FATIGUE DURING HIGH-INTENSITY EXERCISE: RELATIONSHIP TO THE CRITICAL POWER CONCEPT

Weerapong Chidnok

Submitted by Weerapong Chidnok to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Sport and Health Sciences

April 2013

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Weerapong Chidnok

..
Abstract

The hyperbolic power-duration relationship for high-intensity exercise is defined by two parameters: an asymptote (critical power; CP) reflecting the highest sustainable rate of oxidative metabolism, and a curvature constant (W'), which indicates a fixed amount of work that can be completed above CP (W_{SCP}). According to the CP model of bioenergetics, constant work rate exercise above CP depletes the capacity-limited W' with fatigue occurring when W' is completely expended. The complete depletion of W' has been reported to occur when \(\dot{V}_{O2max} \) is attained and a critical degree of muscle metabolic perturbation (decline of finite anaerobic substrates and accumulation of fatigue-related metabolites) is reached. However, while the CP model is effective at predicting metabolic perturbation and the tolerable duration of severe-intensity constant work rate (CWR) exercise, it is unclear if metabolic perturbation and exercise performance can be explained by the CP model when different methods of work rate imposition are applied. Therefore, the purpose of this thesis was to: 1) investigate the efficacy of the CP concept to predict performance in exercise tests using different work rate forcing functions; and 2) explore whether the physiological bases for W' are consistent across different methods of work rate imposition. In study 1, compared to severe-intensity CWR exercise, the tolerable duration of intermittent severe-intensity exercise with heavy- (S-H) moderate- (S-M) and light-intensity (S-L) ‘recovery’ intervals was increased by 47%, 100% and 219%, respectively. W_{SCP} (W') was significantly greater by 46%, 98%, and 220% for S-H, S-M and S-L, respectively, when compared to S-CWR, and the slopes for the increases in \(\dot{V}_{O2} \) and iEMG were progressively lowered as the recovery work rate was reduced. In study 2, both the \(\dot{V}_{O2max} \) and W_{SCP} were similar across incremental cycling protocols that imposed a fixed ramp rate and cadence (4.33 ± 0.60 L·min⁻¹; 14.8 ± 9.2 kJ), a fixed ramp rate with cadence self-selected by the subjects (4.31 ± 0.62 L·min⁻¹; 15.0 ± 9.9 kJ) and a step
incremental test where subjects were instructed to select power output according to prescribed increments in ratings of perceived exertion (4.36 ± 0.59 L·min⁻¹; 13.0 ± 8.4 kJ). In study 3, the $\dot{V}_{\text{O}_2}\text{max}$ and W_{CP} were also not different across a 3 min all-out cycling test (4.10 ± 0.79 L·min⁻¹; 16.5 ± 4.0 kJ), cycling at a constant work rate predicted to lead to exhaustion in 3 min until the limit of tolerance (4.20 ± 0.77 L·min⁻¹; 16.6 ± 7.4 kJ) and a self-paced 3 min work-trial (4.14 ± 0.75 L·min⁻¹; 15.3 ± 5.6 kJ). In study 4, after completing severe-intensity exercise (>CP) to exhaustion, muscle homeostasis ([PCr], pH, [ADP] and [Pi]) returned towards baseline and subjects were able to exercise for at least 10 min at a heavy-intensity work rate (<CP); however, when the work rate was lowered but remained in the severe-intensity domain (>CP), muscle metabolites ([PCr], pH, [ADP] and [Pi]) did not recover and exercise tolerance was severely limited (39 ± 31 s). Finally in study 5, during severe-intensity intermittent knee extension exercise, the tolerable duration of exercise was 304 ± 68 s when 18 s recovery was allowed and was increased by ~69% and ~179% when the intermittent recovery periods were extended to 30 s and 48 s, respectively. The increased exercise tolerance with longer recovery periods occurred in concert with increased W_{CP} (3.8 ± 1.0 kJ, 5.6 ± 1.8 kJ and 7.9 ± 3.1 kJ for the intermittent protocols with 18, 30 and 48 s of recovery, respectively) and a delayed attainment of critical intramuscular metabolite concentrations ([PCr], pH, [ADP] and [Pi]). Therefore, the results of this thesis demonstrate that fatigue during various high-intensity exercise protocols is influenced by the capacity to complete work above the CP (W') and that W' depletion is linked to the attainment of $\dot{V}_{\text{O}_2}\text{max}$ and the attainment of critical levels of intramuscular [PCr], pH, [ADP] and [Pi]. These findings suggest that the CP model can be adapted to predict the degree of metabolic perturbation and exercise performance across a range of exercise settings in humans.
Table of contents

Abstract ..i
Table of contents ...iii
List of tables ...vii
List of figures ..viii
Symbols and abbreviations ..xi
Declaration, communications and publications ...xiii
Acknowledgements ...xvi

Chapter 1 Introduction ..1

Chapter 2 Review of literature

Exercise intensity domains ..8

Moderate-intensity exercise domain ...8
Heavy-intensity exercise domain ...8
Severe-intensity exercise domain ..9
Extreme-intensity exercise ...9

The critical power concept: Historical development ...10

Critical power as a physiological and performance threshold ...13

The critical power concept: A two parameter model ...13

Factors influencing the critical power model of bioenergetics ...15

\(\dot{V}O_2 \) slow component ...15
Maximal Oxygen Uptake ...16
Pacing strategy ..19
Intermittent exercise ..20

Application of the critical power model during different work rate forcing functions..............21

Summary ...23

Aims ...23
Chapter 3 General methods

General Experimental Procedures...27
 Subjects..27
 Informed Consent..27
 Health and Safety..28

Measurement Procedures..28
 Descriptive Data..28
 Cycle Ergometry..29
 Computrainer cycle ergometry..30
 Single-legged knee-extension ergometer...30
 Pulmonary Gas Exchange..31
 Heart Rate..31
 Electromyography...32
 Blood Lactate Concentration..33
 Maximal Voluntary Contraction (MVC)..33
 Exercise Tolerance..34
 31Phosphorous Magnetic Resonance Spectroscopy..34
EXPERIMENTAL CHAPTERS

Chapter 4 Exercise tolerance in intermittent cycling: application of the critical power concept
Introduction .. 36
Methods .. 37
Results ... 40
Discussion ... 41
References .. 45

Chapter 5 $\dot{V}O_2\text{max}$ is not altered by self-pacing during incremental exercise
Introduction ... 47
Methods .. 48
Results ... 51
Discussion ... 52
References .. 56

Chapter 6 Influence of pacing strategy on the work performed above critical power during high-intensity exercise
Introduction .. 58
Methods .. 59
Results ... 61
Discussion ... 62
References .. 65

Chapter 7 Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the ‘critical power’
Introduction .. 67
Methods .. 68
Results ... 69
Discussion ... 70
References .. 73

Chapter 8 Muscle metabolic responses during recovery intervals of high-intensity intermittent exercise
Introduction .. 77
Methods .. 79
Results ... 86
Discussion ... 87
References .. 93
Chapter 9 General discussion

Research Questions Addressed ... 104

Summary of the Main Findings ... 105

Critical power concept during intermittent high-intensity exercise......105

Link between $\dot{V}O_{2max}$ and W' during incremental exercise......... 105

The ability to self-pace does not increase $\dot{V}O_{2max}$ and W' during high-intensity exercise... 106

Mechanistic bases for W' recovery after exhaustive exercise......... 107

Mechanistic bases for W' recovery during high-intensity intermittent exercise... 108

Exercise performance and the critical power model of bioenergetics 109

Mechanistic bases for the W' ... 113

Applications ... 118

Topics for Further Research ... 118

Elderly and clinical populations... 118

Mechanistic bases for W'... 119

Conclusion .. 119

References .. 122
List of Tables

Chapter 4 Exercise tolerance in intermittent cycling: application of the critical power concept
Table 1 Selected physiological variables and limit of tolerance during CWR and intermittent severe-intensity cycling .. 40
Table 2 Parameters of the power-duration relationship derived from the 3-min all-out test, the intermittent CP model and two conventional two-parameter model equations .. 42

Chapter 5 \(\dot{V}O_{2\max} \) is not altered by self-pacing during incremental exercise
Table 1 Physiological and performance parameters for the three different incremental cycling protocols .. 52
Table 2 iEMG and blood lactate responses for the three different incremental cycling protocols .. 53

Chapter 6 Influence of pacing strategy on the work done above critical power during high-intensity exercise
Table 1 Physiological parameters for 3-min AOT, CWR test with predicted duration of 3 minutes and 3-min self-paced time trial (SPT) .. 63

Chapter 7 Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the ‘critical power’
Table 1 Work rates and limit of tolerance during exhaustive severe-intensity CWR and subsequent resting or exercising (<CP and >CP, respectively) recovery .. 69
Table 2 Muscle metabolic responses during severe-intensity CWR exercise and subsequent recovery at different intensities .. 69

Chapter 8 Muscle metabolic responses during recovery intervals of high-intensity intermittent exercise
Table 1 Selected muscle metabolite values and limit of tolerance during intermittent high-intensity exercise protocols with different recovery durations .. 101
List of figures

Chapter 1
Introduction
Figure 1
The three exercise intensity domains illustrating moderate-, heavy- and severe-intensity exercise...4
Figure 2
Derivation of the power-duration relationship from severe-intensity exercise bouts...6

Chapter 4
Exercise tolerance in intermittent cycling; application of the critical power concept
Figure 1
Schematic of the experimental protocol. Subjects completed a S-CWR exercise bout and four intermittent protocols in which 60 s of severe exercise were interspersed with 30 s of exercise at a lower work rate in different exercise intensity domains...38
Figure 2
Group mean pulmonary \(\dot{V}O_2 \) response to S-CWR (open circles) compared with intermittent exercise (closed circles) for S-S (panel A), S-H (panel B), S-M (panel C) and S-L (panel D).................................41
Figure 3
Group mean iEMG response to S-CWR (open circles) compared with intermittent-work exercise (closed circles) for S-S (panel A), S-H (panel B), S-M (panel C) and S-L (panel D).................................42
Figure 4
Schematic illustration of the depletion of \(W' \) during \(>CP \) work bouts and the reconstitution of \(W' \) during subsequent \(<CP \) recovery intervals...43

Chapter 5
\(\dot{V}O_{2\text{max}} \) is not altered by self-pacing during incremental exercise
Figure 1
Group mean power output profiles for RAMP1 and RAMP2 (black circles), SPT (gray circles), 3-min all-out sprint test (gray triangles), and maximal-intensity constant-power-output verification test (open triangles) ...52
Figure 2
Group mean pulmonary \(O_2 \) uptake response for ramp incremental cycling at 30 W·min\(^{-1}\) with cadence fixed (RAMP1; black circles), ramp incremental cycling at 30 W·min\(^{-1}\) with cadence free to fluctuate according to subject preference (RAMP2; open circles), and an incremental protocol that was self paced according to perceptual regulation (SPT; gray circles)...53
Chapter 6 Influence of pacing strategy on the work performed above critical power during high-intensity exercise

Figure 1 Actual vs. predicted Te for INC ($r = 0.92$ for $n = 8$; $P < 0.01$). Prediction was made using parameters derived from a 3-min AOT (i.e., EP and WEP)...61

Figure 2 Power profile for a representative subject during INC (Panel A), AOT (Panel B), CWR (Panel C) and SPT (Panel D)..62

Figure 3 A. The power profiles for AOT (open circles), CWR (closed circles with gray fill) and SPT (closed circles with black fill). B. A schematic representation of depletion of the capacity for W_{CP} for the same three conditions..63

Figure 4 Group mean $\dot{V}O_{2}$ response profiles for AOT (open circles), CWR (closed circles with gray fill) and SPT (closed circles with black fill). Dashed horizontal line indicates $\dot{V}O_{2\text{max}}$ from INC..63

Figure 5 Mean iEMG response expressed relative to iEMG$_{\text{max}}$ for AOT (open circles), CWR (closed circles with gray fill) and SPT (closed circles with black fill)...64

Chapter 7 Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the ‘critical power’

Figure 1 Muscle [PCr] responses to CWR severe-intensity critical power exercise ($>\text{CP}$) and subsequent recovery exercise for resting (closed circles with black fill), $<\text{CP}$ (closed circles with gray fill) and $>\text{CP}$ (open circles) conditions..70

Figure 2 Muscle pH responses to CWR>CP and subsequent recovery exercise for resting (closed circles with black fill), $<\text{CP}$ (closed circles with gray fill) and $>\text{CP}$ (open circles) conditions...70
Figure 3	Muscle [ADP] responses to CWR>CP and subsequent recovery exercise for resting (closed circles with black fill), <CP (closed circles with gray fill) and >CP (open circles) conditions..........................71
Figure 4	Muscle [P_i] responses to CWR>CP and subsequent recovery exercise for resting (closed circles with black fill), <CP (closed circles with gray fill) and >CP (open circles) conditions..71
Chapter 8	Muscle metabolic responses during recovery intervals of high-intensity intermittent exercise
Figure 1	Muscle [PCr] and pH responses during high-intensity intermittent exercise with 18 s recovery intervals..98
Figure 2	Muscle [PCr] and pH responses during high-intensity intermittent exercise with 30 s recovery intervals..99
Figure 3	Muscle [PCr] and pH responses during high-intensity intermittent exercise with 48 s recovery intervals..100
Symbols and Abbreviation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>concentration</td>
</tr>
<tr>
<td>Δ</td>
<td>difference</td>
</tr>
<tr>
<td>%Δ</td>
<td>% difference between GET and (\dot{V}O_{2\text{max}})</td>
</tr>
<tr>
<td>(^{31}\text{P-MRS})</td>
<td>(^{31}\text{phosphorous nuclear magnetic resonance spectroscopy})</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>calcium</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval (e.g., 95% CI; CI(_{95}))</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CP</td>
<td>critical power (i.e., asymptote of the power/time hyperbola)</td>
</tr>
<tr>
<td>EMG</td>
<td>electromyogram</td>
</tr>
<tr>
<td>ET</td>
<td>endurance training</td>
</tr>
<tr>
<td>GET</td>
<td>gas exchange threshold</td>
</tr>
<tr>
<td>H(^{+})</td>
<td>hydrogen ion/proton</td>
</tr>
<tr>
<td>HR</td>
<td>heart rate</td>
</tr>
<tr>
<td>iEMG</td>
<td>integrated electromyogram ((\mu \text{V.s}))</td>
</tr>
<tr>
<td>K(^{+})</td>
<td>potassium ion</td>
</tr>
<tr>
<td>MVC</td>
<td>maximal voluntary contraction</td>
</tr>
<tr>
<td>O(_2)</td>
<td>oxygen</td>
</tr>
<tr>
<td>P</td>
<td>power output</td>
</tr>
<tr>
<td>PCr</td>
<td>phosphocreatine (or creatine phosphate)</td>
</tr>
<tr>
<td>P(_1)</td>
<td>inorganic phosphate</td>
</tr>
<tr>
<td>(T_{\text{lim}} / T_{e})</td>
<td>limit of tolerance/ time-to-exhaustion</td>
</tr>
<tr>
<td>(\dot{V}CO_{2})</td>
<td>carbon dioxide output</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>V_E</td>
<td>pulmonary ventilation (expired)</td>
</tr>
<tr>
<td>V_{O2}</td>
<td>pulmonary oxygen uptake</td>
</tr>
<tr>
<td>V_{O2max}</td>
<td>maximum oxygen uptake</td>
</tr>
<tr>
<td>V_{O2peak}</td>
<td>peak oxygen uptake</td>
</tr>
<tr>
<td>W</td>
<td>watt</td>
</tr>
<tr>
<td>W'</td>
<td>curvature constant of the hyperbolic power-duration relationship</td>
</tr>
<tr>
<td>WR</td>
<td>work rate</td>
</tr>
</tbody>
</table>
Declaration

The material contained within this thesis is original work conducted and written by the author. The following communications and publications are a direct consequence of this work.

Publications

Conference communications

Other publications

Acknowledgements

The completion of this thesis would not have been possible without the contributions of a number of exceptional individuals and for this I am extremely grateful.

Firstly, I would like to express my deepest gratitude and sincere appreciation to my excellent supervisor, Professor Andrew Jones, for his continued support and guidance during the supervision of my PhD. Your understanding and expertise has been invaluable throughout my experimental data collection and writing of this thesis.

I will be eternally grateful, Dr. Fred J. DiMenna, for his guidance, valuable advice, your continued patience and motivation has been immeasurable and provided me with the confidence to complete this thesis during the more challenging periods.

I would also like to express my sincere gratitude to Dr. Anni Vanhatalo, Dr. Stephen Bailey and Dr. Daryl Wilkerson, for their guidance, supervision, valuable advice and comment which has enabled me to carry out the study successfully.

This thesis has benefited from important input from numerous academics and their contribution must be acknowledged. These include Dr. Jonathan Fulford for assistance with data collection and data analysis using magnetic resonance spectroscopy, Professor Hugh Morton for his vital input for chapter 4 and Dr. Mark Burnley for his vital input for chapter 5.

I would also like to thank you for excellent research group, ‘Nitrate and Kinetics Team’. A number of PhD students have joined the team since my arrival at Exeter including:
Stephen Bailey, Fred DiMenna, Len Parker Simpson, Ben Hollis, Katie Lansley, Ann Ashworth, Philip Skiba, Jimmy Kelly, Lee Wylie, Matthew Black, Sinead McDonagh and Christopher Thompson. You have all contributed to the fantastic atmosphere in the team.

I must also acknowledge all the administrative and support staffs at the University of Exeter who have assisted me including Jamie Blackwell, Len Maurer, David Childs, Clare Fogarty and Alison Hume. I would also like to give thanks to all those who took part in the studies presented within this thesis, your dedication and commitment was appreciated. And then there are my participants: Jacob Durant, Harrison Evans, Stephen Bailey, Giles Hayward, Harran Al-Rahamneh, Jimmy Kelly, Jamie Blackwell, Martin Dawkins, Mike Wood, Ben Farnham, Paul Morgan, Tim Pitcher, Berg Joshua, Lee Wylie, Ralph Denn, Fitsall Jack, Sam Dudley, Ben Osman, Pearce Martin, Alex Cooper, Tjerk Moll and Satit Watchirapong.

I wish to acknowledge the National Science and Technology Development Agency, Ministry of Science and Technology, the Royal Thai Government for providing generous financial support for the undertaking of this PhD, without this support, I would not be in the esteemed position where I am today. I must also acknowledge all the administrative and support staffs at the Office of Educational Affairs (OEA), the Royal Thai Embassy, England; the National Science and Technology Development Agency, Ministry of Science and Technology, Thailand and Faculty of Allied Health Sciences, Naresuan University, Thailand.

I would like to express my thanks to Dr. Saiphon Khongkum and Chris Mawhinney, Tomomitsu Fukiage, Chaiyot Tanrattana and Dr. Weerapong Prasongchean, Dr. Sawian
Jaidee, Teerapong Siriboonpiputtana, Dr. Duangduan Siriwittayawan, Teonchit Nuamchit, Jirapas Jongjitwimol, Taweewat Wiangkham, Waroonapa Srisoprab, Boonkerd and Arom Sirichom, Surasingh Teerathan and ‘Nicky’ Satit Watchirapong for their supports and friendship during my PhD study. I would also like to thank my colleague friends, my students, my PT15 KKU friends and my teachers, for their supports.

Finally, I would like to thank my best friend ‘Niwat Jodnok’ for his constant encouragement, my dear parents and my lovely ‘Chidnok’ family for their love and support whilst near and far from motherland. I therefore dedicate this thesis to them.