffer, Van Nes, & 
Rietkerk, 2013).

In our vegetation model, there are non-linearities in the equa-
tions governing the calculation of CVeg, detailed in Appendix S1, 

F I G U R E  7   Difference in CVeg time 
series due to the traditional abrupt shifts 
within them. (a) Difference in the 5 year 
means post- and pre-abrupt shift and (b) 
these differences as a percentage of the 
starting CVeg (the first 5 years of the time 
series). Note the log scale on some axes
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which could contribute to abrupt shifts. Net primary productivity 
(NPP), which is converted into CVeg, increases (nonlinearly) with in-
creasing atmospheric CO2 and temperature. There is a non-linear 
relation between CVeg and the balanced leaf area index (LAI), which 
a PFT would have in full leaf. Furthermore, depending on LAI, CVeg 
is fractionally assigned in a piecewise linear way either to grow the 
plant and store carbon (low balanced LAI), or to spread the plant 
(high LAI). Together these equations can sometimes give rise to 
self-amplifying responses, for example, escalating growth at low LAI, 
which can contribute to abrupt increases in CVeg.

We undertook a search for spatial correlation between model soil 
parameters and the occurrence of abrupt shifts. We found that two 
soil properties, critical soil moisture content (CSMC) and heat capac-
ity are linked to the spatial occurrence of abrupt shifts and anti-cor-
related with each other. These are fixed parameters linked to the type 
of soil prescribed at each location in the model. In particular, CSMC 
determines the steepness of a piecewise linear relationship between 
productivity and soil moisture content (Cox et al., 1999). In particular, 
low CSMC can create a threshold behaviour that could explain why 
low critical values are associated with traditional, decreasing abrupt 
shifts (Figure 8 for the 3.5K constant CO2 scenario). Lower CSMC val-
ues mean that there is a steeper decline in photosynthesis between 
this value and the moisture content value that causes the plant to 
wilt (where photosynthesis does not occur). If climate changes drives 
soil moisture content down into this range, then there is the potential 
for an abrupt drop in photosynthesis and CVeg. Constant CO2 sce-
narios give the greatest potential for these drought thresholds to be 
transgressed because there is no physiological effect of elevated CO2 
increasing plant water use efficiency. With higher CSMC values, this 
problem is less acute—the decrease in productivity with drying is less 
extreme and so is less likely to cause an abrupt shift.

4.3 | Explaining the early warning signals of CVeg 
abrupt shifts

To attempt to determine why we find more early warning signals 
of the abrupt shifts in certain cases but not in others, namely in 

increasing shifts rather than decreasing, we considered the domi-
nant PFTs in each grid box where shifts are found. Previous work has 
shown that it is difficult to get early warning signals of dieback from 
broadleaf tree fraction in the Amazon rainforest (Boulton, Good, & 
Lenton, 2013). This is partially due to the low variability of long last-
ing broadleaf trees when compared with the variability associated 
with grasses (particularly C3 grasses in this instance). We looked for 
correlations between the tendencies of the early warning indicators 
(Figure 6) and the grass fraction or tree fraction in grid boxes; how-
ever, we were unable to find anything significant in these results.

Instead, having established that at least some decreasing shifts 
are associated with soil moisture thresholds (Figure 8), we reason 
that these would be unlikely to show early warning signals because 
they are not due to a change in feedbacks internal to the vegetation 
model. In contrast, increases in NPP and CVeg driven by increasing 
CO2 and temperature, can be self-amplifying (equations in Appendix 
S1). In particular, small plants with low LAI can grow at an accelerat-
ing rate. As well as potentially giving rise to abrupt increases in CVeg, 
this change in internal feedbacks is in the direction that should give 
rise to early warning signals.

4.4 | Limitations and suggestions for future work

This study considers only one climate (general circulation) model 
and one land surface model. Given that the structurally different in-
stances of the climate model (the different climate sensitivities) give 
rise to different results for the number and location of abrupt shifts 
in the same land surface model, we can expect that other climate 
projections with other climate models would give different results 
again. Equally, given that the results are sensitive to switching on and 
off the uncertain sensitivity of vegetation to increasing CO2, we can 
expect that different land surface models would give different re-
sults again. In our chosen vegetation model, the non-linear amplifier 
of escalating growth at low LAI seems physiologically reasonable— 
as plants grow there is usually a phase of accelerating growth. 
Equally, the representation that some soil types dry out rapidly 
causing wilting seems pedologically reasonable. Nevertheless, it 

F I G U R E  8   The critical soil moisture 
content (CSMC) values for each grid box, 
supplied as an input to JULES. (a) Box 
and whisker plots show the distribution 
of CSMC for grid boxes that detected 
each of the abrupt shifts in the 3.5K 
constant CO2 simulations (and all grid 
boxes together, regardless of abrupt shift 
detection). (b) A map of these critical 
values is also shown, with open black 
circles denoting the location of the 
traditional decreasing abrupt shifts  
(T: D < 0 AS < 0)
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would be interesting for future work to test whether other land sur-
face models with different equations also give rise to abrupt shifts. 
The chosen land surface model is missing several potential sources 
of abrupt changes—in particular climate-sensitive disturbance fac-
tors, such as fire and disease vectors—meaning it may underesti-
mate the potential for abrupt shifts. For these reasons, we view 
the present results as ‘projections’, which illustrate the potential 
for abrupt shifts in GB vegetation carbon under climate change, 
and the potential for them to show early warning signals. Our re-
sults should not be viewed as ‘predictions’ of where and when such 
abrupt shifts will occur.

5  | SUMMARY

To summarize, we have shown results from four different model 
configurations that show abrupt shift behaviour in vegetation car-
bon due to climate change (with or without CO2 change) at small 
spatial scales across GB. We have identified the types of shifts that 
occur and have shown that these generally appear not to be linked to 
abrupt shifts in climate. Detectable shifts in rainfall or temperature 
time series are modest, not really abrupt, and rarely spatially over-
lapping with the numerous and scattered abrupt shifts in vegetation 
carbon. A subset of abrupt shifts that involve decreases in vegeta-
tion carbon can be linked to a high sensitivity of photosynthesis to 
soil moisture content in those locations. For the ‘traditional’ abrupt 
shifts that go in the same direction as overall trends in vegetation 
carbon, we find evidence of early warning signals consistent with 
tipping point dynamics, particularly for abrupt increases in vegeta-
tion carbon within an overall increasing trend. These abrupt shifts  
and the associated early warning signals can be linked to self- 
amplifying non-linear dynamics in the equations describing changes 
in vegetation carbon. Many of the abrupt shifts are non-trivial in size 
with large shifts detected in both directions relative to the amount 
of CVeg that is stored.
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