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A B S T R A C T

The nucleus of the solitary tract (NTS) is the primary brainstem centre for the integration of physiological
information from the periphery transmitted via the vagus nerve. In turn, the NTS feeds into downstream circuits
regulating physiological parameters. Astrocytes are glial cells which have key roles in maintaining CNS tissue
homeostasis and regulating neuronal communication. Recently an increasing number of studies have implicated
astrocytes in the regulation of synaptic transmission and physiology. This review aims to highlight evidence for a
role for astrocytes in the functions of the NTS. Astrocytes maintain and modulate NTS synaptic transmission
contributing to the control of diverse physiological systems namely cardiovascular, respiratory, glucoregulatory,
and gastrointestinal. In addition, it appears these cells may have a role in central control of feeding behaviour. As
such these cells are a key component of signal processing and physiological control by the NTS.

1. Introduction

The nucleus of the solitary tract (NTS) is a major interoceptive hub
in the brainstem which forms part of the dorsal vagal complex (DVC)
along with the area postrema (AP) and dorsal motor nucleus of the
vagus (DMX). The vagus nerve (10th cranial nerve) innervates most of
the major internal organs including the heart, lungs and gastrointestinal
tract, and its afferent branch sends terminals to the NTS via a nerve
bundle called the solitary tract (ST). The majority of the inputs from the
vagus terminate in the caudal NTS while more rostral areas are in-
nervated by the facial nerve (7th cranial nerve) and glossopharyngeal
nerve (9th cranial nerve). Vagal afferents form glutamatergic synapses
onto second-order neurons relaying information from the periphery to
the NTS [1,2]. NTS neurons project locally to preganglionic motor
neurons in the DMX and to other sites in the brainstem, midbrain and
hypothalamus to drive appropriate physiological responses to incoming
signals [3]. To this end, the NTS has been shown to be the point of
origin for central nervous system (CNS) processing of cardiovascular,
respiratory, glucoregulatory and satiety signalling [4–7]. Much of this
work to date has focussed on neurons, but a growing number of studies
are examining roles for non-neuronal cells in the synaptic and physio-
logical processes of the NTS.

Astrocytes are glial cells that populate the entire CNS. These cells
are crucial to brain function, providing structural and metabolic sup-
port to neurons and playing roles in synaptic transmission and

cerebrovascular coupling (for review see [8]). Astrocytes pre-
dominantly signal via fluctuations in intracellular Ca2+ coupled to
gliotransmitter release [9,10]. These astrocytic Ca2+ variations have
been demonstrated in response to neurotransmitters and lead to al-
terations in downstream signalling, including release of gliotransmitters
(e.g. glutamate, ATP) and modulation of glutamate transport [10,11].
Astrocytes in a variety of different brain regions are implicated in the
control of a wide range of neural systems including memory [12,13],
addiction [14–16] and, of importance to this review, autonomic control
[17,18] and the regulation of feeding behaviour [19–25]. The NTS is no
exception, and here we highlight research showing that astrocytes in
this brain region support and contribute to neural circuits controlling
physiology.

2. Astrocytes modulate synaptic transmission in the NTS

Synaptic transmission between vagal afferent terminals and second-
order viscerosensory neurons allows for the appropriate autonomic and
behavioural response to physiological challenges. Vagal afferents en-
tering the NTS via the ST release glutamate onto postsynaptic neurons.
This can be modelled experimentally where in ex vivo brain slices,
electrical stimulation of the ST produces short-latency, glutamate-
mediated, excitatory postsynaptic currents (EPSCs) in second-order NTS
neurons [1,2]. Astrocytes ensheathe glutamatergic synapses in the NTS
providing structural evidence for a role in synaptic transmission [26]
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and indeed, a number of functional studies (described below) have
demonstrated that astrocytes are critically involved in this process
(Fig. 1).

NTS astrocytes express Ca2+ permeable AMPA receptors (AMPA-R).
Using Ca2+ imaging from astrocytes and neurons in ex vivo NTS rat
brain slices, McDougal and colleagues demonstrated that astrocytes can
detect glutamate released following electrical ST stimulation and re-
spond with increases in intracellular Ca2+, both from extra- and in-
tracellular sources [27]. This ST stimulation evokes activation of
AMPA-R on astrocytes allowing Ca2+ influx to the cell, which drives
Ca2+-induced Ca2+-release further increasing Ca2+ levels via libera-
tion from intracellular stores. These Ca2+ elevations are sensitive to the
AMPA-R antagonist NBQX but not antagonists for metabotropic gluta-
mate receptors (mGlu-R) 1 or 5 nor NMDA receptors (NMDA-R) [27].
Further supporting a role for astrocytic AMPA-R in integrating in-
formation encoded by the ST, in a separate study ST stimulation evoked
time-locked, inward currents in astrocytes that were abolished by the
AMPA-R antagonist DNQX [28]. The ionic flow contributing to this
inward current was not directly assessed. Thus, NTS astrocytes are
sensitive to incoming signals from the periphery via vagal afferent
glutamate detection.

In addition to sensing ST-derived glutamate, astrocytes also con-
tribute to transmission across the ST-NTS neuron synapse. Astrocyte
function can be selectively inhibited with fluoroacetate (FAC) and its
metabolite fluorocitrate (FC). FC inhibits the tricarboxylic acid (TCA)
cycle and both FC and FAC preferentially affect astrocytes at nanomolar
concentrations used in experimental settings [29–31]. This is thought to
be due to the tendency of astrocytes and not neurons to take up and
utilize acetate for cellular metabolism [32,33]. A second mechanism of
action may be due to buffering of intracellular Ca2+ due to accumu-
lation of citrate, a Ca2+ chelator [34–36]. In brain slices from rats,
metabotropic receptor dependent Ca2+-signalling and gliotransmission
in NTS astrocytes has been demonstrably and reversibly inhibited by 30
minute treatment of FC followed by a 10 minute washout period [37].

In the presence of FAC, both ST-evoked EPSC amplitude and spon-
taneous EPSC frequency are reduced in NTS neurons that project to the
ventrolateral medulla (VLM) [28]. This tonic, astrocytic contribution to
synaptic transmission is likely mediated by release of ATP since an-
tagonism of P2X purinergic receptors with the broad-spectrum ligand
iso-PPADS recapitulates the effect of FAC, but the two do not have
additive effects [28]. Furthermore, an increase in extracellular ATP
observed in this study following ST-stimulation was reduced by FAC.
Evidence also suggests that astrocytes can restrain neuronal excitability
directly in NTS neurons; astrocyte inhibition with FAC reduces the NTS
neuronal A-type potassium current (IKA) [38]. Under normal condi-
tions, this outward potassium current present at the beginning of the
initial depolarisation acts to restrain neuronal action potential
threshold and firing. While the underlying mechanism has not yet been
fully explored in the NTS, in the hypothalamus IKA is inhibited when
astrocytic glutamate uptake is reduced due to activation of extra-sy-
naptic NMDA-Rs [39]. In postsynaptic neurons, ST-evoked AMPA EPSC
amplitude is lower from brain slices in the presence of FAC while ST-
evoked NMDA EPSC amplitude is greater [40]. This demonstrates that
astrocytes provide tonic neuromodulation which has inverse effects on
signalling via the two main types of ionotropic glutamate receptor.

A second mechanism by which astrocytes may support ST-NTS
neurotransmission is by active supply of the metabolite lactate [41]. It
has been theorised that in the brain, glucose is the main fuel source for
astrocytes which then metabolise this to lactate. Astrocyte-derived
lactate is then shuttled via monocarboyxlate transporters (MCTs) to
neurons where it is metabolised to pyruvate and used to fuel the TCA
cycle [42,43]. However this hypothesis, termed the astrocyte-neuron
lactate shuttle, is controversial [44] and remains a topic of debate
[45,46]. When MCTs are pharmacologically inhibited with 4-CIN,
phloretin or D-lactate in rat NTS brain slices, the amplitude of ST-
evoked neuronal EPSCs are reduced. Since this effect is rescued by
providing extracellular lactate it was concluded that ST-NTS synaptic
fidelity is reliant on lactate from astrocytes transported through MCTs

Fig. 1. A simplified schematic of astrocyte modulation of synaptic transmission in the NTS. 1) Astrocytes respond to synaptic glutamate via AMPA-receptors (AMPA-
R) expressed on the cell surface; 2) Astrocytes clear glutamate from the synapse to restrain neuronal firing and maintain presynaptic glutamate levels via EAAT2; 3)
Astrocytes provide fuel to neurons in the form of lactate in order to maintain fidelity of synaptic transmission; 4) Astrocytes provide tonic modulation to synaptic
transmission in the form of purinergic gliotransmission (release of ATP which may be converted to adenosine in the synaptic cleft) and 5) altering post-synaptic
excitability by modulating presence of the a-type potassium current (IKA) which restrains action potential firing. Abbreviations: Ado = adenosine, ATP = adenosine
triphosphate, EAAT2 = excitatory amino acid transporter 2, MCT = monocarboxylate transporter, NTS= nucleus of the solitary tract, ST = solitary tract,
VGKC = voltage gated potassium channel.
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on astrocytes and neurons [41].
A further mechanism by which astrocytes may modulate ST-NTS

neurotransmission is by regulating synaptic glutamate availability.
Astrocytes clear glutamate from the synaptic cleft and recycle it to
neurons in the form of glutamine, which can then be used for further
glutamate synthesis by neurons [47]. Excitatory amino acid transporter
1 (EAAT1) and EAAT2, are expressed primarily by astrocytes [48]. In
the NTS this astrocytic glutamate reuptake appears to be essential for
normal synaptic function [49–51]. Pharmacological blockade of both
EAAT1 and EAAT2 with DL-threo-β-benzyloxyaspartic acid (TBOA)
elevates synaptic glutamate as evidenced by NTS neuronal depolarisa-
tion and action potential firing, and increased spontaneous EPSCs [49].
Furthermore in NTS neurons, ST-evoked EPSCs are reduced by TBOA
suggesting released glutamate is not being returned to the presynaptic
terminal [49]. These effects can be recapitulated by dihydrokainate
(DHK), an EAAT2 blocker [50,51]. In combination with im-
munohistochemical evidence [26], this indicates that EAAT2 is the
primary glutamate transporter responsible for glutamate reuptake and
recycling at the ST-NTS synapse [50,51]. Glutamate transporters on
astrocytes appear to be pH sensitive since synaptic glutamate accu-
mulates at pH 7.0, suggesting they may play an additional chemosen-
sory role [52]. Given that astrocytes in more ventral chemosensory
brainstem areas, including the retrotrapezoid nucleus, are directly pH
sensitive and involved, in concert with local neurons, in detection of
increasing PCO2 this may be a common feature of astrocytes that allows
for chemodetection of low pH [53,54].

Thus, combined evidence from a number of independent research
groups shows that astrocytes support synaptic transmission in the NTS
by buffering and recycling synaptic glutamate [49–51], shuttling lac-
tate to neurons [41] and providing tonic purinergic neuromodulation
[28,38] (Fig. 1). Interestingly, they are also able to directly detect vagal
glutamate release [27]. This raises the possibility that astrocytes mod-
ulate their functions in response to increased vagal input making them
key integrators of information at this important integrative site.

3. Physiological and environmental stimuli modulate the
morphology of NTS astrocytes

Astrocytes show regional variations in the expression of the cytos-
keletal glial fibrillary acidic protein (GFAP), which is dynamically
regulated in response to local variations in the brain microenvironment
[55–57]. For example cortical astrocytes show low basal GFAP ex-
pression but dramatically upregulate this protein in response to tissue
injury, suggesting that this change serves a reactive and possibly neu-
roprotective role [58]. Since GFAP forms intermediate filaments that
make up the astrocyte cytoskeleton, an increase in GFAP expression
results in altered morphology and increased branching of the cells.
Precisely how this morphological change relates to cell function is still
unclear, but it may allow dynamic ensheathment of synapses. Broadly
speaking, high GFAP expression and branched morphology is con-
sidered indicative of astrocyte activation. Relatively, the NTS in rats has
been described to have higher GFAP expression than other brainstem
nuclei [59]. However, in contrast, some studies in mice observed lower
levels of GFAP expression when compared with the rat example
[60,61]. It is unclear if this represents a true species difference or is
indicative of variations in the experimental conditions since GFAP ex-
pression in the NTS is highly dynamic (discussed below). Notably in
rats, within the NTS the astrocytes are smaller, have a simpler mor-
phology, and greater overlapping domains than other brainstem auto-
nomic nuclei [62]. Since GFAP is not a uniformly expressed astrocyte
marker [55,56] and is dynamically regulated [57,58], some studies
have utilized other markers, including the calcium binding protein
S100b [27].

Several studies have reported that NTS GFAP expression, commonly
measured using immunoreactivity, is modulated by different experi-
mental stimuli (Table 1). For example, inspiration of ozone gas

increases vascular endothelial growth factor (VEGF) expression in NTS
astrocytes and increases the branching of the cells [63], indicating the
responsivity of these cells to respiratory challenge. Ozone inhalation
also increases the astrocytic ensheathment of synapses in the NTS,
which may represent a mechanism by which astrocytes regulate neu-
ronal synaptic activity as a compensatory response to the physiological
change [64]. GFAP is also increased in the NTS under conditions of
hypoxia, at least during initial 24h [60,65,66]. Interestingly, blockade
of microglial activation with minocycline decreases hypoxia-induced
GFAP changes, indicating crosstalk between these two glial cell types in
the NTS [60]. Taken together this suggests that NTS astrocytes are re-
sponsive to low oxygen and may be involved in mediating the central
response to hypoxia (see Section 4.1).

In addition to hypoxic challenge, NTS GFAP expression is regulated
in a diverse range of disease models associated with inflammation
(Table 1). For example, NTS GFAP immunoreactivity is increased in a
pharmacological rat model of liver failure, alongside impaired barore-
flex sensitivity in these animals [67]. In a model where streptozotocin
(STZ) is infused into the lateral ventricle of rats to induce neurode-
generation, greater s100b-immunoreactivity is seen in the NTS, ac-
companied by an impaired ability to increase breathing rate to com-
pensate for hypoxia [68]. In another neurodegenerative disease model,
60 days after induction of Parkinsonian neuropathology (following
striatal 6-hydroxydopamine injection) rats show decreased NTS GFAP
immunoreactivity, which also correlates with respiratory changes [69].
Finally, in a 2-kidney 1-clip rat model where blood supply to one kidney
is partially blocked to activate the renin-angiotensin-aldosterone
system and produce hypertension, a greater number GFAP im-
munoreactive cells are observed in the NTS when compared with nor-
motensive controls [70]. Importantly, NTS GFAP immunoreactivity
increases with age in rats, which may in future be shown to associate
with age-related changes in physiology in some cases [71]. Correla-
tional evidence does not reveal whether this observed astrocyte plas-
ticity is a cause, consequence or unrelated to the physiological pheno-
types displayed by these models.

Astrocytes and their progenitors, radial glia, play a critical role in
brain development [72] so it is noteworthy that NTS astrocyte mor-
phology is also regulated by environmental stimuli presented during
development. In rats exposed to prenatal X-ray irradiation at a critical
period during development (gestational day 11 but not 16) greater
GFAP immunoreactivity is observed in the NTS on postnatal days 7-14
[73], indicative of a prolonged astrocytic response to a single neonatal
insult. In contrast, prenatal exposure of mice to cigarette smoke for the
entire duration of gestation does not alter GFAP expression when
compared to control mice [74], suggestive of potential compensatory
adaptations following chronic exposure to stimuli or alternatively
context specific regulation of NTS GFAP-expression .

In addition to those outlined above, a number of other studies have
shown dynamic regulation of NTS astrocytes [75–80]. While not dis-
cussed here, these are summarised in Table 1. Thus, taken together
these studies show that GFAP expression is highly plastic in the NTS and
is regulated by a myriad of stimuli. Future studies are needed to address
the physiological consequences of this GFAP regulation, if/how NTS
astrocytes differentiate between stimuli of different modalities, and
how this mechanistically relates to other astrocyte functions.

4. Regulation of physiology by NTS astrocytes

4.1. Cardiorespiratory physiology

The NTS is the initial CNS detector of cardiovascular parameters
(for review see [5,81]). Specifically, peripheral baroreceptors in the
aortic arch detect increases in arterial pressure and increase vagal af-
ferent input to the NTS. This NTS signal drives a corresponding de-
crease in heart rate and arterial pressure. This process is known as the
baroreflex. The NTS also receives input from peripheral chemosensors
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which monitor blood O2 allowing for compensatory homeostatic che-
moreflex responses to deviations in O2 or CO2 [81].

As discussed above, hypertension (in a rat model) influences ex-
pression of GFAP in the NTS [70], suggesting an astrocytic component
to the physiological response. Indeed, functional work involving phar-
macological ablation of NTS astrocytes has shown this to be the case.
Saporins are toxic agents that, in their unconjugated form, selectively
kill astrocytes when delivered to the rat NTS [82]. This ablation has
severe consequences for cardiovascular function: lowering of 1) bar-
oreflex sensitivity, 2) cardiopulmonary reflex sensitivity and 3) che-
moreflex sensitivity. This suggests loss of correct physiological in-
tegration of peripheral cues by the NTS in these animals [82]. Rats with
NTS astrocyte ablation show large variations in arterial pressure also
indicative of poor cardiovascular reflex control. Critically, these rats
show damage to their myocardium and in some cases die due to sudden
cardiac arrest [82]. This failure of central cardiovascular control ap-
pears to be mediated by a loss of glutamate sensitivity since cardio-
vascular responses to NTS delivery of glutamate receptor agonists,
AMPA and NMDA, are attenuated in NTS saporin treated rats [83].

In line with their role in integrating activity at the ST-NTS synapse,
glutamate reuptake and recycling by NTS astrocytes is crucial for car-
diovascular function. Blockade of all EAATs (by TBOA) or only EAAT2
(by DHK) causes cardiac depression and reduced baroreflex response to
phenylephrine in rats [49–51]. This effect is blocked by kynurenate (an
ionotropic glutamate receptor antagonist) and NBQX (an AMPA-R an-
tagonist) suggesting that under normal conditions NTS astrocytes se-
quester synaptic glutamate in order to regulate NTS neuronal activity
and resulting output from DMX neurons to the cardiorespiratory system
[50,51].

Under hypoxic conditions, chemoreflex responses are engaged
which initiate compensatory increases in respiratory and heart rate.
This effect persists even when animals are returned to normoxia,

suggesting some central adaptation to the low oxygen environment
[84]. In rats and mice, astrocytes of the NTS respond to the initial phase
of hypoxia with an increase in GFAP expression within 1-24 hours, an
effect which is mediated in part by an interaction with microglia
[60,65]. However, this microglial component does not appear to con-
tribute to the maintenance of adaptation to sustained hypoxia [65,66].
At the synaptic level, sustained hypoxia causes adaptations in the rat
NTS: increased postsynaptic excitability mediated by decreased ex-
pression of IKA and greater amplitude NMDA and AMPA currents
evoked by ST stimulation [38,40]. Inhibition of astrocytes with FAC
reduces IKA, reduces the amplitude of ST evoked AMPA currents and
increases the amplitude of ST evoked NMDA currents. These effects
were not observed in slices from rats maintained under sustained hy-
poxic conditions [38,40]. This suggests that reduced astrocyte mod-
ulation of synaptic transmission may be an adaptive mechanism to in-
crease neuronal sensitivity and drive respiration in sustained hypoxia.

Together these studies illustrate the necessity for tight control of
synaptic glutamate in the NTS to maintain cardiorespiratory function,
and the importance of astrocytes in this process. Furthermore, the
published studies on adaptation to hypoxia suggest that astrocytes
adapt to compensate for changes in physiological need.

4.2. Glucose sensing and counter-regulatory response

Orchestrated in part by the brain, the counter-regulatory response
to hypoglycaemia (CRR) is initiated when blood glucose falls below the
normal euglycemic range and is a multifaceted hormonal and neuronal
response to restore blood glucose. The hindbrain is a critical site of
hypoglycaemia detection and is required to drive appropriate counter-
regulatory responses (namely feeding and increases in blood glucose)
[85,86]. In particular, catecholaminergic neurons in the NTS and the
VLM have been shown to be responsive to glucoprivic challenge [87].

Table 1
Summary of studies which have examined impact of experimental manipulations on NTS astrocyte immunoreactivity and/or morphology.

Stimulus Outcome Species Reference

Ozone inhalation (3 hours) Greater VEGF expression in NTS astrocytes than normoxic controls,
increased branching of cells

Rat Araneda et al 2008 [63]

Ozone inhalation (24 hours) Greater glial coverage of synapses in NTS compared with untreated controls Rat Chounlamountry et al 2015 [64]
10% Oxygen inhalation Greater NTS GFAP immunoreactivity (1 and 6 hours, compared with

normoxic controls). 6 hour blocked by minocycline
Mouse Tadmouri et al 2014 [60]

10% Oxygen inhalation Greater GFAP immunoreactivity in NTS (4 and 24 hours, compared with
normoxic controls), blocked by minocycline

Rat Stokes et al 2017 [65]

10% Oxygen inhalation Greater GFAP immunoreactivity in NTS after 10 days compared with
normoxic controls

Rat De La Zerda et al 2018 [66]

Thioacetamine injection (liver damage model) Greater number of GFAP expressing cells in NTS compared with vehicle
injected controls

Rat Tsai et al 2017 [67]

Lateral ventricle STZ treatment (neurodegeneration
model)

Greater S100b immunoreactivity in commissural NTS compared with vehicle
injected controls

Rat Ebel et al 2017 [68]

Intrastriatal 6-OHDA injection (Parkinsonian model) Lower GFAP immunoreactivity in NTS after 60 days compared with shorter
durations

Rat Fernandes-Junior et al 2018 [69]

Two-kidney 1-clip hypertension Greater number of GFAP-positive pixels in NTS than in normotensive
controls

Rat Melo et al 2019 [70]

Isoproterenol induced water drinking No difference in GFAP immunoreactivity in NTS Rat Hardy et al 2018 [71]
Age Greater GFAP immunoreactivity in NTS of aged (24 months) compared with

young (6 months)
Rat Hardy et al 2018 [71]

Prenatal (G11 or G16) X-irradiation Greater number of GFAP expressing cells in NTS at P7-14 for G11 irradiated
pups

Rat Jacquin et al 2000 [73]

Prenatal cigarette smoke inhalation No difference in GFAP immunoreactivity in NTS compared with non-
exposed pups

Mouse Machaalani et al 2019 [74]

Sudden infant death syndrome Greater GFAP-positive cell density in NTS from SIDS victims than age-
matched controls

Human Biondo et al 2004 [75]

Chronic morphine treatment Greater GFAP-positive cell density in NTS than vehicle treated, blocked by
yohimbine treatment

Rat Alonso et al 2007 [76]

Agouti related peptide neuron ablation Greater number of GFAP-positive pixels in NTS than control mice Mouse Wu et al 2008 [77]
DVC tumour necrosis factor-α treatment Greater c-FOS expression by NTS astrocytes than vehicle injected controls Rat Hermann and Rogers 2009 [78]
Unilateral chorda tympani nerve crush Greater GFAP immunoreactivity in rostral NTS compared with uninjured

controls or intact side
Mouse Bartel 2012 [79]

12-hour high-fat chow intake Greater GFAP immunoreactivity and branching profile than standard chow
fed controls

Mouse MacDonald et al 2020 [80]
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Injection of non-metabolizable glucose analogues into these nuclei
drives feeding and hepatic glucose production [88]. These studies
suggest that the NTS, in addition to the VLM, is a central site of hy-
poglycaemia sensing and involved in mediating the CRR [6,89]. Neu-
ronal connections exist between these two regions suggesting their
coordinated activity may be important for mediating CRR [28,90,91].

In rat brain slices, 40% of NTS astrocytes increase their intracellular
Ca2+ in response to low glucose or the non-metabolizable glucose
analogue 2-deoxyglucose (2-DG; a glucoprivic agent) indicating the low
glucose-sensitivity of these cells [92]. This response precedes a similar
response in neurons and Ca2+ increases in both cell types are dimin-
ished following treatment with FC in mouse brain slices [93]. Delivery
of 2-DG directly into the 4th ventricle ([4V]; which is immediately
proximal to the AP/NTS) increases blood glucose in anaesthetised rats,
indicating that local reductions in brainstem glucose level are sufficient
to drive compensatory changes in glucose homeostasis [94]. This blood
glucose elevation is blocked by general inhibition of NTS astrocyte
activity using FC delivered to the 4V or more specifically by the A1
adenosine-receptor antagonist DPCPX. This indicates that astrocyte-
derived adenosine is a component in the detection and response to this
glucoprivic stimulus [94].

Of critical importance to the CRR are NTS catecholaminergic neu-
rons, identified by their expression the enzyme tyrosine hydroxylase
(NTSTH). In brain slices from mice, the Ca2+ response of NTSTH neurons
to 2-DG is abolished by pre-treatment with either FC or the broad
spectrum P2 purinergic receptor antagonist suramin [93]. The glucose
transporter GLUT2 is a proposed glucose sensing protein and accord-
ingly blockade of GLUT2 with quercetin abolishes astrocyte Ca2+ re-
sponses to low extracellular glucose and 2-DG in rat brain slices [95]. It
appears that this observed Ca2+ response to low extracellular glucose is
downstream of protein lipase C, which indicates that GLUT2 may en-
gage second messenger systems in addition to its transporter function
[95]. Consequently, it appears that NTS astrocytes are glucose sensors
that in hypoglycaemic conditions relay this signal to, and/or enhance
intrinsic glucose sensitivity of NTSTH neurons via purinergic glio-
transmission in order to drive the appropriate CRR.

Expression of GLUT2 has been demonstrated on NTS astrocytes of
the rat by electron microscopy [96]. In mice, brain wide deletion of
glucose transporters abolishes the CRR. However, in these animals re-
storation of GLUT2 expression in astrocytes alone is sufficient to restore
glucagon secretion and DVC c-FOS expression in response to a systemic
injection of 2-DG [97]. This indicates that direct sensing of low glucose
by astrocytes is sufficient to mount a CRR.

A study using a mouse model expressing the fluorescent protein td-
tomato in GLUT2-expressing cells found labelling of intrinsically glu-
cose-inhibited GABAergic neurons in the NTS [98]. In ex vivo NTS slices
these neurons increase their membrane potential and excitability in
response to low extracellular glucose. This effect is recapitulated by
depletion of intracellular ATP by oligomycin or activation of AMP-ac-
tivated protein kinase (AMPK) by AICAR. In addition, this effect is
abolished by inhibition of AMPK with compound C [98]. This shows
that depletion of intracellular ATP and subsequent activation of AMPK
drives excitability in conditions of low glucose in these neurons. The
sufficiency of GLUT2-mediated glucose transport for conferring low
glucose-sensitivity was not investigated and indeed some td-tomato
labelled neurons did not express detectable levels of GLUT2 by RT-PCR
suggesting glucose-sensitivity of these neurons could be GLUT2-in-
dependent [98]. These neurons clearly form a key component of CRR-
driving circuitry since their optogenetic activation increases glucagon
secretion [98]. In support of this, chemogenetic activation of GA-
BAergic NTS neurons increases hepatic glucose production in mice
[99].

Thus, it appears that in concert with glucose-inhibited NTS neurons,
astrocytes in the NTS are involved in sensing low glucose levels. In NTS
slices from rats the intracellular Ca2+ rises in low-glucose responsive
astrocytes precede those of low-glucose responsive neurons by 50

seconds on average and a similar relationship is seen in NTS slices from
mice [92,93]. The temporal nature of this response in rodent brain
slices suggests that NTS astrocytes are a primary detector of, and may
enhance responses of NTSTH neurons (and other glucose sensitive NTS
neurons e.g. GABAergic GLUT2 expressing neurons) to low glucose, at
least in this experimental configuration [92,93]. In glucose-inhibited
NTS neurons the response to low glucose depends on depletion of in-
tracellular ATP and subsequent activation of AMPK [98]. This is con-
sistent with the reported cellular compartmentalisation of glucose me-
tabolism in the brain (i.e. the astrocyte-neuron lactate shuttle, discussed
in detail below). However, it is still debated whether the astrocyte-
neuron lactate shuttle is a ‘rule’ for brain metabolism or merely one
mechanism of glucose metabolism [44,46]. This raises the possibility
that astrocyte-independent neuronal glucose sensing mechanisms also
play a role, although experiments with FC suggest their contribution is
not sufficient to drive CRR in anaesthetised rats [94].

Influenced by Rogers and Hermann [100], we propose a working
model of low glucose detection: In conditions of low glucose, astrocytic
GLUT2 increases PLC signalling leading to Ca2+ signalling in astrocytes
[95]. This results in purinergic gliotransmission which may modulate
the firing of neighbouring neurons [93,94]. Furthermore, when lower
glucose is available for conversion to lactate in astrocytes (and sub-
sequent shuttling to neurons) this may result in reduced neuronal ATP
generation. In glucose-inhibited NTS neurons this causes AMPK-de-
pendent enhanced excitability and increased glucagon and hepatic
glucose production [98,99]. This is supported by evidence indicating
that Ca2+ responses to extracellular low glucose or glucopivation are
attenuated in glucose-inhibited NTS neurons and NTSTH neurons in
brain slices from mice [93]. In addition, some neurons expressing
GLUT2 and glucose sensing enzymes such as glucokinase may be spe-
cialised for direct low glucose sensing independent of astrocytes, but
the necessity of neuronal GLUT2 for low glucose detection in the NTS
remains to be demonstrated [98,101,102].

While NTS astrocyte integration of glycaemic status appears im-
portant for the physiological response to low glucose, what remains to
be determined is whether astrocyte glucose sensitivity is reduced after
recurrent hypoglycaemia, which may lead to blunted CNS glucose
sensitivity and attenuation of the CRR [103]. In vitro, human primary
astrocytes show metabolic adaptations following recurrent exposure
low glucose levels, which has been suggested reflect a compensatory
response to preserve function [104]. As discussed above, under sus-
tained hypoxia astrocytes contribute to long-term adaptive changes in
the physiological response to this stimulus, raising the possibility that
this may also be true in the context of hypoglycaemia.

4.3. Food intake and gastric motility

There is a large body of evidence implicating NTS neurons in the
integration of viscerosensory signals from the stomach and gastro-
intestinal tract, including encoding of satiety and meal termination [7].
A role for astrocytes in this process has only recently begun to be in-
vestigated. Reiner and colleagues investigated astrocytes as compo-
nents of the glucagon-like peptide 1 (GLP-1) signalling system. In the
periphery GLP-1 is released from enteroendocrine cells to excite sensory
vagal neurons which innervate the stomach and intestine (for review
see [105]). While this peripheral GLP-1 is not thought to enter the brain
as it is quickly degraded, the NTS contains a population of GLP-1 syn-
thesising neurons (preproglucagon [PPG] neurons) and cells that ex-
press the GLP-1 receptor (GLP-1R) [61,106,107]. In rats, peripheral or
4V injection of a fluorescent GLP-1R agonist (fluoro-exendin-4) re-
vealed binding to GLP-1Rs on both NTS neurons and astrocytes, an
effect that is reduced by pre-treatment with a GLP-1R antagonist [108].
This is further supported by the finding that exendin-4 causes an in-
crease in intracellular Ca2+ in 40% of NTS astrocytes in rat brain slices.
Critically, NTS pre-treatment with FC abolished the inhibitory effect of
exendin-4 directly delivered to the NTS on food intake. Taken together
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these data suggest that NTS astrocytes are a component of the central
GLP-1 satiety system, although the molecular mechanism by which they
exert their effects has not been fully investigated [108].

In addition to exendin-4, cultured rat brainstem astrocytes show
increased intracellular Ca2+ in response to application of ghrelin and
leptin suggesting that, at least in vitro, brainstem astrocytes respond to a
diverse range of hormonal signals that regulate appetite [109]. Ghrelin
and leptin are canonically considered as opposing signals so the ob-
servation that both yield the same response in cultured brainstem as-
trocytes is of interest. The precise nature of Ca2+ signal diversity in
astrocytes is beginning to be understood and may provide insight into
how ‘opposing’ stimuli are processed within a single cell [10,110].

Although fluoro-exendin-4 binds to astrocytes in the rat NTS [108],
observations from a transgenic mouse line expressing green fluorescent
protein in GLP-1R expressing cells indicate no labelling of NTS astro-
cytes [61]. It remains to be demonstrated whether the contrasting re-
sults of Reiner et al and Cork et al reflect a species difference or are the
result of two different methodological approaches to detect cells that
express GLP-1R, but raises the possibility that astrocytes may play this
important role in rats but not mice.

Further support for a key role of NTS astrocytes in the control of
feeding comes from a series of studies on endozepines. NTS astrocytes
(and tanycyte like cells of the area postrema known as vagliocytes
[111]) express octadecaneuropeptide (ODN) [112] an endozepine
cleaved from acyl-CoA-binding protein (ACBP) which acts to supress
food intake [113]. Delivery of ODN into the 4V supresses food intake in
rats and induces c-FOS expression in the NTS [112]. Thus, under
normal conditions it is possible that NTS astrocytes and vagliocytes may
secrete ODN to regulate food intake. Indeed, in the arcuate nucleus of
the hypothalamus astrocytes release ACBP (cleaved extracellularly to
ODN), which activates pro-opiomelanocortin neurons to supress appe-
tite via its G-protein coupled receptor ODN-GPCR [114].

Work from our group indicates a role for NTS astrocytes in the
control of food intake. We found that 12-hour consumption of a high-fat
high-sucrose diet increases GFAP immunoreactivity and astrocyte pro-
cess branching within the mouse NTS [80]. We also examined the
consequence of NTS astrocyte activation on feeding behaviour using
designer receptors exclusively activated by designer drugs (DREADDs).
In mice expressing DREADDs in DVC astrocytes, stimulation of these
cells with the ligand clozapine-N-oxide supresses nocturnal feeding and
refeeding after a fast. This effect appears to be mediated by activation of
neighbouring neurons since c-FOS expression was observed in the NTS
and the lateral parabrachial nucleus (lPBN), a target a downstream of
the NTS [80]. Activation of NTS astrocytes can also reduce gastric
motility (discussed below) which may contribute to the observed hy-
pophagia, although this was not measured in our study. While further
work is needed, this indicates that NTS astrocytes sense caloric excess
and gastric distention likely in part by sensing local neuronal activity
and may contribute to driving a compensatory decrease in food intake.
Due to the proximity of NTS astrocytes to the 4V/AP region the possi-
bility of direct sensing of changes in circulating nutrients by astrocytes
in this brain region cannot be excluded.

In addition to integration of information on satiety and meal ter-
mination, the NTS also contributes to modulation of parasympathetic
tone to the gastrointestinal tract via preganglionic motor neurons in the
DMX (for review see [115]). This tone can be influenced by astrocytes
[37,116]. Astrocytes in the NTS express the protease-activated receptor
1 (PAR1) and activation of these receptors by 4V delivery of the agonist
SFLLRN-NH2 reduces gastric motility and emptying in rats [116]. Ac-
tivation of PAR1 on NTS astrocytes increased intracellular Ca2+ in
neighbouring neurons via direct activation of NMDARs and by in-
creasing presynaptic glutamate release [37]. The presynaptic effects of
PAR1 activation appear to be mediated by transient receptor potential
cation channel subfamily V member 1 (TRPV1) since they were absent
in the presence of TRPV1 antagonists (capsazepine or SB366791) or in
TRPV1 knock out rats [117]. Given that PAR1 is activated by serine

proteases, including thrombin, it has been proposed that this system
may be responsible for the autonomic dysfunction observed in patients
suffering bleeding head injuries [116].

5. Conclusion

The studies reviewed here clearly illustrate the importance of NTS
astrocytes in both effective synaptic transmission (Fig. 1) and physio-
logical control. These cells sustain and regulate glutamatergic neuro-
transmission between ST afferents and second-order NTS neurons via a
number of mechanisms: lactate shuttling, glutamate reuptake and
purinergic gliotransmission. Furthermore, NTS astrocytes directly de-
tect vagal glutamate which may allow activity-dependent regulation of
these tonic functions. NTS astrocytes show dynamic changes in GFAP
expression and cellular morphology in response to numerous environ-
mental and experimental stimuli (Table 1). This is reflected in func-
tional studies demonstrating their importance in cardiovascular, pul-
monary, blood glucose, food intake and digestive control.

Further work is needed to elucidate the mechanisms by which as-
trocytes in the NTS can alter their synaptic support functions in an
activity-dependent manner; for example, do astrocytes regulate EAAT2
glutamate transport in response to AMPA-R activation? Also, of interest
is the integration of neuronal and hormonal cues by NTS astrocytes
since they have been shown to respond to both. The application of cell-
type specific genetic tools for cellular monitoring and manipulation
[118] to NTS astrocytes will be critical to allow more detailed in-
vestigation of their contribution to synaptic and physiological func-
tions.
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