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Abstract—It is agreed that portfolio selection models are of
great importance for the financial market. In this article, a
constrained multiperiod multiobjective portfolio model is estab-
lished. This model introduces several constraints to reflect the
trading restrictions and quantifies future security returns by
fuzzy random variables to capture fuzzy and random uncertain-
ties in the financial market. Meanwhile, it considers terminal
wealth, conditional value at risk (CVaR), and skewness as
tricriteria for decision making. Obviously, the proposed model
is computationally challenging. This situation gets worse when
investors are interested in a larger financial market since the data
they need to analyze may constitute typical big data. Whereafter,
a novel intelligent hybrid algorithm is devised to solve the
presented model. In this algorithm, the uncertain objectives of
the model are approximated by a simulated annealing resilient
back propagation (SARPROP) neural network which is trained
on the data provided by fuzzy random simulation. An improved
imperialist competitive algorithm, named IFMOICA, is designed
to search the solution space. The intelligent hybrid algorithm
is compared with the one obtained by combining NSGA-II,
SARPROP neural network, and fuzzy random simulation. The
results demonstrate that the proposed algorithm significantly
outperforms the compared one not only in the running time
but also in the quality of obtained Pareto frontier. To improve
the computational efficiency and handle the large scale securities
data, the algorithm is parallelized using MPI. The conducted
experiments illustrate that the parallel algorithm is scalable and
can solve the model with the size of securities more than 400 in
an acceptable time.

Index Terms—Fuzzy random simulation, imperialist competi-
tive algorithm (ICA), multiperiod multiobjective portfolio selec-
tion, parallel computing.
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I. INTRODUCTION

PORTFOLIO selection has become an increasingly popular
topic during the past several decades. It aims at achieving

an optimal allocation of wealth among available securities.
Modern portfolio selection theory originates from Markowitz’s
pioneering work [1] in 1952, in which Markowitz proposed
his most famous portfolio model, the so-called mean-variance
(MV) model. However, the assumption that investment returns
are jointly elliptically (or spherically) distributed has made
the MV model widely criticized by practitioners since the
asymmetric investment return is more ordinary in real-world
scenarios [2]. Many scholars [3], [4] including Markowitz,
thus have dedicated themselves to the creative task of im-
proving the MV model.

It is worth mentioning that most of the existing portfolio
selection models are on the basis of the cognition that securi-
ties are offering random returns which can be extracted from
historical data. However, even if the difficulty in accessing
accurate historical data is ignored, there still exist some non-
random factors in the financial market. For example, expert
opinions and company performance are widely considered to
be highly relevant to future security returns. Inspired by the
concept of fuzzy sets introduced by Zadeh [5] in 1965, fuzzy
portfolio selection models, in which future security returns are
treated as fuzzy variables, boomed out and started to replace
stochastic models in portfolio selection problems.

In fact, for most instances in the financial market, random-
ness and fuzziness exist simultaneously. In such situations, the
portfolio models that mirror these two fundamental uncertain-
ties seem to be more competitive. Gradually recognizing the
fact mentioned above, feature extraction and representation of
future security returns have received tremendous attention in
both academia and industry. Some of them argued that it would
be more reasonable to treat future security returns as random
variables whose parameters are considered as fuzzy numbers,
namely the so-called random fuzzy variables. The random
fuzzy variable was first defined by Liu [6]. This concept was
then developed by Hasuike et al. [7] and Katagiri et al. [8] to
construct random fuzzy portfolio selection models. However,
future security returns may be fuzzy variables with the key
value determined by random variables, fuzzy random variables
[9]. To the best of authors’ knowledge, little attention has been
placed in this area.

From a practical perspective, there exist many trading re-
strictions in the real-world financial market. As a result, some
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researchers [10], [11] began to take realistic constraints into
consideration when building their portfolio models. However,
it is noticed that most of the above studies are limited
to single-period single-objective portfolio selection problem.
In fact, investors are driven to a long-term investment and
premeditate more criteria, to make their decisions better adapt
the complex and volatile market environment. Any decision
ignoring this fact may be unrealistic. To avoid falling into the
above discussed traps, researchers have made several attempts.
However, this puzzle has not been addressed, since most of
these attempts are one-sided or rely on the model conversion
technology.

There is almost no study on the long-term investment prob-
lems with realistic constraints and multiple decision criteria
under uncertain environment in which randomness and fuzzi-
ness appear simultaneously. This article proposes a constrained
multiperiod multiobjective portfolio model with fuzzy random
returns. In this model, terminal wealth, conditional value at
risk (CVaR) and skewness are served as decision criteria.
Realistic constraints such as the cardinality constraint, bound-
ing constraint and round-lot constraint are supplemented.
Meanwhile, to eliminate potential possibility of turning the
model into a simple accumulation of multiple single period
models, an assumption associated with the investment horizons
is also added. These additional extensions can make the
proposed model more comprehensive and suitable for various
investment scenarios. It is obvious that the model of this type
can be computationally challenging and cannot be solved by
traditional methods. This motivates the prosperity of studying
alternative algorithms. Evolutionary algorithm (EA) has been
found to be an appropriate choice. The studies of [12]–[14] are
some overtures that adopt this alternative tool to settle portfolio
selection problems suffering a lot for calculation difficulties.
Although EAs cannot guarantee global optimal solutions, they
maintain a superiority since they can successfully find high-
quality near optimal solutions using less computational time.
In this article, a novel intelligent hybrid algorithm is put
forward for the sake of effectively resolving the proposed
model.

Over the past 20 years, data has increased to a large scale in
various fields [15]. The term of big data is then proposed. For
the investors who are interested in a larger financial market,
the related data that they must analyze constitute typical big
data. In this situation, the models consisting of only a few
hundred securities may take several months to solve, which
cannot meet the transaction demands. Thus, it is urgent to
handle the large scale securities data in portfolio selection
problems. It is agreed that high-performance computing (HPC)
is playing a significant role in big data processing. Inspired by
this, message passing interface (MPI) technology is adopted
to parallelize the newly developed intelligent hybrid algorithm
so as to improve the computational efficiency and solve the
proposed model subject to large scale data in an acceptable
time.

The rest of this article is organized as follows. In Section
II, related works are reviewed. Section III presents a brief
introduction to the notions and properties of fuzzy variables
and fuzzy random variables. In Section IV, the expression for

available wealth at each period is described first, followed by
a constrained multiperiod multiobjective portfolio model with
fuzzy random returns. Section V is dedicated to presenting
the intelligent hybrid algorithm which is used to solve the
aforementioned model. In Section VI, the intelligent parallel
hybrid algorithm adopting MPI technology is introduced to
improve computational efficiency and cope with large scale
securities data. Section VII demonstrates the superiority of
intelligent hybrid algorithm and the scalability of its paral-
lelization. Finally, Section VIII concludes this article.

II. RELATED WORK

In 1952, Markowitz [1] first introduced the MV portfolio
model. In this model, Markowitz described the return of
portfolio by the expectation of returns and the risk by the
variance. However, using variance as a risk means that the
model treats desirable high investment returns and investment
returns below the expected value equally, which is not real-
istic. Targeting at this challenge, variants of the MV model
boomed. For example, Markowitz [16] used semivariance as
another risk measure and introduced the mean-semivariance
model. Konno and Yamazaki [17] proposed the mean-absolute-
deviation model to get rid of most of the shortcomings in
the MV model. Artzner et al. [3] creatively qualified the risk
of portfolio as value at risk (VaR) and proposed the mean-
VaR portfolio model. However, this model was then proven to
suffer from multiple extremum problem when security returns
are asymmetrically distributed. CVaR presented by Rockafellar
and Uryasev [4] in 2000 addressed this problem to some
extent. Based on CVaR, a new risk measure named conditional
drawdown-at-risk [18] was defined and used to settle the
real life portfolio selection problems. However, in the models
mentioned previously, only randomness in the financial market
is reflected. In these models, security returns are treated as
random variables and can be derived from historical data.

In fact, the uncertainty in the financial market originates
from the interaction of investors, in which fuzziness is an
important characterization. In 1965, Zadeh [5] proposed the
concept of fuzzy sets, which then became the basis of fuzzy
techniques. With the development of fuzzy techniques, re-
searchers began to describe the uncertainty of the financial
market from a fuzzy point of view. Tanaka and Guo [19]
reflected the uncertainty in the financial market by an interval
given by the spreads of the portfolio returns and proposed a
possibility portfolio model. Then, Huang [20] proposed two
types of fuzzy chance-constrained model, and then solved
them by a newly introduced fuzzy simulation-based algorithm.
Gupta et al. [21] established comprehensive portfolio models
by fuzzy mathematical programming. Hajnoori et al. [22]
employed grey fuzzy technique to forecast stock prices and use
them to form a novel constrained portfolio model. Recently, Li
et al. [23] built a fuzzy mean-CVaR model by considering the
future security returns as triangle fuzzy variables and proposed
a parallel algorithm based on the fuzzy simulation for model
solving. Pai [24] constructed a constrained multiobjective
fractional programing model, and dealt with the uncertainty
in the financial market by a strategically refined Monte Carlo
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simulation. Then, fuzzy decision theory-based metaheuristics
are applied to obtain final optimal portfolio.

Obviously, these models all treated randomness and fuzzi-
ness separately. It makes more sense to consider twofold
uncertainties when constructing portfolio models. Katagiri and
Ishii [25] are the first ones who took future security returns
as fuzzy random variables. Following this idea, Liu [12]
constructed a general framework of fuzzy random chance-
constrained programming and developed a fuzzy random simu-
lation for uncertain objectives approximation. Li and Xu [26]
proposed a novel fuzzy random λ-mean variance model in
a hybrid uncertain environment by adding expert knowledge.
Yoshida [27] discussed a VaR portfolio model under fuzzy
random uncertainties. Recently, Sun et al. [28] proposed a
fuzzy random portfolio selection model by taking investors’
sentiments into account and discussed its efficient frontiers.

Apart from the uncertainties in the environment, real-word
constraints and decision criteria are also the factors that
should be paid attention to. The studies that explore on this
area have been very active. Lwin et al. [29] extended the
MV model by including return and risk as bicriteria and
adding the cardinality, quantity, preassignment and round-lot
constraints. Babaei et al. [30], Pouya et al. [31], Khanjarpanah
and Pishvaee [32], and Kaucic [33] are recent studies that
researched on constrained multiobjective portfolio models.

However, adding realistic constraints makes solving portfo-
lio models an NP-hard problem, which cannot be addressed by
exact algorithms in polynomial time. EA is a good candidate
for solving the problem. Numerous studies have been carried
out with the aim of applying EAs to solve constrained multi-
objective portfolio optimization problem. Loraschi et al. [34]
tested their coarse-grained distributed genetic algorithm (GA)
on standard test functions and then applied it to a two-objective
real-world portfolio model. In [35], an improved EA was used
to solve the multiobjective model with additional real-world
constraints such as cardinality and buy-in thresholds con-
straints. In [13], a constrained triobjective model was proposed
by adopting three criteria, namely return, risk and liquidity, and
cardinality, round-lots constraints. A compromise approach-
based GA was then developed for model solving. Recently,
Chen et al. [36] used a novel hybrid EA to find Pareto-optimal
solutions for their multiperiod mean-variance-skewness model.
Wang et al. [37] attempted to use a fuzzy simulation-based
multiobjective particle swarm optimization (PSO) algorithm
to solve their newly proposed fuzzy multiobjective model.

Solving large scale portfolio selection models that are
composed of more than a few hundred securities is still a
challenging issue, since their related data constitute typical
big data. Targeting at this conundrum, HPC which is a widely
popular method to handle data processing in various applica-
tions has been applied by some researchers. For example, Zou
and Zhang [38] adopted diverse HPC techniques to handle
portfolio allocation problem based on intraday high-frequency
data. Li et al. [23] proposed a parallel hybrid intelligent
algorithm by using MPI technology to solve fuzzy mean-
CVaR model with 180 securities. The result demonstrated
that the running time of solving the aforementioned model
is within a reasonable level. Sun and Lu [39] designed a big

data platform using HPC technology and used it to obtain
investment strategy based on large scale financial data.

To sum up, portfolio selection has become one of the active
areas in finance. Among the research effort, there are three
main challenges.

1) How to reflect the twofold uncertainties in the financial
market when building a portfolio model?

2) How to make the portfolios derived from models closer
to the real investment scenarios?

3) How to solve the proposed model in an acceptable time
even facing large scale securities data?

To cope with the above three challenges, a constrained
multiperiod multiobjective portfolio model with fuzzy random
returns is proposed first by considering investors’ attitudes and
real-world constraints. In this model, future security returns
are treated as fuzzy random variables. Meanwhile, terminal
wealth, CVaR, and skewness are used as tricriteria. Moreover,
the cardinality, bounding, round-lot, and additional constraints
are taken into consideration. Then, a novel intelligent hybrid
algorithm is developed for the sake of effectively resolving
the proposed model. To improve computational efficiency and
cope with large scale securities data, an intelligent parallel
hybrid algorithm adopting MPI technology is presented.

This article is an extended version of the previous confer-
ence paper [40]. The main new contributions are summarized
as follows.

• Literatures that technically relate to the proposed work
are systematically reviewed, including fuzzy random
portfolio selection models, multiobjective portfolio op-
timization problems and relevant algorithms and HPC
technology for big data analysis.

• To facilitate the understanding of the proposed scheme,
the background knowledge about fuzzy variables is
added, and the properties of fuzzy random variables are
complemented as well.

• The introduction of the proposed model is enriched.
Instead of giving the expression of available wealth in
each period directly, the process of its calculation is
described. Moreover, realistic constraints are explained
in detail in the proposed model.

• Fuzzy random simulation and simulated annealing (SA)
resilient back propagation (SARPROP) neural network
are supplemented to illustrate the procedure of approxi-
mating uncertainty functions in the proposed model. The
original imperialist competitive algorithm (ICA) is also
presented for better comprehension of the improvement
in IFMOICA. Furthermore, flowcharts of the IFMOICA
and the novel intelligent hybrid algorithm are provided.

• The proposed algorithm is implemented and compared on
two more datasets. For better comparison, spacing metric
is added as another performance metric. In addition, the
obtained Pareto frontiers of the two algorithms on the
three datasets are given. The running time, speedup and
parallel efficiency on the three datasets are illustrated to
verify the scalability of the parallelization of the intelli-
gent hybrid algorithm and its superiority when facing the
large scale securities data.
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III. PRELIMINARIES

In this section, the relevant properties of fuzzy variables
are reviewed, followed by the definition, expected value, and
skewness of fuzzy random variables.

Definition 1 (Credibility space [41]): Assume that Θ is
a nonempty set. For each A ∈ 2Θ, there is a nonnegative
number Cr{A} that satisfies four axioms, namely normality,
monotonicity, self-duality, and maximality. Then, the credibil-
ity space can be denoted by a triplet (Θ, 2Θ,Cr), where the
function Cr is called credibility measure.

Definition 2 (Fuzzy variable [41]): Let R be the set of
real numbers. A fuzzy variable defined on credibility space
(Θ, 2Θ,Cr) is a mapping ξ : Θ→ R.

Then, its membership function can be defined by

µ(x) = (2Cr{ξ = x}) ∧ 1, x ∈ R. (1)

Theorem 1 [41]: Suppose that µ is the membership function
of fuzzy variable ξ. Then, for any Borel subset A of R

Cr{ξ ∈ A} =
1

2
(sup
x∈A

µ(x ) + 1− sup
x∈Ac

µ(x )). (2)

The independence of fuzzy variables has been discussed by
many scholars from different perspectives. In this article, the
definition given and proved by [42] is adopted.

Definition 3 (The independence of fuzzy variables [42]):
ξ1, ξ2, ..., ξn are considered to be independent, if for any sets
A1, A2, ..., An ∈ R

Cr{∩ni=1{ξi ∈ Ai}} = min
0≤i≤n

Cr{ξi ∈ Ai}. (3)

Theorem 2 [41]: Presume that fuzzy variables
ξ1, ξ2, ξ3, . . . , ξn are independent and µ1, µ2, µ3, . . . , µn
constitute their membership functions, respectively, such that
Cr{f (µ1, µ2, µ3, . . . , µn) ∈ A} can be described as

1

2
( sup
f (x1,x2,...,xn)∈A

min
0≤i≤n

µi(xi) + 1

− sup
f (x1,x2,...,xn)∈Ac

min
0≤i≤n

µi(xi)).
(4)

for any set A of Rm.
First introduced by Kwakernaak [9], fuzzy random vari-

ables can be used to describe an uncertain environment that
fuzziness and randomness exist at the same time. Since then,
fuzzy random variables have demonstrated their magic charm
in many fields, such as optimization, model scheduling, engi-
neering, etc., [13], [43].

Definition 4 (Fuzzy random variable [12]): Suppose that F
defines a set of fuzzy variables. A fuzzy random variable de-
fined on probability space (Ω,Σ,Pr) is a measurable function
ζ : Ω→ F . Then, for any Borel subset B of the real line R

ζ∗(B)(ω) = sup
x∈B

µζ(ω)(x ) (5)

where ζ(ω) refers to a fuzzy variable whose membership
function is described as µζ(ω), ω ∈ Ω.

0

1

0
x

𝜇

𝑚 𝜔 − 𝑙 𝑚(𝜔) 𝑚 𝜔 + 𝑟

𝜁(𝜔)

Fig. 1. L-R fuzzy random variable ζ(ω).

Example 1: A fuzzy random variable ζ defined on proba-
bility space (Ω,Σ,Pr) is considered as a L-R fuzzy random
variable if, for ∀ω ∈ Ω

µζ(ω)(x) =

 L(m(ω)−x
l ), m(ω)− l ≤ x ≤ m(ω)

R(x−m(ω)
r ), m(ω) < x ≤ m(ω) + r

0, otherwise
(6)

where random variable m(ω) is called the peak or mean
value of ζ, and positive real numbers l and r describe the
left and right spreads, respectively. L,R : [0,+∞] → [0, 1],
L(0) = R(0) = 1 and L(1) = R(1) = 0. L and R are strictly
monotonic decreasing functions. Symbolically, ζ is denoted
with (m(ω), l, r)LR,∀ω ∈ Ω (see Fig. 1). Noted that triangular
fuzzy random variables are a special case of L-R fuzzy random
variables.

Definition 5 (Expected value of fuzzy random variable [44]):
Suppose that (Ω,Σ,Pr) is a probability space. Then, the
expected value of fuzzy random variable ζ can be given by

E(ζ) =

∫
Ω

[

∫ ∞
0

Cr{ζ(ω) ≥ r}dr−∫ 0

−∞
Cr{ζ(ω) ≤ r}dr]Pr(dω).

(7)

Theorem 3 [44]: Presume that ζ1 and ζ2 are fuzzy random
variables with finite expected values, such that for any a, b ∈
R

E[aζ1 + bζ2] = aE[ζ1] + bE[ζ2]. (8)

Definition 6 (Skewness of fuzzy random variable [36]): Let
e be the finite expected value of fuzzy random variable ζ, such
that its skewness, S[ζ] can be expressed as

S[ζ] = E[(ζ − e)3]. (9)

IV. CONSTRAINED MULTIPERIOD MULTIOBJECTIVE
PORTFOLIO MODEL WITH FUZZY RANDOM RETURNS

As it is known that investment horizons do affect the
composition of portfolio returns, in this section, the issue
that how the composition of portfolio returns changes with
the investment period is discussed first, followed by deriving
an expression of the available wealth at the beginning of
each period. Then, a constrained multiperiod multiobjective
portfolio model with fuzzy random returns is established. In
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TABLE I
KEY NOTATIONS USED IN THE MODEL DERIVATION

Notations Descriptions

Sj The collection of securities with investment horizon j, j = 1, 2, . . . ,H
Wt The available wealth at the beginning of period t, t = 1, 2, . . . , T + 1

ζt,i The fuzzy random return of security i at period t which contains the invested capital apart from net profit, t = 1, 2, . . . , T , i = 1, 2, . . . , n

xt,i The proportion of wealth invested in security i at period t, t = 1, 2, . . . , T , i = 1, 2, . . . , n

xt The portfolio at period t, t = 1, 2, . . . , T

yt,i A binary variable, yt,i = 1, if wealth is assigned to security i at period t, and otherwise yt,i = 0, t = 1, 2, . . . , T , i = 1, 2, . . . , n

dt,i The unit transaction cost on security i at period t, t = 1, 2, . . . , T , i = 1, 2, . . . , n

Dt The transaction cost aroused by constructing portfolio at period t, t = 1, 2, . . . , T

Maxt The maximum number of securities that constitute a portfolio at period t, 1 ≤Maxt ≤ n, t = 1, 2, . . . , T

lt,i The lower bound of investment proportion on security i at period t, t = 1, 2, . . . , T , i = 1, 2, . . . , n

ut,i The upper bound of investment proportion on security i at period t, t = 1, 2, . . . , T , i = 1, 2, . . . , n

pct,i The price of security i in the secondary market at period t, t = 1, 2, . . . , T , i = 1, 2, . . . , n

TNt,i The total number of shares that shareholder holds on security i at period t, t = 1, 2, . . . , T , i = 1, 2, . . . , n

N0
t,i The current position ratio that the investment institution possesses on security i at period t, t = 1, 2, . . . , T , i = 1, 2, . . . , n

et,i The minimum transaction volume for security i at period t, t = 1, 2, . . . , T , i = 1, 2, . . . , n

this model, three decision criteria, namely the terminal wealth,
CVaR, and skewness, are considered. In the meantime, real-
world constraints are introduced.

It is assumed that investors with initial wealth W1 will
assign their wealth to n securities in the following T periods
and acquire their terminal wealth at the end of the period T .
During the whole investment, they can readjust their portfolio
at the beginning of each period. For better understanding, all
notations used subsequently are introduced in Table I.

A. Available Wealth in Each Period

On the basis of descriptions mentioned above, future se-
curity returns are characterized by triangular fuzzy random
variables, denoted by (mt,i(ω)− lt,i,mt,i(ω),mt,i(ω) + rt,i).
For each ω, mt,i(ω) refers to a normal distributed random vari-
able. lt,i and rt,i are all positive constants, t ∈ {1, 2, ..., T},
i ∈ {1, 2, ..., n}.

The methods used in current research place severe limi-
tations on security return forecasting. For example, experts’
estimations have been criticized for being too subjective.
The time series analysis overly relies upon historical data.
Benefiting from the property that the future is independent
of the past given the present, Markov process can be more
flexible to the unstable financial market, especially when there
exist multiple uncertainties. Therefore, the Markov process is
used to predict triangular fuzzy random returns to make the
model more robust. Moreover, how to determine the left and
right spreads for triangular fuzzy random returns is the key
in this process. First, the transition matrix for each security
is constructed based on the historical price data, followed by
forecasting the future return of the highest price ah, the future
return of the lowest price al, and the future return of the
closing price ac. The left and right spreads can be obtained
by l = ac − al and r = ah − ac, respectively.

It is noted that transaction cost is of great importance for
the final investment decision. To express terminal wealth more
precisely, transaction cost is taken into consideration. Assume

that there are no additional capital invested in all investment
period

Dt =

n∑
i=1

dt,i|Wtxt,i −Wt−1xt−1,i| (10)

satisfying W0 = 0 and x0,i = 0.
Next, an investment process with H different investment

horizons is considered. In this process, the issue that how the
composition of portfolio returns changes with the investment
period is discussed. When t − H + 1 < 1 (i.e., t < H), t
parts constitute the return at the beginning of period t + 1,
namely the returns obtained from securities belonging to Sj
and invested at the beginning of period t−j+1 (j = 1, 2, ..., t).
The returns from securities with longer investment horizons
fail to make themselves included, since these securities do not
achieve expiration. When t − H + 1 ≥ 1 (i.e., t ≥ H), it
is easier to analyze the composition for the reason that all
securities invested in previous periods become mature. Then,
Wt+1 can be mathematically defined by

Wt+1 =


∑t
j=1[Wt−j+1

∑
i∈Sj

ζt−j+1,ixt−j+1,i]−Dt ,

t < H∑H
j=1[Wt−j+1

∑
i∈Sj

ζt−j+1,ixt−j+1,i]−Dt ,

t ≥ H
(11)

B. Three Investment Objectives

1) Expectation of Terminal Wealth: The investors who
prefer long-term investments always lay strong emphasis on
terminal wealth, aiming at obtaining considerable returns at a
prespecified final time. In this case, the expectation of terminal
wealth denoted by E[WT+1] is taken as an objective to reflect
investors’ attitudes.

2) Conditional Value at Risk of Terminal Wealth: Risk
measurement is another factor that draws investors’ attention.
As previously mentioned, many scholars devoted themselves
to capturing the losses incurred in the investment in a more
practical way and proposed diverse so-called risk measures.
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Among these risk measures, CVaR is one of the most com-
monly adopted measures [4], [45], [46]. In this article, CVaR
of terminal wealth is used to measure the risk that the whole
investment may be exposed to.

For better explanation, the notion of VaR which is closely
related to CVaR is introduced first. Presented by Morgan in
1996, VaR estimates the maximum loss that an investment
may suffer during a given period under a certain confidence
level. In this work, the VaR of WT+1, W(T+1)V aR

(β) can be
defined as follows:

W(T+1)VaR(β) = inf{x|Cr{WT+1 ≤ x} ≥ β} (12)

where β denotes the confidence level and β ∈ (0, 1] , Cr refers
to the credibility measure.

As an improvement of VaR, CVaR is a risk measure that
is used to calculate the mean loss exceeding VaR that an
investment may experience during a given period under a
certain confidence level. The tail of loss distribution that is
ignored by VaR is considered in CVaR. Based on (12), it can
be derived by

W(T+1)CVaR(α) =

∫ 1

α
W(T+1)VaR(β)dβ

1− α
(13)

where α describes the prespecified confidence level satisfying
α ∈ (0, 1].

3) Skewness of Terminal Wealth: Conventional portfolio
models impose a strong assumption that the distributions
of investment returns are spherical or elliptical. However,
it turns out that securities with asymmetrically distributed
returns are more widespread. Omitting this fact to construct a
model will result in unrealistic investment decisions. The third
moment of return, so-called skewness, has been demonstrated
by numerous researchers [47], [48] to play a vital role in
the case of asymmetric return distributions, especially in the
multiperiod model. Considering its high relevance to decision
making, the skewness of terminal wealth is taken as the third
objective and defined as follows:

S[WT+1] = E[(WT+1 − E[WT+1])3]. (14)

C. Proposed Model

According to real-world constraints and objectives pro-
posed above, a constrained multiperiod multiobjective port-
folio model is formulated as follows:

min W(T+1)CVaR(α) (15)

max E[WT+1] (16)

max S[WT+1] (17)

subject to
n∑
i=1

xt,i = 1, t = 1, 2, ...T (18)

xt,i = 0, for any i ∈ Sj and t+ j > T + 1 (19)
n∑
i=1

yt,i ≤Maxt, t = 1, 2, ...T (20)

lt,iyt,i ≤ xt,i ≤ ut,iyt,i, t = 1, 2, ...T, i = 1, 2, ...n (21)

xt,iWt

pct,i
≤ b(0.1−N0

t,i)TNt,ic, t = 1, 2, ...T, i = 1, 2, ...n

(22)
xt,i = zt,iet,i, zt,i ∈ N , t = 1, 2, ...T, i = 1, 2, ...n (23)

yt,i ∈ {0, 1}, t = 1, 2, ...T, i = 1, 2, ...n (24)

The budget constraint defined in (18) guarantees that avail-
able wealth in each investment period is invested completely.
Equations (20) and (24) define the cardinality constraint that
restricts the maximum number of securities that constitute a
portfolio at period t to lessen transaction costs and maintain
diversification. Bounding constraint is described through (21).
This constraint points out that the proportion on security i
included in the portfolio at period t is confined within a
given interval. It embodies that forbidding administrative costs
for tiny holdings is more consistent with investors’ prefer-
ence. Equation (22) defines institutional policies constraint
that prevents the proportion of shares of a security held by
an investment institution from exceeding 10%. The round-
lot constraint described in (23) limits that the proportion on
each security in the portfolio at period t is a multiple of its
minimum transaction volume, where N refers to the collection
of positive integers. Equation (19) describes an additional
constraint to ensure that the available wealth will not be
invested in the securities whose returns cannot be mature at
the end of period T .

V. PROPOSED INTELLIGENT HYBRID ALGORITHM

Considering triangular fuzzy random returns and real-world
constraints, it will be an arduous task to solve the proposed
model by using conventional optimization approaches. Thus,
a novel intelligent hybrid algorithm (see Fig. 2) is introduced
to resolve the proposed model.

A. Fuzzy Random Simulation
Liu [12] first proposed a fuzzy random simulation by

incorporating random simulation and fuzzy simulation. Since
then, its importance in the complicated calculations among
fuzzy random variables has been proven by numerous scholars
(e.g., [49]). In this work, fuzzy random simulation is utilized
to derive an effective approximation of uncertain functions in
the model.

For portfolio vector x = (x1, x2, . . . , xT ), the procedure
of obtaining expected value of the terminal wealth E[WT+1]
is described in Algorithm 1.

Note that the minimum value of r obtained from (25)
can be treated as an approximation to fuzzy VaR under
condition Cr{WT+1(ζ0(ω)) ≤ r} ≥ α. Then, the procedure
of obtaining W(T+1)CVaR(α) is summarized in Algorithm 2

L(r) = 0.5(max{µt,i|WT+1(ζ0(ω)) ≥ r}
+ 1−max{µt,i|WT+1(ζ0(ω)) < r})

(25)

where t = 1, 2, ...T , i = 1, 2, ...n. ζ0 defines a fuzzy random
vector whose randomness is determined by a random vector
X0, and µt,i is the membership function of the fuzzy variable
ζ0
t,i(ω).

Since S[WT+1] can be approximated by a process similar
to E[WT+1], the procedure of acquiring S[WT+1] will not be
presented here.
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Fig. 2. Overall framework of the intelligent hybrid algorithm.

Algorithm 1: Procedure to Calculate E[WT+1].
Input: Decision vector x = (x1, x2, . . . , xT ), future

return vector ζ, random vector X that
determines the randomness of ζ, non-negative
real number that is large enough M1, positive
integer that is large enough M2

Output: EW
1 set EW = 0;
2 for each i ∈ [0,M2] do
3 sample X0 according to the distribution of random

vector X;
4 set e1 = 0;
5 set e2 = 0;
6 set h = M1

M2
;

7 for each j ∈ [0,M2] do
8 rj = jh;
9 calculate Cr[j] = Cr{WT+1(ζ0(ω)) ≥ rj};

10 r′j = −M1 + jh;
11 calculate Cr′[j] = Cr{WT+1(ζ0(ω)) ≥ r′j};
12 for each j ∈ [0,M2 − 1] do
13 e1 = e1 + h(Cr[j]+Cr[j+1])

2 ;
14 e2 = e2 + h(Cr′[j]+Cr′[j+1])

2 ;

15 set η0 = e1 − e2;
16 EW = EW + η0;

17 EW = EW
M2

;
18 return EW;

B. Simulated Annealing Resilient Back Propagation Neural
Network

Time consuming has become one of the major challenges
faced by the fuzzy random simulation. Targeting at this de-
merit, a neural network is trained for objectives approximation
while the fuzzy random simulation is used to generate the
training data.

It is agreed that neural network offers an alternative way
in diverse fields [50], [51]. For function approximating, it
can learn from fundamental information in examples and
then uniformly approximate the given functions which fully
meets authors’ requirements. First introduced by Treadgold
and Gedeon in 1997, SARPROP [52] has been proven to
be able to improve the convergence rate for neural networks
training. By using SA, this method can also avoid converging

Algorithm 2: Procedure to Obtain W(T+1)CVaR
(α).

Input: Decision vector x = (x1, x2, . . . , xT ), future
return vector ζ, random vector X that
determines the randomness of ζ, confidence
level α, positive integer that is large enough N

Output: W
1 set W = 0;
2 for each i ∈ [0, N ] do
3 sample X0 according to the distribution of random

vector X;
4 set e = 0;
5 for each j ∈ [0, N ] do
6 αj = α+ j(1− α)/N ;
7 find the minimum value of rj satisfying

L(rj) ≤ αj ; // see (25)
8 e = e+ rj(1− α)/N ;

9 W =W + e/(1− α);

10 W =W/N ;
11 return W;

to local minima. To benefit from the advantages mentioned
above, the neural network trained by SARPROP is adopted for
objectives approximating in the proposed algorithm. This en-
hancement will significantly improve computational efficiency
of intelligent hybrid algorithm.

C. Improved Imperialist Competitive Algorithm

Inspired by the behavior of imperialist competition, the ICA
begins with some countries. Some of them (more powerful
ones) serve as imperialists and the rest are considered as
colonies. In fact, the number of imperialists is essential to
the performance of the ICA. Relevant literature emphasizes
that 10–13% of the number of countries seems to be a good
choice. In this article, the proportion is set as 10%. After the
country classification, one imperialist and some colonies then
constitute an empire. The number of colonies in the empire
is determined by the imperialist on the basis of its power.
In the subsequent assimilation operation, all colonies in each
empire move toward their related imperialist. Competition is
then happened among empires. Empires try to supplant each
other and the weakest one loses the colonies it possesses and
collapses finally. For details, please refer to [53].
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As a promising choice to handle complicated portfolio
models, ICA possesses some remarkable properties which
are suitable for solving the proposed model. For example,
it is powerful in the sense of dealing with large number of
decision variables, and is less dependent on initial solutions.
Nevertheless, it also has some drawbacks, e.g., premature con-
vergence. To overcome those shortcomings, a novel improved
multiobjective ICA named IFMOICA is used to conduct the
search for Pareto-optimal solutions.

IFMOICA adopts a new search mechanism to promote the
capability of exploration and develops a novel two-step method
to select solutions.

1) Novel Two-Step Method: A reasonable and effective
benchmark for solution ranking is of great importance in mul-
tiobjective portfolio problems. In IFMOICA, a newly proposed
two-step method is employed to accomplish this job.

The method starts with ranking countries in the current gen-
eration by fast non-dominated sorting. Then, non-dominated
countries are assorted into rank 1 and are added to a external
archive A. The imperialists are also chosen from the countries
in rank 1.

A metric in accordance with the objectives and the ranks
given in step 1 is then proposed in the next step of method.
Archive A will finally reach its maximum capacity Amax as the
search progresses. In this case, the proposed metric serves as a
quantitative measure to calculate the power of countries which
help Archive A maintain high quality solutions. Additionally,
it also plays an important role in creating and comparing the
empires. In this article, the power of country c belonging to
Rank R is illustrated as follows:

Fi,c =
|fi,c − fworst

i |
fmax
i − fmin

i

(26)

Costc =

No∑
i=1

[
Fi,c∑NR

j=1 Fi,j
](R− 1)No (27)

Pc =
1

Costc
(28)

where fi,c represents the ith objective value of country c. The
maximum value, minimum value, and worst value of the ith
objective in the current generation are denoted by fmax

i , fmin
i ,

and fworst
i , respectively. No refers to the number of objectives

in the model. NR describes the number of countries belonging
to Rank R.

Each objective value is normalized twice. The first time [see
(26)] implemented within the whole current generation would
handle the issue that objective values are too concentrated,
and the second [the first part of (27)] occurs within the rank to
guarantee the dominance of R in the cost value. All normalized
objectives values are summed to generate the cost value, and
the power of the country can be denoted with the reciprocal
of the cost value.

2) New Search Mechanism: A notable feature of original
ICA is that all colonies in empires perform movements toward
their relevant imperialist in light of the attraction mechanism.

Limitations of this operation may result in the so-called prema-
turity or poor convergence speed. It is clear that maintaining
diversity in countries has become an urgent issue.

Developed by Yang [54], the firefly algorithm (FA) has been
proven to have the potential to outperform other EAs, e.g., GA
and PSO, in some fields [55]. FA captures the flash pattern
of fireflies and holds many highlights. Automatic subdivision
is one of the most outstanding highlights. Benefiting from the
behavior of fireflies, the whole population in FA can be divided
into subgroups automatically, and each subgroup is allowed to
swarm separately. This feature helps FA preserve diversity of
the whole population, which is exactly what the ICA needs.
Based on the fact mentioned above, a new search mechanism is
introduced by adopting the flashing characteristics of fireflies.
Two actions compose the new search mechanism:
• Simultaneous movement of colony toward its imperialist

and the most powerful imperialist: As noted, the move-
ment to the most powerful imperialist does not exist in the
original ICA. However, in fact, it seems a fair inference
that a colony would desire to move toward the most
powerful imperialist since each colony wants to reach
a better socio-political position. Aroused by this fact, a
new move operation is added. Then, the first action which
combines the moving mechanism in FA with this new
move operation can be defined as follows:

colnew
i = colold

i +Mβ0e
−γr2i,imp(impcoli − colold

i )

+ (1−M)β0e
−γr2i,stro(impstro − colold

i )

+ α(ε− 1

2
) (29)

where the new position and old position of colony i are
denoted by colnew

i and colold
i , respectively. impcoli and

impstro refer to the positions of the related imperialist of
colony i and the most powerful imperialist, separately. M
is the move rate satisfying M ∈ [0.1, 0.9]. The same as in
FA, γ and β0 define the light absorption coefficient and
the maximum attractiveness value, respectively. r is the
Cartesian distance from the current colony to the chosen
one. The last term is randomization with a parameter α
and a random vector ε drawn uniformly from [0, 1].

• Movement caused by the interaction of colonies: This
action takes its inspiration from the interaction between
the colonies, and assumes that all colonies are obliged to
spread their effect in order to compete with each other and
improve socio-political position. Interaction of colonies is
reflected in (30) and (31),

colnew
i = colold

i + β0e
−γr2j,jj (colj − coljj)

+ α(ε− 1

2
), if Pj > Pjj

(30)

colnew
i = colold

i + β0e
−γr2jj,j (coljj − colj)

+ α(ε− 1

2
), if Pj ≤ Pjj

(31)

where colj and coljj refer to the positions of colony j and
colony jj, respectively. Pj and Pjj denote their power,
respectively. Colonies j and jj are randomly filtered from
the colonies within the empire that colony i belongs to.
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Colony i would tend to move toward colony j if colony
j is more powerful than colony jj and toward colony jj,
otherwise.

Note that, to guarantee that colonies move to the prospective
direction,

coli =

{
colnew

i colnew
i is better than colold

i

colold
i otherwise

(32)

where coli refers to the position of colony i in the current
generation. coli would maintain if colony i does not reach a
better position after moving.

The flow chart of IFMOICA is illustrated in Fig. 3. Apart
from the abovementioned innovation, the repair method is
adopted to cope with constraints. Each country that does not
satisfy all the constraints considered needs to be repaired be-
fore being accepted as a member. The algorithm will continue
until stopping criterion is met, i.e., there only exists one empire
that controls all countries or the maximum number of iterations
is reached.

D. The Intelligent Hybrid Algorithm

On the basis of all of the above knowledge, a more effective
and powerful intelligent hybrid algorithm is proposed. In this
algorithm, a trained SARPROP neural network provides ap-
proximate objectives with the help of fuzzy random simulation
and the newly developed IFMOICA searches solution space
to form the Pareto-optimal solutions. The pseudocode of the
intelligent hybrid algorithm is described in Algorithm 3.

VI. INTELLIGENT PARALLEL HYBRID ALGORITHM

In fact, multiple objective evaluations (especially the train-
ing dataset generation part) still make computational time a
significant challenge for the proposed algorithm, which means
that the Pareto frontier cannot be obtained in a satisfying time
especially when facing the large scale securities data. However,
it is obvious that the proposed algorithm holds an inherent
parallel structure, implying that algorithmic parallelization can
be a good choice to improve computational efficiency. In
this article, the MPI technology is applied for the purpose
of improving the efficiency of training data generation and
exploring a larger search space.

It is well known that the master-slave paradigm is very easy
to implement and manage. Consequently, the intelligent hybrid
algorithm is parallelized based on master-slave paradigm, and
its flowchart is illustrated in Fig. 4. Like in all of master-slave
parallel algorithms, apart from handling its own computational
task, the master processor in the parallelization takes the
responsibility of coordinating all involved operations, while
slave processors only perform the tasks given to them. In
detail, each processor implements Markov process first to pre-
dict future fuzzy random security returns which would avoid
unnecessary data exchange. After that, the master processor
informs slave processors the size of data that they should
generate. For load balancing, the sizes are generally equal.
Then, each processor preforms fuzzy random simulation to
complete this task. Master processor begins to gather the
obtained data and spell them into one dataset when all the
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Fig. 3. Flowchart of IFMOICA.

simulations are finished. Afterward, each processor trains a
SARPROP neural network on the basis of the previous dataset
followed by sending their weight matrixes to the master
processor. A weights-choosing procedure is then carried out
by master processor for weight matrixes selection. In this
procedure, the weight matrix with highest accuracy on the
validation set is selected and sent to all slave processors. Next,
each processor executes IFMOICA and implements migration
after some decades (which is different for different runs) by
sending their Pareto-optimal solutions to master processor.
Moreover, the master processor computes the current Pareto-
optimal front and sends it back. It should be noted that
all processors maintain the same number of countries and
implement migrations synchronously. The master processor
outputs the Pareto-optimal solutions when the set termination
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Algorithm 3: The Intelligent Hybrid Algorithm
Input: Historical data on the security returns, the size

of the archive A Amax, population size
PopSize

Output: The archive A
1 for i ≤ the given size of training dataset do
2 generate decision vector x = (x1, x2, . . . , xT )

randomly;
3 data[i][0 : T ∗ n− 1] ← (x1, x2, . . . , xT );
4 data[i][T ∗ n] = E[WT+1]; // see Algorithm 1
5 data[i][T ∗ n+ 1] = W(T+1)CVaR

(α); // see
Algorithm 2

6 data[i][T ∗ n+ 2] = S[WT+1];

7 nn ← initialize a SARPROP neural network;
8 while Iters ≤MaxIter and mse > DesiredErr do
9 train on data (nn, data); // train the neural network

10 saveWeights (weightsfile);
11 for i ∈ [1, PopSize] do
12 Countries[i].portfolio ← initialize a country

randomly;
13 Countries[i].objectives ← nn.outPut

(Countries[i].portfolio);

14 Fast Non Dominated Sort (Countries, PopSize);
15 Power (Countries); // calculate power for all countries
16 CreateEmpire (); // create empires
17 if the number of countries with rank 1 < Amax then
18 maintain the archive A with countries with rank 1;

19 else
20 maintain the archive A with the best Amax

countries with rank 1, ranked by power;

21 while stopping criterion not met do
22 Assimilation (); // assimilation operator and

update archive A
23 Competition (); // imperialist Competition
24 EliminateEmpire (); // eliminate the empire

with no colonies
25 return archive A;

condition is met.

VII. PERFORMANCE EVALUATION

In this section, parameter settings for the proposed model
and algorithms are introduced first. After hybridizing NSGA-
II with fuzzy random simulation and SARPROP neural net-
work to form an algorithm named FRNSGA-II, a comparison
between the intelligent hybrid algorithm and FRNSGA-II is
given. In this comparison, the running time and two widely
adopted performance metrics are used to evaluate the perfor-
mance of algorithms on three different real historical financial
datasets. Whereafter, the intelligent parallel hybrid algorithm
is tested on the same three data sets to verify its scalability.

A. Parameters Setup
For all datasets used, presume that the securities that

investors may be interested in are with three investment
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Fig. 4. Flowchart of the intelligent parallel hybrid algorithm.

horizons. Securities with higher volatility are considered to
be more suitable for shorter investment horizon. Meanwhile,
as mentioned before, the triangular fuzzy random returns are
predicted by Markov process based on historical data from
the Shanghai Stock Exchange. Additionally, the initial wealth
is set as W1 = 1. Table II is devoted to summarizing the
parameters in the model. It can be noticed that different
securities in different investment periods take the identical
unit transaction cost. In fact, the unit transaction cost in the
financial market is composed of transfer fee, stamp duty,
and commission. The first one is often ignored in academic
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TABLE II
PARAMETERS FOR THE PROPOSED MODEL

α Maxt dt,i lt,i ut,i TNt,i N0
t,i

0.9 10 0.003 0.05 1 [8e6, 2e10] [0, 0.085]

TABLE III
GENERAL PARAMETERS FOR IFMOICA AND NSGA-II

Parameters IFMOICA NSGA-II

population size 600 600
number of generation 2000 2000

archive size 100 −
number of imperialists 60 −

moving rate 0.6 −
maximum attractiveness value 3 −

absorption coefficient 0.00001 −
mutation probability − 0.1
crossover probability − 0.5

research due to its small proportion. In this study, it is assumed
that the last two parts of each security are the same in the
overall investment period, and the unit transaction cost is thus
set to 0.003 which is an appropriate choice for most of the case
studies. Some general parameters for IFMOICA and NSGA-II
are specified in Table III.

B. Experiment Results and Analysis

1) Quality Indicator: Several performance metrics have
been developed to measure qualitative characteristics of
Pareto-optimal solutions obtained from the multiobjective
EAs. In this article, spacing (S) and hypervolume (HV) metric
are used.

Spacing (S): S metric measures the variance of nearest
distance between elements in non-dominated frontier found. It
numerically describes the spread of elements in the obtained
non-dominated frontier and is defined as follows:

S =

√√√√ 1

|Q| − 1

|Q|∑
i=1

(d− di)2 (33)

di = minj(

M∑
m=1

|f im(x)− f jm(x)|), j = 1, 2, ..., |Q| (34)

where Q refers to non-dominated frontier generated by an
algorithm, and |Q| defines the number of elements in Q. d is
the mean of all di. M denotes the dimension of the element
in Q. A smaller value of S indicates that the elements in the
found non-dominated frontier are more evenly spaced.

Hypervolume (HV): The HV metric is defined to obtain
the volume enclosed by elements in the found non-dominated
frontier with respect to the objective space, namely a sum-
mation of hypercubes bounded by a reference point. This
metric captures both the proximity of the found non-dominated
frontier to the true Pareto frontier and the diversity of the
former. Mathematically,

HV = volume(∪|Q|s=1Vs) (35)

where Q denotes the non-dominated frontier generated by an
algorithm. Vs refers to the hypercube from element s to the
reference point. |Q| describes the number of members in Q. A
larger value of this metric is more preferred when comparing
the results of the two algorithms.

For a more accurate computation, the objective space is
normalized by (36).

fi =
fi − fmin

i

fmax
i − fmin

i

(36)

where fmax
i and fmin

i refer to the maximum and minimum
value of the ith objective produced by all runs of the two
algorithms. Generally, the reference point is formed by worst
values of the objectives. In this work, it is set as (1, 0, 0).

2) Comparison of the Algorithms: A set of experiments are
carried out to provide the comparison between the intelligent
hybrid algorithm and FRNSGA-II in terms of running time,
HV, S metrics and Pareto frontier. In this comparison, histori-
cal data from the Shanghai Stock Exchange (i.e., Datasets 1-3)
is used, which covers the price data over a period of 23 years
from April 1996 to April 2019. On Dataset 1, a six-month
portfolio selection problem with 10 securities is considered,
and a dataset of 6144 data point generated from fuzzy random
simulation is used as the training dataset for SARPROP neural
network. On Dataset 2, the size of problem increases to 30
securities. Accordingly, the size of training set is raised to
12288. A three-month large scale portfolio selection problem
with 402 securities is based on Dataset 3, in which the number
of training set data points is 36864.

As the problems of this type are computationally diffi-
cult, the true Pareto frontiers are not known. Thus, all non-
dominated solutions obtained from the two algorithms are
integrated to form the best known Pareto frontier which is
a reference set (BKPF).

The running time, HV, S metrics and Pareto frontier of
the two algorithms on the three datasets are summarized in
Fig. 5-7. For simplicity, only the running time of the last
part in the two algorithms is compared. The results show
that the intelligent hybrid algorithm is significantly faster
than FRNSGA-II for all the problem instances. For example,
compared to FRNSGA-II, a dramatic decrease (nearly 96.4%)
is seen in the mean value for running time of the intelligent
hybrid algorithm on Dataset 3. Moreover, the intelligent hybrid
algorithm holds smaller mean values for S metric and larger
mean values for HV on Dataset 2 and Dataset 3. On Dataset 1,
the performance of the two algorithms is almost comparable
since the intelligent hybrid algorithm obtains a better mean
value for HV and a slightly underperformed mean value for
S metric.

From the perspective of illustration, the comparison between
the obtained Pareto frontiers of the algorithms and BKPF on
the three datasets is also presented. On Dataset 1, the Pareto
frontiers generated by the two algorithms are all difficult
to differentiate visually from BKPF, demonstrating that they
will be competitive to each other. As the size of securities
increases, the intelligent hybrid algorithm begins to show its
superiority and maintains a better Pareto frontier even when
the number of securities exceeds 400. It can be inferred from
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the abovementioned facts that the intelligent hybrid algorithm
can solve the constrained multiperiod multiobjective portfolio
model efficiently even facing large scale securities data and
will achieve a better performance over FRNSGA-II.

3) Scalability of the Intelligent Parallel Hybrid Algorithm:
Speedup and parallel efficiency are significantly vital to prov-
ing the scalability of a parallel algorithm. In this work, the run-
ning time, speedup, and parallel efficiency on the three datasets

are illustrated in Figs. 8-10. The results show that running time
can be reduced dramatically for all the problem instances by
conducting parallelization. For example, with 3072 processors,
it only takes nearly 5 h to solve the model with the size of
securities up to 402 which will be an impossible task for a
single processor. Furthermore, the results also confirm that
the parallel algorithm is scalable to some extent. Take speedup
and parallel efficiency on Dataset 1 as an example, the parallel
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Fig. 9. Running time, speedup and parallel efficiency on Dataset 2. (a) Running time. (b) Speedup. (c) Parallel efficiency.

algorithm maintains good speedup and parallel efficiency when
the number of processors is relatively small. As the number
of processors increases, a significantly drop is seen in the
performance of speedup and parallel efficiency as a result of
frequent communications and massive data exchange among
processors. Despite the decline, the parallel efficiency remains
above 60%. The speedup and parallel efficiency on Dataset 2
and Dataset 3 have a similar performance with Dataset 1.

As an overall result, the parallelization of the intelligent hy-

brid algorithm not only improves the computational efficiency
but also ensures the superiority when dealing with large scale
securities data.

VIII. CONCLUSION

In this article, a multiperiod multiobjective portfolio model
with real-world constraints was developed to handle the port-
folio selection problem based on large scale securities data in
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Fig. 10. Running time, speedup and parallel efficiency on Dataset 3. (a) Running time. (b) Speedup. (c) Parallel efficiency.

the uncertain market. In this model, the randomness and fuzzi-
ness in the financial market were captured by treating future
security returns as fuzzy random variables. Moreover, terminal
wealth, CVaR, and skewness were considered as tricriteria for
decision making. Aiming to effectively resolve the proposed
model, a novel intelligent hybrid algorithm was introduced.
In this algorithm, a trained SARPROP neural network pro-
vided approximate objectives with the help of fuzzy random
simulation, and the newly proposed IFMOICA was used to
form the Pareto-optimal solutions. It was demonstrated that
the intelligent hybrid algorithm achieves a better performance
over FRNSGA-II. The improvement is not only in the running
time but also in the quality of the Pareto frontier. To improve
computational efficiency and cope with large scale securities
data, an intelligent parallel hybrid algorithm adopting MPI
technology was presented. The experiments certified that the
parallel algorithm has a good scalability and could solve the
large scale portfolio selection problem consisting of securities
up to 402 in a reasonable time.

For future work, the proposed model can be extended with
more trading constraints. Furthermore, the proposed algorithm
can be tested on larger historical financial datasets and gener-
alized to more fuzzy random portfolio selection problems.
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