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ABSTRACT 

Alzheimer’s disease is a progressive neurodegenerative condition that is 

characterised by distinct neuropathological changes. Within the last decade post 

mortem human brain samples have been used to show that there are robust 

epigenetic changes occurring in the brain during disease. However, as these 

samples are collected shortly after death they are a reflection of only the very end 

stages of disease. 

 

Through the exposure of differentiated adult cells to exogenous reprogramming 

factors it is now possible to generate induced pluripotent stem cells which have 

the potential to differentiate into any cell type in the body. Over recent years 

reseach has moved towards using these stem cells to generate neurons or 

microglia in order to study diseases of ageing such as Alzheimer’s disease. 

However, there are relatively few epigenetic studies that have been undertaken 

using induced pluripotent stem cells. As there are global cellular epigenetic 

changes occurring during the induction of pluripotency and re-differentiation it is 

critical to ensure we understand the DNA methylation changes occurring during 

normal neuronal differentiation before using these as a model of Alzheimer’s 

disease or other diseases of ageing.  

 

The aim of this thesis is to first characterise the DNA methylation changes that 

are occurring in neuronal and microglial models that are exposed to AD-relevant 

exposures such as differentiation and maturation, drug treatment and immune 

challenge. This will largely be achieved through measuring DNA methylation 

using the Illumina Infinium HumanMethylationEPIC BeadChip array which 

provides information on the DNA methylation levels at over 850,000 loci across 

the genome.  
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This chapter reviews research that has been undertaken in the field of 

Alzheimer’s disease (AD), with a particular emphasis on epigenetic studies and 

work in induced pluripotent stem cells (iPSCs) to date. The work presented in this 

chapter reviewing iPSCs to study epigenetic variation in AD is based on a 

published review, on which I am first author [1], which can be found in Appendix 

A. 

 

1.1 Alzheimer’s Disease (AD) 

Dementia is an umbrella term that covers several diseases that all have similar 

symptoms, which are associated with neurodegeneration. AD is the most 

prevalent neurodegenerative disorder and accounts for approximately 60-80% of 

all dementia cases worldwide [2]. The disease is characterised by the 

accumulation of amyloid beta (Aβ) plaques, intracellular neurofibrillary tangles 

(NFTs) of hyperphosphorylated tau [3] and loss of synaptic connections [4];  taken 

together these lead to neuronal cell death. This is accompanied by cognitive and 

behavioural changes, such as memory impairments, language disturbance and 

hallucinations. The early cognitive decline in AD can be attributed to the 

degeneration of cholinergic neuronal cells found in the cortical and limbic brain 

regions such as the hippocampus [5] and the basal forebrain [6]. 

 

1.1.1 Types of AD  

AD can be broken down into two subtypes, early onset AD (EOAD) and late onset 

AD (LOAD). EOAD accounts for relatively few cases, between to 1-5% and the 

disease has a  symptomatic onset of before 65 years of age [7]. EOAD is usually 

attributed to autosomal dominant mutations in three genes, which are amyloid 

precursor protein (APP), presenilin1 (PSEN1) and presenilin2 (PSEN2). 
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Therefore these cases of EOAD can be inherited and so are often termed familial 

AD (FAD).  

 

Most AD cases are late-onset, starting after the age of 65, and sporadic, with no 

defined aetiology. However, in recent years, large cohort collections and the 

relatively inexpensive cost of assessing genetic variation through genome-wide 

association studies (GWAS) has allowed the identification of common variants 

associated with risk of developing LOAD. These studies have demonstrated that 

LOAD is multifactorial with many different genes and single nucleotide 

polymorphisms (SNPs) being implicated in, and contributing to, disease onset 

and progression [8].  

 

1.1.2 Prevalence and Financial Burden 

It is estimated that 46.8 million people worldwide are affected by dementia, with 

this set to double every 20 years, reaching 131.5 million people in 2050 [9]. 

Despite 5.2% of people over the age of 60 living with dementia only around 1 in 

4 people with AD have been diagnosed [10]. Furthermore, due to the rising 

number of AD cases the economic burden of the disease is also increasing; it has 

been calculated that the global cost of dementia was $818 billion in 2015, with 

this set to become $2 trillion by 2030. Some regions have seen large increases 

in cost with the greatest being an increase by ~300% in sub-Saharan Africa, 

whilst overall the worldwide increase is ~35% [10]. This is because the life 

expectancy of developing countries is increasing and the number of people aged 

above 60 in these regions is growing faster than in other countries [11]. 
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1.1.3 Disease Progression and Pathological Hallmarks 

Despite LOAD and EOAD having different causes and ages of onset, the 

progression and pathology of these subtypes are broadly the same. As previously 

stated AD can be characterised by the accumulation of Aβ plaques and NFTs of 

hyperphosphorylated tau. The deposition of these tangles does not occur at 

random, but follows a distinct and characteristic pattern [12-15], starting in the 

neocortex and then the hippocampus [16], whilst other regions, such as the 

cerebellum, remain relatively unaffected [17]. This specific topographical 

distribution correlates with, and explains, the characteristic symptoms of AD; the 

hippocampus and neocortex are well known for being involved in controlling 

emotions, memory and higher brain function [18, 19]. The cerebellum on the other 

hand is responsible for the coordination, motor and voluntary movements, and 

there are far fewer aberrations in these in AD patients when compared with the 

prevalence of other symptoms [20]. There is already considerable pathology 

before the disease is diagnosed [21], with the onset of symptoms sometimes 

occurring at least 10 years after Aβ is first deposited [22]. This apparent delay in 

the appearance of symptoms is caused by there being a threshold of cholinergic 

loss before the brain can no longer compensate and ameliorate the deficit [16]. 

 

1.1.4 Causes of LOAD 

Despite decades of molecular research into LOAD aetiology, relatively little is 

known about the exact mechanisms that initiate AD pathology or drive AD 

progression. Whilst it is known that certain genetic mutations can increase one’s 

risk of disease (see section 1.1.4.4), it is unclear through which mechanism these 

are acting. In general, there are three hypotheses that try and explain AD 
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aetiology. These are the amyloid hypothesis, the tau tangle hypothesis, and the 

inflammatory hypothesis. 

 

1.1.4.1 The Amyloid Hypothesis 

As previously stated, it is known that certain mutations within the APP, PSEN1 

and PSEN2 genes are disease causing. The proteins that these genes code for 

are all involved in the proteolytic cleavage of APP into several different proteins. 

APP can be processed through two pathways: the amyloidogenic and non-

amyloidogenic pathway, and it is the amyloidogenic pathway that produces 

several isoforms of Aβ (figure 1.1) [23]. In the non-amyloidogenic pathway APP 

is first cleaved by α-secretase (encoded for by ADAM10) followed by γ-secretase, 

forming AICD, sAPPα and p3. However, in the amyloidogenic pathway APP is 

cleaved by β-secretase (encoded for by BACE1) and then γ-secretase to form 

sAPPβ, AICD and Aβ. Interestingly, PSEN1 and PSEN2 both encode for proteins 

that are subunits of the γ-secretase complex [24-26]. 

 

Whilst Aβ has normal cellular functions such as playing a role in synaptic plasticity 

[27], kinase activation [28] and oxidative stress protection [29], too much causes 

aggregation and the formation of plaques. Interestingly, the aggregation rate 

varies between the different isoforms of Aβ, for example the fastest aggregation 

rate can be attributed to Aβ1-42 and so this isoform is more likely to form neurotoxic 

amyloid plaques [30]. These mutations (in APP, PSEN1 and PSEN2) shift the 

balance of APP processing more towards the amyloidogenic pathway, therefore 

changing the Aβ42/Aβ40 ratio. This has been shown to cause an increase in the 

aggregation rate of Aβ and therefore can contribute to the onset of AD [31]. 
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Figure 1.1. Proteolytic cleavage of APP through the amyloidogenic and non-amyloidogenic pathways. 

In the non-amyloidogenic pathway APP is first cleaved by α-secretase followed by γ-secretase, forming AICD, sAPPα and p3. However, in the 
amyloidogenic pathway APP is cleaved by β-secretase and then γ-secretase to form sAPPβ, AICD and amyloid-β (Aβ). Mutations in APP, PSEN1 
or PSEN2 that shift the balance towards the amyloidogenic pathway result in the formation of more oligomers and plaques made of Aβ. 
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1.1.4.2 The Tau Tangle Hypothesis 

Tau, which is encoded for by the microtubule associated protein tau (MAPT) 

gene, plays important physiological roles in microtubule assembly and 

stabilisation [32]. Altogether there are six isoforms in the brain, which vary in 

length, the number of microtubule binding domains (3R or 4R) and inserts of 29 

amino acids in the N-terminus (0N, 1N or 2N) they contain [33].  In three of the 

isoforms of Tau there are three microtubule binding domains (0N3R, 1N3R, 

2N3R) and in the other three there are four microtubule binding domains (0N4R, 

1N4R, 2N4R) [33].  

 

Alongside Aβ plaques, the accumulation of intracellular Tau into NFTs is another 

hallmark of AD. The exact mechanisms through which these NFTs develop are 

still un-clear, but the phosphorylation and de-phosphorylation of Tau is thought 

to play a critical role (figure 1.2). NFTs in the brains of AD patients compared to 

non-AD patients are enriched for abnormally hyperphosphorylated Tau (p-Tau) 

[34]. This p-Tau is unable to bind to tubulin, therefore preventing microtubule 

assembly, alongside this it can also disrupt the microtubules directly [35, 36]. 

Dysfunctional networks of microtubules within neurons cause disturbances to 

critical cellular functions such as axonal transport [37] and synaptic integrity [38]. 

P-Tau is also able to sequester normal physiological Tau causing further cellular 

disruption [39]. The progression of p-Tau accumulation within the brain, 

measured as Braak staging (figure 1.3), correlates with disease severity [40] and 

is therefore thought to play a key role in the initiation and progression of disease. 

Tau deposition first begins in prodromal AD in the transentorhinal cortex (stages 

I/II) before spreading further during mid-stage AD into the limbic regions (stage 
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III/IV) and finally during late stage disease is widespread throughout the 

neocortex (stage V/VI). 

 

Whilst there have been no mutations in MAPT implicated in AD, MAPT mutations 

are sufficient to cause diseases such as frontotemporal dementia (FTD). The 

MAPT mutations linked to FTD have been shown to be missense or deletion 

mutations that reside either in the coding region or intronic region located close 

to the splice donor site of the intron following exon ten [41-43]. These mutations 

are believed to affect how tau interacts with microtubules, reducing their stability 

and ability to form [44-47]. Intronic mutations are generally located at positions 

+3, +13, +14 and +16 within the intron following the alternatively spliced exon 10 

[48, 49]. Using exon trapping it has been shown that intronic mutations lead to 

increased splicing of exon ten which can also be seen in brain tissue from patients 

known to have intronic MAPT mutations [50, 51]. This is reflected by a change in 

the 3R to 4R isoform ratio creating an overproduction of the 4R isoform [42, 52]. 

Exploring these mutations and the effects they have is of importance for AD as it 

can help the understanding of how tau pathology may lead to neurodegeneration. 

Until relatively recently it was believed that it was not possible to develop AD 

without the presence of Aβ plaques. However, imaging studies have shown that 

tau tangles do occur in the absence of amyloid. Using positron emission 

tomography (PET) to look at the presence of both Aβ plaques and tau and their 

association with cognitive performance it was shown that in the absence of tau 

memory, language and executive function were unaffected even in the presence 

of Aβ plaques [53]. This suggests that it is in fact tau that causes cognitive 

decline, independently of Aβ.   
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Figure 1.2. Schematic diagram to illustrate the hyperphosphorylation of Tau.  

Within neuronal cells Tau mediates the stabilisation of microtubules by binding to tubulin dimers. If hyperphosphorylated Tau dissociates from the 
microtubules, this causes them to destabilise. Hyperphosphorylated Tau is prone to aggregation first into paired helical filaments and then 
neurofibrillary tangles. These tangles of Tau are neurotoxic and can cause cellular stress and death. 
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Figure 1.3. Schematic diagram to illustrate the spread of Tau throughout the 
brain, which is known as Braak staging.  

 

 

 

 

 

 

 

In the prodromal phases of disease (stage I/II) Tau deposition can be seen in the 
transentorhinal regions of the brain, before spreading to the limbic areas during the 
mid-stage (stage III/IV) , and finally into the neocortex in late stage AD (stage V/VI). 
Where the shade of blue indicates the level of tau deposition from light blue = least 
deposition to dark blue = considerable deposition. Image adapted from BioRender.  
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1.1.4.3 Innate Immunity and AD 

Of increasing interest is the involvement of the innate immune system in AD, 

particularly the role of microglia. Microglia are the resident immune cells in the 

brain and spinal cord, and play important roles in neurodevelopment, immune 

surveillance, disease and homeostasis [54]. Unlike neurons and other glial cell 

types, microglia are of haematopoietic lineage, arise early during development 

[55], and are derived from erythromyeloid progenitors (EMPs) in the yolk sac  [56].  

There is increasing evidence to suggest that microglia play a key role in AD risk 

and pathogenesis [57]. Under normal physiological conditions they are highly 

ramified and their function is highly regulated by molecular factors in the central 

nervous system (CNS) [58]. Upon activation microglia become less ramified, 

develop a more rounded cell body with shorter processes and express a wide 

range of different mediators [59]. Through chronic/recurrent activation of 

microglia during ageing, or the presence of Aβ plaques in AD, this can trigger 

morphological changes and alterations in intracellular and cell surface antigens 

reminiscent of an activated cell [60]. These microglia are said to be “primed” and 

are in a pre-activated state [61, 62]. These primed microglia have increased 

expression of inflammatory markers such as major histocompatibility complex 

(MHC) class II molecules, complement receptor 3 (CR3) and are also less 

ramified [63-66] (figure 1.4). Once primed, microglia give a heighted response to 

inflammatory stimuli [60]. This exaggerated immune reaction activation is 

accompanied by the secretion of inflammatory molecules, which can be 

detrimental to surrounding neurons [67] (figure 1.4).  However, microglial priming 

by Aβ does not necessarily only occur after Aβ deposition, but can also occur 

before plaques are even formed; Maezawa and colleagues have shown that 
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nanomolar concentrations of Aβ oligomers can activate microglia and induce 

microglial-mediated neuronal cell death [68].  

 

To date, anti-inflammatory drugs have proved unsuccessful in ameliorating the 

microglia-induced neuronal death [69]. This is because the relationship between 

the innate immune system and AD is incredibly complex, and the immune 

response to plaques can be beneficial or damaging depending on the context [70-

72]. It is also likely that these studies were also undertaken too late, once the 

priming and damage had already occurred, but it has been suggested that long 

term non-steroidal anti-inflammatory drugs (NSAIDs) can give a decreased risk 

of developing AD [73]. 
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Figure 1.4. Schematic illustrating the role of microglial activation in AD. 

 

Under physiological conditions microglia have a highly ramified morphology. Throughout ageing microglia are repetitively stimulated, and also as a 
response to chronic Aβ in AD they become primed. Following this priming, when they encounter secondary stimuli such as inflammatory mediators 
as a response to a systemic infection they undergo a heightened response. This response results in the release of proinflammatory, excitatory and 
neurotoxic factors which can result in the death of surrounding neuronal cells. 
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1.1.4.4 Genetics of LOAD 

The mutations known to cause FAD are within genes that are all involved in the 

APP processing pathway. On the other hand, the causes of LOAD are far less 

defined; despite there being a genetic component to LOAD there are no 

mutations/SNPs that are sufficient to cause disease alone. From GWAS it has 

been shown that the gene most robustly associated with LOAD is Apolipoprotein 

E (APOE), which encodes a polymorphic glycoprotein that is involved in the 

transport of cholesterol and other lipids [74] alongside neuronal growth [75] and 

tissue repair [76]. There are three isoforms of APOE that all correspond to allelic 

variation at a single locus, ɛ2, ɛ3 and ɛ4, which can be distinguished by cysteine 

to arginine substitutions at the amino acid positions 112 and 158 [77]. The ɛ4 

variant confers increased risk of developing LOAD, with each additional copy of 

the risk allele lowering the mean age of onset [78]. Whilst APOE ɛ4 accounts for 

approximately 20% of genetic risk for developing LOAD it cannot explain all of 

disease incidence, as not everyone who is homozygous for ɛ4 develops AD [79]. 

Aside from APOE there are numerous other SNPs that have been implicated in 

LOAD from numerous GWAS. In 2013, there was a meta-analysis of nearly 

75,000 individuals which nominated 19 common genetic variants, of which 11 

were novel disease loci [80] (see table 1.1). Interestingly, many of the GWAS loci 

nominated for AD can be linked to amyloid processing or inflammation. More 

recently, two larger meta-analyses of AD GWAS were published; Kunkle and 

colleagues identified 25 risk loci in ~95,000 individuals [81], whilst Jansen et al 

nominated 29 risk variants, implicating over 200 genes, by analysing >450,000 

individuals, by using an AD-by-proxy phenotype [82]. The genes identified were 

in pathways relating to immune regulation, lipid related processes and 

degradation of amyloid precursor proteins [82]. Whilst the risk variants that have 
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been identified from GWAS only confer a relatively modest effect size, with odds 

ratios (ORs) between 0.73 and 1.22 per loci investigated [83], it is thought that 

these could act cumulatively to cause the onset of degeneration. Scientists have 

generated polygenic risk scores (PRS) for AD, which combine the effects of many 

disease-associated SNPs to predict disease risk [84] and recently it has been 

reported that the PRS prediction captures nearly all common genetic risk for AD 

[85].  However, another study has demonstrated that collectively common SNPs 

for AD only account for a third of phenotypic variance in AD [86]. Recent efforts 

to explain the missing heritability of AD have used sequencing approaches to 

identify rare variants, with a larger effect size, with SNPs in PLD3, TREM2, 

TM2D3 and PICALM being nominated in recent years [87-91]. 
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Table 1.1. Summary table of SNPs associated with AD, which reach genome wide 
significance in Lambert et al, 2013 [80] 

 

 

SNP Chr:Position Closest Gene Odds Ratio 
rs6656401 

 1:207692049 CR1 1.18 

rs6733839 
 2:127892810 BIN1 1.22 

rs10948363 
 6:47487762 CD2AP 1.10 

rs11771145 
 7:143110762 EPHA1 0.90 

rs9331896 
 8:27467686 CLU 0.86 

rs983392 
 11:59923508 MS4A6A 0.90 

rs10792832 
 11:85867875 PICALM 0.87 

rs4147929 
 19:1063443 ABCA7 1.15 

rs3865444 
 19:51727962 CD33 0.94 

rs9271192 
 6:32578530 HLA-DRB5– HLA-DRB1 1.11 

rs28834970 
 8:27195121 PTK2B 1.10 

rs11218343 
 11:121435587 SORL1 0.77 

rs10498633 
 14:92926952 SLC24A4 RIN3 0.91 

rs8093731 
 18:29088958 DSG2 0.73 

rs35349669 
 2:234068476 INPP5D 1.08 

rs190982 
 5:88223420 MEF2C 0.93 

rs2718058 
 7:37841534 NME8 0.93 

rs1476679 
 7:100004446 ZCWPW1 0.91 

rs10838725 
 11:47557871 CELF1 1.08 

rs17125944 
 14:53400629 FERMT2 1.14 

rs7274581 
 20:55018260 CASS4 0.88 

Abbreviations: Chr. = Chromosome 
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1.2 Genomic Regulation 

Epigenetic processes mediate the reversible regulation of gene expression, 

occurring independently of DNA sequence, acting principally through chemical 

modifications to DNA and nucleosomal histone proteins [92]. Epigenetic 

modifications serve to inform the transcriptional machinery whether a gene is to 

be transcribed or not. It is epigenetic processes that allows every cell type in the 

body to express different proteins and have distinct morphologies and functions, 

despite containing the same genetic material [93]. There are several epigenetic 

mechanisms, including DNA modifications, histone modifications and microRNA-

based mechanisms (figure 1.5).  
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Figure 1.5. Diagram to illustrate the different epigenetic mechanisms that have 
been identified. 

 

 

 

 

 

 

 

 

 

 

 (A) Regulation of chromatic structure through post-translational modifications to 
histone proteins. This can include: acetylation, methylation, SUMOylation, 
ubiquitylation, citrullination and ADP-ribosylation. (B) Addition of chemical tags to DNA 
to the 5’ end of a cytosine nucleotide. This creates 5-methylcytosine (5-mC) – the most 
commonly studied epigenetic mark, 5-hydroxymethylcytosine (5-hmC), 5-
carboxylcytosine (5-caC) and 5-formycytosine (5-fC). (C) Small RNA molecules, such 
as microRNA (miRNA) can also affect gene expression either through degrading mRNA 
or altering protein translation. 
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1.2.1 DNA Modifications 

The most widely studied epigenetic modification in human studies is that of DNA 

methylation, given it is the most stable and longest lasting change [94, 95]. This 

is because it can be robustly assessed using extracted genomic DNA, thus 

meaning it has been the focus of many human epidemiological epigenetic studies 

to date [96]. 5-methylcytosine (5-mC) is formed when a methyl group (CH3) is 

added to the 5’ position of the pyrimidine ring of a cytosine within a CpG 

dinucleotide by DNA methyltransferases (DNMT). 5-mC has been shown to block 

transcription by preventing the binding of transcription factors (TFs) and 

promoting methyl-binding proteins to initiate chromatin compaction [97]. 

However, it is not always the case that DNA methylation leads to gene silencing. 

More recently it has been demonstrated that methylation that lies within the gene 

body itself may be associated with transcriptional activation [98-100]. 

 

DNA methylation is not the only cytosine modification, 5-hydroxymethylcytosine 

(5-hmC) [101, 102], 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC) [103, 

104] have all been described in recent years and are formed from the sequential  

oxidation of 5-mC by ten eleven translocation (TET) enzymes (figure 1.6). These 

modifications, 5-hmC in particular, has been shown to be enriched in certain 

areas of the brain [105-107] and also in stem cells [108], with between 0.4-0.7% 

[106] and 4-6% [109] total nucleotides being hydroxymethylated respectively. 

Lowering TET levels within stem cells, and therefore also 5-hmC levels, has been 

shown to impair self renewal and promote the loss of the stem cell phenotype 

[110, 111]. Interestingly, in contrast to 5-mC it has been demonstrated that 5-

hmC has the opposing effect and generally promotes transcription [112]. 
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Figure 1.6. DNA modifications shown throughout the de-methylation process. 

 

 

 

Cytosine is first methylated, to 5-mC, by a DNA methyl transferase enzyme (DNMT). 
This can then be sequentially oxidised into 5-hmC, 5-fC and 5-caC by ten eleven 
translocation (TET) enzymes. To return to cytosine the base is excised by base excision 
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1.2.2 Other Epigenetic Mechanisms 

Alongside cytosine modifications, histone modifications and small RNA based 

mechanisms also alter the expression of genes. As with DNA modifications there 

are several different chemical marks which can be added to histones to alter their 

function.  

 

As the focus of this PhD thesis is on DNA methylation I have chosen to focus on 

this epigenetic mechanism only. However, I do acknowledge that there are other 

epigenetic mechanisms that may play a role in the onset and progression of AD.  

 

1.2.3 DNA Methylation Studies in AD 

Initial studies investigating DNA modifications in AD focussed on global 

methylation analyses using immunofluorescence. These were inconsistent in 

findings; Mastroeni and colleagues demonstrated a significant decrease in 5-mC 

and 5-hmC in entorhinal cortex neurons and glia in AD patients when compared 

to controls [113, 114]. They have also shown that the affected twin in a 

monozygotic twin pair had decreased DNA methylation in cortical neurons [115] 

and decreased 5-mC and 5-hmC in hippocampal neurons and glia [113] 

compared to the unaffected twin. However, other studies have shown increased 

global 5-mC and 5-hmC in AD patients [116] and in AD neurons [117]. Due to the 

inconsistencies between studies attention has changed to investigating 5-mC and 

5-hmC change at single nucleotide resolution.  

 

One way in which this was achieved was through the use of array based 

methodologies. The earliest array based technologies assessed AD-associated 

5-mC changes at <27,000 loci genome wide using the Illumina Infinium 27K 
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methylation BeadChip array (27K array). One study, which identified 948 CpG 

sites (mapped to 918 unique genes) showed nominally significant AD-associated 

DNA methylation changes [118]. Sanchez-Mut et al also used this array and 

investigated hippocampal DNA methylation in five Braak stage I-II cases, five 

Braak stage III-IV cases, five Braak stage V-VI and five controls (Braak stage 0). 

They identified Braak-associated DNA methylation at four loci, two of which 

resided within the DUSP22 gene and one each in the CLDN15 and QSCN6 genes 

[119].  

 

The 27K array has since been superseded by the Illumina Infinium 450K 

methylation BeadChip array (450K array), which can determine the DNA 

methylation status of >485,000 loci across the genome. It is this technology that 

has been most widely used to assess epigenetic variation in AD. In 2014, two 

independent papers were published back to back that both identified four 

overlapping signals (ANK1, RPL13, RHBDF2 and CDH23), which had not 

previously been associated with AD [120, 121]. Interestingly, in the Lunnon et al 

paper, two of the top four most significant differentially methylated positions 

(DMPs) resided in the ANK1 gene, located only 91bp apart. These changes were 

found only in brain regions known to be affected by AD, such as the prefrontal 

cortex, entorhinal cortex and superior temporal gyrus, but not other unaffected 

brain regions such as the cerebellum [120]. However, a recent study has used 

pyrosequencing to assess DNA methylation across an 119bp region of the ANK1 

gene, which includes those two CpG sites, in a range of different brain regions in 

different dementias and showed ANK1 hypermethylation in AD cerebellum, 

although not at the two sites covered by the 450K array [122]. Interestingly, this 

study also showed that ANK1 hypermethylation in the entorhinal cortex is seen 
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in AD, Huntington’s disease (HD) and Parkinson’s disease (PD). In individuals 

with Dementia with lewy bodies (DLB), or Vascular dementia (VaD), DNA 

hypermethylation was only seen in individuals with co-exisiting AD pathology. 

The same group have also recently shown robust neuropathology-associated 

DNA methylation in the HOXA gene cluster. In this study they used the 450K 

array to identify a 48kb region, spanning 208 CpGs, which demonstrated 

increased DNA methylation in the prefrontal cortex and superior temporal gyrus 

tissue. The top ranked probe within the HOXA3 gene was also validated in two 

independent cohorts [123]. Taken together, these studies have provided the first 

robust and replicable evidence of an association between differential DNA 

methylation and AD. 

 

Whilst these studies have undoubtedly provided valuable insight into the role of 

epigenetic dysfunction in AD, they were performed on bulk brain tissue. Having 

multiple cell types present within each tissue sample can add noise to the data 

and whilst this can be controlled to some extent in the analysis, this is not ideal. 

Furthermore, AD is characterised by alterations in the abundance of neurons and 

glia, which further confounds the problem. In order to try and combat this issue, 

Gasparoni et al, performed the first epigenome-wide association study (EWAS) 

on FACS sorted neuronal and non-neuronal (glia) nuclei from post mortem brain 

[124]. They were able to show Braak-associated changes in neurons and glia that 

replicate the previous findings, and confirms the cell type of origin of the ANK1 

(glia) and HOXA3 (neuron) signals. 

 

The latest iteration of the methylation array is the Illumina Infinium EPIC array 

(EPIC array), which is able to interrogate methylation at over 850,000 loci 
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genome wide at single nucleotide resolution. One study by Marioni et al used this 

newest array to investigate the relationship between accelerated DNA 

methylation, or epigenetic age, and AD risk factors relating to lifestyle, genetics 

and cognitive reserve. DNA methylation at certain loci has shown to change 

robustly with age and based on this there have been numerous algorithms 

developed which are able to predict biological age from an individuals methylome 

[125, 126].  Using epigenome-wide DNA methylation data from 5,100 people they 

reported significant associations between epigenetic age acceleration and body 

mass index (BMI), socioeconomic status, high blood pressure and smoking [127]. 

This study highlights the potential importance of specific lifestyle factors in the 

onset of AD and suggests that modifying these may lower AD risk, although more 

longitudinal studies are needed to disentangle these relationships further.  

 

Overall through many studies, some of which are discussed here, it has been 

shown that specific DNA methylation changes are consistently and robustly 

associated with AD pathology. However, these relationships are complex and 

further studies need to be undertaken in order to elucidate the precise 

mechanisms and establish whether these epigenetic changes are causative or 

merely a consequence of the disease process.  
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1.3 Modelling AD 

There are a number of different model organisms that have been used to 

investigate AD-associated changes including rodent models, Drosophila 

melanogaster and neuronal cell culture models. In this section I will initially focus 

on rodent models, as these have been the most widely utilised. Subsequently, I 

will discuss newer methodologies involving stem cell models and how these are 

being used to model AD. 

 

1.3.1 Rodent Models of AD 

To fully understand and characterise a disease, extensive modelling must take 

place to elucidate the mechanisms underlying disease aetiology. Traditionally, 

this has been achieved by several methods, including both animal (murine) 

models and primary patient cell lines. Whilst both approaches have their own 

merits, they can prove inconvenient and do not completely and accurately reflect 

human disease. At present, the AD research field has had a heavy focus on 

disease modelling through the use of transgenic mouse models [128], as there is 

a well-developed understanding of genetic manipulation techniques in this 

organism. Furthermore, mice are more phylo-genetically related to humans than 

other simpler model organisms such as Drosophila melanogaster 

and Caenorhabditis elegans, although these do allow for more experimental 

control than mice. Due to the close relation of mice to humans they also have 

great utility in studying familial AD using transgenic mice containing mutations in 

the APP and PSEN genes. This has led to advances in our understanding of 

multiple aspects of AD, in particular amyloid pathology and the differential effects 

of the various Aβ peptides. However, despite the extensive use of these 

transgenic models to study AD, they do not accurately recapitulate AD, as the 
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mice do not display overt neurodegeneration [129-131], have amyloid plaques 

[132], nor do they model sporadic LOAD.  

 

Whilst they have proven useful for modelling autosomal disease, such as familial 

AD, the mouse models do not have extensive utility for studying sporadic AD, 

which has both polygenic and environmental components. Even if it were possible 

to model the genetics of sporadic AD in transgenic mice the effect sizes of each 

associated variant would be small and therefore difficult to determine phenotypic 

outcome. However, there have been murine studies that have targeted 

replacement of the endogenous murine Apoe gene with human APOE-ε4. These 

mice demonstrated reduced spatial learning and a reduction in dendritic spine 

density in the medial entorhinal cortex [133]. In another study where APOE (both 

ε3/ε3 and ε4/ε4) mice were crossed with mice containing a mutant human form 

of APP, the APOE-ε4xAPP mice displayed significantly worse spatial memory 

performance than their APOE-ε3xAPP counterparts, but this was also associated 

with insulin dysfunction [134].  

 

1.3.2 iPSCs and iPSC-derived Neurons as Models 

A more promising avenue for modelling SNPs in complex diseases, such as 

sporadic AD, is using stem cell technology. Embryonic stem cells (ESCs), which 

are derived from the inner cell mass of an embryo (blastocyst), have the ability to 

differentiate into any cell in the body [135]. Due to their inherent plasticity, and as 

genomic variation can be assessed relatively inexpensively through polymerase 

chain reaction (PCR), microarray, or sequencing technology, there is the potential 

that they could be used to study the effect of disease-associated SNPs on the 

functionality of specific cell types. However, whilst useful, the ethical issues 
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implicated with using embryo derived ESCs are numerous. Recent advances in 

stem cell technology have allowed the production of stem cells derived from adult 

tissue, such as blood, urine and fibroblasts (figure 1.7) [136]. These iPSCs have 

almost identical characteristics to ESCs: they share the same morphology, can 

differentiate into any cell type in the body, have unlimited growth and have the 

same expression pattern of genes [137]; potentially making them a very powerful 

tool in research. One concern of using iPSCs is that of X-inactivation in female 

cells, whereby one of the X chromosomes is randomly inactivated. It was 

previously a concern that iPSCs may not consistently and efficiently undergo X-

inactivation. However, a recent study investigated X-inactivation in ESCs and 

iPSCs using over 700 high-throughput sequencing samples. They demonstrated 

that whilst there is heterogeneity in X-inactivation and XIST expression in the 

ESCs this was not the case for iPSCs which maintained an inactivated X 

chromosome [138]. 

 

The most common method of using stem cells to study neurological diseases is 

by differentiating iPSCs into neurons (figure 1.8). Through this process different 

growth factors are added into the culture media to promote cellular differentiation 

to neuronal cell types. Two growth factors in particular are used to differentiate 

iPSCs into a neuronal cell type, SB431542 (SB) and LDN193189 (LDN), through 

a process named dual SMAD inhibition. Dual SMAD inhibition rapidly 

differentiates iPSCs into early neuroectoderm [139] by blocking two signalling 

pathways. These pathways use two SMADs, bone morphogenic (BMP) and 

transforming growth factor-beta (TGF-β), for signal transduction. By blocking 

these pathways OCT4 expression decreases and PAX6 expression increases, 

leading to the formation of neuronal rosettes [140].  
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Whilst these two growth factors are common to most neuronal differentiation 

protocols, there are numerous other growth factors and small molecules used in 

order to terminally differentiation and mature iPSC derived-neurons [141]. For 

example, glial cell line-derived neurotrophic factor (GDNF), brain derived 

neurotrophic factor (BDNF) and ascorbic acid (AA) can be used. These three 

factors have been shown to support the survival and promote the growth and 

differentiation of new synapses and neurons [142-144].   

 

Many of the methodologies used to generate iPSC-derived neurons were 

developed in order to generate specific neuronal cell types and few have been 

created in order to enhance and accelerate functional maturation. One which has 

been created with this in mind is the synaptojuice medias developed by Kemp et 

al [145]. Their differentiation protocol requires the serial addition of two 

supplemented medias in order to enhance the two phases of neuronal 

development, neurogenesis and synaptogenesis. A list of all the growth factors 

used in these two medias (SCM1 and SCM2) can be found below in figure 1.8. 

Cells matured through this protocol exhibit comparatively larger cellular 

capacitance and relatively hyperpolarised resting membrane potentials. Not only 

this, but functionally mature neurons can be generated within 21 days, roughly 

half the time it would take with other methods [145]. However, whilst this 

methodology does decrease differentiation time, it does not promote the growth 

of specific neuronal cell types, nor was it generated to support long term 

maintenance.  
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Whilst it is now possible to create iPSC-derived neurons of different subtypes the 

earliest studies using iPSC-derived neurons simply served to try and recapitulate 

AD findings from other models such as post-mortem human brain and rodent 

models. From these studies it was demonstrated that neuronal survival and 

function were comprised when the iPSC-derived neurons were treated with 

exogenous Aβ [146-150]. Alongside this, iPSC-derived neurons which were 

derived from both LOAD and EOAD patients had increased Aβ1-42 production and 

elevated Aβ1-40/Aβ1-42 ratio [151-156]. For example, iPSC-derived cortical 

neurons containing the PSEN2 N141I mutation demonstrated both an increase 

in Aβ1-40/Aβ1-42 ratio and a decrease in the maximum number of spikes following 

depolarising injection, both of which were ameliorated in isogenic controls [153]. 

Besides aberrant Aβ production there are also aggregates of 

hyperphosphorylated tau in AD. During the normal timeframe of neuronal 

differentiation in culture, iPSC-derived neurons do not express the mature 4R 

isoform of tau. It is not until they were cultured for extended periods, ~360 days 

in vitro, that the mature 4R isoform was co-expressed alongside 3R tau [157]. 

Despite this, even without the mature 4R isoform, EOAD neurons harbouring an  

APP duplication had increased GSK-3β activity and a concomitant increase in 

phosphorylated tau levels [158].   
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Figure 1.7. A simplified schematic representing the reprogramming of 
differentiated adult cells into iPSCs.  

This technique, as first described by Takahashi and Yamanaka in 2006, uses four 
reprogramming factors to de-differentiate adult somatic cells into iPSCs. Lin28 and 
Nanog, shown in brackets, are sometimes also used during de-differentiation. 
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The medias and growth factors used to promote neuronal differentiation are shown. 
These include; two SMAD inhibitors: SB and LDN and IWR1 which inhibits the WNT 
signalling pathway. The components for SCM1/2 were formulated to promote 
neurogenesis and synaptogenesis [145]. 
 

Figure 1.8. A simplified schematic representing the differentiation of iPSCs into 
neurons.  
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1.3.3 iPSC-derived Microglia 

Until recently, it had been difficult to generate iPSC-derived microglia, with much 

scepticism for the reported studies as the microglia were made from induced 

hematopoietic stem cells (HSCs). HSCs have the potential to give rise to other 

cell types such as blood derived macrophages and as already stated microglia 

arise from EMPs (see section 1.1.4.3). In order to generate EMPs from the iPSCs, 

Muffat et al developed a serum free media that contains high levels of IL-34 and 

colony stimulating factor 1 (CSF1) [159]. These conditions were chosen as the 

media mimics the brain cerebrospinal fluid and the factors have been shown to 

be necessary for microglia differentiation and maintenance. These cells were 

shown to express many of the cell surface markers of microglia including 

TMEM118, P2RTY12/13, HEXB and GPR34. Alongside this, the resulting cells 

were also highly phagocytic and a transcriptomic analysis showed they resemble 

human primary foetal and adult microglia [159]. This is not the only protocol that 

has been developed to generate iPSC-derived microglia, and there are now 

several different methods available [160-163]. 

 

Since the development of these protocols there has been significant interest in 

using the resulting cells to study the impact of various immune-related AD-

associated SNPs; one such mutation is the R47H mutation of TREM2. 

Interestingly, in knock-in mice harbouring the human R47H mutation in TREM2 

was aberrantly spliced, however, this was not found to be the case in human 

primary and iPSC-derived microglial models [164]. Other functional studies have 

also demonstrated that missense mutations cause TREM2 to accumulate in its 

immature form, meaning it is not processed normally and therefore is not 

trafficked to the cell surface. Despite this the microglia still undergo normal 
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differentiation and are able to perform phagocytosis and still respond to immune 

stimuli [165]. This suggests that certain TREM2 mutations can have subtle 

effects, perhaps reflecting the later onset of disease [165].  Alongside TREM2, 

iPSC-derived microglia have also been used to further investigate the relationship 

between APOE genotype and AD. A study by Lin et al demonstrated that APOE 

status was linked to the gene expression in biological pathways such as lipid 

metabolism or immune responses [166]. In addition to this cells carrying the 

APOE4 variant were shown to have impaired Aβ42 clearance when compared to 

isogenic controls [166]. 

 

1.3.4 Other Cellular Models used to Investigate AD 

To overcome some of the caveats of iPSC-derived neurons, in particular those 

related to cellular immaturity, other ways of modelling neurological disorders such 

as AD have emerged. One of these are induced neurons (iNs), which are similar 

to iPSC-derived neurons in that they are generated from differentiated adult 

tissue, but differ in the fact that they do not pass through a stem cell intermediate 

phase [167]. As iNs do not pass through this intermediate stage they have been 

shown to retain the epigenetic, metabolomic and transcriptomic age of the 

fibroblasts they were derived from [168, 169]. Alongside this, iNs are easier to 

make, quicker to produce, taking only a couple of few weeks, and are much 

cheaper than iPSC-derived cells. Whilst this maintenance of age and cost-

effectiveness have obvious advantages for studying diseases of ageing there are 

a few limitations which means they have not been widely adopted. Firstly, their 

major limitation is that the number of iNs you can generate is finite as there are 

no stages within reprogramming that are expandable. This means that iNs are 

not suitable for studies requiring large amounts of cells such as some large drug 
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screens [170]. Secondly, it has been shown that the original culture conditions of 

the fibroblasts can impact on the resulting neurons and therefore cause 

interindividual heterogeneity or mosaicism when compared to the clonal nature 

of iPSC-derived cells [171]. Finally, whilst it is possible to generate iPSC-derived 

neurons from a variety of differentiated tissues including but not limited to 

fibroblasts [136], keratinocytes [172] and blood cells [173] the same cannot be 

said for iNs. Currently only pericytes and skin fibroblasts have been used to 

successfully derive iNs from adult tissue, but as pericytes are quite hard to obtain 

from donors, fibroblasts remain the only feasible option for generating iNs. 

 

The other cellular model being used increasingly more frequent to study 

neurological diseases such as AD are those of cerebral organoids. Cerebral 

organoids are conceptually very similar to iPSC-derived cells as they are too are 

derived from iPSCs, the main difference is that the organoids are grown in 3D 

rather than the traditional 2D culture used for iPSC-derived neurons [174]. The 

creation of organoids relies upon the ability of iPSCs to self-organise, and through 

the use of exogenous factors form organised structures resembling distinct 

regions of the brain [174]. One recent study demonstrated that organoids derived 

from both down syndrome and EOAD patients displayed progressive 

accumulation of Aβ and tau into structures resembling plaques and NFTs, but 

that these aggregations were absent from control organoids [175]. Alongside 

monoculture organoid models triculture models have also been developed to 

increase physiological relevance. Using this system organoids containing 

neurons, astrocytes and microglia to model AD pathophysiology and the model 

displayed Aβ aggregation, tau hyperphosphorylation, neuroinflammatory activity 

and the release of NO [176]. However, despite being physiologically more 
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relevant organoid models do have their limitations. One limitation to modelling AD 

with organoids relates to the maturity of the resulting cells, much like iPSC-

derived neurons grown in 2D, cerebral organoids have been shown to have a 

transcriptional profile representative of a prenatal brain [175, 177]. Alongside this 

another limitation is that of the lack of vascularisation, which can result in 

insufficient neuronal maturation and overall limits the amount of time the 

organoids can be maintained in culture [174, 178].  
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1.4 Using iPSCs to Model Epigenetic Changes 

 

1.4.1 Epigenetic Changes Associated with Inducing Pluripotency 

Associated with inducing pluripotency are the global cellular epigenetic changes 

that allow the cells to alter gene expression and become iPSCs. These changes 

to epigenetic mechanisms, such as DNA methylation, are known to regulate 

which parts of the DNA are transcribed and change throughout development and 

differentiation in order to restrict what types of cells the precursors can become 

(figure 1.9) [179].  

 

Despite being functionally identical, several groups report that iPSCs have 

different DNA methylation profiles and gene expression patterns to ESCs [180-

183]. Similarly, whilst grown in 3D, cerebral organoids too have been 

demonstrated to have the epigenetic signature of fetal human brain, but their 

development does seem to parallel that of human cortical development [184]. 

Some groups attribute this variation due to an ‘epigenetic memory’ where iPSCs 

show residual DNA methylation patterns that are typical of the tissue they 

originate from [185]. These differentially methylated regions (DMRs) were shown 

to affect the differentiation potential of the newly formed iPSCs. For example, 

iPSCs derived from neural and fibroblast progenitors maintained DNA 

methylation marks at sites associated with haematopoietic lineages, which 

decreased the potential for these iPSCs to form blood cells. Subsequently, it is 

possible to reverse these restricting methyl marks by increasing the cells passage 

number or treatment with chromatin modifying compounds [185]. This treatment 

is associated with a decrease in DNA methylation at haematopoietic loci and 

therefore an increase in blood cell fate potential. Therefore, although it would 
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appear that this epigenetic memory can affect the differentiation potential of cells 

initially, this effect is actually only transient. It has also been observed that certain 

subsets of cells can become stuck in a partially reprogrammed state. This is due 

to inefficient DNA demethylation at certain sites or the incomplete repression of 

TFs [186]. Despite this, these aberrations can be rectified using RNA inhibition of 

TFs or treatment with DNA methylase inhibitors. Another potential source of 

epigenetic variation between ESCs and iPSCs is the microenvironment in which 

the iPSCs have been generated. Cooper and Newman have demonstrated that 

there is some correlation between cells’ gene expression patterns and the 

laboratory the cell lines are derived from [187, 188]. This demonstrates that the 

environment can affect the epigenome and therefore downstream gene 

expression of cell lines. To fully assess the differences in the epigenomes 

between iPSCs and ESCs, Lister et al, utilized a shotgun bisulphite sequencing 

technique (MethylIC-seq) to look at the whole-genome DNA methylome at single 

base-pair resolution [189]. This demonstrated that, overall, ESCs and iPSCs are 

similar, but that there are some inherent differences between their DNA 

methylomes. The reprogramming of somatic cells generated hundreds of DMRs 

that could be attributed to both memory from the somatic cell and iPSC-specific 

DNA methylation patterns that are susceptible during the reprogramming process 

as many DMRs were consistent across independent iPSC lines [181]. All of these 

studies demonstrate that there are fundamental differences in both the 

epigenome and gene expression patterns of ESCs and iPSCs. However, there 

are ways to rectify some of these differences meaning that iPSCs still have utility 

as disease models. 
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Figure 1.9. Epigenetic mechanisms regulate cell fate and differentiation. 

 

 

 

 

 

 

 

  

In order to create iPSCs from differentiated adult tissue such as fibroblasts global cellular 
changes to epigenetic mechanisms, such as DNA methylation, are necessary as these 
epigenetic mechanisms regulate cell fate and differentiation. Undifferentiated pluripotent 
cells, such as iPSCs, start at the top of the landscape, and throughout differentiation they 
move further down the landscape becoming more specialised and undergoing epigenetic 
changes which reflect this. To reprogramme differentiated cells such as fibroblasts back 
into the pluripotent state you have to reset these epigenetic marks, effectively pushing the 
cells back to the top of the landscape. Adapted from [179]. 
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1.5 Conclusions 

Through the use of GWAS in human samples and studies in rodent models clear 

links between genetic variation and disease progression have been established 

[80, 82, 128-134]. However, in the case of LOAD, genetic variation is not sufficient 

in all cases to cause disease, as exemplified by the fact that approximately 40% 

of monozygotic twins are discordant for AD [190].  In recent years EWAS studies 

have been undertaken to understand the contribution of non-genetic factors to 

AD onset and progression [120, 121, 123]. Whilst these studies have provided 

clear and robust evidence for epigenetic dysfunction in AD the majority have been 

performed using postmortem brain tissue, which only offer a snapshot of DNA 

methylation profiles at the very end stages of life. Furthermore, these studies 

simply highlight an association with disease, and do not show whether nominated 

loci are actually causal in the disease process. Although rodent models can be 

utilised to study AD longitudinally, these are all models of FAD, which have limited 

utility for studying sporadic disease that has both genetic and environmental 

contributions. In order to establish how DNA methylation changes throughout the 

life course and in diseases it is now important to use human based models which 

can be followed over time to track these changes, such as iPSC-derived neuronal 

models and human derived cell lines. This thesis aims to characterise a number 

of different human and iPSC models with relevance to AD.   

 

 

 

 

 

 



 
 

62 
 

1.6 Hypothesis and Aims  

As it has previously been demonstrated that there is epigenetic dysfunction 

occurring in AD, this thesis hypothesises that there are methylomic changes 

occurring within neuronal and microglial cells when they are exposed to AD-

relevant exposures and that these changes can be linked to relevant biological 

pathways. 

 

In order to address this hypothesis this thesis aims to: 

1. Investigate the epigenomic changes that occur during iPSC differentiation 

and maturation into neurons. 

2. Investigate the epigenomic changes induced by epigenetic modulators in 

iPSC-derived neurons and microglia. 

3. Investigate the epigenomic changes induced by Lipopolysaccharide (LPS) 

immune challenges in a microglial cell line. 
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CHAPTER 2 : MATERIALS AND METHODS 
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2.1 Cell Culture 

This section outlines the general methods that were used to culture cells on a 

regular basis. For cell line specific culture and differentiation methodology please 

see the relevant chapter. Please see table 2.1 for more information on the cell 

lines used in each chapter. 

 

All work done in this section was undertaken in a class II laminar flow hood that 

had been turned on and allowed to equilibrate for at least half an hour before use. 

During this time any appropriate reagents were warmed either through use of a 

water bath or drying oven set to 37oC. Once equilibrated the laminar flow hood 

was thoroughly decontaminated by spraying and wiping down all surfaces and 

side panels with 70% ethanol. At least once a week the laminar was also deep 

cleaned (by using 1% Rely+On Virkon (12358667, Fisher Scientific) solution 

followed by 70% ethanol). Before being placed into the laminar flow hood all items 

and equipment were thoroughly sterilised first by being sprayed with 70% ethanol. 

After completion of cell culture work the laminar flow hood was again sterilised 

using 70% ethanol before being switched off. 
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Chapter Cell Line 
Name Tissue Sex Transformation 

method 
Passage 

No. 
No. of 

Biological/Technical 
Replicates 

Seeding 
Density 

(cells/well) 
Reference 

3 33Q Fibroblasts Female Lentivirus - 3x Technical  - [191] 

4 
CTR M3 36S Keratinocytes Male Sendai virus  - 3x Technical  300,000 [192] 

SFC840-03-03 Fibroblasts Female Sendai virus  - 3x Biological  750,000 [193] 

5 SV40 Primary 
microglia Male Lenti‐SV40 

lentivirus 6 3x Technical  100,000 - 

Table 2.1. Information on cell lines used in each chapter. 

Detailed information for the cell line(s) used in each chapter. The chapter the cell line was used in, the name of the line, the tissue it was 
derived from, the sex of the person the line was derived from, the transformation method, passage number at which they were used, 
number of replicates, seeding density and reference for each cell line is detailed where available.  
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2.1.1 Thawing and Recovery 

Cells in long term storage were kept in liquid nitrogen using Cryostor (Sigma 

Aldrich). Cells were defrosted by partially immersing the cryovial into a 37oC 

water bath until only a small ice crystal remained. Once defrosted the cryovial 

was transferred into the laminar flow hood where all cell culture work was 

undertaken. The cell suspension was then transferred into a 15mL falcon tube 

containing the relevant pre-warmed media. Cells were pelleted by centrifugation 

for three minutes at 1,000rpm (Megafuge 16R, Thermo Fisher), and the resulting 

pellet resuspended in media containing 1xRevitacellTM cell supplement (1:100, 

Gibco). Resuspended cells were placed into the correct size flask or culture plate 

and kept in a humidified incubator at 37oC, with 5% CO2. RevitacellTM supplement 

was removed after 24 hours by changing the media on the cells.  

 

2.1.2 Changing Media 

The relevant media was first warmed to 37oC in a water bath or drying oven. Once 

up to temperature media and relevant equipment were sterilised with 70% ethanol 

and placed into the laminar flow hood. Following this, cells were then carefully 

moved from the incubator into the laminar flow hood, being sprayed with ethanol 

before being placed into the laminar flow hood. Using good aseptic technique, 

the lid of the flask was removed and spent media removed using a stripette and 

pipet aid. Waste media was then placed into a flask containing 1% Virkon in order 

to kill any free-floating cells. Fresh media was then placed into the relevant 

wells/flasks, being careful not to wash it over the culture and dislodge the cells. 

Waste media was left in Virkon solution for at least 20 minutes before being 

disposed of. 
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2.1.3 Cryopreserving Cells 

To freeze down cells they were first washed in phosphate buffered saline (PBS; 

Gibco), treated with Ethylenediaminetetraacetic acid (EDTA; Gibco) or Accutase 

(Gibco) (depending on cell type/stage) and washed with media as described in 

section 2.1.2. After washing, cells were detached from the base of the well using 

1mL Cryostor/well and the suspension placed into a cryovial. Vials of cells were 

placed into isopropanol tubs for the first 48 hours before being moved to liquid 

nitrogen storage long term.  
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2.2 DNA Extraction 

This section outlines in detail the method used to extract DNA from cell pellets in 

Chapters 4, 5 and 6. All plastic-ware used during this protocol were sterile and 

DNase free. Before starting the laboratory benches were cleaned using Alconox 

(Sigma Aldrich) and 70% ethanol to remove contaminants and any DNases 

present.  The DNA extraction workflow is depicted in figure 2.1 below. 

 

2.2.1 Overview of DNA Isolation using a Phenol Chloroform Based Protocol 

Extracting genomic DNA using a phenol-chloroform method has been widely 

used and has been shown to yield high quality DNA for downstream purposes 

[194]. The method below is an adaptation of the phenol-chloroform method 

developed by Sambrook et al. [194]. Reagents used for the extraction can be 

found in tables 2.2, 2.3 and 2.4. 

 

2.2.2 Lysis and Digestion of Cells 

Cell pellets were resuspended in 1mL lysis buffer (table 2.2). Subsequently, to 

degrade any RNA present, 2μL of RNase-A (working concentration 20µg/mL; 

Fisher Scientific) was added to each sample and these were then incubated at 

37oC for two hours. To facilitate protein degradation, 20μL of Proteinase K 

(20mg/mL; Sigma Aldrich) was added and the sample was incubated for a further 

two to three hours at 50oC. The sample was then cooled to room temperature 

before proceeding to nucleic acid purification.  

 



 
 

69 
 

2.2.3 Purification of Nucleic Acids 

Phase lock tubes were prepared by adding vacuum grease to the lid of a 2mL 

Eppendorf tube and centrifuging the tube at room temperature (RT) for 10 

minutes at 3,000 rpm. The cooled lysed cell suspension prepared in section 2.2.2 

was then added to the phase lock tube, before being topped up with 

Phenol:Chloroform:Isopropyl alcohol (PCI). The tube was then inverted 20x to 

mix and was centrifuged at 13,000 rpm for 15 minutes at RT. The top layer was 

then transferred to a new 2mL Eppendorf and 1mL of chloroform was added. The 

tube was inverted 20x to mix and was then centrifuged at 13,000 rpm for 15 

minutes at RT. The top aqueous layer was carefully transferred to a new tube 

and the chloroform extraction step was repeated.  

 

2.2.4 Precipitation of DNA  

Sufficient 100% ice-cold ethanol was added to the purified nucleic acid solution 

to fill the Eppendorf tube. Subsequently, the samples were placed at -20oC 

overnight. After 12-16 hours the samples were centrifuged at 13,000 rpm for 15 

minutes at RT, the DNA was precipitated, forming a white pellet at the base of 

the tube. The supernatant was removed and the pellet was carefully washed with 

1mL 70% ethanol so as not to dislodge the pellet. The sample was then 

centrifuged at 13,000 rpm for 10 minutes, before repeating the 70% ethanol wash 

step. The supernatant was removed by pipetting and the sample was left to air 

dry for 30 minutes. Finally, the pellet was resuspended in 200μL Tris-EDTA (Te) 

buffer (table 2.3) and left to dissolve overnight. Once dissolved DNA was stored 

at 4oC until needed for downstream experiments. 
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Once collected and pelleted the cells were lysed using RNase A and proteinase K. The nucleic acids were then purified from this lysed cell 
solution through the concurrent addition of PCI and chloroform spinning whilst centrifuging between each addition. Once purified the DNA was 
precipitated using ice-cold 100% ethanol. Following precipitation, the DNA was pelleted and dissolved in Te. 

Figure 2.1. Diagram to illustrate DNA extraction workflow. 
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2.2.5 Determining the Quantity of Extracted DNA 

2μL of DNA was used to quantify DNA using spectrophotometry (NanoDrop 8000) and 

check quality. The quality was assessed by checking the 260/280 and 230/280 ratios, 

which for pure DNA should be above 1.8 and ~2, respectively. 
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Name Storage pH Final Concentration Supplier Catalogue No. 

NaCl RT - 75mM Sigma Aldrich S3014 

Tris-HCl RT 8 10mM VWR 733-1654 

EDTA RT 8 25mM 
Fisher 

Scientific 
11568896 

10% 

SDS 
RT - th final volume Sigma Aldrich L3771 

H20 RT - - - - 

Table 2.2. Reagents required to make lysis buffer.  

 

Table 2.3. Reagents required to make 1x Te buffer. 

 

 

 

 

Name Storage pH Volume (mL) Supplier Catalogue No. 

1M Tris-

HCl 
RT 8 10 VWR 733-1654 

0.5M EDTA RT 8 0.2 Fisher Scientific 11568896 

H20 RT - 990 - - 

Where RT signifies room temperature. 

The solution was filtered with a 0.5micron filter and autoclaved before use. Where RT 
signifies room temperature. 
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Table 2.4. Other reagents required for phenol-chloroform extraction. 

 

 

 

  

Name Storage Concentration Supplier Catalogue No. 

Proteinase K Solution -20oC 20mg/mL 
Fisher 

Scientific 
10172903 

Ribonuclease A (from 

bovine pancreas) 
-20oC 20μg/mL 

Sigma 

Aldrich 
R6513 

Phenol/chloroform/ 

Isoamyl Alcohol (PCI) 
4-8 oC 100% 

Fisher 

Scientific 
13148563 

Chloroform (CHCl3) RT 100% 
Sigma 

Aldrich 
C2432 

Ethanol -20oC 100% 
Sigma 

Aldrich 
E7023 

NaCl RT 75mM 
Sigma 

Aldrich 
S3014 

Ethanol RT 70% 
Sigma 

Aldrich 
E7023 

Elution Buffer (Te) RT 
200-300 

μL/sample 

See table 

2.3 
- 

Where RT signifies room temperature. 
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2.3 DNA Sodium Bisulphite (BS) Treatment  

BS treatment, which was originally described in 1992 by Frommer et al. [195] is a 

methodology that allows you to accurately measure DNA modifications at the base-

pair level. Through this method un-modified cytosines are converted into uracils, and 

so after PCR amplification the uracils become a thymine. However, if a cytosine is 

modified, i.e. contains a methyl or hydroxymethyl group, it is protected from conversion 

and so will not become a thymine. It is this difference that allows you to distinguish 

whether a cytosine was originally modified or not. BS treatment using the EZ-96 DNA 

Methylation-GoldTM Kit (Zymo D5007) requires 500ng of high quality DNA (in a volume 

of 20μL) to provide enough starting material to profile cytosine modifications using the 

Illumina Infinium Methylation bead arrays, which is the profiling methodology used in 

all data chapters of this thesis. The method outlined below is an adaptation of the BS 

treatment methodology developed by the manufacturer. For the original protocol 

please visit https://www.zymoresearch.eu/media/amasty/amfile/attach/_D5007_EZ-

96_DNA_Methylation-Gold_Kit_ver.2.1.5.pdf  

 

2.3.1 Starting Material 

500ng (25ng/μL in 20μL) of DNA was added to each well of a 96 well PCR plate. 

  

2.3.2 Sodium BS Conversion 

To each DNA sample in the 96 well plate, 130μL CT conversion reagent (table 2.5) 

was added and mixed by pipetting. The PCR plate was sealed and transferred to a 

thermal cycler (Thermo Fisher, Veriti) and run under the following conditions: 98oC for 
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10 minutes, 64oC for 2.5 hours and then 4oC for up to 24 hours. Once the cycle was 

completed, 600μL of M-binding buffer was added to the wells of a Zymo-SpinTM I-96 

binding plate mounted on a collection plate. The samples were transferred from the 

conversion plate into the Zymo-SpinTM I-96 binding plate and mixed by pipetting. The 

plate was centrifuged at 3,000 x g for 5 minutes and the flow through was discarded. 

Subsequently, 400μL of M-wash buffer (table 2.6) was added to each well and the 

plate was centrifuged again at 3,000 x g for 5 minutes. Following this, 200μL of M-

desulphonation buffer was added to each well and the plate was incubated at room 

temperature for 15 minutes. The plate was then centrifuged at 3,000 x g for 5 minutes 

and the flow through was discarded. Samples were washed using 400μL of M-wash 

buffer, centrifuged at 3,000 x g for 5 minutes and the flow through discarded. A further 

400μL of M-wash buffer was added to the samples, which were then centrifuged at 

3,000 x g for 10 minutes. The Zymo-SpinTM I-96 binding plate was placed onto an 

elution plate and 15μL of M-elution buffer was added directly onto each well of the 

binding plate. The plate was incubated at room temperature for 5 minutes and then 

centrifuged at 4,000 x g for 3 minutes. Subsequently, a further 15μL of M-elution buffer 

was added to the plate and the incubation and centrifugation step was repeated. The 

eluted DNA could then be used immediately for downstream analysis, or store at -

20oC for later use. For longer term storage BS treated DNA was kept at -80oC. 
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Reagent Volume (mL) Supplier 

M-dissolving buffer 0.5 Zymo 

M-dilution buffer 3 Zymo 

CT conversion reagent Bottle provided Zymo 

Ultra-pure H2O 9 User 

Table 2.5. CT conversion reagent required for BS conversion using the Zymo EZ-96 
DNA Methylation-GoldTM Kit. 

 

 

 

 

Reagent Volume (mL) Supplier 

M-wash buffer 36 Zymo 

100% ethanol 144 User 

Table 2.6. Reagents required to make the M-wash buffer for BS conversion using the 
Zymo EZ-96 DNA Methylation-GoldTM Kit. 

 

 

 

 

 

The CT conversion reagent is provided as a powder and must be dissolved prior to use 
and mixed at room temperature with regular vortexing and shaking for 15 minutes.  



 
 

77 
 

2.4 Infinium Human Methylation EPIC BeadChip Array  

By combining whole genome amplification of BS treated DNA with array based scoring 

of CpG loci, the EPIC array makes it possible to assess 5mC levels of 863,904 loci 

across the genome [196]. The EPIC array builds on the previous iteration of this 

technology, the Illumina Infinium Human Methylation 450K array, and contains >90% 

of the original CpGs plus an additional 413,743 CpGs [197]. Importantly, the EPIC 

array covers 99% of the Reference Sequence (RefSeq) database genes, and includes 

coverage of important regulatory regions such as CpG islands (CGIs) (>95% covered), 

shores (>90% covered), shelves (>80% covered), 3’ and 5’ untranslated regions 

(UTRs), promoters, enhancers and CpGs within gene bodies [196].  

 

In order to quantify 5-mC levels, the signal intensity of each probe is measured using 

an Illumina iScan by generating beta values, a measure of DNA methylation. Within 

the BeadChip there are two different types of probe used to assess methylation, these 

are termed type I and type II probes (figure 2.3). Type I probes have two separate 

probe sequences per CpG one each to cover the methylated and unmethylated CpG. 

The hybridisation of an unmethylated BS converted DNA strand to an unmethylated 

bead allows for the single base pair extension and incorporation of a labelled ddNTP 

nucleotide which matches the nucleotide which is immediately upstream of the CpG. 

However, if an unmethylated DNA strand hybridises to a methylated bead then there 

is a 3’ mismatch pairing at the probe and single base pair extension is not possible. 

The same method/steps is used for the detection of methylated BS treated DNA, but 

in reverse. Whereas, the same bead is used to measure both methylated and 

unmethylated CpG for the type II probes. These bead sequences were designed to 
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match both the BS treated methylated and unmethylated DNA sequences. This is 

achieved by allowing the cytosine of interest, the target of the single base pair 

extension and replacing the rest of the cytosines within the probe sequence with 

degenerate R bases that can hybridise to both C and T bases (where C represents 

methylated and T represents unmethylated loci). 

 

2.4.1 EPIC Array Protocol  

In this section I will describe the methodology required to perform the Illumina Infinium 

HumanMethylationEPIC BeadChip Array. All reagents described are provided as part 

of the array kit, unless otherwise stated. Please see figure 2.2 for the experimental 

workflow. 

 

2.4.1.1 Preparation for amplification 

In the first stage of this protocol the BS DNA is denatured and neutralised in order to 

prepare it for overnight amplification. First, 20μL of MA1 reagent was pipetted into 

each well of an MSA4 plate, before 7μL of BS DNA from the BS elution plate was 

added in to the corresponding wells of the MSA4 plate. Following this, 4μL of 0.1M 

NaOH was added to each well and the MSA4 plate was sealed using a 96-well cap 

mat, having ensured that the orientation of the cap matches that of the plate. Each 

plate was then vortexed for one minute and centrifuged at 280 x g for one minute. The 

plate was then incubated for ten minutes at room temperature. After this incubation, 

68μL of RPM solution and 75μL of MSM solution was added into each well and the 

plate was re-sealed with the 96-well cap mat. The plate was then mixed by inverting it 

ten times, before centrifuging at 280 x g for one minute. The plate was then incubated 

in an Illumina hybridisation oven for 20-24 hours at 37oC.  
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2.4.1.2 Fragmentation of DNA 

The MSA4 plate was removed from the hybridisation oven and centrifuged at 50 x g 

for one minute. Following this, 50μL of FMS solution was added to each well and the 

plate was sealed with a 96-well cap mat. The plate was then vortexed for one minute 

at 1,600 rpm before being centrifuged at 50 x g for one minute. The sealed plates were 

then placed on a heat block set to 37oC for one hour.  

 

2.4.1.3 Precipitation of DNA 

After the DNA had been fragmented, the plate was removed from the heat block and 

100μL of PM1 was added to each well and the plate sealed with a 96-well cap mat. 

The samples were then vortexed at 1,600rpm for one minute followed by a 37oC 

incubation for five minutes. After this incubation step, the samples were centrifuged at 

50 x g at 22oC for one minute. Subsequently, 300μL of 100% 2-propanol (Sigma 

Aldrich) was added to each well, the plate was carefully sealed with a new 96-well cap 

mat, inverted at least ten times to mix the contents thoroughly and then incubated at 

4oC for 30 minutes. Following this incubation stage the plate was centrifuged at 3,000 

x g for 20 minutes at 4oC. The cap mat was then discarded, the supernatant removed 

and the plate was left uncovered and inverted for one hour at room temperature to air 

dry the pellet.  

 

2.4.1.4 Resuspension of DNA 

26μL of RA1 reagent was added to each pellet and then the plate was heat sealed 

with a foil seal  for five minutes before being placed the in a hybridisation oven at 48oC 
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for one hour. After this incubation stage, the plate was vortexed at 1,800 rpm for one 

minute and then centrifuged at 280 x g for one minute.  

 

2.4.1.5 Hybridisation to BeadChip 

Before hybridisation can begin the hybridisation chambers were first prepared as 

follows. First, the hybridisation chambers were placed into the corresponding gaskets 

and then 800μL of PB2 solution was placed into the reservoir of each chamber. Once 

the reservoirs were filled the chamber lid was replaced and kept at room temperature 

until needed.  

 

The resuspended samples in the MSA4 plate were placed on the heat block at 95oC 

for 20 minutes to denature the samples. After this incubation step, the plate was 

removed from the heat block and allowed to cool to room temperature for 30 minutes. 

Once cooled, the plate was pulse centrifuged at 280 x g for one minute and the 

BeadChips were removed from 2-8oC storage 15μL of each DNA sample was pipetted 

onto the appropriate BeadChip section, the hybridisation inserts containing the 

BeadChips were loaded into the hybridisation chamber, the chamber was closed and 

placed in a hybridisation oven at 48oC with continuous movement for 16-24 hours.  

 

2.4.1.6 Washing the BeadChip 

The hybridisation chambers were removed from the oven and allowed to cool for 25 

minutes. During this time two wash dishes were prepared, containing 200mL of PB1, 

the multi-sample BeadChip alignment fixture filled with 150mL of PB1 solution and the-

flow through chamber. Once cooled the BeadChips were removed from the chambers 

one by one and the coverseal removed, before immediately inserting the BeadChips 
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into the wash rack and submerging them fully into the PB1 solution. Once all the 

BeadChips were in the wash rack, the rack was then moved up and down for one 

minute with slow gentle agitation. Subsequently, the wash rack was moved to another 

wash dish containing fresh PB1, again ensuring the BeadChips were fully submerged.  

 

2.4.1.7 Assembly of Flow-Through Chambers 

Each BeadChip was placed into a black frame that had been set up in the multi-sample 

BeadChip alignment fixture pre-filled with PB1 solution aligning the barcode with the 

ridges in the fixture, placing a clear spacer onto the top of each BeadChip and a clean 

glass back plate on top of the clear spacer. The metal clamps were attached to the 

flow through chamber and the clear plastic spacers were trimmed from the flow 

through chamber assembly.  

 

2.4.1.8 Single Base Pair Extension and Staining 

The water circulator was filled to the appropriate level and set so the chamber rack 

reached a temperature of 44oC. Once the chamber rack had reached this temperature 

each flow through chamber was placed in the chamber rack and then the following 

steps were undertaken using the Tecan dilution robot: 

1. 150μL of RA1 was dispensed and incubated for 30 seconds.  

a. This step was repeated five times 

2. 450μL of XC1 was dispensed and incubated for ten minutes 

3. 450μL of XC2 was dispensed and incubated for ten minutes 

4. 200μL of TEM was dispensed and incubated for 15 minutes 

5. 450μL of 95% formamide/1mM EDTA was dispensed and incubated for one 

minute.  
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a. This step was then repeated 

6. The temperature of the chamber rack was changed to the temperature stated 

on the side of the STM tube, which is normally 32oC. 

7. 450μL of XC3 was dispensed and incubated for one minute.  

a. This step was then repeated 

8. 250μL of STM was dispensed and incubated for ten minutes 

9. 450μL of XC3 was dispensed and incubated for one minute 

a. This step was repeated after which five minutes were waited before 

moving on. 

10. 250μL of ATM was dispensed and incubated for ten minutes  

11.  450μL of XC3 was dispensed and incubated for one minute 

a. This step was repeated after which five minutes were waited before 

moving on. 

12. 250μL of STM was dispensed and incubated for ten minutes 

13. 450μL of XC3 was dispensed and incubated for one minute 

a. This step was repeated after which five minutes were waited before 

moving on. 

14. 250μL of ATM was dispensed and incubated for ten minutes 

15. 450μL of XC3 was dispensed and incubated for one minute 

a. This step was repeated after which five minutes were waited before 

moving on. 

16. 250μL of STM was dispensed and incubated for ten minutes 

17. 450μL of XC3 was dispensed and incubated for one minute 

a. This step was repeated after which five minutes were waited before 

moving on. 
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18. 450μL of XC3 was dispensed and incubated for five minutes 

19. Incubate for a further five minutes 

Once this staining was completed, the flow through chambers were immediately 

removed and placed horizontally on the lab bench. 

 

2.4.1.9 Washing and Coating the BeadChips 

A wash dish containing a wash rack was filled with PB1 reagent. Each flow through 

chamber was sequentially dismantled and each BeadChip was immediately placed 

into the wash rack, before slowly moving the wash rack up and down in the solution 

ten times and then soaking the BeadChips for five minutes. The BeadChips in the 

wash rack were then transferred to a second wash dish containing XC4 solution, and 

the rack was moved slowly up and down ten times, before soaking the BeadChips for 

five minutes. The BeadChips were removed from the XC4 and placed horizontally to 

dry in a vacuum desiccator for one hour at 508mmHg (0.68 bar), or until the XC4 was 

completely dry on the arrays. Once dry, the underside of each BeadChip was cleaned 

with 70% ethanol. 

 

2.4.1.10 Imaging the BeadChips 

Four BeadChips at a time were loaded into the Illumina iScan and the Methylation 

NXT settings were used to image the array.   

 

.  
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Figure 2.2. Diagram to illustrate the Illumina EPIC array workflow.

Diagram to illustrate the various experimental steps throughout the EPIC array protocol. After the DNA is bisulfite converted it is denatured 
and amplified by PCR before being fragmented and precipitated. Following this the precipitates DNA is re-suspended and hybridised to the 
BeadChip, which after washing can be stained and then imaged using an Illumina iScan. 
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Figure 2.3. Illustration of type I and II (Infinium I and II respectively) probe 
designs. 

 

 

 

 

 

 

On the EPIC BeadChip there are two probe types: type I, which uses two probe sequences 
per CpG and type II which uses just one probe per CpG. For type I probes the U bead 
measures the unmethylated signal and the M bead measures the methylated signal. The 
type II probes measure both methylated and unmethylated CpGs on the same bead. Taken 
from [196]. 
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2.4.2 Data Quality Control (QC) and Normalisation 

The DNA methylation level at each CpG locus was determined by generating β-

values, which represent the ratio of the intensity of the fluorescent signal for the 

methylated and unmethylated beads. The β-values for each probe lies between 

zero (all cytosines at that loci are unmethylated) and one (all cytosines at that loci 

are methylated). The β-values can be calculated using the following equation:  

𝛽 =  
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑀

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑀 + 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑈 + 100 

 

2.4.2.1 Assessing Median Methylated and Unmethylated Signal Intensity 

The median methylated and unmethylated sample intensity for each sample were 

calculated and plotted against one another in order to ensure that the 

hybridisation to the BeadChip was successful and that the signal intensities for 

each sample were above background levels. Median sample intensities were 

coloured both by chip and position on each BeadChip to check whether these 

were having any effect on intensity. 

 

2.4.2.2 Determining Bisulfite Conversion Efficiency  

Another way to assess data quality is to determine the bisulfite conversion 

efficiency. The “bscon” function in the wateRmelon package [198] uses the 

sample intensities of the fully methylated control probes on the array to calculate 

the percentage bisulfite conversion of each sample. This percentage can be used 

to determine how well the bisulfite conversion went during the DNA preparation. 

Typically samples with a bisulfite conversion of less than 80% will be excluded. 
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2.4.2.3 Determining Epigenetic and Mitotic Age 

In order to calculate the epigenetic or biological age of samples the Horvath 

coefficients were extracted. There are 391 probes on the EPIC array whose DNA 

methylation profile has been shown to robustly change throughout ageing, these 

probes were used to generate an algorithm which can be used to predict the 

biological age of samples from methylation data [126]. This data was then 

uploaded and submitted to the latest version of the Horvath epigenetic age 

calculator at https://dnamage.genetics.ucla.edu/home [126]. 

 

To determine the mitotic age of samples the MiAge calculator was used. This is 

an algorithm that uses the methylation profile of 268 probes to predict the number 

of cellular divisions a cell has undergone [199]. The 268 probes relevant to the 

MiAge calculator were extracted and used in conjunction with MiAge algorithm to 

generate estimates of the number of cellular divisions.  

 

2.4.2.4 Pfilter 

To filter samples and probes by detection p-value the “pfilter” function in the 

wateRmelon package was used [198]. This removes samples that contain more 

than one percent (by default) of probes above the 0.05 detection p-value 

threshold and probes with any samples with a beadcount less than three or more 

than one percent above the p-value threshold.  

 

2.4.2.5 Normalisation using Dasen  

Normalisation was performed using the “dasen” function within the wateRmelon 

package [198]. Dasen uses quantile normalisation, which normalises by type I 

and type II probe background levels first.  



 
 

 

88 
 

One limitation of the EPIC BeadChip array technology is the difference in 

performance between the two bead types [200]. More specifically, the β-values 

which are generated from the type I probes are in general more reliable and 

accurate than the values generated from the type II probes. In order to address 

this there have been a number of data normalisation methods developed. The 

wateRmelon package within R offers a range of different normalisation methods 

[198], of which Dasen was used within this thesis as it has consistently been 

shown to be the best performing method in our group.  

 

Another caveat of the BeadChip array is the presence of SNPs in close proximity 

to the CpG of interest, which have been shown to confound the data generated 

[201, 202], meaning therefore that the 5-mC levels detected may be a reflection 

of the underlying genetic variation. Furthermore, a proportion of the probes on 

the array have been shown to cross hybridise with other genomic locations and 

as a result do not accurately reflect the DNA methylation at the specific loci of 

interest [201, 202]. In order to overcome this any probes which have been 

identified as cross-hybridising or contain SNP variation were removed prior to any 

analysis, using the probe annotations provided by McCartney et al [203]. 

 

Further details on data QC and on specific analytical methods or pipelines can 

be found in the relevant data chapter(s) and are also available to view online at: 

https://github.com/ji241/JenniferImmThesis.  
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CHAPTER 3 : CHARACTERISATION OF DNA 
METHYLOMIC SIGNATURES IN IPSCS DURING 

NEURONAL DIFFERENTIATION 
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The work presented in this chapter is based on work submitted for publication 

and is currently under review at Epigenomics (Imm et al, 2020).  A copy of the 

submitted manuscript can be found in Appendix C. 

 

3.1 Introduction 

The process of ageing very heterogeneous with some people developing age-

related conditions far earlier than others. Not only do age-related changes affect 

tissues and organs but also affect cells and their organelles [204]. These changes 

can include changes to mitochondrial function [205], the extracellular matrix [206] 

and also transcriptional and epigenetic changes [207-209]. In the introduction to 

this chapter I will briefly introduce the cellular changes that occur during ageing 

and focus on DNA methylation changes over time especially within the brain.  

 

3.1.1 Cellular Changes Associated with Ageing 

As we age one of the organelles that is particularly affected is the mitochondria. 

With time the electron transport chain (ETC) becomes less efficient, causing more 

reactive oxygen species (ROS) to leak into the cell and also reduced production 

of ATP [210].  This increase in ROS causes further mitochondrial damage and 

globally more cellular damage [211]. Whilst it is believed that ROS can have 

homeostatic functions and are released as a stress mechanism in order to 

promote cellular survival at some point during ageing, the levels of ROS can 

ultimately elicit more harm than good and begin to cause age-associated cellular 

damage [212]. 

 

Another hallmark of ageing is cellular senescence, which is the stable arrest of 

the cell cycle alongside characteristic phenotypic changes [213-215]. Alongside 
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the shortening of telomeres [216] there are other mechanisms that cause 

senescence, including DNA damage to the INK4/ARF genes [215]. The levels of 

INK4a and ARF have been shown to correlate robustly with chronological age in 

the vast majority of tissues analysed in both humans and mice [217, 218] and 

have been linked to many different pathologies, including AD, through GWAS 

[219]. 

 

Ageing can also be characterised by deregulation or changes in alternative 

splicing [220]. Alternative splicing is a key mechanism for cellular homeostasis 

and survival, and is dysregulated in diseases of ageing such as AD [221-223]. 

One example of how alternative splicing can result or affect ageing is at the LMNA 

gene which encodes for LamininA/C. A mutation within this protein (C608T) 

causes a new 5’ splice site to be generated and therefore causes the formation 

of truncated form of the protein which is associated with the disease Hutchinson-

Gilford progeria syndrome [224, 225]. Progeria is a disease of accelerated ageing 

where the people who have the disease display age related phenotypes much 

earlier in life such as atherosclerosis, hardening of the arteries and cardiovascular 

diseases [226]. Another way in which alternative splicing can affect ageing is 

through the dysregulated splicing of DNA repair genes. This leads to increased 

DNA damage and cellular stress and therefore to cellular ageing [227].  

 

3.1.2 DNA Methylation Changes associated with Ageing 

Recent evidence suggests that epigenetic mechanisms such as DNA methylation 

may play a role in ageing [228-232]. Changes in DNA methylation at particular 

loci across the genome have been shown to have robust and replicable 
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methylation changes over time [233-235] and these can used to accurately 

predict age in a variety of tissues [125, 236-238]. DNA methylation changes begin 

very early in life, with longitudinal studies in blood showing that during the first 

five years in early life there are large increases in DNA methylation, and that 

these changes in methylation occur even within the first year of life [239, 240]. 

Studies of DNA methylation throughout ageing within monozygotic twins have 

also demonstrated that changes to DNA methylation are independent of 

genotype, as the twins have diverging patterns of methylation over time, 

demonstrating that these epigenetic changes at least in part are influenced by 

our environment [241, 242]. “Epigenetic drift” is one mechanism that is theorised 

to play a role in cellular ageing and refers to stochastic alterations to the DNA 

methylome over time with age. This drift leads to inter-individual divergence in 

DNA methylation over time and is likely caused by accumulation of epigenetic 

changes brought on by environmental exposures [241, 242]. Characteristic 

robust and reproducible DNA methylation changes at specific loci over time as a 

result of age have now been used to derive an epigenetic clock which is able to 

predict biological age from epigenetic profiles [125].  

 

3.1.3 DNA Methylation Changes associated within the Ageing CNS 

DNA methylation is known to regulate early neuronal development as increased 

promoter methylation at pluripotency and germ-line specific genes ultimately 

determines pluripotency repression in progenitors [243]. For the first few years 

after birth there are large increases in DNA methylation at 16 of 50 genes which 

have been determined to be important in CNS development and growth with 

changes within the cerebral cortex being involved specifically in neuronal 

differentiation [244]. Whilst there are quite dramatic changes to DNA methylation 
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throughout early development and childhood, each age period are distinct from 

one another in terms of methylation changes within the prefrontal cortex [245]. 

The most dramatic changes occur during the prenatal period, slowing down 

considerably after birth and then continuing to slow further throughout life. 

Interestingly, the transition between postnatal to foetal is characterised by 

prenatal demethylation to postnatal methylation.  

 

One of the hallmarks of advancing age is the slow decline of cognitive function, 

including aberrations in memory [246]. Generally it is believed that there is a 

global decrease in DNA methylation with increased age, but that this is dependent 

on the context and the loci in question [247, 248]. In the mature CNS it has been 

shown that long-term memory and synaptic plasticity are modulated by the 

activity of DNMTs in the hippocampus and that these processes can be affected 

by the deregulation of methylation [249]. The decreased capacity for 

neurogenesis throughout ageing has been attributed to the global 

hypomethylation that is seen in the brain [250]. DNMTs mediate the DNA 

methylation process and have also been shown to be linked to memory and 

cognitive function. Using young and aged mice it has been shown that Dnmt3a2 

expression in the hippocampus decreases throughout ageing and that recovery 

of the Dnmt3a2 levels rescues cognitive functioning [251]. Taken together these 

studies suggest that DNA methylation is an important mechanism for regulating 

age-associated cognition. 
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3.1.4 Modelling Cellular Trajectory 

Genome-wide “omics” datasets, such as for DNA methylation provide an 

opportunity to study dynamic cellular processes such as cell cycle, cellular 

activation and differentiation [252, 253]. Using epigenomics data it is possible to 

computationally study these processes using trajectory inference (TI) modelling 

or pseudotime analysis. TI methods order the cells/samples based on patterns in 

the data, for example, based on the changes in DNA methylation profile [254]. 

Through the creation of lineage trajectories using TI methods it is possible to 

untangle dynamic processes and work out which changes are contributing to the 

trajectory.  

 

There are now over 70 TI methods available all with differing underlying 

characteristics and algorithms. Generally, there are two main differences 

between methods, which are (1) the type of trajectory they are able to detect and 

(2) whether they fix the topology of the trajectory. Early methodologies relied upon 

the user to input the topology parameters or the topologies to be fixed using 

algorithms [255-257]. However, more recent methods, such as SCORPIUS, are 

able to also infer the trajectory, which is computationally more complex [258].  

 

3.1.5 Using iPSC-derived Neurons to Model Diseases of Ageing 

In order to best model any disease, such as diseases of ageing, it is important 

that we select the most appropriate model possible. Over recent years one model 

system that has garnered considerably more use for modelling diseases of 

ageing, is that of iPSC-derived neurons. These iPSCs have been shown to be 

functional, expressing neuron specific proteins and having the ability to fire 

mature action potentials [145]. Whilst iPSCs have numerous advantages over 
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other model systems, it is important to also recognise their potential limitations. 

For example, although they have been shown to be electrophysiologically mature 

[145], with numerous protocols having now been developed to accelerate this 

electrophysiological maturity, they have also been shown to be transcriptomically 

immature [259].  

 

To utilise iPSC-derived neurons to study epigenomic aberrations in disease fully 

it is important to first have an understanding of what is happening under disease-

free conditions. This should include identifying an epigenetic trajectory signature 

associated with neuronal differentiation and maturation and to assess the 

epigenetic maturity of the resultant neurons. This data will then be able to inform 

future studies, allowing the better interpretation of disease specific epigenomic 

dysfunction, as well as allowing the identification of specific limitations that would 

need to be addressed moving forward. 
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3.2 Hypothesis and Aims 

As epigenetic mechanisms are known to regulate cell fate and differentiation this 

chapter hypothesises that there are methylomic changes occurring as iPSCs 

differentiate and mature into neurons and that these changes are occurring in 

cellular pathways functionally relevant to the neuronal cell type.  

 

In order to address this hypothesis the aims of this chapter are: 

1. To determine the biological age of differentiated iPSC-derived neuronal 

cells. 

2. To identify the biological pathways that are changing throughout neuronal 

differentiation. 

3. To use DNA methylation patterns to create a cellular trajectory throughout 

differentiation and maturation. 

4. To use the loci important within the trajectory to look at gene-gene 

interaction and biological function. 
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3.3 Methods 

 
3.3.1 Cell culture 

Information in this section covers the conditions needed to grow, maintain and 

differentiate iPSCs into mature neurons.  

 

3.3.1.1 Sources of Cells 

Cells referred to within this project as “33Q” were a gift from Professor Nicholas 

Allen at the University of Cardiff. These cells were generated and validated 

externally (HD33i.8) by Mattis et al [260].  

 

3.3.1.2 Neuralisation and Expansion into Neuronal Precursors 

Neurogenesis was conducted using a 2D-monolayer based system, through the 

addition of regulatory signalling molecules (table 3.1, figure 1.8) to iPSCs at a 

high confluency. Day 0-7, differentiation was first induced using SLI media which 

contained 2% NeuroBrew-21 without retinoic acid, 10µM SB, 1µM LDN and 

1.5µM IWR1. Media was changed daily, and cells were passaged 1:2 on day 8. 

On day 8, after passaging, cells were changed to LI media containing 2% 

NeuroBrew-21 without retinoic acid, 200nM LDN and 1.5µM IWR1. Media was 

changed daily between days 8 and 16. Following these differentiation steps NPCs 

were formed which could be expanded in NPC expansion media, terminally 

differentiated or frozen down for later use. 

 

3.3.1.3 Terminal Differentiation into Neurons 

To plated day 16 NPCs, SCM1 medium was added for the first 7 days post 

plating, which contained Advanced DMEM:F-12 (with Glutamax), 2% 
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NeuroBrew21 (Miltenyi Biotec), 2µM PD0332991 (Selleckchem), 10µM DAPT 

(Sigma-Aldrich), 0.6mM CaCl2 (to give 1.8 mM total CaCl2 in final complete 

medium; Sigma-Aldrich), 200µM ascorbic acid (Sigma Aldrich), 10ng/mL brain-

derived neurotrophic factor (BDNF, Miltenyi Biotec), 1µM LM22A4 (Tocris 

Bioscience), 10µM forskolin (Tocris Bioscience), 3µM CHIR 99021 (Tocris 

Bioscience), and 300µM gamma-aminobutyric acid (GABA, Tocris Bioscience). 

From 8 days post plating, the NPCs were cultured in SCM2 medium, which 

contained 1:1 Advanced DMEM/F-12 (with Glutamax):Neurobasal A (Life 

Technologies), 2% NeuroBrew21 with retinoic acid (Miltenyi Biotec), 2µM 

PD0332991 (Selleckchem), 3µM CHIR 99021 (Tocris Bioscience), 0.3mM CaCl2 

(to give 1.8 mM total CaCl2 in final complete medium; Sigma-Aldrich), 200µM 

ascorbic acid (Sigma-Aldrich), 10ng/mL BDNF (Miltenyi Biotec), and 1µM 

LM22A4 (Tocris Bioscience). This media was generated as part of a rapid 

maturation protocol outlined in [261]. 

 

For an outline of the experimental workflow please refer to figure 3.1 below.  
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3.3.1.4 Media Used for Each Cellular Stage 
 

Cell 
Stage Media Name Media Components Working Concentration Supplier Catalogue 

Number 

iPSC Essential 8 Essential 8 basal medium - Life Technologies A1517001 
Essential 8 supplement 1x Life Technologies A1517001 

D1-7 
NPC SLI 

Advanced DMEM/F-12 + Glutamax - Life Technologies 11524436 
NeuroBrew-21 without retinoic Acid 2% Miltenyi Biotec 130-097-263 

SB431542 10μM Abcam ab120163 
LDN193189 1μM Sigma Aldrich SML0559-5MG 

IWR1 1.5μM Tocris 3532 

D8-15 
NPC LI 

Advanced DMEM/F-12 + Glutamax - Life Technologies 11524436 
NeuroBrew-21 without retinoic Acid 2% Miltenyi Biotec 130097263 

LDN193189 200nM Sigma Aldrich SML0559-5MG 
IWR1 1.5μM Tocris 3532 

D16- 
NPC 

Expansion 
Media 

Advanced DMEM/F-12 + Glutamax - Life Technologies 11524436 
NeuroBrew-21 with retinoic Acid 2% Miltenyi Biotec 130-093-566 

FGF2 20ng/mL Fisher Scientific 10222253 

D1-7 
TDN SCM1 

Advanced DMEM/F-12 + Glutamax - Life Technologies 11524436 
NeuroBrew-21 without retinoic Acid 2% Miltenyi Biotec 130097263 

PD0332991 2μM Tocris Biotechne 4786 
DAPT 10μM Tocris Biotechne 2634 
CaCl2 1.8mM Sigma Aldrich 449709 

Ascorbic Acid 200μM Sigma Aldrich BP461 

BDNF 10ng/mL Tocris Biotechne 248-BD-
025/CF 

Forskolin 10μM Tocris Biotechne 1099 
LM22A4 1μM Tocris Biotechne 4607 

CHIR 99021 3μM Tocris Biotechne 4423 
GABA 300μM Tocris Biotechne 344 

D8- TDN SCM2 Advanced DMEM/F-12 + Glutamax - Life Technologies 11524436 
NeuroBasal A - Life Technologies 11570556 
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NeuroBrew-21 with retinoic Acid 2% Miltenyi Biotec 130097263 
PD0332991 2μM Tocris Biotechne 4786 
CHIR 99021 3μM Tocris Biotechne 4423 

CaCl2 1.8mM Sigma Aldrich 449709 
Ascorbic Acid 200μM Sigma Aldrich BP461 

BDNF 10ng/mL Tocris Biotechne 248-BD-
025/CF 

LM22A4 1μM Tocris Biotechne 4607 
Table 3.1. Media used and their components for each cellular stage. 

 

 

 

 

 

 

 

 

Where D1-7 NPC is the media used for the first seven days of differentiation into neuronal precursors, D8-15 NPC is the media used for day 
8-15 of differentiation into neuronal precursors, D16 NPC is the media to maintain and expand the cells at the neuronal precursor stage, D1-
7 TDN is the media used for the first seven days of terminal differentiation into neurons, and D8- TDN is the media used to complete terminal 
differentiation and mature neuronal cells.  
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Figure 3.1. Diagram outlining the experimental workflow. 

33Q iPSCs were plated out at day -4 and allowed to grow in culture for four days before being collected. The remaining cells then began 
neuralisation and were collected on day 16 once neuronal progenitors had been formed. Following this, the final cells were terminally 
differentiated and collected after either a further 37 or 58 days. The diagram above illustrates the days the cells were collected at which cellular 
stage this represents and the media that was used for each stage. The constituents of each media can be found above in table 3.1. 
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3.3.2 DNA Extraction and Methylation Profiling and Quantification 

DNA was extracted from cell pellets and bisulfite treated prior to quantification of DNA 

methylation using the Illumina EPIC array. Please refer to sections 2.2 for information 

on DNA extraction, section 2.3 for details on bisulfite conversion and section 2.4 or 

figure 2.2 for a detailed outline of the EPIC array protocol. 

 

3.3.3 Data QC 

For an outline of the QC and normalisation methods used in this chapter please see 

sections 2.4.2. All data analyses in this chapter were performed using R version 3.4.3. 

Signal intensities were imported into R using the methylumi package [262]. Initial QC 

checks were conducted using functions within the methylumi and wateRmelon 

packages [198, 262].  

 

Using the default setting of one percent, the “pfilter” function detected two samples 

and 12,962 probes and 7,170 sites to be above the detection threshold. The two 

samples which failed this metric, were the iPSC samples labelled “D4_2” and “D4_3”. 

These samples were removed at this point. 

 

3.3.4 Data Analysis  

Outlined in this section are the analysis steps conducted in order to assess and 

quantify the DNA methylation changes occurring throughout iPSC differentiation to 

neuronal cells. 
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3.3.4.1 Correlation between Epigenetic and Mitotic Age 

In order to assess the correlation between the epigenetic and mitotic age Pearson’s 

product-moment correlation was used. This was using the “cor.test” function within the 

default statistics package of R. 

 

3.3.4.2 Weighted Gene Correlation Network Analysis (WGCNA) 

Network analysis was performed on normalized DNA methylation (β)-values using 

WGCNA [263]. Pair-wise correlations were used to identify modules of highly co-

methylated probes. An unsigned network was created using the “blockwiseModules” 

function from the WGCNA package [264] based on a block size of 10,000 and using 

a soft threshold parameter of 20. Each module was then labelled with a unique colour 

identifier. Module-trait relationship was determined using linear regression, and four 

modules were shown to be significant after multiple test correction (blue, black, 

greenyellow and red).  

 

Pathway analysis was used to give biological or functional meaning to the CpG sites 

that contributed the most to each significant module. This was achieved using the 

“gometh” function from the missMethyl package [265] alongside the Gene Onotology 

(GO) repository. The “gometh” function was chosen as it adjusts for the number of 

CpGs per gene. Probes were sorted by module membership in each module and the 

top 15% were used for pathway analysis. Briefly, pathways were downloaded from the 

GO website (http://geneontology.org/) and genes with at least one Illumina probe 

annotated to it and which mapped to at least one GO pathway were included. 

Pathways were filtered to those containing between 10 and 2,000 genes and a list of 

significant pathways (P < 0.05) was identified as described previously [266]. 
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3.3.4.3 Probe Filtering and Dimensionality Reduction 

In order to robustly determine variable CpG sites median absolute deviation (MAD) 

was calculated and the upper fifth percentile was used as a cut off to determine the 

most variable probes throughout differentiation and maturation. Principal component 

analysis (PCA) without scaling probes by their variance was then used to reduce the 

number of dimensions within the dataset whilst maintaining as much relevant 

information as possible. 

 

3.3.4.4 Pseudotime Trajectory Analysis 

To create a pseudotime trajectory throughout the different cellular stage the 

“infer_trajectory” and “draw_trajectory_plot” functions of the SCORPIOUS package 

[258] were used, respectively. The first two principal components of the methylation 

data were subjected as the coordinate of the samples to the “infer_trajectory” function, 

which performs k-means clustering. This calculates the distance matrix between 

cluster centres and finds the shortest path that connects all cluster centres using a 

custom distance function before finally fitting a curve to the given data using principal 

curves [258]. 

 

Next, to identify the loci with the largest contribution to the trajectory, I regressed each 

CpG sites methylation values on the pseudotime variable that had been in the 

trajectory modelling, using a general additive model (GAM). This allowed the detection 

of non-linear methylation patters occurring throughout neuronal differentiation. The 

CpG loci which remained significant after Bonferroni multiple testing correction were 

taken as robust markers for neuronal differentiation and were therefore used for further 

downstream analyses. 
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3.3.4.5 Calculating Euclidean Distance 

Euclidean distance was calculated prior to the trajectory modelling in order to cluster 

the samples to identify their similarity to one another. This information was then 

represented as a dendrogram. 

 

3.3.4.6 Gene Ontology (GO) Enrichment Analysis 

Pathway analysis was used to give biological or functional meaning to the CpG sites 

that contributed the most to the trajectory analysis. This was achieved using the 

“gometh” function from the missMethyl package [265] alongside the GO repository. 

The “gometh” function was chosen as it adjusts for the number of CpGs per gene.  

 

In order to add additional meaning to the pathway analysis outputs the online platform 

REVIGO was used (available at: http://revigo.irb.hr/) [267]. The significantly altered 

pathways (determined by GO ID) and p-value significance values were added to the 

online portal with the GO term database being set to Homo sapien and the semantic 

similarity measure as Resnik. Once analysed the treemaps for the altered biological 

processes (BP), molecular functions (MF) and cellular components (CC) were 

generated and created. 

 

3.3.4.7 Gene-gene Interaction Network Analysis 

I used Metacore (Clarivate Analytics) to obtain a set of functional regulatory 

interactions between the unique genes that were annotated to the CpG sites with the 

largest contribution to the trajectory inference model. The Metacore database is a 

repository of manually curated and experimentally validated directed gene-gene 

interactions that have been based on existing literature. This high level of curation and 
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validation enables us to create highly confident interaction network maps. The network 

reconstruction was restricted to interactions contained within the categories of 

“transcriptional regulation”, “influence on expression”, “co-regulation of transcription” 

and “regulation", which have all been reported in humans. When available the type of 

interaction, i.e. activation or inhibition, was provided. Next, the igraph package (version 

1.1.2) [268] was used to calculate the strongly connected component (SCC) from the 

network obtained through the Metacore database. Following this the “network 

analyser” tool from Cytoscape (version 3.4.0) [269] was employed to conduct the 

network topographical analysis to identify the key genes within the network based on 

their connectivity. 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

107 
 

3.4 Results 

 

3.4.1 Outcome of the QC Pipeline 

The results in this section outline the quality control process undertaken in order to 

ensure the data was of sufficient quality before undertaking any downstream analyses.  

 

3.4.1.1 Median Sample Intensities Highlight Potential Problems 

To check the signal intensities for each sample were above background level the 

methylumi package was used to extract and quantify the fluorescent intensities for 

each probe. Following this, the median methylated and unmethylated signal intensities 

for each sample were calculated (table 3.2). By plotting the median methylated signal 

intensity against the median unmethylated signal intensity (figure 3.2) If was able to 

determine whether the median signal intensities are above the background level of 

intensity, which is generally assigned a value of 1000. Two iPSC samples in our 

dataset, D4_2 and D4_3, have signal intensities which are close to or around the 

background signal intensity level and were therefore considered for exclusion from the 

study. However, as they were close to the cut off threshold, they were kept in so I 

could see if they also failed on any other QC metrics. 

 

Next, I assessed whether there was any variation introduced into the data by the 

BeadChip the samples were on or the position within the BeadChip. To do this the 

samples were coloured by BeadChip and position on the BeadChip and methylated 

and unmethylated signal intensities were plotted (figure 3.3). In the data whilst the 

BeadChip itself doesn’t affect the signal intensities (figure 3.3B) the position of the 

sample within the BeadChip does affect the intensity (figure 3.3A). Samples which 
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were located on row1 coloumn1 (R01C01) and row2 column1 (R02C01) have lower 

methylated and unmethylated median signal intensity than any other of the positions. 

However, the effect was not large enough to consider removing samples.  
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Cell Stage Day of Differentiation Replicate Sample ID Median Methylated Intensity Median Unmethylated Intensity 

iPSC 4 

1 D4_1 2320 1429 
2 D4_2 1136 1032 
3 D4_3 992 811 
4 D4_4 1781 1146 

NPC 16 

1 D16_1 4369 2199 
2 D16_2 3769 2001 
3 D16_3 3645 1667 
4 D16_4 3105 1632 

Neuron-D37 37 

1 D37_1 3394 1767 
2 D37_2 3298 1572 
3 D37_3 3637 1496 
4 D37_4 3633 1403 

Neuron-D58 58 

1 D58_1 3315 1819 
2 D58_2 3476 1789 
3 D58_3 2748 1232 
4 D58_4 3407 1480 

Table 3.2. Median methylated and unmethylated intensities for each sample. 
 

 

Using the methylumi package [262] the signal intensities for sample were extracted and the medians calculated. For each sample shown 
above is the sample ID, day of differentiation, replicate number, the corresponding cell stage, median methylated intensity and median 
unmethylated intensities.  
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Figure 3.2. Median methylated and unmethylated signal intensities. 

 Using the methylumi package [262] the signal intensities for sample were extracted and 
the medians calculated. Scatterplot showing the median methylated and unmethylated 
signal intensities for each sample. Each point is labelled with the corresponding sample ID. 
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Figure 3.3. Median signal intensities plotted by Chip ID and position on BeadChip. 

 

 

 

 

 

 

 

Median methylated and unmethylated sample intensities were calculated for each BeadChip and 
each of the eight positions on the BeadChip. (A) Median signal intensities coloured by position 
as a scatterplot and boxplot. (B) Median signal intensities coloured by Chip ID as a scatterplot 
and boxplot. Error bars indicate 1.5x interquartile range (IQR). 
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3.4.1.2 All Samples have a Good Bisulfite Conversion Efficiency 

Bisulfite conversion is the process which converts unmethylated cytosines to uracils 

and consequently to thymines during PCR allowing unmethylated and methylated 

cytosines to be distinguished from one another once the EPIC array has been run. 

Therefore, it is of great importance that the bisulfite conversion efficiency is high and 

is detecting the true levels of methylated and unmethylated loci. Within the EPIC array 

there are several loci which are known to be fully methylated, using the “bscon” 

function of the wateRmelon package [198] within R it is possible to convert the 

fluorescence intensity of these probes for each sample into an easy to understand 

percentage conversion efficiency. The lowest generally accepted bisulfite conversion 

efficiency is 80% and any samples that have a percentage conversion less than this 

should be removed. All of the samples within this study have a bisulfite conversion 

efficiency of greater than 90% and therefore do not need to be removed based on this 

metric (figure 3.4A).  
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Figure 3.4. Bisulfite conversion efficiency and β-density plot. 
 

 

(A) Using the fully methylated probes within the array the bisulfite conversion efficiency of each sample was calculated and represented in a 
histogram. (B) The DNA methylation level at each locus was determined using β -values, which are the ratio of fluorescence signal intensity for 
the methylated and unmethylated beads.  The β-values of each probe of each sample were plotted on a β-density plot.  
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3.4.1.3 β-Density Demonstrates Bimodal Distribution of Methylation 

To determine the methylation level at each locus on the EPIC array β-values for each 

locus are generated. β-values are calculated by taking the ratio of the intensity for the 

fluorescent signal for the methylated and unmethylated beads. As this value is a ratio 

the β-value for each probe lies between zero and one, where zero indicates all 

cytosines at this locus are unmethylated and a value of one means all cytosines at this 

locus are methylated. The majority of loci within the genome will either be almost 

completely fully methylated or completely unmethylated, depending on whether the 

gene they are annotated to is being expressed or not. To check that our data falls in 

line with this the β-values for each sample were plotted on a density plot (figure 3.4B). 

It is clear that for the vast majority of samples and loci that this holds true. However, it 

is of note that for some of the iPSC samples there is an increase in hemi-methylation 

(having a β-value between 0.2 and 0.8) and a decrease in fully methylated loci. This 

would suggest that there is more hemi-methylation present in the iPSC samples over 

the more differentiated cell types.  

 

3.4.1.4 Two Samples are Removed by P-filtering 

The final stage in the QC pipeline is to filter samples and probes by detection p-value. 

This was achieved using the “pfilter” function in the wateRmelon package [198], which 

removes samples that contain more than one percent (by default) of probes above the 

0.05 detection p-value threshold and probes with any samples with a beadcount less 

than three or more than one percent above the p-value threshold. Using the default 

setting of one percent, the pfilter function identified two samples, 12,962 sites with a 

beadcount count less than three and 7,170 sites having 1% samples with a detection 

p-value above the detection threshold. The two samples which failed this metric were 
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the D4_2 and D4_3 samples which also had low median signal intensities. Due to 

these samples failing the pfilter test and also being on the borderline of having too low 

signal intensities it was decided that they should be removed from the study.  

 

3.4.2 Dasen Normalisation of Methylation Data 

In order to make meaningful comparisons between the samples within the dataset the 

data needs to be transformed using normalisation. Normalisation was performed using 

the “dasen” function within the wateRmelon package [198]. Dasen involves quantile 

normalisation that normalises by type I and type II probe background levels first. After 

dasen normalisation the median methylated and unmethylated signal intensities 

become much closer together and consistent across samples (table 3.3; figure 3.5).  

 

By plotting the normalised β-values it is possible to see that when plotting all probes 

on the array the peaks which are towards the extremes (i.e. fully methylated and fully 

unmethylated loci) are much tighter, this is especially true for the fully methylated 

probes (figure 3.6A). By plotting β-values by probe type it is clear that the type I probes 

contribute more to the fully unmethylated peak (figure 3.6B) and the type II probes 

contribute more to the fully methylated peak (figure 3.6C) post normalisation. 

 

 

 



 
 

 

116 
 

 

Cell Stage Day of Differentiation Replicate Sample ID Median Methylated Intensity Median Unmethylated Intensity 

iPSC 4 
1 D4_1 3340.000 1636.643 
4 D4_4 3340.000 1636.643 

NPC 16 

1 D16_1 3340.000 1636.643 
2 D16_2 3340.214 1636.643 
3 D16_3 3339.943 1636.643 
4 D16_4 3340.214 1697.286 

Neuron-D37 37 

1 D37_1 3340.357 1636.500 
2 D37_2 3340.357 1637.214 
3 D37_3 3340.429 1637.214 
4 D37_4 3339.786 1637.500 

Neuron-D58 58 

1 D58_1 3340.429 1637.168 
2 D58_2 3340.357 1637.500 
3 D58_3 3340.214 1637.500 
4 D58_4 3340.429 1636.643 

Table 3.3. Median methylated and unmethylated intensities after dasen normalisation. 

 

Using the wateRmelon package [198] dasen quantile normalisation was performed and the median intensities calculated. For each sample 
shown above is the corresponding cell stage, day of differentiation, replicate number, sample ID, day of differentiation, the corresponding cell 
stage, median methylated intensity and median unmethylated intensities after dasen normalisation.  
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Figure 3.5. Median methylated and unmethylated sample intensities after Dasen 
normalisation. 
 

 

 

 

 

Quantile normalisation was performed using dasen [198] to generate the normalised 
median methylated and unmethylated signal intensities. Graphical representation of 
median signal intensities relative to each other. 
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Figure 3.6. β-density plots by probe type. 

 

 

 

 

 

Normalised β-values were generated and plotted using dasen quantile normalisation (A). Probes were separated based on whether they 
were type I (B) or type II probes (C) and plotted individually.  



 
 

 

119 
 

3.4.3 Assessing Metrics of Maturity throughout Neuronal Differentiation 

In this section I have used DNA methylation at numerous loci to examine/assess 

metrics of maturity within the different cellular stages throughout differentiation and 

maturation. 

 

3.4.3.1 iPSC-derived Neuronal Cells have an Immature Epigenome  

One concern when using iPSC-derived neurons to study diseases of advanced age is 

the biological age of the neurons. I have used the Horvath epigenetic age calculator 

to predict epigenetic age based on DNA methylation profiles assessed by the EPIC 

array [126]. This is an algorithm which takes the DNA methylation levels of 391 loci in 

order to give a prediction of biological age. The biological age of each sample can be 

seen in table 3.4 and these have been plotted in figure 3.7. From this analysis it is 

possible to see that whilst the epigenetic age of the cells increases with differentiation 

and maturation, even the most mature samples still have a negative biological age  

This demonstrates that the even the oldest iPSC-derived neurons in this study still 

have an epigenomic profile representative of foetal neurons.  

 

3.4.3.2 Mitotic Age Stops Increasing after Terminal Differentiation  

An important metric of ageing is the number of cell divisions a cell has been through. 

Assessing this in our samples is particularly of interest as differentiated neurons are 

post-mitotic and should therefore cease dividing and replicating. In order to determine 

the number of cellular divisions I used the MiAge calculator [199]; this algorithm is able 

to predict mitotic age using the DNA methylation profile of 268 probes from the 

methylation array. Similarly to the epigenetic ages, our data shows an increase in 

mitotic age over the first three time points (iPSC, NPC and day 37 neurons), but unlike 
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epigenetic age it plateaus or slightly decreases between the two terminally 

differentiated time points (table 3.4; figure 3.8).  
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Cell Stage Day of Differentiation Replicate Sample ID Epigenetic Age (years) No. of Cell Divisions 

iPSC 4 
1 D4_1 -0.534 472.08 
4 D4_4 -0.755 429.273 

NPC 16 

1 D16_1 -0.665 679.434 
2 D16_2 -0.552 647.998 
3 D16_3 -0.584 652.024 
4 D16_4 -0.439 566.607 

Neuron-D37 37 

1 D37_1 -0.407 828.816 
2 D37_2 -0.487 1003.885 
3 D37_3 -0.445 776.052 
4 D37_4 -0.588 817.212 

Neuron-D58 58 

1 D58_1 -0.412 733.566 
2 D58_2 -0.427 698.652 
3 D58_3 -0.392 718.764 
4 D58_4 -0.566 779.269 

Table 3.4. Epigenetic and mitotic ages of iPSCs as they differentiate into neurons. 

 

 

 

 

 

Using the Horvath epigenetic age calculator [126] and MiAge calculator [199], the epigenetic age, i.e. years, and mitotic age, i.e.  number of 
cell divisions were calculated for each sample. For each sample shown above is the corresponding cell stage, day of differentiation, replicate 
number, sample ID, epigenetic age and mitotic age.  
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Figure 3.7. Epigenetic age increases throughout neuronal differentiation. 

 

 

 

 

 

 

 

 

 

 

 

Using the latest iteration of the Horvath epigenetic age calculator online [126], the 
epigenetic ages of each sample were calculated. Where red represents the iPSC stage, 
purple the NPC stage, blue the neurons differentiated for 37 days post terminal 
differentiation and green the neurons differentiated for 58 days post terminal differentiation. 
Error bars are 1.5x IQR. 
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Figure 3.8. Mitotic age stops increasing after terminal differentiation. 

 

 

 

  

 

 

 

 

Using the coefficients of the MiAge calculator [199] the mitotic ages of each sample were 
derived. Where red represents the iPSC stage, purple the NPC stage, blue the neurons 
differentiated for 37 days post terminal differentiation and green the neurons differentiated 
for 58 days post terminal differentiation. Error bars are 1.5x IQR. 
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 3.4.3.3 There is No Correlation between Epigenetic and Mitotic Age 

To test whether there is any correlation between epigenetic age and the number of 

divisions a cell has gone through Person’s correlation was used. From this it is clear 

that whilst there is some correlation between epigenetic and mitotic age this correlation 

is not significant (figure 3.9; r value=0.426, p=0.129). Interestingly, representing the 

data in this way it is possible to see that on the whole the neuronal D37 samples have 

undergone more cell divisions than the neuronal D58 samples.  As cell division is 

known to stop once terminal differentiation has occurred I also wanted to test whether 

the correlation improved if the D58 neuronal samples were not included. However, 

removing these samples did not improve the correlation (r value=0.486, p=0.155) 
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Figure 3.9. There is no correlation between epigenetic and mitotic age. 
 

 

 

 

 

 

 

 

Using Pearson’s product-moment correlation the relationship between epigenetic age and 
mitotic age was assessed and the results plotted. Where red indicates the iPSC samples, 
purple the NPCs, blue the neurons differentiated for 37 days post terminal differentiation 
and green the neurons differentiated for 58 days post terminal differentiation. The line of 
best for the correlation is also shown. 
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3.4.4 Non-CpG Loci are more Hemi-methylated in iPSCs 

As depicted in figure 3.4B there is an increase in hemi-methylation in the iPSC 

samples. It has previously been demonstrated that stem cells contain more CpH hemi-

methylation (where H stands for any base other than cytosine) [270] and so to 

determine whether this was the case in these iPSC samples probes were grouped on 

the basis of whether they were CpG or CpH. After this it was possible to plot only the 

hemi-methylated CpG and CpH probes (having a β-value between 0.2 and 0.8) to 

ascertain where the hemi-methylation was present (figure 3.10). From this analysis it 

is possible to see that for the most part the CpG probes on the array have higher β-

values than the non-CpG probes on the array, but also that within the non-CpG group 

the iPSC samples have an increase in hemi-methylation.  

 

 

 

 

 



 
 

 

127 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Non-CpG probes are hemi-methylated in iPSCs. 

 

 

 

 

 

 

 

 

 

After dasen normalisation probes were grouped on the basis of whether they were a 
CpG or CpH probe. Probes containing β-values between 0.2 and 0.8 (hemi-methylated 
probes) were then plotted, where red represents the iPSC stage, purple the NPC stage, 
blue the neurons differentiated for 37 days post terminal differentiation and green the 
neurons differentiated for 58 days post terminal differentiation. Error bars are 1.5x IQR. 
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3.4.5 Biological Function of DNA Methylation Levels 

In this section I will describe and analyse the methods used in order to provide 

biological meaning to the DNA methylation changes occurring during neuronal 

differentiation and maturation. This has been achieved using WGCNA and pathway 

analysis. 

 

3.4.5.1 WGCNA Identifies Four Modules of Co-Methylated Loci 

To identify groups of probes that have similar methylation changes over time WGCNA 

was used. Briefly, after the construction of blockwise modules of 10,000 probes 

pairwise correlations were used to identify groups of linearly co-methylated loci. This 

analysis identified 26 modules of co-methylated probes, eight of which are modules of 

progressive hypomethylation and fourteen of which are modules of progressive 

hypermethylation throughout differentiation. Of these 26 modules four remained 

significant after correction for multiple testing (figure 3.11). These were the black, blue 

greenyellow and red modules (p=0.001, p=2.00x10-4, p=4.00x10-6 and p=3.00x10-6, 

respectively). The blue, black and greenyellow modules were modules of 

hypomethylation over time (figure 3.11B-D) and the red module was made of probes 

becoming hypermethylated throughout differentiation (figure 3.11E). For the most part 

the iPSC, NPC and day 58 terminally differentiated groups have relatively little 

methylation variation according to the module eigengene, with the day 37 terminally 

differentiated neurons having a larger amount of variation within the group. This would 

suggest that there are still large amounts of DNA methylation level variation within the 

day 37 group as they have not yet become fully mature or completely differentiated.
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Figure 3.11. WGCNA identifies four significant modules across differentiation. 

 WGCNA was used to identify modules or groups of loci that had similar linear changes in DNA methylation throughout differentiation. (A) This 
analysis identified 26 modules, four of which still remained significant after multiple testing correction. These are the black, blue, greenyellow 
and red modules which are highlighted with an *, where red signifies an increase in methylation over time and green signifies decreasing 
methylation over time. (B)-(E) Boxplots depicting the change in methylation of the module eigengene throughout neuronal differentiation for 
the black, blue, greenyellow and red modules respectively. Error bars are 1.5x IQR. 
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3.4.5.2 Pathway Analysis Implicates Neuronal Differentiation, Neurogenesis 

and Transcriptional Regulation 

In order to provide biological meaning to the modules identified during WGCNA GO 

pathway analysis was performed on the top 15% probes within the module (based on 

module membership). After the top 15% probes were extracted there were 2,005, 

3,410, 1,266 and 2,037 probes in the black, blue, greenyellow and red modules, 

respectively. The GO repository allows us to input the genes annotated to each loci 

within each module and provides us with the various biological pathways that are 

enriched in these modules. The top ten pathways for each module are provided in 

tables 3.5 to 3.8. The black module is associated with biological pathways which are 

associated with becoming a neuron (table 3.5). This includes FDR significant 

pathways such as neuron differentiation, generation of neurons and neurogenesis. As 

I was differentiating the cells into neurons this is encouraging and is perhaps to be 

expected. The blue module is also associated with becoming a neuron and pulls out 

similar biological pathways, although the genes within these pathways are distinct from 

those in the black module (table 3.6). On the other hand, the greenyellow module is 

made up of pathways involved in response to ions, transcriptional repression, 

regulatory DNA binding and signal transduction (table 3.7). This suggest that this 

module is involved more in the underlying processes required to make neurons such 

as gene expression changes and intracellular signalling rather than the physical 

changes. It is however worth noting that unlike the other modules, none of the 

pathways identified in the greenyellow module passed FDR correction. Finally, 

similarly to the black and blue modules, the red module is also associated with 

pathways involved in neuronal differentiation and generation (table 3.8). However, 
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interestingly the red module is made of probes becoming hypermethylated rather than 

hypomethylated over time.  
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GO Term Description No. of Genes 
in Pathway 

No. of Genes 
in Module P-Value FDR 

GO:0030182 neuron 
differentiation 1222 127 4.18 x10-6 0.034 

GO:0048699 generation of 
neurons 1342 134 1.25 x10-5 0.043 

GO:0022008 neurogenesis 1439 140 1.55 x10-5 0.043 
GO:0048666 neuron development 972 106 3.67 x10-5 0.076 

GO:0008092 cytoskeletal protein 
binding 836 88 9.99 x10-5 0.143 

GO:0031175 neuron projection 
development 827 93 1.06 x10-3 0.143 

GO:0048468 cell development 1884 164 1.21 x10-3 0.143 

GO:0030030 cell projection 
organization 1328 124 2.34 x10-3 0.241 

GO:0007409 axonogenesis 422 55 2.98 x10-3 0.273 

GO:1902259 
regulation of delayed 

rectifier potassium 
channel activity 

15 6 3.95 x10-3 0.316 

Table 3.5. Top ten GO terms associated with black module identified through WGCNA. 

 

 

 

Table 3.6. Top ten GO terms associated with blue module identified through WGCNA. 

 

 

 

GO Term Description No. of Genes in 
Pathway 

No. of Genes in 
Module P-Value FDR 

GO:0030182 neuron 
differentiation 1222 228 4.17 x10-16 3.44x10-12 

GO:0048699 generation of 
neurons 1342 242 1.17 x10-15 4.83x10-12 

GO:0022008 neurogenesis 1439 252 2.34 x10-15 5.55x10-12 

GO:0048666 neuron 
development 972 196 2.69 x10-15 5.55x10-12 

GO:0031175 
neuron 

projection 
development 

827 169 8.05 x10-13 1.33x10-9 

GO:0048468 cell 
development 1884 287 6.93 x10-12 9.52x10-9 

GO:0048858 cell projection 
morphogenesis 583 131 2.21 x10-11 2.48x10-8 

GO:0016358 dendrite 
development 195 63 2.40 x10-11 2.48x10-8 

GO:0030030 cell projection 
organization 1328 220 2.91 x10-11 2.58x10-8 

GO:0048812 
neuron 

projection 
morphogenesis 

568 128 3.13 x10-11 2.58x10-8 

Shown for each pathway is the corresponding GO ID, pathway descriptor number of genes 
annotated to the pathway, the number of genes in our list in the pathway, uncorrected p-
value and false discovery rate (FDR)-adjusted p-value. Pathways are ordered by 
significance. 

Shown for each pathway is the corresponding GO ID, pathway descriptor number of genes 
annotated to the pathway, the number of genes in our list in the pathway, uncorrected p-
value and false discovery rate (FDR)-adjusted p-value. Pathways are ordered by 
significance. 
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Table 3.7. Top ten GO terms associated with greenyellow module identified through 
WGCNA. 

 

 

 

 

 

 

 

 

 

 

 

 

GO Term Description No. of Genes in 
Pathway 

No. of Genes in 
Module P-Value FDR 

GO:0035864 response to potassium 
ion 14 5 2.03 x10-3 1 

GO:0001227 

transcriptional 
repressor activity, RNA 

polymerase II 
transcription regulatory 

region sequence-
specific binding 

176 18 0.001 1 

GO:0044212 transcription regulatory 
region DNA binding 769 53 0.001 1 

GO:0000975 regulatory region DNA 
binding 771 53 0.001 1 

GO:0001067 regulatory region 
nucleic acid binding 772 53 0.001 1 

GO:1990837 
sequence-specific 

double-stranded DNA 
binding 

648 45 0.002 1 

GO:0023019 
signal transduction 

involved in regulation of 
gene expression 

18 4 0.002 1 

GO:0071889 14-3-3 protein binding 23 6 0.003 1 

GO:0061180 mammary gland 
epithelium development 65 10 0.003 1 

GO:0033865 
nucleoside 

bisphosphate metabolic 
process 

32 5 0.003 1 

Shown for each pathway is the corresponding GO ID, pathway descriptor number of genes 
annotated to the pathway, the number of genes in our list in the pathway, uncorrected p-
value and false discovery rate (FDR)-adjusted p-value. Pathways are ordered by 
significance.  
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Table 3.8. Top ten GO terms associated with red module identified through WGCNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

GO Term Description No. of Genes 
in Pathway 

No. of Genes 
in Module P-Value FDR 

GO:0030182 neuron 
differentiation 1222 165 4.88x10-10 2.01 x10-6 

GO:0022008 neurogenesis 1439 185 5.60x10-10 2.01 x10-6 

GO:0048699 generation of 
neurons 1342 176 7.30x10-10 2.01 x10-6 

GO:0045595 regulation of cell 
differentiation 1483 170 5.41x10-8 1.11 x10-3 

GO:0048666 neuron 
development 972 134 7.46x10-8 1.23 x10-3 

GO:0007417 
central nervous 

system 
development 

891 116 1.92x10-7 2.64 x10-3 

GO:0045664 
regulation of 

neuron 
differentiation 

545 84 2.36x10-7 2.68x10-3 

GO:0051960 
regulation of 

nervous system 
development 

753 106 2.68x10-7 2.68x10-3 

GO:0050767 regulation of 
neurogenesis 665 96 2.94x10-7 2.68x10-3 

GO:0048468 cell development 1884 209 3.77x10-7 2.68x10-3 

Shown for each pathway is the corresponding GO ID, pathway descriptor number of genes 
annotated to the pathway, the number of genes in our list in the pathway, uncorrected p-
value and false discovery rate (FDR)-adjusted p-value. Pathways are ordered by 
significance. 
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3.4.6 Trajectory Modelling 

This section of the results covers the creation of the trajectory network, the 

identification of biological pathways that are contributing to this network and the gene 

interactions within the network. 

 

3.4.6.1 Trajectory Inference  

To further explore how DNA methylation changes throughout neuronal differentiation 

I undertook trajectory inference modelling to create a cellular lineage trajectory and 

create groups of probes which were becoming hyper- or hypomethylated throughout 

differentiation. To generate the lineage trajectory (figure 3.12A) principal component 

analysis was used to reduce the number of dimensions within the dataset whilst 

maintaining as much information as possible. The dataset was reduced to only contain 

the five percent most variable CpG probes (41,811 loci) and 14 principal components, 

of which the first two components explained 78% of the variation in the data. Once this 

was completed the pseudotime of the trajectory was estimated. The first two principal 

components were then used alongside pseudotime to plot the samples according to 

stage of differentiation/maturation (figure 3.12A). Samples within each cellular stage 

clustered together, with the exception of one Day 37 neuron sample, which clustered 

with the Day 58 neuron samples.  This could indicate that this sample had aged quicker 

than the others in the same group; however, when I checked the “epigenetic age” of 

this sample, it was surprisingly the second youngest of the four Day 37 neuronal 

samples. To ensure this sample was not a general outlier I clustered all 14 samples 

based on Euclidean distance (prior to the trajectory inference analysis). This 

highlighted that this Day 37 sample was not an outlier in general and clustered together 

with the Day 58 samples (figure 3.13). 
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Using the pseudotime created in the lineage trajectory a GAM was fitted to cluster 

together and order probes by whether they are becoming progressively 

hypomethylated or hypermethylated throughout differentiation. Where blue represents 

progressive hypomethylation and red progressive hypermethylation it is not surprising 

to see that there are large numbers of probes that have progressive methylation 

changes over time (figure 3.12B). There are 4,206 probes becoming hypomethylated 

with time and 1,662 probes becoming hypermethylated across neuronal 

differentiation. The probe that undergoes the largest DNA methylation change over 

time is one that becomes progressively hypomethylated during differentiation and is 

not annotated to a gene using the University of California Santa Cruz (UCSC) 

repository (figure 3.12C) [271]. However, using the Genomic Regions Enrichment of 

Annotations Tool (GREAT) it was possible to determine the closest gene to this loci is 

that of C-C chemokine receptor type 7 (CCR7; table 3.9) [272]. 
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Figure 3.12. Trajectory modelling and module construction. 

 (A) To create the trajectory model dimensionality reduction was first performed, using PCA, followed by estimating pseudo-time to model the 
lineage trajectory using k-means clustering, a custom distance algorithm and principal curves. (B) Using the pseudo-time estimation a 
generalised additive model was used to determine which probes were becoming hypo-methylated (blue) or hyper-methylated (red) over time. 
(C) DNA methylation changes occurring at the top differentially methylated probe throughout differentiation. Left: plot of β-value (y-axis) against 
pseudotime (x-axis) and right: plot of β-value (y-axis) against cellular stage (x-axis). Error bars are 1.5x IQR. 
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Probe ID 
Direction 

of 
change 

Uncorrected p-
value 

Bonferroni p-
value Chromosome Genomic 

position 
Illumina gene 

annotation 
(UCSC) 

GREAT gene 
annotation 

cg00908292 ↓ 1.71 x10-13 7.16 x10-9 17 38699009 - CCR7 (+22714) 
cg15190241 ↓ 1.11 x10-12 4.67 x10-8 1 168368506 - TBX19 (+118229) 
cg14171824 ↓ 2.02 x10-12 8.47 x10-8 1 2006656 PRKCZ PRKCZ (+24748) 
cg25653165 ↓ 3.16 x10-12 1.32 x10-7 5 179569548 RASGEF1C RASGEF1C (-4200) 
cg21105928 ↓ 3.17 x10-12 1.32 x10-7 15 40143956 GPR176 GPR176 (+69136) 
cg04901527 ↓ 3.49 x10-12 1.46 x10-7 10 117832870 GFRA1 GFRA1 (+200108) 
cg01933515 ↓ 4.67 x10-12 1.95 x10-7 14 96532698 C14orf132 C14orf132 (+27038) 
cg24737914 ↓ 4.82 x10-12 2.02 x10-7 7 5739289 RNF216 RNF216 (+82080) 
cg00177101 ↓ 5.46 x10-12 2.29 x10-7 9 120545390 - TLR4 (+78741) 
cg02331902 ↓ 5.82 x10-12 2.44 x10-7 5 90610303 - ARRDC3 (+68872) 
cg11702768 ↓ 9.47 x10-12 3.96 x10-7 9 34567202 CNTFR-AS1 CNTFR (+22532) 
cg20109624 ↓ 1.04 x10-11 4.36 x10-7 16 81254265 PKD1L2 BCMO1 (-17787) 
cg02268851 ↓ 1.23 x10-11 5.13 x10-7 11 47545207 CELF1 CELF1 (+332) 
cg02603875 ↓ 1.27 x10-11 5.33 x10-7 5 152871549 GRIA1 GRIA1 (-182) 
cg26181096 ↓ 1.39 x10-11 5.80 x10-7 22 41876619 ACO2 ACO2 (+11491) 
cg01170387 ↓ 1.58 x10-11 6.62 x10-7 16 31076818 ZNF668 ZNF668 (-443) 
cg17957761 ↓ 1.69 x10-11 7.09 x10-7 19 46478879 - NOVA2 (-2076) 
cg04314308 ↑ 1.99 x10-11 8.32 x10-7 19 19336150 NCAN NCAN (+13369) 
cg03534428 ↓ 2.14 x10-11 8.96 x10-7 19 42972740 LIPE-AS1 CXCL17 (-25541) 
cg03724874 ↓ 2.22 x10-11 9.28 x10-7 3 111719291 TAGLN3 TAGLN3 (+1706) 
cg13313697 ↓ 2.26 x10-11 9.44 x10-7 5 152870740 GRIA1 GRIA1 (-991) 
cg12379611 ↓ 2.85 x10-11 1.19 x10-6 10 17045387 CUBN CUBN (+126442) 
cg13617441 ↓ 2.87 x10-11 1.20 x10-6 3 34886005 - ARPP21 (-795872) 
cg21762380 ↓ 3.10 x10-11 1.30 x10-6 9 93063697 LINC01508 DIRAS2 (+341688) 
cg02103771 ↑ 3.45 x10-11 1.44 x10-6 12 113531238 DTX1 DTX1 (+35744) 
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cg00622618 ↓ 3.50 x10-11 1.46 x10-6 6 38288376 BTBD9 BTBD9 (+319323) 
cg10859605 ↑ 3.61 x10-11 1.51 x10-6 8 30255368 RBPMS RBPMS (+13342) 
cg15167636 ↓ 3.62 x10-11 1.51 x10-6 12 90485193 - ATP2B1 (-382586) 
cg20780998 ↓ 3.71 x10-11 1.55 x10-6 X 12996931 - TMSB4X (+3703) 
cg08332866 ↓ 4.02 x10-11 1.68 x10-6 17 35017916 - MRM1 (+59916) 
cg16627786 ↑ 4.45 x10-11 1.86 x10-6 22 19711051 GP1BB GP1BB (+584) 
cg24135615 ↓ 4.71 x10-11 1.97 x10-6 17 37042201 LASP1 LASP1 (+16090) 
cg08960385 ↓ 4.74 x10-11 1.98 x10-6 20 43367613 - KCNK15 (-6807) 
cg01956293 ↓ 4.76 x10-11 1.99 x10-6 2 145212605 ZEB2 ZEB2 (+66015) 
cg02494279 ↓ 5.47 x10-11 2.29 x10-6 18 23395233 - SS18 (+275355) 
cg01079726 ↓ 5.71 x10-11 2.39 x10-6 14 100485682 - EVL (-45932) 
cg08811227 ↓ 6.15 x10-11 2.57 x10-6 16 24697469 - TNRC6A (-43564) 
cg19902443 ↓ 6.58 x10-11 2.75 x10-6 20 11899807 BTBD3 BTBD3 (+28332) 
cg04122918 ↓ 6.63 x10-11 2.77 x10-6 14 73146313 DPF3 DPF3 (+214495) 
cg27587033 ↓ 6.76 x10-11 2.83 x10-6 1 2006032 PRKCZ PRKCZ (+24124) 
cg24692861 ↓ 7.49 x10-11 3.13 x10-6 3 155524344 C3orf33 C3orf33 (-290) 
cg02879029 ↓ 7.62 x10-11 3.19 x10-6 8 10829962 XKR6 PINX1 (-132577) 
cg17835180 ↓ 8.07 x10-11 3.38 x10-6 X 12995592 - TMSB4X (+2364) 
cg16306978 ↑ 8.55 x10-11 3.58 x10-6 2 21266953 APOB APOB (-9) 
cg07584840 ↓ 8.84 x10-11 3.70 x10-6 12 94579928 PLXNC1 PLXNC1 (+37430) 
cg06538238 ↓ 9.78 x10-11 4.09 x10-6 6 29588575 GABBR1 GABBR1 (+12386) 
cg22334705 ↓ 1.04 x10-10 4.34 x10-6 14 60174988 RTN1 RTN1 (+162695) 
cg18630264 ↓ 1.04 x10-10 4.36 x10-6 4 140707850 MAML3 MGST2 (+120929) 
cg09972881 ↑ 1.05 x10-10 4.39 x10-6 12 53298822 KRT8 KRT8 (+21430) 
cg13053505 ↑ 1.09 x10-10 4.57 x10-6 4 4854459 - MSX1 (-6933) 

Table 3.9. The top 50 of 5,866 probes comprising the epigenetic trajectory signature identified through general additive modelling.

Shown for each loci are its probe ID, direction of change (i.e. increasing(↑) or decreasing(↓) methylation), uncorrected p-value, bonferroni 
corrected p-value, the chromosome it resides on, its genomic position, the gene it is annotated to according to the Illumina (UCSC) manifest 
and the closest annotated gene via GREAT annotation, with distance upstream (+) or downstream (-) in bp. Probes are ordered by significance. 
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Figure 3.13. Clustering of samples based on Euclidean distance. 

 

 

 

 

 

 

 

 

 

By calculating and clustering samples based on their Euclidean difference (prior to 
trajectory inference) it is clear that the D37 sample which clusters with the D58 samples is 
not a general outlier. 
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3.4.6.2 Pathway Analysis Implicates Development, Signalling and 

Transcription 

In order to give meaning to the trajectory model and determine the functional 

implications of the probes on which it is based I used GO pathway analysis to identify 

the cellular pathways which are undergoing change during differentiation. To do this 

the loci that had the most significant methylation changes throughout differentiation 

were grouped together according to whether they were becoming progressively 

hypomethylated or hypermethylated over time (4,206 and 1,662 probes, respectively). 

The genes annotated to these probes were then searched in the GO repositories in 

order to find biological processes in which these genes are enriched. The 

progressively hypermethylated loci resided in genes that featured in pathways relating 

to head development, signalling, cell surface receptor signalling, transcriptional activity 

and cell-cell junctions (figures 3.14; table 3.10). The progressively hypomethylated loci 

were associated with neuron projection development, synaptic activity and gated 

channel activity (figures 3.15; table 3.11).  
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Table 3.10. Results of GO pathway analysis of loci that become progressively hypermethylated through differentiation. 

 

GO Term GO Descriptor Ontology No. genes in 
pathway 

No. genes in our 
list P-value FDR Genes 

GO:0000976 transcription regulatory region 
sequence-specific DNA binding MF 777 71 6.45 x10-9 2.99 x10-5 

NFAT5; SIX2; VAX1; JDP2; 
NACC2; GLIS1; DNMT3A; ELF3; 

FOXK1; FOXS1; 

GO:0000977 RNA polymerase II regulatory region 
sequence-specific DNA binding MF 725 67 1.12 x10-8 2.99 x10-5 

NFAT5; SIX2; VAX1; JDP2; 
NACC2; GLIS1; DNMT3A; ELF3; 

FOXK1; FOXS1; 

GO:0043565 sequence-specific DNA binding MF 1088 86 1.31 x10-8 2.99 x10-5 
NFAT5; SIX2; VAX1; FOXN3; 

FOXP4; JDP2; NACC2; GLIS1; 
DNMT3A; ELF3; 

GO:1990837 sequence-specific double-stranded 
DNA binding MF 819 72 1.53 x10-8 2.99 x10-5 

NFAT5; SIX2; VAX1; JDP2; 
NACC2; GLIS1; DNMT3A; ELF3; 

FOXK1; FOXS1; 

GO:0001012 RNA polymerase II regulatory region 
DNA binding MF 731 67 1.69 x10-8 2.99 x10-5 

NFAT5; SIX2; VAX1; JDP2; 
NACC2; GLIS1; DNMT3A; ELF3; 

FOXK1; FOXS1; 

GO:0044212 transcription regulatory region DNA 
binding MF 891 76 3.33 x10-8 4.80 x10-5 

NFAT5; SIX2; RAI1; VAX1; JDP2; 
GABPB2; NACC2; GLIS1; 

DNMT3A; ELF3; 

GO:0001067 regulatory region nucleic acid 
binding MF 893 76 3.80 x10-8 4.80 x10-5 

NFAT5; SIX2; RAI1; VAX1; JDP2; 
GABPB2; NACC2; GLIS1; 

DNMT3A; ELF3; 

GO:0098609 cell-cell adhesion BP 811 71 1.31 x10-7 1.27 x10-3 
PTPRU; CDH16; MAD2L2; 

COL13A1; UNC5D; CLDN19; 
CTNND2; DSP; DTX1; GPC4 

GO:0003690 double-stranded DNA binding MF 909 74 1.32 x10-7 1.27 x10-3 
NFAT5; SIX2; VAX1; JDP2; 

NACC2; GLIS1; DNMT3A; ELF3; 
FOXK1; FOXS1; 

GO:0007155 cell adhesion BP 1384 107 1.43x10-7 1.27 x10-3 
PTPRU; EDIL3; CDH16; PLXNC1; 
EFS; SPON2; SPON1; MAD2L2; 

EMID1; COL13A1; 

Shown is the top ten pathways identified through GO pathway analysis. For each pathway is the GO ID, pathway descriptor, number of genes 
annotated to the pathway, the number of genes in our list in the pathway, uncorrected p-value and false discovery rate (FDR)-adjusted p-value. 
Pathways are ordered by significance. 
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Figure 3.14. Pathway analysis of loci becoming progressively hypermethylated 
throughout differentiation.

Gene ontology (GO) enrichment analysis was performed on the 1,662 loci shown to 
become progressively hypermethylated throughout neuronal differentiation. 
Treemaps illustrating the pathways relating to (A) biological pathways (BP), (B) 
cellular components (CC) and (C) molecular functions (MF) that are changing 
throughout differentiation are shown. For each treemap, terms relating to the same 
pathway are grouped together and have been given the same colour, the term that 
summarises the grouped pathways is at the centre of each section and is written in 
bold text. 
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GO Term GO Descriptor Ontology No. genes 
in pathway 

No. genes in 
our list P-value FDR Genes 

GO:0097458 neuron part CC 1686 293 3.46 x10-11 3.06 x10-7 CDH13; FARP1; KATNB1; CACNG3; BASP1; 
BAIAP2; ADCY2; PPARGC1A; STMN2; CIT; 

GO:0045202 synapse CC 1152 220 4.77 x10-10 2.11 x10-6 GPC6; CDH11; CDH13; FARP1; WASF2; APC2; 
RTN3; CACNG3; BAIAP2; NRG3; 

GO:0048666 neuron development BP 1069 209 1.09 x10-9 3.21 x10-6 FOXO6; CDH4; CDH11; FRY; PLXNC1; FARP1; 
UBE4B; CDKN1C; KATNB1; ADARB1; 

GO:0043005 neuron projection CC 1286 228 1.51 x10-9 3.35 x10-6 
CDH13; FARP1; KATNB1; CACNG3; BASP1; 

BAIAP2; ADCY2; PPARGC1A; STMN2; 
FAM107A; 

GO:0048858 cell projection morphogenesis BP 635 142 2.58 x10-8 3.91 x10-5 CDH4; CDH11; PLXNC1; FARP1; WASF2; 
ADARB1; BAIAP2; SEMA4D; SEMA3C; B3GNT2; 

GO:0048812 neuron projection 
morphogenesis BP 620 139 2.70 x10-8 3.91 x10-5 CDH4; CDH11; PLXNC1; FARP1; ADARB1; 

BAIAP2; SEMA4D; SEMA3C; B3GNT2; ZFYVE27; 

GO:0120039 plasma membrane bounded cell 
projection morphogenesis BP 634 141 3.80 x10-8 3.91 x10-5 CDH4; CDH11; PLXNC1; FARP1; WASF2; 

ADARB1; BAIAP2; SEMA4D; SEMA3C; B3GNT2; 

GO:0031175 neuron projection development BP 939 183 3.89 x10-8 3.91 x10-5 FOXO6; CDH4; CDH11; FRY; PLXNC1; FARP1; 
UBE4B; KATNB1; ADARB1; SEC24B; 

GO:0036477 somatodendritic compartment CC 819 152 3.97 x10-8 3.91 x10-5 FARP1; KATNB1; CACNG3; BAIAP2; ADCY2; 
PPARGC1A; STMN2; CIT; CHRM5; TRIM9; 

GO:0032990 cell part morphogenesis BP 654 142 8.98 x10-8 7.46 x10-5 CDH4; CDH11; PLXNC1; FARP1; WASF2; 
ADARB1; BAIAP2; SEMA4D; SEMA3C; B3GNT2; 

Table 3.11. Results of GO pathway analysis of loci that become progressively hypomethylated through differentiation. 

 

Shown is the top ten pathways identified through GO pathway analysis. For each pathway is the GO ID, pathway descriptor, number of genes 
annotated to the pathway, the number of genes in our list in the pathway, uncorrected p-value and false discovery rate (FDR)-adjusted p-value. 
Pathways are ordered by significance. 
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Figure 3.15. Pathway analysis of loci becoming progressively hypomethylated 
throughout differentiation. 

 

Gene ontology (GO) enrichment analysis was performed on the 4,206 loci shown to 
become progressively hypomethylated throughout neuronal differentiation. Treemaps 
illustrating the pathways relating to (A) biological pathways (BP), (B) cellular 
components (CC) and (C) molecular functions (MF) that are changing throughout 
differentiation are shown. For each treemap, terms relating to the same pathway are 
grouped together and have been given the same colour, the term that summarises 
the grouped pathways is at the centre of each section and is written in bold text. 



 
 

 

148 
 

3.4.6.3 Transcriptional Regulation is a Highly Interconnected Process 

during Neuronal Differentiation 

To explore the connectivity between key genes that display progressive DNA 

methylomic changes through differentiation gene-gene interaction analyses were 

performed on the Bonferroni significant loci. Out of the 5,874 significant loci 2,352 

loci were annotated to unique genes. From this a prior knowledge network (PKN) 

was obtained, which contained 602 genes and 1,158 interactions between these 

genes. Within this PKN there was only one SCC which was comprised of 50 

genes and 138 interactions between them, so that every gene within the SCC 

can be reached through any other gene in the network (figure 3.16; table 3.12). 

This network analysis highlighted key genes within the network based on 

particular characteristics including their out-degree (the set of targets they 

regulate), in-degree (set of upstream regulating genes), betweenness centrality 

(most influential genes as determined by the shortest path lengths in the network) 

and their clustering coefficient (measure of tendency to cluster with other genes 

in the network). Interestingly, STAT3, TCF7L2 and LHX2 are the top genes based 

on their edge counts (number of upstream regulators) and their out-degree 

(number of downstream target genes). STAT3 also has the highest betweenness 

centrality of 0.043 which suggests that it plays a large role within the network. 

 

In order to ascertain more information about the functions of the top 50 most 

connected genes in the network a manual function search for each gene was 

undertaken. Of these top 50 genes 36 (72%) are involved in transcriptional 

regulation and include genes coding for proteins that are transcriptional 

activators, repressors and hormone receptor transcriptional regulators. Of these 

36 genes 25 are specifically transcription factors which accounts for 50% of the 
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top 50 most connected genes. Interestingly, of the 22% of genes in the network 

that aren’t involved in transcriptional regulation 14% are genes that are known to 

be involved in epigenetic regulation.  
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Gene name Betweenness 
Centrality 

Closeness 
Centrality 

Clustering 
Coefficient 

Edge 
Count Indegree Neighbourhood 

Connectivity Outdegree Function 

STAT3 0.04345 0.37748 0.01997 71 9 9.43 62 Transcription factor 

LHX2 0.01637 0.35092 0.00186 66 3 3.32 63 Transcription factor 

CDKN1A 0.00058 1 0.0161 60 58 10.68 2 Cell cycle regulator 

TCF7L2 0.0191 0.34628 0.01481 56 4 8.73 52 Transcription factor 

ETS1 0.01263 0.29362 0.00716 52 4 6.37 48 Transcription factor 

RUNX1 0.01469 0.30945 0.01568 43 7 8.5 36 Transcription factor 

GATA4 0.01931 0.25409 0.03409 34 14 14.39 20 Transcription factor 

SMAD3 0.00844 0.26041 0.0252 32 4 10.19 28 Transcriptional regulator 

PAX6 0.01644 0.29865 0.02381 31 10 11.43 21 Transcription factor 

SMARCA4 0.00607 0.30651 0.02094 30 1 10.86 29 Chromatin remodellor 

KDM6B 0.00588 0.24575 0.01984 28 2 10.29 26 Histone demethylase 

NR5A2 0.01974 0.2422 0.00833 26 4 7.84 22 Transcription factor 

THRB 0 0.24009 0.00395 23 0 4 23 NHTR 

BCL6 0.01245 0.28388 0.04978 23 11 16.64 12 Transcription factor 

PPARGC1A 0.02024 0.25271 0.05952 22 11 17.52 11 Transcriptional coactivator 

NFATC1 0.00469 0.24691 0.03095 22 6 13.24 16 Transcription factor 

BMI1 0.00515 0.27404 0.02381 21 4 14.33 17 Chromatin remodellor 

RARB 0.00132 1 0.00952 21 16 9.14 5 NHTR 

ATF3 0.02981 0.31245 0.06053 21 11 17.3 10 Transcription factor 

THRA 0 0.25391 0.00952 21 0 6.67 21 NHTR 

BCL2 0 0 0.07368 20 20 22.15 0 Apoptosis inhibitor 

RXRA 0.00212 0.26945 0.00263 20 1 6.65 19 Transcription factor 
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SALL4 0.00992 0.28897 0.0719 19 6 18.67 13 Transcription factor 

NR4A1 0.00078 0.91667 0.04248 18 8 11.78 10 Transcription factor 

ZBTB20 0.00028 0.23217 0.00327 18 1 7.17 17 Transcription factor 

DNMT3B 0.00226 0.26586 0.03309 17 1 13.76 16 DNA methyltransferase 

MEIS1 0.00807 0.26122 0.02917 17 9 13.19 8 Transcriptional activator 

PBX1 0.01088 0.30764 0.07143 16 5 19.4 11 Transcription factor 

HDAC4 0.00233 0.19141 0.01429 15 1 10.73 14 Histone deacetylase 

NCOA2 0.0013 0.20809 0.01648 14 1 12.93 13 Transcriptional coactivator 

CD44 0 0 0.09341 14 14 26.29 0 Cell surface receptor 

COL2A1 0 0 0.00549 14 14 11.79 0 Component of collagen 

BCL11B 0.01648 0.28445 0.02564 13 2 17.85 11 Transcriptional repressor 

CHD7 0.00272 0.1532 0.01282 13 3 7.38 10 Chromatin remodellor 

TEAD1 0.00104 0.17285 0.01923 13 1 9 12 Transcription factor 

PAX3 0.00911 0.22896 0.02564 13 8 14.54 5 Transcription factor 

KDM2B 0 0.26348 0 13 0 6.46 13 Histone demethylase 

NCOR2 0.0005 0.20172 0.03846 13 2 14.69 11 Transcriptional corepressor 

NR2F1 0.00139 0.23343 0.02273 12 1 11.92 11 NHTR 

ERG 0.00477 0.26419 0.03788 12 3 14.75 9 Transcription factor 

ESRRG 0.0016 0.2032 0.03636 12 4 13.09 8 NHTR 

EGFR 0 0 0.05303 12 12 25.33 0 Cell surface receptor 

EBF1 0.00132 0.17466 0.01515 12 4 12.58 8 Transcription factor 

TCF4 0.00199 0.17328 0.04545 11 2 16.27 9 Transcription factor 

ZBTB16 0.00846 0.26485 0.02727 11 7 12.18 4 Transcription factor 

COL1A2 0 0 0.07273 11 11 23.82 0 Component of collagen 

DNMT3A 0.00235 0.21081 0.00909 11 1 7.45 10 DNA methyltransferase 
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NR4A2 0.00108 0.68 0.02727 11 2 10.91 9 Transcription factor 

SREBF2 0 1 0 11 0 2 11 Transcription factor 

SOX5 0.00004 0.8125 0.00909 11 1 4.45 10 Transcription factor 

Table 3.12. A subnetwork of 50 genes constituting the strongly connected component (SCC) in the gene-gene interaction network, 
highlighting the methylomic changes occuring throughout neuronal differentiation. 

 

Using Cytoscape a SCC comprised of 50 genes was identified alongside information on the key features of these 50 genes. Shown for each gene 
is the betweenness centrality, closeness centrality, clustering coefficient, edge count, indegree, neighbourhood connectivity, outdegree and 
function (based on manually curated search. NHTR = nuclear hormone transcription regulator. 
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Figure 3.16. Network interactions of top 50 connected genes. 

CHAPTER 4  

 

 

 

 

 

 

  

Interaction map depicting the connections between the top 50 most connected 
Bonferroni significant differentially methylated genes. Where orange lines indicate an 
inhibitory interaction, green lines indicate an activating interaction, blue ovals indicate 
genes becoming progressively hypomethylated, red ovals indicate genes becoming 
progressively hypermethylated and grey ovals indicate genes that have more than 
one probe annotated to them that have different patterns of methylation change.  
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3.5 Discussion 

In this chapter I have undertaken epigenome wide analyses at base-pair 

resolution of the DNA methylation changes that occur as iPSCs differentiate into 

and then mature as neurons. To facilitate this samples from different cellular 

stages were collected, had DNA extracted and then run on the Illumina EPIC 

array to quantify DNA methylation levels at over 850,000 loci.  

 

One of the first results of this study showed that stem cell derived neurons have 

an immature epigenome. This was determined using the Horvath epigenetic age 

calculator provides a biological age based on DNA methylation data. The highest 

epigenetic age from any sample from this study was -0.41 years, which would be 

representative of neurons of an embryo. This result is particularly interesting as 

neurons derived from this same iPSC line have been shown to be functionally 

mature and are able to fire mature action potentials at the time points used within 

this study [145]. In a study conducted by Mertens et al, they demonstrated that 

there are age-related expression changes to RANBP17 and that neurons derived 

from stem cells had expression levels of RANBP17, which were comparable to 

embryonic or immature neurons. However, this was not the case with iNs, which 

are neurons generated directly from fibroblasts and do not undergo an 

intermediate stem cell phase [273]. Alongside the age-related expression 

changes to RANBP17 iNs have also been shown to maintain their epigenetic age 

unlike the iPSC-derived neurons [169]. Another way it was originally believed may 

increase or accelerate the epigenetic age of iPSC-derived neurons was to use 

3D or organoid models. It’s reasonable to think that having the 3D interactions 

with cells neurons around them, which is more physiologically representative of 

a brain over 2D culture would increase the biological age. However, using 
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genome-wide, base-pair resolution DNA methylomic sequencing it has since 

been demonstrated that cerebral organoid models have a foetal methylomic 

profile [184]. This included the accumulation of methylation at non-CG loci in 

super-enhancers which corresponded to forthcoming transcriptional repression 

in the adult brain and the identification of demethylated regions during organoid 

development which overlapped with foetal brain regulatory elements [184]. 

 

Another important marker of maturity for cells is the number of cell divisions they 

have gone through. This is particularly of interest for this study as neurons are 

post-mitotic and therefore should no longer be undergoing cell division. To 

estimate the number of cell divisions the cells had undergone I used the MiAge 

calculator developed by Youn and Wang. This analysis demonstrated that after 

terminal differentiation the cells do indeed stop dividing which is as expected. 

This suggests that the terminal differentiation of these cells was successful and I 

have generated neurons which no longer undergo cell division. However, as the 

D37 samples in general had undergone more cell divisions than the D58 samples 

it could indicate some technical variation and perhaps suggest that the D37 and 

D58 samples were plated at different times and that the D37 samples spent 

longer as NPCs therefore undergoing more rounds of cell division. 

 

It would be interesting to be able to extend this study to further time points to 

determine whether the epigenetic age of these cells will increase further whilst 

the mitotic age remains stable. In future studies using iPSC-derived neurons to 

study diseases of ageing it will be important to consider these metrics of maturity 

or at least take them into consideration when undertaking analyses.  
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Another finding to come from this chapter is that there is elevated CpH hemi-

methylation in iPSCs when compared to the NPCs and terminally differentiated 

neurons, which is in concordance with previous literature [181, 274]. This may be 

a reflection that there are more dynamic gene expression changes occurring 

during the stem cell stage. However, hemi-methylation of non-CpG loci is also 

known to occur in neurons and is thought to accumulate during development 

[275-277]. The fact that it is not possible to see this hemi-methylation in the 

neuronal cells used in this chapter perhaps adds further evidence to the 

epigenetic immaturity of the neurons.  

 

To understand the biological consequences of changing DNA methylation 

throughout differentiation WGCNA and pathway analyses were used to first group 

together modules of co-methylated loci and then to interrogate the function of 

these modules. These analyses produced four modules of co-methylated probes, 

three of which were modules enriched for pathways involved in the generation of 

neurons. This is to be expected and confirms that the cells I created through were 

neurons. What is interesting is that the red module, which is made up of genes 

becoming hypermethylated over time, has very similar pathways coming out to 

those within the black and blue models, which are made up of progressively 

hypomethylating genes. As hypomethylation is generally associated with 

increases in expression hypermethylation associated with decreases in gene 

expression it would suggest that there are several pathways which are associated 

with the development of neurons are undergoing increases and decreases in 

gene expression. This would make sense as there are many different processes 

and many large-scale changes which are necessary to create neurons. In 

addition, recent studies have suggested that the consequence of DNA 
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methylation on gene expression is context dependent and hypermethylation and 

so it is somewhat generalisable to predict that DNA hypermethylation leads to 

gene silencing [278, 279]. The other module pulled out through WGCNA and 

pathway analysis is the greenyellow module. Unlike the other three significant 

modules this module is associated with biological pathways involved in 

transcriptional regulation and signalling. As this module is associated with 

progressive hypomethylation over time it would suggest that there are many 

genes within these pathways becoming more expressed over time. This is 

intuitive as the genes that are expressed and the signalling pathways that are 

used within stem cells are very different from those expressed and used by 

neurons. It is however worth noting that none of the pathways in the greenyellow 

module passed FDR correction. 

 

One interesting finding from the creation of the lineage network was that one of 

the day 37 terminally differentiated neurons clustered more closely with the day 

58 terminally differentiated neurons over the other samples within the same 

cellular stage. This would suggest that this sample has aged quicker than the 

other samples in the group and is therefore more epigenetically mature. However, 

this may not be the case as this sample has the second lowest epigenetic age 

and lowest mitotic age of the day 37 neurons. This could mean that the probes 

used to determine epigenetic age are not contributing to or do not have a large 

part in distinguishing between the different cellular stages. This is somewhat 

logical considering the DNA methylation profile of 391 probes are used to 

estimate epigenetic age and I generated the trajectory model of the fifth percentile 

most variable probes, which equates to approximately 42,000 loci. On the other 

hand, as neurons do not undergo division the fact that the D37 sample is 
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indistinguishable from the D58 samples is also to be expected; if this sample has 

matured quicker than the rest of the samples in this group, it is intuitive that it 

undergone fewer cell divisions. 

 

Similarly to the pathways highlighted in the WGCNA analysis, the pathways 

highlighted in the hypermethylating and hypomethylating probes in the lineage 

network are also largely involved in gene regulation and processes important to 

becoming a neuron. As the majority of Bonferroni significant differentially 

methylated loci are progressively hypomethylated over time it would suggest that 

there are more genes becoming expressed at an increased level as cells become 

more neuronal, although as discussed earlier this is context dependent and 

depends where the methylation falls within the gene. 

 

From the gene-gene interaction network analysis I was able to generate a 

network of the 50 most connected genes which played an important role in the 

generation of the lineage trajectory. Of these genes STAT3, TCF7L2 and LHX2 

were shown to be the most connected and therefore key genes in the network. 

These genes have been shown to play vital roles in neuronal survival and 

function. For example, STAT3 and other members of the JAK/STAT pathway 

have been shown to play key roles in the control of neuronal proliferation, survival 

and differentiation [280, 281]. Cells which have been treated with STAT3 

inhibitors were shown to be highly susceptible to these even at low concentrations 

[280]. TCF7L2 is a transcription factor within the Wnt signalling pathway has been 

shown to play a crucial role in forebrain development and the regulation of 

neuronal identity [282]. Finally LHX2 is homeobox transcriptional regulator that 
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has been shown to suppress astrogliogenesis in the developing hippocampus, 

thereby promoting neurogenesis [283] and has also been implicated in the 

regulation of β-catenin dependent cortical neurogenesis [284]. The implication of 

these genes in the gene-gene interaction network shows that there are many 

neuronal specific genes or genes that are highly involved in neuronal 

differentiation and survival that are key to creating the lineage trajectory and 

confirms that they are highly influential in the development and differentiation of 

neurons.  
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3.6 Conclusion  

In this chapter I have characterised genome wide patterns of DNA methylation in 

order to further understand the epigenomic changes that are occurring 

throughout neuronal differentiation from iPSCs. I have shown that despite being 

functionally mature, the resultant neurons still have an immature epigenetic age 

but also that this epigenetic age does increase throughout differentiation. 

Although not epigenetically mature the terminally differentiated neurons do 

appear to have stopped dividing as the estimated number of cell divisions they 

have undergone does appear to have plateaued, although further time points 

would be needed to confirm this. In order to provide information on the functional 

implications of changing DNA methylation patterns I used trajectory inference and 

pathway analysis. Through these analyses it is clear that there are large amounts 

of loci undergoing significant DNA methylation changes over time, which are 

affecting gene regulation within the differentiating cells and that these loci are 

highly interconnected with one another. 

 

Overall I have identified an epigenomic trajectory signature characteristic of 

neuronal differentiation and maturation. I have also demonstrated that there are 

several considerations when modelling epigenetic changes associated with age 

in iPSC-derived neurons, which should be taken into account in future research 

studies.  
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CHAPTER 4 : DETERMINING THE EFFECT OF 
EPIGENETIC MODULATORS ON DNA METHYLATION IN 

NEURONS AND MICROGLIA 
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4.1 Introduction 

 

4.1.1 Histone Proteins 

Within the nuclei of all eukaryotic cells can be found a complex interplay of DNA 

that is wound around octamers of core histone proteins which form nucleosomes. 

The wrapping of DNA around these histone proteins allows for the 10,000-

20,000-fold reduction in DNA size which is necessary to fit the genome into the 

nucleus [285].  This level of chromatin compaction and therefore transcriptional 

ability is regulated by conformational changes to the histone proteins including, 

but not limited to, modifications such as methylation, acetylation, 

phosphorylation, ubiquitination and sumoylation [286]. These histone tail 

modifications regulate how easily accessible the transcription start sites (TSS) 

and other promoter regions within the DNA are to transcription factors and other 

cellular machinery that are necessary for the transcription of genes. This is 

achieved through the compaction (heterochromatin) or opening (euchromatin) of 

chromatin [287]. Methylation and acetylation of the histone tails are the most 

widely studies modifications. In general histone acetylation is associated with 

increased gene expression as the positive charge of the acetyl group repels the 

negative DNA causing it to have a more open conformation [288]. Histone 

methylation on the other hand can activate and repress gene expression 

depending on which amino acid has been methylated and how many methyl 

groups there are on the amino acids [289].  

 

4.1.2 Epigenetic Modulators 

There are numerous compounds that have been shown to have an effect through 

acting on epigenetic mechanisms. As this chapter focuses on the epigenetic 
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changes caused by different epigenetic modulators I have subsequently 

described the targets of each group of modulators that are studied in this chapter.  

 

4.1.2.1 Bromodomains 

A bromodomain (BRD) is a small (approximately 110) amino acid protein domain 

that has a conserved three-dimensional structure. Bromodomains recognise 

acetylated lysines on the N-terminal tails of histone proteins [290]. The domains 

adopt a bundle of four alpha helices and the differences in the loops can 

determine the specificity and affinity for different histone peptides and inhibitors 

[290]. There are 61 BRDs which are expressed in the human proteome, most of 

which recognise acetylated histone marks however, there are some BRDs that 

contain atypical domains that have little or no activity towards acetylated histone 

marks [291].  

 

The modular nature and the diversity in domains has meant that studying the 

function of BRD-containing proteins has been quite difficult. They can contain a 

number of distinct reader domains in addition to having enzymatic functionality 

and playing the role of scaffolding proteins in the chromatin modifying complexes. 

However, using highly specific BRD inhibitors it is possible to untangle their 

complex biology and functional effects [291]. BRD inhibitors are a class of drugs 

that reversibly bind to the BRD regions of the Bromodomain and extra-terminal 

(BET) motif proteins BRD2, BRD3, BRD4 and BRDT and prevent the protein-

protein interaction between the BET proteins and relevant transcription factors 

[292, 293]. This disruption of action can affect gene transcription and regulation. 

The development of very selective inhibitors have provided a way to study their 
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function and unravel the relationships between histone modifications, chromatin 

biology and DNA methylation.  

 

To date the greatest success in designing BRD inhibitors has been against the 

BET subfamily of BRD containing proteins. This is largely due to their therapeutic 

potential for treating diseases such as cancer [294, 295]. The first of these 

inhibitors to be published was (+)-JQ1, which is a competitive inhibitor of 

acetylated lysine reading BRDs [296]. There are many more BRD inhibitors that 

have now published, including, but not limited to, SGC-BP30 which inhibits BRDs 

present in the histone acetyltransferase (HAT) p300 [297, 298], BI-9564 an 

inhibitor of the chromatin remodelling complexes BRD7 and BRD9 [299], and 

BAZ2-ICR which has been shown to inhibit the bromodomain adjacent to zinc-

finger domain (BAZ2) chromatin remodelling complex [300].    

 

4.1.2.2 Histone Protein Methyltransferases 

Histone modifications, such as methylation, have been shown to be largely 

localised to areas of the genome that are actively transcribed, which could 

suggest their function is linked to polymerase activity [301-304]. These 

modifications also occur in a highly cell type specific manner at enhancers; 

although there does seem to be similar patterns of histone modifications at 

promoters between cell types [305]. This could suggest that enhancers are the 

most variable element of the transcriptional machinery and are what ultimately 

drives cell type specific gene expression patterns.  

 

Mono-, di-, or tri-methylation of the histone tails has been shown to both induce 

transcriptional activation and repression as it is dependent on both the residue 
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that is methylated and also the level of methylation [306]. For example, in general 

lysine tri-methylation at histone 3 lysine 24 (H3K24), H3K36 and H3K79 have all 

been shown to be associated with active transcription and gene expression 

whereas lysine di-methylation at H3K9 is a known marker for transcriptional 

repression [307]. Arginine side chains can be modified through the addition of 

one methyl group or two methyl groups either symmetrically or asymmetrically. 

These lysine and arginine modifications are generally carried out by one of two 

protein families [306]. PR and SET domain proteins are protein lysine 

methyltransferases (PKMT) and methylate lysines on histone tails whilst the 

protein arginine methyltransferases (PRMT) such as the Rossman fold proteins 

modify arginines [308].   

 

4.1.2.3 WD Repeat-Containing Proteins 

WD repeat domain proteins are minimally conserved regions of approximately 

40-60 amino acids that usually end with a tryptophan and aspartic acid (WD). 

They are involved in a variety of cellular processes including cell cycle 

progression, signal transduction, apoptosis and gene regulation.  

 

In terms of epigenetic mechanisms, WD repeat domain 5 (WRD5) is the best 

characterised protein in terms of its interactions and binding partners. WRD5 has 

been shown to be a part of the mixed lineage leukaemia complex (MLL). As it is 

a part of the MLL complex it is involved in the methylation and demethylation of 

H3K4 [309], which represents a significant epigenetic tag for gene transcriptional 

activation. Interestingly, alone the WRD5-MLL proteins show little histone 

methylation activity, but this is greatly increased upon the formation of a larger 

protein complex [310].  CHD8, a chromatin remodelling enzyme, has been shown 
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to directly bind to WRD5, and this interaction is known to be responsible for the 

tri-methylation at the promoters of MLL target genes, which includes HOXA2 

[311]. Alongside binding proteins, WRD5 also has a RNA binding pocket that 

binds long non-coding RNAs, such as HOTTIP and NeST, facilitating gene 

transcription [312-314].  

 

One known small molecule inhibitor of WRD5-MLL protein-protein interactions is 

OICR 9429 [315]. OICR 9429 has been shown to bind in the WRD5-interacting 

(WIN) peptide binding pocket, therefore disrupting WRD5’s interaction with MLL 

at this same binding pocket [315]. OICR 9429 has demonstrated selective binding 

to WRD5 compared to other histone methyltransferases (HMTs) or 

pharmacologically relevant targets and can reduce the proliferation and even 

induce growth arrest in p30-overexpressing cancer cells [315]. 

 

4.1.2.4 Methyl Lysine Readers 

Methyl lysine readers (KMR) recognise the methylated tails of histone proteins 

and are associated with transcriptional repression [316]. One common feature 

between the different proteins of the KMR family is the methylated lysine binding 

pocket that contains an “aromatic cage” of amino acids [317]. The KMR family is 

large, diverse, and has been shown to have relatively weak interactions with 

histones and not to have any enzymatic activity. As such it has made them a 

challenging family of proteins to develop chemical inhibitors for [318]. However, 

one KMR that now has a chemical probe inhibitor is lethal(3)malignant brain 

tumour-like protein 3 (L3MBTL3) [288]. L3MBTL3 has been shown to play a role 

in haematopoiesis [319] and its deletion has also been implicated in diseases 

such as meduloblastoma [320]. UNC 1215, a potent inhibitor of L3MBTL3, binds 
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to an arginine residue within the “aromatic cage” binding pocket thus inhibiting its 

ability to bind methylated lysine residues [288].   

 

4.1.2.5 Histone Lysine Demethylases (HKDM) 

The first evidence that histone lysines underwent dynamic regulation in terms of 

their methylation came from Shi et al. in 2004, when they demonstrated that LSD1 

uses flavin adenine dinucleotide as a cofactor to oxidise the methyl group on the 

histone tails into formaldehyde [321]. In this study it was also shown that LSD1 is 

relatively specific and only demethylates H3K4me1/2, but not H3K4me3 or other 

H3 lysine residues [321]. Genome-wide chromatin immunoprecipitation mapping 

has highlighted that LSD1 binds to the promoter and enhancer regions of genes 

regulating their expression [322, 323]. Through this regulation it is thought that 

LSD1 plays a role in numerous cellular functions including differentiation and 

stemness [308, 322, 323], senescence [324], and it has even been implicated in 

neurodegenerative disorders [325, 326].  

 

The other HKDM targeted within this chapter is the Jumanji domain containing-3 

(JMJD3) protein, which catalyses the demethylation of H3K27me2/3 and 

therefore is associated with increased expression of the genes regulated by that 

chromatin mark [327, 328]. Interestingly, JMJD3 is essential for stem cell 

differentiation into neuronal lineages; in the developing spinal cord H3K27me3 

regulates the activity of BMP causing the interaction of JMJD3 with the SMAD1/4 

transcription factors activating the BMP antagonist Noggin [329]. GSKJ4, an 

inhibitor of JMJD3, has been shown to mimic α-ketoglutarate binding to JMJD3 

and therefore inhibiting it. When treated with GSKJ4, human primary 



 
 

 

168 
 

macrophages had reduced LPS-induced cytokine production therefore 

highlighting a potential role for JMJD3 in the inflammatory response [330].  
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4.2 Hypothesis and Aims 

Previous work has demonstrated that the epigenetic modulators used in this 

chapter are known to inhibit proteins involved in different epigenetic mechanisms. 

Despite this, the epigenomic consequences of these compounds are unknown. 

Therefore, the hypothesis of this chapter is that these compounds have 

methylomic consequences on neurons and microglia and that these changes 

have functional implications on biological pathways.  

 

In order to address this hypothesis this aims of this chapter are: 

1. To treat two iPSC cell models with different drugs known to modulate 

epigenetic mechanisms. 

2. To provide the first insight into the DNA methylation changes that are 

caused by these modulators. 

3. To investigate the biological pathways being altered by these epigenetic 

modulators. 
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4.3 Methods 

 

4.3.1 Cell Culture  

The information in this section contains all the information necessary to grow, 

maintain and split the iPSC-derived neurons and microglia used in this chapter. 

 

4.3.1.1 Sources of Cells 

The iPSC-derived neuronal cells used in this study were grown, maintained and 

treated by Dr Elena Ribe and her team at the University of Oxford, UK in 

conjunction with collaborators at the Alzheimer’s Research UK Oxford Drug 

Discovery Institute (ARUK ODDI), according to the protocol below.  

 

The iPSC-derived microglial cells used in this study were grown, maintained and 

treated by Dr Sally Cowley and her team at the University of Oxford, UK in 

conjunction with collaborators at the ARUK ODDI, according to the protocol 

below. 

 

4.3.1.2 Generation of Human iPSC-Derived Cortical Neurons 

In this section I will describe the methods used to culture, maintain and 

differentiate iPSCs into neuronal cells. To generate the cortical neurons we used 

the iPSC line CTR M3 36S, which were derived from keratinocytes from a middle 

aged neurotypical male at Kings College London. The keratinocytes were 

reprogrammed into iPSCs using sendai virus and differentiated into cortical 

neurons using SMAD inhibition [331].  
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4.3.1.2.1 iPSC Culture 

iPSCs were cultured at 37oC with 5% CO2 under feeder-free conditions. iPSCs 

were cultured on 6-well plates (Nunc) that had been coated with Geltrex (Life 

Technologies) prior to plating and were maintained in 2mL E8F media (Life 

Technologies). Colonies were passaged when the culture reached approximately 

80% confluency. To passage the cells the media was removed and the cells were 

washed with PBS, and detached using dispase (Life Technologies) by incubating 

at 37oC for three to four minutes. After this time the dispase was removed and 

the cells were gently washed with 2mL pre-warmed E8F media. To remove the 

cells from the base of the well they were gently scraped and pipetted up and down 

to break up the colonies, but not to reduce them to single cells. The cells were 

plated at approximately 10,000 cells per cm2, after which they were returned to 

the incubator and left for a minimum of 48 hours before handling.  

 

4.3.1.2.2 Neuronal Differentiation 

The protocol for neuronal differentiation was adapted from Shi et al. 2012. iPSCs 

were passaged at high density using Versene from Lonza so the cells would be 

maintained as clusters. After twenty-four hours the SMAD inhibitors 1µM 

Dorsomorphin and 10µM SB (Sigma) were added to each well in 50% N2 medium 

(N2 supplemented in DMEM/F12 and 1% glutamax) and 50% B27 medium (B27 

supplement in neurobasal medium with 1% glutamax) (all from Life 

Technologies). The N2/B27 media and SMAD inhibitors were replaced every day 

for the first seven days. After this, cells were dissociated using Accutase and 

replated in N2/B27 media containing 10µM Y-27632 Rock inhibitor (Abcam). 

Neuronal progenitors were plated onto wells coated in laminin for terminal 

differentiation of neurons at day 21 at 20,000 cells per cm2 in B27 medium 
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containing 10µM DAPT and 10µM Rock inhibitor. After 48 hours from induction, 

the media was replaced with B27 media, the cells were maintained in this media 

and underwent a 50% media change every three days.  

 

4.3.1.3 Generation of Human iPSC-Derived Microglia 

In this section I will describe the methods used to culture, maintain and 

differentiate iPSCs into microglial cells. 

 

4.3.1.3.1 iPSC Culture 

iPSCs were cultured at 37oC with 5% CO2 under feeder free conditions. iPSCs 

were cultured on 6-well plates (Nunc) that had been coated with matrigel (BD 

Biosciences) prior to plating and were maintained in 2mL Oxford Essential-8 (Ox-

E8) media (made in house). Colonies were passaged when the culture reached 

approximately 80% confluency. To passage the cells the media was removed 

and the cells were washed with PBS, and detached using dispase (Life 

Technologies) by incubating at 37oC for three to four minutes. After this time the 

dispase was removed and the cells were gently washed with 2mL pre-warmed 

Ox-E8 media. To remove the cells from the base of the well, they were gently 

scraped and pipetted up and down to break up the colonies, but not to reduce 

them to single cells. The cells were plated at approximately 10,000 cells per cm2, 

after which they were returned to the incubator and left for a minimum of 48 hours 

before handling.  

 

4.3.1.3.2 Embryoid Body Formation by Spinning 

Spin embryoid bodies were formed using AggreWellsTM800 (Stemcell 

Technologies). iPSCs were washed with PBS and harvested by incubating for 
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five minutes at 37oC in TrypLE Express (Gibco). The cells were mixed into single 

cell suspension in the TrypLE by pipetting up and down, collected into a 15mL 

falcon tube and were diluted 1:10 in PBS. Cells were then counted and spun 

down. After centrifugation the supernatant was removed, and the cell pellet 

tapped loose before being resuspended in mTeSRTM-1 spin-EB medium. The 

mTeSRTM-1 spin-EB medium consisted of mTeSR™-1 (Stem Cell Technologies), 

supplemented with 1mM Rock-inhibitor (Y27632; Calbiochem), 50ng/mL BMP-4 

(Peprotech), 20ng/mL SCF (Miltenyi Biotec), 50ng/mL VEGF (Peprotech). For 

AggreWellsTM800 the plates were prepared by rinsing each AggreWell with PBS 

and aspirating the PBS. Next, 1mL mTeSR™-1 spin-EB medium was added to 

the AggreWells and this was centrifuged at 3,000 x g for one to two minutes to 

remove any microscopic air bubbles. After the plate had been prepared, of 4x106 

cells were added per well. The plate containing the cells was then centrifuged at 

800rpm for three minutes. After centrifugation, the cells in each well were 

examined to make sure they were evenly distributed across the base of the well. 

The plate was then left in the incubator for four days. Each day the EBs were fed 

with spin medium by gently removing 1mL spin medium from the well and gently 

replacing it by pipetting it in a drop wise manner down the side of each well using 

a pipette. To harvest the EBs on day four the contents of the wells were pipetted 

up and down several times using a 5mL serological pipette to dislodge the EBs 

from the microwells. The contents were taken up and transferred onto a 40µM 

cell strainer that was inverted over a 50mL falcon tube. The contents were 

washed out of the well several times with PBS and transferred onto the same cell 

strainer to collect and wash all EBs on the strainer. This way the EBs remained 

on top of the inverted strainer and the media/PBS passed through the strainer 

into the 50mL falcon tube below. The cell strainer containing the EBs was then 
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gently transferred and inverted over a new 50mL falcon tube so that the EBs were 

now on the underside of the strainer and could be collected into the new 50mL 

falcon tube, by passing differentiation media (contents described below) through 

the strainer. EBs could then be counted by transferring 50uL sample to a 96 well 

plate under a microscope. 

 

4.3.1.3.2 Directed Differentiation to Produce Microglial Precursors 

For differentiation, approximately ten EBs were transferred to one well of a six 

well plate in 3mL medium, two thirds of the medium were replaced every five 

days. The medium consisted of X-VIVOTM15 (Lonza) supplemented with 

100ng/mL M-CSF (Invitrogen), 25ng/mL IL-3 (R&D Systems), 2mM Glutamax 

(Invitrogen) 100U/mL penicillin and 100µg/mL streptomycin (Invitrogen) and 

0.55mM β-mercaptoethanol (Invitrogen). Once precursors were visible in the 

supernatant of the cultures (two to three weeks post differentiation beginning), 

the non-adherent cells were harvested weekly from the supernatant of the EB 

cultures.  

 

4.3.1.3.3 Microglial Culture and Maturation  

Microglia were plated onto treated six well plates (Corning) at a density of 1.5x106 

cells per well. They were maintained in media consisting of RPMI 1640 (PAA) 

with 10% fetal bovine serum (PAA), or in X-VIVOTM15 (Lonza) where specifically 

stated. The medium was supplemented with 100 ng/mL (approx. 1.7×104 

units/mL) recombinant human M-CSF (R&D Systems), as well as 2 mM glutamine 

(PAA), 100 U/mL penicillin and 100 µg/mL streptomycin (PAA). Monocytes were 

incubated at 37°C, with 5% CO2 and differentiated for seven days prior to use. 
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4.3.1.4 Treatment of iPSC-derived Neurons and Microglia with Epigenetic 

Modulators  

Cells were plated out into 36 wells of 6 or 12 well plates at a density of 7.5x105 

cells per well for the iPSC-derived microglia and 3x105 for iPSC-derived neuronal 

cells. All compounds were used at a final concentration of 3µM (chosen due to 

the specificity and on-target effect in cells at this concentration) and were 

incubated on the cells for twenty-four hours. After this twenty-four hour period, 

each well was washed two times with PBS, which was then aspirated. The plates 

were then stored at -80oC until required for DNA extraction. The compounds used 

can be broadly split into five categories: bromodomain inhibitors, histone 

methyltransferase inhibitors, histone lysine demethylase inhibitors, methyl lysine 

reader inhibitors and WD40 containing protein inhibitors (table 4.1). Further 

details about each compound is available at: https://www.thesgc.org/chemical-

probes.  

 

An illustration detailing the experimental workflow can be found in figure 4.1 and 

information for each compound can be found in table 4.1. 
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Figure 4.1. Diagram illustrating the experimental workflow. 

 

iPSC-derived neurons and microglia were plated out at densities of 300,000 and 750,000 
cells per well, respectively. Both cell types were treated with 29 compounds at 3µM or a 
DMSO control for 24 hours. Following incubation cells were washed twice in PBS and cells 
were collected and DNA extracted. Following extraction DNA methylation was quantified 
on the Illumina EPIC array. 
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Compound 
Class Compound Name Protein Target Description 

BRD 

(+)-JQ1 BET family Potent, selective BET bromodomain inhibitor 
BAY 299 BRPF2/TAF1 Potent and selective BRD1 and TAF1 inhibitor 

BAZ2-ICR BAZ2A/2B Selective BAZ2 inhibitor 
BI 9564 BRD9/7 Potent and selective BRD9 and BRD7 inhibitor 

GSK2801 BAZ2A/2B Selective BAZ2A and BAZ2B inhibitor 
I-BRD9 BRD9 Potent and selective BRD9 inhibitor 

I-CBP 112 CREBBP/EP300 Selective CBP/p300 BRD inhibitor 
NI 57 BRPF1/2/3 Potent and selective BRPF bromodomain inhibitor 

NVS-CECR2-1 CECR2 Potent and selective inhibitor of CECR2 
OF 1 BRPF1/2/3 Selective BRPF1B and BRPF2 inhibitor 
PFI 3 SMARCA2/4 Potent and selective SMARCA2/4 and polybromo 1 inhibitor 

TP 472 BRD: BRD9/7 Potent BRD9/7 inhibitor 

HKDM 
GSK LSD 1 dihydrochloride LSD1 Potent and selective LSD1 inhibitor 

GSKJ4 JMJD3/UTX Histone KDM inhibitor 

KMR 
A 395 EED EED inhibitor 

UNC 1215 L3MBTL3 Potent inhibitor of L3MBTL3 Kme reader domain 

MT 

A 196 SUV420H1/H2 SUV420H1 and H2 inhibitor 
A 366 G9a/GLP Potent and selective G9a/GLP inhibitor 

BAY 598 SMYD2 SMYD2 inhibitor 
GSK343 EZH2 EZH2 inhibitor 

GSK591 dihydrochloride PRMT5 Potent and selective PRMT5 inhibitor 
MS 023 dihydrochloride PRMT type 1 Potent and selective type I PRMT inhibitor 

MS049 oxalate salt PRMT4/6 Potent and selective PRMT4 and PRMT6 inhibitor 
RPFI 2 hydrochloride SETD7 Potent and selective SETD7 inhibitor 

SGC 0946 DOT1L Highly potent and selective DOT1L inhibitor 
SGC 707 PRMT3 Potent and selective allosteric inhibitor of PRMT3 
TP 064 PRMT4 Potent and selective PRMT4 inhibitor 
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UNC 0642 G9a/GLP Potent and selective G9a and GLP inhibitor 
UNC 1999 EZH2/H1 Potent and selective EZH2/EZH1 inhibitor 

WD40 OICR 9429 WDR5 High affinity and selective WDR5 antagonist 
Table 4.1. Compound information and description of each treatment. 

 

 

 

Listed for each compound is the compound name, its protein target, a description of its action, the supplier it is available from and 
corresponding catalogue number where available. All compounds in this chapter were used at a concentration of 3µM and were incubated on 
the cells for 24 hours. Where BRD = bromodomain, KDM = histone lysine demethylase, KMR = methyllysine reader, HMT = histone 
methyltransferase and WD40 = WD repeat protein family. All compounds are available to buy from Tocris with the exception of A 395 and 
BAY 598, which were provided by ARUK ODDI and are not available to purchase commercially. 
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4.3.1.4 DNA Extraction and Methylomic Profiling and Quantification 

Please refer to section 2.2 for information on DNA extraction, section 2.3 for details on 

bisulfite conversion and section 2.4 or figure 2.2 for a detailed outline of the EPIC array 

protocol. 

 

4.3.2 Data QC 

For an outline of the QC and normalisation methods used in this chapter please see 

section 2.4.2. All data analyses in this chapter were performed using R version 3.4.3. 

Signal intensities were imported into R using the methylumi package [262]. Initial QC 

checks were conducted using functions within the methylumi and wateRmelon 

packages [198, 262]. Using the default settings of one percent within “pfilter”, no 

samples and 2,332 neuronal probes and 2,674 microglial probes were flagged for 

removal. 

 

4.3.3 Data Analysis 

Outlined in this section are the analysis steps conducted in order to assess and 

quantify the DNA methylation changes occurring when iPSC-derived neurons and 

microglia are treated with different compounds known to affect epigenetic 

mechanisms. 

 

 4.3.3.1 PCA 

In order to look at variation within the dataset, PCA was used. Using the “prcomp” 

function within the default statistics package within R the top principal components 

were identified. These principal components were then correlated to known variables 

including treatment, ChipID and position on BeadChip, array plate (neurons only), 
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replicate, cell culture plate and the wells within the cell culture plate using spearman 

correlations. 

 

 4.3.3.2 Removing Confounding Variation using Combat 

Using the “combat” function within the sva package [332] variation attributed to 

“replicate” within the microglial samples was removed as this was identified as a 

significant confounder using PCA (further details are provided below in section 4.4.2.6). 

For this analysis the batch covariate was replicate number and parametric adjustments 

were allowed. 

 

4.3.3.3 Identifying DMPs associated with treatment 

Linear regression was used to identify DMPs for each drug treatment by comparing 

each treatment individually to the control treatment (N=810,201 probes that passed 

QC). In order to investigate whether there was any overlap in differential DNA 

methylation between compounds with similar functions I used Pearson correlations to 

compare the effect sizes of the top 100 most significant probes for a given compound 

to their effect sizes for other compounds in that category using the “cor.test” function 

in R. Similarly, to explore whether there was an enrichment for the same direction of 

effect I used a sign test (an exact binomial test). I was also interested to investigate 

whether similar DNA methylation changes were induced by the compounds in the two 

different cell types. To this end, I used the sign test and Pearson’s correlations to 

compare the effect sizes of the top 100 most significant DMPs treated with a given 

compound in one cell type, to their effect sizes in the other cell type. 
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4.3.3.4 GO Enrichment Analysis 

Pathway analysis was used to give biological meaning to nominated CpG sites using 

the “gometh” function from the missMethyl package [265] alongside the GO repository. 

The “gometh” function was chosen as it adjusts for the number of CpGs per gene. This 

was only done in the microglial samples as there were too few consistently 

differentially methylated probes in the neuronal data. Given the low number of 

replicates no DMPs reached genome-wide significance. As such, I used a nominal p-

value threshold for GO pathway analyses of p<5.00x10-4. 
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4.4 Results 

 

4.4.1 Outcome of the QC Pipeline 

This section outlines the results of the QC process undertaken in order to ensure the 

data was of sufficient quality before undertaking any subsequent analyses.  

 

4.4.1.1 Median Methylated and Unmethylated Sample Intensities 

To ensure that the signal intensities for each sample were above background level the 

methylumi package was used to quantify the fluorescent intensities for each probe 

[262]. The median methylated and unmethylated intensities were then plotted against 

one another for each sample colouring them according to either their ChipID (figure 

4.2), their position on the BeadChip (figure 4.3), or which plate they were assayed in 

(neuronal samples only – figure 4.4).  It appears that the BeadChip and the position 

within the Chip that the sample was run on do impact the median intensities, with the 

position on the BeadChip having a greater effect. In particular both the neuronal and 

microglial samples run at position R08C01 have the lowest median unmethylated 

intensities. However, the effect is not large enough to consider removing samples as 

all samples have median intensities above 1,000 and therefore were not excluded 

based on this metric.  
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Figure 4.2. Median signal intensities plotted by BeadChip ID. 

Intensities for each sample were imported using the methylumi package [262] and the median methylated and unmethylated sample intensities 
were calculated for each BeadChip. Median signal intensities are coloured by ChipID for the (A) neuronal and (B) microglial samples 
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Figure 4.3. Median signal intensities plotted by position on the BeadChip. 

Intensities for each sample were imported using the methylumi package [262] and the median methylated and unmethylated sample intensities 
were calculated for each position on the BeadChip. Median signal intensities are coloured by ChipID for the (A) neuronal and (B) microglial 
samples. 
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Figure 4.4. Median signal intensities plotted by plate processed in.

Intensities for each sample were imported using the methylumi package [262] and the median methylated and unmethylated sample intensities 
were calculated for each plate that the neuronal samples were processed in. Shown are (A) a scatterplot of the median signal intensities 
coloured by plate, median (B) methylated and (C) unmethylated signal intensities plotted by plate represented as a boxplots. As all of the 
microglial samples were all assayed on the same plate it was not necessary to check the association between plate and methylation intensity. 
Error bars represent 1.5x the IQR. 
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4.4.1.2 Bisulfite Conversion Efficiency of Samples 

Bisulfite is the process that converts unmethylated cytosines into uracils and therefore 

allows them to be distinguished from methylated cytosines on the EPIC array. Within 

the EPIC array BeadChip there are several fully methylated control loci, which allow 

for the bisulfite conversion efficiency to be calculated. Using the “bscon” function within 

the R wateRmelon package [198] it is possible to convert the fluorescence intensity of 

these probes for each sample into an easy to understand percentage conversion 

efficiency. The lowest generally accepted bisulfite conversion efficiency is 80%, any 

samples which have a percentage conversion less than this should be removed. All of 

the samples within this study have a bisulfite conversion efficiency of greater than 92% 

and therefore do not need to be removed based on this metric (figure 4.5). 

 

4.4.1.3 Neuronal and Microglial have a Bimodal Beta Density Distribution 

To ensure our data fell within this metric the β-values for each sample were plotted as 

a beta density plot. It is clear that for the majority of loci within each sample this holds 

true (figure 4.6). Interestingly, it appears that the neuronal samples in general are more 

fully methylated (figure 4.6A) and the microglial samples more fully unmethylated 

(figure 4.6B). 
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Figure 4.5. Bisulfite conversion efficiency for samples in the study.

Using the fully methylated probes within the array the bisulfite conversion efficiency of each sample was calculated using the “bscon” function 
in the wateRmelon package and represented as a histogram for the (A) neuronal and (B) microglial samples. 
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Figure 4.6. Beta-density plots for iPSC-derived neurons and microglia. 

 

 

 

 

The DNA methylation level at each locus was determined using β-values, which are the 
ratio of fluorescence signal intensity for the methylated and unmethylated beads.  The β-
values of each probe in the (A) neuronal and (B) microglial samples were plotted on a beta 
density plot.  
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4.4.1.4 No Samples are Removed by P-filtering 

The final stage of the QC pipeline is to filter samples and probes based on their 

detection p-value. Using the “pfilter” function within the wateRmelon package [198] 

samples that contained more than one percent (by default) probes above the 0.05 

detection p-value threshold and probes with any samples having a beadcount less 

than three or more than one percent above the p-value threshold were removed. Using 

the default setting of one percent 524 sites that had a beadcount of less than three in 

five percent of samples and 1,708 sites having one percent with a detection p-value 

greater than 0.05 were removed from the neuronal samples. Similarly, 499 sites with 

a low bead count and 2,175 sites with a greater than one percent detection p-value 

were removed from the microglial samples. However, no whole samples were 

recommended for removal from either the neuronal or microglial samples.  

 

4.4.2 Data Analysis 

In this section I have described the results of the main analyses undertaken in this 

chapter. 

 

4.4.2.1 iPSC-Derived Neurons have a Lower Epigenetic Age  

Using the latest version of the epigenetic age calculator (available from: 

https://dnamage.genetics.ucla.edu/home) I assessed the epigenetic ages of the 

neuronal and microglial cells after the treatments with the different epigenetic 

modulators. Overall the iPSC-derived microglia (figure 4.7B) have a significantly 

higher epigenetic age than the neurons (p=4.88x10-3, figure 4.7A), although all of the 

epigenetic ages are still representative of immature cells, with the highest epigenetic 

age of any of the microglial samples being only ~0.7 years (figure 4.7). There was no 
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significant difference between treatments within the same cell type as the differences 

seen between treatments are very small and there are large variations between 

replicates (neurons: p=0.182 and microglia: p=0.780). There are a couple of 

exceptions to this, for example the treatment UNC0642 has less variation in epigenetic 

age between replicates in both the neurons and microglia. There are also some 

treatments that seem to have a greater effect in the neuronal samples, for instance 

TP472 decreases epigenetic age in the neurons but not in microglia, where there is 

an increase in variation. Finally, it is also worth note that UNC1999 seems to cause 

the greatest consistent decrease in epigenetic age in the neuronal cells. Unfortunately, 

it was not possible to run the UNC1999 treatment on the EPIC array for the microglial 

cells.  
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Figure 4.7. iPSC-derived neurons are epigenetically younger than iPSC-derived 
microglia. 

Using the latest iteration of the Horvath epigenetic age calculator [126] the biological or 
epigenetic ages of each sample were derived. The estimated epigenetic age for each 
treatment in the (A) neuronal and (B) microglial samples were then plotted as a boxplot. 
Error bars represent 1.5x the IQR. 
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4.4.2.2 iPSC-Derived Microglia have Undergone more Cell Divisions 

Using the coefficients of the MiAge calculator created by Youn and Wang [199] I 

estimated the number cell divisions each of the neuronal and microglial samples had 

gone through. It is clear that overall the microglial cells (figure 4.8B) had undergone 

significantly more rounds of cell division than the neuronal cells (p=5.00x10-3; figure 

4.8A). The microglial control cells have undergone approximately 990 replications on 

average whereas the neuronal control cells have only been through approximately 450 

divisions, less than half that of the microglia. There is also more variation within the 

microglial cells with some treatments, such as BAY598, causing there to be a 400 cell 

division spread, although this does seem to be driven by one replicate (figure 4.8B). 

Due to the large amount of variation in the microglial data it appears that the treatments 

have a more specific effect on the number of cell divisions in the neurons. For example, 

A395, GSK LSD1, MS023 and OF1 cause very little variation with there only being a 

difference of 12, 6, 11 and 7, respectively between the highest and lowest number of 

cell divisions within each treatment group. However, none of the treatments 

significantly affect the number of replications in either cell type (neurons: p=0.266, 

microglia: p=0.414) 
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Figure 4.8. iPSC-derived microglia have undergone more rounds of cell division. 

 

 

 

 

 

Using the coefficients of the MiAge calculator [199] the mitotic ages of each sample were 
derived. The estimated number of cell divisions for each treatment in the (A) neuronal and 
(B) microglial samples were estimated. Error bars represent 1.5x the IQR. 
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4.4.2.3 Dasen Normalisation 

To make it possible to make meaningful comparisons between the data, the “dasen” 

normalisation function within the wateRmelon package [198] was used. Dasen 

involves quantile normalisation, which normalises the data by type I and type II probe 

background levels first. After dasen normalisation, the median methylated and 

unmethylated signal intensities have a smaller range and are therefore consistent 

across samples (figure 4.9). Through plotting the normalised β-values it is possible to 

see that they still have a bimodal distribution and that the unmethylated (β-value 

between 0 and 0.2) and methylated (β-value between 0.8 and 1) peaks are much more 

consistent, and this is especially true of the fully methylated probes.  

 

By splitting the probes based on whether they are a type I or type II probe it is clear 

that for both the neuronal and microglial samples the type I probes contribute more to 

the unmethylated peak (β-value of less than 0.2; figure 4.10A and C) and the type II 

probes contribute more to the methylated peak (figure 4.10B and D). The type II 

microglial fully methylated peak (figure 4.10D) is also a lot smaller than that of the 

neuronal type II methylated peak (figure 4.10B). This would appear to be because 

there is an increase in hemi-methylation in the microglial type II probes. Finally, there 

is a split within the microglial type II fully methylated peak with there being two distinct 

groups forming.  
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Figure 4.9. Median methylated and unmethylated sample intensities after dasen normalisation. 

Quantile normalisation was performed using the dasen function within the wateRmelon package [198] to generate the normalised median 
methylated and unmethylated signal intensities. Graphical representation of median signal intensities relative to each other for the (A) neuronal 
and (B) microglial samples. 
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Figure 4.10. Median methylated and unmethylated sample intensities for type I and II probes after dasen normalisation.

Quantile normalisation was performed using dasen [198] to generate the normalised median methylated and unmethylated signal intensities. 
Probes were separated based on whether they were type I or type II probes and plotted individually. Density plots for (A) neuronal type I, (B) 
neuronal type II, (C) microglial type I and (D) microglial type II probes. 
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4.4.2.4 There is More Hemi-Methylation in the iPSC-Derived Microglia 

Following dasen normalisation, neuronal and microglial probes that were hemi-

methylated (having a β-value between 0.2 and 0.8) were extracted and plotted (figure 

4.11). From this is it clear that there are a larger proportion of hemi-methylated probes 

in the microglial samples than that of the neuronal samples. Specifically, there are 

512,850 hemi-methylated microglial probes and 476,870 hemi-methylated neuronal 

probes. In addition, the hemi-methylated probes have a lower β-value in the microglia 

samples than the neuronal samples, which could account for the smaller type II fully 

methylated peak in the microglia (figure 4.10D).  
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Figure 4.11. iPSC derived-microglial are more hemi-methylated than iPSC-derived 
neurons. 

 

 

 

 

 

 

 

After dasen normalisation probes containing β-values between 0.2 and 0.8 (hemi-
methylated probes) were then plotted, where blue represents the iPSC derived-neurons 
and green represents the iPSC derived-microglia. Error bars represent 1.5x the IQR. 
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 4.4.2.5 PCA Identifies Variation within Data 

Using the “prcomp” function within the default statistics package in R, principal 

components (PCs) that account for variation within each dataset were identified. The 

first five PCs were then correlated to known variables. From this it was determined 

that for the neuronal samples PC1 and PC3 correlate with the array plate the samples 

were run on, PC2 and PC4 correlate with the position on the BeadChip, and PC5 

correlates with ChipID (figure 4.12A). PC1 accounts ~4.11%, PC2 accounts for 

~2.72% and PC3 for ~1.92% of variation within the neuronal dataset (table 4.2). Within 

the microglial samples PC1 and PC2 both correlate with replicate and PC3 and PC4 

correlate with position on BeadChip (figure 4.12B). In the microglial samples PC1 

accounts for ~42.5%, PC2 for ~12.1% and PC3 for ~1.89% of variation within the data 

(table 4.3). 

 

Following this, PC1 was plotted against PC2 for both the neuronal and microglial 

samples with each point being coloured by its corresponding replicate (figure 4.13). 

This further demonstrates that PC1 and PC2 are associated with replicate in the 

microglial samples, as the data points group together by replicate (figure 4.13B). There 

is no grouping of samples by replicate with the neuronal data (figure 4.13A).   
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  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
Standard deviation 4.55 3.70 3.36 3.11 2.88 2.77 2.74 2.68 2.59 2.53 

Proportion of Variance 0.04 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 
Cumulative Proportion 0.04 0.07 0.09 0.11 0.13 0.14 0.16 0.17 0.18 0.19674  

 

Table 4.2. Variance explained by the first ten PCs in the neuronal dataset. 

 

 

 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Standard deviation 20.30 10.83 14.28 3.03 2.93 2.76 2.74 2.68 2.66 2.58 

Proportion of Variance 0.42 0.12 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Cumulative Proportion 0.42 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.61 0.62 

 

Table 4.3. Variance explained by the first ten PCs in the microglial dataset. 

 

Shown for each PC is the standard deviation, proportion of variance explained and the cumulative proportion explained.  

Shown for each PC is the standard deviation, proportion of variance explained and the cumulative proportion explained.  
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Figure 4.12. Variation in each dataset is identified using principal component analysis. 

Using the “prcomp” function within the default statistics package the principal components accounting for variation within the dataset were 
identified. The first five principal components were then correlated and plotted against known variables for both (A) neuronal and (B) microglial 
samples. The known variables were treatment, ChipID, position on Chip, array plate (neurons only), replicate, cell culture plate and well within 
the cell culture plate. Where blue indicates a positive correlation, red indicates a negative correlation, *=p<0.001, **=p<1e-8 and ***=p<1e-10. 
The colour intensity and size of the circle are proportional to the correlation coefficients.  
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Figure 4.13. PC1 clusters by replicate when plotted against PC2 in the microglial samples.

After PCA, PC1 and PC2 were plotted against one another for the (A) neuronal and (B) microglial samples to look for clustering within the 
data. Samples have been coloured by replicate number. 
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4.4.2.6 Combat Analysis Reduces Variation Induced by Replicate 

Using the “combat” function within the SVA package [332] it was possible to reduce 

the variation in the microglial dataset that was caused by replicate. Following combat 

analysis it is clear that PC1 and PC2 no longer correlate with replicate (figure 4.14A) 

and that the samples no longer cluster by replicate when PC1 is plotted against PC2 

(figure 4.14B). The proportion of variation accounted for by each PC was also reduced 

with PC1 accounting for ~5.03%, PC2 for ~2.08% and PC3 for ~1.88% variation in the 

microglial dataset after combat analysis (table 4.4). 
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  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
Standard deviation 4.65 2.99 2.84 2.83 2.58 2.53 2.47 2.45 2.39 2.37 

Proportion of Variance 0.05 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0 .01301 
Cumulative Proportion 0.05 0.07 0.09 0.11 0.12 0.14 0.15 0.17 0.18 0.19 

Table 4.4. Variance explained by the first ten PCs in the microglial dataset after combat analysis. 

Shown for each PC is the standard deviation, proportion of variance explained and the cumulative proportion explained after the microglial 
samples underwent combat confounder correction.  
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Figure 4.14. Variation caused by replicate in microglial samples is reduced.

Using the “combat” function within the SVA package the variation induced by replicate in the microglial samples was removed from the dataset. 
(A) Following combat analysis the new principal components were calculated and correlated to known variables including treatment, ChipID, 
position on the Chip, replicate, cell culture plate and the well within the cell culture plate. (B) Scatterplot of principal component one plotted 
against principal component two. *=p<0.001, **=p<1x10-8 and ***=p<1x10-10. The colour intensity and size of the circle are proportional to the 
correlation coefficients.  
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4.4.2.7 Epigenetic Modulators have Cell Type Specific Effects on Methylation 

I used linear regression to identify DMPs associated with each treatment in each cell 

type separately. Due to the low number of replicates I did not identify any Bonferroni-

significant loci but did identify a number of DMPs at a more relaxed p-value threshold 

of 5x10-4. As a number of compounds have related functions I wanted to identify 

whether the same probes were differentially methylated across all treatments of the 

same compound class. To do this I extracted the significant probes (i.e. p<5x10-4) from 

one modulator (the first alphabetically) and extracted the probes that were nominally 

significant (p<0.05) in all other modulators of that same compound class, with this 

performed for each cell type separately. Interestingly, whilst there were consistent 

methylation changes seen with compound class in the microglia (BRD: 427, HMT: 429, 

HKDM: 387, KMR: 369 and WD40: 422 probes nominally significant across all 

compounds in a class; table 4.5) the same cannot be said of the neuronal samples, 

as there was only consistent changes in the compound groups with the fewest number 

of modulators in the group (BRD: 0, HMT: 0, HKDM: 144, KMR: 120 and WD40: 330 

significant across all compounds in a class; table 4.5). 

 

To add further meaning to the consistent DNA methylation changes seen in the 

microglial samples, a pathway analysis was performed on the probes that were 

consistently differentially methylated across treatments in each compound class. 

Although few pathways reached FDR significance, several demonstrated nominally 

significant alterations in specific pathways in cells treated with compounds in the 

categories of treatment. First, the significant DMPs associated with BRD inhibitor 

treatment seem to be associated with pathways relating to receptor internalisation 

binding, endosomal pathways and kidney related pathways such as nephron tubule 



 
 

 

207 
 

and ureteric bud morphogenesis (table 4.6). The pathways associated with HMT 

inhibitor treatment related to protein targeting to the vacuole, mRNA processing and 

the AV node (table 4.7). HKDM treatment was related to tight junctions and GTPase 

activity and regulation (table 4.8). KMR treatment was related to the regulation of 

chromatin organisation, receptor binding and cell signalling and RNA related process 

(table 4.9). Finally, WD40 treatment was associated with pathways relating to 

apoptosis and the immune system including the interleukin-10 production (table 4.10). 
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  Number of consistently DMPs across compound class 
Cell Type BRD HMT HKDM KMR WD40  
Neurons 0 0 144 120 330 
Microglia 427 429 387 369 422 

Table 4.5. Number of consistent DMPs across all compounds of the same type. 

 

Number of consistent nominally significant DMPs across the same compound class in the 
neurons or microglia. Loci were identified by extracting the significant DMPs (p<5x10-4) from 
one compound in a given class (the first compound alphabetically) and then noting if they 
were also nominally significantly (p<0.05) differentially methylated in all of the other 
compounds of the same type.  
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GO ID Term Ontology 
No. of 
Genes 

in 
Term 

No. of 
DMPs P-value FDR Genes 

GO:0002090 regulation of receptor 
internalization BP 51 5 2.74x10-4 1.000 EGF; ANGPT1; LRRTM1; LRPAP1; NUMB 

GO:0005768 endosome CC 862 20 4.66x10-4 1.000 NISCH; NIPA1; ATP11A; CCDC22; SNX10; EHD4; HLA-DQB1; KIFC1; LRPAP1; OCRL; 
C11orf59; VAC14; PRKCZ; SPPL2B; C11orf2; RABEP2; FAM108A1; RILP; NUMB; VAMP8 

GO:0043393 regulation of protein 
binding BP 217 9 0.001 1.000 ANGPT1; LRPAP1; PAX7; PPP2CA; CTNNBIP1; TGFBR3; TIAM1; CFHR5; ARHGEF7 

GO:0001658 
branching involved in 

ureteric bud 
morphogenesis 

BP 60 5 0.001 1.000 FGF1; HOXB7; PKD2; CTNNBIP1; SIX1 

GO:0099010 modification of 
postsynaptic structure BP 17 3 0.002 1.000 CTNNA2; STAU1; TIAM1 

GO:0060675 ureteric bud 
morphogenesis BP 65 5 0.002 1.000 FGF1; HOXB7; PKD2; CTNNBIP1; SIX1 

GO:0072171 mesonephric tubule 
morphogenesis BP 66 5 0.002 1.000 FGF1; HOXB7; PKD2; CTNNBIP1; SIX1 

GO:0051098 regulation of binding BP 368 11 0.002 1.000 EGF; ANGPT1; LRPAP1; PAX7; PPP2CA; CTNNBIP1; EBF2; TGFBR3; TIAM1; CFHR5; 
ARHGEF7 

GO:0016323 basolateral plasma 
membrane CC 213 8 0.002 1.000 CTNNA2; DLG2; DSP; PKD2; SLC2A9; NDRG4; NUMB; MAP7 

GO:0005942 phosphatidylinositol 
3-kinase complex CC 26 3 0.002 1.000 PIK3R5; NRBF2; VAC14 

GO:0044431 Golgi apparatus part CC 915 19 0.003 1.000 
YIF1A; GPC5; MAPK8IP3; ATP11A; HLA-DQB1; LRPAP1; OCRL; PODXL2; RAB6B; 

SERPINA1; A2BP1; VAC14; NSFL1C; SPPL2B; ST3GAL1; C11orf2; AGPAT9; TRAPPC9; 
ASAP2 

GO:0060415 muscle tissue 
morphogenesis BP 82 5 0.003 1.000 DSP; IGSF22; PAX7; TGFBR3; TNNC1 

GO:0005769 early endosome CC 336 10 0.003 1.000 NISCH; NIPA1; ATP11A; EHD4; KIFC1; OCRL; VAC14; RABEP2; NUMB; VAMP8 

GO:0072078 nephron tubule 
morphogenesis BP 74 5 0.003 1.000 FGF1; HOXB7; PKD2; CTNNBIP1; SIX1 

GO:0005865 striated muscle thin 
filament CC 30 3 0.003 1.000 IGSF22; TNNC1; TNNT3 

GO:0048259 
regulation of 

receptor-mediated 
endocytosis 

BP 95 5 0.003 1.000 EGF; ANGPT1; LRRTM1; LRPAP1; NUMB 

GO:0072088 nephron epithelium 
morphogenesis BP 76 5 0.003 1.000 FGF1; HOXB7; PKD2; CTNNBIP1; SIX1 

GO:0036379 myofilament CC 31 3 0.003 1.000 IGSF22; TNNC1; TNNT3 

GO:0099563 modification of 
synaptic structure BP 22 3 0.003 1.000 CTNNA2; STAU1; TIAM1 

GO:0044440 endosomal part CC 496 12 0.004 1.000 SNX10; EHD4; HLA-DQB1; LRPAP1; OCRL; C11orf59; VAC14; SPPL2B; C11orf2; 
FAM108A1; RILP; VAMP8 
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GO:0048644 muscle organ 
morphogenesis BP 88 5 0.004 1.000 DSP; IGSF22; PAX7; TGFBR3; TNNC1 

GO:0072028 nephron 
morphogenesis BP 78 5 0.004 1.000 FGF1; HOXB7; PKD2; CTNNBIP1; SIX1 

GO:0061333 renal tubule 
morphogenesis BP 78 5 0.004 1.000 FGF1; HOXB7; PKD2; CTNNBIP1; SIX1 

GO:0071556 

integral component of 
lumenal side of 
endoplasmic 

reticulum membrane 

CC 27 3 0.004 1.000 HLA-DQB1; PKD2; SPPL2B 

GO:0098553 
lumenal side of 
endoplasmic 

reticulum membrane 
CC 27 3 0.004 1.000 HLA-DQB1; PKD2; SPPL2B 

Table 4.6. Pathways altered upon BRD inhibitor treatment. 

 

 

 

 

 

 

 

 

 

Shown are the top 25 most significant pathways after the iPSC-derived microglia were treated with compounds known to inhibit proteins 
containing bromodomains. Shown for each pathway is the GO ID, the pathway descriptor, the ontology of the pathway, the number of genes 
in the pathway, the number of DMPs in the pathway, p-value significance, FDR value and the list of significantly differentially methylated 
genes within the pathway. FDR=false discovery rate, BP=biological pathways, CC=cellular components and MF=molecular functions. 
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GO ID Term Ontology 
No. of 

Genes in 
Term 

No. of 
DMPs P-value FDR Genes 

GO:0086016 AV node cell action 
potential BP 11 3 5.39x10-4 1.000 RYR2; CACNA1C; CACNB2 

GO:0086027 AV node cell to bundle of 
His cell signaling BP 11 3 5.39x10-4 1.000 RYR2; CACNA1C; CACNB2 

GO:0086067 AV node cell to bundle of 
His cell communication BP 12 3 6.68x10-4 1.000 RYR2; CACNA1C; CACNB2 

GO:0019934 cGMP-mediated signaling BP 33 4 7.07x10-4 1.000 EDNRB; ADNP; KCNC2; NPR1 

GO:1900363 regulation of mRNA 
polyadenylation BP 16 3 7.51x10-4 1.000 CPEB3; RDBP; CPSF7 

GO:0005089 Rho guanyl-nucleotide 
exchange factor activity MF 76 6 0.001 1.000 FGD5; MCF2L; PLEKHG5; TRIO; ARHGEF6; ARHGEF10 

GO:0097066 response to thyroid 
hormone BP 27 3 0.002 1.000 GAS2L1; SIX1; TOMM20 

GO:0031440 regulation of mRNA 3'-end 
processing BP 27 3 0.003 1.000 CPEB3; RDBP; CPSF7 

GO:0086014 atrial cardiac muscle cell 
action potential BP 20 3 0.003 1.000 RYR2; CACNA1C; CACNB2 

GO:0086026 atrial cardiac muscle cell to 
AV node cell signaling BP 20 3 0.003 1.000 RYR2; CACNA1C; CACNB2 

GO:0086066 
atrial cardiac muscle cell to 

AV node cell 
communication 

BP 20 3 0.003 1.000 RYR2; CACNA1C; CACNB2 

GO:0030016 myofibril CC 216 8 0.003 1.000 SYNM; SYNE1; RYR2; SPTBN1; TNNI1; CACNA1C; SQSTM1; 
PDE4DIP 

GO:0072665 protein localization to 
vacuole BP 55 4 0.003 1.000 VTI1A; SH3BP4; PIK3R4; VPS13D 

GO:0019388 galactose catabolic 
process BP 10 2 0.004 1.000 GALK2; PGM1 

GO:0043292 contractile fiber CC 227 8 0.004 1.000 SYNM; SYNE1; RYR2; SPTBN1; TNNI1; CACNA1C; SQSTM1; 
PDE4DIP 

GO:0032414 
positive regulation of ion 

transmembrane transporter 
activity 

BP 95 5 0.004 1.000 CFTR; KCNC2; NLGN3; RYR2; CACNB2 

GO:0006623 protein targeting to vacuole BP 30 3 0.004 1.000 VTI1A; PIK3R4; VPS13D 

GO:0019935 cyclic-nucleotide-mediated 
signaling BP 213 7 0.006 1.000 ADRA2A; EDNRB; ADNP; PCLO; KCNC2; NPR1; BAI3 

GO:0050808 synapse organization BP 381 12 0.006 1.000 DSCAM; EPHA7; PDZRN3; ADNP; PCLO; PALM; PFN2; NLGN3; BAI3; 
PTPRF; SIX1; CACNB2 

GO:0032411 positive regulation of 
transporter activity BP 103 5 0.006 1.000 CFTR; KCNC2; NLGN3; RYR2; CACNB2 

GO:0098799 outer mitochondrial 
membrane protein complex CC 17 2 0.006 1.000 DNAJC11; TOMM20 
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GO:0051315 
attachment of mitotic 

spindle microtubules to 
kinetochore 

BP 13 2 0.006 1.000 ZNF828; MAD1L1 

GO:0031256 leading edge membrane CC 166 7 0.007 1.000 FGD5; WWC1; SH3YL1; KCNC2; PALM; PSD; SPTBN1 

GO:0035023 regulation of Rho protein 
signal transduction BP 131 6 0.007 1.000 FGD5; MCF2L; PLEKHG5; TRIO; ARHGEF6; ARHGEF10 

GO:0006012 galactose metabolic 
process BP 14 2 0.007 1.000 GALK2; PGM1 

 

Table 4.7. Pathways altered upon HMT inhibitor treatment. 

 

 

 

 

 

 

 

 

 

Shown are the top 25 most significant pathways after the iPSC-derived microglia were treated with compounds known to inhibit histone 
methyltransferases. Shown for each pathway is the GO ID, the pathway descriptor, the ontology of the pathway, the number of genes in the 
pathway, the number of DMPs in the pathway, p-value significance, FDR value and the list of significantly differentially methylated genes 
within the pathway. FDR=false discovery rate, BP=biological pathways, CC=cellular components and MF=molecular functions. 
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GO ID Term Ontology 
No. of 
Genes 

in Term 
No. of 
DMPs P-value FDR Genes 

GO:2000810 regulation of bicellular tight 
junction assembly BP 20 4 4.22x10-5 0.372 NPHP4; PRKACA; PRKCH; FZD5 

GO:1901888 regulation of cell junction 
assembly BP 87 6 4.90x10-4 1.000 DAPK3; NPHP4; WNT4; PRKACA; PRKCH; FZD5 

GO:0043087 regulation of GTPase 
activity BP 464 13 0.001 1.000 AGAP11; EPHA4; PLEKHG4; RACGAP1; NTF3; WNT4; RASIP1; PTPRN2; 

TSC2; PREX2; SYNGAP1; MTSS1L; TBC1D5 

GO:0070830 bicellular tight junction 
assembly BP 53 4 0.002 1.000 NPHP4; PRKACA; PRKCH; FZD5 

GO:0060314 
regulation of ryanodine-

sensitive calcium-release 
channel activity 

BP 26 3 0.002 1.000 JSRP1; PRKACA; CAMK2D 

GO:0120192 tight junction assembly BP 54 4 0.002 1.000 NPHP4; PRKACA; PRKCH; FZD5 

GO:0120193 tight junction organization BP 57 4 0.002 1.000 NPHP4; PRKACA; PRKCH; FZD5 

GO:0015662 

ATPase activity, coupled to 
transmembrane movement 

of ions, phosphorylative 
mechanism 

MF 33 3 0.003 1.000 FXYD2; ATP2A1; ATP2B1 

GO:0016782 
transferase activity, 
transferring sulfur-
containing groups 

MF 69 4 0.003 1.000 MPST; CHST8; TST; HS3ST3B1 

GO:0090075 relaxation of muscle BP 31 3 0.003 1.000 C5orf20; ATP2A1; CAMK2D 

GO:0043297 apical junction assembly BP 62 4 0.003 1.000 NPHP4; PRKACA; PRKCH; FZD5 

GO:1903779 regulation of cardiac 
conduction BP 58 4 0.003 1.000 ATP2A1; ATP2B1; PRKACA; CAMK2D 

GO:0097546 ciliary base CC 33 3 0.004 1.000 NPHP4; PRKACA; PRKAR1B 

GO:0006040 amino sugar metabolic 
process BP 38 3 0.004 1.000 CSGALNACT1; LARGE; GFPT2 

GO:1903312 negative regulation of 
mRNA metabolic process BP 71 4 0.004 1.000 CIRBP; DHX9; SFRS8; RBM42 

GO:0043547 positive regulation of 
GTPase activity BP 389 10 0.005 1.000 AGAP11; PLEKHG4; RACGAP1; NTF3; WNT4; TSC2; PREX2; SYNGAP1; 

MTSS1L; TBC1D5 

GO:0051279 
regulation of release of 

sequestered calcium ion 
into cytosol 

BP 80 4 0.007 1.000 JSRP1; PRKACA; PRKCE; CAMK2D 

GO:0009101 glycoprotein biosynthetic 
process BP 316 8 0.008 1.000 C3orf21; GALNT9; CSGALNACT1; CHST8; B3GNT9; LARGE; GFPT2; 

HS3ST3B1 

GO:0033017 sarcoplasmic reticulum 
membrane CC 38 3 0.008 1.000 JSRP1; ATP2A1; CAMK2D 

GO:0044273 sulfur compound catabolic 
process BP 51 3 0.009 1.000 GGT6; MPST; TST 



 
 

 

214 
 

GO:0071333 cellular response to glucose 
stimulus BP 126 5 0.010 1.000 OPA1; PRKACA; PRKCE; PTPRN2; ZNF236 

GO:0090630 activation of GTPase 
activity BP 83 4 0.010 1.000 PLEKHG4; NTF3; MTSS1L; TBC1D5 

GO:0071331 cellular response to hexose 
stimulus BP 128 5 0.011 1.000 OPA1; PRKACA; PRKCE; PTPRN2; ZNF236 

GO:0030145 manganese ion binding MF 53 3 0.011 1.000 C3orf21; PRKACA; LARGE 

GO:0071326 cellular response to 
monosaccharide stimulus BP 129 5 0.011 1.000 OPA1; PRKACA; PRKCE; PTPRN2; ZNF236 

Table 4.8. Pathways altered upon HKDM inhibitor treatment. 

 

 

 

 

 

 

 

 

 

 

Shown are the top 25 most significant pathways after the iPSC-derived microglia were treated with compounds known to inhibit histone lysine 
demethylases. Shown for each pathway is the GO ID, the pathway descriptor, the ontology of the pathway, the number of genes in the 
pathway, the number of DMPs in the pathway, p-value significance, FDR value and the list of significantly differentially methylated genes 
within the pathway. FDR=false discovery rate, BP=biological pathways, CC=cellular components and MF=molecular functions. 
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GO ID Term Ontology 
No. of 
Genes 
in Term 

No. of 
DMPs P-value FDR Genes 

GO:0031057 negative regulation of 
histone modification BP 40 6 3.12x10-6 0.027 PHF1; KDM3A; SKI; TWIST1; UCN; H2AFY 

GO:1905268 negative regulation of 
chromatin organization BP 60 6 9.74x10-6 0.043 PHF1; KDM3A; SKI; TWIST1; UCN; H2AFY 

GO:0031056 regulation of histone 
modification BP 138 7 3.70x10-4 1.000 PHF1; WDR70; KDM3A; SKI; TWIST1; UCN; H2AFY 

GO:0008307 structural constituent of 
muscle MF 44 4 8.54x10-4 1.000 IGSF22; PLEC1; TTN; ACTN2 

GO:1902275 regulation of chromatin 
organization BP 174 7 8.74x10-4 1.000 PHF1; WDR70; KDM3A; SKI; TWIST1; UCN; H2AFY 

GO:2001251 
negative regulation of 

chromosome 
organization 

BP 142 6 0.001 1.000 PHF1; KDM3A; SKI; TWIST1; UCN; H2AFY 

GO:0005104 fibroblast growth factor 
receptor binding MF 26 3 0.001 1.000 FGF2; NPTN; KL 

GO:0031061 negative regulation of 
histone methylation BP 20 3 0.001 1.000 PHF1; KDM3A; H2AFY 

GO:0016072 rRNA metabolic 
process BP 237 7 0.001 1.000 NGDN; PELP1; UTP11L; H2AFY2; USP36; RPS2; H2AFY 

GO:0010996 response to auditory 
stimulus BP 23 3 0.002 1.000 USP53; UCN; NRXN1 

GO:0030506 ankyrin binding MF 20 3 0.002 1.000 ATP1A1; PLEC1; SPTBN1 

GO:0031430 M band CC 29 3 0.002 1.000 IGSF22; SPTBN1; TTN 

GO:0045595 regulation of cell 
differentiation BP 1747 28 0.002 1.000 

PQBP1; VAX1; ACAP3; C20orf123; UNC5D; FGF2; NPTN; GLI2; HOXA7; HOXB8; 
HSPA1A; KDR; MIR9-1; PPP2CA; H2AFY2; KDM3A; PRKCI; CTNNBIP1; PTHLH; 

PRDM16; SEMA3F; SKI; TPH1; TWIST1; ARHGEF7; BRSK2; NEURL; H2AFY 
GO:0044449 contractile fiber part CC 212 7 0.002 1.000 SYNE1; IGSF22; PLEC1; SPTBN1; TTN; CACNA1C; ACTN2 

GO:0030016 myofibril CC 216 7 0.003 1.000 SYNE1; IGSF22; PLEC1; SPTBN1; TTN; CACNA1C; ACTN2 

GO:0045616 
regulation of 
keratinocyte 

differentiation 
BP 39 3 0.003 1.000 HOXA7; H2AFY2; H2AFY 

GO:0033120 positive regulation of 
RNA splicing BP 35 3 0.003 1.000 ERN1; HSPA1A; NCBP1 

GO:0043292 contractile fiber CC 227 7 0.004 1.000 SYNE1; IGSF22; PLEC1; SPTBN1; TTN; CACNA1C; ACTN2 

GO:0051393 alpha-actinin binding MF 31 3 0.004 1.000 IGSF22; TTN; CACNA1C 

GO:0000805 X chromosome CC 10 2 0.004 1.000 H2AFY2; H2AFY 

GO:0040011 locomotion BP 1812 27 0.004 1.000 
NCKAP1; VAX1; CHRM4; ACAP3; UNC5D; FGF2; GCET2; NPTN; GLI2; HOXA7; 
KDR; LCK; RERE; PRKCI; PTPRK; TRIM27; SEMA3F; SKI; SPTBN1; TWIST1; 

TRIM26; SYDE1; ARHGEF7; NEURL; NRXN1; CELSR1; ELMO1 
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Table 4.9. Pathways altered upon KMR inhibitor treatment. 

 

 

 

 

 

 

 

 

 

GO:0030955 potassium ion binding MF 10 2 0.004 1.000 ATP1A1; PDXK 

GO:1901836 

regulation of 
transcription of 

nucleolar large rRNA by 
RNA polymerase I 

BP 13 2 0.005 1.000 H2AFY2; H2AFY 

GO:0031672 A band CC 40 3 0.005 1.000 IGSF22; SPTBN1; TTN 

GO:0098787 
mRNA cleavage 

involved in mRNA 
processing 

BP 14 2 0.005 1.000 ERN1; NCBP1 

Shown are the top 25 most significant pathways after the iPSC-derived microglia were treated with compounds known to inhibit proteins 
containing methyl lysine readers. Shown for each pathway is the GO ID, the pathway descriptor, the ontology of the pathway, the number of 
genes in the pathway, the number of DMPs in the pathway, p-value significance, FDR value and the list of significantly differentially methylated 
genes within the pathway. FDR=false discovery rate, BP=biological pathways, CC=cellular components and MF=molecular functions. 
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GO ID Term Ontology 
No. of 
Genes 
in Term 

No. of 
DMPs P-value FDR Genes 

GO:0043649 dicarboxylic acid 
catabolic process BP 17 3 0.001 1.000 ACOT4; ALDH1L2; GAD1 

GO:0048172 
regulation of short-term 

neuronal synaptic 
plasticity 

BP 13 3 0.001 1.000 GRIK2; SYP; PPFIA3 

GO:0006110 regulation of glycolytic 
process BP 41 4 0.001 1.000 ESRRB; GAPDHS; PRKAG2; HDAC4 

GO:0030811 regulation of nucleotide 
catabolic process BP 42 4 0.001 1.000 ESRRB; GAPDHS; PRKAG2; HDAC4 

GO:0043470 
regulation of 

carbohydrate catabolic 
process 

BP 48 4 0.002 1.000 ESRRB; GAPDHS; PRKAG2; HDAC4 

GO:2001169 regulation of ATP 
biosynthetic process BP 50 4 0.002 1.000 ESRRB; GAPDHS; PRKAG2; HDAC4 

GO:0032786 
positive regulation of 

DNA-templated 
transcription, elongation 

BP 30 3 0.002 1.000 BRD4; ELL3; CCNT1 

GO:1902547 

regulation of cellular 
response to vascular 
endothelial growth 

factor stimulus 

BP 22 3 0.002 1.000 DLL1; MYO1C; ADAMTS12 

GO:0051196 regulation of coenzyme 
metabolic process BP 55 4 0.003 1.000 ESRRB; GAPDHS; PRKAG2; HDAC4 

GO:0043065 positive regulation of 
apoptotic process BP 626 15 0.003 1.000 CYP1B1; DAPK3; AES; DFNA5; FAP; TNFAIP8; GRIK2; FBXW7; TRIM39; PRDM11; 

RPS6KA2; TFDP1; ZBTB16; ARHGEF6; HDAC4 

GO:0043068 positive regulation of 
programmed cell death BP 630 15 0.003 1.000 CYP1B1; DAPK3; AES; DFNA5; FAP; TNFAIP8; GRIK2; FBXW7; TRIM39; PRDM11; 

RPS6KA2; TFDP1; ZBTB16; ARHGEF6; HDAC4 

GO:0019359 nicotinamide nucleotide 
biosynthetic process BP 105 5 0.004 1.000 ESRRB; GAPDHS; PRKAG2; CARKD; HDAC4 

GO:0019363 pyridine nucleotide 
biosynthetic process BP 105 5 0.004 1.000 ESRRB; GAPDHS; PRKAG2; CARKD; HDAC4 

GO:0019369 arachidonic acid 
metabolic process BP 49 3 0.004 1.000 MGLL; CYP1B1; TBXAS1 

GO:0000083 

regulation of 
transcription involved in 

G1/S transition of 
mitotic cell cycle 

BP 28 3 0.004 1.000 ESRRB; BRD4; TFDP1 

GO:0072525 
pyridine-containing 

compound biosynthetic 
process 

BP 108 5 0.005 1.000 ESRRB; GAPDHS; PRKAG2; CARKD; HDAC4 

GO:0032653 regulation of interleukin-
10 production BP 45 3 0.005 1.000 DLL1; BCL3; TNFSF4 

GO:0072330 monocarboxylic acid 
biosynthetic process BP 287 8 0.005 1.000 MGLL; RDH10; ESRRB; GAD1; GAPDHS; PRKAG2; TBXAS1; HDAC4 
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GO:1903578 regulation of ATP 
metabolic process BP 71 4 0.006 1.000 ESRRB; GAPDHS; PRKAG2; HDAC4 

GO:0032613 interleukin-10 
production BP 47 3 0.006 1.000 DLL1; BCL3; TNFSF4 

GO:1900371 
regulation of purine 

nucleotide biosynthetic 
process 

BP 71 4 0.006 1.000 ESRRB; GAPDHS; PRKAG2; HDAC4 

GO:0010942 positive regulation of 
cell death BP 681 15 0.006 1.000 CYP1B1; DAPK3; AES; DFNA5; FAP; TNFAIP8; GRIK2; FBXW7; TRIM39; PRDM11; 

RPS6KA2; TFDP1; ZBTB16; ARHGEF6; HDAC4 

GO:0030808 regulation of nucleotide 
biosynthetic process BP 72 4 0.006 1.000 ESRRB; GAPDHS; PRKAG2; HDAC4 

GO:0008047 enzyme activator 
activity MF 504 12 0.007 1.000 TOM1L1; SH3D20; RASA3; ARHGEF15; RACGAP1; ARF1; PRKAG2; RIN2; ARHGEF10L; 

CCNT1; STARD13; ARHGEF6 

GO:0051193 regulation of cofactor 
metabolic process BP 73 4 0.007 1.000 ESRRB; GAPDHS; PRKAG2; HDAC4 

Table 4.10. Pathways altered upon WD40 inhibitor treatment. 

 

Shown are the top 25 most significant pathways after the iPSC-derived microglia were treated with compounds known to inhibit proteins 
containing WD40 domains. Shown for each pathway is the GO ID, the pathway descriptor, the ontology of the pathway, the number of genes 
in the pathway, the number of DMPs in the pathway, p-value significance, FDR value and the list of significantly differentially methylated 
genes within the pathway. FDR=false discovery rate, BP=biological pathways, CC=cellular components and MF=molecular functions. 
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4.4.2.8 There is Significant Correlation of Top DMPs between Compound 

Types 

As there was little consistency in the nominally significantly DMPs identified across 

compound classes in the neuronal samples I wanted to check whether the treatments 

within each class were having a consistent effect, in terms of effect size and direction 

of effect, as due to the limited number of replicates in the study it could be 

underpowered. When comparing the direction of effect and effect size within each drug 

class within the neuronal samples it is clear that the direction of effect of the top 100 

probes is consistent within the treatments of the same type and that the effect sizes of 

these top probes also correlate strongly with one another (table 4.11 and figure 4.15). 

This is also the same within the iPSC-derived microglia, which again show a significant 

enrichment for the direction of effect and a significant correlation of effect sizes for the 

top 100 DMPs identified within each drug class (table 4.12 and figure 4.16). 

 

4.4.2.9 There is no Correlation of Top DMPs between Cell Types 

To determine whether the treatments had a similar effect in both cell types the top 100 

DMPs for each treatment in the neuronal samples were extracted and a sign test and 

correlation test were performed against the same loci in the microglia treated with the 

same compound. These analyses highlighted that there is no consistent direction of 

effect or correlation of effect size in the same drug in both the neurons and microglia 

(table 4.13 and figure 4.17), suggesting that they are effecting different genes in the 

different cell types. 
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Drug 
Class 

Compound Name Sign Test p-
value 

Correlation r-
value 

Correlation p-
value 

BRD (+)-JQ1 - - - 
BAY299 4.83x10-13 0.80 <2.20x10-16 

BAZ2-ICR 2.61x10-12 0.80 <2.20x10-16 
BI 9564 4.83x10-13 0.82 <2.20x10-16 

GSK2801 3.32x10-18 0.77 <2.20x10-16 
I-BRD9 2.61x10-12 0.71 <2.20x10-16 

I-CBP 112 2.54x10-16 0.81 <2.20x10-16 
NI 57 1.31x10-11 0.72 <2.20x10-16 

NVS-CECR2-1 1.91x10-15 0.81 <2.20x10-16 
OF 1 8.28x10-14 0.78 <2.20x10-16 
PFI 3 2.61x10-12 0.75 <2.20x10-16 

TP 472 1.31x10-11 0.81 <2.20x10-16 
HKDM GSK LSD 1 dihydrochloride - - - 

GSKJ4 2.54x10-16 0.83 <2.20x10-16 
HMT A 196 - - - 

A 366 2.70x10-10 0.72 <2.20x10-16 
BAY598 5.64x10-7 0.75 <2.20x10-16 
GSK343 1.31x10-11 0.72 <2.20x10-16 

GSK591 dihydrochloride 8.28x10-14 0.72 <2.20x10-16 
MS 023 dihydrochloride 3.06x10-17 0.77 <2.20x10-16 

MS049 oxalate salt 4.83x10-13 0.63 3.56x10-12 

RPFI 2 hydrochloride 1.31x10-14 0.78 <2.20x10-16 
SGC 0946 8.28x10-14 0.78 <2.20x10-16 
SGC 707 1.31x10-14 0.82 <2.20x10-16 
TP 064 4.83x10-13 0.78 <2.20x10-16 

UNC 0642 3.06x10-17 0.85 <2.20x10-16 
UNC 1999 1.31x10-11 0.77 <2.20x10-16 

KMR A 395 - - - 

UNC 1215 3.32x10-18 0.80 <2.20x10-16 

 

Table 4.11. Correlation of effect size and direction of effect for the top 100 most 
significant DMPs identified in neuronal samples. 

 

 

Shown are the correlations of effect size for the top 100 most significant DMPs in one 
compound (the first alphabetically) in a given category, to other compounds in that same 
drug class within the iPSC-derived neurons. The drug class, compound name, sign test p-
value and Pearson correlation are shown for each drug treatment. The compounds that do 
not have p-values or correlations were the drugs used to assess correlations within the 
other treatments of the same class. Where BRD=bromodomain inhibitors, HKDM=histone 
lysine demethylase inhibitors, HMT=histone methyltransferase inhibitors and KMR=methyl 
lysine reader inhibitors. (+)-JQ1, GSK LSD1, A196 and A 395 were chosen to test against 
the others as they came first alphabetically. 
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Figure 4.15. The effect size of the top 100 most significant DMPs identified in 
neurons after treatment with one compound are highly correlated with the effect 
size of the same probes in neurons treated with another compound in the same 
drug class. 

To assess whether the compounds of the same class were having a consistent effect on 
DNA methylation, the effect size of the top 100 most significant DMPs identified for one 
compound were compared to the effect size of the same probes in another compound in 
the same category using Pearson correlations. Shown as an example are the correlation 
of effect sizes of two drugs from the (A) BRD inhibitors, (B) HKDM inhibitors, (C) HMT 
inhibitors and (D) KMR inhibitors. For each comparison the correlation (r value) is also 
given. Where BRD=bromodomain inhibitors, HKDM=histone lysine demethylase inhibitors, 
HMT=histone methyltransferase inhibitors and KMR=methyl lysine reader inhibitors. 
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Table 4.12. Correlation of effect size and direction of effect for the top 100 most 
significant DMPs identified in microglial samples. 

  

 

Drug 
Class 

Compound Name Sign Test p-
value 

Correlation r-value Correlation p-
value 

BRD (+)-JQ1 - - - 

BAY299 1.31x10-11 0.75 <2.20x10-16 

BAZ2-ICR 8.28x10-14 0.74 <2.20x10-16 

BI 9564 2.61x10-12 0.78 <2.20x10-16 

GSK2801 1.31x10-11 0.75 <2.20x10-16 

I-BRD9 1.31x10-11 0.75 <2.20x10-16 

I-CBP 112 1.12x10-9 0.73 <2.20x10-16 

NI 57 4.82x10-13 0.78 <2.20x10-16 

NVS-CECR2-1 8.28x10-14 0.78 <2.20x10-16 

OF 1 1.31x10-11 0.71 <2.20x10-16 

PFI 3 8.28x10-14 0.69 1.69x10-15 

TP 472 6.15x10-11 0.72 <2.20x10-16 

HKDM GSK LSD 1 dihydrochloride - - - 

GSKJ4 3.06x10-17 0.80 <2.20x10-16 

HMT A 196 - - - 

A 366 3.06x10-17 0.78 <2.20x10-16 

BAY598 1.67x10-6 0.55 3.93x10-9 

GSK343 2.54x10-16 0.77 <2.20x10-16 

GSK591 dihydrochloride 1.59x1-8 0.73 <2.20x10-16 

MS 023 dihydrochloride 4.83x10-13 0.80 <2.20x10-16 

MS049 oxalate salt 1.91x10-15 0.80 <2.20x10-16 

RPFI 2 hydrochloride 8.28x10-14 0.74 <2.20x10-16 

SGC 0946 1.31x10-14 0.71 <2.20x10-16 

SGC 707 4.34x10-9 0.76 <2.20x10-16 

TP 064 1.31x10-11 0.66 1.04x10-13 

UNC 0642 3.32x10-18 0.85 <2.20x10-16 

KMR A 395 - - - 

UNC 1215 2.70x10-11 0.75 <2.20x10-16 

Shown are the correlations of effect size and direction of effect of the top 100 DMPs in one 
compound (the first alphabetically) in a given category, to other compounds in that same 
drug class within the iPSC-derived microglia. The drug class, compound name, sign test 
p-value and Pearson correlation are shown for each drug treatment. The compounds that 
do not have p-values or correlations were the drugs used to assess correlations within the 
other treatments of the same class. Where BRD=bromodomain inhibitors, HKDM=histone 
lysine demethylase inhibitors, HMT=histone methyltransferase inhibitors and KMR=methyl 
lysine reader inhibitors. (+)-JQ1, GSK LSD1, A196 and A 395 were chosen to test against 
the others as they came first alphabetically. 
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Figure 4.16. The effect size of the top 100 most significant DMPs identified in 
microglia after treatment with one compound are highly correlated with the effect 
size of the same probes in microglia treated with another compound of the same 
drug class.  

 

To assess whether the compounds of the same class were having a consistent effect on 
DNA methylation, the effect size of the top 100 most significant DMPs were compared to 
the effect size of the same probes in another compound in the same category using 
Pearson correlations. Shown as an example are the correlation of effect sizes of two 
compounds from the (A) BRD inhibitors, (B) HKDM inhibitors, (C) HMT inhibitors and (D) 
KMR inhibitors. For each comparison the correlation (r value) is also given. Where 
BRD=bromodomain inhibitors, HKDM=histone lysine demethylase inhibitors, HMT=histone 
methyltransferase inhibitors and KMR=methyl lysine reader inhibitors. 
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Drug 
Class 

Compound Name Sign Test p-
value 

Correlation r-
value 

Correlation p-
value 

BRD (+)-JQ1 0.002 -0.32 0.001 

BAY299 0.617 0.02 0.826 

BAZ2-ICR 1.000 -0.08 0.404 

BI 9564 0.920 0.08 0.451 

GSK2801 0.271 -0.14 0.163 

I-BRD9 0.484 -0.06 0.522 

I-CBP 112 0.271 0.03 0.741 

NI 57 0.193 0.01 0.926 

NVS-CECR2-1 0.133 0.00 0.990 

OF 1 0.920 -0.08 0.428 

PFI 3 0.617 -0.11 0.270 

TP 472 0.271 -0.12 0.250 

HKDM GSK LSD 1 dihydrochloride 0.484 0.10 0.800 

GSKJ4 1.000 -0.03 0.748 

HMT A 196 0.617 -0.19 0.066 

A 366 0.617 -0.06 0.569 

BAY598 0.764 0.01 0.887 

GSK343 0.920 -0.19 0.059 

GSK591 dihydrochloride 0.271 0.01 0.957 

MS 023 dihydrochloride 0.920 0.05 0.617 

MS049 oxalate salt 0.193 0.04 0.691 

RPFI 2 hydrochloride 0.368 0.27 0.007 

SGC 0946 0.271 -0.11 0.288 

SGC 707 0.764 -0.12 0.225 

TP 064 0.484 -0.11 0.276 

UNC 0642 0.920 0.06 0.553 

KMR A 395 0.920 -0.07 0.520 

UNC 1215 0.617 0.03 0.779 

Table 4.13. Correlation of effect size and direction of effect for the top 100 most 
significant DMPs identified in the neurons treated with a compound, with the same 
probes in microglia treated with the same compound. 

 

 

 

Shown are the correlations of effect size and direction of effect of the top 100 DMPs 
identified in the neurons given a particular compound, with the same probes in microglia 
treated with the same compound. The compound class, compound name, sign test p-value 
and Pearson correlation are shown for each drug treatment. Where BRD=bromodomain 
inhibitors, HKDM=histone lysine demethylase inhibitors, HMT=histone methyltransferase 
inhibitors and KMR=methyl lysine reader inhibitors. 
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Figure 4.17. There is no correlation of effect sizes for the top 100 most significant 
DMPs identified in neurons treated with a compound, with the same probes in 
microglia treated with the same compound.  

To assess whether each drug was having a consistent significant effect on the top 
100 DMPs identified in the neurons in a particular compound, with the same probes 
in microglia treated with the same compound binomial testing and Pearsons 
correlation were used. Shown as an example are the correlations of effect sizes for 
(A) (+)-JQ1, (B) GSK LSD dihydrochloride, (C) A 196 and (D) A 395 within the 
neurons and microglia. For each comparison the correlation (r value) is also given. 
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4.5 Discussion 

In this chapter I have undertaken epigenome-wide analyses at base-pair 

resolution of the DNA methylation changes that occur when iPSC-derived 

neurons and microglia are treated with different compounds that are known to 

affect different epigenetic mechanisms. To facilitate this, iPSC-derived neurons 

and microglia were treated with each of the different compounds in triplicate, DNA 

was extracted and then run on the Illumina EPIC array to quantify the DNA 

methylation levels at over 850,000 loci. 

 

One of the first things to be shown in this chapter is that both the stem cell derived 

neurons and microglia have an immature epigenetic or biological age. Consistent 

with previous chapters the epigenetic ages of the neuronal samples are all foetal 

with the control sample ages being approximately ~-0.45 to ~-0.30 years. The 

microglia on the other hand have a significantly higher epigenetic age which for 

the control group, ranged from ~0.20 and ~0.40 years. This suggests that the 

iPSC-derived microglia are older in terms of their epigenetic age but despite this 

are still representative of microglia from an infant. The other marker of “age” used 

in this chapter was the number of cellular divisions the cells had been through. 

Again this was higher for the microglial samples, with the neuronal control 

samples only having undergone ~450 divisions, which is less than half of that of 

the control microglia, which had been through approximately 1000 cellular 

divisions. This suggests that the microglia have undergone more divisions, which 

is likely a reflection of the fact iPSC-derived microglia are proliferative whereas 

neurons are not.  
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Interestingly, none of the treatments seemed to have any effect on either the 

epigenetic or mitotic ages of the neurons or microglia. This lack of effect could be 

due to the short duration of treatment for the two cell types, which was only 24 

hours. Had the cells been exposed to the treatments for longer it is possible that 

there could have been a greater effect on the epigenetic and mitotic ages of the 

cells. Despite the lack of significant effect on maturity some of the treatments do 

seem to have reduced the amount of variation in epigenetic age. For example, 

UNC 0642 reduced the variation in epigenetic age for both neurons and microglia, 

suggesting that UNC 0642 has a more specific effect on the loci used to calculate 

the epigenetic age in both cell types than other treatments. Alongside this, other 

compounds seemed to have a cell type specific reduction in variation. For 

example, UNC 1999, MS 049 and A 196 reduced the variation in the neuronal 

samples yet A 366 OF1 and TP 064 reduced variation in the microglial epigenetic 

ages. This could suggest that the treatments are having cell type specific effects 

and that again the loci used to derive the epigenetic age clock are most 

susceptible to these compounds. Although, as there are few replicates per 

treatment it is difficult to truly assess the effect of treatments on variation. In terms 

of mitotic age, the neuronal samples have less variation in terms of number of 

cellular divisions, which is likely a consequence of all the replicates for the 

neuronal being plated and processed at once whilst the microglial replicates were 

plated and processed separately. Aside from GSK 591 the treatments do not 

seem to reduce the variation in any of the microglial samples. Whereas in the 

neuronal samples A 395, GSK LSD1 dihydrochloride, MS 023 and OF1 seem to 

reduce variation. In the future to combat the variation seen in the microglial 

samples it will be important to plate and collect the replicates all at the same time 

and to run more replicates per treatment group.  
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Using linear regression models I aimed to identify DMPs that were associated 

with each type of treatment. I did not identify any Bonferroni significant DMPs, 

which is likely due to the low number of replicates per treatment group and in the 

future it will be of interest to include more samples. However, given the fact that 

DNA methylation at neighbouring CpG sites is highly correlated, Bonferroni 

correction is likely overly conservative [333]. To this end I did identify a number 

of DMPs at a more relaxed p-value threshold of 5.00x10-4, and particularly within 

the microglial samples a number of these DMPs were also nominally significant 

(p <0.05) in all of the other treatments targeting the same epigenetic mark i.e. 

BRD, HMT, HKDM or KMR. This suggests that within the microglial cells the 

treatments of the same category seem to cause similar methylation changes at 

the same loci. From running pathway analyses on these DMPs it was determined 

that the inhibitors could be affecting pathways relating to receptor internalisation, 

GTPase activity, the regulation of chromatin organisation, the regulation of 

apoptosis and immune relevant pathways. However, it is worth noting that only 

two of the pathways pass the FDR significance threshold and so cautious 

interpretation is required. To validate these pathway analyses findings further 

experimental validation is necessary.  In contrary to this very few common DMPs 

were seen in neurons treated with compounds of the same class. This suggests 

that unlike in the microglia these treatments had a less specific effect on DNA 

methylation as the same loci were not significant across the different treatments. 

This is possibly a reflection of the short treatment time and low number of 

replicates used, as previously discussed in the future it would be of great interest 

to treat the cells for longer and also undertake more replicates in order to try and 

boost the power of the study.  
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In order to circumnavigate the issue of power I instead decided to look at the 

direction of effect and effect size for each of the compounds in the same class as 

these measures are unaffected by the number of replicates. From this it was 

possible to determine that the compounds of the same class, i.e. BRD, HMT or 

HKDM caused consistent changes in terms of the direction of effect and had 

highly correlated effect sizes for the top 100 DMPs in both the neurons and 

microglia. This demonstrates that despite there not being common DMPs within 

the same treatment groups the treatments are exerting a similar effect on 

methylation at the same CpGs within the neurons.  Interestingly, when the effect 

size and direction of effect were compared between the neurons and microglia 

given the same treatment there was no significant consistency in the direction of 

effect and the effect sizes were not correlated. This infers that the treatments are 

exerting cell type specific effects on the methylation of the top 100 DMPs. In 

general, the compounds may have a more specific effect in the microglial cells 

and this is why there are consistent changes seen across compound categories 

despite there being little overlap with the top 100 DMPs of the neuronal samples.  

 

Another possibility is that the lack of correlation between the treatments in the 

different cell types is a result of the different genetic backgrounds of the cell types. 

A consequence of the neurons and microglia being generated in different labs is 

that they are derived from different people. It is possible that the differential effect 

of methylation seen in the different cell types is a reflection of the genotypic 

differences between them. In order to determine whether this is indeed the case 

it would be of interest to repeat this experiment using neurons and microglia that 

have been derived from the same person/cell line. However regardless, based 
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on the data presented in this chapter, moving forward it would appear that the 

iPSC-derived microglia are a more interesting model in which to study the effects 

of these epigenetic modulators. The discordancy between the DNA methylation 

changes in neurons and microglia potentially demonstrates that the microglia 

could be the more interesting cell type to further study the effects of the epigenetic 

modulators. This is because within the microglial samples there are loci which 

are consistently differentially methylated in all compounds of the same type 

suggesting that the compounds of the same type have a similar effect in terms of 

the pathways they are potentially altering.   

 

Alongside assessing methylation it would also be interesting to identify the 

transcriptomic changes and changes to the specific histone modifications 

themselves (i.e. histone acetylation or methylation) that are associated with each 

of the treatments. Having both transcriptomic and DNA methylomic information 

in both cell types and for all treatments would make it possible to determine 

whether the cellular pathways associated with the differentially expressed genes 

are similar to the differentially methylated pathways I identified in microglia in the 

current study. The RNA for these samples has been collected but it wasn’t in the 

remit of this PhD to run the sequencing experiments and undertake the data 

analysis. Another interesting avenue in which this study could be taken further is 

to study other epigenetic mechanisms such as histone modifications as a number 

of the treatments are known to interact with or cause changes to the modifications 

of histones. Finally, it would be interesting to relate both the DNA methylomic and 

transcriptomic changes to the loci and pathways that are already known to be 

altered in the brain or blood of individuals with various diseases known to have a 

significant epigenetic component, such as AD. 
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One caveat of this study is that the replicates for the microglial samples were 

plated out and collected at different times whereas the neuronal replicates were 

all plated and collected at the same time. By collecting the replicates at different 

time it introduced variation into the data, which I was able to detect using PCA. 

As a result of this, and in order to remove the effect of replicate on the data, 

combat analysis was used. Whilst it is possible to control and reduce this variation 

it is not the ideal situation as you could potentially also be eliminating variation 

that is a result of the treatments. When you have very small sample 

numbers/replicates in the first instance removing any variation could potentially 

obscure the effect of treatment therefore introducing false negatives.  

 

Finally, in the future it will be important to expand this study to include different 

drug concentrations and different treatment times. A concentration of 3µM was 

chosen as all the inhibitors have been shown to have >30-fold selectivity versus 

other subfamilies and have been demonstrated to have on-target effects in cells 

at this concentration. Alongside this as this study is exploratory and only the initial 

effects the modulators have on DNA methylation were to be studied a treatment 

time of 24 hours was deemed acceptable. However, as modulators such as these 

could evoke a bi-phasic change within the cell lines used it will therefore be 

important in the future to determine the effect the compounds have at both 

different incubation times and at different concentrations.  
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4.6 Conclusions 

In this chapter I have characterised the genome-wide patterns of DNA 

methylation that are associated with the treatment of iPSC-derived neurons and 

microglia with different compounds known to affect epigenetic mechanisms. I 

have again shown that iPSC-derived cells have a foetal or immature epigenome 

and that the short treatment with the epigenetic modulators does not affect their 

epigenetic or mitotic age. Within the microglial samples similar DNA methylation 

changes were observed with compound within the same category, suggesting 

that the same loci are being affected by related compounds in microglia, which 

was not the case for the neurons. Alongside this within both the neuronal and 

microglial samples the compounds of the same type exerted a similar effect in 

terms of the effect size and direction of effect on DNA methylation. However, 

when comparing the effect size and direction of effect for the same compound in 

the two different cell types there was no significant correlation suggesting that the 

effects of each compound are cell type specific and this warrants further 

investigation. Through these analyses it is clear that there are large numbers of 

loci within both the neurons and microglia whose DNA methylation profile is 

altered upon treatment with the different epigenetic modulators.  

 

Overall, I have identified DNA methylomic variation within iPSC-derived neurons 

and microglia that is associated with compounds known to regulate epigenetic 

mechanisms. I have demonstrated that these changes happen in a cell type 

specific manner and that there are more consistent effects seen within the 

microglia making them potentially a more interesting cell type to investigate in the 

future.  
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 : DNA METHYLOMIC VARIATION INDUCED 
BY LPS CHALLENGE IN A HUMAN MICROGLIAL CELL 
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5.1 Introduction 

 

5.1.1 Microglial Biology and Response to Immune Challenge 

Despite being originally believed to be immune privileged, the CNS is now known 

to be able to have immunological capability, which differs from that of other 

peripheral tissues. These immune reactions depend on specialised innate 

immune cells such as microglia, which are the most common type of CNS-

resident immune cells. Unlike other brain cell types, microglia arise from EMPs in 

the yolk sac [54]. Resting microglia in the adult brain have a small cell body with 

many highly ramified processes (figure 1.3), a morphology which distinguishes 

them from other immune cells such as macrophages [58]. Microglial cells have a 

number of different functions and are critical in neurodevelopment [334-336], 

synaptogenesis [337-339] and responding to CNS immune challenges [340-342]. 

Under homeostatic conditions microglial cell bodies remain stationary whilst their 

processes move and scan the surrounding extracellular space communicating 

with astrocytes, neurons and blood vessels [343]. However, resting microglia can 

be activated by a number of CNS challenges including injury, infection, 

neurodegeneration and protein aggregates [344]. On detecting these insults 

microglial morphology changes rapidly and they become less ramified, begin to 

express more inflammatory markers and produce inflammatory mediators. For 

example, microglia have been shown to express toll like receptors [340] and 

release cytokines (IL-1β [345], IL-6 [346], TNF-α [347]), chemokines [348] and 

nitric oxide (NO) [341, 349]. This enables them to recruit other immune cells and 

initiate a wider immune response.  
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5.1.2 Neuroinflammation and AD 

Despite extensive research, it is still unknown what mechanisms lead to the onset 

of pathological Aβ and Tau aggregates in the brain in sporadic AD. Recent 

evidence has suggested that immune mechanisms may play a key role in AD risk 

and pathogenesis [80, 82]. One common theory surrounding the involvement of 

microglia in AD is through the recurrent/chronic activation of microglia during 

ageing or in the presence of Aβ plaques. These recurrent exposures, whether it 

be to AD related proteins or inflammatory molecules, can trigger morphological 

changes, leaving the microglia less ramified, and expressing cell surface antigens 

that are usually reminiscent of activated cells [58-60].  Once activated microglia 

have a heightened response to inflammatory stimuli, releasing more inflammatory 

molecules which can be neurotoxic [67]. 

 

A number of large scale GWAS studies have identified genetic variation in 

immune-related genes in LOAD. These GWAS studies have indicated that LOAD 

is a multifactorial disease with many different SNPs contributing to disease onset 

[80, 81, 350-354]. These GWAS studies have also revealed that many of the 

SNPs that are associated with AD reside in genes involved in microglial biology 

[80, 352, 353]. This includes common variants such as CLU, CR1, CD33, ABCA7, 

EPHA1 and MS4A and more rare variants identified from exome-sequencing 

studies such as TREM2 [90, 350, 351, 353, 354]. In recent years there have been 

several functional studies conducted in order to try and determine the role these 

variants may play in disease aetiology and to establish the role microglia play in 

AD onset and progression. For example, TREM2 has been shown to play a role 

in regulating microglial phagocytosis [355], and that missense mutations in 

TREM2 cause impaired microglial phagocytosis and a reduction in soluble 
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TREM2 in the cerebrospinal fluid of AD patients [356]. However, in contrast to 

this in several mouse model of AD, TREM2 deficiency in microglia was shown to 

promote survival of microglia and also enhance phagocytosis [357-359]. These 

findings suggest that the role of TREM2 in modulating neuroinflammation in AD 

is complex and therefore further investigation is required, as is the case for many 

other immune-related AD variants. In general, microglia are thought to regulate 

the amount of Aβ in the brain through phagocytosis [360]. One interesting feature 

of microglia in AD brain is that they adopt a polarised morphology and cluster 

around fibrillar Aβ and extend hypertrophic processes towards the plaques [361]. 

This provides a physical barrier around the plaques and stops the deposits 

extending further, promoting the creation of compact plaque micro regions that 

have little affinity for soluble Aβ1-42 [361, 362]. On the other hand regions of the 

brain that aren’t covered by microglial processes are ‘hotspots’, with high levels 

of soluble Aβ1-42 leading to markedly concentrated protofibrillar Aβ1-42 plaque 

regions [361]. These ‘’hotspots’’ are neurotoxic given that adjacent axons develop 

a greater extent of dystrophy compared to those covered by microglia [362]. 

 

Alongside GWAS, studies investigating inflammation induced cognitive 

dysfunction have also linked inflammation seen in the periphery to delirium and 

acute cognitive impairment resembling that seen in AD [363, 364]. Cytokines are 

key mediators in the response to inflammation and it is thought that the pro-

inflammatory cytokine IL-1β may regulate both the response to infection and be 

responsible for inflammation induced cognitive decline [365, 366]. In accordance 

with this, IL-1β has been associated with delirium in patients with septic 

encephalopathy [367]. The high prevalence of inflammation induced cognitive 

dysfunction after surgery and systemic infection highlights the deleterious effects 
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inflammation can have particularly in those who are older and already cognitively 

impaired [368, 369]. Alongside this it is now apparent that infection can also 

increase the long term risk of developing dementia [370, 371] or accelerate its 

progression [372, 373]. 

 

5.1.3 Microglial In Vivo Models of AD Neuroinflammation 

Microglia make up approximately 15% of the total number of cells in the CNS, yet 

despite this, microglial RNA only makes up < 0.1% of total CNS RNA [374, 375]. 

This relatively low proportion of total transcripts has made it quite difficult to detect 

the microglial molecular phenotype from that of neurons, astrocytes and 

oligodendrocytes in human post-mortem tissues. In order to combat this issue 

several in vitro and in vivo model systems have been created. These include 

immortalised human and rodent cell lines, primary rodent cultures, in vivo rodent 

models and more recently human stem cell models.  

 

In the AD research field, there has traditionally been a large focus on using 

transgenic mice to model FAD. This is because a lot is understood about murine 

genetics and there is a wealth of genetic manipulation techniques that are 

available to develop new mouse models. The vast majority of murine AD models 

reflect familial AD, with mice expressing human APP and PSEN genes bearing 

autosomal dominant mutations [376-381]. However, other mouse models have 

been developed that express human genes bearing SNPs associated with 

sporadic AD.  The TREM2 R47H mutation has been shown through whole 

genome sequencing (WGS) to increase AD risk three fold [382] and so is an 

important mutation to study in order to understand the role of the immune system 

in AD onset. As such murine models to study the function of TREM2 have been 
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developed, for example mice expressing human TREM2 or with TREM2 knocked 

out [383-385]. In mice expressing wild type human TREM2 microglia have been 

shown to cluster around Aβ plaques forming a physical barrier between the 

plaques and neurons [357, 359, 362, 386]. However, in TREM2 deficient mice 

the number of plaque-associated microglia is significantly reduced with there 

being a concomitant increase in the number of dystropic neurites surrounding the 

plaques [359, 386].  

 

5.1.4 Microglial In Vitro Models of AD Neuroinflammation 

Whilst murine in vivo models provide three dimensional interactions between 

microglia and other brain cell types similar to that of the human brain, microglial 

cultures in vitro undoubtedly also provide a useful model for studying 

neuroinflammation. In particular, in vitro models have proven useful for 

elucidating the basic aspects of neuroinflammation, including intracellular 

signalling and gene transcription. One example of this was the discovery of the 

involvement of p38 mitogen-activated protein kinase (MAPK) in the release of 

inflammatory mediators from microglia. Using BV-2 cells (immortalised mouse 

microglia), Bachsetter et al demonstrated that upon LPS stimulation, the BV-2 

cells produced more IL-1β and TNF-α, but that this could be inhibited in a 

concentration dependent manner by a p38 MAPK inhibitor [387]. This study 

demonstrated the involvement of MAPK signalling in the response to LPS 

immune challenge and the potential to modulate cytokine overproduction through 

the inhibition of this pathway.  

 

Microglial cell culture models have also been useful in disentangling the role of 

microglia in NO production. In a study using primary rat microglia it was shown 



239 
 

239 
 

that LPS induced an increase in both inducible nitric oxide synthase (iNOS) 

reactivity and NO production, but that this could be prevented by parthenolide 

[388], a pro-inflammatory molecule known to bind and inhibit the cytokine 

signalling kinase IκB kinase β (IKKβ) [389]. Alongside this, in neuronal-microglial 

co-cultures LPS has been shown to induce neurotoxicity and cellular dysfunction 

through the activation of the COX-2 and NOS pathways, resulting in a dramatic 

increase in prostaglandin and NO production [390-394].  

 

5.1.5 LPS Mechanism of Action 

LPS constitutes a large proportion of the outer membrane of gram-negative 

bacteria and is frequently used in vitro and in vivo to mimic the presence of an 

infection. Interestingly, one study has shown that the blood levels of LPS are 

three times higher in AD patients than that of control populations [395]. Studies 

have also shown the presence of gram-negative microbes in the erythrocytes of 

AD patients [396]. LPS cannot itself under physiological conditions enter the 

brain, therefore it is likely in vivo that there are other mechanisms that allow 

systemic LPS to induce central inflammation, for example degradation of the 

blood brain barrier (BBB), ischaemia or peripheral cytokines [397, 398]. There is 

a proposed mechanism of action for LPS induced injury in the AD brain, which is 

that LPS binds to toll like receptor 4 (TLR4) or CD14 expressed on microglia 

within the brain [399]. This TLR4 activation then leads to NFκB mediated 

induction of cytokines including IL-1, IL-6 and TNF-α [400-402]. Very high levels 

of pro-inflammatory cytokines such as IL-1 and IL-6 can cause myelin injury and 

can also increase the accumulation of Aβ and APP [403]. This Aβ then can also 

act on TLR4 causing a feedback loop, further exacerbating the problem [403]. 

LPS has also been shown to be able to act on the BBB and cause a decrease in 
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the amount of Aβ being able to leave the brain [398]. Finally, LPS is also known 

to induce Tau hyperphosphorylation, another protein whose accumulation is a 

characteristic hallmark of AD [404-406]. Taken together the combination of all 

these factors could cause or amplify the neurodegeneration seen in AD. 

 

 

5.1.6 Identifying Methylomic Variation in Microglia following LPS Stimulation 

It has previously been demonstrated that there is both epigenetic dysfunction 

[121, 407-410] and neuroinflammation in AD [60, 61, 68, 411]. As stated above 

one mechanism through which neuroinflammation and neurodegeneration may 

be mediated is through recurrent stimulation and activation of microglia by 

immune activators such as LPS, and this could be mediated via epigenetic 

mechanisms. With microglial cells representing a relatively small proportion of the 

cells in the brain it has been difficult to assess the methylomic signature of human 

microglia in vivo following immune challenge. In order to establish what DNA 

methylomic changes may be occurring following acute exposure to LPS and 

subsequent recovery, then it is important to model this in vitro. 
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5.2 Hypothesis and Aims 

As bacterial infection and neuroinflammation are hypothesised to play a role in 

the onset of AD this chapter hypothesises that exposure of microglial cells to 

inflammatory molecules, such as LPS, will have methylomic consequences, that 

some loci will be more susceptible to this exposure and that these methylomic 

changes will be associated with changes to biological pathways.  

 

To address this hypothesis the aims of this chapter are: 

1. To perform an EWAS of 5-mC levels following LPS challenge in a microglia 

cell line. 

2. To identify DMPs which are associated with immune stimulation and 

recovery. 

3. To assess the biological pathways that are changing following immune 

stimulation. 
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5.3 Methods 

 

5.3.1 Cell Culture  

The information in this section contains all the information necessary to grow, 

maintain and passage the microglia cell line used in this chapter. 

 

5.3.1.1 Sources of Cells 

The cells used in this study are a primary human immortalised microglia (SV40 

cell line) which were bought from Accegen Biotech (ABI-TM009).  

 

5.3.1.2 Maintenance and Passaging of Microglia 

Cells were maintained at 37oC and 5% CO2 in a humidified incubator. The SV40 

microglia were maintained in the microglial maintenance medium (MMM) 

provided by accegen which contains essential and non-essential amino acids, 

vitamins, organic compounds, inorganic compounds, vitamins, minerals, 5% 

foetal bovine serum and growth factors necessary for the maintenance of 

immortalised microglia in vitro. The MMM contained 5% HD-fetal bovine serum 

(ABI-TM009-FBS25), 1% penicillin/streptomycin (ABI-TM009-PS5) and 1% 

microglial growth supplement (ABI-TM009-MGS5) in 500mL basal medium (ABI-

TM009). Media was changed every three days until the cells were 70% confluent, 

thereafter it was changed every other day until the cells reached ~90% 

confluency. Once the cells reached approximately 90% confluency they were 

passaged. Before passaging T75 flasks that were pre-coated with collagen I 

(Corning; 354485) were washed twice with sterile water. The coated plates, 

trypsin/EDTA (Fisher scientific; 11580626) solution and trypsin neutraliser 

solution (Fisher scientific; 11654862) and MMM were pre-warmed to room 
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temperature, disinfected and placed within a laminar flow hood ready for use. 

Used media was removed from the flask and cells were washed with 5mL PBS 

which was then aspirated. A further 5mL PBS was added to the flask before the 

addition of 5mL trypsin-EDTA for three to five minutes at 37oC. The length of time 

they were left was determined by how quickly the cells became rounded. After 

the trypsinisation 5mL of MMM was placed into the flask and the combined 10mL 

solution transferred in to a 50mL falcon tube already containing 10mL MMM. 

Using the base of the hand the flask was gently tapped in order to dislodge cells 

from the base of the flask. 5mL trypsin neutraliser solution was then washed over 

the base of the flask and placed in the 50mL falcon containing the rest of the cell 

suspension. The cells were then pelleted through centrifugation at 1000rpm for 

five minutes. Following this, the number of cells per mL was calculated with a 

TC20TM automated cell counter (Bio-Rad). Once the number of cells per mL was 

known it was possible to calculate the dilution factor needed in order to give a 

density of 10,000 cells/cm2. This was achieved using the following equation: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑦𝑜𝑢 ℎ𝑎𝑣𝑒 (𝑐𝑒𝑙𝑙𝑠/𝑚𝐿)
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑦𝑜𝑢 𝑤𝑎𝑛𝑡  (𝑐𝑒𝑙𝑙𝑠/𝑚𝐿)

= 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑝𝑒𝑟 𝑇75. 

Once plated, cells were placed back in the incubator to attach.  

 

5.3.1.3 Stimulation with LPS  

Cells were plated out at a density of 10,000 cells/cm2 into four wells of three 

individual six-well plates (i.e. 12 wells in total). Each plate contained the four 

replicates for the three different treatments used in this study. Those treatments 

were: (1) no LPS treatment (control group), (2) 24-hour treatment with 1ug/mL 

LPS (LPS group) and (3) 24-hour treatment with 1ug/mL LPS followed by a 24-

hour recovery period (LPS + recovery group). For the LPS treatments stock 



244 
 

244 
 

concentrations of LPS (1mg/mL) were diluted 1:1000 into pre-warmed MMM. 48 

hours after plating the LPS and LPS + recovery groups had their normal MMM 

removed and it was replaced with MMM containing 1ug/mL LPS. The control 

group underwent a normal media change. After 24 hours the control group and 

LPS treatment groups were washed twice with PBS and collected as pellets using 

tryspin-EDTA and trypsin neutraliser solution as outlined above. The LPS + 

recovery group were washed twice with PBS and then the media was replaced 

with normal MMM. After a further 24 hours on MMM the LPS + recovery group 

were collected and pelleted using trypsin-EDTA and trypsin neutraliser solution. 

An outline of the experimental workflow is provided in figure 5.1.  
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Figure 5.1. Diagram to illustrate the experimental workflow. 

 

 SV40 immortalised primary microglial cells were plated out in quadruplet for the three conditions at a density of 100,000 cells per well. 48 
hours after plating two of the conditions were treated with 1µg/mL LPS and the cells corresponding to the control condition underwent a 
normal change of media. 24 hours following this first treatment the LPS and control condition cells were pelleted down and frozen at -80oC, 
whilst the LPS + recovery group underwent a change of media to normal MMM and were collected 24 hours later. 
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5.3.2 DNA Extraction and Methylomic Profiling  

DNA was extracted from cell pellets and QC checked as described in section 2.2. 

500ng of DNA was bisulfite treated as described in section 2.3. Subsequently bisulfite-

treated DNA was analysed for DNA methylation using the EPIC array protocol as 

described in section 2.4 and in figure 2.2. 

 

5.3.3 Illumina EPIC Data QC 

For an outline of the QC and normalisation methods used in this chapter please see 

sections 2.4.2. All data analyses in this section were performed using R version 3.5.2. 

Signal intensities were imported into R using the methylumi package [262]. Initial QC 

checks were conducted using functions within the methylumi and wateRmelon 

packages [198, 262].  

 

Using the default settings of one percent with “pfilter”, no samples, 13,207 sites with a 

beadcount less than three and 9,180 sites having 1% of samples with a detection p-

value of greater than 0.05 were flagged for removal. 

 

5.3.4 Data Analysis 

Outlined in this section are the analysis steps conducted in order to assess and 

quantify the DNA methylation changes occurring immortalised primary microglia are 

treated with the known immune stimulant, LPS. 

 

5.3.4.1 PCA 

In order to look at variation within the dataset PCA was used. Using the “prcomp” 

function within the default statistics package within R the top principal components 
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were identified. These principal components were then correlated to known variables, 

which included treatment, which BeadChip the sample was run on (Chip ID) and 

position on the BeadChip using spearman correlations. 

 

5.3.4.2 Identification of DMPs 

Following normalisation, probes with common (>5% minor allele frequency (MAF)) 

SNPs within 10 bp of the single base extension and probes with sequences previously 

identified as potentially hybridizing to multiple genomic loci were excluded [203]. The 

top 20% most variable probes were identified using the median absolute derivation (N 

= 158,310 probes). Subsequently, three linear models were used to identify which of 

these probes were differentially methylated between the three treatment groups 

(control, LPS, LPS + recovery). We identified four patterns of methylation changes in 

probes, corresponding to whether they became hyper- or hypomethylated over the 24 

hours of LPS treatment and then whether these patterns reverted during the recovery 

stage (i.e. were acute changes), or whether they were persistent through the recovery, 

as illustrated in figure 5.2. An arbitrary significance threshold of p < 1x10-3 was used 

to determine whether the probes were differentially methylated between treatment 

groups.  

 

5.3.4.3 GREAT annotation 

Many of the CpG loci covered by the Illumina EPIC array reside in non-coding regions 

of the genome, meaning it can be difficult to infer meaning to the changes in 

methylation observed at these loci. Although UCSC gene annotation [271] is provided 

by Illumina for loci on the EPIC array,  there are many loci that lack annotation. In 

order to gain meaning from these changes and fill in the annotation gaps GREAT was 
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used to annotate each locus to its nearest gene [412]. Using the chromosomal location 

of each CpG probe, GREAT was able to annotate each loci to the single nearest gene 

that is between 1000 kilobases upstream or downstream [412]. Using this annotation 

method, all bar one probe was annotated to a nearby gene. The function of each of 

these genes was then manually searched for and recorded.  

 

5.3.4.4 GO Pathway Analysis 

GO pathway analysis was performed on each of the four different methylation change 

categories (i.e. hypermethylating acute, hypermethylating persistent, hypomethylating 

acute, hypermemethylating persistent). This was performed using the “gometh” 

function with the missMethyl package, which was selected as it adjusts for the number 

of CpGs per gene. [265].  

 

In order to add additional meaning to the pathway analysis outputs the online platform 

REVIGO was used (available at: http://revigo.irb.hr/) [267]. The significantly altered 

pathways (determined by GO ID) and p-value significance values were added to the 

online portal with the GO term database being set to Homo sapiens and the semantic 

similarity measure as Resnik. Once analysed the treemaps for the altered BP, MF and 

CC were generated and created. 
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Figure 5.2. Diagrammatical representation of how differentially methylated probes were categorised.

Data analysis was undertaken once the samples had been through QC checks and dasen normalisation. Firstly using the median absolute 
deviation, the top 20% most variable probes were identified. These probes where then categorised based on whether they were 
hypomethylated (A) or hypermethylated (B) between the control and LPS groups. Within this, probes were further categorised depending on 
whether the methylation reverted to the control level (acute category) or whether the methylation level deviated further from control levels or 
plateaued (persistent category). 
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5.4 Results  

 

5.4.1 Outcome of the QC Pipeline 

The following section outlines the results of the QC process, which demonstrates that 

all the samples were of sufficient quality to take forward to the main analyses. 

 

5.4.1.1 Median Methylated and Unmethylated Signal Intensities 

In order to check that the signal intensities were above background levels the signal 

intensities were imported and assessed using the methylumi package [262]. This 

package extracts and calculates the signal intensities using the fluorescence intensity 

of each probe. Once the intensities were extracted the median methylated and 

unmethylated signal intensities for each sample were calculated (table 5.1) and plotted 

against one another (figure 5.3). The background level of signal intensity is generally 

assigned a value of 1000 although this is by no means a definitive cut off. Only one of 

the samples has a value below 1000, which is one of the LPS + recovery samples 

(LPS_recov_1). As the median unmethylated intensity for this sample was very close 

to the cut off (value was 997), a decision was made not to drop the sample at this 

stage and to instead see how it performed when assessed with the other quality control 

metrics. 

 

Next, I also wanted to see whether there was any variation being introduced by the 

BeadChip the samples were on (Chip ID) or the position on the BeadChip. As such, 

the unmethylated and methylated signal intensities were replotted, with the samples 

coloured both by Chip ID (figure 5.4) and position on the chip (figure 5.5). Although it 

appeared that the unmethylated intensities of samples run on BeadChip 
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202073200083 were higher than the other BeadChips (figure 5.4), there was no 

difference in methylated values and there was no significant difference in methylated 

or unmethylated intensities between samples run on different chips (methylated 

intensities: p=0.70, unmethylated intensities: p=0.60). Similarly, samples run on the 

first row of the chip had higher median methylated and unmethylated intensities 

compared to samples run on the second row of the chip, which had higher intensities 

than those run on the third row of the chip (figure 5.5). However, this pattern is always 

seen on BeadChips, and there was no significant difference in the ratio of methylated 

to unmethylated intensities between samples run on different rows of the BeadChip 

(p=0.97). 
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Treatment Sample ID Replicate Median Methylated 
Intensity 

Median Unmethylated 
Intensity 

No treatment 

Control_1 1 2565 1860 
Control_2 2 1714 1296 
Control_3 3 1694 1281 
Control_4 4 2059 1852 

LPS 

LPS_1 1 1821 1359 
LPS_2 2 1601 1193 
LPS_3 3 1766 1344 
LPS_4 4 1861 1778 

LPS + Recovery 

LPS_Recov_1 1 1271 997 
LPS_Recov_2 2 2176 1643 
LPS_Recov_3 3 1564 1221 
LPS_Recov_4 4 1705 1669 

 

Table 5.1. Median methylated and unmethylated sample intensities. 

 

 

Intensities for each sample were imported using the methylumi package [262] and the median methylated and unmethylated sample intensities 
were calculated. 
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Figure 5.3. Median methylated and unmethylated sample intensities. 

 

 

 

 

 

 

Using the methylumi package [262] the signal intensities for samples were extracted and 
the medians calculated. Shown is a scatterplot plotting the median methylated and 
unmethylated signal intensities for each sample. Each point is labelled with the 
corresponding sample ID. 
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Figure 5.4. Median sample intensities coloured by Chip ID. 

Median methylated and unmethylated sample intensities were calculated for each BeadChip 
(A) Median signal intensities coloured by Chip ID represented as a scatterplot. Median (B) 
methylated and (C) unmethylated signal intensities coloured by Chip ID represented as a 
boxplot. Error bars represent 1.5x the IQR.  
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Figure 5.5. Median sample intensities coloured by position on Chip. 

 

  

Median methylated and unmethylated sample intensities were calculated for each BeadChip (A) 
Median signal intensities coloured by position on chip represented as a scatterplot. Median (B) 
methylated and (C) unmethylated signal intensities coloured by position on chip represented as 
a boxplot. Error bars represent 1.5x the IQR.  
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5.4.1.2 All Samples have a Good Bisulfite Conversion Efficiency 

Bisulfite conversion is the process that converts unmethylated cytosines into uracil and 

then thymine on PCR amplification and is the process that allows us to distinguish 

between methylated and unmethylated positions on the array. This therefore allows 

one to determine how methylated or unmethylated a specific loci is. Therefore, it is 

important that the bisulfite conversion efficiency of each sample is high. On the EPIC 

array there are several loci known to be fully methylated, which can be used as 

controls for bisulfite conversion; it is the fluorescence intensity of these loci that allows 

us to determine the bisulfite conversion efficiency using the “bscon” function in the 

wateRmelon package [198]. The lowest generally accepted bisulfite conversion 

efficiency is 80%. All the samples within this study are well above this cut off with the 

lowest conversion efficiency being 93.3% (figure 5.6).  

 

5.4.1.3 Beta Density Plot  

To determine the methylation at each locus on the EPIC array β-values were 

generated, which is the ratio of fluorescence signal intensity for the methylated and 

unmethylated beads. As the value is a ratio all β-values lie between zero and one, where 

zero indicates that the locus is completely unmethylated and a β-value of one indicates 

that the locus is fully methylated. The β-values for our samples have a bimodal 

distribution with most probes being either almost fully methylated or unmethylated, 

which is as would be expected (figure 5.7). 
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Figure 5.6. Bisulfite conversion efficiency and beta density plot. 

Using data from probes on the EPIC array known to be fully methylated, the bisulfite 
conversion efficiency of each sample was calculated and is represented in a histogram, 
with median bisulfite (BS) conversion % on the X-axis and the number of samples on the 
Y-axis. 
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Figure 5.7. Beta density plot. 

 

 

  

The DNA methylation level at each locus was determined using β-values, which are the 
ratio of fluorescence signal intensity for the methylated and unmethylated beads.  The beta-
values of each probe of each sample were plotted against density. 
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5.4.1.4 No Samples are Removed by P-filter 

The final stage in the QC pipeline is to filter samples and probes by their detection p-

value. The “pfilter” function in the wateRmelon package [198] highlights samples or 

probes that should be removed from the analysis, including samples that contain more 

than one percent (by default) probes above the 0.05 detection p-value threshold and 

probes with any samples having a beadcount less than three or more than one percent 

above the p-value threshold. Using the default settings, 9,180 probes were suggested 

for removal as they have more than one percent above detection threshold, and 

13,207 sites were suggested for removal as there was a beadcount less than three in 

five percent of samples. These probes were removed from the analysis but no whole 

samples were flagged for removal. Therefore, all samples were taken forward for the 

downstream analyses, which are presented in the next section. 

 

5.4.1.5 There Are No Differences in Epigenetic Age between Treatment 

Groups 

Using the latest version of the Horvath epigenetic age calculator (available from: 

https://dnamage.genetics.ucla.edu/home) I assessed the epigenetic ages of the 

samples under the different conditions. Overall there seems to be no significant 

difference between the control, LPS and LPS + recovery groups (table 5.2, figure 5.8), 

although there is a small, non-significant decrease in epigenetic age between the 

control and LPS treated groups.  

 

5.4.1.6 There Are No Differences in Mitotic Age 

Using the MiAge calculator [199] I estimated the number of cellular divisions that the 

cells had gone through in each sample, to see if the treatments affected the perceived 
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number of cell divisions. The MiAge algorithm predicts mitotic age using the DNA 

methylation profile of 268 probes which are on the Illumina EPIC array. There were no 

differences in the mitotic ages of the samples (table 5.2, figure 5.9). This suggests that 

the treatments have not affected the methylation of our samples at these specific 

probes. 
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Treatment Sample ID Replicate Epigenetic Age (years) No. of Cell Divisions 

Control 

Control_1 1 18.579 3001.784 
Control_2 2 31.968 3104.674 
Control_3 3 19.968 2969.018 
Control_4 4 15.912 2801.034 

LPS 

LPS_1 1 15.460 3046.159 
LPS_2 2 14.524 3064.258 
LPS_3 3 19.914 2944.178 
LPS_4 4 15.602 2768.622 

LPS + Recovery 
 

LPS_Recov_1 1 12.076 2839.904 
LPS_Recov_2 2 23.741 3087.382 
LPS_Recov_3 3 16.186 2954.161 
LPS_Recov_4 4 16.117 2731.298 

Table 5.2. Epigenetic and mitotic ages of SV40 microglial treated with LPS. 

 

 

 

 

 

Using the latest iteration of the Horvath epigenetic age calculator [126] and MiAge calculator [199], the epigenetic or biological age (in years), 
and mitotic age (number of cell divisions) were calculated for each sample. For each sample shown above is the treatment group, sample ID, 
replicate number, epigenetic age and mitotic age.  
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Figure 5.8. Epigenetic age is unaffected by treatment. 

 

 

 

 

 

 

Using the new online epigenetic age calculator created by Horvath and colleagues [126] 
the epigenetic ages of each sample were calculated. Red represents the control group, 
blue the group treated with LPS for 24 hours and green the cells first treated with LPS for 
24 hours and then given a 24 hour recovery period. Error bars represent 1.5x the IQR.  
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Figure 5.9. Mitotic age is unaffected by treatment. 

 

 

 

 

 

Using the MiAge calculator [199] the estimated number of cell divisions for each sample 
were calculated. Where red represents the control group, blue the group treated with LPS 
for 24 hours and green the cells first treated with LPS for 24 hours and then given a 24 
hour recovery period. Error bars represent 1.5x the IQR.  
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5.4.1.7 Dasen Normalisation  

In order to make meaningful comparisons between the samples within the dataset the 

data was transformed using quantile normalisation using the “dasen” function within 

the wateRmelon package [198]. After dasen normalisation, there is a lot less variation 

in the median methylated and unmethylated signal intensities (figure 5.10), with all 

samples having a median methylated intensity between 1863-1865 and a median 

unmethylated signal intensity between 1481-1483. 

 

By plotting the normalised β-values it is evident that there are bimodal peaks, which 

shows that most loci are either fully methylated or fully unmethylated. Across all probes 

the peaks are much tighter following normalisation (figure 5.11B) compared to before 

normalisation (figure 5.11A). This was also evident when looked at the type I probes 

(figure 5.12) and type II probes (figure 5.13) in isolation. 
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Figure 5.10. Median methylated and unmethylated sample intensities after 
normalisation. 

 

Quantile normalisation was performed using dasen [198] to generate the normalised 
median methylated and unmethylated signal intensities. Graphical representation of 
median signal intensities relative to each other following normalisation. Each point is 
labelled with the corresponding sample ID.  
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Figure 5.11. Median methylated and unmethylated signal intensities after dasen normalisation. 

Quantile normalisation was performed using dasen [198] to generate the normalised median methylated and unmethylated signal intensities. 
Beta density plot of all samples coloured by treatment (A) before and (B) after dasen normalisation. 
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Figure 5.12. Beta density plots of type I probes before and after dasen normalisation. 

Probes were separated based on whether they were type I or type II probes. Beta density plots were generated showing the beta values of 
type I probes (A) before and (B) after dasen quantile normalisation. 
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Figure 5.13. Beta density plots of type II probes before and after dasen normalisation. 

 

Probes were separated based on whether they were type I or type II probes. Beta density plots were generated showing the beta values of 
type II probes (A) before and (B) after dasen quantile normalisation. 
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5.4.1.8 There is no Difference in CpH Hemi-Methylation upon Treatment 

Following dasen normalisation, the hemi-methylated probes (i.e. those with a β-value 

between 0.2 and 0.8) were grouped together based on whether they were annotated 

to a CpG or CpH (where H stands for any base other than cytosine) locus (figure 5.14). 

There was no difference in hemi-methylation at either CpH or CpG probes between 

treatment groups.  

 

5.4.1.9 Principal Component Analysis Identifies Causes of Variation in the 

Data 

In order to identify sources of confounding variation within the dataset I used principal 

component analysis. The “prcomp” function in the default statistics package of R was 

used to detect consistent variation within the dataset and assigned it to different 

principal components. The first ten principal components generated were able to 

account for ~95% of the variation within the dataset, with the first and second principal 

components alone accounting for 22% and 11% of the variation, respectively (table 

5.3). Next, I correlated these principal components to known variables, which could be 

sources of variation in the data. These variables were treatment (plate), the BeadChip 

the sample was on (Chip ID) and the position within the BeadChip. From this analysis 

there were no significant correlations and so I did not need to control for any of the 

principal components, nor variables in the subsequent analyses (figure 5.15).  
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Figure 5.14. Beta-values of hemi-methylated CpG and CpH probes is the same 
regardless of treatment. 

 

After dasen normalisation probes were grouped on the basis of whether they were a CpG 
or CpH probe. Shown are box plots of β-value for probes containing beta-values between 
0.2 and 0.8 (i.e. hemi-methylated probes) for each of the treatment groups. Red represents 
the control group, blue the LPS treated group and green the cells that were first treated 
with LPS and then allowed a recovery period. Error bars represent 1.5x the IQR.  
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 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
Standard deviation 16.46 11.84 10.84 10.41 10.12 9.83 9.49 9.38 8.85 8.82 

Proportion of Variance 0.22 0.11 0.10 0.09 0.08 0.08 0.07 0.07 0.06 0.06 
Cumulative Proportion 0.22 0.34 0.43 0.52 0.60 0.68 0.76 0.83 0.89 0.95 

 

Table 5.3. Table of variation identified by PCA. 

 

 

 

 

 

 

Following dasen normalisation, principal component analysis (PCA) was used to identify sources of variance in the data. This table shows the 
standard deviation, proportion of variance and the cumulative proportion of variance for the first ten principal components. 
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Figure 5.15. Principal component analysis to identify sources of variation with the 
methylation data. 

 

Following dasen normalisation, PCA was performed and then correlated with known 
variables to identify sources of variation in the data. Shown is a PCA plot, showing the 
correlation between treatments, the chip the sample was run on (Chip_ID_coded), and the 
position of the sample within the chip (Pos_coded) with the first five principal components. 
Blue indicates a positive correlation, red indicates a negative correlation, with the colour 
intensity and size of the circle being proportional to the correlation coefficients. None of the 
correlations of PCs with variables were significant (p>0.05). 
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5.4.1.10 Identifying Acute and Persistent Changes in DNA Methylation 

Associated with Treatment 

In order to identify DNA methylomic variation associated with LPS treatment, I first 

identified the 20% most variable probes across all three treatment groups (N = 158,310 

probes) and removed from my analysis the remaining, non-varying probes. I then 

performed three linear regression analyses on this set of 158,310 probes to identify 

pair-wise differences between the three treatment groups. These probes were then 

grouped in to four categories (figure 5.2) based on whether they became hyper- or 

hypomethylated after LPS, and whether this change was acute (i.e. was not seen in 

the LPS + recovery group compared to controls), or persisted during the recovery. 

Data was analysed in this manner as I hypothesised that probes showing similar 

methylation patterns over time may have similar biological functions or roles. 

Therefore, the categories of probes I analysed were (1) acute hypomethylation (2) 

acute hypermethylation, (3) persistent hypomethylation, and (4) persistent 

hypermethylation.  

 

The largest numbers of significant differences occurred acutely after LPS treatment, 

with 97 and 67 significant loci (p<1x10-3 between control and LPS and p>0.05 between 

LPS and LPS + recovery) being hypomethylated (table 5.4, figure 5.16) or 

hypermethylated (table 5.5, figure 5.17) after initial LPS treatment, which was not seen 

after 24 hours of recovery, respectively. There were fewer persistent significantly 

differentially methylated loci, with eight significant loci persistently hypomethylated 

(table 5.6, figure 5.18) and just one significant persistently hypermethylated locus 

(table 5.7, figure 5.19).  
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There was greatest variation in DNA methylation in the LPS + recovery group 

compared to the control or the LPS groups, which would explain why I identified 

considerably fewer persistent differentially methylated loci than acute differentially 

methylated loci. This could suggest that the microglia were “recovering” from LPS 

exposure at different rates. Interestingly, there was a pattern of methylation differences 

within the replicate samples in the LPS + recovery treatment group, and for 

hypermethylated loci replicates one and three were more consistently 

hypermethylated than replicates two and four, whilst conversely for hypomethylated 

loci replicates two and four were more consistently hypermethylated than replicates 

one and three.  
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     Control vs LPS Control vs LPS+Recovery 

CpG ID Genomic 
Location UCSC Annotation GREAT Annotation 

(distance) Function Δ (%) P-value Δ (%) P-value 

cg00664381 Chr1:229892969 DISC1 URB2 (+130989) Ribosome biogenesis -7.79 8.35x10-6 -1.33 0.467 

cg13642974 Chr11:92611456 - MTNR1B (-91429) GPCR in retina -7.12 1.10 x10-
5 -1.90 0.250 

cg18465484 Chr19:16999051 CPAMD8 F2RL3 (-619) Cell signalling -8.67 1.12 x10-5 -5.31 0.085 

cg20564330 Chr1:46924956 EFCAB14-AS1 DMBX1 (-47712) Transcription factor -11.51 1.31 x10-5 -6.74 0.146 

cg14849274 Chr12:51281327 KRT72 METTL7A (-35927) Methyltransferase -8.18 2.04 x10-5 -6.30 0.160 

cg16395123 Chr4:25474382 SEL1L3 ANAPC4 (+95548) E3 ubiquitin ligase -8.48 2.12 x10-5 -6.18 0.069 

cg00252121 Chr13:28773027 MTUS2 PAN3 (+60385) mRNA degradation -9.60 2.36 x10-5 -3.92 0.127 

cg05230522 Chr2:61055411 PUS10 REL (-53244) Transcription factor -8.08 2.91 x10-5 -3.46 0.162 

cg02922817 Chr14:103693366 KIF26A TNFAIP2 (+103569) SNARE binding/cell differentiation -9.65 4.37 x10-5 -2.60 0.597 

cg24112213 Chr17:69220806 - SOX9 (-896354) Transcription factor -6.91 6.03 x10-5 -1.01 0.747 

cg08491105 Chr15:22057479 - OR4M2 (-310998) Olfactory GPCR -8.25 6.33 x10-5 -5.48 0.218 

cg04679277 Chr7:1390554 - MICALL2 (+108583) Actin organistation and cell adhesion -6.71 6.47 x10-5 -4.15 0.275 

cg24839145 Chr8:5016262 - CSMD1 (-164325) Complement control protein -8.67 8.79 x10-5 -3.57 0.073 

cg12429593 Chr14:99691999 DEGS2 BCL11B (+45565) Transcriptional repressor -9.53 1.01 x10-4 -7.13 0.057 

cg01751047 Chr16:87785642 CDH15 KLHDC4 (+13912) Protein binding -8.01 1.11 x10-4 -4.34 0.163 

cg21584495 Chr11:17930141 SERGEF SERGEF (+104567) Guanine nucleotide exchange factor -7.98 1.17 x10-4 -2.46 0.145 

cg23276990 Chr3:113534251 CD200 GRAMD1C (-23013) Cholesterol transporter -17.44 1.24 x10-4 -11.14 0.080 

cg08471790 Chr2:108453832 GCC2 RGPD4 (+10440) Ran GTPase binding -12.60 1.24 x10-4 -3.80 0.180 

cg04413147 Chr21:46399562 FTCD FAM207A (+39638) rRNA maturation -10.23 1.50 x10-4 -7.30 0.076 

cg13097878 Chr1:65452808 AK4 JAK1 (-20622) Signal transduction -6.52 1.75 x10-4 -3.20 0.235 

cg12736406 Chr11:125918532 KIRREL3 CDON (+14654) Cell-cell interactions -6.13 1.88 x10-4 -2.87 0.275 

cg17023193 Chr1:33333181 AZIN2 FNDC5 (+3232) Regulation of brown fat differentiation -5.70 1.92 x10-4 1.92 0.622 

cg01084189 Chr2:134581807 - NCKAP5 (-255777) Microtubule formation -6.30 2.03 x10-4 -5.60 0.074 

cg23645046 Chr11:64338820 - SLC22A11 (+15723) Sodium-independent transporter -5.90 2.15 x10-4 -1.92 0.263 

cg09397963 Chr1:19529973 PQLC2 UBR4 (+6796) E3 ubiquitin ligase -7.22 2.26 x10-4 -7.06 0.175 

cg23228992 Chr18:50887669 - MBD2 (+863488) Repression of methylated promoters -7.13 2.38 x10-4 -0.01 0.998 
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cg08694574 Chr16:84569116 - TLDC1 (-30753) mTor signalling -9.36 2.92 x10-4 -4.49 0.377 

cg12558795 Chr7:45945361 - IGFBP3 (+15488) Insulin-like growth factor I binding -8.04 2.93 x10-4 0.63 0.725 

cg09995507 Chr1:21861081 RAP1GAP ALPL (+25217) Phosphatase -5.77 2.97x10-4 -3.60 0.283 

cg26254345 Chr10:2961684 - PFKP (-148027) Glycolysis regulation -8.43 3.03x10-4 -2.65 0.639 

cg17065901 Chr4:90048410 FAM13A TIGD2 (+14443) Nucleic acid binding -5.80 3.06 x10-4 -1.40 0.562 

cg03943459 Chr3:142623215 ZBTB38 PCOLCE2 (-15171) Collagen trimerisation -7.41 3.08 x10-4 -4.39 0.082 

cg16856722 Chr3:9895535 CIDEC RPUSD3 (-9836) Mitochondrial ribosome assembly -8.62 3.36 x10-4 -3.45 0.295 

cg09330885 Chr3:197020882 MUC4 DLG1 (+4564) Signal transduction/cell proliferation -7.10 3.41 x10-4 -4.82 0.403 

cg04196119 Chr10:4507246 - AKR1E2 (-361199) Oxidoreductase -11.84 3.43 x10-4 -5.49 0.212 

cg25970363 Chr1:47423075 PDZK1IP1 CYP4A11 (-15939) Cholesterol synthesis -10.43 3.43 x10-4 -1.26 0.780 

cg14729068 Chr8:135581283 ZFAT ZFAT (+143997) Transcriptional regulator -5.88 3.44 x10-4 -3.06 0.283 

cg03431950 Chr18:55050667 - ST8SIA3 (+32624) Sialyltransferases -6.64 3.60 x10-4 -3.41 0.156 

cg11931360 Chr3:12963820 IQSEC1 IQSEC1 (+45347) EGF signalling -8.58 3.66 x10-4 -0.76 0.816 

cg13001919 Chr7:130842370 PODXL MKLN1 (-170248) Ubiquitin degradation -5.93 3.75 x10-4 -1.23 0.700 

cg01712984 Chr1:244213389 SMYD3 ZBTB18 (-1195) Transcriptional repressor -9.47 3.79 x10-4 -5.66 0.366 

cg19699170 Chr2:109760023 - SH3RF3 (+14027) E3 ubiquitin ligase -6.30 3.98 x10-4 -4.62 0.172 

cg24951151 Chr6:70951241 COL19A1 COL9A1 (+61544) Collagen protein -9.06 3.99 x10-4 -3.79 0.177 

cg07612956 Chr7:124865113 - POT1 (-295079) Telomere maintenance -8.75 4.01 x10-4 -0.06 0.986 

cg09141075 Chr8:874716 - TDRP (-378936) Spermatogenesis -6.09 4.15 x10-4 1.41 0.613 

cg08314156 Chr11:122446897 - UBASH3B (-79485) Protein tyrosine phosphatase -7.92 4.21 x10-4 -5.74 0.086 

cg13522359 Chr15:82176542 ADAMTSL3 MEX3B (+161939) Cell surface interactions -6.39 4.28 x10-4 0.37 0.912 

cg26558809 Chr11:9822265 LOC101928008; SBF2 SWAP70 (+136642)  NF-kappaB Signaling.  -11.08 4.39 x10-4 -8.30 0.052 

cg03544502 Chr14:44467592 KLHL28 FSCB (+508889) Calcium ion binding -5.31 4.40 x10-4 -0.83 0.646 

cg14800299 Chr19:17552465 GLT25D1 TMEM221 (+6910) Transmembrane protein -8.28 4.41 x10-4 -3.27 0.185 

cg03647619 Chr16:65536412 CES2 CDH11 (-380312) Calcium dependent cell-cell binding -9.21 4.55 x10-4 -3.60 0.369 

cg04024417 Chr7:96132284 - SLC25A13 (-180826) Mitochdondrial transport protein -9.29 4.65 x10-4 -2.13 0.557 

cg00426518 Chr5:115721607 - SEMA6A (+189022) Cell-surface receptor signalling -9.18 4.76 x10-4 -7.46 0.093 

cg21459713 Chr8:613688 ERICH1 TDRP (-117908) Spermatogenesis -7.70 4.89 x10-4 -2.50 0.698 

cg16075164 Chr13:43580265 - DNAJC15 (-17073) Mitochondrial respiratory chain -8.57 4.94 x10-4 -3.96 0.416 
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cg06790492 Chr17:75570125 TBC1D16 SEPT9 (+292634) Cytokinesis -6.62 5.02 x10-4 -1.80 0.732 

cg18654931 Chr3:156380895 MME TIPARP (-11738) Enhancer binding -8.23 5.07 x10-4 -0.23 0.923 

cg09451747 Chr4:143761752 INPP4B INPP4B (+5690) Phosphatidylinositol signaling -11.99 5.22 x10-4 -7.33 0.069 

cg06054708 Chr8:37633059 - PROSC (+12949) Regulator of PLP -8.44 5.47 x10-4 -3.13 0.494 

cg11527760 Chr4:107392661 TBCK TBCK (-150010) Actin organisation -7.35 5.67 x10-4 -6.98 0.055 

cg18162371 Chr10:134471866 - INPP5A (+120543) Intracellular calcium signalling -12.43 5.79 x10-4 -3.60 0.150 

cg16141678 ChrX:3274695 MXRA5 MXRA5 (-10014) Cell matrix remodelling -8.67 5.98 x10-4 -1.53 0.615 

cg02187937 Chr1:20877841 KIF17 CDA (-37599) Cytidine deaminase -7.35 6.03 x10-4 -3.37 0.288 

cg24328431 Chr9:14428351 - NFIB (-114686) Transcription factor -9.79 6.09 x10-4 -1.26 0.802 

cg02273079 Chr3:167772015 - GOLIM4 (+41747) Protein transporter in Golgi -13.38 6.15 x10-4 -8.03 0.102 

cg09068998 Chr5:148513916 ABLIM3 ABLIM3 (-7260) Actin binding -6.41 6.23 x10-4 -1.61 0.664 

cg03095244 Chr12:114285006 - RBM19 (+119104) Ribosome biogenesis -6.29 6.30 x10-4 -4.15 0.499 

cg04815049 Chr21:32189266 HUNK KRTAP8-1 (-3697) Keratin associated matrix protein -7.81 6.37 x10-4 -3.56 0.277 

cg26577683 Chr1:17765199 ARHGEF10L RCC2 (+1020) Regulator of small GTPases -10.91 6.98 x10-4 -3.72 0.074 

cg24462058 Chr1:20509731 VWA5B1 UBXN10 (-2846) Tethering factor -7.79 7.01 x10-4 0.40 0.882 

cg21858680 Chr4:85239853 - NKX6-1 (+179749) Transcriptional regulator -9.15 7.04 x10-4 -2.66 0.512 

cg13734043 Chr17:53625197 EPX MMD (-125845) Ion channel protein -8.30 7.06 x10-4 -3.95 0.185 

cg01893571 Chr2:38126388 FAM82A1 RMDN2 (-51217) Regulator of microtubule dynamics -7.59 7.19 x10-4 -0.59 0.936 

cg15361587 Chr18:54198203 NEDD4L TXNL1 (+107672) Protein disulfide oxioreductase -11.91 7.21 x10-4 -6.29 0.255 

cg04407732 Chr10:70142562 - RUFY2 (+24383) Endocytosis regulator -8.50 7.40 x10-4 -7.22 0.144 

cg18509185 Chr6:108039190 SOBP SCML4 (+106325) Transcriptional repressor -8.17 7.58 x10-4 0.58 0.701 

cg20229931 Chr21:46472084 LSS ADARB1 (-22408) Pre-mRNA editing -7.68 7.69 x10-4 -6.62 0.164 

cg05725719 Chr7:150064761 GIMAP5 REPIN1 (-1127) Nucleic acid binding -15.34 7.86 x10-4 -8.16 0.207 

cg08883054 Chr17:58125104 - HEATR6 (+31187) RNA binding -9.35 7.94 x10-4 0.05 0.985 

cg20216726 Chr22:46176691 - ATXN10 (+109013) Akt signalling -7.66 7.98 x10-4 -4.31 0.393 

cg20255272 Chr1:1363541 VWA1 TMEM88B (+2034) PDZ domain binding/signalling -6.94 8.03 x10-4 -3.33 0.500 

cg09759578 Chr19:1864405 SCAMP4; ADAT3 KLF16 (-839) Transcription factor -8.72 8.14 x10-4 -2.52 0.377 

cg13450196 Chr2:126981827 - GYPC (-431681) GYPC -8.39 8.25 x10-4 4.97 0.085 

cg25304968 Chr3:115001494 ATP6V1A GAP43 (-340862) Calmodulin binding -7.88 8.30 x10-4 -4.40 0.272 
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cg16588731 Chr10:133873546 STK32C JAKMIP3 (-44628) Microtubule binding/formation -10.96 8.49 x10-4 -2.30 0.423 

cg21075278 Chr11:68208663 GAL PPP6R3 (-19574) Protein phosphatase -8.89 8.60 x10-4 -6.68 0.389 

cg16867466 Chr8:117386061 LINC00536 EIF3H (+381998) RNA transport/translation initiation -8.08 9.10 x10-4 -3.12 0.271 

cg01630199 Chr7:66006511 - KCTD7 (-199131) Potassium channel protein -8.99 9.16 x10-4 -2.73 0.597 

cg25681958 Chr2:75484984 - TACR1 (-58159) Vesicle mediated transport -6.58 9.17 x10-4 -4.97 0.083 

cg06823122 Chr3:111008424 - PVRL3 (+217835) Cellular adhesion -9.73 9.30 x10-4 -2.15 0.473 

cg15319438 Chr7:12681101 - ARL4A (-45859) GTP binding protein -5.64 9.36 x10-4 -3.74 0.442 

cg03512076 Chr8:103976253 - ATP6V1C1 (-57037) ATPase component -9.07 9.36 x10-4 -5.20 0.290 

cg03653841 Chr14:36052656 SFTA3 INSM2 (+49409) Transcriptional repressor -8.29 9.52 x10-4 -1.43 0.493 

cg00082939 Chr10:76835299 C10orf41 DUPD1 (-17028) Phosphatase -9.57 9.75 x10-4 -0.55 0.737 

cg25871851 Chr11:113547186 ZBTB16 TMPRSS5 (+29908) Serine protease -6.03 9.81 x10-4 -0.37 0.861 

cg08485684 Chr14:26374866 - NOVA1 (+692093) Neuron specific RNA binding -9.96 9.96 x10-4 -3.90 0.549 

cg08700546 Chr11:47393251 SLC39A13 SPI1 (+6690) Transcription factor -10.79 1.00 x10-3 -3.13 0.510 

Table 5.4. Probes acutely hypomethylated after treatment with LPS.

Shown are the 97 significantly differentially methylated probes that show acute hypomethylation (control to LPS p-value<1x10-3 and LPS to 
recovery p-value>0.05) after treatment with LPS. For each probe is the CpG ID, the genomic location, the UCSC gene annotation of the probe 
from Illumina, the GREAT annotation of the probe, the function of the GREAT gene, and the Δ value (% change in methylation) and p-value 
between both the control to LPS and control to LPS+recovery comparisons. The function of the genes identified through GREAT were found 
through manual curation.  
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Figure 5.16. Loci demonstrating acute hypomethylation of probes after LPS treatment. 

 

 

Box plots showing the top four differentially methylated probes that demonstrate acute 
hypomethylation after LPS treatment, which was not seen after 24 hours recovery. β-values 
for individual replicates are represented by black dots on each of the box plots. Error bars 
represent 1.5x the IQR.  
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     Control vs LPS Control vs LPS+Recovery 

CpG ID Genomic 
Location UCSC Annotation GREAT Annotation 

(distance) Function Δ (%) P-value Δ (%) P-value 

cg00904273 Chr16:657622 RHOT2/WDR90 RAB40C (+18266) Component of E3 ubiquitin ligase 8.92 3.93x10-5 1.56 0.550 

cg26775104 Chr13:45333858 - TSC22D1 (-183158) Transcription factor 7.75 4.34 x10-5 4.96 0.069 

cg11783901 Chr17:44456999 IGF2BP1 ARL17B (-17870) GTP binding protein 9.94 7.12 x10-5 6.36 0.066 

cg06555468 Chr7:2061316 MAD1L1 MAD1L1 (+211561) Spindle assembly 7.84 8.05 x10-5 -1.86 0.406 

cg26826339 Chr8:24421976 ADAM7 ADAM7 (+123438) Protein Interaction and adhesion in sperm-
egg fusion 8.88 8.25 x10-5 3.60 0.425 

cg09076431 Chr1:196155786 LHX9 KCNT2 (+422568) Voltage gated ion channel protein 6.42 9.15 x10-5 5.12 0.053 

cg15358079 Chr8:37378803 - ZNF703 (-174465) Transcriptional corepressor 5.80 1.32 x10-4 4.19 0.214 

cg04695063 Chr11:18371116 LDHA GTF2H1 (+26974) Part of the general transcription and DNA 
repair factor IIH 7.06 1.33 x10-4 1.63 0.517 

cg19100169 Chr5:159620781 CCNJL FABP6 (+6408) Fatty acid binding protein 5.53 1.46 x10-4 4.33 0.397 

cg21336373 Chr17:3754061 P2RX1 C17orf85 (-4517) mRNA export 9.78 1.57 x10-4 3.07 0.100 

cg25251543 Chr2:240170336 - HDAC4 (+152306) Histone deacetylase 10.64 1.85 x10-4 0.28 0.942 

cg10139358 Chr18:72763183 ZNF236 ZADH2 (+158119) Oxioreductase 8.73 2.04 x10-4 -0.08 0.985 

cg08631134 Chr9:21751378 - MTAP (-51163) Adenine and methionine salvage 12.38 2.12 x10-4 1.84 0.652 

cg25961805 Chr4:121182403 - MAD2L1 (-194175) Mitotic checkpoint protein 9.46 2.18 x10-4 -0.45 0.834 

cg02557865 Chr16:15435558 C16orf45 NPIPA5 (+36592) Interacts with nuclear pore 16.68 2.29 x10-4 3.93 0.199 

cg08570033 Chr5:58857790 PDE4D PDE4D (+331834) cAMP degradation 9.49 2.44 x10-4 4.45 0.121 

cg01799429 Chr8:142802747 - PTP4A3 (+400655) Protein tyrosine phosphatase 6.42 2.65 x10-4 1.14 0.691 

cg24744928 Chr1:239757484 - CHRM3 (-34888) Muscarinic cholingeric receptor and GPCR 7.85 2.84 x10-4 4.28 0.145 

cg06046580 Chr2:232465658 MIR1471 C2orf57 (+8084) Testis expressed protein - function 
unknown 10.82 2.86 x10-4 8.71 0.060 

cg09701702 Chr6:101021723 - SIM1 (-108919) Transcription factor 7.37 3.20 x10-4 0.30 0.950 

cg04398416 Chr10:3588486 - KLF6 (+238980) Transcription factor 8.93 3.31 x10-4 3.20 0.092 

cg12765327 Chr14:105434901 - AHNAK2 (+9792) Nucleoprotein/calcium signalling 9.36 3.32 x10-4 5.94 0.069 

cg16899859 Chr4:34346550 - - - 9.04 3.35 x10-4 2.20 0.256 

cg14525769 Chr5:10745140 DAP DAP (+16243) Positive mediator of cell death 8.03 3.56 x10-4 7.08 0.157 

cg05192293 Chr10:71604092 - COL13A1 (+42405) Alpha chain of collagen 7.64 3.77 x10-4 0.64 0.840 

cg18473642 Chr12:122015139 ABCB9 KDM2B (+3749) Ubiquitin ligase protein 6.80 3.80 x10-4 5.74 0.124 
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cg18158658 Chr9:126064834 NEK6 STRBP (-33980) Spermatogenesis 4.70 3.96 x10-4 -1.43 0.639 

cg09696231 Chr19:16346049 EPS15L1 AP1M1 (+37305) Protein sorting in Golgi network 9.59 3.97 x10-4 9.19 0.063 

cg08194969 Chr14:64142766 - SGPP1 (+51990) Dephosphorylates sphingosine 1-
phosphate 10.05 4.02 x10-4 6.78 0.078 

cg20829955 Chr1:22547616 - WNT4 (-78158) Cellular signalling 9.47 4.03 x10-4 1.43 0.589 

cg00023726 Chr1:2829795 - ACTRT2 (-108250) Cytoskeletal organisation 8.75 4.16 x10-4 3.70 0.295 

cg02206323 Chr17:19189661 MIR1180/B9D1 EPN2EPN2 (+49008) Clathrin mediated endocytosis 7.87 4.22 x10-4 5.19 0.063 

cg09425404 Chr21:31641444 TIAM1 KRTAP24-1 (+13831) Keratin associated matrix protein 7.32 4.55 x10-4 -0.10 0.958 

cg13724238 Chr11:2828568 - CDKN1C (+78542) Inhibitor of G1 cyclin/CDK complexes 3.96 4.78 x10-4 -3.95 0.059 

cg24307945 Chr2:65363564 - RAB1A (-6325) Vesicle trafficking in Golgi 6.03 4.80 x10-4 -0.28 0.904 

cg22902550 Chr5:136367959 SPOCK1 SPOCK1 (+467077) Proposed protease inhibitor 12.87 4.82 x10-4 6.18 0.074 

cg05534427 Chr19:50693390 RTN2/FLJ40125/RTN2 MYH14 (-13511) Actin dependent motor protein 6.66 5.11 x10-4 3.53 0.274 

cg02170071 Chr11:59237191 OR10V1 OR4D10 (-7654) Olfactory GPCR 10.37 5.18 x10-4 0.98 0.662 

cg05967001 Chr12:111714030 RPH3A FAM109A (+92894) Endocytic trafficking 6.92 5.31 x10-4 5.99 0.183 

cg19076895 Chr6:7578298 - SNRNP48 (-12133) Gene regulation and mRNA splicing 6.47 5.47 x10-4 4.74 0.145 

cg06673910 Chr10:43224783 HNRNPF BMS1 (-53465) Ribosome biogenesis 7.75 6.24 x10-4 1.45 0.573 

cg00828618 Chr19:7660029 FCER2 CAMSAP3 (-758) Regulation of microtubule dynamics 10.23 6.26 x10-4 2.96 0.212 

cg22667851 Chr16:11313379 - SOCS1 (+36656) Negative regulator of cytokine signalling 7.49 6.27 x10-4 5.71 0.071 

cg05487589 Chr8:25952113 EBF2 EBF2 (-49201) Transcription factor 7.78 6.28 x10-4 6.88 0.117 

cg25654973 Chr8:81355474 - ZBTB10 (-42427) Proposed transcriptional regulator 7.29 6.43 x10-4 7.00 0.142 

cg01736264 Chr1:26320998 PDIK1L PAFAH2 (+3649) Platelet homeostasis 8.58 6.44 x10-4 5.93 0.067 

cg00686823 Chr3:128793728 TPRA1 GP9 (+14119) Platelet activation 13.64 6.66 x10-4 6.52 0.142 

cg21554217 Chr5:138877651 - TMEM173 (-15277) Regulator of innate immune reponse to 
infection 11.87 6.78 x10-4 3.89 0.268 

cg23493306 Chr8:22658435 PEBP4 EGR3 (-107621) Transcriptional regulation 6.75 6.78 x10-4 1.52 0.624 

cg21806810 Chr5:35014708 - AGXT2 (+33489) Glyoxylate to glycine conversion 8.03 6.81 x10-4 0.65 0.745 

cg21701994 Chr20:24086020 - GGTLC1 (-116605) Glutathione metabolism 8.31 7.10 x10-4 2.00 0.524 

cg03446846 Chr17:1891356 DPH1/OVCA2 RTN4RL1 (+37282) Cell surface receptor 6.75 7.17 x10-4 0.24 0.934 

cg15731551 Chr3:100164386 - TOMM70A (-44145) Mitochondrial precursor protein import 10.61 7.31 x10-4 5.72 0.250 

cg14166835 Chr2:73268254 - SFXN5 (+30710) Mitochondrial amino-acid transporter 11.48 7.73 x10-4 5.31 0.160 
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cg07740306 Chr18:75347357 NFATC1 GALR1 (+384853) GPCR receptor signalling 7.38 7.95 x10-4 5.73 0.366 

cg26868111 Chr1:116881898 CD58 ATP1A1 (-34590) Component of NA+/K+ ATPase 5.97 8.02 x10-4 0.66 0.732 

cg01450803 Chr4:75070018 - MTHFD2L (+46190) Formate-tetrahydrofolate ligase activity 8.01 8.03 x10-4 4.66 0.197 

cg04186484 Chr17:59319760 - TBX2 (-157496) Transcription factor 7.44 8.40 x10-4 1.77 0.493 

cg06106499 Chr2:1088670 SNTG2 SNTG2 (+142117) Actin/PDZ domain binding 5.81 8.64 x10-4 1.25 0.539 

cg20134175 Chr20:42195557 JPH2 SGK2 (+821) Protein tyrosine kinase/glucose transporter 4.70 8.82 x10-4 0.66 0.703 

cg05050884 Chr3:188050040 ADIPOQ LPP (+119320) Cell-cell adhesion 7.61 8.97 x10-4 6.90 0.082 

cg20682563 Chr5:133488773 TCF7 SKP1 (+23955) Component of ubiquitin ligase complex 9.06 9.21 x10-4 4.70 0.068 

cg27286069 Chr11:117987092 PHLDB1 SCN4B (+36442) Component of voltage gated ion channel 7.85 9.43 x10-4 -0.29 0.880 

cg08066500 Chr3:2381280 CNTN4 CNTN4 (+100768) Axon associated cell adhesion molecule 5.77 9.58 x10-4 -0.07 0.971 

cg12196720 Chr1:160573852 NOS1AP CD84 (-24559) Glycoprotein involved in cellular signalling 5.40 9.62 x10-4 3.90 0.207 

cg11519260 Chr10:42506816 - ZNF33B (+627175) Transcriptional regulation 9.89 9.78 x10-4 3.70 0.369 

cg11003725 Chr14:104420652 KIAA0284 TDRD9 (+25854) ATP-binding RNA helicase 8.09 9.93 x10-4 -1.36 0.590 

Table 5.5.  Probes acutely hypermethylated after treatment with LPS. 

 

 

  

 

Shown are the 67 significantly differentially methylated probes that show acute hypermethylation (control to LPS p-value<1x10-3 and LPS to 
recovery p-value>0.05) after treatment with LPS. For each probe is the CpG ID, the genomic location, the UCSC gene annotation of the probe 
from Illumina, the GREAT annotation of the probe, the function of the GREAT gene, and the Δ value (% change in methylation) and p-value 
between both the control to LPS and control to LPS+recovery comparisons. The function of the genes identified through GREAT were found 
through manual curation.  
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Figure 5.17. Loci demonstrating acute hypermethylation of probes after LPS treatment. 

 

Box plots showing the top four differentially methylated probes that demonstrate acute 
hypermethylation after LPS treatment, which was not seen after 24 hours recovery. β-
values for individual replicates are represented by black dots on each of the box plots. Error 
bars represent 1.5x the IQR.  
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     Control vs LPS Control vs LPS+Recovery 

CpG ID Genomic 
Location UCSC Annotation GREAT Annotation 

(distance) Function Δ (%) P-value Δ (%) P-value 

cg12698829 Chr4:156874061 GUCY1A3 CTSO (+1007) Cellular protein degradation -7.41 2.02x10-4 -8.63 3.80 x10-2 

cg11543559 Chr2:102139055 IL1R1 RFX8 (-47891) Transcription factor -5.91 2.91x10-4 -10.12 4.76 x10-3 

cg23986404 Chr16:49948713 - ZNF423 (-92064) Transcription factor -8.37 3.27x10-4 -9.66 6.96 x10-3 

cg07022240 ChrX:152694768 PLXNB3 ZFP92 (+10989) Transcriptional regulation -7.87 3.91x10-4 -15.15 7.51 x10-3 

cg20387395 Chr15:56665965 - TEX9 (+8341) Suggested ATP binding protein -7.55 5.29x10-4 -7.58 2.76 x10-2 

cg10110288 Chr5:55309787 IL6ST IL6ST (-18967) Signal transduction -7.34 6.93x10-4 -7.77 4.82 x10-3 

cg05084299 Chr1:244126238 SMYD3 ZBTB18 (-88346) Transcriptional repressor -7.23 7.33x10-4 -7.66 1.28 x10-2 

cg13415481 Chr2:234369420 MROH2A USP40 (+104815) Deubiquitinating enzyme -7.44 7.46x10-4 -7.63 4.13 x10-3 

Table 5.6. Probes persistently hypomethylated after treatment with LPS. 

 

 

 

Shown are the 8 significantly differentially methylated probes that show persistent hypomethylation (control to LPS p-value<1.00x10-3 and 
LPS to recovery p-value<0.05) after treatment with LPS. For each probe is the CpG ID, the genomic location, the UCSC gene annotation of 
the probe from Illumina, the GREAT annotation of the probe, the function of the GREAT gene, and the Δ value (% change in methylation) and 
p-value between both the control to LPS and control to LPS+recovery comparisons. The function of the genes identified through GREAT were 
found through manual curation.  
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Figure 5.18. Loci demonstrating persistent hypomethylation of probes after LPS 
treatment.  

 

 

Box plots showing the top four differentially methylated probes that demonstrate persistent 
hypomethylation after LPS treatment, which was not seen after 24 hours recovery. β-values 
for individual replicates are represented by black dots on each of the box plots. Error bars 
represent 1.5x the IQR.  
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Table 5.7. Probe persistently hypermethylated after treatment with LPS. 

 

          Control vs LPS Control vs LPS+Recovery 

CpG ID 
Genomic 
Location 

UCSC 
Annotation  

GREAT Annotation 
(distance) Function Δ (%) P-value Δ (%) P-value 

cg09424348 Chr6:30881549 VARS2 MUC22 (+11278) 
Glycosylated protein in bacterial/fungal 

defence 10.76 4.80x10-4 12.66 0.015 

Shown is the one significantly differentially methylated probe that show persistent hypermethylation (control to LPS p-value<1x10-3 and LPS 
to recovery p-value<0.05) after treatment with LPS. For each probe is the CpG ID, the genomic location, the UCSC gene annotation of the 
probe from Illumina, the GREAT annotation of the probe, the function of the GREAT gene, and the Δ value (% change in methylation) and p-
value between both the control to LPS and control to LPS+recovery comparisons. The function of the genes identified through GREAT were 
found through manual curation.  
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Figure 5.19. Persistent hypermethylation of probes after LPS treatment. 

 

 

 

 

 

 

Box plots showing the only differentially methylated probes that demonstrate persistent 
hypermethylation after LPS treatment, which was not seen after 24 hours recovery. β-
values for individual replicates are represented by black dots on each of the box plots. Error 
bars represent 1.5x the IQR.  



288 
 

288 
 

5.4.1.11 Specific functional changes in DNA methylation after LPS treatment 

Using the chromosomal location of each CpG probe GREAT was used to annotate 

each locus to the single nearest gene that is either upstream or downstream. Using 

this annotation method all bar one of the probes was annotated to a nearby gene. The 

function of each of these genes was then manually searched and recorded.  

 

As I was interested in exploring whether there were any common functions of loci that 

featured in the four methylation change categories I performed GREAT annotation to 

determine the genes that are important in the overall response of microglia to LPS. I 

observed a number of transcription related genes such as SOX9, RXF8, ZFP92 and 

TSC22D1. Alongside this there were also several genes involved in cellular signalling, 

for example F2RL3, JAK1, IL6ST and PTP4A3. Finally, there were also numerous 

other genes associated with the innate immune system being differentially methylated, 

including METTL7A, a methyltransferase known to be involved in the innate immune 

response and C17orf85, an mRNA export protein known to play a role in the response 

to cellular stressors such as infections [413].  

 

In addition to manual gene function curation, the “gometh” function within the 

missMethyl package [265] was used to identify pathways being altered by treatment 

with LPS. Although ideally I would have performed pathway analysis on each of the 

four categories of methylation changes separately, given the low number of significant 

loci in some categories this was not possible and so instead all of the significant loci 

from all four categories were combined and assessed together, with the overall aim of 

identifying loci altered after LPS.  
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In terms of biological pathways (table 5.8, figure 5.20), the largest group of pathways 

that were altered were those related to extracellular matrix organisation and the 

regulation of lymphocyte proliferation. Alongside these pathways, there were also 

changes occurring in genes related to tRNA metabolism and fat cell differentiation. 

However, it should be noted that none of the pathways from the pathway analysis were 

FDR significant and therefore it is important to not over interpret the resulting outputs. 

I observed several changes in molecular functions (table 5.9, figure 5.21), including 

enzyme activities such as intramolecular transferase and serine-type endopeptidase 

inhibitor activity, although none of these were FDR-significant. Finally, I also observed 

changes to cellular components (table 5.10, figure 5.22), relating to lipid particles, 

organelle membranes, the endoplasmic reticulum and neuromuscular junctions, 

although again none of these were FDR significant.  
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GO ID Term Ontology No. Genes in Term No. of 
DMPs P-value FDR Genes 

GO:0010737 protein kinase A signaling BP 30 2 0.004 1 GAL; ADIPOQ 
GO:1903055 positive regulation of extracellular matrix organization BP 20 2 0.005 1 PHLDB1; GLT25D1 

GO:0006399 tRNA metabolic process BP 184 3 0.009 1 ADAT3; PUS10; 
VARS2 

GO:0050873 brown fat cell differentiation BP 40 2 0.010 1 EBF2; ADIPOQ 
GO:0032370 positive regulation of lipid transport BP 58 2 0.014 1 GAL; ADIPOQ 
GO:0010470 regulation of gastrulation BP 42 2 0.015 1 PHLDB1; ADIPOQ 
GO:1903053 regulation of extracellular matrix organization BP 39 2 0.016 1 PHLDB1; GLT25D1 
GO:0046324 regulation of glucose import BP 55 2 0.017 1 RTN2; ADIPOQ 
GO:0032945 negative regulation of mononuclear cell proliferation BP 69 2 0.017 1 GAL; MAD1L1 
GO:0050672 negative regulation of lymphocyte proliferation BP 69 2 0.017 1 GAL; MAD1L1 
GO:0070664 negative regulation of leukocyte proliferation BP 74 2 0.018 1 GAL; MAD1L1 
GO:0046323 glucose import BP 63 2 0.019 1 RTN2; ADIPOQ 
GO:0010827 regulation of glucose transmembrane transport BP 74 2 0.026 1 RTN2; ADIPOQ 
GO:1905954 positive regulation of lipid localization BP 78 2 0.027 1 GAL; ADIPOQ 
GO:0008033 tRNA processing BP 123 2 0.029 1 ADAT3; PUS10 
GO:0015850 organic hydroxy compound transport BP 254 3 0.038 1 P2RX1; GAL; ADIPOQ 
GO:1904659 glucose transmembrane transport BP 101 2 0.041 1 RTN2; ADIPOQ 
GO:0032368 regulation of lipid transport BP 121 2 0.045 1 GAL; ADIPOQ 
GO:0008645 hexose transmembrane transport BP 108 2 0.046 1 RTN2; ADIPOQ 
GO:0015749 monosaccharide transmembrane transport BP 110 2 0.046 1 RTN2; ADIPOQ 
GO:0034219 carbohydrate transmembrane transport BP 112 2 0.047 1 RTN2; ADIPOQ 
GO:0120162 positive regulation of cold-induced thermogenesis BP 96 2 0.049 1 EBF2; ADIPOQ 
GO:0016999 antibiotic metabolic process BP 147 2 0.050 1 FTCD; EPX 

Table 5.8. Biological processes altered upon LPS treatment. 

 

Shown are the 23 significantly altered GO BP pathways after treatment with LPS and recovery. Shown for each pathway is the GO ID, the 
pathway descriptor, the ontology of the pathway, the number of genes in the pathway, the number of DMPs in the pathway, p-value 
significance, FDR value and the list of significantly differentially methylated genes within the pathway. FDR=false discovery rate. 
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Figure 5.20. Biological processes altered after microglial treatment with LPS.  

 

GO enrichment analysis was performed on the all loci shown to be differentially methylated on LPS treatment. Treemap illustrating the 
pathways relating to biological processes (BP) is shown. In the treemap, terms relating to the same pathway are grouped together and have 
been given the same colour, the term that summarizes the grouped pathways is at the centre of each section and is written in bold text.  
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GO ID Term Ontology No. Genes in Term No. of 
DMPs P-value FDR Genes 

GO:0016866 intramolecular transferase activity MF 27 2 0.001 1 PUS10; LSS 

GO:0005201 extracellular matrix structural constituent MF 151 4 0.004 1 MXRA5; MUC4; VWA1; 
ADIPOQ 

GO:0004867 serine-type endopeptidase inhibitor activity MF 92 2 0.018 1 CPAMD8; SPOCK1 

GO:0005179 hormone activity MF 113 2 0.024 1 GAL; ADIPOQ 

GO:0140101 catalytic activity, acting on a tRNA MF 120 2 0.036 1 PUS10; VARS2 

GO:0016853 isomerase activity MF 141 2 0.040 1 PUS10; LSS 

Table 5.9. Molecular functions altered upon LPS treatment. 

 

 

 

 

Shown are the 6 significantly altered GO MF pathways after treatment with LPS and recovery. Shown for each pathway is the GO ID, the 
pathway descriptor, the ontology of the pathway, the number of genes in the pathway, the number of DMPs in the pathway, p-value 
significance, FDR value and the list of significantly differentially methylated genes within the pathway. FDR=false discovery rate. 
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Figure 5.21. Molecular functions altered after microglial treatment with LPS.  

GO enrichment analysis was performed on the all loci shown to be differentially methylated on LPS treatment. Treemap illustrating the 
pathways relating to molecular functions is shown. In the treemap, terms relating to the same pathway are grouped together and have been 
given the same colour, the term that summarizes the grouped pathways is at the centre of each section and is written in bold text.  
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GO ID Term Ontology No. Genes in Term No. of 
DMPs P-value FDR Genes 

GO:0005811 lipid droplet CC 77 2 0.021 1 LSS; CIDEC 

GO:0031301 integral component of organelle 
membrane CC 194 3 0.024 1 P2RX1; RHOT2; SLC39A13 

GO:0005783 endoplasmic reticulum CC 1809 11 0.026 1 FTCD; ABCB9; LSS; GIMAP5; RTN2; CIDEC; VWA1; 
GLT25D1; CES2; SLC39A13; ADIPOQ 

GO:0031300 intrinsic component of organelle 
membrane CC 216 3 0.032 1 P2RX1; RHOT2; SLC39A13 

GO:1902554 serine/threonine protein kinase complex CC 86 2 0.035 1 GTF2H4; CCNJL 

GO:0072686 mitotic spindle CC 100 2 0.039 1 FAM82A1; MAD1L1 

GO:0031594 neuromuscular junction CC 76 2 0.041 1 CDH15; SPOCK1 

GO:0015630 microtubule cytoskeleton CC 1166 8 0.045 1 FTCD; FAM82A1; WDR90; MTUS2; KIF26A; B9D1; 
KIAA0284; MAD1L1 

GO:0016528 Sarcoplasm CC 75 2 0.047 1 RTN2; SPOCK1 

Table 5.10. Cellular components altered upon LPS treatment 

. 

Shown are the 9 significantly altered GO CC pathways after treatment with LPS and recovery. Shown for each pathway is the GO ID, the 
pathway descriptor, the ontology of the pathway, the number of genes in the pathway, the number of DMPs in the pathway, p-value 
significance, FDR value and the list of significantly differentially methylated genes within the pathway. FDR=false discovery rate. 
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Figure 5.22. Cellular components altered after microglial treatment with LPS.  

GO enrichment analysis was performed on the all loci shown to be differentially methylated on LPS treatment. Treemap illustrating the 
pathways relating to cellular components is shown. In the treemap, terms relating to the same pathway are grouped together and have been 
given the same colour, the term that summarizes the grouped pathways is at the centre of each section and is written in bold text.  
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5.5 Discussion 

In this chapter I have used the Illumina EPIC array to undertake epigenome-wide 

analyses of DNA methylation changes occurring upon microglial cell activation 

and then recovery by a known immune stimulant. This was achieved by treating 

an immortalised microglial cell line with either LPS for 24 hours, treating with LPS 

for 24 hours followed by a 24-hour recovery period or undergoing no treatment 

(control), as outlined in figure 5.1. Once the treatments were completed the cells 

were collected, DNA was extracted and then run on the EPIC array to provide 

information on DNA methylation at over 850,000 loci across the genome.  

 

One of the first things that has been shown by this study is that there are no 

changes to either epigenetic age or mitotic age upon stimulation. This could have 

numerous explanations. Firstly, as this is an immortalised cell line the process of 

immortalisation could have made the cells more robust and therefore less 

susceptible to stimulation. What is of interest is that the epigenetic age of these 

cells does not reflect the biological age of the person the cells were originally 

derived from, which was a middle-aged male. This would suggest that the 

immortalisation process has changed the methylation profile of the cells therefore 

making them appear epigenetically rejuvenated. Another reason there are no 

changes upon stimulation could be because the cells were only treated once and 

for 24-hours. During life and throughout disease course the human body will be 

exposed to numerous infections and it is possible that it is this repeated exposure 

to immune stimulation that is causing the robust methylation changes that are 

found upon post-mortem investigation. In order to test whether these are the 

reasons there are no significant changes in epigenetic or mitotic age it would be 

interesting to repeat these experiments in a non-immortalised cellular model and 
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use recurrent exposures and recoveries to LPS. One example could be to 

repeatedly expose iPSC-derived microglia or just treat them once with LPS to see 

if there is any association of repeated exposure to these measures of maturity. 

Finally, although I showed there were no differences in epigenetic age using the 

current Horvath age calculator [126], it is worth noting that there are many 

different epigenetic age clocks [125, 236, 237] and calculators that have now 

been developed. These all have different advantages and disadvantages, 

depending on the dataset that they have been developed in. I decided to use the 

Horvath age calculator in this chapter as I had used it in my previous chapters, 

as it had demonstrated in chapter 4 that my samples were cortical neurons. It 

could perhaps be possible that the other epigenetic clocks that are available may 

be more sensitive to changes in immortalised cell lines, and so future studies 

could explore the epigenetic age predicted by these different algorithms. 

 

By categorising DMPs into four different categories based on their pattern of 

methylation change (e.g. acute and persistent hypo and hypermethylated 

probes), I was able to look at which loci are more susceptible to long term 

changes in methylation and the associated functions of these loci. This allowed 

me to infer the cellular functions that are perhaps the most affected by immune 

stimulation. Firstly, as there are many more genes in both of the acute categories 

it is clear that the majority of differentially methylated loci were more susceptible 

to short term changes, which had largely disappeared in the recovery group. 

Again, this could reflect the short term and non-recurrent nature of the stimulation 

and it would be interesting to see whether the changes in methylation at these 

loci become more long term upon multiple treatments with LPS. In addition, the 

fact that I saw greater changes acutely rather than persistently could also reflect 
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the fact that there was more variation in methylation in the LPS + recovery group 

samples, compared to the other treatment groups. In the future profiling additional 

samples per treatment group could reduce this variation, or could demonstrate 

that this is driven by differences in recovery between samples. It is worth noting 

that due to the low number of replicates per treatment group (N = 4) and as I only 

tested a one-off stimulation, none of the loci I identified were Bonferroni-

significant. As such I decided to use a more relaxed arbitrary significance 

threshold of P=1x10-3. Therefore, further replication of results is required. Owing 

to the fact that the EPIC array profiles ~850,000 methylation sites, and many of 

these are highly correlated it has been previously shown in previous methylomic 

studies on the Illumina arrays that Bonferroni significance is overly stringent for 

EWAS [414], although the field has not yet identified the best p-value threshold 

for the EPIC array to account for this [415]. 

 

Across all of the categories of methylation pattern changes, one type of gene that 

consistently feature were that of transcriptional regulators. Within the persistent 

hypomethylation category half of the significant loci were known transcription 

factors or transcriptional regulators, inferring that changes to transcription are 

affected more long term. As decreased methylation is generally associated with 

increases in gene expression it would suggest that immune stimulation is causing 

an increase in expression of these transcriptional regulators. This would therefore 

cause expression changes of the targets of the regulators. These changes in 

DNA methylation are intuitive as exposure to LPS is known to cause immune cell 

activation which will be regulated and brought about by changes to gene 

expression. It is however worth noting that the relationship between DNA 

methylation and gene expression is more complex, with decreased DNA 
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methylation also associated with gene silencing and alternative splicing, 

depending on the context. In the future it will therefore be of interest to profile 

mRNA levels of the genes I have shown are differentially methylated following 

LPS, to establish this relationship. 

 

Another category of genes that had altered DNA methylation following LPS were 

those encoding signalling proteins or proteins involved in signalling pathways. 

The fact that the levels of methylation were both increasing and decreasing 

depending on the locus would suggest that some signalling pathways become 

activated, whilst other become less active following LPS exposure. As microglia 

undertake a variety of different roles in addition to response to LPS/bacteria (e.g. 

phagocytosis, synaptic pruning [416]), then it is not surprising that changes in the 

activity of different signalling pathways are observed after LPS. It would again be 

of interest in the future to explore the levels of gene expression of the differentially 

methylated genes.  

 

In order to get a better idea of the pathways that were changing upon LPS 

treatment GO pathway analysis using the missMethyl package was used. As 

there were not enough loci within each category to do this analysis for the 

categories individually all significant loci across the categories were pooled. By 

pooling the loci together, it was possible to determine which pathways were 

possibly impacted following LPS irrespective of the direction or duration of 

change. Using the REVIGO treemap generator the changing pathways were 

grouped into biological pathways, molecular functions and cellular components 

and then further grouped according to their specific function and summarised. 

From these analyses it appears that DNA methylation levels are particularly 
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altered in genes involved in extracellular matrix organisation, enzyme activity, 

signalling and organelle function. One limitation of this analysis is the small 

number of DMPs used to perform the pathway analysis. Ideally, pathway analysis 

would be performed on more than 1000 loci, but despite pooling of DMPs there 

were still only 173 DMPs used. This low number of loci resulted in none of the 

resulting pathways being FDR significant and therefore cautious interpretation is 

advised. Another limitation for this analysis was the pooling of the genes in the 

different categories of methylation changes, as ideally this would be performed 

on the separate categories. In order to address both of the limitations it could 

have been an option to analyse the top 1000 DMPs per group. However, as this 

could introduce a lot of false negatives into the results I decided not to do this.  

 

Looking to the future I feel it is important to take these results further and 

interrogate DNA methylation upon LPS treatment in more relevant models and 

more comprehensively. As previously mentioned, this could be undertaken in 

iPSC-derived microglial lines. Using these cells it would also be of interest to 

explore the effects of recurrent exposure to LPS and whether there are any loci 

that are susceptible to persistent changes in DNA methylation upon recurrent 

stimulation. Using iPSC lines, it would also be possible to look at the effect of 

genotype on methylation and whether having a microglial relevant mutation, such 

as those in TREM2, CLU or CD33 for example, would affect the changes seen in 

methylation. As the data generated using this system would be human data it 

would be possible to look at the overlap in post-mortem brain data, perhaps in 

people who were known to have an infection at the time of death.  
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Finally, alongside investigating changes in methylation, it will be important to 

profile gene expression as well as undertaking more functional assays to assess 

the effects of LPS on phenotype. It would be particularly interesting to undertake 

these experiments in the presence of AD relevant proteins such as Aβ, as I am 

particularly interested in cellular phenotype in the context of AD.  This would allow 

us to confirm that microglial cells are less able to perform phagocytosis of Aβ 

after stimulation with LPS [417]. Looking at morphological changes and staining 

for proteins known to have increased expression on immune activation would 

provide more information on how functionally relevant the assay is. To look at 

response to injury scratch assays could be used or phagocytosis could be tracked 

by following the uptake of fluorescently labelled or tagged AD proteins such as 

Aβ. 
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5.6 Conclusions 

In this chapter I have characterised genome wide patterns of DNA methylation in 

microglia in order to further understand the epigenomic changes that are 

occurring upon microglial stimulation with LPS. I have shown that despite 

treatment and recovery there are no changes in either epigenetic, or mitotic age, 

which is perhaps a reflection of the cell line used, the low replicate number and 

the one-off nature of the treatment. In order to understand the functional 

implications of LPS stimulation, I used both manual and computational 

assessment of the pathways and cellular functions that were changing. Through 

these analyses it is clear that there are large amounts of loci undergoing DNA 

methylation changes on treatment, which is potentially affecting gene regulation, 

matrix organisation and signalling within the microglial cells. In the future it will be 

important to expand upon these results by assessing genotype dependent 

recurrent LPS-induced methylation and functional changes in an iPSC-derived 

microglial cells. 

 

Overall, I have shown there is methylomic variation occurring upon the stimulation 

of microglial cells with LPS.  This includes increasing and decreasing methylation 

changes that are short and longer lived. Moving forward it would be of benefit to 

expand this study further using a different cell line, with more recurrent exposures 

and using a larger number of replicates. 

 

 

 

 

 



 

303 
 

CHAPTER 6 : DISCUSSION AND FUTURE 
PERSPECTIVES 
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6.1 Introduction 

The primary aim of thesis was to characterise and expand the existing knowledge 

about the epigenetic landscape in neuronal and microglial cell lines, in particular 

the methylomic changes occurring with AD-relevant events, such as time in 

culture, drug treatment or immune challenge.  This discussion will summarise the 

key findings from each chapter of this thesis and the limitations present within 

each study.  
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6.2 Key Findings from this Thesis 

 

6.2.1 Chapter 3: Characterisation of DNA Methylomic Signatures in iPSCs 

during Neuronal Differentiation 

As it is known that epigenetic mechanisms, including DNA methylation, play a 

role in cell fate, this chapter aimed to demonstrate that there are DNA methylation 

changes occurring during differentiation and that these changes impact on 

neuron-related cellular pathways. Using the Illumina EPIC array it was possible 

to assess the DNA methylation status of over 850,000 loci across the genome at 

numerous time points throughout the differentiation of iPSCs into neurons. 

 

The first key finding in this study is that the iPSC-derived neurons have a foetal 

epigenetic age, with the highest age of any sample being -0.41 years. This will 

be important to bear in mind for future studies, especially when using stem cell 

derived neurons to study the epigenetic changes occurring in age related 

diseases. However, it is worth noting that the algorithm used to determine the 

epigenetic ages of these samples was not trained on foetal brain data. Therefore, 

it is important that the epigenetic ages of the samples are interpreted with some 

caution. In the future it will be of interest to test a range of different epigenetic age 

calculators to explore whether these may demonstrate different ages. However, 

in the current study it is still interesting that despite not being trained on foetal 

data that the epigenetic ages of all samples were negative.  

 

Following on from this I performed WGCNA, pathway analysis and trajectory 

inference modelling to determine the consequences of the DNA methylation 

changes over time. The WGCNA analysis identified modules of probes largely 
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relating to pathways involved in neuronal development or the regulation of gene 

expression. The trajectory inference model identified probes that that were 

becoming progressively hypo- or hypermethylated with time, and similarly these 

probes were also largely annotated to genes involved in gene regulation and 

processes that are important in becoming a neuron. One of the advantages of 

using two different methods to analyse the data (WGCNA and TI modelling), 

which identified similar pathways is that we can be more confident that the results 

seen are genuine and the cells we are generating are neurons. 

 

Finally, to explore the interconnectivity of the probes identified in the trajectory 

model gene-gene interaction analyses were performed. This identified 2,352 

unique genes, of which 602 of those genes formed a network containing 1,158 

interactions. Within this network there were 50 highly connected genes, of which 

72% were involved in transcriptional regulation and 14% were shown to be 

involved in epigenetic regulation. Many of the transcription factors identified, 

including STAT3, TDF7L2 and LHX2 have been shown to be important for 

neuronal survival and function [280-282, 418]. The implication of these genes in 

the network adds more evidence to suggest that there are many neuronal genes 

that are highly influential in the development and differentiation of neurons.  

 

One caveat of this study is the fact that it was only undertaken in one iPSC cell 

line and that there were relatively few replicates per group. Having few replicates 

affects the power in the study and means that it is not possible to detect small 

changes in DNA methylation. Only using one cell line means that whilst we can 

say the changes seen here are characteristic of this cell line it is not possible to 

say this is the same in other iPSC lines. In order to validate the findings of this 
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study it will be important to repeat the study in several different cell lines, ideally 

with more replicates; this way we could create a lineage trajectory that is 

characteristic of all iPSC lines rather than just the one.  

 

6.2.2 Chapter 4: Determining the Utility of Epigenetic Modulators to Treat AD 

The aim of this chapter was to characterise the methylomic changes occurring 

when iPSC-derived neurons and microglia are treated with compounds known to 

effect epigenetic mechanisms. Whilst the targets of the drugs used in this chapter 

are known, and have been shown to modulate various epigenetic mechanisms, 

the consequence on epigenetic markers, such as DNA methylation have never 

been investigated. This was achieved using the Illumina EPIC array to assess 

DNA methylation patterns across the genome.  

 

As demonstrated in chapter 3, the iPSC-derived neurons in this chapter all have 

a foetal epigenome, with the highest epigenetic age of any sample being ~-0.2 

years. In addition to this the epigenetic ages of iPSC-derived microglia were also 

assessed. Whilst the majority of microglial samples did not have a foetal 

epigenetic age, the age they were predicted to be was still immature and ranged 

from ~0 to 0.7 years. This suggests that whilst still young the microglia are 

epigenetically older than the neuronal samples, which may reflect that they still 

proliferate once generated. Interestingly, none of the treatments in either of the 

cell types had an impact on the epigenetic age of the samples. This could be a 

result of the short nature of treatment or show that the epigenetic modulators do 

not affect the methylation levels of the loci that are used to calculate epigenetic 

age. As drugs are not often given as a one-off treatment it would be worthwhile 
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assessing the epigenetic age and methylation changes that occur after a longer 

term treatment with these compounds. 

 

Using linear regression modelling I tried to identify DMPs in the neurons and 

microglia that were nominally consistently significant across the drugs of the 

same class, i.e. BRD, HMT, HKDM or KMR inhibitor. Whilst there were consistent 

nominally significant changes seen across the drug classes in the microglial 

samples (BRD: 427, HMT: 429, HKDM: 387 and KMR: 369) the same was not 

true in the neurons BRD: 0, HMT: 0, HKDM: 144 and KMR: 120), where the only 

consistent nominally significant changes that were seen were in the groups 

containing the fewest modulators. This suggests that the modulators are having 

a much more constant effect on DNA methylation in microglia than in neurons, or 

that there is more variation in the neurons than the microglia, meaning there are 

less significant changes in the neurons. However, it is worth noting that although 

I saw little overlap in the number of nominally significant methylation changes in 

neurons, I did observe similar effect sizes for compounds in the same drug class. 

For example, when I compared the effect size of the 100 most significant DMPs 

identified in neurons for one compound in a class, to other compounds in that 

class I saw a significant correlation and enrichment of direction of effect. Similarly, 

when I performed the same tests in the microglia I also observed significant 

correlations and enrichments of direction of effect.  Interestingly, when I 

compared the effect size and direction of effect of the top 100 DMPs in one 

treatment in the neuronal samples to the same treatment in the microglial 

samples there was no correlation or enrichment for a direction of effect. This 

demonstrates that the modulators are a different effect in the two difference cell 

types.  
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One caveat of this study is that it was underpowered, and therefore it was not 

possible to find any methylation changes that reached genome-wide (Bonferroni) 

significance. As power is linked to the number of replicates, in the future the 

replicate number would need to be increased in order to detect DMPs and DMRs 

that are Bonferroni significant. It may also be possible to see more significant 

changes if the treatments were delivered for longer than 24-hours. As previously 

mentioned drugs used to treat chronic diseases are seldom given as a one off 

and so it would be valuable to assess the long term effects these drugs would 

have on DNA methylation. 

 

Another potential pitfall in this study is that the neurons and microglia were 

generated from different cell lines. As a result of this, the different cell types will 

have different genetic backgrounds and this could affect the way the treatments 

alter the DNA methylome. In the future it will be of interest to repeat these 

experiments using neurons and microglia generated from the same iPSC line to 

eliminate the different genotypes as a confounder. Similarly, it will be of interest 

to explore this in multiple iPSC lines to ensure any findings are consistent across 

different genetic backgrounds.  

 

Finally, in the future it would be interesting to assess other epigenetic markers 

other than DNA methylation. As a lot of the targets of the drugs are known to 

interact with histone-related proteins it, looking at histone modifications and 

chromatin accessibility would provide more information on the epigenetic 

consequences of these modulators. Alongside this looking at the corresponding 

gene expression changes within the cells would allow us to determine whether 

the cellular pathways implicated by the methylation data are the same being 
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pulled out by the transcriptomic data. Being able to take a multi-omics approach 

would also mean we could determine whether the methylation changes are 

causing gene expression changes therefore further disentangling the cellular 

effects of the modulators.   

 

6.2.3 Chapter 5: DNA Methylomic Variation Induced by LPS Challenge in a 

Human Microglial Cell Line 

The aim of study was to determine DNA methylation changes that occur when 

microglial cells are exposed to known immune stimulants such as LPS and the 

cellular consequences that these changes have. This was achieved by treating 

immortalised human primary microglia for 24 hours with LPS, 24 hours with LPS 

followed by a 24 hour recovery period or no treatment (i.e. control), the genome 

wide DNA methylation changes were then profiled using the Illumina EPIC array. 

 

One of the first results of this study demonstrated that neither treatment nor 

treatment and recovery from LPS stimulation affects the epigenetic or mitotic age 

of the microglial cells. As previously discussed, there are several reasons this 

could be. Firstly, the immortalisation of the cells is likely to have impacted the 

methylome of the cells and could have therefore made them less susceptible to 

LPS-induced methylation changes. Secondly, the treatment and recovery periods 

may have been too short. As the treatment and recovery periods were both only 

24 hours it is possible that this was not a long enough time for significant changes 

to manifest. To improve this study in the future it would be interesting to assess 

the methylomic changes recurring after longer treatment or recurrent exposures.  
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In order to determine the probes that were susceptible to long term changes to 

methylation and the associated functions of these loci I categorised the DMPs 

into four categories based on their methylation changes (i.e. acute or persistent 

hypo- and hypermethylated probes). This approach allowed me to infer the 

cellular pathways and functions that were more susceptible to immune 

stimulation. As there are more probes in both of the acute groups it is clear that 

the majority of DMPs were more susceptible to short term changes that largely 

disappear during the recovery period. This may be due to the short term nature 

of the treatment period, and in the future it would be interesting to see if any of 

these loci become persistently differentially methylated after longer or recurrent 

treatment. Across the four categories there was one type of gene that was more 

consistently differentially methylated, these were transcriptional regulators. In fact 

half of the DMPs in the persistent hypomethylation category were transcription 

factors or transcriptional regulators. As decreased methylation is generally 

associated with increased transcription it would suggest that there is increased 

expression of transcriptional regulators upon LPS stimulation. However, as the 

relationship between DNA methylation and gene expression is context dependent 

it would also be interesting to study the mRNA changes associated with LPS 

treatment to see if the expression of these regulators is in fact decreasing.  

 

As there weren’t enough loci in each individual category to perform pathway 

analysis separately the four categories of DMPs were pooled to get a general 

view of the pathways potentially impacted by LPS treatment irrespective of the 

direction or duration of the change. These analyses demonstrated that DNA 

methylation changes are particularly observed in genes involved in extracellular 

matrix organisation, signalling and organelle function. However, to confirm that 
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these pathways are changing functional experiments are required. One limitation 

of analysing the data in this way is the small number of DMPs put into the pathway 

analysis. Ideally >1,000 DMPs would be used for each category and each 

category would have been run separately. However, in the current study I did not 

use this approach as taking the top 1,000 DMPs for each group would have 

introduced a lot of false negatives, which could have made the data more difficult 

to interpret. 

 

One of the largest limitations of this study is the small number of replicates used. 

The low sample number in conjunction with the short treatment time are likely the 

reasons it wasn’t possible to detect any Bonferroni significant loci. This lack of 

power means that further replication of the results in the future is necessary. In 

addition to this adding more replicates to this study should also counteract some 

of the large variation seen in some of the results. For instance the variation seen 

in the LPS + recovery group suggests that some of the replicates are recovering 

from treatment faster than others and could be the reason I identified fewer 

persistently differentially methylated loci. By adding more replicates into the study 

I would be able to reduce this variation and determine whether there is a genuine 

difference in the recovery rates of samples. 

 

Finally looking to the future I think it will not only be important to increase the 

treatment length or use recurrent treatments to assess LPS-induced methylation 

changes. However, one issue with recurrent exposure to LPS is cells can become 

tolerant to the treatment [419-421], so in addition to LPS, it would also be 

interesting to look at the methylation changes occurring upon Lipoteichoic acid 

(LTA). I think it will be of great importance to profile the LPS-changes in a more 
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relevant cellular model and profile the changes more comprehensively. This 

could include the use of iPSC-derived microglial lines containing different relevant 

mutations, such as TREM2, CLU or CD33. Using these non-immortalised human 

lines it would then be possible to see if there is any overlap with human post 

mortem data, perhaps in people who were known to have an infection at time of 

death. In addition, I believe it would also be of interest to profile the DNA 

methylation changes observed in iPSC-microglia upon stimulation with 

pathological proteins such as Aβ or Tau.  
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6.3 General Discussion, Limitations and Future Perspectives 

 

6.3.1 Biological Implications of the Key Findings 

Through each chapter of this thesis I have demonstrated that there are 

methylomic changes occurring in neuronal and microglial cell lines that have been 

exposed to AD-relevant exposures such as time in culture, drug treatment and 

immune stimulation. As DNA methylation is known to regulate gene expression 

[99, 422-424] and there are many loci at which the methylation levels are 

changing it is likely that each of these exposures are causing changes gene 

expression changes at numerous loci therefore potentially impacting certain 

cellular pathways.  

 

One of the most consistent changes seen throughout this thesis is changes to 

methylation at loci associated with transcriptional regulation. In chapter 3, 72% of 

the loci within the gene-gene interaction network were known transcriptional 

regulators and ten of the MFs identified through pathway analysis using the loci 

becoming progressively hypermethylated with time were related to transcription 

regulatory region DNA binding. Similarly, in chapter 5 half of the loci in the 

persistent hypomethylation category were found to be involved in transcriptional 

regulation through manual curation. As hypomethylation is generally associated 

with increases in gene expression it would suggest that LPS treatment is causing 

an increase in the expression of these regulators. Due to the nature of the 

treatments in these chapters, i.e. differentiation (chapter 3) and immune 

challenge (chapter 5) it is not surprising that transcriptional regulation is affected. 

Expression changes to some of the loci identified in these chapters have 

previously been demonstrated through other methods [425-429]. However, in 
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order to assess the true biological impact the exposures are having more 

experiments will need to be performed, these could include quantitative 

polymerase chain reaction (qPCR) to look at gene expression changes and 

assays to look at changes to cellular function. 

 

Another broad category of proteins affected consistently throughout this thesis is 

that of signalling proteins. In chapter 3 six of the BPs identified through pathway 

analysis using the loci becoming progressively hypermethylated with time were 

related to cell-surface receptor signalling. Alongside this two of the compound 

classes in microglia were shown to affect the methylation of loci known to be 

involved in cell signalling pathways; these include the BRD inhibitors which 

affected loci associated with protein tyrosine kinase activity and the KMR 

inhibitors which affected loci associated with phosphatidylinositol 3-kinase 

signalling. Finally, LPS treatment in chapter 5 was associated with changes to 

methylation at loci involved in protein tyrosine kinase A signalling and 

serine/threonine kinases. These data taken together suggest that AD relevant 

exposures are associated with changes in cellular signalling, which has been 

previously demonstrated using different methods [430-433]. However, although 

associated it is important to note that without undertaking specific functional 

assays the changes to these signalling pathways is not certain in these conditions 

in these cell lines.  

 

Finally, although there is commonality in regards to the types of loci undergoing 

methylation changes as the work has been undertaken in cell lines grown in 2D 

culture these results likely only reflect a small proportion of the changes occurring 

in the brain. In order to have a better understanding of how these data relate to 
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disease it would be interesting to compare them to post-mortem human brain 

data or data generated from organoid co-culture models.  

 

6.3.2 Limitations 

As outlined above there are numerous limitations associated with the chapters of 

this thesis and with studying epigenetic changes. In this section I will outline the 

limitations that are common to most chapters and what could be done in the future 

to address these limitations.  

 

6.3.2.1 Low Sample Number 

One consistent limitation throughout this thesis and is often a common problem 

for cell culture based studies, is that of the low number of samples. Whilst it is 

possible to use a lower number of replicates for in vitro studies as it is possible to 

eliminate confounders such as sex, medication, or age that are common caveats 

in studies using human samples, having a low sample number does often mean 

that statistical significance, particularly in -omics based studies are not often 

reached. This is due to the relationship between p-value, sample size and the 

power to detect changes in methylation [434-436]. By increasing the sample size 

in further studies it will be possible to more accurately determine whether there 

are type I or II errors being introduced into the results therefore possibly leading 

to misinterpretation of findings. It will also possible to use the data in the chapters 

of this thesis to undertake power calculations in order to determine the ideal 

samples sizes moving forward. Power calculations were not performed before 

undertaking the experiments presented in this thesis as they represent the first 

DNA methylomic studies in this context and so no preliminary data was available 

to estimate power. In the analyses I present a higher importance has been placed 
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on direction of effect and the correlation of effect size in some cases, in addition 

to a more relaxed arbitrary significance threshold chosen. It has previously been 

demonstrated that due to the high degree of correlation between the probes on 

the Illumina EPIC array the Bonferroni significance threshold is likely too stringent 

and therefore likely to introduce type II errors. Owing to this it was deemed 

acceptable to use more relaxed thresholds in my studies, but to note that further 

replication of results is required before solid conclusions can be drawn. 

 

6.3.2.2 Use of Different Cell Lines 

It is critical to note that there is a different cell line used in each of the chapters of 

this thesis. Whilst this was not originally planned due to issues with building 

management and power failures I have had to rely upon collaborators to provide 

iPSC-derived cells to use in each chapter. The first issue to occur was due to lack 

of communication between the technical staff in the Hatherly laboratories. As a 

result of the mis-communication the liquid nitrogen tanks storing the vast majority 

of the neuronal lines I had developed, evaporated and meant all of the cell stored 

in the tank were destroyed. Following this loss it took numerous months to get 

stocks of the various lines from collaborators and to regenerate the iPSC-derived 

neurons. Owing to the lack of redundancy in the liquid nitrogen facilities at the 

Hatherly laboratories whilst cell lines were being re-acquired I decided to move 

my tissue culture work to the RILD building, as that is where our research group 

is primarily based. Unfortunately, a year later within the RILD building there was 

a power failure overnight and the backup generators failed. This power outage 

affected the tissue culture facilities and resulted in the incubators cooling down 

to ~12oC. Whilst the cells were still alive the next morning I decided the cells could 

not be kept for experiments as this persistent decrease in temperature would 
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likely have affected the methylome of the cells. As a result of this second system 

failure I lost iPSC-derived neurons which had been maturing in culture for 

approximately six months and cell lines of different genetic background. A further 

four months of work was lost later that year whilst I was away at a conference 

and my cells were being looked after by someone else. Unfortunately all of these 

issues were beyond my control, and has meant that we have used different lines 

for different chapters, with substantially less replicates than originally planned. 

However, ideally all of the experiments in this thesis would have been undertaken 

in cells of the same genetic background with substantially more replicates.  

 

6.3.2.3 Caveats of EWAS Studies and Profiling Cytosine Modifications 

The Illlumina platform has become one of the most popular ways to interrogate 

DNA methylation across the genome and has been used extensively to study 

methylomic variation within AD [120, 121, 437]. However, despite its extensive 

use there are limitations which should be taken into account. Firstly, standard BS 

conversion does not allow you to distinguish between DNA methylation and 

another cytosine modifications (DNA hydroxymethylation). As a result of this, the 

results from the array are a combination of both these cytosine modifications 

rather than just 5-mC. As 5-hmC is a DNA modification that in particular has been 

shown to be elevated in the brain and during development [438, 439]  and the 

majority of cells used in this thesis are iPSC-derived neurons, which I have shown 

to be epigenetically foetal or immature then it would be of interest to profile this 

modification in isolation in the future.  It is now possible to simultaneously profile 

5-hmC and 5-mC, by adding an oxidation step prior to bisulfite treatment, which 

converts 5-hmC to 5-fC. Following BS treatment the 5-fC is converted to a uracil 

and so upon PCR amplification becomes a thymine, whilst methylated loci are 



 

319 
 

protected from the conversion and therefore will remain as cytosine. 

Subsequently, running oxidative-BS samples on the array generates a measure 

of 5-mC in isolation, and by running a matched BS sample in parallel you can 

subtract the oxidative-BS signal from the BS signal generating a 5-hmC value for 

each locus. In order to determine whether the methylation changes detected 

(particularly in chapters 4 and 5) are indeed changes to DNA methylation rather 

than hydroxymethylation it would be of interest in the future to also run oxidative 

BS converted DNA on the EPIC array to disentangle the relationship between 

cellular maturity, drug treatment and hydroxymethylation changes. 

 

6.3.2.4 Determination of Age 

Looking to the future, I think it will be important to further explore the epigenetic 

age of the iPSC-derived neurons and microglia used in this thesis. The 

methodology used to generate the epigenetic or biological age of the samples 

used in this thesis was the most up to date version of Horvath’s epigenetic age 

calculator [126]. However, it is worth noting that the algorithm used to calculate 

epigenetic age was not trained on foetal data. As the DNA methylation profile is 

dynamic throughout brain development [440], the epigenetic ages presented in 

each chapter should not be interpreted as a robust read out of age. The 

interpretation of this should be that despite not being trained on foetal or infant 

data the epigenetic ages of the sample in this thesis are still predicted to be foetal. 

In the future it will be of interest to explore other epigenetic age calculators and 

to culture cells for a long period of time to investigate whether this impacts their 

epigenetic age. It will also be of interest to examine the epigenetic age of iNs 

under the different treatments outlined in each chapter, as iNs have been shown 

retain their age-related epigenetic signature [441].  
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In order to combat this other metrics of cellular maturity or ways of measuring the 

biological age of iPSC-derived cells should be considered in the future in addition 

to epigenetic age. One way in which this could be achieved in through the use of 

RNA-sequencing and measuring the expression of genes known to increase or 

decrease throughout development. This could include the measuring the 

expression level of pluripotency genes such as NANOG, mature neuronal 

markers such as β-III-Tubulin or subtype specific markers such as choline 

acetyltransferase to determine the type of neuron being generated. As 

telomerase is known to be active in iPSCs [442, 443] determining the telomere 

length of the resultant iPSC-derived neurons and relating it healthy human post 

mortem brain data I believe would also be of value.  
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6.4 Conclusions 

Overall the data outlined in this thesis has provided evidence that it is possible to 

generate iPSC-derived neurons and that there are epigenetic changes occurring 

in neuronal and microglial cell models that are exposed to AD-relevant exposures 

such as time in culture, drug treatment and immune challenge. However, despite 

this there are still several questions which remain unanswered. These include: 

1. What is the best way to mature iPSC-derived cells in culture and the best 

way of measuring cellular age? 

2. Whether longer treatment with the epigenetic modulators used in chapter 

4 could alter epigenetic age or be used to reverse the epigenetic changes 

seen in disease. 

3. Whether recurrent exposure to LPS or other relevant pathological proteins 

will have a more profound effect on resulting cells.  

Looking to the future using multi-omics approaches and different conditions 

throughout neuronal differentiation and maturation will offer the best tools in 

which to answer these questions.  
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APPENDIX A :  USING INDUCED PLURIPOTENT STEM 
CELLS TO EXPLORE GENETIC AND EPIGENETIC 

VARIATION ASSOCIATED WITH ALZHEIMER’S 
DISEASE 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Review

Using induced pluripotent stem cells to
explore genetic and epigenetic variation
associated with Alzheimer’s disease
Jennifer Imm1, Talitha L Kerrigan1, Aaron Jeffries1 & Katie Lunnon*,1

1Institute of Clinical and Biomedical Science, University of Exeter Medical School, Exeter University, Exeter, UK
* Author for correspondence: k.lunnon@exeter.ac.uk

It is thought that both genetic and epigenetic variation play a role in Alzheimer’s disease initiation and
progression. With the advent of somatic cell reprogramming into induced pluripotent stem cells it is now
possible to generate patient-derived cells that are able to more accurately model and recapitulate disease.
Furthermore, by combining this with recent advances in (epi)genome editing technologies, it is possible to
begin to examine the functional consequence of previously nominated genetic variants and infer epige-
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Alzheimer’s disease
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and accounts for approximately 60–80%
of all dementia cases worldwide [1]. Dementia is estimated to affect 46.8 million people worldwide, with this set
to double every 20 years reaching 131.5 million in 2050 [2]. The disease is characterized by the accumulation of
amyloid beta (Aβ) plaques, intracellular neurofibrillary tangles of hyperphosphorylated tau [3] and loss of synaptic
connections [4]; taken together these lead to neuronal cell death. This is accompanied by cognitive and behavioral
changes, such as memory impairments, language disturbance and hallucinations. The early cognitive decline in AD
can be attributed to the degeneration of cholinergic neuronal cells found in the cortical and limbic brain regions
such as the hippocampus [5] and the basal forebrain [6].

The deposition of senile plaques and tangles does not occur at random, but follows a distinct and characteristic
pattern [7–10], starting in the neocortex and then the hippocampus [11], while other regions, such as the cerebellum,
remain relatively unaffected [12]. This specific topographical distribution correlates with, and explains, the character-
istic symptoms of AD; the hippocampus and neocortex are well known for being involved in controlling emotions,
memory and higher brain function [13,14]. The cerebellum on the other hand is responsible for coordination, motor
and voluntary movements, and there are far fewer aberrations in these in AD patients when compared with the
prevalence of other symptoms [15]. There is already considerable pathology before the disease is diagnosed [16], with
the onset of symptoms sometimes occurring at least 10 years after Aβ is first deposited [17]. This apparent delay in
the appearance of symptoms is caused by there being a threshold of cholinergic loss before the brain can no longer
compensate and ameliorate the deficit [11]. Although, much progress has been made in understanding the cellular
pathology of AD, the treatments currently available only temporarily alleviate some symptoms and do not modify
the underlying pathology.

Genetic variation associated with AD
Given, the high heritability estimates (∼60–80%) for AD based on quantitative genetic studies [18], initial etiological
studies have focused on identifying a genetic basis for disease. Although some AD cases are caused by autosomal
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Table 1. Summary table of single nucleotide polymorphisms (SNPs) associated with Alzheimer’s disease (AD), which reach
genome-wide significance in Lambert et al. (2013).
SNP Chr: position Closest gene Odds ratio

rs6656401 1:207692049 CR1 1.18

rs6733839 2:127892810 BIN1 1.22

rs10948363 6:47487762 CD2AP 1.10

rs11771145 7:143110762 EPHA1 0.90

rs9331896 8:27467686 CLU 0.86

rs983392 11:59923508 MS4A6A 0.90

rs10792832 11:85867875 PICALM 0.87

rs4147929 19:1063443 ABCA7 1.15

rs3865444 19:51727962 CD33 0.94

rs9271192 6:32578530 HLA-DRB5– HLA-DRB1 1.11

rs28834970 8:27195121 PTK2B 1.10

rs11218343 11:121435587 SORL1 0.77

rs10498633 14:92926952 SLC24A4 RIN3 0.91

rs8093731 18:29088958 DSG2 0.73

rs35349669 2:234068476 INPP5D 1.08

rs190982 5:88223420 MEF2C 0.93

rs2718058 7:37841534 NME8 0.93

rs1476679 7:100004446 ZCWPW1 0.91

rs10838725 11:47557871 CELF1 1.08

rs17125944 14:53400629 FERMT2 1.14

rs7274581 20:55018260 CASS4 0.88

Chr: Chromosome.
Data taken with permission from [25].

dominant mutations in three genes (APP, PSEN1, PSEN2), these account for less than 5% of AD prevalence and
are early-onset, occurring before the age of 65 years. Most AD cases are late-onset (>65 years) and sporadic, with
no defined etiology. However in recent years, large cohort collections and the relatively inexpensive cost of assessing
genetic variation through genome-wide association studies (GWAS) has allowed the identification of common
variants associated with risk of developing AD. These studies have demonstrated that late-onset Alzheimer’s disease
(LOAD) is thought to be multifactorial with many different genes and single nucleotide polymorphisms (SNPs)
being implicated in, and contributing to, disease onset and progression [18]. The most robustly associated gene
with LOAD is APOE, which encodes a polymorphic glycoprotein that is involved in the transport of cholesterol
and other lipids [19] alongside neuronal growth [20] and tissue repair [21]. There are three isoforms of APOE: ε2,
ε3 and ε4, which can be distinguished by cysteine to arginine substitutions at the amino acid positions 112 and
158 [22]. The ε4 variant confers increased risk of developing LOAD, with each additional copy of the risk allele
lowering the mean age of onset [23]. While APOE ε4 accounts for approximately 20% of genetic risk for developing
LOAD it cannot explain all of disease incidence, as not everyone who is homozygous for ε4 actually develops
AD [24]. Aside from APOE there are numerous other risk loci SNPs that have been implicated in AD. The most
recent meta-analysis of nearly 75,000 individuals nominated 19 common genetic variants, of which 11 were novel
disease loci [25] (Table 1). Interestingly, many of the GWAS loci that have been nominated for AD can be linked
to amyloid processing or inflammation. While risk variants that have been identified from GWAS only confer a
relatively modest effect size, with odds ratios between 0.73 and 1.22 per loci investigated [26], it is thought that
these could act cumulatively to cause the onset of degeneration. Scientists have generated polygenic risk scores
(PRS) for AD, which combine the effects of many disease-associated SNPs to predict disease risk [27] and recently
it has been reported that the PRS prediction captures nearly all common genetic risk for AD [28]. However, another
study has demonstrated that collectively common SNPs for AD only account for a third of phenotypic variance in
AD [29]. Recent efforts to explain the missing heritability of AD have used sequencing approaches to identify rare
variants, with a larger effect size, with SNPs in PLD3, TREM2, TM2D3 and PICALM being nominated in recent
years [30–34].
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Despite the fact that GWAS and sequencing efforts have been successful in identifying novel genes involved in
AD, the majority of SNPs lie outside of coding regions of the genome. These variants are thus unlikely to have
direct structural or functional effects on their gene’s protein product, and are more likely to affect gene regulation
at other loci. By integrating genetic variation with transcriptomic measurements in the same samples, for example
from microarray or RNA sequencing experiments, it is possible to correlate disease associated genetic variants with
changes in gene expression to identify expression quantitative trait loci (eQTLs). Such disease-associated eQTLs
can occur both within the same gene (in cis) or distally within another gene (in trans). Recent research indicates that
SNPs may change expression by initially altering the binding ability of one ‘pioneering’ transcription factor (TF),
which then recruits other TFs. This was shown to occur at a CTCF motif, which if disrupted affects the binding of
five different TFs [35]. However, if there are two or more variants in perfect linkage disequilibrium (LD) with one
another, the nonrandom association of loci at different genomic locations, then it is not possible to distinguish which
variant is acting as the eQTL. To further complicate matters, many eQTLs act in a cell-type-specific manner [36].
This is particularly relevant when studying heterogeneous tissues such as the brain or blood, or in a disease such as
AD, where cellular abundance is known to be altered [37,38]. In the context of AD, one recent study demonstrated
enrichment for monocyte-specific eQTLs at disease-associated loci, suggesting a role of the innate immune system
in AD pathology [39]. In support of this, Karch et al., tested whether GWAS LOAD SNPs act as cis-eQTLs for
LOAD GWAS genes [40]. They were able to show the AD SNP rs1476679 in ZCWPW1, was significantly associated
with the expression of PILRB and GATS in most brain regions, including the hippocampus. Interestingly, PILRB
acts as a binding partner for TYROBP, both of which can be found on microglia [41]. The expression of TYROBP
is restricted to cells of the immune system such as microglia, and has been shown to be upregulated in the brains of
patients with LOAD. In a recent gene-regulatory network analysis TYROBP was shown to be a key causal regulator
of a microglial/immune module highlighted as the module most associated with pathophysiology of LOAD. This
microglia/immune module was also shown to contain a number of AD GWAS risk loci, such as CD33, MS4A4A
and MS4A6A [39]. Furthermore, TREM2, which has been recently nominated from sequencing studies, is known
to interact and signal through TRYOBP [39]. Taken together many network level analyses have highlighted a role
for microglia and neuroinflammation in AD risk [39,40,42,43].

A role for epigenomic dysfunction in AD?
Recently, increased understanding about the functional complexity of the genome has led to growing recognition
about the likely role of nonsequence-based ‘epigenetic’ variation in AD [44]. Epigenetic processes mediate the
reversible regulation of gene expression, occurring independently of DNA sequence, acting principally through
chemical modifications to DNA and nucleosomal histone proteins (Figure 1). The most widely studied epigenetic
modification in human studies is that of DNA methylation, given it is the most stable and longest lasting change.

In general, in vitro studies have suggested that there is a trend toward global DNA hypomethylation in AD. For
example, one study demonstrated global hypomethylation in a glioblastoma cell line with the APPSWE mutation,
which occurs in familial AD [45]. Likewise, it was shown that there are lower DNA methylation levels in brain
microvascular endothelial cells that were exposed to high levels of synthetic Aβ1–40 [46]. However, in contrast to this
a more recent study using neuroblastoma cells exposed to synthetic Aβ1–40 showed no significant change in DNA
methylation levels [47]. In the context of human postmortem brain samples there are also some conflicting results;
contrasting studies have shown decreased levels of global DNA methylation in AD-associated brain regions such as
the entorhinal cortex [48] and hippocampus [49], while others report no change [50,51] or even increased levels in the
frontal cortex [52] and hippocampus [53].

In recent years, advances in genomic technology have allowed the first genome-scale studies of DNA methylation
in AD [54,55]. To date, all published studies have utilized the Illumina Infinium 450 K Methylation Beadarray
(450 K array) to examine DNA methylation changes at >485,000 loci in postmortem brain samples. Although,
these epigenome-wide association studies (EWAS) have been performed on independent sample cohorts, in a
range of anatomically distinct cortical brain regions, a number of consistently differentially methylated genes have
been identified [56]. Most notably one such gene to be robustly hypermethylated in AD cortex is ANK1 [54,55].
Interestingly, disease-associated ANK1 hypermethylation has been observed in a tissue-specific manner, with brain
regions affected by AD pathology (entorhinal cortex, superior temporal gyrus and prefrontal cortex) showing
significant hypermethylation, while the cerebellum, a region largely unaffected by pathology, and premortem blood
show no disease-associated changes. The majority of genes identified by EWAS are distinct from those nominated
in GWAS with the exception of BIN1. However, despite different genes being identified with the two approaches
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Figure 1. Diagram to illustrate the different epigenetic mechanisms that have been identified. (A) Regulation of
chromatic structure through post-translational modifications to histone proteins. This can include: acetylation,
methylation, SUMOylation, ubiquitylation, citrullination and ADP-ribosylation. (B) Addition of chemical tags to DNA
to the 5’ end of a cytosine nucleotide. This creates 5mC – the most commonly studied epigenetic mark, 5hmC, 5caC
and 5fC. (C) Small RNA molecules, such as microRNA can also affect gene expression either through degrading mRNA
or altering protein translation.
5caC: 5-carboxylcytosine; 5fC: 5-formylcytosine; 5hmC: 5-hydroxymethycytosine; 5mC: 5-methylcytosine.

many of these do reside in common pathways [57]. Since the publication of the initial EWAS analyses, there
have been additional studies identifying additional differentially methylated genes in AD, including CRTC1 [58],
APOE [59] and TREM2 [60].

To date, the majority of AD EWAS have focussed on DNA methylation, with histone modifications considerably
less well studied. However, one study has shown that the histone deacetylase (HDAC) inhibitor, sodium butyrate,
can improve cognitive function, synaptic density and plasticity in mouse models with inducible overexpression
of p25 protein [61]. P25 has been shown to be linked to numerous features of AD such as amyloid and tau
pathology alongside memory loss and neurodegeneration [62–64]. Similarly, another study has shown improved
memory function in transgenic APPPS1–21 mice after treatment with sodium butyrate [65]. Furthermore, memory
improvements were seen even when it was administered at the latest stages of amyloid pathology and were associated
with increased expression of genes implicated in associative learning. Other studies have also shown HDACs to
have therapeutic utility, such as Depakote [66], phenylbutryic acid [67] and trichostatin A [68]. While these studies
are encouraging and show the potential utility of HDACs as therapeutic agents there are, however, a couple of
considerations with this approach. First, most models, including the ones we describe, are models of familial AD,
which use small numbers of animals and, as such, results should not be over interpreted. Alongside this, these
studies use pan-HDAC inhibitors, which are all known to affect multiple HDACs. While, it is useful to know
that there may be some involvement of histone modifications or HDACs in AD initiation or progression, these
studies do not highlight specifically which ones are implicated. In order to address this, a number of groups
have crossed APPPS1–21 mice with those lacking certain HDACs. APPPS1–21 mice that lack HDAC5 show
exaggerated memory impairment [69], while those lacking HDAC6 have improved memory, but this is achieved
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without changing amyloid deposition [70]. Another HDAC that could have potential as a therapeutic target is
HDAC2, as mice with reduced HDAC2 show increased memory and synaptic plasticity [71]. Therefore, it appears
that only specific HDACs show promise as potential drug targets. When using certain HDACs it is important
to be aware that they can also affect DNA methylation. For instance, it has been shown that Depakote can cause
extensive DNA methylation changes including demethylation changes at specific genes such as MMP2, MAGEB2
and WIF1, which have been implicated in tumor growth and metastasis [72]. This study supports the concept that
various epigenetic marks are in a dynamic relationship with one another and that you cannot necessarily target
one without affecting another. Finally, as with any potential drug that is tested on model systems, such as mice,
it is important to remember that these rarely translate effectively into humans. One good example of this comes
from studies which demonstrated the utility of anti-amyloid antibodies [73]. In these APP-transgenic mice, just one
injection of m266, an anti-APP mouse antibody, was able to reverse cognitive deficits without reducing amyloid
plaque burden [73]. However, when taken to Phase III clinical trials, the human antibody, Solanezumab, did not
reduce cognitive decline in those with mild dementia due to AD [74].

Induced pluripotent stem cells: new models for late-onset Alzheimer’s disease?
To fully understand and elucidate the mechanisms of disease etiology, extensive modeling must take place. Tra-
ditionally, this has been achieved by a number of methods, including both animal (murine) models and primary
patient cell lines. While both of these approaches have their own merits, they can prove inconvenient and do not
completely and accurately reflect human disease. At present, the AD research field has had a heavy focus on disease
modeling through the use of transgenic mouse models [75], as there is a well-developed understanding of genetic
manipulation techniques in this organism. Furthermore, mice are more phylo-genetically related to humans than
other simpler model organisms such as Drosophila melanogaster and Caenorhabditis elegans, although these do allow
for more experimental control than mice. Due to the close relation of mice and humans they also have good utility
for studying familial AD, through the use of transgenic mice containing mutations in the APP and PSEN genes.
This has led to advances in our understanding of multiple aspects of AD, in particular amyloid pathology and the
differential effects of the various Aβ peptides. However, despite the extensive use of these transgenic models to study
AD, they do not accurately recapitulate AD, as the mice do not display overt neurodegeneration [76–78] or have
amyloid plaques [79]. While proven useful for modeling autosomal disease, such as familial AD, the mouse models
do not have extensive utility for studying sporadic AD, which has both polygenic and environmental components.
Even if it was possible to model the genetics of sporadic AD in transgenic mice the effect sizes of each associated
variant would be small and therefore difficult to determine phenotypic outcome. However, there have been murine
studies that have targeted replacement of the endogenous murine Apoe gene with human APOE-ε4. These mice
demonstrated reduced spatial learning and a reduction in dendritic spine density in the medial entorhinal cor-
tex [80]. In another study, where APOE (both ε3/ε3 and ε4/ε4) mice were crossed with mice containing a mutant
human form of APP, the APOE-ε4xAPP mice displayed significantly worse spatial memory performance than their
APOE-ε3xAPP counterparts, but this was also associated with insulin dysfunction [81].

A more promising avenue for modeling SNPs in complex diseases, such as sporadic AD, is through the use
of stem cell technology. Embryonic stem cells (ESCs), which are derived from the inner cell mass of an embryo
(blastocyst), have the ability to differentiate into any cell in the body [82]. Due to their inherent plasticity, and
as genomic variation can be assessed relatively inexpensively through PCR, microarray, or sequencing technology,
there is the potential that they could be used to study the effect of disease-associated SNPs on the functionality
of specific cell types. However, while being useful, the ethical issues implicated with using embryo-derived ESCs
are numerous. Recent advances in stem cell technology have allowed the production of stem cells derived from
adult tissue, such as blood, urine and keratinocytes [83]. These induced pluripotent stem cells (iPSCs) have almost
identical characteristics to ESCs: they share the same morphology, can differentiate into any cell type in the body,
have unlimited growth and have the same expression pattern of genes [84]; potentially making them a very powerful
tool in research.

There are, however, a number of caveats when utilizing iPSCs to model complex diseases that must be considered.
Associated with inducing pluripotency are the global cellular epigenetic changes that allow the cells to alter gene
expression in order for them to be functionally identical to ESCs. Despite, being functionally identical, several
groups report that iPSCs have different DNA methylation profiles and gene expression patterns to ESCs [85–88].
Some groups attribute this variation due to an ‘epigenetic memory’ where iPSCs show residual DNA methylation
patterns that are typical of the tissue they originate from [89]. These differentially methylated regions (DMRs) were
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shown to affect the differentiation potential of the newly formed iPSCs. For example, iPSCs derived from neural and
fibroblast progenitors maintained DNA methylation marks at sites associated with hematopoietic lineages, which
decreased the potential for these iPSCs to form blood cells. Subsequently, it is possible to reverse these restricting
methyl marks by increasing the cells passage number or treatment with chromatin modifying compounds [89]. This
treatment is associated with a decrease in DNA methylation at hematopoietic loci and therefore an increase in blood
cell fate potential. Therefore, although it would appear that this epigenetic memory can affect the differentiation
potential of cells initially, this effect is actually only transient. It has also been observed that certain subsets of
cells can become stuck in a partially reprogrammed state. This is due to inefficient DNA demethylation at certain
sites or the incomplete repression of TFs [90]. Despite this, these aberrations can be rectified using RNA inhibition
of TFs or treatment with DNA methylase inhibitors. Another potential source of epigenetic variation between
ESCs and iPSCs is the microenvironment in which the iPSCs have been generated. Cooper and Newman have
demonstrated that there is some correlation between cells’ gene expression patterns and the laboratory the cell
lines are derived from [91,92]. This demonstrates that the environment can affect the epigenome and therefore,
downstream gene expression of cell lines. To fully assess the differences in the epigenomes between iPSCs and
ESCs, Lister et al., utilized a shotgun bisulphite sequencing technique (MethylC-seq) to look at the whole-genome
DNA methylome at single base-pair resolution [93]. This demonstrated that, overall, ESCs and iPSCs are similar,
but that there are some inherent differences between their DNA methylomes. The reprogramming of somatic cells
generated hundreds of DMRs that could be attributed to both memory from the somatic cell and iPSC specific
DNA methylation patterns that are susceptible during the reprogramming process as many DMRs were consistent
across independent iPSC lines [86]. All of these studies demonstrate that there are fundamental differences in both
the epigenome and gene expression patterns of ESCs and iPSCs. However, there are ways to rectify some of these
differences meaning that iPSCs still have utility as disease models, although the differences must be taken into
account when interpreting results.

Since, the introduction of iPSC technology there have been increasingly more studies utilizing iPSCs for
disease modeling and small molecule testing as, theoretically, iPSCs are an exact genetic match of the patient
they are derived from. To accurately model AD using iPSCs, the generation of specific neuronal populations are
usually necessary, particularly iPSC derived cortical and cholinergic neurons. Generating these requires certain
factors, including SB431542 and LDN-193189 [94], which act as inhibitors of TGF-βI and BMP type I receptors
respectively. This inhibition prevents SMAD phosphorylation, suppressing cellular renewal and promoting cortical
differentiation [95,96]. A good iPSC model of AD would not only be the correct cell type of interest, but also
show the neuropathological features and characteristics of the disease. There have been several studies that have
reported that iPSCs show certain disease features [97–100]. More specifically, in AD iPSCs have also been used to
show Aβ-induced synaptotoxicity [101]. In this study, Nieweg et al. demonstrated not only that Aβ altered AMPA
receptors postsynaptically and impaired axonal vesicle clustering, but also increased the phosphorylation status
of tau, another key characteristic hallmark of AD. Alongside aberrations in tau phosphorylation, degeneration of
cortical neurons is also a very prominent clinical feature of AD, and it is believed that this causes the onset of
symptoms. Therefore, to truly understand AD as a disease, being able to recapitulate this neuronal cell death is
vital. One recent study has shown that iPSC-derived basal forebrain cholinergic neurons heterozygous for APOE
(ε3/ε4) are more susceptible to glutamate-mediated cell death, while also showing an increased Aβ42/Aβ40 ratio
when compared with basal forebrain cholinergic neurons generated from healthy age matched control patients [102].

One of the major utilities for using iPSCs to study AD is the ability to examine the effects of genetic variants with a
relatively small effect size on phenotype. One study that took advantage of this has demonstrated that iPSC-derived
neurons carrying genetic variants in SORL1, which increase LOAD risk, have reduced response to BDNF treatment.
This not only manifests at the level of SORL1 expression but also impacts APP processing [103]. Furthermore,
given that AD has a polygenic component; it is also possible to assess the effect of different combinations of
disease-associated SNPs. As it is possible to use iPSCs to generate patient specific neuronal cells, there is the
potential to generate libraries of cells with varying combinations of LOAD-associated SNPs and therefore, different
susceptibilities to disease. Interestingly, two studies have demonstrated this variability in susceptibility using LOAD
iPSC-derived neurons [104,105]. In the first, undertaken by Israel et al., they found that neurons from one patient, but
not from another, showed AD-associated phenotypes. This included altered levels of secreted Aβ1–40, higher aGSK3
levels and had significantly increased p-tau/total tau [104]. The second study, conducted by Kondo et al., showed
differential intracellular Aβ oligomer accumulation, inducing endoplasmic reticulum and oxidative stress [105].
Taken together these studies show how different genetic backgrounds can alter disease initiation and progression as
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well as the complex genetic interplay there is in LOAD. However, being able to investigate the effects of different
PRS on living and developing neuronal populations will provide more valuable insight into the role genetic variants
play in terms of physiological/cellular aberrations and disease progression in LOAD. Importantly, data that is
generated through the usage of iPSCs can therefore be compared and contrasted with data collected from molecular
studies in human postmortem tissue to potentially elucidate the disease-specific effects.

Using genetic editing to elucidate the functional consequence of disease-associated variation
Using iPSCs and recent advances in epigenetic editing technology, it is becoming possible to start teasing apart the
underlying mechanisms that may be driving AD pathogenesis. Clustered regularly interspersed short palindromic
repeats (CRISPR) uses RNA-guided Cas9 nucleases to introduce DNA breaks which can be repaired through
homologous recombination, indel mutations or with a vector carrying a desired mutation [106]. CRIPSR can be
used provided that the sequence of interest is unique compared with the rest of the genome and is upstream of
a protospacer adjacent motif (PAM) sequence. The PAM sequence is typically three to five nucleotides long and
serves as a binding region for the Cas9 to bind. Unfortunately, this is a requirement of the method and can be
technically challenging. Despite, the PAM sequences being relatively common throughout the human genome they
can often be in the incorrect location relative to the sequence of interest and can make modifying the gene difficult.
Furthermore, if the target locus has high homology to another region in the genome then there is the potential for
off-target effects resulting in inadvertent mutations [107,108].

The main advantage of the CRISPR-Cas9 system is that you can create isogenic control lines that only show
genetic variation at your disease-specific loci. One recent example of this in the AD field comes from Pires et al.,
who successfully corrected the A79V PSEN1 mutation in a patient AD iPSC cell line [109]. These types of control
lines are extremely beneficial for studying disease-associated genetic variation, as they enable the minimization of
genetic variability as both disease and control lines have the same genetic background. Such isogenic lines have been
recently used to study familial AD [105,110,111]. One study has shown iPSCs harboring the APPSWE and PSEN1
M146V mutations have increased total Aβ production, and up to a three-fold increase in the Aβ42/Aβ40 ratio when
compared with their isogenic controls. These changes have been shown to correlate to neuronal identity, maturity
and mutation load [112].

While, it proves relatively simple to use this technique to study the effects of causative mutations, such as those in
familial AD, other genetic variants like SNPs associated with sporadic AD are more problematic to model. This is
due to the fact that they may only be relevant to diseases such as AD in specific combinations. As an extension to the
CRISPR system, it is possible to alter multiple loci using CRISPR-multiplexing [113]. In this system, multiple guide
RNAs are assembled into the same vector and transfected into the cells allowing the targeting of multiple loci. This
tool will undoubtedly prove incredibly useful for LOAD research as it will allow researchers to modify up to seven
loci. By modifying multiple disease-associated SNPs, one could investigate the effects of various combinations on
cell physiology, protein expression and aggregation. This approach would work very well for the LOAD risk SNPs
BIN1, CLU and PICALM, for example, as these have all been shown to interact with Aβ/tau [114–117]. Therefore, by
altering these specific SNPs one could investigate how tau and Aβ pathology changes over time. Another interesting
point is that this methodology would allow one to investigate the interaction between disease-associated SNPs
with reported relationships, for example PICALM and the APOE ε4 allele. In a previous study of familial AD
patients, a homozygous PICALM genotype (rs3851179) was shown to modulate prefrontal cortex volume and
cognitive impairment in carriers of the APOE ε4 allele [118]. As both proteins are involved in the same Aβ clearance
pathway [119,120], it is thought that alterations in the endocytic functions of PICALM may synergistically affect
APOE ε4. This could mean there is a higher likelihood of Aβ remaining in the brain and therefore increasing plaque
formation.

Establishing causality
An important step for research is to establish whether disease-associated variation is causing disease. This is simpler
to test when examining genetic variation, as we know that the SNP has been present in an individual throughout
their life course, prior to disease onset. However, when investigating the functional effects of disease-associated
epigenetic variation, the relationship is less clear, and it is difficult to determine whether epigenetic changes are a
cause, or a consequence, of the disease process. While previous postmortem brain studies have provided valuable
physiologically relevant information about epigenetic changes occurring at later disease stages it is difficult to
establish if those alterations actually initiated disease, or are secondary to the disease process, therefore making it
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difficult to infer causality. First, because this is crucial for the design of effective drug therapies to combat disease,
and second, because AD neuropathology generally occurs at least 10 years before symptomatic onset, it is important
to understand the root causes to be able to monitor and diagnose the disease in its very earliest stages. iPSCs have
real utility for determining whether associations identified in EWAS analyses could represent a secondary effect of
disease, or could be driving disease progression. Using a modified version of the CRISPR-Cas9 technology it has
become possible to alter DNA methylation at specific loci. By fusing the Cas9 protein with the enzymatic domains
of TET1 or DNMT3A it is possible to remove, or add methyl groups to DNA respectively [121]. This method
builds on previous work [122,123] where Tet1 and Dnmt3a were fused to TALE proteins to achieve the same effect.
By being able to manipulate the epigenetic landscape of cells, particularly at loci associated with disease it will
enable researchers to establish whether disease-associated epigenetic variation is causative. These techniques have
already been utilized in diseases such as cancer [124,125], but to our knowledge have not yet been reported in AD
research. The epigenetic status of genes such as ANK1, which have robust changes in AD, would be an excellent
initial target for this new methodology. It has the potential to reveal whether the DNA methylation changes seen
are truly causative and precede disease initiation, or whether they are a consequence of progression. Even if, it is the
latter and it is found that these alterations do not cause disease, but occur in the earliest stages of the disease, they
could potentially be used as a biomarker for diagnosis prior to symptomatic onset. Alongside this, such changes also
tell us something about the disease process and its progression. Given that recent studies have demonstrated robust
epigenetic alterations in AD, iPSCs could become a valuable tool in which these studies could be taken further.
However, to undertake epigenetic studies in these cells it will be very important to fully understand the epigenetic
landscape of the iPSCs themselves, both throughout differentiation and at maturity.

Current challenges to progress
While it is possible to create disease-relevant cells using iPSCs, as with any model, iPSCs also have their limitations.
A large concern when using iPSC-derived neurons to model disease is that the resulting neurons represent an
immature and fetal population [126–129]. This is of particular concern when studying diseases of aging, such
as LOAD. However, efforts are being made to overcome this particular issue. For example, by expressing a
mutant form of LMNA, which is known to cause premature aging. By expressing progerin in the iPSC-derived
dopaminergic neurons, it was possible to create phenotypes that were resultant of both the induced aging and
genetic susceptibility [130]. The aged Parkinson’s disease neurons had marked dendrite neurodegeneration, reduced
tyrosine-hydroxylase expression and displayed epigenetic markers of aging that were not present in the control
populations. Another study directly reprogrammed fibroblasts into neurons, skipping iPSC pluripotency stages, in
an attempt to overcome iPSC immaturity [131]. As this protocol does not induce pluripotency the inducible neurons
display both age-related epigenetic and transcriptomic signatures, showing age-associated decreases in RanBP17, a
nuclear transport receptor. While these neurons would prove useful for studying diseases of aged cells, such as AD,
it is difficult to make large amounts of primary material as these cells cannot be propagated, unlike the iPSCs.

Future perspective
Since, the pioneering work by Takahashi and Yamanaka in 2006, the use of iPSCs has been able to significantly
advance complex disease research. They have enabled researchers to more accurately recapitulate disease phenotypes
in a cell culture system. While iPSCs are far from being used therapeutically, they have proven useful for investigat-
ing the molecular and genetic underpinnings of LOAD. Once there have been more extensive investigations into
the effects of SNP burden and their molecular targets, iPSCs can be used to test the effectiveness of new therapeutic
interventions. Although, at present iPSC generation and differentiation are costly and time consuming, differentia-
tion protocols are quickening, and the use of an individual’s own iPSCs to select their appropriate treatment would
be a first step toward personalized medicine, potentially improving the patient’s life.

While, it is still unknown whether the global epigenetic changes that occur during iPSC generation affect
the end epitype of cells, there is still promise that these cells could be used to study the epigenetics of complex
diseases. If epigenetic aberrations do prove to be an issue, then these will have to be taken into account during
experimental design and analysis. However, before identified changes can be targeted for therapeutic intervention,
it will be important to determine whether they are causal; with the recent advances in genetic and epigenetic editing
technology this will soon be possible. Finally, while there are many questions that still remain unanswered and
many challenges ahead when addressing these, with the correct model and methodologies these will hopefully be
overcome.
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Executive summary

Alzheimer’s disease! Most prevalent neurodegenerative disorder causing 60–80% of dementia cases worldwide.! Characterized by extracellular depositions of amyloid β-protein and intracellular neurofibrillary tangles of paired
helical filaments of tau.

Genetic variation associated with Alzheimer’s disease! Through the use of genome wide association studies (GWAS) a number of single nucleotide polymorphisms
(SNPs) have been associated with late onset Alzheimer’s disease (AD).! Many GWAS loci implicated in disease have been linked to amyloid processing and inflammation.

A role for epigenomic dysfunction in Alzheimer’s disease?! Recent epigenome wide association studies (EWAS) have identified a number of loci that are differentially
methylated in disease.! The majority of genes identified by EWAS are distinct from those nominated in GWAS with the exception of BIN1.

Induced pluripotent stem cells: new models for late-onset Alzheimer’s disease?! Through somatic cell reprogramming, it is possible to generate induced pluripotent stem cell (iPSC) derived
neuronal cells.! These iPSC-derived neuronal cells have been shown to reflect some disease features.! iPSC-derived neuronal cells can be used to assess the effect of polygenic risk on physiological/cellular changes
and disease progression.

Using genetic editing to elucidate the functional consequence of disease-associated variation! Clustered regularly interspersed short palindromic repeats (CRISPR) uses RNA guided Cas9 nucleases to introduce
modifications in the genome.! CRISPR-multiplexing can be used to edit multiple loci within the genome.

Establishing causality! iPSC models have utility in determining whether loci identified from GWAS and EWAS are causative in the
disease process.! Using CRISPR, the epigenetic landscape of cells can be altered to establish whether DNA methylation changes
associated with disease are causative.
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Alzheimer’s disease is the most common form of dementia, it is estimated to affect

over 40 million people worldwide. Classically, the disease has been characterized by

the neuropathological hallmarks of aggregated extracellular amyloid-β and intracellular

paired helical filaments of hyperphosphorylated tau. A wealth of evidence indicates a

pivotal role for the innate immune system, such as microglia, and inflammation in the

pathology of Alzheimer’s disease. The over production and aggregation of Alzheimer’s

associated proteins results in chronic inflammation and disrupts microglial clearance of

these depositions. Despite being non-excitable, microglia express a diverse array of ion

channels which shape their physiological functions. In support of this, there is a growing

body of evidence pointing to the involvement of microglial ion channels contributing

to neurodegenerative diseases such as Alzheimer’s disease. In this review, we discuss

the evidence for an array of microglia ion channels and their importance in modulating

microglial homeostasis and how this process could be disrupted in Alzheimer’s disease.

One promising avenue for assessing the role that microglia play in the initiation and

progression of Alzheimer’s disease is through using induced pluripotent stem cell derived

microglia. Here, we examine what is already understood in terms of the molecular

underpinnings of inflammation in Alzheimer’s disease, and the utility that inducible

pluripotent stem cell derived microglia may have to advance this knowledge. We outline

the variability that occurs between the use of animal and human models with regards

to the importance of microglial ion channels in generating a relevant functional model

of brain inflammation. Overcoming these hurdles will be pivotal in order to develop new

drug targets and progress our understanding of the pathological mechanisms involved

in Alzheimer’s disease.

Keywords: microglia, Alzheimer’s disease, ion channel, stem cells, iPSCs

INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and accounts for
approximately 60–80% of all dementia cases worldwide (Alzheimer’sstatistics, 2016). Initial studies
focussed on trying to identify a genetic basis to the disease (Gatz et al., 2006). Although some
AD cases are caused by defined mutations in one of three genes (APP, PSEN1 and PSEN2) these
account for fewer than 10% of all cases and occur before 65 years of age. The majority of cases
are sporadic, have no defined etiology and occurs at or after a mean age of 65. Our understanding
has progressed through evidence obtained from large cohort studies identifying genetic variants
which are associated with and potentially result in the late onset form of AD (LOAD). These
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genome wide association studies (GWAS) have demonstrated
that LOAD is a multifactorial disease with many different genes
and single nucleotide polymorphisms contributing to disease
onset (Gatz et al., 2006). The most strongly associated gene
with LOAD is Apolipoprotein E (APOE), which encodes a
polymorphic glycoprotein that is involved in cholesterol and
other lipid transport (Poirier, 2005) alongside tissue repair
(Huang, 2010) and neuronal growth (Nathan et al., 1994).
There are three isoforms of APOE, ε2, ε3, and ε4 that all
correspond to cysteine to arginine substitutions at the amino acid
positions 112 and 158 (Zlokovic, 2013). The ε4 variant confers
increased risk of developing LOAD, and each additional copy
of the ε4 allele lowers the mean age of onset (Corder et al.,
1993). Neurodegenerative diseases such as AD were traditionally
considered to be ‘’neurocentric,” however recent findings are
challenging this view, implicating glia as primary targets. GWAS
studies reveal there have been a number of single nucleotide
polymorphisms that are associated with AD which reside in
genes involved in microglial biology. These include common
variants such as CR1 (complement receptor 1), CD33 (sialic
acid binding Ig-like lectin 3), CLU (clusterin), ABCA7 (ATP-
binding cassette, sub family A, member 7), MS4A (membrane-
spanning 4-domain family, subfamily A) and EPHA1 (ephrin
type-A receptor 1) (Bertram et al., 2008; Harold et al., 2009;
Hollingworth et al., 2011; Naj et al., 2011; Lambert et al., 2013;
Zhang et al., 2013), and also more rare coding variants in genes
such as TREM2 (triggering receptor expressed on myeloid cells
2) (Guerreiro et al., 2013; Jonsson et al., 2013). TREM2 is a
cell surface receptor of the immunoglobulin superfamily that
is expressed on microglia (reviewed by Colonna and Wang,
2016). Several variants within TREM2 appear to significantly
increase the risk of developing AD (Jin et al., 2014; Song
et al., 2017), in particular rs75932628, an SNP that confers
an arginine to histidine change at amino acid 47 (R47H)
(Guerreiro et al., 2013; Jonsson et al., 2013). Although TREM2
polymorphisms are associated with a risk of late-onset AD
(Guerreiro et al., 2013), their role in neurodegenerative diseases is
controversial. Indeed, recent evidence proposes that the TREM2-
APOE pathway induces a microglia phenotypic switch from a
homeostatic to neurodegenerative phenotype (Krasemann et al.,
2017). One of the main functions of TREM2 is regulating
microglial phagocytosis (Hsieh et al., 2009), and as a ligand for
TREM2 in microglia, APOE binds to dead neurons and increases
Trem2-mediated phagocytosis (Atagi et al., 2015). Interestingly,
Kleinberger et al. (2014) showed that missense mutations in
TREM2 resulted in impaired phagocytic activity with a reduced
level of soluble TREM2 in cerebrospinal fluid (CSF) of AD
patients. Indeed TREM2 deficiency has been shown to alter
microglial function in both primary microglial cultures and in
mouse models of AD where a decrease in plaque-associated
microglia are observed alongside an increase in apoptosis of both
resting and activated microglia and reduced phagocytosis (Ulrich
et al., 2014; Jay et al., 2015, 2017). These findings suggest that
the role of TREM2 in modulating inflammation may be more
complex than previously appreciated and may be dependent on
the cell type in which it is expressed and the inflammatory context
in which it is studied. For a more in depth discussion we refer

the reader to the following very comprehensive review articles
(Colonna and Wang, 2016; Ulrich et al., 2017; Li and Zhang,
2018).

Microglia are thought to regulate the degree of Aβ deposition
by phagocytosis with potentially protective impact on AD
progression (Lee and Landreth, 2010). One striking feature of
the behavior of microglia in the AD brain is their marked
clustering around fibrillar Aβ deposits and they adopt a polarized
morphology with hypertrophic processes extending toward
plaques (Condello et al., 2015). This aids as a protective physical
barrier mechanism through which the Aβ fibrils cannot extend,
promoting the formation of highly compact plaquemicro regions
that have minimal affinity for soluble Aβ1−42 (Condello et al.,
2015; Yuan et al., 2016). Conversely, areas not covered by
microglia processes display “hotspots” with very high soluble
Aβ1−42 affinity, leading to markedly concentrated protofibrillar
Aβ42 plaque regions (Condello et al., 2015). These “hotspots” are
neurotoxic given that adjacent axons develop a greater extent of
dystrophy compared to those covered by microglia (Yuan et al.,
2016).

On the other hand, most studies in TREM2- deficient AD-
like mice have shown reduced number of microglia around Aβ

plaques (Jay et al., 2015; Wang et al., 2015). Similar reports
suggest that in R47H human mutants, microglial processes were
also unable to form a robust barrier, resulting in a decreased
Aβ fibril compaction (Yuan et al., 2016). With the decrease
in microglial number, there are less compact Aβ fibrils and a
higher ratio of Aβ1−42 plaques (Yuan et al., 2016; Ulland et al.,
2017), therefore a deficient rather than an exacerbated microglial
response could give rise to the development of sporadic AD.Once
activated by pathological triggers, like neuronal death or protein
aggregates, microglia extend their processes to the site of injury,
migrate to the lesion and initiate an innate immune response
(Heneka et al., 2015). Mounting evidence from polymorphisms
linking microglial dysfunction to AD could have a causal role in
disease onset and progression and are not just a consequence of
neuropathological hallmarks that are characteristic of AD.

THE INNATE IMMUNE SYSTEM IN AD

Of increasing interest is the involvement of the innate immune
system in AD, particularly the role of microglia. Microglia are
the resident immune cells in the brain and spinal cord, and
play important roles in neurodevelopment, immune surveillance,
disease and homeostasis (Nayak et al., 2014). Unlike neurons and
other glial cell types, microglia are of haematopoietic lineage,
arise early during development (Hutchins et al., 1990), and are
derived from erythromyeloid progenitors (EMPs) in the yolk sac
(Ginhoux et al., 2010).

Microglia can exist in several morphological/phenotypic states
depending on the environment they are in or the factors they
are stimulated by. From a highly processed state, the microglia
become more amoeboid with increased numbers of intracellular
vesicles in preparation for engulfment of foreign particles. These
differential states have been termed accordingly as “classical
activation,” “alternative activation,” and “acquired deactivation”
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(Colton, 2009; Colton and Wilcock, 2010). Previous studies
defined these states as separate from one another, a profiling
index of M1 or M2 phenotyping suggesting a pro- or anti-
inflammatory state respectively. More recently it has become
more apparent that this is derived from the idea that microglia
are central macrophages and so must follow by the same “kill
or cure” switch seen in these cell types. However, microglia can
exist in multiple phases with the same cell producing markers
of both pro- and anti- inflammatory components depending on
stimulus. Usage ofM1/M2 profile terminology fails to capture the
heterogeneity of microglia which is a vital to their local and global
physiological responses (Mosser et al., 2017).

Classical activation, considered to be pro-inflammatory, is
stimulated by IFN-γ and is associated with the production of
cytokines such as TNF-α and IL-1β and nitric oxide production
(Li et al., 2004; Block et al., 2007). On the other hand, alternative
activation, is defined by the release of anti-inflammatory
cytokines IL-4 and IL-13 and arginase 2. This results in gene
expression to promote tissue repair and extracellular matrix
reconstruction (Ponomarev et al., 2007; Colton, 2009). Acquired
deactivation, is mainly seen in the presence of apoptotic cells and
is characterized by the release of IL-10, TGF-β, IL-6, and CSF1
and the production of scavenger receptors (Sawada et al., 1999;
Colton, 2009; Colton and Wilcock, 2010; Saijo and Glass, 2011).
Microglial phagocytosis relies on specific receptors expressed
on the cell surface and their downstream signaling pathways to
instigate engulfment of harmful particulates (Figure 1).

Microglia mediate the innate immune response of the brain
and are involved in the phagocytosis and clearance of debris,
pathogens, and toxins. Their dysfunction and increased Aβ

accumulation is universal to AD patients and not just those
with familial APP mutations. This suggests that Aβ build-up
is due to poor clearance and not APP proteolysis. Microglia
will secrete both pro- and anti-inflammatory factors, which can
either be beneficial or detrimental in neurodegenerative diseases.
Here exists extensive literature showing that inflammation
is integral to AD progression, facilitating Aβ deposition,
neuronal loss and cognitive deficits. Brains from AD patients
and those from murine models of Aβ pathology uniformly
display high expression of pro-inflammatory cyto- and chemo-
kines including TNFα, IFNγ, IL-1β, and IL-6 (Zheng et al.,
2016). IL-1β and TNFα can impair neuronal function by
suppression of long-term potentiation of synaptic transmission
(LTP) (Rowan et al., 2007). Multiple interactions as well as
elevated expression of additional cytokines/chemokines and
innate immune receptors favor a pro-inflammatory activation
state in AD.

Accumulating evidence demonstrates that inflammasomes,
which cleave precursors of interleukin-1β (IL-1β) and IL-18
to generate their active forms, play an important role in the
inflammatory response in the CNS and in AD pathogenesis. The
inflammasome is an inducible, high molecular weight, protein
complex consisting of the antigen sensor protein NLRP3, adaptor
protein ASC, and pro-caspase 1 (Heneka et al., 2015). The
complexing of these three components results in cleavage of
caspase 1 and instigates a cascade of pro-inflammatory cytokine
activation of the IL-1b family. Inmurinemutants where APP/PS1

was crossed with NLRP3-/- mice, a decrease in cC1 and IL-1β is
observed (Heneka et al., 2013).

Conversely an anti-inflammatory profile of microglia also
contributes to Aβ pathology. In murine models where IL-10
was either knocked down or knocked out in the APP/PS1
model, a decrease in Aβ load, increases phagocytosis and
reduces microglial APOE expression was observed (Chakrabarty
et al., 2015). Further studies showed that this was due to
preventing downstream pathways involving Jak1/Stat3 and
consequential transcription factor activity (Guillot-Sestier et al.,
2015). Additionally, primary microglia treated with fibrillar
Aβ1−42 and recombinant IL-10 showed that fibrillar Aβ1−42

is prevented from inducing a pro-inflammatory response of
cytokine release including CCL5, CXC10, and TNFα, suggesting
a push to an anti-inflammatory profile (Chakrabarty et al., 2015).

Therefore, it is pertinent to think that the Aβ activates
microglia and results in an innate immune response. Indeed, it
has been shown that exposure of microglia to fibrillar Aβ by
CD36, a class B scavenger receptor (Coraci et al., 2002), causes
the formation of a heterodimer of the TLR4 and TLR6 through
NF-κB signaling (Stewart et al., 2010). However, on deletion
of MyD88, an adaptor protein essential for downstream TLR
signaling, there was a significant decrease in both Aβ load and
microglial activation in APP/PS1 mice (Lim et al., 2011). Despite
this the MyD88 deletion only resulted in minor improvements in
cognitive functions (Lim et al., 2012).

Microglial activation by Aβ does not necessarily only occur
after Aβ deposition but can also occur before plaques are even
formed. Maezawa and colleagues have shown that nanomolar
concentrations of Aβ oligomers activated microglia and that
they required another scavenger receptor, SR-A, and the Ca2+-
activated potassium channel KCa3.1 (Maezawa et al., 2011).
Another group has also shown microglial activation precedes
Aβ aggregation in APP[V717I] transgenic mice and that this
coincides with increased BACE1 activation (Heneka et al., 2005).

Intracellular neurofibrillary tangles of hyperphosphorylated
tau are another pathological hallmark of AD. However, the
exact mechanisms which lead to the hyperphosphorylation of
tau are still unclear. Previously, it has been demonstrated that
neuro-inflammation positively correlates with tau aggregation,
hyperphosphorylation and neurodegeneration in several models
(Sheng et al., 1997; Sheffield et al., 2000; Bellucci et al., 2004, 2011;
Ikeda et al., 2005; Yoshiyama et al., 2007).

Microglial activation also precedes tau pathology in the
P301S tauopathy model (Yoshiyama et al., 2007). In the triple
transgenic model of AD, lipopolysaccharide administration
significantly increased tau phosphorylation through toll like
receptor 4 signaling (Kitazawa et al., 2005). Interestingly,
one paper has demonstrated that microglia may be involved
in the propagation of tau pathology through non-synaptic
transmission in mammals (Asai et al., 2015). Asai et al.
(2015) used two different tau mouse models to show that tau
propagation is mediated through microglia which phagocytose
tau-positive neurons or synapses and secrete tau protein in
exosomes, efficiently transmitting tau to neurons. They also
demonstrated that this propagation is sensitive to microglial
depletion and inhibition of nSMase2 activity. On the other
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FIGURE 1 | Morphological phenotype of Microglia. An illustration depicting the different phenotypic states. These are “classical activation,” “alternative activation,”

and “acquired deactivation.” Classical activation, otherwise considered to be the M1 phenotype and so is pro-inflammatory, is stimulated by IFN-γ and is associated

with the production of cytokines such as TNF-α and IL-1β. Subsequently the alternative activation, or M2 phenotype, defined by the release of anti-inflammatory

cytokines IL-4 and IL-13. The third activation phenotype, acquired deactivation, is thought to be a subtype of the M2 phenotype, releases IL-10 and TGF-β. Activation

does not inclusively mean a phagocytic phenotype in microglia. For this to occur, antigen sensing receptors are made available on the cell surface to allow pathogen

recognition. In Alzheimer’s disease, the best known of these is TREM2 but others include Toll-like receptors and members of the complement system.

hand, significant ablation of microglia in a mouse model of
amyloidopathy indicated that Aβ formation, maintenance and
associated neuritic dystrophy was not depended on microglia
(Grathwohl et al., 2009). Interestingly, (Krabbe et al., 2013)
reported that Aβ may directly affect microglial function. This
in vivo study detected a significant inverse correlation between
Aβ plaque burden and microglial phagocytic activity (Krabbe
et al., 2013). They found that microglial dysfunction develops
early during AD in an Aβ-dependent fashion and can be restored
by interventional anti-Aβ approaches, such as Aβ vaccination
(Krabbe et al., 2013).

MICROGLIA PHYSIOLOGY AND ION
CHANNELS

Studies have highlighted the importance of microglia in brain
ionic homeostasis (Annunziato et al., 2013; Szalay et al.,
2016; Shibata and Suzuki, 2017). For example, depletion of
microglia results in the loss of potassium chloride induced
neuronal depolarisation (Szalay et al., 2016) and the microglia
KCa3.1 channel has been proposed as a valid therapeutic
target for modulating cortical spreading depression (Shibata
and Suzuki, 2017). Therefore ion channels and transporters,
regulating ionic flux, are essential regulators of a variety
of microglial functions, including proliferation, morphological
changes, migration, cytokine release and reactive oxygen species
production (Schilling and Eder, 2015). Ion channel expression in
microglial cells is tightly regulated, with the expression of most
ion channel types noticeably depending on the cells’ functional

state (Eder, 1998, 2005, 2010; Kettenmann et al., 2011). Despite
being non-excitable cells, the plethora of voltage-gated ion
channels present in microglia suggests they play a prominent
role in both physiological as well as pathological states. Brain
inflammation is a characteristic of AD and numerous studies
have demonstrated that microglia can directly interact with
neurons to induce inflammation (Hashioka et al., 2012). Due to
this interaction, the study of microglial ion channels may shed
light on brain inflammation seen in neurodegenerative diseases
such as AD (Silei et al., 1999). In this review, we have summarized
the most prominent ion channels involved in microglial cells
which may contribute to AD pathology, as demonstrated in
Figure 2.

POTASSIUM CHANNELS

Potassium channels are present in all cells within the body and
have many diverse functions. In particular, they are capable
of regulating cell excitability and influence action potential
waveform. To identify therapeutic targets to modulate microglial
activation, numerous studies are addressing the contributions
of several K+ channels. Based on both their structural and
functional properties, K+ channels have been subdivided into
specific families. They have transmembrane helices (TMs)
spanning the lipid bilayer (Kuang et al., 2015). The largest of
these consist of K+ channels that are activated by membrane
depolarisation, with subsequent families consisting of channels
that are activated by altered intracellular Ca2+ ions and others
that are constitutively active. Based on the structure and function,
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FIGURE 2 | Illustration depicting presence of ion channels observed in microglial models and which of these have confirmed activity in Alzheimer’s disease associated

microglia. Strength of evidence is depicted in bold to un-bold text. In addition each channel is pre-fixed with the species in which they have been investigated:

h, human; m, mouse; r, rat.

the channels are categorized into three major classes: the voltage-
gated (Kv) (six TMs), inwardly rectifying (Kir) (two TMs), and
tandem pore domain (K2P) (four TMs) channels (Kuang et al.,
2015). K+ channels are particularly important in microglia since
their activation can induce membrane hyperpolarisations, which
are essential for driving Ca2+ influx through inward rectifying
Ca2+-Release-Activated-Ca2+ channels (CRAC) (Kraft, 2015;
Nguyen et al., 2017a) ATP-activated P2X receptors (Burnstock,
2015) and other Ca2+-permeable cation channels (Kettenmann
et al., 2011).

Voltage-Gated Potassium Channels
Kv channels form an exceedingly diverse group, their structure
consists of six TMs, of which the first four helices (S1–S4) form
the voltage sensor domain (VSD) (Jiang Y. et al., 2003; Long et al.,
2007). The last two helices (S5–S6, corresponding to the outer
and inner helices in KcsA, respectively) form the pore-forming
domain. The VSD senses the membrane potential alteration, and
is followed by a conformational change that is coupled to gate the
pore-forming domain (Long et al., 2005). In more general terms
Kv currents can be classified into showing A-type (inactivating)
or delayed rectifier behavior (non-inactivating). The Kv channels
present inmicroglia to date have been summarized inTable 1 and
mainly comprises of delayed rectifier Kv channels.

Kv1.2, Kv1.3, and Kv1.5 transcripts and protein have been
detected in both primary rat and mouse microglia (Kotecha
and Schlichter, 1999; Khanna et al., 2001; Fordyce et al., 2005;
Pannasch et al., 2006; Li et al., 2011). Microglia are widely
distributed throughout the brain; however some regions express
much higher levels than others (Lawson et al., 1990). The
hippocampus, an area particularly affected by AD, is rich with
microglia and is especially sensitive to cerebrovascular insults
which have been shown to rapidly activate microglia (Wu and
Ling, 1998). The reasons for the highly variable expression

of Kv channels and the role this plays in non-excitable cells
such as microglia are not well understood. It is now known
that microglia in culture can express different proteins when
compared to microglia in situ in brain slices or in vivo (Boucsein
et al., 2003; Butovsky et al., 2014; Yamasaki et al., 2014; Gosselin
et al., 2017). Earlier studies mostly used cultured microglia from
enzymatically dissociated tissue, thus removing cell– cell contacts
and key secretory products such as growth factors affecting Kv
channel expression itself (Kettenmann et al., 1990; Ganter et al.,
1992; Draheim et al., 1999). In vitro studies are currently the
only way to stimulate microglia in isolation in order to elucidate
similarities and differences in how different species respond (Lam
et al., 2017).

It is becoming more apparent that altered expression of Kv
channels could trigger the mechanisms underlying microglial
polarity and could characterize these microglial states (Saijo and
Glass, 2011; Maezawa et al., 2012). In a study on freshly isolated
microglial cells, Kotecha and Schlichter (1999) found both
Kv1.3 and Kv1.5, the former being associated with proliferating
cells and the latter with non-proliferating cells. This shift in
microglial activation also results in changes in the physiological
properties of the cells (Kotecha and Schlichter, 1999). Resting
microglia express Kv1.5 channels and upon activation and
proliferation they upregulate Kv1.3 and down-regulate Kv1.5
channels (Pannasch et al., 2006). Kv1.3 channels migrate to the
cell surface while Kv1.5 channels are internalized, making Kv1.3
channels not only functionally relevant but highly susceptible
to pharmacological manipulation through selective channel
blockers. As we have highlighted, majority of microglial studies
use animal models, in particular rodents. Lam et al. (2017)
found distinct variability between the different rodent models
in expressing different Kv channels. It is also apparent that
Kv channel expression of microglial cells in brain slices from
juvenile mice (P5-P9) differs to some extent from that of cells
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in adult mice (Boucsein et al., 2003; Schilling and Eder, 2007;
Menteyne et al., 2009; Arnoux et al., 2013, 2014). The passive
membrane properties and Kv channel expression of microglial
cells undergo substantial changes upon aging (Schilling and
Eder, 2015). In comparison with microglia of young adult mice,
microglial cells of aged mice are characterized by more negative
resting membrane potentials, decreased input resistances and
upregulated expression of inward rectifier and outward rectifier
Kv channels. Interestingly, the outward rectifier Kv channel
current is strongly age-dependent both in vitro and in vivo
(Schilling and Eder, 2015). It is clear from the literature that the
way in which we study Kv channel physiology in microglia varies
dramatically and depends on the methodology used (Lam et al.,
2017).

Further complications include the potential for strain
differences in rodents (Becker, 2016), and genetic polymorphisms
and epigenetic changes in humans (Boche and Nicoll, 2010).
There is considerable debate as to how closely mouse models
resemble human responses in inflammatory diseases (Seok et al.,
2013; Takao and Miyakawa, 2015). A better understanding
of microglial K+ channel regulation and expression patterns
in neurodegenerative states could also yield targets for drug
development using K+ channel blockers.

Voltage-Gated Potassium Channels and AD
Microglia are the key inflammatory cells in AD that mediate
neuro-inflammation, and Kv channels are key regulators of
microglial function, in particular Kv1.3 (Rangaraju et al., 2015).
In animal models of AD, Aβ-induced priming of microglial
NADPH oxidative activity depends on Kv1.3 channels, however
the exact mechanisms that contribute to this priming is still
poorly explored (Kotecha and Schlichter, 1999; Schilling and
Eder, 2011). It is thought that the activity of Kv channels
lead to membrane hyperpolarization, this Kv1.3 channel-induced
membrane hyperpolarisation could enhance Ca2+ influx through
Transient receptor potential (TRP) channels (see section Calcium
Channels; Schilling and Eder, 2011) aiding in the translocation
of PKC and therefore leading to NADPH oxidative priming.
Franciosi et al. (2006) demonstrated that the broad spectrum Kv
channel inhibitor 4-aminopyridine (4-AP) suppressed microglial
activation in vivo and reduced microglia-induced neuronal death
(Franciosi et al., 2006). This inhibition using 4-AP, which also
blocks Kv1.3 channels, could attribute to inhibition of microglial
priming and subsequent reduction ofmicroglial ROS production,
supporting a role for Kv1.3 channels as a therapeutic target in AD
(Schilling and Eder, 2011). More recently immunohistochemistry
experiments on human brain cortices revealed the presence
of Kv1.3 channels in cortical microglia at levels higher than
non-AD controls (Rangaraju et al., 2015). This particular study
also revealed a “plaque-like” pattern of Kv1.3, suggesting that
it may be possible for Aβ to interact with Kv1.3. Interestingly,
Aβ1−42 oligomers, but not soluble Aβ, accelerate the activation
and inactivation kinetics of Kv1.3 channels in lipid bilayers
without altering channel conductance (Lioudyno et al., 2012). It
is possible that altered channel conductance of Kv1.3 channels
could affect calcium fluxes in neurons and microglia, however
the relevance of this potential Aβ-Kv1.3-interaction remains to

be clarified. Another study by Chung et al. (2001) also confirmed
that Aβ was capable of upregulating Kv1.3 as well as the Kv1.5
channel current density. More recently, low levels of soluble
oligomeric Aβ have been reported to upregulate primary cultured
microglial activity as well as Kv1.3 at transcript and as protein
levels (Maezawa et al., 2017). Electrophysiological studies using
whole-cell patch clamp also revealed enhanced outward rectifier
current, characteristic of homotetrameric Kv1.3 channels.
Pharmacological characterization revealed that the currents were
sensitive to the Kv1.3 specific blockers ShK-186 (Tarcha et al.,
2012), margatoxin (Garcia-Calvo et al., 1993) and the selective
Kv1.3 blocker PAP-1 [5-(4-phenoxybutoxy) psoralen (Schmitz
et al., 2005). Oligomeric Aβ further induced a significant increase
in Kv1.3 current density compared to unstimulated microglia
(Maezawa et al., 2017). Following long-term treatment of an
APP/PS1 mouse model, the selective Kv1.3 blocker PAP-1
mitigated some key AD-like phenotypes such as reducing Aβ

deposition as well as restoring hippocampal synaptic plasticity.
The observation that pharmacological targeting of Kv1.3
channels in microglia with the selective inhibitor PAP-1 supports
PAP-1 as a promising potential for neuro-immunomodulation
therapy and the treatment of neurodegenerative diseases such
as AD.

The age-dependent changes in microglial Kv1.3 noted in
5xFADmice followed a similar trend—initially an age-dependent
increase, then a substantial decrease between 10 and 15 months
of age. We suspect that these changes in K+ channel expression
form part of the age-related changes in microglial function,
documented by several lines of investigation, such as altered
responses to Aβ aggregates or downregulation of “sensome”
genes (Hickman et al., 2008; Cameron et al., 2012; Heneka et al.,
2013; Hickman and El Khoury, 2013; Johansson et al., 2015)
ever, this downregulation is not reflected in a human study in
which Kv1.3 expression remains robust in microglia, particularly
in the later stages of AD (Rangaraju et al., 2015). More recently
transcriptomic data from Rangaraju et al. (2018), revealed that
Kv1.3 plays a distinct role in disease-associated-microglia in the
5XFAD mouse model (Rangaraju et al., 2018). It is pertinent to
say that the evidence presented here from the existing human and
rodent studies, show Kv1.3 could be a therapeutic target even at
the late stage of the disease. Similar to what we have previously
discussed, it appears that the current transgenic models of AD
do not replicate the patterns of microglia activation in human
AD. Many potential treatments identified in rodents have failed
in human clinical trials. To narrow this translational gap, it is
essential to investigate and acknowledge species similarities and
differences. With the promises of stem cell therapy and use of
iPSCs to model diseases in a dish, pharmacological manipulation
on a more directly available human source may reveal further
species differences.

Other Potassium Channels
Recent evidence has suggested that two-pore domain K+

(K2P) channels may play a role in microglia physiology
(Madry et al., 2018). Functional investigations provide data to
support the involvement of THIK-1 in the cytokine release
of microglia in situ. This study revealed two functionally and
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mechanistically distinct modes of microglial motility. THIK-1
regulates microglial ramification, surveillance and interleukin-
1β release (Madry et al., 2018). This is the first study of its kind
to implicate K2P channels in microglia physiology. Future work
will provide a better understanding of its role in vivo as well as
neuro-inflammatory responses. The impairment of motility of
microglial processes that occurs in some pathological conditions,
e.g., in models of Alzheimer’s disease with Aβ plaque deposition
(Koenigsknecht-Talboo et al., 2008; Krabbe et al., 2013; Condello
et al., 2015) raises the question of whether the dependence of
surveillance on THIK-1 activity can be employed therapeutically
for the treatment of AD (Madry et al., 2018). Currently there has
been no direct experimental evidence linking THIK-1 to AD.

Another important K+ channel that has been shown to
play a key role in microglia activation by modulating Ca2+

signaling and membrane potential is calcium-activated KCa3.1
(also known as IK1, SK4 or KCNN4) channels (Maezawa et al.,
2012). This channel is predominantly expressed in microglia and
has been a potential target for both industry and academia as
a potential drug target for AD (as reviewed by Maezawa et al.,
2012).

The strong inwardly rectifying K+ (Kir) channel belong to a
family of K+ channels that have only two membrane-spanning
domains and are responsible for stabilization of the resting
membrane potential (Vrest) near to the K+ equilibrium potential
(EK) (Kettenmann et al., 1990; Tsai et al., 2013). Blocking Kir
channels depolarizes the cell and decreases the driving force for
inwardly transported Ca2+ in microglia. In a study by (Tsai et al.,
2013), addition of the AD drug memantine suppressed Kir as
well as depolarized the membrane potential of BV-2 cells. This
block of Kir2.1 channels could represent one of the important
mechanisms underlying its actions on the functional activities of
microglial cells. It remains unclear what the in vivo function of
Kir are, an area showing significant promise for AD.

Interestingly, in the transgenic mouse model of AD (5xFAD)
(Wendt et al., 2017) reported that the impairment in phagocytic
function of microglia was due to altered purinergic signaling.
They found evidence of altered physiological phenotype
only of microglia in 5xFAD mice that were located close to
Aβ plaques (Wendt et al., 2017). Supporting the idea that
functional and pathological alterations of microglia in AD
may be a consequence of their association with Aβ plaques.
Their detailed study on the 5xFAD model revealed an initial
induction of Kir current, followed by subsequent activation
of outwardly rectifying currents at a later age. Therefore
the induction of Kir current could be considered a first
response followed up with outward K+ current developing at
a later stage of microglial activation, similar to their previous
studies (Boucsein et al., 2000; Kettenmann et al., 2011). This
data supports the fact that microglia can undergo chronic
changes in physiological properties in a disease model over
a prolonged period. It appears from the literature that Kv1.3,
KCa3.1, and Kir 2.1 inhibitors seem to constitute relatively
general anti-inflammatory effects and it could therefore be
useful to preferentially target detrimental pro-inflammatory
microglia functions associated with neuro-inflammation,
such as AD (Nguyen et al., 2017b). A more recent study

investigated the effects of Aβ plaque-dependent morphological
and electrophysiological heterogeneity of microglia in the
AD mouse model, TgCRND8. Plescher et al. (2018) revealed
increased K+ currents in plaque-associated but not plaque
distant microglia. They believe that this electrophysiological
heterogeneity is likely to reflect the different functional states of
the microglia in TgCRND8 (Plescher et al., 2018). Their finding
that outwardly rectifying currents (Kv 1.3) were confined to
a subset of plaque associated microglial cells emphasizes the
potential of specific ion channel inhibitors to target only specific
(i.e., detrimental) subtypes of microglia in AD (Plescher et al.,
2018).

VOLTAGE-GATED SODIUM CHANNELS

Sodium voltage channels (NaV) are formed of one pore-α-
subunit associated with one/more β-subunits. The α-subunit
acts as the “voltage sensor” being activated by changes in
membrane potential (Payandeh et al., 2011). The β-subunits have
multiple roles, from modulating channel gating and regulating
channel expression, to interacting with the cytoskeleton and the
extracellular matrix, as cell adhesion molecules (Brackenbury
and Isom, 2008). It is now known that there are nine pore
forming α-subunits of sodium channels, Nav1.1-Nav1.9, encoded
by genes SCN1A-SCN11A (Catterall et al., 2005), which associate
with one or more non-pore-forming β- subunits encoded by
SCN1B-SCN4B (Brackenbury and Isom, 2011). In addition to
being expressed in cells capable of generating action potentials,
sodium channels have also been identified in cells that have not
traditionally been considered to be electrically excitable (“non-
excitable cells”), leading to speculation as to their functional
role (Pappalardo et al., 2016). Sodium channels contribute
to multiple, varied cellular functions in these cells including
phagocytosis (Carrithers et al., 2007), migration (Kis-Toth et al.,
2011), and proliferation (Wu et al., 2006). Voltage-gated sodium
channels have been documented in immune cells such as
macrophages (Schmidtmayer et al., 1994; Carrithers et al., 2007,
2009, 2011; Black et al., 2013).

Patch-clamp recordings have since confirmed the expression
of functional sodium channels in microglia (Korotzer and
Cotman, 1992; Nicholson and Randall, 2009; Persson et al., 2014).
A number of voltage-gated ion channels have been identified in
microglia, in particularly, voltage-gated Na+ channels isoforms
(VGSC): Nav1.1, Nav1.5, and Nav1.6 (Craner et al., 2005; Black
and Waxman, 2012).

In vitro, microglia derived from mixed glial cultures from
neonatal rats, exhibit immunolabeling for Nav1.1, Nav1.5, and
Nav1.6, which is most prominent, while Nav1.2, Nav1.3, Nav1.7,
Nav1.8, and Nav1.9 are not detectable above background levels
(Black et al., 2009). Whole-cell voltage clamp experiments on
cultured rat microglia revealed that, depolarization-induced
sodium currents were elicited and then completely blocked
by 0.3µM TTX, consistent with the presence of functional
TTX-S sodium channels (Persson et al., 2014). Similarly,
microglia within normal CNS tissues exhibit low levels of Nav1.6
immunolabeling in situ (Black and Waxman, 2012).
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There is a handful of electrophysiological studies of cultures
of human microglia derived from native tissue which reports the
presence of Na+ currents (Nörenberg et al., 1994b; Nicholson
and Randall, 2009), however, these are not observed in every
laboratory (McLarnon et al., 1997). Na+ currents have also been
reported in rat microglia (Korotzer and Cotman, 1992). A study
in mice provides evidence that Nav1.6, plays a central role in
the infiltration and phagocytosis of microglia in experimental
autoimmune encephalomyelitis. Furthermore, the same channel
is reported to be up-regulated in macrophages and microglia in
the lesions of multiple sclerosis patients (Craner et al., 2005).
To date there is no direct evidence for the involvement of
microglial VGSC in AD. This same group, however, also report
the presence of Nav1.1 and Nav1.5 in cultured rat microglia
and demonstrate their function in many key microglial processes
(Black et al., 2009). Although Aβ is a known activator for
microglia, treatment of the human microglial cell line with
Aβ (12 h, 10µM) there was no significant change in Na+

current or Nav1.5 expression (Nicholson and Randall, 2009).
Although there is clear involvement for VGSC in microglial
function its role in AD remain less well defined. This could
be due to a number of different contributing factors such as
species variation, individual laboratory protocols, as well as
non-standardized preparation of exogenous Aβ and Aβ species
selection.

TRANSIENT RECEPTOR POTENTIAL
CHANNELS

Transient receptor potential (TRP) channels are non-selective,
non-voltage gated cation channels, ubiquitously expressed
in mammalian cells. The TRP gene was initially discovered
in Drosophilla where mutant gene expressing animals
showed impaired vision due to dysregulated Ca2+ influx into
photoreceptor cells. TRP channels play important physiological
role in cells by their regulation of temperature, chemoception,
mechanoception, and nocioception. There are 30 known
members of the mammalian superfamily, which can be
divided up into six subfamilies, based on amino acid sequence
homology. These are: TRPA (Ankyrin); TRPC (Canonical);
TRPM (Melastatin); TRPML (Mucolipin); TRPP (Polycystin);
and TRPV (Vanilloid). TRP channels are tetramers made of
monomeric subunits that include a six trans-membrane (TM)
domain with a pore-forming loop between TM 5 and 6. In
addition, their C- and N-termini are intracellular. Functionally,
they act by changing cytoplasmic free Ca2+ concentrations via
Ca2+ permeable pore or by modulating ionic movement via
changes to the membrane potential. Microglia are evidenced to
express some TRP subfamily members, including those of the
TRPC, TRPM, and TRPV families.

TRPA
The smallest of the TRP subfamilies. Its only mammalian
member is TRPA1, a mechano- and chemo-sensor. Its name
is derived from the 14 N-terminal ankyrin repeats. To date
there is no evidence that it is present in microglia, although it’s

silencing in dorsal root ganglion results in reduced microglia
activation following hyperalgesia (Meotti et al., 2017). Similarly,
there is no evidence of the presence of TRPML nor TRPP
channels being expressed in nor influencing function of
microglia.

TRPC
The TRPC subfamily consists of seven homologs (C1-7), with
TRPC2 being exclusively expressed in mouse. TRPC members
share a structural motif in the COOH-terminal tail, TRP box,
located close to the intracellular border of TM6. In addition, they
contain three or four N-terminal ankyrin repeats.

TRPC channels are activated via the stimulation of GPCRs
and receptor tyrosine kinases, leading to phospholipase C,
inositol 1,4,5-triphosphate, and diacylglycerol production. This
stimulation results in a biphasic Ca2+ release with a first phase ER
release, followed by sustained Ca2+ influx across the membrane.
TRPC channels are known mostly as store operated Ca2+ entry
(SOCE) mediators.

In microglia, all seven members have shown RNA expression
in in vitro cell line models, although only C1 and C3 have been
reported in vivo. TRPC1 is a non-selective Na+/Ca2+ permeable
channel with known function in cell survival and proliferation.
Their expression is commonly on organelle membranes such
as ER and intracellular vesicles. TRPC1 negatively regulates the
ORAI1 Ca2+ channel resulting in suppression of NKkB, JNK and
ERK1/2 signaling from microglia (Sun et al., 2014).

TRPC3 is widely expressed in the CNS where it has
modulation via the growth factor BDNF to induce axonal
guidance, neuronal survival, and postsynaptic glutamate
transmission. In microglia, pre-treatment with BDNF inhibits
NO and TNF-α upregulation, via sustained Ca2+ influx through
upregulated TRPC3 channels at the plasma membrane. Effects
were reversed using the siRNA against TRPC3 (Mizoguchi et al.,
2014).

TRPM
The TRPM subfamily has eight mammalian members. Unlike
TRPA/C there are no N-terminus anykin repeats, instead having
functional protein domains, in addition to the TRP box, in the C-
terminus. TRPM’s are non-selective cation channels with a verity
of cellular functions including temperature sensing, osmolarity,
redox, Mg2+ homeostasis, proliferation, and cell death. These
channels can be subdivided further into four groups: M1/3;M4/5;
M6/7; M2/8. M1, 2, 4, and 7 have all been reported as present in
microglia.

TRPM1 was the first to be cloned, in 1998 (Harteneck,
2005), however its function and activation remains unknown.
TRPM1 has a high capacitance for splice variance, similarly so
with TRPM3-with whom M1 shares strong sequence homology.
In murine models of AD (5XFAD/MHCII+) high levels of
Aβ plaque burden correlated to an increase in TRPM1 gene
expression compared to age matched control animals (Yin et al.,
2017).

M2 contains an adapted adenosine 5′-diphosphoribose ribose
(ADPR)-recognizing Nudix box domain at its c-terminus. It
is a redox modulator, activated by reactive oxygen species,

Frontiers in Neuroscience | www.frontiersin.org 10 September 2018 | Volume 12 | Article 676

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thei et al. Ion Channels, Alzheimer’s and Microglia

ADP ribose, NAD+ and Ca2+. M2 will mediate the release of
lysosomal Zn2+ stores in response to reactive oxygen species,
leading to increased cytosolic Zn2+ levels, leading to regulation
of cell motility and actin remodeling. Additionally, Ca2+ influx
via TRPM2 leads to increased intracellular insulin release in
pancreatic β-cells (Uchida et al., 2011). A number of studies, both
in vitro and in vivo confirm TRPM2 expression and activity in
microglia.

In a TRPM2 KO mouse model, microglia show an
abolishment of Ca2+ influx after LPS or IFNγ stimulation.
Activation by these stimuli results in Pyk2-mediated activation
of p38 MAPK and JNK signaling as well as an increase in
nitric oxide production (Miyake et al., 2014). Similarly studies
of MCAO-induced hypoxia in TRPM2 KO mice saw reduced
MG activation, reduced cytokine expression and increased brain
volume after damage (Huang et al., 2017). Lastly, TRPM2
channels are functionally expressed in the murine microglia cell
line BV2. Here these channels have been shown to be involved
in LPC-induced p38 MAPK phosphorylation. LPC-induced
intracellular Ca2+ increase and inward currents dependent on
TRPM2 channels (Jeong et al., 2017).

TRPM4 are non-selective cation channels with a greater
affinity for Na2+ over Ca2+. TRPM4 are activated by increased
intracellular Ca2+ due to changes in cell membrane potential,
ATP, PKC-dependent phosphorylation and calmodulin (CaM)
binding to the channels C-terminal CaM domain (Nilius et al.,
2005). Functional channels were detected in the mouse primary
microglia, both quiescent and active. Here they are thought to
mediate membrane depolarisation, in correlation to Ca2+ influx
(Beck et al., 2008). Sulfonylurea receptor 1 activates TRPM4
channels inmouse primarymicroglia. Receptor binding regulates
NOS andNO transcription onmicroglia activation via LPS action
at TLR4 (Kurland et al., 2016).

TRPM7, like TRPM6, is a channel-enzyme. It is Mg2+, Zn2+,
and Ca2+ permeable with a strong outward rectifying current-
voltage relationship. In addition to its ionic pore, it contains a
tyrosine kinase domain on its N-terminal. Activity at both pore
region and kinase domain are implemented to be involved in the
channels activity. For example, in rat brain microglia there is a
strong increase of intracellular Mg2+ via the channel, however
the currents generated were kinase activity-dependant and not
due to pore, nor cell, activation (Jiang X. et al., 2003). TRPM7
also plays a role in cell motility. Migration and invasion of M1
(pro-apoptotic) microglia was observed in rat primary and MLS-
9 microglia after priming with LPS (Siddiqui et al., 2014). In
addition, flow cytometry and Ca2+ imaging studies in neonatal
mouse microglia saw an increase in intracellular Ca2+ with cell
activation by Polyl:C. Increased Ca2+ led to a correlated increase
in TNFα and P38, in a TRPM7-dependent manner.

TRPV
The final sub-family are the vanilloids, the largest (1-6) and most
in depth studies of the TRP channel families. All TRPVs are
highly selective to Ca2+. The most well-known is TRPV1 for its
actions as a thermosensor (temperatures >43C). V1 mediates
heat response and inflammation in addition to nociceptive
responses to capsaicin, the main “heat” compound of chili

peppers. In addition, application of compounds with a pH <5.9
will shift the temperature gated threshold of these channels
to 20–23C. Heat-mediated activation is shared quality with
other TRPV members, specifically 2, 3, and 4. However, these
channels are insensitive to capsaicin and pH. V5 and V6
are not thermosensors but have enhanced selectivity to Ca2+

over other monovalent cations. Lastly, all TRPV channels are
functionally regulated by their insertion, or retention to the
plasma membrane.

TRPV1 has a high protein expression in microglia, with
the majority of these channels showing co-localisation to
organelles including the golgi, ER, lysosomes, and mitochondria.
Interestingly, at resting state there is very little expression
at the plasma membrane (Miyake et al., 2015). In a model
of rat spinal cord injury, activation of TRPV1 channels,
via I.V injection of capsaicin, gave increased expression of
SOD1 and pro-inflammatory cytokines from spinal microglia
(Talbot et al., 2012). Similar influence on pro-inflammatory
markers were observed in retinal microglia where activation
of TRPV1 resulted in increased IL-6 and NFkB expression
(Sappington and Calkins, 2008). Expression of TRPV1 protein
and function was confirmed in HMO6 human microglial
cell line. Application of capsaicin resulted in increased
intracellular Ca2+, and subsequently cytochrome C and
cleaved caspase 3 release (Kim et al., 2006). Together this
suggests a strong role of TRPV1 in the pro-inflammatory profile
of microglia.

Little is known about the other TRPV channels in microglia,
although an RNA-based analysis by Raboune et al. (2014).
showed upregulation of TRPV1-4 in BV2 cells following cell
activation by N-acyl amide.

Microglial TRP Channels in AD
Aβ accumulation, one of the major hallmarks of AD, commonly
results in excitotoxicity and cell death via the disruption of
normal Ca2+ homeostasis and release of pro-inflammatory
factors such as ROS, NO, and cytokine release. The previous
section highlights the role of TRP channels in intracellular Ca2+

regulation as well as differentially switching the phenotype of
microglia between M1 (pro-apoptotic) and M2 (pro-survival).
Despite this there is little research into glial TRP channel activity
in AD, with most of the focus being on neuronal responses.

Aβ treatment of BV-2 cells gave an upregulation of protein
and mRNA for TRPC6 that is dependent on NFkB activity.
When these cells had TRPC6 knocked down via siRNA, the
condition media was neuroprotective to cultured hippocampal
cells compared to sham BV2 cells. Neuronal influence of
TRPC6 activates via an upregulation of COX2 downstream
(Liu et al., 2017). By using familial AD mouse models- APP23
and 5XFAD, plaque associated microglia from these animals
were homogenized and run through flow cytometry to observe
upregulated genes. From these TRPM1 was pulled out, however
its role in AD remains unclear (Yin et al., 2017). BV2 cells
treated with either fibrillary or soluble Aβ saw high levels of ROS
which was attenuated with simultaneous application of TRPV1
via I-RTX (Schilling and Eder, 2011).
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CALCIUM CHANNELS

Plasma membrane calcium channels are subdivided into three
main groups according to their manner of activation; the voltage-
gated calcium channels (VGCCs), the store-operating calcium
channels (SOCs) and the receptor-operated calcium channels
(ROCs). VGCCs specifically, play a vital role in maintaining
calcium homeostasis, with important roles in cellular processes
such as neurotransmission, control of gene expression, hormone
secretion and cell apoptosis (Ertel et al., 2000; Valerie et al.,
2013). Therefore, developing therapeutics that target these
channels may be of benefit in treating various diseases of
the CNS, such as AD. Structurally VGCCs consists of the
α1 pore-forming subunit consisting of four transmembrane
domains, the cytoplasmic β subunit, the peripheral α2δ and
occasionally the γ accessory subunit (Ertel et al., 2000).
VGCCs are divided into subfamilies according to their pore-
forming subunit; the high voltage-activated channels known
as Cav1 (Cav1.1-1.4) and Cav2 (Cav2.1-2.3), and the low
voltage-activated Cav3 channels (Cav3.1-3.3) (Ertel et al.,
2000).

Voltage-Gated Calcium Channels
To date, evidence suggesting the existence of microglial VGCCs
and their involvement in AD is limited. Although numerous
studies, mainly via electrophysiology and Fura-2 calcium
imaging, have proven that various agents such as Aβ, ATP, and
K+, cause an increase in intracellular Ca2+, the mechanism by
which this phenomenon occurs is still under debate (Korotzer
et al., 1995;McLarnon et al., 1999; Valerie et al., 2013). Thus, there
is no clear indication of the existence of microglial VGCCs or
whether the increase in intracellular Ca2+ is due to other factors
such as ion exchange transporters or opening of intracellular
stores (Korotzer et al., 1995; McLarnon et al., 1999; Valerie et al.,
2013).

The majority of human studies, have investigated the presence
and functionality of VGCCs in human glioblastoma cell lines,
consisting of a mixed culture of glial cells, including astrocytes
and microglia. Therefore, a major limitation of human in vitro
studies, is that identifying VGCCs in glioblastoma cells does
not necessarily indicate the presence of these channels in
microglia. For instance, Valerie et al. (2013), demonstrated that
pharmacological inhibition via the calcium channel blocker
(CCB)mibefradil, or siRNA-induced downregulation of the Cav3
channel (T-type current) in human glioblastoma cell lines, led to
cell apoptosis. Additionally, Nicoletti et al. (2017) demonstrated
that Cav2.1 and Cav2.2 are involved in glial proliferation,
through using of pharmacological tools (Nicoletti et al., 2017).
Furthermore, via the use of an Iba-1 antibody, a marker of
inflammation, and immunohistochemistry, in an in vivo rodent
glioblastoma model (GL261 glioma cells), it was revealed that the
degree of Iba-1 positive microglia had increased following N-type
inhibition. This highlights a role of microglial VGCCs not only
in cell proliferation and microglial survival, but also in inducing
their pro-inflammatory action (Nicoletti et al., 2017). Evidence
from human glial cells, demonstrates that VGCCs are expressed
in human microglia, and that microglia VGCCs may also have

a role in neurotoxicity (Hashioka et al., 2012). Prior to 48-h
treatment with LPS and IFN-γ to induce inflammation, primary
human microglial cells were treated with the L-type blocker
nimodipine, significantly reducing neuronal toxicity induced by
the microglia (Hashioka et al., 2012). In contrast to other studies,
Hashioka et al. (2012) provided more conclusive evidence in
indicating the presence of microglial VGCCs due to the use
of primary human microglia and not a cell line consisting of
a mixed glial population. A 1999 study demonstrated a more
direct involvement of microglia VGCCs with progression of AD
by investigating how Aβ25−35 alters Ca2+ signaling in human
microglia (Silei et al., 1999). Incubation with Aβ caused an
increase in microglia proliferation and additionally an increase
in intracellular Ca2+ levels (Silei et al., 1999). As no significant
increase in microglial intracellular Ca2+ levels were observed
when microglia were incubated in Ca2+ -free media, it was
suggested that this change was due to VGCC-mediated Ca2+

influx (Silei et al., 1999). This was verified via co-incubation
of microglia with Aβ and the CCBs verapamil, nifedipine and
diltiazem which lead to a half-reduction in intracellular levels
(Silei et al., 1999). Moreover, incubation of peptide-treated
microglia with nifedipine not only lead to a reduction in
intracellular Ca2+, but also significantly prevented the increase
in microglia proliferation induced by the peptide. Therefore,
this study proposes that Aβ has the ability to increase microglia
number and also induce their activation and consequently
inflammatory action, through a VGCC manner (Silei et al.,
1999).

In contrast to human studies, the majority of studies using
animal models, have not provided conclusive evidence to indicate
the existence and activity of VGCCs in microglia (Toescu et al.,
1998; Silei et al., 1999).

A possible explanation for this, could be that microglial
VGCC expression and activity is species-dependent. For instance,
studies have shown that rodent microglia can express very low
levels of VGCC activity which may even remain undetected
(Toescu et al., 1998). Toescu et al. (1998), demonstrated that
adding ATP to microglia isolated from murine cortex lead to a
significant increase in intracellular Ca2+ levels. In contrast, KCl
induced microglial depolarisation, did not lead to an increase
in intracellular Ca2+ thus it was proposed that increased Ca2+

levels involved VGCC independent pathway (Toescu et al.,
1998). Prolonged elevation in intracellular Ca2+ levels can
activate pathways involved in regulation of gene expression
such as the Ca2+-calmodulin pathway, and therefore altered
Ca2+ signaling in microglia may occur as a pathway for
microglia activation and may even induce the progression of
various pathological conditions such as AD (Toescu et al.,
1998).

Although the majority of animal model studies have not
definitively proven the existence of the channels in microglia,
a few were able to provide some evidence indicating their
existence. In a study carried out in 2014 by Saeugusa and
Tanabe, where rodent lines were created where expression of
Cav2.2 was suppressed, they indicated dynamic modulation of
microglia Cav2.2 in regulation of pain related behavior. (Saegusa
and Tanabe, 2014). Saeugusa and Tanabe also highlight neuronal
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and microglial crosstalk, in controlling response to pathology
(Saegusa and Tanabe, 2014). A more recent study investigated
how microglial activation, verified by immunostaining and
morphological changes, alters the activity of the L-type currents
in an in vivo animal model for neurodegeneration, and in
the in vitro BV2 cell line (Espinosa-Parrilla et al., 2015).
Comparison of microglia before and after LPS and IFNγ

stimulation revealed differences as seen via immunostaining
and molecular approaches such as western blotting and PCR
(Espinosa-Parrilla et al., 2015). Additionally, as depolarisation
of LPS/IFNγ treated microglia demonstrated changes in
intracellular Ca2+ by treatment with either nifedipine or Bay
K8644 (agonist), it was suggested that VGCCs, may form part
of the mechanism involved in the activation of microglia,
inducing their pro-inflammatory action (Espinosa-Parrilla et al.,
2015).

To summarize, even though human microglia studies have
proposed the existence of functional VGCCs, the majority of the
studies were carried out in mixed glial cell lines. Additionally,
animal studies have either demonstrated very low expression of
VGCCs in microglia or were not able to prove their existence,
either at a functional or expression level (protein and mRNA).
Thus, due to the limited and contradicting evidence on human
and rodent microglial VGCC existence, the use of human
induced pluripotent stem cells (iPSCs) may allow amore effective
study of microglial ion channel role in neuro-inflammation
observed in neurodegenerative diseases such as AD.

CHLORIDE CHANNELS

Chloride channels are a diverse superfamily of channels proteins,
incorporating the volume regulated chloride channels, the ClC
proteins, Ca2+ activated chloride channels, CFTR and maxi
chloride channels (Alexander et al., 2017). Studies have identified
Cl− channels in rat (Visentin et al., 1995; Schlichter et al., 1996),
bovine (McLarnon et al., 1995) and human microglia (McLarnon
et al., 1997). These have mainly been based on pharmacological
studies using a range of Cl− channel blockers (e.g. nifluemic
acid). Pharmacological modulation of Cl- channels indicates a
role for in the regulation of microglia process outgrowth (Hines
et al., 2009). However, the lack of specific pharmacological tools
has hindered our progress in identifying specific channel entities,
and indeed their contribution to microglia physiology. This
is backed up with a lack of experimental evidence as to the
molecular identity of the channels that have been suggested to be
responsible for experimental observations. While the molecular
identity remains to be resolved, evidence indicates that is a
similar fashion to Cl− currents within lymphocytes, microglia
Cl− conductance are responsive to stretch (Lewis et al., 1993;
Steinert andGrissmer, 1997). Interestingly CLIC1 an intracellular
chloride channel has received some attention with relation to
amyloid pathology (Novarino et al., 2004; Milton et al., 2008;
Paradisi et al., 2008). This suggests a role for modulation
of chloride conductances in microglial generation of reactive
oxygen species, but robust evidence for this is lacking in relevant
in situmodels of microglia.

VOLTAGE GATED PROTON CHANNELS
(HV1)

Voltage-gated proton channels (Hv1; Alexander et al., 2017)
reportedly consist of 4 proton sensitive transmembrane domains
which are sensitive to both membrane depolarisation and
transmembrane pH gradient (DeCoursey, 2008; Capasso et al.,
2011). There is widespread expression of these channels within
the central nervous system, highlighting both regional and
cellular variation (Eder et al., 1995; McLarnon et al., 1997).
Functional evidence comes from both studies carried out on
murine microglia (Eder et al., 1995; Klee et al., 1998, 1999), rat
(Visentin et al., 1995), and human microglia (McLarnon et al.,
1997). There is also evidence to link Hv1 to both microglia
polarity and brain responses to stroke (Wu et al., 2012; Tian et al.,
2016). This could be pertinent given the link between hypoxia
and Alzheimer’s disease (Peers et al., 2007). However, one
drawback from these studies is the use of culture preparations.
This is pertinent given that work on brain slices was unable to
detect any H+ conductance in situ (De Simoni et al., 2008). This
again raises the question about membrane properties in cultured
preparations in contrast to in situ set ups. In addition there
are questions around the physiological role of these channels
when present in microglia (Eder and Decoursey, 2001) It is well
established that microglial reactive oxygen species contribute to
neuronal cell death in AD (see review Block et al., 2007). This
process likely involved the build-up of protons within microglia,
which will impact on the flux through Hv1 channels. However, a
direct demonstration of the involvement of HV1 in this process is
lacking. There is greater evidence to indicate the involvement of
other channels (e.g., Kv1.3) which are discussed elsewhere in this
article.

MODELING MICROGLIAL INVOLVEMENT

To fully understand a disease and its etiology it is necessary
that extensive modeling takes place. By tradition this has
been through the use of a number of different model systems
including both animal (murine) models and primary patient
cell lines. Currently in AD research there is a large focus
on the use of animal models, particularly transgenic mice
(McGowan et al., 2006), as a lot is understood about their genetics
and the availability of well-characterized genetic manipulation
techniques in this organism. Not only this, mice are more closely
phylo-genetically related to humans than other model systems
such as Caenorhabiditis elegans or Drosophila melanogaster. The
genetic similarities between humans and mice means that they
have utility in studying the familial aspect of AD by using
transgenic mice that contain mutations in the APP and PSEN
genes. There are over 100 different transgenic mouse models
available to study the familial aspect of AD, with some models
containing five different mutations in the APP and PSEN genes
(Oakley et al., 2006).

As it is widely accepted that Aβ plaques and neurofibrillary
tangles cause neuro-inflammation, models which overexpress
mutant human versions of APP have been shown to present
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microglial activation (Bornemann et al., 2001; Wright et al.,
2013). In addition to this it was shown that there were significant
increases in CD38-positive microglia before Aβ deposition which
also correlated with neuronal cell death in the CA1 region
of the hippocampus (Wright et al., 2013). The inflammatory
processes of in another APP mouse model, Tg2576, were
investigated by looking at individual microglial cells using in vivo
multiphoton imaging. Meyer-Luehmann and his colleagues
showed that Aβ plaques can form within days and once formed
it only takes 1–2 days before microglial cells begin to aggregate
around the depositions. Alongside this accumulation ofmicroglia
is accompanied by changes to neurite morphology (Meyer-
Luehmann et al., 2008). Whilst these have their advantages, they
also have a number of limitations. These types of models do not
accurately recapitulate human pathology as they do not develop
the robust tauopathy or neuronal cell death that is seen in human
disease without the addition of extra transgenes such as tau (Ribé
et al., 2005).

The triple-transgenic model of AD, which contains the
APPSWE, Presenilin-1 (PSENM146V) and tau mutations (tauP301L)
offers the advantage that they develop Aβ plaques, tau tangles,
synaptic dysfunction and LTP deficits which all manifest in
an age-related manner (Oddo et al., 2003). Janelsins et al.
demonstrated that this model shows a 14.8 fold increase of TNF-
α and 10.8 fold increase in MCP-1 mRNA in 6 month old triple
transgenic mice when compared to 2 month old mice. However
these increases were only seen in the entorhinal cortex and could
not be replicated in the hippocampus, suggesting that different
cell types or environments may be responsible for the differential
transcript levels and inflammatory responses in these disease
relevant brain regions (Janelsins et al., 2005).

Mouse models containing just tau mutations have also been
investigated in terms of neuro-inflammatory response and they
too also display microglial changes (Wes et al., 2014; Cook
et al., 2015). For example, the P301S tau model whose neurons
develop bundles of hyperphosphorylated tau also have significant
increases in inflammatory molecules such as IL-1β and COX-
2 within the tau-positive neurons. Alongside this they also
demonstrated that there were activated microglia throughout
the brain and spinal cord, but that these microglia could
be predominantly found surrounding the tau-positive neurons
(Bellucci et al., 2004). Interestingly, this microglial activation
was shown to begin before neurofibrillary tangle formation,
but could be ameliorated using an immunosuppressive drug,
FK506, early in life increasing life span and attenuating tau
pathology (Yoshiyama et al., 2007). One important thing to bear
in mind that mutations in tau do not cause AD but instead
cause frontotemporal dementia. So whilst these models can
provide useful information about how mutations in tau can
cause cellular dysfunction and neurodegeneration they do not
completely replicate AD in terms of other pathological markers
(Wolfe, 2012).

Whilst proven useful for modeling autosomal disease, such as
the familial form of AD, as previously mentioned, these murine
models do not accurately recapitulate AD. A more promising
avenue for modeling complex diseases, such as sporadic AD, is
through the use of stem cell technology. Embryonic stem cells

(ESCs) are derived from the inner cell mass, or blastocyst, of an
embryo and can differentiate into any cell in the body (Evans and
Kaufman, 1981). Despite their many potential uses, the ethical
issues surrounding the use of embryo-derived cells are numerous.
However, recent advances in stem cell technology have meant
that it is now possible to derive stem cells from differentiated
adult cells/tissue. Takahashi et al. showed it was possible to use
ectopic transcription factors to induce pluripotency and ESC
properties (Takahashi and Yamanaka, 2006). These transcription
factors were known for being important in the long term
maintenance of ES cell phenotype (Oct3/4 and Sox2) and
pluripotency (c-myc and Klf4) (Takahashi and Yamanaka, 2006).
These iPSCs are almost identical to ESCs in terms of their
characteristics. They are able to differentiate into any cell type
in the body, have infinite potential to grow, share the same
morphology and have the same expression pattern of genes
(Yamanaka, 2009); making them a potentially very powerful tool
for complex disease research.

Primary microglia cultures are often used to study neuro-
inflammation, they can be derived from rat ormouse brain before
birth or early on in development. In addition, human microglia
cultures have also been established from fetal brain (McLarnon
et al., 1997). One method of generating these cells was developed
by Giulian and Baker (1986) and involving a specific process of
adhesion and agitation. These cells are often used as they show
similarities to microglial cells in vitro, however, the process of
extraction and culture itself alters microglial phenotype (Caldeira
et al., 2014). Given the degree of variability in ion channel
distribution during development and aging (Harry, 2013), using
this type of model for investigating neurodegeneration is less
than ideal. Another method to study microglia is through the
use of retroviral-immortalized cell lines, such as the mouse and
rat microglial cell lines N9 and BV-2 respectively (Righi et al.,
1989; Blasi et al., 1990). These cell lines offer an advantage in
the fact that they are fast to grow, and large numbers of cells can
be generated quickly. However, as they have been immortalized
using oncogenes whichmeans they differ from primary microglia
as they have increased adhesion and proliferation and can vary in
terms of their morphology (Horvath et al., 2008).

Until recently, being able to generate iPSC-derived microglia
has been elusive, with previous attempts being met with
skepticism as the microglia were made from induced
hematopoietic stem cells (HSCs). HSCs have the potential
to give rise to other cell types such as blood derived macrophages
and as already stated microglia arise from EMPs. In order
to generate EMPs from the iPSCs, Muffat and his colleagues
developed a serum free media that contains high levels of
IL-34 and colony stimulating factor 1 (CSF1) (Muffat and Li,
2016). These conditions were chosen as the media mimics the
brain cerebrospinal fluid and the factors have been shown to
be necessary for microglia differentiation and maintenance.
Under these conditions they found that the cells soon formed
rope-like structures that when plated onto low adherence plates
gave rise to highly adherent pluripotent stem cell–derived
microglia-like cells (pMGLs). These cells express many of
the markers that would be expected from microglia, such as
TMEM119, P2RY12/13, HEXB and GPR34. Alongside this they
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are also highly phagocytic and gene transcriptomic analysis
demonstrated they resemble human primary fetal and adult
microglia (Muffat and Li, 2016). This is not the only protocol that
has been published which describes the derivation of microglia
from iPSCs, subsequently there have been four more protocols
released. In fact the next two papers described the generation
of iPSC-derived microglia going through a hematopoietic
progenitor cell (HPC) stage. Both methodologies use defined
media systems that contain a number of growth factors including
IL-3, BMP4 and L-ascorbic acid to generate HPCs (Abud et al.,
2017; Pandya et al., 2017). Both protocols take about 10 days to
generate HPCs at which point they were checked for markers
of the hematopoietic lineage such as CD43 before differentiating
for a further 2 weeks using another media to form induced
microglia like cells (iMGLs). One way in which these protocols
differ is that Pandya et al. (2017) co-culture the HPCs with
astrocytes to enhance microglial differentiation. This is not the
only protocol that uses co-culture to generate iPSC-derived
microglia, a paper released by Walter Haenseler also uses
co-culture but neuronal microglial co-culture instead (Haenseler
et al., 2017).

Whilst iPSC-based models offer a number of advantages to
modeling complex diseases there are a number of limitations that
should also be considered. Firstly, the cells which are derived
from iPSCs have been found to display the functional and
epigenetic signatures of fetal neurons and do not maintain the
features, such as telomere length and mitochondrial metabolism,
of the cells from which they were originally derived (Lapasset

et al., 2011). One of the current major stumbling blocks for iPSC
research (control and those derived from patients with specific
neurodegenerative disorders), is the lack of standard culturing
or differentiation methods (Wen et al., 2016). Resulting in the
unavailability of established protocols to generate entirely pure
populations of a specific cell type, therefore making cross lab
comparisons particularly difficult. However, more recently the
availability of human tissue as well as iPSCs have provided new
opportunities for academic and industry-based researchers to
identify optimal cell types and culture conditions to efficiently
generate stable, defined and reproducible cell types for their
specific research–with limited variability. Whilst this may not be
an issue for some studies, when trying to investigate diseases of
aging such as AD it could pose more problems as cells may not
show age related phenotypes or degeneration. One way in which
it may be possible to overcome this is throughmaintain and aging
the cells in culture for as long as possible.

One of the challenges to date has been modeling sporadic
AD in both rodent and human models of disease, with familial
AD mutations accounting for only 5–10% of all AD cases (Kim
et al., 2017). Excitingly, Lin et al. (2018) describes the first
experiments in which CRISPR/Cas9 technology has been used
to generate isogenic APOE4 iPSC-derived microglia. In this
study the APOE4-like microglia exhibited altered morphology
correlating to the reduced Aβ phagocytosis seen in rodent
models. They found that consistently converting APOE4 to
APOE3 in brain cell types from sporadic AD iPSCs was sufficient
to diminish multiple AD-related pathologies (Lin et al., 2018).

TABLE 2 | Comparison of multiple transcriptome studies of regulated microglial genes, relating to ion channels, in models of aging or Alzheimer’s disease.

Species Sample

type

Potassium

channels

Sodium

channels

TRP channels Calcium

channels

Others Reference

Human iPSC KCNA5, KCNK13,

KCNN4

SCN5A TRPM2, TRPM4, TRPM8,

TRPV1, TRPV2

CACNA1S HVCN1, CLIC1 Haenseler et al.,

2017

Human Biopsy primary microglia

culture

KCNK13, KCNN1,

KCNN4

Not determined TRPC1, TRPC2, TRPM2,

TRPM3, TRPM4, TRPM7,

TRPMV1, TRPV2, TRPV4

Not determined HVCN1, CLIC1 Gosselin et al.,

2017

Human Purified from post-mortem

dorsal lateral pre-frontal

cortex

KCNN4 Not determined TRPM2, TRPV2 Not determined CLIC1 Olah et al., 2018

Human Purified from post-mortem

dorsal lateral pre-frontal

cortex

KCNJ2, KCNK13,

KCNN4

Not determined TRPM2, TRPM7, TRPV1,

TRPV2

CACNA1A,

CACNA1D

HVCN1, CLIC1 Olah et al., 2018

Human Purified from post-mortem

right parietal cortex

KCNK13, KCNN4 Not determined TRPC2, TRPV2, TRPV4 Not determined CLIC1 Galatro et al.,

2017

Human Purified from post-mortem

right parietal cortex

KCNN4 Not determined Not determined CACNA1F Not determined Galatro et al.,

2017

Mouse Primary microglia culture KCNA3, KCNK13,

KCNN4

Not determined TRPM4 CACNA1A,

CACNA1D

Not determined Gosselin et al.,

2017

Mouse Collated Meta-Analysis KCNA1, KCNA2,

KCNN1, KCNN3

Not determined TRPA1, TRPC1, TRPC3,

TRPC4, TRPC6, TRPC7,

TRPM3, TRPM8, TRPV1,

TRPV6

Not determined HVCN1 Olah et al., 2018

Rat Primary microglia culture KCNK13, KCNN4 Not determined TRPC4, TRPC6, TRPM2,

TRPM4, TRPV1

Not determined CLIC1 Bohlen et al., 2017

Regulation threshold was set at a 3-fold change over all studies. Anything below this is referred to as not determined.
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They also showed that in their iPSC-derived microglia, TREM2
was positively correlated to the APOE4 genotype. This data
is consistent with reports showing increased levels of soluble
TREM2 in cerebrospinal fluid of AD patients (Heslegrave et al.,
2016). Similarly, protocols for microglia differentiated from
patients carrying missense mutations in TREM2 (that are causal
for frontotemporal dementia-like syndrome and Nasu-Hakola
disease). These studies found subtle effects on microglia biology,
consistent with the adult onset of disease in individuals with
these mutations (Brownjohn et al., 2018). These particular
studies establish a reference for human cell-type-specific changes
associated with the risk of developing AD, providing critical
insight into potential treatments for sporadic AD.

As more is understood about the developmental origin and
unique identity of microglia, recent studies have attempted to
circumvent this issue by deriving microglia from iPSCs in order
to study human and cell-type-specific biology and disease (Muffat
et al., 2016; Abud et al., 2017; Douvaras et al., 2017; Haenseler
et al., 2017; Pandya et al., 2017; Takata et al., 2017; Brownjohn
et al., 2018; Lin et al., 2018). At the whole-transcriptome level,
microglia generated by the methods reported here most closely
resemble cultured primary microglia (Brownjohn et al., 2018).
Due to a lack of unique surface markers, it has historically
been difficult to distinguish microglia from other macrophages
and cells of myeloid lineage. It is only recently that a distinct
transcriptomic profile of microglia has emerged (Hickman et al.,
2013; Butovsky et al., 2014; Holtman et al., 2015; Bennett et al.,
2016; Gosselin et al., 2017; Keren-Shaul et al., 2017; Krasemann
et al., 2017). In this review we have highlighted the similarities
between rodent and human microglia transcriptomics and have
identified key ion channels prominent in human iPSC-derived
microglia, some of which we have already been highlighted earlier
in this review as prominent targets associated with AD (Table 2)
including KCNK13, KCNN4, TRPV2, HVCN1, and CLIC1.
Indeed, the ion channels found from iPSC-derived microglia to
date mirror those found in aged-human tissue (Olah et al., 2018).

Finally, the characterization of the electrophysiological
properties of neurons derived from iPSCs are extremely
limited and even fewer reports on the functional properties
of iPSC-derived glia (microglia and astrocytes). However, with
the development of standardized methods and differentiation
protocols and, importantly, broader functional characterization
of the complex collection of ion channels and receptors expressed

in defined glial and neuronal subtypes from iPSCs, their
significance in drug discovery and neuroscience will become
increasingly valuable.

CONCLUDING REMARKS

Microglial research has expanded dramatically in the last 5 years,
this combined with the lack of new therapeutic options for
treating complex neurological conditions highlights the potential
of these cells to provide a viable alternative. For this to be
realized a clearer picture of human microglial physiology needs
to be established. The development of iPSC technology has been
a great advance in these efforts, but robust protocols are still
in their infancy (Douvaras et al., 2017; Haenseler et al., 2017;
Brownjohn et al., 2018). With microglia being dependent in situ
environments the need to generate more complex 3D models is
even greater. While the development of 3D scaffolds continues
at pace (Saliba et al., 2018), some initial research indicates the
possibility of 3D microglia cultures (Cho et al., 2018). The
challenge will now be to incorporate the diverse range of cells into
these cultures with the ability to provided measurable outcomes
(e.g. electrophysiology). Establishing robust and reproducible
protocols will also allow us to progress into addressing the
role of microglia in pathological states. This is vital if we are
to achieve a therapeutic purpose for targeting microglia ion
channels.

The role of ion channels is extensive within the central
nervous system, however as non-excitable cells microglia
channels often get overlooked. Here we have examined the
microglia ion channel landscape and the evidence that supports
the involvement in Alzheimer’s disease pathogenesis. While there
is still work to be done as highlighted above, this review indicates
that microglia ion channels play a pivotal role in their physiology
and can contribute to the fight against dementia.

AUTHOR CONTRIBUTIONS

TK and MD contributed to the initial design and conception of
the review. LT, JI, EK, MD, and TK wrote individual sections
of the review. TK wrote the first draft of the manuscript. LT
and JI prepared figures. TK and LT outlined the tables and
compiled final version of manuscript. All authors approved, read
and revised final version before submission.

REFERENCES

Abud, E. M., Ramirez, R. N., Martinez, E. S., Healy, L. M., Nguyen, C.
H.H., Newman, S. A., et al. (2017). iPSC-derived human microglia-
like cells to study neurological diseases. Neuron 94: 278–293.e9.
doi: 10.1016/j.neuron.2017.03.042

Alexander, S. P., Kelly, E., Marrion, N. V., Peters, J. A., Faccenda, E., Harding, S. D.,
et al. (2017). The concise guide to pharmacology 2017/18: other ion channels.
Br. J. Pharmacol. 174(Suppl. 1), S195–S207. doi: 10.1111/bph.13881

Alzheimer’sstatistics (2016). 2016 Alzheimer’s Statistics. AvailableOnline at: http://
www.alzheimers.net/resources/alzheimers-statistics/ (Accessed December 13,
2016).

Annunziato, L., Boscia, F., and Pignataro, G. (2013). Ionic transporter
activity in astrocytes, microglia, and oligodendrocytes during brain

ischemia. J. Cereb. Blood Flow Metab. 33, 969–982. doi: 10.1038/jcbfm.
2013.44

Arnoux, I., Hoshiko, M., Mandavy, L., Avignone, E., Yamamoto, N., and Audinat,
E. (2013). Adaptive phenotype of microglial cells during the normal postnatal
development of the somatosensory “Barrel” cortex. Glia 61, 1582–1594.
doi: 10.1002/glia.22503

Arnoux, I., Hoshiko, M., Sanz Diez, A., and Audinat, E. (2014). Paradoxical
effects of minocycline in the developing mouse somatosensory cortex. Glia 62,
399–410. doi: 10.1002/glia.22612

Asai, H., Ikezu, S., Tsunoda, S., Medalla, M., Luebke, J., Haydar, T., et al.
(2015). Depletion of microglia and inhibition of exosome synthesis halt tau
propagation. Nat. Neurosci. 18, 1584–1593. doi: 10.1038/nn.4132

Atagi, Y., Liu, C. C., Painter, M. M., Chen, X. F., Verbeeck, C., Zheng,
H., et al. (2015). Apolipoprotein E is a ligand for triggering receptor

Frontiers in Neuroscience | www.frontiersin.org 16 September 2018 | Volume 12 | Article 676

https://doi.org/10.1016/j.neuron.2017.03.042
https://doi.org/10.1111/bph.13881
http://www.alzheimers.net/resources/alzheimers-statistics/
http://www.alzheimers.net/resources/alzheimers-statistics/
https://doi.org/10.1038/jcbfm.2013.44
https://doi.org/10.1002/glia.22503
https://doi.org/10.1002/glia.22612
https://doi.org/10.1038/nn.4132
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thei et al. Ion Channels, Alzheimer’s and Microglia

expressed on myeloid cells 2 (TREM2). J. Biol. Chem. 290, 26043–26050.
doi: 10.1074/jbc.M115.679043

Beck, A., Penner, R., and Fleig, A. (2008). Lipopolysaccharide-induced down-
regulation of Ca2+ release-activated Ca2+ currents (I CRAC) but not Ca2+-
activated TRPM4-like currents (I CAN) in cultured mouse microglial cells. J.
Physiol. 586, 427–439. doi: 10.1113/jphysiol.2007.145151

Becker, K. J. (2016). Strain-related differences in the immune response: relevance to
human stroke. Transl. Stroke. Res. 7, 303–312. doi: 10.1007/s12975-016-0455-9

Bellucci, A., Bugiani, O., Ghetti, B., and Spillantini, M. G. (2011). Presence
of reactive microglia and neuroinflammatory mediators in a case of
frontotemporal dementia with P301S mutation. Neurodegener. Dis. 8, 221–229.
doi: 10.1159/000322228

Bellucci, A., Westwood, A. J., Ingram, E., Casamenti, F., Goedert, M., and
Spillantini, M. G. (2004). Induction of inflammatory mediators and microglial
activation in mice transgenic for mutant human P301S tau protein. Am. J.
Pathol. 165, 1643–1652. doi: 10.1016/S0002-9440(10)63421-9

Bennett, M. L., Bennett, F. C., Liddelow, S. A., Ajami, B., Zamanian, J. L.,
Fernhoff, N. B., et al. (2016). New tools for studying microglia in the
mouse and human CNS. Proc. Natl. Acad. Sci. U. S. A. 113, E1738–E1746.
doi: 10.1073/pnas.1525528113

Bertram, L., Lange, C., Mullin, K., Parkinson, M., Hsiao, M., Hogan, M. F., et al.
(2008). Genome-wide association analysis reveals putative Alzheimer’s disease
susceptibility loci in addition to APOE. Am. J. Hum. Genet. 83, 623–632.
doi: 10.1016/j.ajhg.2008.10.008

Black, J. A., Liu, S., and Waxman, S. G. (2009). Sodium channel activity modulates
multiple functions in microglia. Glia 57, 1072–1081. doi: 10.1002/glia.20830

Black, J. A., Newcombe, J., and Waxman, S. G., (2013). Nav1.5 sodium channels
in macrophages in multiple sclerosis lesions. Mult. Scler. 19, 532–542.
doi: 10.1177/1352458512460417

Black, J. A., and Waxman, S. G. (2012). Sodium channels and microglial function.
Exp. Neurol. 234, 302–315. doi: 10.1016/j.expneurol.2011.09.030

Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., and Bistoni, F. (1990).
Immortalization ofmurinemicroglial cells by a v-raf/v-myc carrying retrovirus.
J. Neuroimmunol. 27, 229–237. doi: 10.1016/0165-5728(90)90073-V

Block, M. L., Zecca, L., and Hong, J. S. (2007). Microglia-mediated neurotoxicity:
uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69.
doi: 10.1038/nrn2038

Boche, D and Nicoll, J. A. (2010). Are we getting to grips with Alzheimer’s disease
at last? Brain 133, 1297–1299. doi: 10.1093/brain/awq099

Bohlen, C. J., Bennett, F. C., Tucker, A. F., Collins, H. Y., Mulinyawe, S. B., and
Barres, B. A. (2017). Diverse requirements for microglial survival, specification,
and function revealed by defined-medium cultures. Neuron 94, 759–773.e758.
doi: 10.1016/j.neuron.2017.04.043

Bordey, A., and Spencer, D. D. (2003). Chemokine modulation
of high-conductance Ca2+-sensitive K+ currents in microglia
from human hippocampi. Eur. J. Neurosci. 18, 2893–2898.
doi: 10.1111/j.1460-9568.2003.03021.x

Bornemann, K. D., Wiederhold, K. H., Pauli, C., Ermini, F., Stalder,
M., Schnell, L., et al. (2001). Aβ-Induced inflammatory processes in
microglia cells of APP23 transgenic mice. Am. J. Pathol. 158, 63–73.
doi: 10.1016/S0002-9440(10)63945-4

Boucsein, C., Kettenmann, H., and Nolte, C. (2000). Electrophysiological
properties of microglial cells in normal and pathologic rat brain slices. Eur. J.
Neurosci. 12, 2049–2058. doi: 10.1046/j.1460-9568.2000.00100.x

Boucsein, C., Zacharias, R., Farber, K., Pavlovic, S., Hanisch, U. K., and
Kettenmann, H. (2003). Purinergic receptors on microglial cells: functional
expression in acute brain slices andmodulation of microglial activation in vitro.
Eur. J. Neurosci. 17, 2267–2276. doi: 10.1046/j.1460-9568.2003.02663.x

Brackenbury, W. J., and Isom, L. L. (2008). Voltage-gated Na+ channels: potential
for beta subunits as therapeutic targets. Expert Opin. Ther. Targets 12,
1191–1203. doi: 10.1517/14728222.12.9.1191

Brackenbury, W. J., and Isom, L. L. (2011). Na channel beta subunits:
overachievers of the ion channel family. Front. Pharmacol. 2:53.
doi: 10.3389/fphar.2011.00053

Brownjohn, P. W., Smith, J., Solanki, R., Lohmann, E., Houlden, H.,
Hardy, J., et al. (2018). Functional studies of missense TREM2 mutations
in human stem cell-derived microglia. Stem Cell Rep. 10, 1294–1307.
doi: 10.1016/j.stemcr.2018.03.003

Burnstock, G. (2015). Physiopathological roles of P2X receptors
in the central nervous system. Curr. Med. Chem. 22, 819–844.
doi: 10.2174/0929867321666140706130415

Butovsky, O., Jedrychowski, M. P., Moore, C. S., Cialic, R., Lanser, A. J.,
Gabriely, G., et al. (2014). Identification of a unique TGF-beta-dependent
molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143.
doi: 10.1038/nn.3599

Caldeira, C., Oliveira, A. F., Cunha, C., Vaz, A. R., Falcao, A. S., Fernandes, A., et al.
(2014). Microglia change from a reactive to an age-like phenotype with the time
in culture. Front. Cell Neurosci. 8:152. doi: 10.3389/fncel.2014.00152

Cameron, B., Tse, W., Lamb, R., Li, X., Lamb, B. T., and Landreth, G. E., (2012).
Loss of interleukin receptor-associated kinase 4 signaling suppresses amyloid
pathology and alters microglial phenotype in a mouse model of Alzheimer’s
disease. J. Neurosci. 32, 15112–15123. doi: 10.1523/JNEUROSCI.1729-12.2012

Capasso, M., Decoursey, T. E., and Dyer, M. J. (2011). pH regulation and beyond:
unanticipated functions for the voltage-gated proton channel, HVCN1. Trends
Cell Biol. 21, 20–28. doi: 10.1016/j.tcb.2010.09.006

Carrithers, L. M., Hulseberg, P., Sandor, M., and Carrithers, M. D. (2011). The
humanmacrophage sodium channel NaV1.5 regulatesmycobacteria processing
through organelle polarization and localized calcium oscillations. FEMS
Immunol. Med. Microbiol. 63, 319–327. doi: 10.1111/j.1574-695X.2011.00853.x

Carrithers, M. D., Chatterjee, G., Carrithers, L. M., Offoha, R., Iheagwara, U.,
Rahner, C., et al. (2009). Regulation of podosome formation in macrophages by
a splice variant of the sodium channel SCN8A. J. Biol. Chem. 284, 8114–8126.
doi: 10.1074/jbc.M801892200

Carrithers, M. D., Dib-Hajj, S., Carrithers, L. M., Tokmoulina, G., Pypaert, M.,
Jonas, E. A., et al. (2007). Expression of the voltage-gated sodium channel
NaV1.5 in the macrophage late endosome regulates endosomal acidification.
J. Immunol. 178, 7822–7832. doi: 10.4049/jimmunol.178.12.7822

Catterall, W. A., Goldin, A. L., and Waxman, S. G. (2005). International
union of pharmacology. XLVII. Nomenclature and structure-function
relationships of voltage-gated sodium channels. Pharmacol. Rev. 57, 397–409.
doi: 10.1124/pr.57.4.4

Chakrabarty, P., Li, A., Ceballos-Diaz, C., Eddy, J. A., Funk, C. C., Moore,
B., et al. (2015). IL-10 alters immunoproteostasis in APP mice, increasing
plaque burden and worsening cognitive behavior. Neuron 85, 519–533.
doi: 10.1016/j.neuron.2014.11.020

Cho, H. J., Verbridge, S. S., Davalos, R. V., and Lee, Y. W. (2018).
Development of an in vitro 3D brain tissue model mimicking in vivo-like pro-
inflammatory and pro-oxidative responses. Ann. Biomed. Eng. 46, 877–887.
doi: 10.1007/s10439-018-2004-z

Chung, S., Jung, W., and Lee, M. Y. (1999). Inward and outward rectifying
potassium currents set membrane potentials in activated rat microglia.
Neurosci. Lett. 262, 121–124. doi: 10.1016/S0304-3940(99)00053-1

Chung, S., Lee, J., Joe, E. H., and Uhm, D. Y. (2001). Beta-amyloid peptide induces
the expression of voltage dependent outward rectifying K+ channels in rat
microglia. Neurosci. Lett. 300, 67–70. doi: 10.1016/S0304-3940(01)01516-6

Colonna, M., and Wang, Y. (2016). TREM2 variants: new keys to decipher
Alzheimer disease pathogenesis. Nat. Rev. Neurosci. 17, 201–207.
doi: 10.1038/nrn.2016.7

Colton, C., and Wilcock, D. M. (2010). Assessing activation states
in microglia. CNS Neurol. Disord. Drug Targets 9, 174–191.
doi: 10.2174/187152710791012053

Colton, C. A. (2009). Heterogeneity of microglial activation in the innate
immune response in the brain. J. Neuroimmune. Pharmacol. 4, 399–418.
doi: 10.1007/s11481-009-9164-4

Condello, C., Yuan, P., Schain, A., and Grutzendler, J. (2015). Microglia constitute
a barrier that prevents neurotoxic protofibrillar Abeta42 hotspots around
plaques. Nat. Commun. 6:6176: doi: 10.1038/ncomms7176

Cook, C., Kang, S. S., Carlomagno, Y., Lin, W. L., Yue, M., Kurti, A., et al.
(2015). Tau deposition drives neuropathological, inflammatory and behavioral
abnormalities independently of neuronal loss in a novel mouse model. Hum.
Mol. Genet. 24, 6198–6212. doi: 10.1093/hmg/ddv336

Coraci, I. S., Husemann, J., Berman, J. W., Hulette, C., Dufour, J. H., Campanella,
G. K., et al. (2002). CD36, a class B scavenger receptor, is expressed on
microglia in Alzheimer’s disease brains and can mediate production of reactive
oxygen species in response to beta-amyloid fibrils. Am. J. Pathol. 160, 101–112.
doi: 10.1016/S0002-9440(10)64354-4

Frontiers in Neuroscience | www.frontiersin.org 17 September 2018 | Volume 12 | Article 676

https://doi.org/10.1074/jbc.M115.679043
https://doi.org/10.1113/jphysiol.2007.145151
https://doi.org/10.1007/s12975-016-0455-9
https://doi.org/10.1159/000322228
https://doi.org/10.1016/S0002-9440(10)63421-9
https://doi.org/10.1073/pnas.1525528113
https://doi.org/10.1016/j.ajhg.2008.10.008
https://doi.org/10.1002/glia.20830
https://doi.org/10.1177/1352458512460417
https://doi.org/10.1016/j.expneurol.2011.09.030
https://doi.org/10.1016/0165-5728(90)90073-V
https://doi.org/10.1038/nrn2038
https://doi.org/10.1093/brain/awq099
https://doi.org/10.1016/j.neuron.2017.04.043
https://doi.org/10.1111/j.1460-9568.2003.03021.x
https://doi.org/10.1016/S0002-9440(10)63945-4
https://doi.org/10.1046/j.1460-9568.2000.00100.x
https://doi.org/10.1046/j.1460-9568.2003.02663.x
https://doi.org/10.1517/14728222.12.9.1191
https://doi.org/10.3389/fphar.2011.00053
https://doi.org/10.1016/j.stemcr.2018.03.003
https://doi.org/10.2174/0929867321666140706130415
https://doi.org/10.1038/nn.3599
https://doi.org/10.3389/fncel.2014.00152
https://doi.org/10.1523/JNEUROSCI.1729-12.2012
https://doi.org/10.1016/j.tcb.2010.09.006
https://doi.org/10.1111/j.1574-695X.2011.00853.x
https://doi.org/10.1074/jbc.M801892200
https://doi.org/10.4049/jimmunol.178.12.7822
https://doi.org/10.1124/pr.57.4.4
https://doi.org/10.1016/j.neuron.2014.11.020
https://doi.org/10.1007/s10439-018-2004-z
https://doi.org/10.1016/S0304-3940(99)00053-1
https://doi.org/10.1016/S0304-3940(01)01516-6
https://doi.org/10.1038/nrn.2016.7
https://doi.org/10.2174/187152710791012053
https://doi.org/10.1007/s11481-009-9164-4
https://doi.org/10.1038/ncomms7176
https://doi.org/10.1093/hmg/ddv336
https://doi.org/10.1016/S0002-9440(10)64354-4
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thei et al. Ion Channels, Alzheimer’s and Microglia

Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P.
C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele
and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923.
doi: 10.1126/science.8346443

Craner, M. J., Damarjian, T. G., Liu, S., Hains, B. C., Lo, A. C., Black, J. A., et al.
(2005). Sodium channels contribute to microglia/macrophage activation and
function in EAE and MS. Glia 49, 220–229. doi: 10.1002/glia.20112

De Simoni, A., Allen, N. J., and Attwell, D. (2008). Charge compensation
for NADPH oxidase activity in microglia in rat brain slices does
not involve a proton current. Eur. J. Neurosci. 28, 1146–1156.
doi: 10.1111/j.1460-9568.2008.06417.x

DeCoursey, T. E. (2008). Voltage-gated proton channels. Cell Mol. Life Sci. 65,
2554–2573. doi: 10.1007/s00018-008-8056-8

Douvaras, P., Sun, B., Wang, M., Kruglikov, I., Lallos, G., Zimmer, M., et al. (2017).
Directed differentiation of human pluripotent stem cells to microglia. Stem Cell
Rep. 8, 1516–1524. doi: 10.1016/j.stemcr.2017.04.023

Draheim, H. J., Prinz, M., Weber, J. R., Weiser, T., Kettenmann, H., and
Hanisch, U. K. (1999). Induction of potassium channels in mouse
brain microglia: cells acquire responsiveness to pneumococcal cell wall
components during late development. Neuroscience 89, 1379–1390.
doi: 10.1016/S0306-4522(98)00407-2

Eder, C. (1998). Ion channels inmicroglia (brainmacrophages).Am. J. Physiol. 275,
C327–C342. doi: 10.1152/ajpcell.1998.275.2.C327

Eder, C. (2005). Regulation of microglial behavior by ion channel activity. J.
Neurosci. Res. 81, 314–321. doi: 10.1002/jnr.20476

Eder, C. (2010). Ion channels in monocytes and microglia/brain macrophages:
promising therapeutic targets for neurological diseases. J. Neuroimmunol. 224,
51–55. doi: 10.1016/j.jneuroim.2010.05.008

Eder, C., and Decoursey, T. E. (2001). Voltage-gated proton channels in microglia.
Prog. Neurobiol. 64, 277–305. doi: 10.1016/S0301-0082(00)00062-9

Eder, C., Fischer, H. G., Hadding, U., and Heinemann, U. (1995). Properties
of voltage-gated currents of microglia developed using macrophage
colony-stimulating factor. Pflugers Arch. 430, 526–533. doi: 10.1007/BF003
73889

Eder, C., and Heinemann, U. (1996). Proton modulation of outward K+ currents
in interferon-gamma-activated microglia. Neurosci. Lett. 206, 101–104.
doi: 10.1016/S0304-3940(96)12433-2

Eder, C., Schilling, T., Heinemann, U., Haas, D., Hailer, N., and Nitsch,
R. (1999). Morphological, immunophenotypical and electrophysiological
properties of resting microglia in vitro. Eur. J. Neurosci. 11, 4251–4261.
doi: 10.1046/j.1460-9568.1999.00852.x

Ertel, E. A., Campbell, K. P., Harpold, M. M., Hofmann, F., Mori, Y., Perez-Reyes,
E., et al. (2000). Nomenclature of voltage-gated calcium channels. Neuron 25,
533–535. doi: 10.1016/S0896-6273(00)81057-0

Espinosa-Parrilla, J. F., Martinez-Moreno, M., Gasull, X., Mahy, N., and
Rodriguez, M. J. (2015). The L-type voltage-gated calcium channel modulates
microglial pro-inflammatory activity. Mol. Cell. Neurosci. 64, 104–115.
doi: 10.1016/j.mcn.2014.12.004

Evans, M. J., and Kaufman,M. H. (1981). Establishment in culture of pluripotential
cells from mouse embryos. Nature 292, 154–156. doi: 10.1038/292154a0

Fischer, H. G., Eder, C., Hadding, U., and Heinemann, U.
(1995). Cytokine-dependent K+ channel profile of microglia at
immunologically defined functional states. Neuroscience 64, 183–191.
doi: 10.1016/0306-4522(94)00398-O

Fordyce, C. B., Jagasia, R., Zhu, X., and Schlichter, L. C. (2005). Microglia Kv1.3
channels contribute to their ability to kill neurons. J. Neurosci. 25, 7139–7149.
doi: 10.1523/JNEUROSCI.1251-05.2005

Franchini, L., Levi, G., and Visentin, S. (2004). Inwardly rectifying K+ channels
influence Ca2+ entry due to nucleotide receptor activation in microglia. Cell
Calcium 35, 449–459. doi: 10.1016/j.ceca.2003.11.001

Franciosi, S., Ryu, J. K., Choi, H. B., Radov, L., Kim, S. U., and Mclarnon, J.
G. (2006). Broad-spectrum effects of 4-aminopyridine to modulate amyloid
beta1-42-induced cell signaling and functional responses in human microglia.
J. Neurosci. 26, 11652–11664. doi: 10.1523/JNEUROSCI.2490-06.2006

Galatro, T. F., Holtman, I. R., Lerario, A. M., Vainchtein, I. D., Brouwer, N.,
Sola, P. R., et al. (2017). Transcriptomic analysis of purified human cortical
microglia reveals age-associated changes. Nat. Neurosci. 20:1162. doi: 10.1038/
nn.4597

Ganter, S., Northoff, H., Mannel, D., and Gebicke-Harter, P. J. (1992).
Growth control of cultured microglia. J. Neurosci. Res. 33, 218–230.
doi: 10.1002/jnr.490330205

Garcia-Calvo, M., Leonard, R. J., Novick, J., Stevens, S. P., Schmalhofer, W.,
Kaczorowski, G. J., et al. (1993). Purification, characterization, and biosynthesis
of margatoxin, a component of Centruroides margaritatus venom that
selectively inhibits voltage-dependent potassium channels. J. Biol. Chem. 268,
18866–18874.

Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S.,
et al. (2006). Role of genes and environments for explaining Alzheimer disease.
Arch. Gen. Psychiatr. 63, 168–174. doi: 10.1001/archpsyc.63.2.168

Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., et al. (2010).
Fate mapping analysis reveals that adult microglia derive from primitive
macrophages. Science 330, 841–845. doi: 10.1126/science.1194637

Giulian, D., and Baker, T. J. (1986). Characterization of ameboid microglia
isolated from developing mammalian brain. J. Neurosci. 6, 2163–2178.
doi: 10.1523/JNEUROSCI.06-08-02163.1986

Gosselin, D., Skola, D., Coufal, N. G., Holtman, I. R., Schlachetzki, J. C.M., Sajti,
E., et al. (2017). An environment-dependent transcriptional network specifies
human microglia identity. Science 356:eaal3222. doi: 10.1126/science.aal3222

Grathwohl, S. A., Kalin, R. E., Bolmont, T., Prokop, S., Winkelmann, G., Kaeser,
S. A., et al. (2009). Formation and maintenance of Alzheimer’s disease beta-
amyloid plaques in the absence of microglia. Nat. Neurosci. 12, 1361–1363.
doi: 10.1038/nn.2432

Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., et al.
(2013). TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127.
doi: 10.1056/NEJMoa1211851

Guillot-Sestier, M. V., Doty, K. R., Gate, D., Rodriguez, J. Jr., Leung,
B. P., Rezai-Zadeh, K., et al. (2015). Il10 deficiency rebalances innate
immunity to mitigate Alzheimer-like pathology. Neuron 85, 534–548.
doi: 10.1016/j.neuron.2014.12.068

Haenseler, W., Sansom, S. N., Buchrieser, J., Newey, S. E., Moore, C. S.,
Nicholls, F. J., et al. (2017). A highly efficient human pluripotent stem
cell microglia model displays a neuronal-co-culture-specific expression
profile and inflammatory response. Stem Cell Rep. 8, 1727–1742.
doi: 10.1016/j.stemcr.2017.05.017

Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M.
L., et al. (2009). Genome-wide association study identifies variants at CLU
and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1088–1093.
doi: 10.1038/ng.440

Harry, G. J. (2013). Microglia during development and aging. Pharmacol. Ther.
139, 313–326. doi: 10.1016/j.pharmthera.2013.04.013

Harteneck, C. (2005). Function and pharmacology of TRPM cation
channels. Naunyn Schmiedebergs Arch. Pharmacol. 371, 307–314.
doi: 10.1007/s00210-005-1034-x

Hashioka, S., Klegeris, A., and Mcgeer, P. L. (2012). Inhibition of human astrocyte
and microglia neurotoxicity by calcium channel blockers. Neuropharmacology
63, 685–691. doi: 10.1016/j.neuropharm.2012.05.033

Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F.,
Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet
Neurol. 14, 388–405. doi: 10.1016/S1474-4422(15)70016-5

Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker,
A., et al. (2013). NLRP3 is activated in Alzheimer’s disease and contributes to
pathology in APP/PS1 mice. Nature 493, 674–678. doi: 10.1038/nature11729

Heneka, M. T., Sastre, M., Dumitrescu-Ozimek, L., Dewachter, I., Walter, J.,
Klockgether, T., et al. (2005). Focal glial activation coincides with increased
BACE1 activation and precedes amyloid plaque deposition in APP[V717I]
transgenic mice. J. Neuroinflammation. 2:22. doi: 10.1186/1742-2094-2-22

Heslegrave, A., Heywood, W., Paterson, R., Magdalinou, N., Svensson,
J., Johansson, P., et al. (2016). Increased cerebrospinal fluid soluble
TREM2 concentration in Alzheimer’s disease. Mol. Neurodegener. 11:3.
doi: 10.1186/s13024-016-0071-x

Hickman, S. E., Allison, E. K., and El Khoury, J. (2008). Microglial dysfunction and
defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J.
Neurosci. 28, 8354–8360. doi: 10.1523/JNEUROSCI.0616-08.2008

Hickman, S. E., and El Khoury, J. (2013). The neuroimmune system in Alzheimer’s
disease: the glass is half full. J. Alzheimers Dis. 33(Suppl. 1), S295–302.
doi: 10.3233/JAD-2012-129027

Frontiers in Neuroscience | www.frontiersin.org 18 September 2018 | Volume 12 | Article 676

https://doi.org/10.1126/science.8346443
https://doi.org/10.1002/glia.20112
https://doi.org/10.1111/j.1460-9568.2008.06417.x
https://doi.org/10.1007/s00018-008-8056-8
https://doi.org/10.1016/j.stemcr.2017.04.023
https://doi.org/10.1016/S0306-4522(98)00407-2
https://doi.org/10.1152/ajpcell.1998.275.2.C327
https://doi.org/10.1002/jnr.20476
https://doi.org/10.1016/j.jneuroim.2010.05.008
https://doi.org/10.1016/S0301-0082(00)00062-9
https://doi.org/10.1007/BF00373889
https://doi.org/10.1016/S0304-3940(96)12433-2
https://doi.org/10.1046/j.1460-9568.1999.00852.x
https://doi.org/10.1016/S0896-6273(00)81057-0
https://doi.org/10.1016/j.mcn.2014.12.004
https://doi.org/10.1038/292154a0
https://doi.org/10.1016/0306-4522(94)00398-O
https://doi.org/10.1523/JNEUROSCI.1251-05.2005
https://doi.org/10.1016/j.ceca.2003.11.001
https://doi.org/10.1523/JNEUROSCI.2490-06.2006
https://doi.org/10.1038/nn.4597
https://doi.org/10.1002/jnr.490330205
https://doi.org/10.1001/archpsyc.63.2.168
https://doi.org/10.1126/science.1194637
https://doi.org/10.1523/JNEUROSCI.06-08-02163.1986
https://doi.org/10.1126/science.aal3222
https://doi.org/10.1038/nn.2432
https://doi.org/10.1056/NEJMoa1211851
https://doi.org/10.1016/j.neuron.2014.12.068
https://doi.org/10.1016/j.stemcr.2017.05.017
https://doi.org/10.1038/ng.440
https://doi.org/10.1016/j.pharmthera.2013.04.013
https://doi.org/10.1007/s00210-005-1034-x
https://doi.org/10.1016/j.neuropharm.2012.05.033
https://doi.org/10.1016/S1474-4422(15)70016-5
https://doi.org/10.1038/nature11729
https://doi.org/10.1186/1742-2094-2-22
https://doi.org/10.1186/s13024-016-0071-x
https://doi.org/10.1523/JNEUROSCI.0616-08.2008
https://doi.org/10.3233/JAD-2012-129027
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thei et al. Ion Channels, Alzheimer’s and Microglia

Hickman, S. E., Kingery, N. D., Ohsumi, T. K., Borowsky, M. L., Wang, L. C.,
Means, T. K., et al. (2013). The microglial sensome revealed by direct RNA
sequencing. Nat. Neurosci. 16, 1896–1905. doi: 10.1038/nn.3554

Hines, D. J., Hines, R. M., Mulligan, S. J., and Macvicar, B. A. (2009). Microglia
processes block the spread of damage in the brain and require functional
chloride channels. Glia 57, 1610–1618. doi: 10.1002/glia.20874

Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J. C., Carrasquillo,
M. M., et al. (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1,
CD33 and CD2AP are associated with Alzheimer’s disease. Nat. Genet. 43,
429–435. doi: 10.1038/ng.803

Holtman, I. R., Raj, D. D., Miller, J. A., Schaafsma, W., Yin, Z., Brouwer, N.,
et al. (2015). Induction of a common microglia gene expression signature by
aging and neurodegenerative conditions: a co-expression meta-analysis. Acta
Neuropathol. Commun. 3:31. doi: 10.1186/s40478-015-0203-5

Horvath, R. J., Nutile-Mcmenemy, N., Alkaitis, M. S., and Deleo, J. A. (2008).
Differential migration, LPS-induced cytokine, chemokine, and NO expression
in immortalized BV-2 and HAPI cell lines and primary microglial cultures. J.
Neurochem. 107, 557–569. doi: 10.1111/j.1471-4159.2008.05633.x

Hsieh, C. L., Koike, M., Spusta, S. C., Niemi, E. C., Yenari, M., Nakamura,
M. C., et al. (2009). A role for TREM2 ligands in the phagocytosis
of apoptotic neuronal cells by microglia. J. Neurochem. 109, 1144–1156.
doi: 10.1111/j.1471-4159.2009.06042.x

Huang, S., Turlova, E., Li, F., Bao, M.-H., Szeto, V., Wong, R., et al.
(2017). Transient receptor potential melastatin 2 channels (TRPM2) mediate
neonatal hypoxic-ischemic brain injury in mice. Exp. Neurol. 296, 32–40.
doi: 10.1016/j.expneurol.2017.06.023

Huang, Y. (2010). A beta-independent roles of apolipoprotein E4 in the
pathogenesis of Alzheimer’s disease. Trends Mol. Med. 16, 287–294.
doi: 10.1016/j.molmed.2010.04.004

Hutchins, K. D., Dickson, D. W., Rashbaum, W. K., and Lyman, W. D.
(1990). Localization of morphologically distinct microglial populations in the
developing human fetal brain: implications for ontogeny. Brain Res. Dev. Brain
Res. 55, 95–102. doi: 10.1016/0165-3806(90)90109-C

Ikeda, M., Shoji, M., Kawarai, T., Kawarabayashi, T., Matsubara, E., Murakami,
T., et al. (2005). Accumulation of filamentous tau in the cerebral cortex
of human tau R406W transgenic mice. Am. J. Pathol. 166, 521–531.
doi: 10.1016/S0002-9440(10)62274-2

Janelsins, M. C., Mastrangelo, M. A., Oddo, S., Laferla, F. M., Federoff, H. J.,
and Bowers, W. J. (2005). Early correlation of microglial activation with
enhanced tumor necrosis factor-alpha and monocyte chemoattractant
protein-1 expression specifically within the entorhinal cortex of
triple transgenic Alzheimer’s disease mice. J. Neuroinflammation 2:23.
doi: 10.1186/1742-2094-2-23

Jay, T. R., Hirsch, A. M., Broihier, M. L., Miller, C. M., Neilson, L. E.,
Ransohoff, R. M., et al. (2017). Disease progression-dependent effects of
TREM2 deficiency in a mouse model of Alzheimer’s Disease. J. Neurosci. 37,
637–647. doi: 10.1523/JNEUROSCI.2110-16.2016

Jay, T. R., Miller, C. M., Cheng, P. J., Graham, L. C., Bemiller, S., Broihier,
M. L., et al. (2015). TREM2 deficiency eliminates TREM2+ inflammatory
macrophages and ameliorates pathology in Alzheimer’s disease mouse models.
J. Exp. Med. 212, 287–295. doi: 10.1084/jem.20142322

Jeong, H., Kim, Y. H., Lee, Y., Jung, S. J., and Oh, S. B. (2017). TRPM2 contributes
to LPC-induced intracellular Ca2+ influx and microglial activation. Biochem.
Biophys. Res. Commun. 485, 301–306. doi: 10.1016/j.bbrc.2017.02.087

Jiang, X., Newell, E. W., and Schlichter, L. C. (2003). Regulation of a TRPM7-
like current in rat brain microglia. J. Biol. Chem. 278, 42867–42876.
doi: 10.1074/jbc.M304487200

Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T., et al. (2003).
X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41.
doi: 10.1038/nature01580

Jin, S. C., Benitez, B. A., Karch, C. M., Cooper, B., Skorupa, T., Carrell, D., et al.
(2014). Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum.
Mol. Genet. 23, 5838–5846. doi: 10.1093/hmg/ddu277

Johansson, J. U., Woodling, N. S., Brown, H. D., Wang, Q., and Andreasson, K.
I. (2015). Microarray analysis of the in vivo response of microglia to Abeta
peptides in mice with conditional deletion of the prostaglandin EP2 receptor.
Genom. Data 5, 268–271. doi: 10.1016/j.gdata.2015.06.011

Jonsson, T., Stefansson, H., Steinberg, S., Jonsdottir, I., Jonsson, P. V., Snaedal, J.,
et al. (2013). Variant of TREM2 associated with the risk of Alzheimer’s disease.
N. Engl. J. Med. 368, 107–116. doi: 10.1056/NEJMoa1211103

Jou, I., Pyo, H., Chung, S., Jung, S. Y., Gwag, B. J., and Joe, E. H. (1998). Expression
of Kv1.5 K+ channels in activated microglia in vivo. Glia 24, 408–414.

Kaushal, V., Koeberle, P. D., Wang, Y., and Schlichter, L. C. (2007). The Ca2+-
activated K+ channel KCNN4/KCa3.1 contributes to microglia activation
and nitric oxide-dependent neurodegeneration. J. Neurosci. 27, 234–244.
doi: 10.1523/JNEUROSCI.3593-06.2007

Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld,
R., Ulland, T. K., et al. (2017). A unique microglia type associated with
restricting development of Alzheimer’s disease. Cell 169, 1276–1290 e1217.
doi: 10.1016/j.cell.2017.05.018

Kettenmann, H., Banati, R., andWalz, W. (1993). Electrophysiological behavior of
microglia. Glia 7, 93–101. doi: 10.1002/glia.440070115

Kettenmann, H., Hanisch, U. K., Noda, M., and Verkhratsky, A. (2011). Physiology
of microglia. Physiol. Rev. 91, 461–553. doi: 10.1152/physrev.00011.2010

Kettenmann, H., Hoppe, D., Gottmann, K., Banati, R., and Kreutzberg, G.
(1990). Cultured microglial cells have a distinct pattern of membrane
channels different from peritoneal macrophages. J. Neurosci. Res. 26, 278–287.
doi: 10.1002/jnr.490260303

Khanna, R., Roy, L., Zhu, X., and Schlichter, L. C. (2001). K+ channels and
the microglial respiratory burst. Am. J. Physiol. Cell Physiol. 280, C796–806.
doi: 10.1152/ajpcell.2001.280.4.C796

Kim, H., Yoo, J., Shin, J., Chang, Y., Jung, J., Jo, D.-G., et al. (2017). Modelling
APOE ε3/4 allele-associated sporadic Alzheimer’s disease in an induced neuron.
Brain 140, 2193–2209. doi: 10.1093/brain/awx144

Kim, S. R., Kim, S. U., Oh, U., and Jin, B. K. (2006). Transient receptor potential
vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-
mediated mitochondrial damage and cytochrome c release. J. Immunol. 177,
4322–4329. doi: 10.4049/jimmunol.177.7.4322

Kis-Toth, K., Hajdu, P., Bacskai, I., Szilagyi, O., Papp, F., Szanto, A., et al.
(2011). Voltage-gated sodium channel Nav1.7 maintains the membrane
potential and regulates the activation and chemokine-induced migration
of a monocyte-derived dendritic cell subset. J. Immunol. 187, 1273–1280.
doi: 10.4049/jimmunol.1003345

Kitazawa, M., Oddo, S., Yamasaki, T. R., Green, K. N., and Laferla, F.
M. (2005). Lipopolysaccharide-induced inflammation exacerbates tau
pathology by a cyclin-dependent kinase 5-mediated pathway in a
transgenic model of Alzheimer’s disease. J. Neurosci. 25, 8843–8853.
doi: 10.1523/JNEUROSCI.2868-05.2005

Klee, R., Heinemann, U., and Eder, C. (1998). Changes in proton currents in
murine microglia induced by cytoskeletal disruptive agents.Neurosci. Lett. 247,
191–194. doi: 10.1016/S0304-3940(98)00322-X

Klee, R., Heinemann, U., and Eder, C. (1999). Voltage-gated proton currents
in microglia of distinct morphology and functional state. Neuroscience 91,
1415–1424. doi: 10.1016/S0306-4522(98)00710-6

Kleinberger, G., Yamanishi, Y., Suarez-Calvet, M., Czirr, E., Lohmann, E.,
Cuyvers, E., et al. (2014). TREM2 mutations implicated in neurodegeneration
impair cell surface transport and phagocytosis. Sci. Transl. Med. 6:243ra286.
doi: 10.1126/scitranslmed.3009093

Koenigsknecht-Talboo, J., Meyer-Luehmann, M., Parsadanian, M.,
Garcia-Alloza, M., Finn, M. B., Hyman, B. T., et al. (2008). Rapid
microglial response around amyloid pathology after systemic anti-Abeta
antibody administration in PDAPP mice. J. Neurosci. 28, 14156–14164.
doi: 10.1523/JNEUROSCI.4147-08.2008

Korotzer, A. R., and Cotman, C. W. (1992). Voltage-gated currents expressed by
rat microglia in culture. Glia 6, 81–88. doi: 10.1002/glia.440060202

Korotzer, A. R., Whittemore, E. R., and Cotman, C. W. (1995). Differential
regulation by beta-amyloid peptides of intracellular free Ca2+

concentration in cultured rat microglia. Eur. J. Pharmacol. 288, 125–130.
doi: 10.1016/0922-4106(95)90006-3

Kotecha, S. A., and Schlichter, L. C. (1999). A Kv1.5 to Kv1.3 switch in endogenous
hippocampal microglia and a role in proliferation. J. Neurosci. 19, 10680–10693.
doi: 10.1523/JNEUROSCI.19-24-10680.1999

Krabbe, G., Halle, A., Matyash, V., Rinnenthal, J. L., Eom, G. D., Bernhardt, U.,
et al. (2013). Functional impairment of microglia coincides with beta-amyloid

Frontiers in Neuroscience | www.frontiersin.org 19 September 2018 | Volume 12 | Article 676

https://doi.org/10.1038/nn.3554
https://doi.org/10.1002/glia.20874
https://doi.org/10.1038/ng.803
https://doi.org/10.1186/s40478-015-0203-5
https://doi.org/10.1111/j.1471-4159.2008.05633.x
https://doi.org/10.1111/j.1471-4159.2009.06042.x
https://doi.org/10.1016/j.expneurol.2017.06.023
https://doi.org/10.1016/j.molmed.2010.04.004
https://doi.org/10.1016/0165-3806(90)90109-C
https://doi.org/10.1016/S0002-9440(10)62274-2
https://doi.org/10.1186/1742-2094-2-23
https://doi.org/10.1523/JNEUROSCI.2110-16.2016
https://doi.org/10.1084/jem.20142322
https://doi.org/10.1016/j.bbrc.2017.02.087
https://doi.org/10.1074/jbc.M304487200
https://doi.org/10.1038/nature01580
https://doi.org/10.1093/hmg/ddu277
https://doi.org/10.1016/j.gdata.2015.06.011
https://doi.org/10.1056/NEJMoa1211103
https://doi.org/10.1523/JNEUROSCI.3593-06.2007
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1002/glia.440070115
https://doi.org/10.1152/physrev.00011.2010
https://doi.org/10.1002/jnr.490260303
https://doi.org/10.1152/ajpcell.2001.280.4.C796
https://doi.org/10.1093/brain/awx144
https://doi.org/10.4049/jimmunol.177.7.4322
https://doi.org/10.4049/jimmunol.1003345
https://doi.org/10.1523/JNEUROSCI.2868-05.2005
https://doi.org/10.1016/S0304-3940(98)00322-X
https://doi.org/10.1016/S0306-4522(98)00710-6
https://doi.org/10.1126/scitranslmed.3009093
https://doi.org/10.1523/JNEUROSCI.4147-08.2008
https://doi.org/10.1002/glia.440060202
https://doi.org/10.1016/0922-4106(95)90006-3
https://doi.org/10.1523/JNEUROSCI.19-24-10680.1999
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thei et al. Ion Channels, Alzheimer’s and Microglia

deposition in mice with Alzheimer-like pathology. PLoS ONE 8:e60921.
doi: 10.1371/journal.pone.0060921

Kraft, R. (2015). STIM and ORAI proteins in the nervous system. Channels 9,
244–252. doi: 10.1080/19336950.2015.1071747

Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El Fatimy, R., et al.
(2017). The TREM2-APOE pathway drives the transcriptional phenotype of
dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581
e569. doi: 10.1016/j.immuni.2017.08.008

Kuang, Q., Purhonen, P., and Hebert, H. (2015). Structure of potassium channels.
Cell Mol. Life Sci. 72, 3677–3693. doi: 10.1007/s00018-015-1948-5

Kurland, D. B., Gerzanich, V., Karimy, J. K., Woo, S. K., Vennekens, R.,
Freichel, M., et al. (2016). The Sur1-Trpm4 channel regulates NOS2
transcription in TLR4-activated microglia. J. Neuroinflammation 13:130.
doi: 10.1186/s12974-016-0599-2

Lam, D., Lively, S., and Schlichter, L. C., (2017). Responses of rat and
mouse primary microglia to pro- and anti-inflammatory stimuli: molecular
profiles, K(+) channels and migration. J. Neuroinflammation 14:166.
doi: 10.1186/s12974-017-0941-3

Lambert, J. C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R.,
Bellenguez, C., et al. (2013). Meta-analysis of 74,046 individuals identifies 11
new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458.
doi: 10.1038/ng.2802

Lapasset, L., Milhavet, O., Prieur, A., Besnard, E., Babled, A., Ait-Hamou,
N., et al. (2011). Rejuvenating senescent and centenarian human cells by
reprogramming through the pluripotent state. Genes Dev. 25, 2248–2253.
doi: 10.1101/gad.173922.111

Lawson, L. J., Perry, V. H., Dri, P., and Gordon, S. (1990). Heterogeneity in the
distribution and morphology of microglia in the normal adult-mouse brain.
Neuroscience 39, 151–170. doi: 10.1016/0306-4522(90)90229-W

Lee, C. Y., and Landreth, G. E. (2010). The role of microglia in amyloid
clearance from the AD brain. J. Neural. Transm (Vienna) 117, 949–960.
doi: 10.1007/s00702-010-0433-4

Lewis, R. S., Ross, P. E., and Cahalan, M. D. (1993). Chloride channels
activated by osmotic stress in T lymphocytes. J. Gen. Physiol. 101, 801–826.
doi: 10.1085/jgp.101.6.801

Li, F., Zhu, S., Wu, C., Yan, C., Liu, Y., and Shugan, L. (2011). Neuroinflammation
and cell therapy for Parkinson’s disease. Front. Biosci (Schol Ed) 3, 1407–1420.
doi: 10.2741/232

Li, J. T., and Zhang, Y. (2018). TREM2 regulates innate immunity in Alzheimer’s
disease. J. Neuroinflammation 15:107. doi: 10.1186/s12974-018-1148-y

Li, R., Huang, Y. G., Fang, D., and Le, W. D. (2004). (-)-Epigallocatechin gallate
inhibits lipopolysaccharide-induced microglial activation and protects against
inflammation-mediated dopaminergic neuronal injury. J. Neurosci. Res. 78,
723–731. doi: 10.1002/jnr.20315

Lim, J.-E., Kou, J., Song,M., Pattanayak, A., Jin, J., Lalonde, R., et al. (2011).MyD88
deficiency ameliorates β-Amyloidosis in an animal model of alzheimer’s
disease. Am. J. Pathol. 179, 1095–1103. doi: 10.1016/j.ajpath.2011.05.045

Lim, J. E., Song, M., Jin, J., Kou, J., Pattanayak, A., Lalonde, R., et al.
(2012). The effects of MyD88 deficiency on exploratory activity,
anxiety, motor coordination, and spatial learning in C57BL/6 and
APPswe/PS1dE9 mice. Behav. Brain Res. 227, 36–42. doi: 10.1016/j.bbr.2011.
10.027

Lin, Y. T., Seo, J., Gao, F., Feldman, H. M., Wen, H. L., Penney, J., et al. (2018).
APOE4 causes widespread molecular and cellular alterations associated with
alzheimer’s disease phenotypes in human iPSC-derived brain cell types.Neuron.
98, 1141–1154.e7. doi: 10.1016/j.neuron.2018.05.008

Lioudyno, M. I., Broccio, M., Sokolov, Y., Rasool, S., Wu, J., Alkire, M. T., et al.
(2012). Effect of synthetic abeta peptide oligomers and fluorinated solvents on
Kv1.3 channel properties and membrane conductance. PLoS ONE 7:e35090.
doi: 10.1371/journal.pone.0035090

Liu, N., Zhuang, Y., Zhou, Z., Zhao, J., Chen, Q., and Zheng, J. (2017). NF-kappaB
dependent up-regulation of TRPC6 by Abeta in BV-2 microglia cells increases
COX-2 expression and contributes to hippocampus neuron damage. Neurosci.
Lett. 651, 1–8. doi: 10.1016/j.neulet.2017.04.056

Long, S. B., Campbell, E. B., and Mackinnon, R. (2005). Crystal structure of
a mammalian voltage-dependent Shaker family K+ channel. Science 309,
897–903. doi: 10.1126/science.1116269

Long, S. B., Tao, X., Campbell, E. B., andMackinnon, R. (2007). Atomic structure of
a voltage-dependent K+ channel in a lipidmembrane-like environment.Nature
450, 376–382. doi: 10.1038/nature06265

Madry, C., Kyrargyri, V., Arancibia-Carcamo, I. L., Jolivet, R., Kohsaka, S., Bryan,
R. M., et al. (2018). Microglial ramification, surveillance, and interleukin-1β
release are regulated by the two-pore domain K+ channel THIK-1. Neuron 97,
299.e6–312.e6 e296. doi: 10.1016/j.neuron.2017.12.002

Maezawa, I., Jenkins, D. P., Jin, B. E., and Wulff, H. (2012). Microglial KCa3.1
channels as a potential therapeutic target for Alzheimer’s disease. Int. J.
Alzheimers Dis. 2012:868972. doi: 10.1155/2012/868972

Maezawa, I., Nguyen, H. M., Di Lucente, J., Jenkins, D. P., Singh, V., Hilt,
S., et al. (2017). Kv1.3 inhibition as a potential microglia-targeted therapy
for Alzheimer’s disease: preclinical proof of concept. Brain. 141, 596-612.
doi: 10.1093/brain/awx346

Maezawa, I., Zimin, P. I., Wulff, H., and Jin, L. W. (2011). Amyloid-
beta protein oligomer at low nanomolar concentrations activates microglia
and induces microglial neurotoxicity. J. Biol. Chem. 286, 3693–3706.
doi: 10.1074/jbc.M110.135244

McGowan, E., Eriksen, J., and Hutton, M. (2006). A decade of modeling
Alzheimer’s disease in transgenic mice. Trends Genet. 22, 281–289.
doi: 10.1016/j.tig.2006.03.007

McLarnon, J. G., Franciosi, S., Wang, X., Bae, J. H., Choi, H. B., and Kim,
S. U. (2001). Acute actions of tumor necrosis factor-alpha on intracellular
Ca(2+) and K(+) currents in human microglia. Neuroscience 104, 1175–1184.
doi: 10.1016/S0306-4522(01)00119-1

McLarnon, J. G., Sawyer, D., and Kim, S. U. (1995). Cation and anion unitary
ion channel currents in cultured bovine microglia. Brain Res. 693, 8–20.
doi: 10.1016/0006-8993(95)00664-C

McLarnon, J. G., Xu, R., Lee, Y. B., and Kim, S. U. (1997). Ion
channels of human microglia in culture. Neuroscience 78, 1217–1228.
doi: 10.1016/S0306-4522(96)00680-X

McLarnon, J. G., Zhang, L., Goghari, V., Lee, Y. B., Walz, W., Krieger,
C., et al. (1999). Effects of ATP and elevated K+ on K+ currents
and intracellular Ca2+ in human microglia. Neuroscience 91, 343–352.
doi: 10.1016/S0306-4522(98)00491-6

Menteyne, A., Levavasseur, F., Audinat, E., and Avignone, E. (2009). Predominant
functional expression of Kv1.3 by activated microglia of the hippocampus after
Status epilepticus. PLoS ONE 4:e6770. doi: 10.1371/journal.pone.0006770

Meotti, F. C., Figueiredo, C. P., Manjavachi, M., and Calixto, J. B. (2017).
The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia
induced by the activation of B1 receptor in mice. Biochem. Pharmacol. 125,
75–83. doi: 10.1016/j.bcp.2016.11.003

Meyer-Luehmann, M., Spires-Jones, T. L., Prada, C., Garcia-Alloza, M., De
Calignon, A., Rozkalne, A., et al. (2008). Rapid appearance and local toxicity
of amyloid-[bgr] plaques in a mouse model of Alzheimer/’s disease.Nature 451,
720–724. doi: 10.1038/nature06616

Milton, R. H., Abeti, R., Averaimo, S., Debiasi, S., Vitellaro, L., Jiang, L., et al.
(2008). CLIC1 function is required for beta-amyloid-induced generation
of reactive oxygen species by microglia. J. Neurosci. 28, 11488–11499.
doi: 10.1523/JNEUROSCI.2431-08.2008

Miyake, T., Shirakawa, H., Kusano, A., Sakimoto, S., Konno, M., Nakagawa, T.,
et al. (2014). TRPM2 contributes to LPS/IFNγ-induced production of nitric
oxide via the p38/JNK pathway in microglia. Biochem. Biophys. Res. Commun.
444, 212–217. doi: 10.1016/j.bbrc.2014.01.022

Miyake, T., Shirakawa, H., Nakagawa, T., and Kaneko, S. (2015). Activation of
mitochondrial transient receptor potential vanilloid 1 channel contributes to
microglial migration. Glia 63, 1870–1882. doi: 10.1002/glia.22854

Mizoguchi, Y., Kato, T. A., Seki, Y., Ohgidani, M., Sagata, N., Horikawa, H.,
et al. (2014). Brain-derived neurotrophic factor (BDNF) induces sustained
intracellular Ca(2+) elevation through the up-regulation of surface transient
receptor potential 3 (TRPC3) channels in rodent microglia. J. Biol. Chem. 289,
18549–18555. doi: 10.1074/jbc.M114.555334

Mosser, C. A., Baptista, S., Arnoux, I., and Audinat, E. (2017). Microglia in CNS
development: Shaping the brain for the future. Prog. Neurobiol. 149–150, 1–20.
doi: 10.1016/j.pneurobio.2017.01.002

Muffat, J., and Li, Y. (2016). Efficient derivation of microglia-like cells from human
pluripotent stem cells. Nat. Med. 22, 1358–1367. doi: 10.1038/nm.4189

Frontiers in Neuroscience | www.frontiersin.org 20 September 2018 | Volume 12 | Article 676

https://doi.org/10.1371/journal.pone.0060921
https://doi.org/10.1080/19336950.2015.1071747
https://doi.org/10.1016/j.immuni.2017.08.008
https://doi.org/10.1007/s00018-015-1948-5
https://doi.org/10.1186/s12974-016-0599-2
https://doi.org/10.1186/s12974-017-0941-3
https://doi.org/10.1038/ng.2802
https://doi.org/10.1101/gad.173922.111
https://doi.org/10.1016/0306-4522(90)90229-W
https://doi.org/10.1007/s00702-010-0433-4
https://doi.org/10.1085/jgp.101.6.801
https://doi.org/10.2741/232
https://doi.org/10.1186/s12974-018-1148-y
https://doi.org/10.1002/jnr.20315
https://doi.org/10.1016/j.ajpath.2011.05.045
https://doi.org/10.1016/j.bbr.2011.10.027
https://doi.org/10.1016/j.neuron.2018.05.008
https://doi.org/10.1371/journal.pone.0035090
https://doi.org/10.1016/j.neulet.2017.04.056
https://doi.org/10.1126/science.1116269
https://doi.org/10.1038/nature06265
https://doi.org/10.1016/j.neuron.2017.12.002
https://doi.org/10.1155/2012/868972
https://doi.org/10.1093/brain/awx346
https://doi.org/10.1074/jbc.M110.135244
https://doi.org/10.1016/j.tig.2006.03.007
https://doi.org/10.1016/S0306-4522(01)00119-1
https://doi.org/10.1016/0006-8993(95)00664-C
https://doi.org/10.1016/S0306-4522(96)00680-X
https://doi.org/10.1016/S0306-4522(98)00491-6
https://doi.org/10.1371/journal.pone.0006770
https://doi.org/10.1016/j.bcp.2016.11.003
https://doi.org/10.1038/nature06616
https://doi.org/10.1523/JNEUROSCI.2431-08.2008
https://doi.org/10.1016/j.bbrc.2014.01.022
https://doi.org/10.1002/glia.22854
https://doi.org/10.1074/jbc.M114.555334
https://doi.org/10.1016/j.pneurobio.2017.01.002
https://doi.org/10.1038/nm.4189
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thei et al. Ion Channels, Alzheimer’s and Microglia

Muffat, J., Li, Y., Yuan, B., Mitalipova, M., Omer, A., Corcoran, S., et al. (2016).
Efficient derivation of microglia-like cells from human pluripotent stem cells.
Nat. Med. 22, 1358–1367. doi: 10.1038/nm.41890

Naj, A. C., Jun, G., Beecham, G. W., Wang, L. S., Vardarajan, B. N., Buros, J.,
et al. (2011). Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1
are associated with late-onset Alzheimer’s disease. Nat. Genet. 43, 436–441.
doi: 10.1038/ng.801

Nathan, B. P., Bellosta, S., Sanan, D. A.,Weisgraber, K. H.,Mahley, R.W., and Pitas,
R. E., (1994). Differential effects of apolipoproteins E3 and E4 on neuronal
growth in vitro. Science 264, 850–852. doi: 10.1126/science.8171342

Nayak, D., Roth, T. L., and Mcgavern, D. B. (2014). Microglia
development and function. Annu. Rev. Immunol. 32, 367–402.
doi: 10.1146/annurev-immunol-032713-120240

Nguyen, H. M., Blomster, L. V., Christophersen, P., and Wulff, H.
(2017a). Potassium channel expression and function in microglia:
plasticity and possible species variations. Channels (Austin) 11, 305–315.
doi: 10.1080/19336950.2017.1300738

Nguyen, H. M., Grossinger, E. M., Horiuchi, M., Davis, K. W., Jin, L. W.,
Maezawa, I., et al. (2017b). Differential Kv1.3, KCa3.1, and Kir2.1 expression
in “classically” and “alternatively” activated microglia. Glia 65, 106–121.
doi: 10.1002/glia.23078

Nicholson, E., and Randall, A. D. (2009). Na(v)1.5 sodium channels
in a human microglial cell line. J. Neuroimmunol. 215, 25–30.
doi: 10.1016/j.jneuroim.2009.07.009

Nicoletti, N. F., Erig, T. C., Zanin, R. F., Roxo, M. R., Ferreira, N. P., Gomez,
M. V., et al. (2017). Pre-clinical evaluation of voltage-gated calcium channel
blockers derived from the spider P. nigriventer in glioma progression. Toxicon
129, 58–67. doi: 10.1016/j.toxicon.2017.02.001

Nilius, B., Prenen, J., Tang, J., Wang, C., Owsianik, G., Janssens, A., et al. (2005).
Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4.
J. Biol. Chem. 280, 6423–6433. doi: 10.1074/jbc.M411089200

Nörenberg, W., Gebicke-Haerter, P. J., and Illes, P. (1994a). Voltage-dependent
potassium channels in activated rat microglia. J. Physiol. 475, 15–32.

Nörenberg, W., Illes, P., and Gebicke-Haerter, P. J. (1994b). Sodium channel in
isolated human brain macrophages (microglia). Glia 10, 165–172.

Novarino, G., Fabrizi, C., Tonini, R., Denti, M. A., Malchiodi-Albedi, F., Lauro,
G. M., et al. (2004). Involvement of the intracellular ion channel CLIC1
in microglia-mediated beta-amyloid-induced neurotoxicity. J. Neurosci. 24,
5322–5330. doi: 10.1523/JNEUROSCI.1170-04.2004

Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., et al. (2006).
Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron
loss in transgenic mice with five familial Alzheimer’s disease mutations:
potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140.
doi: 10.1523/JNEUROSCI.1202-06.2006

Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed,
R., et al. (2003). Triple-transgenic model of Alzheimer’s disease with plaques
and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39, 409–421.
doi: 10.1016/S0896-6273(03)00434-3

Olah, M., Patrick, E., Villani, A.-C., Xu, J., White, C. C., Ryan, K. J., et al.
(2018). A transcriptomic atlas of aged human microglia. Nat. Commun. 9:539.
doi: 10.1038/s41467-018-02926-5

Pandya, H., Shen, M. J., Ichikawa, D. M., Sedlock, A. B., Choi, Y., Johnson, K. R.,
et al. (2017). Differentiation of human and murine induced pluripotent stem
cells to microglia-like cells. Nat. Neurosci. 20, 753–759. doi: 10.1038/nn.4534

Pannasch, U., Farber, K., Nolte, C., Blonski, M., Yan Chiu, S., Messing, A., et al.
(2006). The potassium channels Kv1.5 and Kv1.3 modulate distinct functions
of microglia. Mol. Cell Neurosci. 33, 401–411. doi: 10.1016/j.mcn.2006.
08.009

Papavlassopoulos, M., Stamme, C., Thon, L., Adam, D., Hillemann, D., Seydel,
U., et al. (2006). MaxiK blockade selectively inhibits the lipopolysaccharide-
induced I kappa B-alpha /NF-kappa B signaling pathway in macrophages. J.
Immunol. 177, 4086–4093. doi: 10.4049/jimmunol.177.6.4086

Pappalardo, L. W., Black, J. A., and Waxman, S. G. (2016). Sodium channels in
astroglia and microglia. Glia 64, 1628–1645. doi: 10.1002/glia.22967

Paradisi, S., Matteucci, A., Fabrizi, C., Denti, M. A., Abeti, R., Breit, S. N.,
et al. (2008). Blockade of chloride intracellular ion channel 1 stimulates Abeta
phagocytosis. J. Neurosci. Res. 86, 2488–2498. doi: 10.1002/jnr.21693

Payandeh, J., Scheuer, T., Zheng, N., and Catterall, W. A. (2011). The
crystal structure of a voltage-gated sodium channel. Nature 475, 353–358.
doi: 10.1038/nature10238

Peers, C., Pearson, H. A., and Boyle, J. P. (2007). Hypoxia and Alzheimer’s disease.
Essays Biochem. 43, 153–164. doi: 10.1042/bse0430153

Persson, A. K., Estacion, M., Ahn, H., Liu, S., Stamboulian-Platel, S., Waxman, S.
G., et al. (2014). Contribution of sodium channels to lamellipodial protrusion
and Rac1 and ERK1/2 activation in ATP-stimulated microglia. Glia 62,
2080–2095. doi: 10.1002/glia.22728

Plescher, M., Seifert, G., Hansen, J. N., Bedner, P., Steinhauser, C., and
Halle, A. (2018). Plaque-dependent morphological and electrophysiological
heterogeneity of microglia in an Alzheimer’s disease mouse model. Glia 66,
1464–1480. doi: 10.1002/glia.23318

Poirier, J. (2005). Apolipoprotein E, cholesterol transport and synthesis
in sporadic Alzheimer’s disease. Neurobiol. Aging 26, 355–361.
doi: 10.1016/j.neurobiolaging.2004.09.003

Ponomarev, E. D., Maresz, K., Tan, Y., and Dittel, B. N. (2007). CNS-derived
interleukin-4 is essential for the regulation of autoimmune inflammation and
induces a state of alternative activation in microglial cells. J. Neurosci. 27,
10714–10721. doi: 10.1523/JNEUROSCI.1922-07.2007

Raboune, S., Stuart, J. M., Leishman, E., Takacs, S. M., Rhodes, B., Basnet, A., et al.
(2014). Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2
microglia, and are regulated in brain in an acute model of inflammation. Front.
Cell Neurosci. 8:195. doi: 10.3389/fncel.2014.00195

Rangaraju, S., Dammer, E. B., Raza, S. A., Rathakrishnan, P., Xiao, H., Gao, T., et al.
(2018). Identification and therapeuticmodulation of a pro-inflammatory subset
of disease-associated-microglia in Alzheimer’s disease. Mol. Neurodegener.
13;24. doi: 10.1186/s13024-018-0254-8

Rangaraju, S., Gearing, M., Jin, L. W., and Levey, A. (2015). Potassium channel
Kv1.3 is highly expressed by microglia in human Alzheimer’s disease. J.
Alzheimers Dis. 44, 797–808. doi: 10.3233/JAD-141704

Ribé, E. M., Perez, M., Puig, B., Gich, I., Lim, F., Cuadrado, M., et al. (2005).
Accelerated amyloid deposition, neurofibrillary degeneration and neuronal
loss in double mutant APP/tau transgenic mice. Neurobiol. Dis. 20, 814–822.
doi: 10.1016/j.nbd.2005.05.027

Righi, M., Mori, L., De Libero, G., Sironi, M., Biondi, A., Mantovani, A., et al.
(1989). Monokine production by microglial cell clones. Eur. J. Immunol. 19,
1443–1448. doi: 10.1002/eji.1830190815

Rowan, M. J., Klyubin, I., Wang, Q., Hu, N. W., and Anwyl, R. (2007). Synaptic
memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced
dysfunction. Biochem. Soc. Trans. 35, 1219–1223. doi: 10.1042/BST0351219

Saegusa, H., and Tanabe, T. (2014). N-type voltage-dependent Ca2+ channel
in non-excitable microglial cells in mice is involved in the pathophysiology
of neuropathic pain. Biochem. Biophys. Res. Commun. 450, 142–147.
doi: 10.1016/j.bbrc.2014.05.103

Saijo, K., and Glass, C. K. (2011). Microglial cell origin and phenotypes
in health and disease. Nat. Rev. Immunol. 11, 775–787. doi: 10.1038/
nri3086

Saliba, J., Daou, A., Damiati, S., Saliba, J., El-Sabban, M., and Mhanna, R.,
(2018). Development of microplatforms to mimic the in vivo architecture
of CNS and PNS physiology and their diseases. Genes (Basel) 9:E285.
doi: 10.3390/genes9060285

Sappington, R. M., and Calkins, D. J. (2008). Contribution of TRPV1 to microglia-
derived IL-6 and NFkappaB translocation with elevated hydrostatic pressure.
Invest. Ophthalmol. Vis. Sci. 49, 3004–3017. doi: 10.1167/iovs.07-1355

Sawada, M., Suzumura, A., Hosoya, H., Marunouchi, T., and Nagatsu,
T. (1999). Interleukin-10 inhibits both production of cytokines and
expression of cytokine receptors in microglia. J. Neurochem. 72, 1466–1471.
doi: 10.1046/j.1471-4159.1999.721466.x

Schilling, T., and Eder, C. (2007). Ion channel expression in resting and activated
microglia of hippocampal slices from juvenile mice. Brain Res. 1186, 21–28.
doi: 10.1016/j.brainres.2007.10.027

Schilling, T., and Eder, C. (2011). Amyloid-beta-induced reactive oxygen species
production and priming are differentially regulated by ion channels in
microglia. J. Cell Physiol. 226, 3295–3302. doi: 10.1002/jcp.22675

Schilling, T., and Eder, C. (2015). Microglial K+ channel expression in young adult
and aged mice. Glia 63, 664–672. doi: 10.1002/glia.22776

Frontiers in Neuroscience | www.frontiersin.org 21 September 2018 | Volume 12 | Article 676

https://doi.org/10.1038/nm.41890
https://doi.org/10.1038/ng.801
https://doi.org/10.1126/science.8171342
https://doi.org/10.1146/annurev-immunol-032713-120240
https://doi.org/10.1080/19336950.2017.1300738
https://doi.org/10.1002/glia.23078
https://doi.org/10.1016/j.jneuroim.2009.07.009
https://doi.org/10.1016/j.toxicon.2017.02.001
https://doi.org/10.1074/jbc.M411089200
https://doi.org/10.1523/JNEUROSCI.1170-04.2004
https://doi.org/10.1523/JNEUROSCI.1202-06.2006
https://doi.org/10.1016/S0896-6273(03)00434-3
https://doi.org/10.1038/s41467-018-02926-5
https://doi.org/10.1038/nn.4534
https://doi.org/10.1016/j.mcn.2006.08.009
https://doi.org/10.4049/jimmunol.177.6.4086
https://doi.org/10.1002/glia.22967
https://doi.org/10.1002/jnr.21693
https://doi.org/10.1038/nature10238
https://doi.org/10.1042/bse0430153
https://doi.org/10.1002/glia.22728
https://doi.org/10.1002/glia.23318
https://doi.org/10.1016/j.neurobiolaging.2004.09.003
https://doi.org/10.1523/JNEUROSCI.1922-07.2007
https://doi.org/10.3389/fncel.2014.00195
https://doi.org/10.1186/s13024-018-0254-8
https://doi.org/10.3233/JAD-141704
https://doi.org/10.1016/j.nbd.2005.05.027
https://doi.org/10.1002/eji.1830190815
https://doi.org/10.1042/BST0351219
https://doi.org/10.1016/j.bbrc.2014.05.103
https://doi.org/10.1038/nri3086
https://doi.org/10.3390/genes9060285
https://doi.org/10.1167/iovs.07-1355
https://doi.org/10.1046/j.1471-4159.1999.721466.x
https://doi.org/10.1016/j.brainres.2007.10.027
https://doi.org/10.1002/jcp.22675
https://doi.org/10.1002/glia.22776
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thei et al. Ion Channels, Alzheimer’s and Microglia

Schilling, T., Quandt, F. N., Cherny, V. V., Zhou, W., Heinemann, U., Decoursey,
T. E., et al. (2000). Upregulation of Kv1.3 K+ channels in microglia
deactivated by TGF-beta. Am. J. Physiol. Cell Physiol. 279, C1123–1134.
doi: 10.1152/ajpcell.2000.279.4.C1123

Schlichter, L. C., Sakellaropoulos, G., Ballyk, B., Pennefather, P. S., and Phipps,
D. J., (1996). Properties of K+ and Cl− channels and their involvement in
proliferation of rat microglial cells. Glia 17, 225–236.

Schmidtmayer, J., Jacobsen, C., Miksch, G., and Sievers, J. (1994). Bloodmonocytes
and spleenmacrophages differentiate into microglia-like cells onmonolayers of
astrocytes: membrane currents. Glia 12, 259–267. doi: 10.1002/glia.440120403

Schmitz, A., Sankaranarayanan, A., Azam, P., Schmidt-Lassen, K., Homerick, D.,
Hansel, W., et al. (2005). Design of PAP-1, a selective small molecule Kv1.3
blocker, for the suppression of effector memory T cells in autoimmune diseases.
Mol. Pharmacol. 68, 1254–1270. doi: 10.1124/mol.105.015669

Seok, J., Warren, H. S., Cuenca, A. G., Mindrinos, M. N., Baker, H. V.,
Xu, W., et al. (2013). Genomic responses in mouse models poorly mimic
human inflammatory diseases. Proc. Natl. Acad. Sci. U. S.A. 110, 3507–3512.
doi: 10.1073/pnas.1222878110

Sheffield, L. G., Marquis, J. G., and Berman, N. E. (2000). Regional distribution of
cortical microglia parallels that of neurofibrillary tangles in Alzheimer’s disease.
Neurosci. Lett. 285, 165–168. doi: 10.1016/S0304-3940(00)01037-5

Sheng, J. G., Mrak, R. E., and Griffin, W. S. (1997). Glial-neuronal interactions
in Alzheimer disease: progressive association of IL-1alpha+ microglia and
S100β+ astrocytes with neurofibrillary tangle stages. J. Neuropathol. Exp.
Neurol. 56, 285–290. doi: 10.1097/00005072-199703000-00007

Shibata, M., and Suzuki, N. (2017). Exploring the role of microglia in cortical
spreading depression in neurological disease. J. Cereb. Blood Flow Metab. 37,
1182–1191. doi: 10.1177/0271678X17690537

Siddiqui, T., Lively, S., Ferreira, R., Wong, R., and Schlichter, L. C. (2014).
Expression and contributions of TRPM7 and KCa2.3/SK3 channels to the
increased migration and invasion of microglia in anti-inflammatory activation
states. PLoS ONE 9:e106087. doi: 10.1371/journal.pone.0106087

Silei, V., Fabrizi, C., Venturini, G., Salmona, M., Bugiani, O., Tagliavini, F., et al.
(1999). Activation of microglial cells by PrP and beta-amyloid fragments raises
intracellular calcium through L-type voltage sensitive calcium channels. Brain
Res. 818, 168–170. doi: 10.1016/S0006-8993(98)01272-4

Skaper, S.D., Facci, L., and Giusti, P. (2013). Intracellular ion channel CLIC1:
involvement in microglia-mediated β-amyloid peptide (1-42) neurotoxicity.
Neurochem. Res. 38, 1801-1808. doi: 10.1007/s11064-013-1084-2

Song, W., Hooli, B., Mullin, K., Jin, S. C., Cella, M., Ulland, T. K., et al.
(2017). Alzheimer’s disease-associated TREM2 variants exhibit either decreased
or increased ligand-dependent activation. Alzheimers Dement. 13, 381–387.
doi: 10.1016/j.jalz.2016.07.004

Spranger, M., Kiprianova, I., Krempien, S., and Schwab, S. (1998).
Reoxygenation increases the release of reactive oxygen intermediates
in murine microglia. J. Cereb. Blood Flow Metab. 18, 670–674.
doi: 10.1097/00004647-199806000-00009

Steinert, M., and Grissmer, S. (1997). Novel activation stimulus of chloride
channels by potassium in human osteoblasts and human leukaemic T
lymphocytes. J. Physiol. 500(Pt. 3), 653–660.

Stewart, C. R., Stuart, L. M., Wilkinson, K., Van Gils, J. M., Deng, J., Halle, A.,
et al. (2010). CD36 ligands promote sterile inflammation through assembly
of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155–161.
doi: 10.1038/ni.1836

Stock, C., Schilling, T., Schwab, A., and Eder, C. (2006). Lysophosphatidylcholine
stimulates IL-1beta release from microglia via a P2X7 receptor-independent
mechanism. J. Immunol. 177, 8560–8568. doi: 10.4049/jimmunol.177.
12.8560

Sun, C.-K., Zhen, Y.-Y., Lu, H.-I., Sung, P.-H., Chang, L.-T., Tsai, T.-H.,
et al. (2014). Reducing TRPC1 expression through liposome-mediated
siRNA delivery markedly attenuates hypoxia-induced pulmonary
arterial hypertension in a murine model. Stem Cells Int. 2014:316214.
doi: 10.1155/2014/316214

Szalay, G., Martinecz, B., Lenart, N., Kornyei, Z., Orsolits, B., Judak, L., et al.
(2016). Microglia protect against brain injury and their selective elimination
dysregulates neuronal network activity after stroke. Nat. Commun. 7:11499.
doi: 10.1038/ncomms11499

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from
mouse embryonic and adult fibroblast cultures by defined factors. Cell 126,
663–676. doi: 10.1016/j.cell.2006.07.024

Takao, K., and Miyakawa, T. (2015). Genomic responses in mouse models greatly
mimic human inflammatory diseases. Proc. Natl. Acad. Sci. U. S.A. 112,
1167–1172. doi: 10.1073/pnas.1401965111

Takata, K., Kozaki, T., Lee, C. Z.W., Thion, M. S., Otsuka, M., Lim, S.,
et al. (2017). Induced-pluripotent-stem-cell-derived primitive macrophages
provide a platform formodeling tissue-residentmacrophage differentiation and
function. Immunity 47, 183–198 e186. doi: 10.1016/j.immuni.2017.06.017.

Talbot, S., Dias, J. P., Lahjouji, K., Bogo, M. R., Campos, M. M., Gaudreau,
P., et al. (2012). Activation of TRPV1 by capsaicin induces functional
kinin B(1) receptor in rat spinal cord microglia. J. Neuroinflammation 9:16.
doi: 10.1186/1742-2094-9-16

Tarcha, E. J., Chi, V., Munoz-Elias, E. J., Bailey, D., Londono, L. M.,
Upadhyay, S. K., et al. (2012). Durable pharmacological responses from the
peptide ShK-186, a specific Kv1.3 channel inhibitor that suppresses T cell
mediators of autoimmune disease. J. Pharmacol. Exp. Ther. 342, 642–653.
doi: 10.1124/jpet.112.191890

Tian, D. S., Li, C. Y., Qin, C., Murugan, M., Wu, L. J., and Liu, J. L. (2016).
Deficiency in the voltage-gated proton channel Hv1 increases M2 polarization
of microglia and attenuates brain damage from photothrombotic ischemic
stroke. J. Neurochem. 139, 96–105. doi: 10.1111/jnc.13751

Toescu, E. C., Moller, T., Kettenmann, H., and Verkhratsky, A. (1998). Long-term
activation of capacitative Ca2+ entry in mouse microglial cells.Neuroscience 86,
925–935. doi: 10.1016/S0306-4522(98)00123-7

Tsai, K. L., Chang, H. F., andWu, S. N. (2013). The inhibition of inwardly rectifying
K+ channels by memantine in macrophages and microglial cells. Cell Physiol.
Biochem. 31, 938–951. doi: 10.1159/000350112

Uchida, K., Dezaki, K., Damdindorj, B., Inada, H., Shiuchi, T., Mori, Y., et al.
(2011). Lack of TRPM2 impaired insulin secretion and glucose metabolisms
in mice. Diabetes 60, 119–126. doi: 10.2337/db10-0276

Ulland, T. K., Song, W. M., Huang, S. C., Ulrich, J. D., Sergushichev, A., Beatty, W.
L., et al. (2017). TREM2 maintains microglial metabolic fitness in Alzheimer’s
disease. Cell 170, 649–663 e613. doi: 10.1016/j.cell.2017.07.023.

Ulrich, J. D., Finn, M. B., Wang, Y., Shen, A., Mahan, T. E., Jiang, H., et al. (2014).
Altered microglial response to Abeta plaques in APPPS1-21 mice heterozygous
for TREM2.Mol. Neurodegener. 9:20. doi: 10.1186/1750-1326-9-20

Ulrich, J. D., Ulland, T. K., Colonna, M., and Holtzman, D. M. (2017).
Elucidating the role of TREM2 in Alzheimer’s disease. Neuron 94, 237–248.
doi: 10.1016/j.neuron.2017.02.042

Valerie, N. C., Dziegielewska, B., Hosing, A. S., Augustin, E., Gray, L. S., Brautigan,
D. L., et al. (2013). Inhibition of T-type calcium channels disrupts Akt
signaling and promotes apoptosis in glioblastoma cells. Biochem. Pharmacol.
85, 888–897. doi: 10.1016/j.bcp.2012.12.017

Visentin, S., Agresti, C., Patrizio, M., and Levi, G. (1995). Ion channels in rat
microglia and their different sensitivity to lipopolysaccharide and interferon-
gamma. J. Neurosci. Res. 42, 439–451. doi: 10.1002/jnr.490420402

Walz, W., Ilschner, S., Ohlemeyer, C., Banati, R., and Kettenmann, H. (1993).
Extracellular ATP activates a cation conductance and a K+ conductance
in cultured microglial cells from mouse brain. J. Neurosci. 13, 4403–4411.
doi: 10.1523/JNEUROSCI.13-10-04403.1993

Wang, Y., Cella,M.,Mallinson, K., Ulrich, J. D., Young, K. L., Robinette,M. L., et al.
(2015). TREM2 lipid sensing sustains the microglial response in an Alzheimer’s
disease model. Cell 160, 1061–1071. doi: 10.1016/j.cell.2015.01.049

Wen, Z., Christian, K. M., Song, H., and Ming, G. L. (2016). Modeling psychiatric
disorders with patient-derived iPSCs. Curr. Opin. Neurobiol. 36, 118–127.
doi: 10.1016/j.conb.2015.11.003

Wendt, S., Maricos, M., Vana, N., Meyer, N., Guneykaya, D., Semtner, M.,
et al. (2017). Changes in phagocytosis and potassium channel activity
in microglia of 5xFAD mice indicate alterations in purinergic signaling
in a mouse model of Alzheimer’s disease. Neurobiol. Aging 58, 41–53.
doi: 10.1016/j.neurobiolaging.2017.05.027

Wes, P. D., Easton, A., Corradi, J., Barten, D. M., Devidze, N., Decarr, L.
B., et al. (2014). Tau overexpression impacts a neuroinflammation gene
expression network perturbed in Alzheimer’s disease. PLoS ONE 9:e106050.
doi: 10.1371/journal.pone.0106050

Frontiers in Neuroscience | www.frontiersin.org 22 September 2018 | Volume 12 | Article 676

https://doi.org/10.1152/ajpcell.2000.279.4.C1123
https://doi.org/10.1002/glia.440120403
https://doi.org/10.1124/mol.105.015669
https://doi.org/10.1073/pnas.1222878110
https://doi.org/10.1016/S0304-3940(00)01037-5
https://doi.org/10.1097/00005072-199703000-00007
https://doi.org/10.1177/0271678X17690537
https://doi.org/10.1371/journal.pone.0106087
https://doi.org/10.1016/S0006-8993(98)01272-4
https://doi.org/10.1007/s11064-013-1084-2
https://doi.org/10.1016/j.jalz.2016.07.004
https://doi.org/10.1097/00004647-199806000-00009
https://doi.org/10.1038/ni.1836
https://doi.org/10.4049/jimmunol.177.12.8560
https://doi.org/10.1155/2014/316214
https://doi.org/10.1038/ncomms11499
https://doi.org/10.1016/j.cell.2006.07.024
https://doi.org/10.1073/pnas.1401965111
https://doi.org/10.1016/j.immuni.2017.06.017.
https://doi.org/10.1186/1742-2094-9-16
https://doi.org/10.1124/jpet.112.191890
https://doi.org/10.1111/jnc.13751
https://doi.org/10.1016/S0306-4522(98)00123-7
https://doi.org/10.1159/000350112
https://doi.org/10.2337/db10-0276
https://doi.org/10.1016/j.cell.2017.07.023.
https://doi.org/10.1186/1750-1326-9-20
https://doi.org/10.1016/j.neuron.2017.02.042
https://doi.org/10.1016/j.bcp.2012.12.017
https://doi.org/10.1002/jnr.490420402
https://doi.org/10.1523/JNEUROSCI.13-10-04403.1993
https://doi.org/10.1016/j.cell.2015.01.049
https://doi.org/10.1016/j.conb.2015.11.003
https://doi.org/10.1016/j.neurobiolaging.2017.05.027
https://doi.org/10.1371/journal.pone.0106050
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thei et al. Ion Channels, Alzheimer’s and Microglia

Wolfe, M. S. (2012). The role of tau in neurodegenerative diseases and its potential
as a therapeutic target. Scientifica 2012:796024. doi: 10.6064/2012/796024

Wright, A. L., Zinn, R., Hohensinn, B., Konen, L. M., Beynon, S. B., Tan, R. P., et al.
(2013). Neuroinflammation and neuronal loss precede Abeta plaque deposition
in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS ONE 8:e59586.
doi: 10.1371/journal.pone.0059586

Wu, L. J.,Wu, G., Akhavan Sharif, M. R., Baker, A., Jia, Y., Fahey, F. H., et al. (2012).
The voltage-gated proton channel Hv1 enhances brain damage from ischemic
stroke. Nat. Neurosci. 15, 565–573. doi: 10.1038/nn.3059

Wu, W. K., Li, G. R., Wong, H. P., Hui, M. K., Tai, E. K., Lam, E. K., et al. (2006).
Involvement of Kv1.1 and Nav1.5 in proliferation of gastric epithelial cells. J.
Cell Physiol. 207, 437–444. doi: 10.1002/jcp.20576

Wu, Y. P., and Ling, E. A. (1998). Induction of microglial and astrocytic response
in the adult rat lumbar spinal cord following middle cerebral artery occlusion.
Exp. Brain Res. 118, 235–242. doi: 10.1007/s002210050277

Yamanaka, S. (2009). A fresh look at iPS cells. Cell 137, 13–17.
doi: 10.1016/j.cell.2009.03.034

Yamasaki, R., Lu, H., Butovsky, O., Ohno, N., Rietsch, A.M., Cialic, R., et al. (2014).
Differential roles of microglia and monocytes in the inflamed central nervous
system. J. Exp. Med. 211, 1533–1549. doi: 10.1084/jem.20132477

Yin, Z., Raj, D., Saiepour, N., Van Dam, D., Brouwer, N., Holtman, I.
R., et al. (2017). Immune hyperreactivity of Abeta plaque-associated
microglia in Alzheimer’s disease. Neurobiol. Aging 55, 115–122.
doi: 10.1016/j.neurobiolaging.2017.03.021

Yoshiyama, Y., Higuchi, M., Zhang, B., Huang, S. M., Iwata, N., Saido,
T. C., et al. (2007). Synapse loss and microglial activation precede
tangles in a P301S tauopathy mouse model. Neuron 53, 337–351.
doi: 10.1016/j.neuron.2007.01.010

Yuan, P., Condello, C., Keene, C. D., Wang, Y., Bird, T. D., Paul, S. M.,
et al. (2016). TREM2 haplodeficiency in mice and humans impairs the
microglia barrier function leading to decreased amyloid compaction and
severe axonal dystrophy. Neuron 92, 252–264. doi: 10.1016/j.neuron.2016.
09.016

Zhang, B., Gaiteri, C., Bodea, L. G., Wang, Z., Mcelwee, J., Podtelezhnikov,
A. A., et al. (2013). Integrated systems approach identifies genetic
nodes and networks in late-onset Alzheimer’s disease. Cell 153, 707–720.
doi: 10.1016/j.cell.2013.03.030

Zheng, C., Zhou, X.-W., and Wang, J.-Z. (2016). The dual roles of
cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-
β and IFN-γ. Transl. Neurodegener. 5:7. doi: 10.1186/s40035-016-
0054-4

Zlokovic, B. V. (2013). Cerebrovascular effects of apolipoprotein E:
implications for Alzheimer disease. J. Am. Med. Assoc. Neurol 70, 440–444.
doi: 10.1001/jamaneurol.2013.2152

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Thei, Imm, Kaisis, Dallas and Kerrigan. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neuroscience | www.frontiersin.org 23 September 2018 | Volume 12 | Article 676

https://doi.org/10.6064/2012/796024
https://doi.org/10.1371/journal.pone.0059586
https://doi.org/10.1038/nn.3059
https://doi.org/10.1002/jcp.20576
https://doi.org/10.1007/s002210050277
https://doi.org/10.1016/j.cell.2009.03.034
https://doi.org/10.1084/jem.20132477
https://doi.org/10.1016/j.neurobiolaging.2017.03.021
https://doi.org/10.1016/j.neuron.2007.01.010
https://doi.org/10.1016/j.neuron.2016.09.016
https://doi.org/10.1016/j.cell.2013.03.030
https://doi.org/10.1186/s40035-016-0054-4
https://doi.org/10.1001/jamaneurol.2013.2152
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


 

398 
 

APPENDIX C :  CHARACTERIZATION OF DNA 
METHYLOMIC SIGNATURES IN INDUCED 

PLURIPOTENT STEM CELLS DURING NEURONAL 
DIFFERENTIATION 

 

 

 

 

 

 



SHORT COMMUNICATION 

 

Characterization of DNA Methylomic signatures in induced pluripotent stem cells 

during neuronal differentiation 

 

ABSTRACT 

Background 

In development, inducing pluripotency and differentiation into different cell types results 

in global epigenetic changes, although the extent this occurs in induced pluripotent stem 

cell (iPSC)-based neuronal models has not been extensively characterized.  

Methods 

iPSC colonies (33Qn1 line) were differentiated and collected at four time-points. DNA 

methylation was assessed using the Illumina EPIC array. After dimensionality reduction, 

we identified dynamic changes during differentiation using a data-driven trajectory 

inference method. 

Discussion 

We identified 5,866 Bonferroni-significant loci during differentiation. A gene-gene 

interaction network analysis identified 50 densely connected genes that are influential in 

the differentiation of neurons, with STAT3 being the gene with the highest connectivity. 

Conclusions 

We have profiled DNA methylation during iPSC-derived neuronal differentiation and 

identified an epigenetic trajectory signature associated with maturation. 

 

Keywords:  

Aging; DNA methylation; EPIC array; Epigenetics; Epigenome-wide association study 

(EWAS); Induced pluripotent stem cells (iPSCs); Neuronal differentiation; Trajectory 

inference 

 



INTRODUCTION 

DNA methylation is the most widely studied epigenetic change, as it is the most stable 

and long-lasting modification; there is a vast array of literature linking DNA methylation 

changes in various cell types with aging [239, 242, 243, 260, 430, 431]. Changes to the 

epigenome occur throughout the life course in all tissues and cell types [432-435].  In 

humans, these changes begin very early, with dynamic DNA methylation changes 

reported across fetal development [426], and further changes throughout the life course 

as we age [436].  

In recent years, owing to advances in genomic technology, a number of epigenome-wide 

association studies (EWAS) of DNA methylation have been undertaken in various age-

related complex diseases, including, for example, Alzheimer’s disease (AD) [405, 407, 

437]. Whilst these studies have provided considerable insight into the epigenomic 

landscape of the disease, they were performed on post-mortem brain tissue and so only 

offer a snapshot of what is occurring at the end stages of disease and provide no 

evidence for epigenetic causality. In order to better understand the molecular 

mechanisms underlying disease onset and progression, it is necessary to monitor 

epigenetic changes at multiple time points throughout the disease course. However, this 

is not possible in human studies of inaccessible tissues such as the brain.  

One promising avenue for longitudinal modeling of neurological diseases is through the 

use of induced pluripotent stem cell (iPSC)-derived neuronal cells, as iPSCs are derived 

from human tissue, can be monitored over time and in theory can be transformed into 

any cell type in the body [1]. In recent years iPSC-derived neurons have been 

increasingly used to model various neurological diseases by, for example, utilizing a 

patient line bearing a specific disease-associated genetic mutation [438, 439]. 

Furthermore, through recent advances in epigenetic editing technology it is now feasible 

to model disease-associated DNA methylomic variation. However, there are some 

potential caveats with this approach; whilst differentiated iPSC-derived neurons have 

mature electrophysiological features, including spontaneous electrical activity, 



regenerative induced action potential train activity and hyperpolarized resting membrane 

potentials [273], they do not retain their age-related transcriptomic profile [285]. This lack 

of transcriptional maturity has led researchers to question whether iPSC-derived neurons 

are an appropriate model to study age-related diseases such as AD. Furthermore, much 

like the erasure and re-establishment of epigenetic marks after fertilization, there are 

global DNA methylation changes that occur upon inducing pluripotency [440], which are 

essential for efficient reprogramming [441]. However, to our knowledge, no studies have 

yet longitudinally profiled DNA methylation patterns and the epigenetic “age” of iPSC-

derived neurons during differentiation and maturation. This is an important area to 

address before utilizing these to model neuroepigenetic changes in neurological 

diseases, particularly those that are associated with aging. In this study, we have 

differentiated iPSCs into cortical neurons and assessed their DNA methylation profile at 

different time points during differentiation and maturation to identify DNA methylomic 

trajectories of neuronal aging. 

MATERIALS AND METHODS 

iPSC culture and neuronal differentiation 

This study was performed using one extensively characterised feeder-free human iPSC 

line (33Qn1), originally derived from human fibroblasts by transfection of episomal 

plasmid vectors expressing the six transcription factors Oct4, Sox2, Klf4, cMyc, Nanog, 

and Lin28) [442]. Differentiation was achieved using the SCM1/2 protocol outlined in 

[273]. Briefly, iPSCs were maintained on vitronectin coated plates in Essential 8 flex 

medium, passaged using dispase according to the manufacturer’s instructions (Stem 

Cell Technologies) and were collected four days after initial plating for DNA extraction 

(Day 0 - iPSCs). Neuronal differentiation was started at approximately 70% confluency. 

Differentiation into neuronal precursors was achieved using SLI media (Advanced 

DMEM:F12 (with Glutamax); 1 % Penicillin/Streptomycin (all from Life Technologies); 10 

µM SB431542 (Abcam, Cambridge, Cambs. U.K.); 1 µM LDN 193189 (Stemgent, 

Cambridge, MA, U.S.A); 1.5 µM IWR1 (Tocris Bioscience, Abingdon, Oxon., U.K.), and; 



2 % NeuroBrew-21 without RA (Miltenyi Biotec: Bisley, Surry, U.K) for the first eight days 

followed by LI media for another eight days (Advanced DMEM:F12, 2 mM L-glutamine, 

1 % Penicillin/Streptomycin, 200 nM LDN 193189, 1.5 µM IWR1, and: 2 % NeuroBrew-

21 without RA), after which neuronal precursor cells (NPCs) were collected for DNA 

extraction (Day 16 – NPCs). The remaining neuronal precursors were then terminally 

differentiated and matured as described previously [129] using the sequential addition of 

the SCM1 for seven days (SCM1 contained: Advanced DMEM:F12 (with Glutamax); 1 

% penicillin/streptomycin; 2 % NeuroBrew21 (Miltenyi Biotec); 2 µM PD0332991 

(Selleckchem); 10 µM DAPT (Sigma-Aldrich); 0.6 mM CaCl2 (to give 1.8mM total CaCl2 

in final complete medium, (Sigma-Aldrich)), 200 µM ascorbic acid (Sigma-Aldrich), 10 

ng/mL BDNF (Miltenyi Biotec); 1 µM LM22A4 (Tocris Bioscience); 10 µM Forskolin (FSK, 

Tocris Bioscience), 3 µM CHIR 99021 (Tocris Bioscience), and; 300 µM GABA (Tocris 

Bioscience)) and then SCM2 for the remainder of the maturation period for a further 37 

and 58 days (SCM2 contained: 1:1 Advanced DMEM/F12 (with Glutamax): Neurobasal 

A (Life Technologies); 1 % penicillin/streptomycin (Life Technologies), 2 % NeuroBrew21 

with RA (Miltenyi Biotec); 2 µM PD0332991 (Selleckchem); 3 µM CHIR 99021 (Tocris 

Bioscience); 0.3 mM CaCl2 (to give 1.8 mM total CaCl2 in final complete medium (Sigma-

Aldrich)); 200 µM ascorbic acid (Sigma-Aldrich); 10 ng/mL BDNF (Miltenyi Biotec)). At 

these time points the cells were collected for DNA extraction (Day 37 and Day 58 – 

mature neurons). At each time point cells were collected separately from four wells, 

representing four technical replicates. All collected cells were washed with PBS, pelleted 

down, frozen and stored at -80°C 

Genome-wide quantification of DNA methylation 

DNA was extracted from the 16 cell pellets using a standard phenol chloroform protocol. 

Subsequently, 500ng of genomic DNA was sodium bisulfite converted using the Zymo 

EZ 96 DNA methylation kit (Zymo Research) according to the manufacturer’s 

instructions. Samples were profiled using the Illumina Infinium Human Methylation EPIC 

BeadChip (Illumina) and the Illumina HiScan System (Ilumina).  



All data analysis was done in R version 3.5.2 (Eggshell Igloo). The methylumi package 

[443] was used to extract signal intensities for each CpG probe and perform initial QC, 

with data normalization and pre-processing using the WateRmelon package [153]. 

Additional QC checks were performed using the p-filter function within the methylumi 

package, assessing bisulfite conversion efficiency, and the median methylated and 

unmethylated sample intensities as previously described [437]. Two iPSC samples failed 

the p-filter checks and had low median (un)methylated sample intensities. As a result, 

they were removed from the study. For the remaining 14 samples the data were 

normalized with the dasen function from the wateRmelon package [444]. Prior to any 

analyses, probes with common (>5% minor allele frequency [MAF]) single nucleotide 

polymorphisms (SNPs) within 10 bp of the single base extension and probes with 

sequences previously identified as potentially hybridizing to multiple genomic loci were 

excluded [445], resulting in a final dataset of 847,103 probes. For each of the 14 samples 

the mitotic age and epigenetic age were calculated [154, 155]. Epigenetic age was 

calculated using the latest iteration of the Horvath et al age calculator using the online 

portal; available at: https://dnamage.genetics.ucla.edu/new. 

Probe filtering and dimensionality reduction 

Median absolute deviation (MAD) was computed as a robust measure of variability for 

each CpG site across the four cell stages and the upper fifth percentile value was used 

as a cut-off to determine the most variably methylated loci (41,811 loci). Principal 

component analysis (PCA) without scaling the probes by their variance was then applied 

to obtain a lower-dimensional feature subspace, representing the information explaining 

most of the variance in the dataset.   

Pseudotime trajectory analysis 

A pseudotime trajectory through the cell stages was inferred and plotted using the 

“infer_trajectory” and “draw_trajectory_plot” functions in the SCORPIUS package, 

respectively [270]. The first two principal components of the DNA methylation data was 

subjected as coordinate of the samples to  ‘infer_trajectory’ function which performs k-



means clustering, calculates distance matrix between cluster centres and finds the 

shortest path connecting all cluster centres using a custom distance function, and finally 

fits a curve to the given data using principal curves [270]. 

Next, to identify the loci with the largest contribution to the trajectory inference, we 

regressed each CpG site’s methylation values on the pseudotime variable that had been 

inferred by trajectory analysis, using a general additive model (GAM). This allowed the 

detection of non-linear methylation patterns throughout neuronal differentiation.  The loci 

that remained significant after Bonferroni correction for 41,811 tests were considered as 

robust markers of neuronal differentiation and subjected to further downstream analyses.  

Gene Ontology and pathway enrichment analyses 

We performed Gene Ontology (GO) pathway analysis using the missMethyl R package 

[277], which adjusts for the number of CpGs per gene. 

Gene-gene interaction network analysis 

We used Metacore (Clarivate Analytics) to obtain a set of directed functional regulatory 

interactions between the unique genes annotated to the CpG sites with the largest 

contribution to the trajectory inference. The MetaCore database contains a compilation 

of manually curated and experimentally validated directed gene-gene interactions based 

on existing literature. Its high level of manual curation ensures the creation of highly 

confident interaction network maps. The network reconstruction was restricted to 

interactions reported in humans from the categories “transcriptional regulation”, 

“influence on expression”, “co-regulation of transcription”, and “regulation”, with the 

interaction type (i.e. activation or inhibition) provided when available. Subsequently, the 

R package igraph (version 1.1.2) [446] was used to extract the strongly connected 

component (SCC) from the network obtained through Metacore. The ‘network analyzer’ 

tool from Cytoscape (version 3.4.0) [281] was used to conduct a network topological 

analysis in order to identify key genes with high centrality and connectivity in the network. 



RESULTS 

iPSC-derived neurons have an immature epigenome 

One concern when using iPSC-derived neurons to study diseases of advanced age is 

the biological age of the neurons. We used the Horvath epigenetic age calculator to 

predict epigenetic age based on DNA methylation profiles assessed by the EPIC array 

[154]. The epigenetic age of the iPSCs was negative (i.e. fetal), with the age then 

increasing through differentiation and maturation (Figure 1A). However, even the most 

mature neurons we studied (Day 58) still had a negative epigenetic age (~-0.4 years).  

Another important metric of aging is the number of cell divisions, which is particularly 

interesting to assess in our study as differentiated neurons are post-mitotic. Using the 

MiAge calculator [155] we observed an increase in mitotic age from the iPSC stage to 

the NPC stage and to Day 37 mature neurons (Figure 1B). However, this then plateaued 

in the Day 58 mature neurons. This suggests that whilst the cells are differentiating into 

NPCs and, for at least the first 37 days post terminal differentiation, the cells are still 

replicating. However, at some point after 37 days post terminal differentiation the cells 

stop dividing and become senescent. 

Cell trajectory modeling highlights methylation patterns during differentiation 

In order to further explore how DNA methylation levels change throughout neuronal 

differentiation and maturation, we generated a cellular lineage trajectory signature to 

identify groups of loci that become progressively hyper- or hypomethylated throughout 

differentiation. First, we reduced the dimensionality of the dataset containing the most 

variable CpG probes (41,811 loci), to 14 principal components (PCs), of which the first 

two explained 78% of the variation in that dataset. These two PCs were used as 

coordinates of samples to cluster them according to stage of differentiation/maturation 

(Figure 2A). Samples within each cellular stage clustered together, with the exception 

of one Day 37 neuron sample, which clustered with the Day 58 neuron samples.  This 

could indicate that this sample had aged quicker than the others in the same group; 

however, when we checked the “epigenetic age” of this sample, it was surprisingly the 



second youngest of the four Day 37 neuronal samples. To ensure this sample was not a 

general outlier we clustered all 14 samples based on Euclidean distance (prior to the 

trajectory inference analysis). This highlighted that this Day 37 sample was not an outlier 

in general and clustered together with the Day 58 samples (Supplementary Figure 1). 

Using the pseudotime generated in the trajectory analysis as a predictor, a GAM was 

fitted to the 41,811 probes in order to identify the loci that contributed the most to the 

trajectory inference model. In total we identified 5,866 of the 41,811 loci that showed 

Bonferroni-significant variation in methylation across the cell stages (Supplementary 

Table 1, Figure 2B), which we termed the “epigenetic trajectory signature”. An example 

of the large scale DNA methylation changes occurring through differentiation is 

highlighted by the cg00908292 probe, which is intergenic and located closest to the 

CCR7 gene PBonf= 7.16x10-9. This locus is hemi-methylated in iPSCs, becoming 

progressively de-methylated over time and is largely unmethylated in the terminally 

differentiated mature neurons (Figure 2C).  

Pathway analysis of loci contributing to cell trajectories implicates development, 

signalling and transcription 

We used GO enrichment analysis to identify the pathways that are changing most 

significantly throughout neuronal differentiation. We took the 5,866 loci that comprised 

the epigenetic trajectory signature and grouped these according to whether they were 

becoming gradually hypermethylated (N=1,661) or hypomethylated (N=4,205) over time. 

The progressively hypermethylated loci resided in genes that featured in pathways 

relating to head development, signalling, cell surface receptor signalling, transcriptional 

activity and cell-cell junctions. (Supplementary Table 2, Supplementary Figure 2). The 

progressively hypomethylated loci were associated with neuron projection development, 

synaptic activity and gated channel activity (Supplementary Tables 3, Supplementary 

Figure 3).   



Transcriptional regulation is a highly interconnected process throughout differentiation 

To explore the connectivity between key genes that display progressive DNA methylomic 

changes through differentiation, we performed gene-gene interaction analyses on the 

2,352 unique genes that were annotated (Illumina [UCSC] annotation) to the 5,866 loci 

comprising the epigenetic trajectory signature. The prior knowledge network (PKN) 

obtained from MetaCore contained 602 genes and 1,158 interactions. Only one strongly 

connected component (SCC) existed in this network (i.e. there is only one sub-network 

in which every gene can be reached through any other gene in the same sub-network), 

comprised of 50 genes and 138 interactions between them (Supplementary Table 4, 

Figure 3). The conducted topological network analysis highlighted the key genes in this 

SCC with outstanding topological characteristics, including out-degree (set of target 

genes it regulates), in-degree (set of upstream regulating genes), betweenness centrality 

(most influential genes based on their shortest paths to other genes in the network), and 

clustering coefficient (a measure of gene tendency to cluster with other genes in the 

network). STAT3 was the gene with the highest connectivity (Neighbourhood 

Connectivity = 9.43, Clustering Coefficient = 0.02) in the SCC, according to its in-degree 

(9) and out-degree (62), suggesting it may play a key regulatory role in this SCC. 

Previously, alterations in STAT3 signalling have already been observed to be associated 

with age-related changes in different cell types [447, 448]. 

DISCUSSION 

In this study we have used the Illumina Infinium EPIC array to profile DNA methylation 

in iPSCs and throughout their differentiation and maturation into neurons. One of the 

concerns regarding using iPSC-derived neurons to study diseases of aging is that they 

have been reported to lose their age-associated transcriptomic signatures [285]. 

Similarly, in our study we have shown that iPSCs, NPCs and post-terminally 

differentiated neurons have an immature epigenomic profile according to the Horvath 

epigenetic age calculator. This is particularly interesting given that these iPSC-derived 

neurons have been previously shown to be functionally mature at these time points [273]. 



Mertens and colleagues showed that although neurons derived from iPSCs lose their 

age-related transcriptional profiles and were comparable to embryonic or immature 

neurons, this was not the case with inducible neurons (iNs), which are neurons 

generated directly from fibroblasts that do not go through the intermediate stem cell 

phase [285]. Alongside the age-related transcriptomic profiles of iNs, they also exhibit 

age-dependent nucleocytoplasmic compartmentalisation and maintenance of epigenetic 

age, unlike iPSC-derived neurons. In the future, it will be of interest to assess the mitotic 

age and epigenetic trajectories of iNs.  It will also be important to utilize a number of 

different iPSC lines and to culture the iPSC-derived neurons for longer than 58 days, to 

explore how this affects the epigenetic age and epigenetic trajectory. Another important 

point to consider is that the epigenetic age calculator is reported to be inaccurate in 

juvenile samples, presumably because DNA methylation changes are more dynamic in 

children [449]. As all of the samples used in our study were estimated to have an 

epigenetic age <1 year, it is possible that these predictions are inaccurate, and the 

biological age of the samples is greater than predicted. Another important marker of 

aging for cells is their number of divisions, which is particularly interesting in the context 

of our study as the differentiated neurons (Day 37 and 58) are post-mitotic and therefore 

should no longer be dividing. We showed that although the mean mitotic age increased 

from the iPSC stage through to 37 days post-differentiation, this plateaued at day 58, 

indicating that the neurons had become post mitotic. This decrease could be due to 

imperfect differentiation in some of the day 37 samples, causing there to be 

contamination of proliferating non-neural cells. The fact that the mitotic and epigenetic 

age show different patterns across differentiation/maturation, with the epigenetic age still 

increasing at day 58, corroborates previous findings that epigenetic age does not reflect 

mitotic age [247].  

One interesting observation from the creation of the cell lineage network was that one of 

the day 37 terminally differentiated neuron samples clustered more closely with the day 

58 terminally differentiated neuron samples, than with other samples of the same cellular 



stage. We considered that this sample may have “aged” faster than the other day 37 

neurons however, upon further investigation this sample actually had the second lowest 

epigenetic age and has the lowest mitotic age of the day 37 group. This could therefore 

suggest that the probes used to determine epigenetic age are not contributing to the 

epigenetic trajectory signature we identified that distinguished between the different 

cellular stages.  

Our pathway analysis highlighted that probes comprising the epigenetic trajectory 

signature are largely involved in gene regulation and neural development. The gene-

gene interaction network analysis of the epigenetic trajectory signature identified a highly 

connected, epigenetically altered sub-network of 50 genes, featuring 138 interactions. 

STAT3 was the most connected gene in the SCC subnetwork. This gene is known to be 

involved in neuronal survival and function, for example, STAT3 and other members of 

the JAK/STAT pathway have been shown to play key roles in the control of neuronal 

proliferation, survival and differentiation [292, 293]. Primary neuronal and SH-SY5Y cells 

have been shown to be highly susceptible to treatment with the STAT3 inhibitor 

tryphostin, with a significant percentage of both cell types (80-100%) dying even at low 

concentrations [292]. The fact that STAT3 was identified as a key gene by the network 

analysis highlights its importance in the epigenetic trajectory signature, which is further 

confirmed by its already proven pivotal role in the development and differentiation of 

neurons. 

 

CONCLUSION 

In this study, we have characterized genome-wide patterns of DNA methylation and 

identified an epigenetic trajectory signature of 5,866 loci that become progressively 

hypermethylated or hypomethylated during the course of neuronal differentiation and 

maturation from iPSCs. These loci reside in genes that were over-represented in 

processes related to gene regulation and transcription.  

 



FUTURE PERSPECTIVE 

Since the creation of iPSCs they have been increasingly used to study neurological and 

neurodegenerative diseases. However, to date iPSC-derived neurons have not been 

usedto study the epigenetic aberrations known to be associated with various age-related 

disease. Here we have investigated DNA methylation changes occurring throughout 

iPSC-derived neuronal differentiation in order to better understand iPSC-derived 

neurons as a model system in the context of the epigenome. One caveat of our study is 

that we have examined only one iPSC line (33Qn1). Looking into the future, it will 

therefore be important to explore whether our epigenetic trajectory signature is 

reproducible in neurons derived from other iPSC lines. Similarly, it will be of interest to 

compare iPSC-derived neurons to iN-derived neurons, and to profile neurons beyond 58 

days post-terminal differentiation. Another important logical next step for the future will 

be the profiling of other types of epigenetic markers, such as histone modifications and 

general chromatin accessibility. Ultimately, different types of epigenetic information will 

need to be integrated with matched transcriptomic data in order to deconvolute the role 

of the dynamic epigenetic landscape in the neuronal differentiation process. 

 

 

EXECUTIVE SUMMARY 

Induced pluripotent stem cells (iPSCs) 

• Through the introduction of pluripotency factors into differentiated adult cells it is 

possible to create iPSCs. 

• Induction of pluripotency leads to global epigenetic changes. 

Epigenetic and mitotic age change throughout neuronal differentiation 

• Epigenetic age increases as iPSCs differentiate into neurons. However. even 

day 58 neurons have a fetal epigenetic age.  



• Mitotic age increases initially during differentiation but after terminal 

differentiation plateaus. 

DNA methylation changes occur at a large number of loci 

• Bonferroni significant changes to DNA methylation changes occurred at 

5,866 loci. 

• 1,661 of these loci became progressively hypermethylated during 

differentiation 

Gene-gene interaction analysis nominates STAT3 as a key gene in 

differentiation 

• A gene-gene interaction analysis identified 50 genes, with 138 

interactions, with STAT3 being the most connected gene. 

 

REFERENCES 

Papers of particular significance have been highlighted as: * of interest or ** of 
considerable interest 

1. Bell JT, Tsai P-C, Yang T-P et al. Epigenome-Wide Scans Identify Differentially 
Methylated Regions for Age and Age-Related Phenotypes in a Healthy Ageing 
Population. PLOS Genetics 8(4), e1002629 (2012). 

2. Horvath S, Zhang Y, Langfelder P et al. Aging effects on DNA methylation 
modules in human brain and blood tissue. Genome biology 13(10), R97 (2012). 

3. Rodriguez-Rodero S, Fernandez-Morera JL, Fernandez AF, Menendez-Torre E, 
Fraga MF. Epigenetic regulation of aging. Discovery medicine 10(52), 225-233 
(2010). 

4. Murgatroyd C, Wu Y, Bockmuhl Y, Spengler D. The Janus face of DNA 
methylation in aging. Aging 2(2), 107-110 (2010). 

5. Bollati V, Schwartz J, Wright R et al. Decline in genomic DNA methylation 
through aging in a cohort of elderly subjects. Mechanisms of ageing and 
development 130(4), 234-239 (2009). 

6. Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends 
in genetics : TIG 23(8), 413-418 (2007). 

7. Christiansen L, Lenart A, Tan Q et al. DNA methylation age is associated with 
mortality in a longitudinal Danish twin study. Aging Cell 15(1), 149-154 (2016). 

8. Hernandez DG, Nalls MA, Gibbs JR et al. Distinct DNA methylation changes 
highly correlated with chronological age in the human brain. Human Molecular 
Genetics 20(6), 1164-1172 (2011). 

9. Ronn T, Volkov P, Gillberg L et al. Impact of age, BMI and HbA1c levels on the 
genome-wide DNA methylation and mRNA expression patterns in human 
adipose tissue and identification of epigenetic biomarkers in blood. Human 
Molecular Genetics 24(13), 3792-3813 (2015). 



10. Maegawa S, Hinkal G, Kim HS et al. Widespread and tissue specific age-
related DNA methylation changes in mice. Genome Res 20(3), 332-340 (2010). 

11. Spiers H, Hannon E, Schalkwyk LC et al. Methylomic trajectories across human 
fetal brain development. Genome research 25(3), 338-352 (2015). 

*Shows that there are widespread changes in DNA methylation across human fetal 
brain development.  

12. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock 
theory of ageing. Nature Reviews Genetics 19(6), 371-384 (2018). 

13. Lunnon K, Smith R, Hannon E et al. Methylomic profiling implicates cortical 
deregulation of ANK1 in Alzheimer's disease. Nature neuroscience 17(9), 1164-
1170 (2014). 

*Paper highlighting DNA methylation aberrations in neurodegenerative disease. 
14. Smith AR, Smith RG, Pishva E et al. Parallel profiling of DNA methylation and 

hydroxymethylation highlights neuropathology-associated epigenetic variation in 
Alzheimer's disease. Clinical epigenetics 11(1), 52 (2019). 

15. Smith RG, Hannon E, De Jager PL et al. Elevated DNA methylation across a 
48-kb region spanning the HOXA gene cluster is associated with Alzheimer's 
disease neuropathology. Alzheimer's & dementia : the journal of the Alzheimer's 
Association 14(12), 1580-1588 (2018). 

16. Imm J, Kerrigan TL, Jeffries A, Lunnon K. Using induced pluripotent stem cells 
to explore genetic and epigenetic variation associated with Alzheimer's disease. 
Epigenomics 9(11), 1455-1468 (2017). 

17. Muratore CR, Rice HC, Srikanth P et al. The familial Alzheimer's disease 
APPV717I mutation alters APP processing and Tau expression in iPSC-derived 
neurons. Human Molecular Genetics 23(13), 3523-3536 (2014). 

18. Woodruff G, Young JE, Martinez FJ et al. The presenilin-1 DeltaE9 mutation 
results in reduced gamma-secretase activity, but not total loss of PS1 function, 
in isogenic human stem cells. Cell reports 5(4), 974-985 (2013). 

19. Telezhkin V, Schnell C, Yarova P et al. Forced cell cycle exit and modulation of 
GABAA, CREB, and GSK3beta signaling promote functional maturation of 
induced pluripotent stem cell-derived neurons. American journal of physiology. 
Cell physiology 310(7), C520-541 (2016). 

**Paper demonstrates a method to accelerate maturation of iPSC-derived neuronal 
cells. 

20. Mertens J, Paquola ACM, Ku M et al. Directly Reprogrammed Human Neurons 
Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related 
Nucleocytoplasmic Defects. Cell stem cell 17(6), 705-718 (2015). 

*Paper showing that induced neurons retain their age-related transcriptomic profile 
whilst iPSC-derived neurons do not.  

21. De Carvalho DD, You JS, Jones PA. DNA Methylation and Cellular 
Reprogramming. Trends in cell biology 20(10), 609-617 (2010). 

22. Watanabe A, Yamada Y, Yamanaka S. Epigenetic regulation in pluripotent stem 
cells: a key to breaking the epigenetic barrier. Philosophical transactions of the 
Royal Society of London. Series B, Biological sciences 368(1609), 20120292-
20120292 (2013). 

23. The hd ipsc consortium. Induced Pluripotent Stem Cells from Patients with 
Huntington's Disease Show CAG-Repeat-Expansion-Associated Phenotypes. 
Cell stem cell 11(2), 264-278 (2012). 

24. Telezhkin V, Schnell C, Yarova P et al. Forced cell cycle exit and modulation of 
GABAA, CREB, and GSK3β signaling promote functional maturation of induced 
pluripotent stem cell-derived neurons. American Journal of Physiology-Cell 
Physiology 310(10), (2016). 

25. Davis S, Du P, Triche JT, Bootwalla M. methylumi: Handle Illumina methylation 
data. R package version 2.26.0. doi:10.18129/B9.bioc.methylumi (2017). 

26. Pidsley R, Cc YW, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven 
approach to preprocessing Illumina 450K methylation array data. BMC 
genomics 14 293 (2013). 



27. Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven 
approach to preprocessing Illumina 450K methylation array data. BMC 
Genomics 14(1), 293 (2013). 

*Paper that is fundamental in the pre-processing of DNA methylation data. 
28. Mccartney DL, Walker RM, Morris SW, Mcintosh AM, Porteous DJ, Evans KL. 

Identification of polymorphic and off-target probe binding sites on the Illumina 
Infinium MethylationEPIC BeadChip. Genom Data 9 22-24 (2016). 

29. Horvath S, Oshima J, Martin GM et al. Epigenetic clock for skin and blood cells 
applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging 
10(7), 1758-1775 (2018). 

**This paper is the basis of the newest epigenetic age calculator used in this study. 
30. Youn A, Wang S. The MiAge Calculator: a DNA methylation-based mitotic age 

calculator of human tissue types. Epigenetics 13(2), 192-206 (2018). 
**This paper introduces the mitotic age calculator used in this study. 
31. Cannoodt R, Saelens W, Sichien D et al. SCORPIUS improves trajectory 

inference and identifies novel modules in dendritic cell development. bioRxiv 
doi:10.1101/079509 079509 (2016). 

**This study introduces the SCORPIOUS trajectory inference methodology used in this 
paper. 

32. Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing 
data from Illumina's HumanMethylation450 platform. Bioinformatics (Oxford, 
England) 32(2), 286-288 (2016). 

33. Csardi G, Nepusz T. The igraph software package for complex network 
research. InterJournal Complex Systems 1695 (2006). 

34. Shannon P, Markiel A, Ozier O et al. Cytoscape: a software environment for 
integrated models of biomolecular interaction networks. Genome research 
13(11), 2498-2504 (2003). 

35. O'brown ZK, Van Nostrand EL, Higgins JP, Kim SK. The Inflammatory 
Transcription Factors NFkappaB, STAT1 and STAT3 Drive Age-Associated 
Transcriptional Changes in the Human Kidney. PLoS Genet 11(12), e1005734 
(2015). 

36. Chazaud B, Mouchiroud G. Inflamm-aging: STAT3 signaling pushes muscle 
stem cells off balance. Cell stem cell 15(4), 401-402 (2014). 

37. Mcewen LM, O'donnell KJ, Mcgill MG et al. The PedBE clock accurately 
estimates DNA methylation age in pediatric buccal cells. Proceedings of the 
National Academy of Sciences of the United States of America 
doi:10.1073/pnas.1820843116 (2019). 

38. Horvath S. DNA methylation age of human tissues and cell types. Genome 
biology 14(10), R115 (2013). 

*Outlines the first iteration of the epigenetic age calculator. 
39. Yadav A, Kalita A, Dhillon S, Banerjee K. JAK/STAT3 pathway is involved in 

survival of neurons in response to insulin-like growth factor and negatively 
regulated by suppressor of cytokine signaling-3. The Journal of biological 
chemistry 280(36), 31830-31840 (2005). 

40. Snyder M, Huang XY, Zhang JJ. Stat3 is essential for neuronal differentiation 
through direct transcriptional regulation of the Sox6 gene. FEBS Lett 585(1), 
148-152 (2011). 

 



Figure 1: The predicted biological ages of iPSC-derived neurons through differentiation. As two iPSC samples did not pass the quality control 
checks there are only two samples in the iPSC group of each graph. (A)  The estimated epigenetic age (Y-axis) of the four cellular stages (X-axis) 
increased throughout differentiation, with the Day 58 neurons having the highest epigenetic age, although the mean age was still <0.5 years.  (B) The 
estimated mitotic age (number of cell divisions - Y-axis) of the four cellular stages (X-axis) increased until 37 days post-terminal differentiation, after 
which point it plateaued suggesting the day 58 neurons had become senescent.  

 

 



Figure 2: Trajectory inference modelling identifies a signature of 5,866 probes that distinguish cell stage. (A) To create the trajectory model 
dimensionality reduction was first performed, using PCA, followed by estimating pseudo-time to model the lineage trajectory. The different samples 
grouped together based on the first two principal components. (B) Using the pseudo-time estimation a generalised additive model was used to determine 
which of the 5,866 probes were becoming hypomethylated (blue) or hypermethylated (red) over time. The patterns of hypomethylation and 
hypermethylation could distinguish the different cell stages. (C) The DNA methylation patterns occurring at the most significant probe throughout 
differentiation. Left: plot of beta-value (Y-axis) against pseudotime (X-axis) and right: plot of beta-value (Y-axis) against cellular stage (X-axis). 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3: A subnetwork of 50 genes constituting the strongly connected component (SCC) in the gene-gene interaction network. Directed 
gene-gene interaction network was constructed for 2,352 unique genes that were annotated to the 5,866 loci comprising the epigenetic trajectory 
signature. The prior knowledge network (PKN) obtained from Metacore contained 602 genes and 1,158 interactions. Only one strongly connected 
component (SCC) in this network, comprising of 50 genes and 138 interactions between them was identified, blue nodes indicate genes becoming 
progressively hypomethylated, red nodes indicate genes becoming progressively hypermethylated and grey ovals indicate genes that have more than 
one probe annotated to them that have different patterns of methylation change. 



 

 

 

 

 

 

 

 

 

 

 

 
 

 



Supplementary figure 1: Clustering of 14 samples based on Euclidean distance prior Trajectory inference analysis. One sample from Day 37 
is clustered together with the Day 58 samples 
 
 

 
 



 
Supplementary figure 2: Pathway analysis of loci becoming progressively hypermethylated throughout differentiation. Gene ontology (GO) 
enrichment analysis was performed on the 1,661 loci shown to become progressively hypermethylated throughout neuronal differentiation. Treemaps 
illustrating the pathways relating to (A) biological pathways (BP), (B) cellular components (CC) and (C) molecular functions (MF) that are changing 
throughout differentiation are shown. For each treemap, terms relating to the same pathway are grouped together and have been given the same 
colour, the term that summarizes the grouped pathways is at the centre of each section and is written in bold text.  



Supplementary figure 3: Pathway analysis of loci becoming progressively hypomethylated throughout differentiation. Gene ontology (GO) 
enrichment analysis was performed on the 4,205 loci shown to become progressively hypomethylated throughout neuronal differentiation. Treemaps 
illustrating the pathways relating to (A) biological pathways (BP), (B) cellular components (CC) and (C) molecular functions (MF) that are changing 
throughout differentiation are shown. For each treemap, terms relating to the same pathway are grouped together and have been given the same 
colour, the term that summarizes the grouped pathways is at the centre of each section and is written in bold text.
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