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Abstract 

Some chemicals in the environment disrupt thyroid hormone (TH) systems leading to 

alterations in organism development, but their effect mechanisms are poorly 

understood. In fish, this has been limited by a lack of fundamental knowledge on 

thyroid gene ontogeny and tissue expression in early life stages. Here we established 

detailed expression profiles for a suite of genes in the hypothalamic-pituitary-thyroid 

(HPT) axis of zebrafish (Danio rerio) between 24-120 hours post fertilisation (hpf) and 

quantified their responses following exposure to 3,3’,5-triiodo-L-thyronine (T3) using 

whole mount in situ hybridisation (WISH) and qRT-PCR (of whole-body extracts). All 

of the selected genes in the HPT axis demonstrated dynamic transcript expression 

profiles across the developmental stages examined. The expression of thyroid 

receptor alpha (thraa) was observed in the brain, gastrointestinal tract, craniofacial 

tissues and pectoral fins, while thyroid receptor beta (thrb) expression occurred in the 

brain, otic vesicles, liver and lower jaw. The TH deiodinases (dio1, dio2 and dio3b) 

were expressed in the liver, pronephric ducts and brain and the patterns differed 

depending on life stage. Both dio1 and dio2 were also expressed in the intestinal bulb 
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(96-120 hpf), and dio2 expression occurred also in the pituitary (48-120 hpf). Exposure 

of zebrafish embryo-larvae to T3 (30 and 100 μg L-1) for periods of 48, 96 or 120 hpf 

resulted in the up-regulation of thraa, thrb, dio3b, thyroid follicle synthesis proteins 

(pax8) and corticotropin-releasing hormone (crhb) and down-regulation of dio1, dio2, 

glucuronidation enzymes (ugt1ab) and thyroid stimulating hormone (tshb) (assessed 

via qRT-PCR) and responses differed across life stage and tissues. T3 induced thraa 

expression in the pineal gland, pectoral fins, brain, somites, gastrointestinal tract, 

craniofacial tissues, liver and pronephric ducts. T3 enhanced thrb expression in the 

brain, jaw cartilage and intestine, while thrb expression was suppressed in the liver. 

T3 exposure suppressed the transcript levels of dio1 and dio2 in the liver, brain, 

gastrointestinal tract and craniofacial tissues, while dio2 signalling was also 

suppressed in the pituitary gland. Dio3b expression was induced by T3 exposure in 

the jaw cartilage, pectoral fins and brain. The involvement of THs in the development 

of numerous body tissues and the responsiveness of these tissues to T3 in zebrafish 

highlights their potential vulnerability to exposure to environmental thyroid-disrupting 

chemicals.   

 

Keywords: thyroid hormone, zebrafish, development, gene expression, endocrine 

disruption 

 

1. Introduction 

The ability of xenobiotic compounds to alter endocrine function has been reported 

widely over the last two decades, with attention largely focused on chemicals that 

disrupt the reproductive system of humans and wildlife (Tyler et al., 1998). Growing 

awareness of the role of thyroid hormones (TH) during development has led to 
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increasing concern over environmental contaminants which act as thyroid-disrupting 

chemicals (TDCs), such as polychlorinated biphenyls (PCB), 

dichlorodiphenyltrichloroethane (DDT), hexachlorobenzene (HCB), perchlorates, 

phthalates and brominated flame retardants (BFR) (Boas et al., 2006). These TDCs 

act via a wide variety of mechanisms to disrupt TH homeostasis in vertebrates. For 

example, some compounds can alter the function of the thyroid gland itself, by 

inhibiting the uptake of iodide and/or inhibiting the activity of thyroid peroxidase and 

subsequently decreasing TH synthesis. Other compounds act by altering the biliary 

elimination of TH via the induction of the metabolising enzymes, altering the activity of 

blood and cellular TH transporters, interfering with hepatic, serum and target tissue 

deiodinase activity and/or altering TH-responsive genomic signalling in target tissue 

(reviewed in (Crofton, 2008)). Aquatic and semi-aquatic species, including fish and 

amphibians, are especially vulnerable to TDCs, with uptake occuring via the skin and 

gills, via the diet and they can even be transferred to the offspring of exposed adults 

(Brown et al., 2002; Kim et al., 2011; Wu et al., 2009; Yu et al., 2011). 

 

TH dynamics are primarily under the control of the hypothalamic-pituitary-thyroid 

(HPT) axis, a complex regulatory network which coordinates TH synthesis, secretion, 

transport and metabolism (Zoeller et al., 2007). L-3,5,3',5'-Tetraiodothyronine 

(Thyroxine; T4) is the main TH secreted by the thyroid follicles of teleost fish, but 3,3′,5-

triiodo-L-thyronine (T3) is the biologically active form that is under the control of 

peripheral tissues (Power et al., 2001). The genomic actions of THs depend on the 

binding of T3 with nuclear thyroid hormone receptors (TRs) and the subsequent 

interaction with specific thyroid response elements (TREs) in the promoters of target 

genes, which either enhance or repress their transcription (Power et al., 2001). The 
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iodothyronine deiodinase enzymes type I, II and III (D1, D2 and D3) regulate the 

activity of TH by removing iodine moieties from T3 or T4. D2 generates T3 via 

deiodination of T4, while D3 produces the inactive metabolites, 3,5',3'-triiodothyronine 

(rT3) and 3,3’-diiodothyronine (3,3′-T2) by deiodination of T4 and T3, respectively. D1 

is kinetically inefficient and can deiodinate both the inner and outer rings of T4, and 

therefore has activating and inactivating abilities (Power et al., 2001). 

 

THs are involved in a variety of physiological and developmental processes in 

vertebrates. In teleost fish, developmental roles include mediating the metamorphic 

transition from larval to adult stages and influencing the maturation of tissues including 

bone, gonads, intestine and the central nervous system (Campinho et al., 2014; Matta 

et al., 2002; Power et al., 2001). In adults, they modulate growth, energy homeostasis, 

cardiac rhythm, the smolting process, osmoregulation and the behaviours/physiology 

associated with rheotaxis and migration (Boeuf et al., 1989; Eric et al., 2004; Godin et 

al., 1974). Consequently, even minor alterations in TH levels, particularly during 

sensitive developmental windows, can have significant acute and potentially long-term 

health effects. In recent years, the expression profiles of several genes in the HPT 

axis of teleost fish have been used as indicators for thyroid disruption by different 

environmental pollutants (Parsons et al., 2019; Shi et al., 2009). However, the spatial 

and temporal expression of many of these genes during zebrafish early life stages and 

their regulation by THs have not been thoroughly evaluated. A greater understanding 

of the transcriptional dynamics of TH-related genes in teleost fish would greatly 

facilitate the identification of target genes, tissues and developmental stages which 

may be particularly sensitive to TDCS. 
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In this study, we studied the ontogeny of expression of several genes in the HPT axis 

of zebrafish (Danio rerio), and both identified their tissue localisations and measured 

their regulatory responses to THs. We first characterised the expression dynamics of 

genes of the HPT axis from 24 to 120 hours post fertilisation (hpf), and subsequently 

examined the responses of these genes to T3 at key developmental stages. The 

overall objective of this work was to establish whether T3 differentially regulated the 

gene ontogenic expression of target genes and by doing so identify some of the 

potential mechanisms and thyroid targets related to TDCs. We used a combination of 

both whole-mount in situ hybridisation (WISH) assays to identify tissue-specific gene 

expression patterns in whole zebrafish embryo-larvae, and quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) assays to quantify changes in 

gene transcript levels in whole body extracts. 

 

2. Materials and Methods 

2.1 Materials and reagents 

3,3’,5-Triiodo-L-thyronine (T3; CAS 6893-02-3) (purity ≥ 95%) was purchased from 

Sigma-Aldrich (Gillingham, UK). T3 stock solutions were prepared in dimethylsulfoxide 

(DMSO). 

 

2.2 Maintenance of zebrafish and embryo collection 

Zebrafish [casper (mitfa; roy) mutant strain] embryos were collected from breeding 

adults at the University of Exeter, as described by Parsons et al., (2019). (Parsons et 

al., 2019). All experiments were carried out according to the UK Home Office 

regulations and approved protocols. 
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2.3 HPT axis gene transcript  levels during early development 

One hundred fertilised embryos were randomly placed into three glass tanks with 100 

ml of embryo culture water. At the desired developmental stage (24, 48, 72, 96 and 

120 hpf), 80 individuals from each tank were sampled for WISH experiments and the 

remaining 20 embryo-larvae were pooled and sampled for qRT-PCR analyses, as 

described by Parsons et al., 2019 (Parsons et al., 2019). Each experiment was 

repeated three times.  

 

2.4 The effect of T3 treatment on gene transcripts in the HPT axis 

An initial range finding study was carried out to determine the toxicity of T3 to zebrafish 

embryo-larvae. T3 exposures were carried out at 10, 30, 100 and 300 μg L-1 (in 0.01% 

DMSO). These doses were chosen based on a study by Liu and Chan (2002) showing 

that increased TR transcript levels occurred in zebrafish embryos exposed to T3 at 50 

nM (approx. 30 µg L-1)(Liu and Chan, 2002). Embryo-larvae in control groups were 

incubated in DMSO at 0.01%. Twenty fertilised embryos were selected for each 

treatment group. Exposures were conducted for 96 h from fertilisation and half of the 

exposure solutions were replaced every 24 h. The number of dead embryo-larvae, 

hatching success, phenotypic deformities and swim bladder inflation success were 

recorded every 24 h. Experiments were carried out in triplicate and each experiment 

was repeated three times. In this range finding study, T3 at 30 and 100 μg L-1 induced 

morphological deformities but no significant mortalities in zebrafish embryo-larvae and 

therefore these concentrations were selected for subsequent gene transcript analysis 

experiments.  
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To assess the effect of T3 on gene transcripts in the HPT axis, zebrafish embryos 

were exposed to exogenous T3 at concentrations of 0, 30 and 100 μg L-1 (in 0.01% 

DMSO), for 48, 96 and 120 h from fertilisation. Control groups were incubated in 

embryo culture water with 0.01% DMSO. Fifty fertilised embryos were allocated to 

each treatment group and each treatment group was performed in triplicate. At the 

desired developmental stage, 40 individuals from each group were sampled for WISH 

and 10 individuals from each group were pooled and sampled for qRT-PCR analyses. 

The experiment was repeated three times.   

 

2.5 Transcript profiling by quantitative real-time PCR (qRT-PCR) 

The following target genes in the HPT axis of zebrafish were selected for qRT-PCR 

analyses: corticotropin-releasing hormone (crhb), deiodinases type I, II and III (dio1, 

dio2, dio3b), paired box 8 (pax8), thyroid receptors (thraa and thrb), transthyretin (ttr), 

thyroid-stimulating hormone (tshb) and uridine diphosphate-glucuronosyltransferase 

(ugt1ab). qRT-PCR assays were optimised and carried out according to the protocol 

described previously (Parsons et al., 2019) and the sequences of primers used to 

quantify target gene expressions are provided in the supplementary material (Table 

S1). Briefly, total RNA was extracted using Tri reagent (Sigma-Aldrich, UK) according 

to the manufacturer’s protocol. RNA was treated with RQ1 RNase-Free DNase 

(Promega, Southampton, UK) and subsequently reverse transcribed into cDNA using 

M-MLV Reverse Transcriptase (Promega) and random hexamers (Eurofins 

Genomics), following manufacturer’s instructions. The expression of target mRNA was 

subsequently determined by qPCR using target-specific SybrGreen assays on a 
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CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories Ltd., Hercules, CA, 

US). For this, there was an initial activation step of 95˚C for 15 min followed by 40 

cycles of denaturation (95˚C, 10 s) and annealing (appropriate annealing temperature, 

30s) and a final melt curve analysis (95˚C for 1 min, 55 ˚C for 1 min, followed by 100 

cycles each for 5 sec beginning at 55°C and increasing 0.5°C per cycle). Ribosomal 

protein l8 (rpl8) was used as a reference gene as this has been shown to be expressed 

at a consistent level across tissue types and experimental conditions (Filby and Tyler, 

2005) after exposure to a wide range of chemicals and stressors in fish. This includes 

for (zebrafish exposed to the organophosphorus flame retardant tris(1,3-dichloro-2-

propyl) phosphate (Wang et al., 2015), the thyroid disruptor Di-(2 ethylhexyl) phthalate 

(DEHP) (Jia et al., 2016) and silver (van Aerle et al., 2013), as well as to EE2 in adult 

mangrove killifish (Mangrove rivulus) (Farmer and Orlando, 2012) and to hypoxia in 

fathead minnow (Pimephales promelas) (Hala et al., 2012)). A consistent level of 

expression of rpl8 during the different life stages studied was furthermore shown in 

our pilot work (see: Fig. S1 and S2). Ontogeny results are expressed as fold changes 

± standard error (SE), relative to the earliest time point (24 hpf). T3 exposure results 

are expressed as fold-changes relative to the control ± SE.   

 

2.6 Whole-mount in situ hybridisation (WISH) 

Tissue-specific changes in the expression of selected genes of interest in the HPT 

axis were examined via WISH assays. Selected genes included thyroid receptors 

(thraa and thrb), deiodinases (dio1, dio2 and dio3b) and transthyretin (ttr). The WISH 

protocol used in this study was modified from Thisse and Thisse (Thisse and Thisse, 

2008) and detailed methodologies are provided in Parsons et al., 2019 (Parsons et al., 



 

10 

 

2019). Briefly, digoxigenin (DIG) antisense RNA probes were synthesised using 

purified zebrafish target gene DNA, that were subsequently treated with DNAse, 

purified by lithium chloride precipitation and diluted with hybridisation buffer. For WISH 

assays, fixed embryos were rehydrated through a series of PBS washes, treated with 

proteinase K and hybridised with an antisense probe (100 μL of hybridisation buffer 

containing approximately 15 ng of antisense DIG-labelled RNA probe) overnight at 

65˚C. Embryos were subsequently incubated in blocking solution and then incubated 

with an anti-DIG antibody conjugated with alkaline phosphatase (Roche; x5000, 

diluted 1/100 with blocking solution). Embryos were then stained in BM-Purple AP 

Substrate (Roche) until signal or background staining became visible. Staining times 

varied depending on the probe (Table S2 and S3).  Embryos were observed and 

photographed using Nikon SMZ1500 microscope equipped with a digital camera. 

 

2.7 Statistical analyses 

Statistical analyses were performed in R (R Studio, 1.1.423) (RStudio Team, 2016). 

Using the lme4 package, general linear mixed models (GLMM) with Gaussian error 

structures were used to assess the differences in gene transcript levels between 

zebrafish developmental stages (Bates et al., 2015). Maximum likelihood tests of the 

full model against a reduced model were performed to obtain p values. Developmental 

stage was incorporated as a fixed effect into the model and each experiment was 

incorporated as a random effect. When a significant effect was identified, pair-wise 

comparisons were conducted to determine within group differences using the 

multcomp package within R (Hothorn et al., 2008). A similar approach using GLMMs 

was used to examine the differences in transcript levels between the thyroid receptor 
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and deiodinase encoding genes at each of the developmental stages. Again, GLMMs 

were used to examine the effect of T3 treatment on gene transcripts levels, with T3 

treatment incorporated as a fixed effect into the model.  Prior to the analysis of all gene 

transcript data, outliers in the gene expression data were identified according to 

Chauvenet’s criterion and subsequently removed (Chauvenet, 1863). Shapiro–Wilk 

tests were used to test for equal variance and normality and non-normal data were 

either log transformed or inverse transformed. Generalised linear mixed models 

(GLzMM) with binomial error structures were used to asses the effects of T3 treatment 

on measured toxicological endpoints (mortality, hatching success, deformities and 

swim bladder inflation), with T3 treatment incorporated as a fixed effect into the model 

and random intercepts incorporated for each experiment. When a significant effect 

was identified, pair-wise comparisons were conducted to determine within group 

differences as outlined above. All data was considered statistically significant when P 

< 0.05. Data was plotted using the ggplot2 R package (Wickham, 2009). 

 

3. Results 

3.1 HPT axis gene transcript levels during early development 

3.1.1 Whole-body transcript levels (qRT-PCR) 

The transcript profiles of the 10 genes studied followed a similar pattern of expression 

during embryogenesis, with relatively low levels at 24 hpf increasing significantly at 

either 48 hpf or 72 hpf (Fig. 1A-J, Table S4-5). The transcript levels of thraa, tshb and 

pax8 peaked between 48-72 hpf and subsequently declined thereafter. In contrast, 

transcript levels of thrb, ttr, dio1, dio2, dio3, crhb and ugt1ab continued to increase 

further at 96 hpf and/or 120 hpf. Levels of thrb transcripts were significantly higher 
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than thraa transcripts throughout all of the developmental stages tested (p<0.001; Fig. 

S3A, Table S6A). Similarly, dio3b mRNA levels were significantly higher than for dio1 

and dio2 at all stages from 24-120 hpf (p<0.001; Fig. S3B, Table S6B), while dio1 

transcript levels were significantly higher than dio2 levels at 24, 96 and 120 hpf 

(p<0.001; Fig. S3B, Table S6B) 

 

3.1.2 Tissue transcript expression patterns (WISH) 

At 24 hpf, thraa signalling was detected in the brain and head region (Fig. 2A). 

Subsequently, at 48 hpf, thraa expression signals were observed in the branchial 

arches of the head, pronephric ducts, pectoral fins and throughout the brain (Fig. 2B). 

Expression in these tissues persisted between 72-120 hpf, with additional and/or 

enhanced signalling detected in the cartilage of the lower jaw, pericardia, liver, 

intestinal tract and brain (Fig. 2C-E).  

 

At 24 hpf, thrb expression was observed in the brain, in a small group of cells in the 

region of the otic vesicle and was highly localised in the prospective fin buds (Fig. 2F). 

Thrb expression in the brain and otic vesicles was observed at all other stages 

examined (48-120 hpf). Thrb expression was also observed in the pectoral fins and/or 

pronephric ducts at 48 and 72 hpf, and in the liver and cartilage of the lower jaw at 96 

and 120 hpf (Fig. 2G-J).  

 

Ttr signalling was detected throughout the brain and head region at 24 hpf (Fig. 2K). 

No specific ttr signalling was observed at 48 hpf, though subsequently, at 72 hpf, a 
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strong ttr expression signal was seen in the left lobe of the liver (Fig. 2L-M), with 

greater and more expansive expression in the liver at 96 and 120 hpf (Fig. 2N-O).  

 

During the embryonic stages of development (24-72 hpf), expression of dio1 was not 

detected (Fig. 3A-C). At 96 hpf, dio1 was expressed in the brain, liver, intestinal bulb 

and pronephric ducts and this expression pattern persisted at 120 hpf, with additional 

expression observed in the intestine (Fig. 3D-E). Dio2 signalling was first detected at 

48 hpf in the pituitary gland (Fig. 3F-G). Between 72-120 hpf, dio2 signalling persisted 

in the pituitary gland and occurred in the brain, liver, pronephric ducts, intestinal bulb 

and intestine (Fig. 3H-J).  A strong dio3b signal was detected in 24 hpf embryos initially 

in the pronephric ducts (Fig. 3K) and then subsequently in the brain (48 hpf) and 

prospective liver (72 hpf). At these times the dio3b signal in the pronephric ducts 

appeared to be greatly reduced (Fig. 3L-M). A strong dio3b expression signal was 

detected in the liver and yolk syncytial layer in the embryo-larvae at 96 and 120 hpf 

(Fig. 3N-O). 

 

3.3 Effects of T3 on gene transcripts in the HPT axis 

3.3.1 Toxicity of T3 

T3 had no significant effect on mortality and hatching success across the whole 

concentration range tested (10-300 μg L-1) compared with the controls (Fig. 4A-B, 

Table S7-8). The number of surviving zebrafish larvae showing morphological 

deformities increased significantly in all treatment groups, with 16 ± 6%,  62 ± 9%, 74 

± 8%, 93 ± 3% mean deformities observed in the 10, 30, 100 and 300 μg T3 L-1 

exposure groups, respectively (p<0.001, Fig. 4C, Table S7-8). At 72 hpf and 96 hpf, 
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larvae exposed to T3 had deformities such as small eyes, oedema, curved spine, 

swollen yolk sac, reduced pigmentation and craniofacial deformities (Fig. 4E-F).  At 96 

hpf, the number of surviving larvae with inflated swim bladders significantly decreased 

in all T3 exposure groups, with mean swim bladder inflation at 97 ± 2%, 85 ± 6%, 44 

± 10%, 36 ± 10% and 11 ± 3% in groups exposed to 10, 30,100 and 300 μg T3 L-1, 

respectively (p<0.001, Fig. 4D, Table S7-8).  

 

3.3.2 Whole-body transcript levels (qRT-PCR) 

All ten target genes examined in the HPT axis were significantly altered in whole-body 

zebrafish samples following exposures to exogenous T3, and changes were 

dependent on the developmental stage and T3 exposure concentration (Fig. 5A-J, 

Table S9-10). At all time points, transcript levels of thraa, thrb and dio3b were 

significantly higher in T3 treated groups compared with controls, while pax8 and crhb 

transcript levels were elevated only in T3 treated embryos at 48 and 96 hpf, 

respectively.  Dio1 (96 and 120 hpf), dio2 (96 hpf), ttr (96 hpf) and ugt1ab (120 hpf) 

levels were significantly reduced in T3 groups compared to controls, although this 

effect was most pronounced for dio1. Transcript levels of tshb were significantly 

reduced in T3 exposed embryos compared with the control at 48 hpf, while in 120 hpf 

exposed larvae, tshb levels were significantly elevated.  

 

3.3.3 Tissue transcript expression (WISH) 

At 48 hpf, thraa mRNA expression was observed in the pineal gland, pectoral fins, 

branchial arches, pronephric ducts, pronephros, brain and the somites of T3 exposed 

individuals (both 30 and 100 µg L-1 groups), whereas limited signal was detected in 
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controls embryos (Fig. 6A-C). At 120 hpf, a strong (and concentration-related) thraa 

signal was observed in the pineal gland, lower jaw cartilage, liver, pectoral fins, brain 

and intestine of T3 exposed larvae, whereas a weak signal in the brain was the only 

thraa expression observed in control larvae (Fig. 6D-F).   

 

A strong thrb expression signal was observed in the brain of 48 hpf embryos exposed 

to T3 (30 and 100 µg L-1), whereas expression in control embryos appeared weak (Fig. 

6G-I). The thrb expression pattern was similar in control and T3 exposed larvae at 120 

hpf, however the signal intensity across the tissues appeared to differ between groups. 

For instance, thrb signal appeared to be enhanced in the lower jaw, intestine and brain 

(with a pronounced effect on the hindbrain) compared to the controls, whereas 

expression appeared to be reduced in the liver and otic vesicles of larvae exposed to 

100 μg T3 L-1 (Fig. 6J-L). At 96 hpf, the expression of ttr appeared to be reduced in 

the liver of larvae exposed to both T3 concentrations (30 and 100 µg L-1) compared 

with controls (Fig. 6M-O).  

 

T3 treatments had no apparent effect on the tissue expression patterns of dio1 at 48 

hpf (Fig. S4A-C), but subsequently, at 96 hpf, the dio1 expression signal in the liver, 

brain, swim bladder, intestinal bulb and jaw cartilage appeared to be reduced in T3-

treated (100 µg L-1) larvae compared to controls (Fig. 7A-C).  

 

At 48 hpf, there was a strong dio2 expression signal in the pituitary gland of control 

embryos, however the signal appeared weak or was not detected in a number of T3-

exposed embryos (Fig. 7D-F). In the control groups, dio2 expression was detected in 

the pituitary of 96% of embryos, but only in 65% and 48% of embryos treated with 30 



 

16 

 

and 100 μg T3 L-1, respectively. At 96 hpf, the overall expression pattern of dio2 was 

similar between control and T3-treated larvae, however the signalling intensity in the 

liver, intestinal bulb, intestine, and brain appeared to be weaker in T3-exposed (100 

μg L-1) individuals compared with controls (Fig. 7G-I). In addition, the proportion of 

individuals in which dio2 expression was detected in the pituitary gland was greatly 

reduced in T3-exposed lavae compared to controls. For example, dio2 signalling was 

detected in the pituitary gland of 54% of control individuals compared with only 4% 

and 0% of individuals treated with 30 and 100 μg T3 L-1, respectively. When dio2 

signalling was detected in T3-treated (30 μg T3 L-1) larvae, the intensity appeared 

greatly reduced compared with control larvae (Fig. 7Gi-Ii). 

 

A clear dio3b signal was observed in the pectoral fins and pronephric ducts of 48 hpf 

control embryos, and this signal appeared to be enhanced in embryos exposed to both 

30 and 100 μg T3 L-1(Fig. 7J-L). At 96 hpf, dio3b expression was observed in the liver 

and yolk syncytial layer of control larvae, however, dio3b expression was additionally 

observed in the brain, lower jaw cartilage, caudal fin and pectoral fins of the T3-treated 

individuals (Fig. 7M-O). Furthermore, the dio3b signal in the yolk syncytial layer 

appeared to be stronger, while the signal in the liver appeared weaker, in the T3-

treated larvae compared with controls (Fig. 7M-O).  

 

4. Discussion 

Here we report novel data regarding TH signalling in the developing zebrafish, 

including ontogenic transcript profiles of key genes in the HPT axis (including those 

involved in TH transport, metabolism, synthesis and signalling), their tissue specific 
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expression patterns during early life stages and the effects of T3 exposure on these 

transcript profiles and expression patterns. Our findings indicate that: (1) genes 

encoding key TH-related molecules are expressed in the developing zebrafish in a 

highly spatio-temporal manner and, (2) T3 regulates the expression of several key 

genes in the HPT axis pathway which varies across life stages and tissues. These 

findings increase our understanding of the role and regulation of THs during fish early 

life stages and identify potential mechanistic pathways and target tissues for TDCs.  

   

4.1. Transcript profiling of TH-related genes.  

Here, based on PCR data, we have shown that the transcript levels of a number of the 

examined TH-related genes (ttr, dio1, dio2, dio3b, crhb, ugt1ab) were relatively low in 

24 hpf zebrafish embryos, increasing considerably thereafter (either at 48 hpf or 72 

hpf) and remaining at relatively high levels until 120 hpf. In contrast, we found that 

while transcript levels of thraa, thrb, pax8 and tshb increased at the 48 hpf life stage, 

their levels were subsequently reduced at either the 96 hpf and/or 120 hpf life stages. 

This increased expression of the examined transcripts after the 24 hpf coincides with 

a number of key TH-dependent processes including the development of fully 

functioning thyroid follicles and the initial zygotic synthesis of THs, hatching, and the 

early stages of the embryonic to larval transitory phase, which marks the switch from 

yolk sac dependency to exogenous feeding larvae (Liu and Chan, 2002; Opitz et al., 

2012; Porazzi et al., 2009; Wendl et al., 2002). The ontogenic profiles established in 

this study confirm that transcript levels of these genes are expressed differentially and 

they align for the most part with previous reports in developing zebrafish (Liu and 

Chan, 2002; Vergauwen et al., 2018; Walter et al., 2018). Some small differences in 
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the transcript profiles of the TR and deiodinase encoding genes where evident in 

comparison to the above studies. For example, while we observed that both thraa, thrb 

and dio1 mRNA levels increased significantly from 48 hpf, Walter et al., (2018) 

reported that thraa and dio1 transcript levels in zebrafish did not increase significantly 

until the 72 hpf life stage, and thrb levels did not significantly change between 12-120 

hpf (Walter et al., 2018). Liu and Chan (2002) reported a similar thrb transcript profile 

to  that  observed here, however, in their study thraa levels only increased after 

hatching (Liu and Chan, 2002). As far as we are aware no studies to date have 

characterised the ontogenic expression of pax8, crhb and ugt1ab in zebrafish early life 

stages.  

 

In our comparisons of the TR- and deiodinase-encoding gene transcript profiles during 

zebrafish embryo-larval development, we found that thrb levels were consistently 

higher than thraa at all stages examined. This suggests an important role of thrb during 

these early developmental stages and this is consistent with the study by Liu and Chan 

(2002) which examined TR transcript levels in zebrafish from 1-168 hpf (Liu and Chan, 

2002). Interestingly and in contrast to our results, Marelli et al., (2016) more recently 

observed that zebrafish thraa expression was predominant over thrb expression 

between 1-120 hpf (Marelli et al., 2016). We observed that dio3b levels were higher 

than dio1 and dio2 levels at all the developmental stages examined, consistent with 

D3’s role in deactivating THs and the largely accepted view that D3 protects tissues 

against high levels of THs (both maternal and zygotic) during vertebrate development 

(Heijlen et al., 2014). Here we found also that dio1 transcript levels were often higher 

than dio2 transcript levels in zebrafish embryo-larvae (24, 96 and 120 hpf). D2 proteins 

are considered to be the major TH-activating enzymes, catalysing the conversion of 
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T4 to T3 and thereby maintaining TH homeostasis systemically and locally (Bianco et 

al., 2002). Although D1 proteins are capable of activating and deactivating THs, only 

recently has it been proposed that the primary role of D1 in fish is to activate THs (Van 

der Geyten et al., 2001). D1, nevertheless, is considered to be less important than D2 

in intracellular TH activation during normal zebrafish embryonic development and may 

only be significant when the activity of D2 is reduced and TH levels are depleted 

(Schneider et al., 2001; Walpita et al., 2010). Our results suggest that D1 proteins may 

have a significant role in maintaining TH homeostasis. 

 

4.2 Tissue-specific expression of TH-related genes 

WISH analyses demonstrated that thraa and thrb were expressed in a tissue-specific 

manner. For example, thraa was widely expressed in a number of tissues including 

the brain, pectoral fin, heart, intestine, pronephric ducts and jaw cartilage, in line with 

earlier reports on zebrafish early life stages (Bertrand et al., 2007; Marelli et al., 2016). 

Interestingly, the thrb expression pattern observed here was somewhat different to 

expression patterns previously described. For example, we observed the expression 

of thrb in the liver, heart and pectoral fin which has not previous been observed in 

WISH observations (Marelli et al., 2016). In addition, we did not observe thrb 

expression in the eye or pituitary gland at any stages examined as previously observed 

(Bertrand et al., 2007; Marelli et al., 2016). 

 

In terms of developing a better understanding the role of TR encoding genes during 

early development, through the WISH analyses we show the co-expression of thraa 

and thrb in several zebrafish tissues at specific developmental stages (both genes 

were co-expressed in the brain between 24-120 hpf, pronephric ducts between 48-72 
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hpf, liver between 72-120 hpf, pericardium at 72 hpf, craniofacial tissue at 120 hpf and 

pectoral fins at 72 hpf) which may indicate  co-operative roles in mediating the actions 

of THs. Previous studies have also detected the simultaneous expression of both thraa 

and thrb in the brain (Bertrand et al., 2007; Marelli et al., 2016), liver (Lema et al., 

2009; Nelson and Habibi, 2006), skeletal tissues (Yamano and Miwa, 1998) and heart 

(Yamano and Miwa, 1998) of several fish species. The tissue localisations of these 

TR-encoding genes align with their well-known roles in mediating the actions of THs 

during brain  (Rovet, 2014), fin (pectoral, pelvic and dorsal), cranial skeletal tissues 

and heart development in several fish species (Brown, 1997; Okada et al., 2003; Shkil 

et al., 2012). While TRs appear to be co-expressed in several zebrafish tissues, 

studies into the distribution pattern of these TRs at a cellular level and their target 

genes in these tissues are required to dissect their functional differences in zebrafish.  

 

There were also distinct expression domains seen for thraa and thrb. For example, 

thrb expression (but not thraa) occurred in the otic vesicles of zebrafish at all the 

developmental stages examined. These tissues are responsible for hearing, balance 

and sensing acceleration in vertebrates (Nicolson, 2005) and while TRβ2 has been 

shown to mediate the effect of THs on auditory functions in mammals, influencing 

cellular differentiation in the cochlea (inner ear) (Rusch et al., 2001), as far as we are 

aware no such information is available for fish. The expression of thrb in the otic 

vesicles, as observed here, strongly suggests a role for THs, mediated principally by 

TRβ receptors, in the development of sensory functions in fish. We detected a domain 

of thraa expression (but not thrb) in the intestinal bulb of zebrafish larvae (96-120 hpf)  

which is similar to the expression pattern observed in the developing stomach of 

Japanese flounder (Yamano and Miwa, 1998).  THs have long been suggested to be 
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a regulator of intestinal development (Miwa et al., 1992; Plateroti et al., 2001; Shi et 

al., 1996), and TH-dependent intestinal remodelling has been well characterised 

during amphibian metamorphosis (Tata, 1993). The expression of thraa in the intestine 

of developing zebrafish we observed here is consistent with the role of TRα isoforms 

in meditating T3-dependent functions in intestinal epithelial cells of rodents (Plateroti 

et al., 2001). Given the wide range of tissues in which TR-encoding genes are 

expressed in the zebrafish early life stages, this indicates that some TDC (depending 

on their mode of action) could have wide pervasive effects through alterations to the 

development and/or functions of these TR-dependent tissues in wild fish.  

 

While the abundance of dio3b mRNAs during early life stages of fish has been 

examined previously (using pooled embryo-larval samples) (Heijlen et al., 2014; 

Vergauwen et al., 2018), relatively little is known about the tissue-specific dio3b 

expression patterns. dio3b expression has been observed previously in the pronephric 

ducts and brain of zebrafish embryos from the 6 somite stage to 24 hpf (Dong et al., 

2013), but here we also observed dio3b expression in the pronephric ducts (24-72 

hpf), liver (72-120 hpf) and brain (48-72 hpf) of zebrafish embryo-larvae. Dio3b 

expression in the liver and pronephric ducts are likely involved in controlling systemic 

levels of TH whereas expression in the brain suggests a localised D3 regulation of T3 

during distinct neurodevelopmental windows.  

 

We observed that the tissue expression domains for dio1 and dio2 were overlapping 

in zebrafish larvae (in the liver, pronephric ducts, intestinal bulb, intestine and brain at 

96 and 120 hpf) consistent with previous findings  (Dong et al., 2013; Thisse et al., 

2003), and suggesting that D1 and D2 proteins co-operate to control systemic T3 
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levels and/or local T3 availability during development (Walpita et al., 2010). It should 

be noted however that the distinct dio2 expression pattern observed in the pituitary 

gland (48-120 hpf), is suggestive of D2 alone regulating the availability of T3 in the 

pituitary and thereby influencing the negative feedback loop of the central HPT axis. 

 

4.3 T3 regulation of TH-related gene transcript levels 

The transcript levels of all of the selected TH-related genes examined in our study 

were altered in zebrafish embryo-larvae exposed to exogenous T3, with several of 

these genes affected for multiple time points. For example, thraa, thrb and dio3b RNA 

levels were significantly elevated at 48 hpf, 96 hpf and 120 hpf stages, while dio1 

levels were significantly reduced at 96 hpf and 120 hpf. It is interesting that several of 

the genes examined however were only affected at a very specific developmental 

stages, including pax8 (48 hpf), ugt1ab (120 hpf), crhb (120 hpf) and dio2 (96 hpf). 

These results suggest that different TH pathways may be vulnerable to perturbations 

in TH levels by TDCs at very specific developmental windows, with thyroid synthesis 

(via pax8 signalling) potentially vulnerable for a short period of time while thyroid target 

gene signalling (via TRs) potentially vulnerable for much longer periods.  

 

Our results show that the effect of T3 on thrb transcript levels was more pronounced 

than on thraa transcript levels, in line with previous studies that exposed zebrafish to 

T3, at concentration similar to those tested in the present study (3-60 µg L-1), from 6-

72 hpf, 6-120 hpf and 72-144 hpf (Liu et al., 2000; Walter et al., 2018). In contrast, 

however, a study by Walpita et al., (2007) found that thrb mRNA levels were not 

affected in zebrafish embryos exposed to T3 (3 µg L-1) up to 75 hpf, while thraa mRNA 
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levels was similarly unaffected between 8-36 hpf and at 75 hpf (but mRNA levels 

increased at 48 hpf) (Walpita et al., 2007). Taken together, these results suggest that 

the transcriptional regulation of TRs by T3 may be stage-dependent in zebrafish early 

life stages and differ depending on the T3 concentration to which they are exposed. 

Indeed, although T3 exposure resulted in increased thrb transcript levels across all 

developmental stages, the effect was more pronounced at 96 hpf compared with 48 

and 120 hpf (6-fold increase compared to 2- and 4-fold increases, respectively). At 96 

hpf, zebrafish larvae are entering the embryonic-larval transition phase, which is 

associated with increased endogenous TH levels, and this may explain the observed 

greater thrb responsiveness to T3 at this stage. It also raises the possibility that TH 

signalling, mediated by TRβ receptors, at 96 hpf may be a particularly vulnerable 

developmental window in terms of altered TH status (Campinho et al., 2010).  

 

T3 differentially regulated the transcript levels of the three deiodinase encoding genes 

examined here in zebrafish embryo-larvae and these observed mRNA changes align 

well with their documented roles in regulating both systemic and local TH levels. For 

example, the suppression of dio1 (96 and 120 hpf) and dio2 (96 hpf) transcript levels 

is consistent with their functional role in converting T4 into T3 and supports the idea 

that changes in their transcript levels may help to regulate T3 status in peripheral 

tissues. The T3-induced suppression of dio1 and dio2 observed here is consistent with 

several studies that have reported reduced mRNA levels/protein activity in the liver, 

brain, gonads or whole-body samples in various fish species (zebrafish [56] sea bream 

(Sparus aurata) (Campinho et al., 2010), rainbow trout (Oncorhynchus mykiss) (Bres 

et al., 2006; Fines et al., 1999), striped parrotfish (Scarus iseri) (Johnson and Lema, 

2011), and killifish (Fundulus heteroclitus) (Garcı́a-G et al., 2004)) exposed to T3. The 
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strong induction of dio3b (in contrast to the suppression of dio1 and dio2) in all of the 

zebrafish life stages examined here is consistent with its proposed function of 

protecting tissues from high levels of TH, as discussed above, and is in line with 

previous findings in other fish species including striped parrotfish (Johnson and Lema, 

2011), rainbow trout (Bres et al., 2006) and sea bream (Campinho et al., 2010). We 

did not observe a significant change in dio1 or dio2 transcript levels in 48 hpf embryos 

and although it has previously been reported that these deiodinase encoding genes 

are unaffected by T3 exposures in zebrafish early life stage (8-48 hpf) (Walpita et al., 

2007), the underlying reason(s) for is unknown. We can, however, hypothesise based 

on our findings that the significant induction of dio3b at the 48 hpf stage may lead to 

sufficiently high levels of D3 proteins that would be capable of regulating TH levels at 

these earlier stages (prior to hatching) without the need for D1 and D2.  

 

An interesting finding from our study was the differential regulation of tshb transcript 

levels by T3, with a dose-dependent reduction in tshb levels observed in 48 hpf 

embryos and a significant increase in tshb levels in larvae post hatching. Thyroid 

stimulating hormone (TSH), encoded by the tshb gene, controls expression of 

thyroglobulin mRNA, thyroid peroxidase, TSH receptors and the sodium-dependent 

iodide ions uptake in thyrocytes and therefore plays a crucial role in TH synthesis and 

release from the thyroid follicles (Pierce and Parsons, 1981). While the reduced 

expression of tshb at 48 hpf observed our study, is consistent with the negative 

feedback mechanisms that controls TSH and therefore TH levels, the increased tshb 

levels at 96 hpf is difficult to interpret, particularly without a measurement of whole 

body TH content, which we did not do in this study.  
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4.4 T3 regulation of TH-related tissue specific gene expression patterns 

A novel element of our study was the examination of tissue-specific expression 

changes for a number of zebrafish thyroid-related genes (via WISH) after exposure to 

T3 for varying lengths of time. We observed that exposure to exogenous T3 induced 

distinct changes in the tissue expression patterns of thraa and thrb in zebrafish 

embryo-larvae. At both developmental stages examined (48 and 120 hpf), the 

expression of thraa and thrb appeared to be substantially higher in the brain of T3-

exposed embryo-larvae compared to control individuals. In addition, we found that T3 

appeared to induced thraa and thrb expression in the intestine, liver, craniofacial 

tissues and pectoral fins (thraa only). As far as we are aware, no previous studies 

have assessed the tissue-specific regulation of TR transcripts by T3 during early fish 

life stages. Previous studies have, however, studied TH-regulation of TR transcripts in 

a few tissues in adult fish. In adult fathead minnows, exposure to exogenous T3 has 

been shown to result in elevated thraa and thrb expression in the liver and brain and 

elevated thrb transcripts in the gonads (Lema et al., 2009). Interestingly, in adult 

goldfish (Carassius auratus), T3 exposure was shown to down-regulate thraa and thrb 

expression in the gonads (Nelson et al., 2011). In the striped parrotfish, T3 exposure 

increased thraa and thrb transcripts in the liver, gonad and brain in males but only in 

the brain in females (Johnson and Lema, 2011). Taken together these results suggest 

that changes to TR transcript level within specific tissues in response to T3 exposure 

can differ between species, sexes and life stages. 

 

A novel finding in our study was the induction of thraa by T3 in the pineal gland of 

zebrafish embryo-larvae. The pineal gland is the site of melatonin production and 
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influences the light-dark rhythm (circadian rhythms) in most vertebrates, including 

teleost fish (FalcÓn et al., 2006). Melatonin has also been shown to be involved in the 

regulation of smoltification, reproduction and the immune system in fish (Ángeles 

Esteban et al., 2006; Ekstrzm and Meissl, 1997). Interestingly, early studies on walking 

catfish (Clarias batrachus) indicated a potential role of the pineal gland/melatonin in 

controlling thyroidal uptake of iodine and circulating levels of THs (Nayak and Singh, 

1987a, b). The expression of thraa in the pineal gland here may indicate a role of 

melatonin in regulating TH synthesis as a compensatory response to exogenous T3 

exposure. Future studies should consider whether altered pineal gland signalling is a 

mechanistic pathway of TDCs and if so fully define adverse outcome pathways for the 

potential effects of TDCs on pineal gland signalling and function.  

 

Exposure to exogenous T3 altered the tissue specific expression patterns of all of the 

deiodinase-encoding genes and the observed changes varied depending on the 

zebrafish life stage examined. As far as we are aware, no other study to date has 

examined the tissue-specific changes to deiodinase-encoding gene expression by T3 

in the early life stages of teleost fish. Here we observed that dio1 and dio2 expression 

appeared to be suppressed in a wide variety of tissues in T3-exposed larvae including 

craniofacial tissues, brain, liver, gastrointestinal tract and pituitary gland (dio2 only). 

The reduced dio2 expression in the pituitary may be a compensatory mechanism to 

elevated T3 levels, as reducing the conversion of T4 to T3 (as a result of reduced D2 

activity/ levels) in the pituitary may increase local T4 levels and therefore inhibit TH 

release by the thyroid follicles. Here, we demonstrate for the first time that dio3b 

expression appeared to be induced in the jaw cartilage, pectoral fins and brain (in 96 

h larvae) of T3-exposed embryo-larvae, suggesting these tissues are particularly 
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sensitive to elevated levels of THs at these earlier stages of development. It is, 

therefore, important to consider that TH-signalling in these tissues may be vulnerable 

to some TDCs.  

 

In summary, the data presented illustrate widespread and highly dynamic tissue 

expression of key genes in the HPT axis in zebrafish embryo-larvae, supporting their 

roles in multiple developmental processes. Furthermore, the responsiveness of these 

genes to T3 highlights the high vulnerability of TH-dependant tissues and physiological 

processes during early developmental windows to altered TH signalling and captures 

some of the potential mechanisms of action of TDCs. Future work would be well placed 

to further investigate the downstream adverse outcomes of altered TH signalling in 

some of the key target tissues identified within this study, such as the pineal gland, the 

brain, pectoral fins and intestine, in order to better assess the potential environmental 

risks associated with exposure to TDCs.   
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Figures

 

Figure 1. Transcript profile of genes in the HPT axis of zebrafish during embryo-larvae 

development. Relative expression levels of (A) thyroid receptor alpha (thraa), (B) 

thyroid receptor beta (thrb), (C) transthyretin (ttr), (D) deiodinase type I (dio1), (E) 

deiodinase type II (dio2), (F) deiodinase type III (dio3b), (G) corticotropin-releasing 

hormone (crhb), (H) thyroid-stimulating hormone beta (tshb), (I) paired box 8 (pax8) 

and (J) uridine diphosphate-glucuronosyltransferase (ugt1ab) in whole zebrafish at 24, 

48, 72, 96 and 120 hours post fertilisation (hpf). Transcript profiles were determined 

using qRT-PCR and differences between developmental stages were assessed using 



 

30 

 

general linear mixed models. Plotted data are presented as fold changes (normalised 

against the expression of the reference gene, rpl8) ± SEM, relative to the earliest 

developmental stage (24 hpf). Outliers, as identified in the text, were excluded from 

the analysis, resulting in a replication of n=7-9 samples per developmental stage. 

Different letters indicate significant differences between developmental stages 

(p<0.05).  
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Figure 2. WISH images of TR and transthyretin mRNA expression in zebrafish embryo-larvae. Tissue expression pattern of (A-E) 

thyroid receptor alpha (thraa), (F-J) thyroid receptor beta (thrb) and (K-O) transthyretin (ttr) zebrafish embryo-larvae between 24-120 

hpf. Lateral (A-O), and dorsal (Ai-Ji) views of whole embryo-larvae are shown with anterior orientated to the left and the focal areas 

of expression indicated by black arrowheads.  b=brain, ba=branchial arches, ib=intestinal bulb, jc=jaw cartilage, l=liver, ov=otic 

vesicle, pc=pericardia, pd=pronephric ducts,  pf=pectoral fins, pfb=prospective fin bud.  Scale bar=100 μm.  
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Figure 3. WISH images of deiodinase type I (dio1), type II (dio2) and type III (dio3b) mRNA expression patterns in zebrafish embryo-

larvae. Tissue expression pattern of (A-E) dio1, (F-J) dio2 and (K-O) dio3b mRNA in zebrafish embryo-larvae between 24-120 hpf. 

Lateral (A-O) and dorsal (Fi-Oi) views of whole embryo-larvae are shown with anterior orientated to the left and the focal areas of 

expression are indicated by black arrowheads. b=brain, i=intestine, ib=intestinal bulb, l=liver, pd=pronephric ducts, pi=pituitary, 

ysl=yolk syncytial layer. Scale bar=100 μm.  
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Figure 4. Mean (A) mortality, (B) hatching success, (C) morphological deformities and 

(D) swim bladder (SB) inflation success in zebrafish larvae following T3 exposure for 

96 hours post fertilisation (hpf). The relationship between toxicity endpoints and T3 

concentration was assessed using generalised linear mixed models Significance 

codes compared to control: **p<0.01, ***p<0.001. (E) Images of zebrafish embryo-

larvae at 72 hpf exposed to (i) Control, (ii) 30 μg T3 L-1, (iii) 100 μg T3 L-1 and (iv) 300 

μg T3 L-1. (F) Images of zebrafish larvae at 96 hpf exposed to (i) Control, (ii) 10 μg T3 

L-1 (iii) 100 μg T3 L-1 and (iv) 300 μg T3 L-1 showing—1. oedema, 2. swollen yolk sac, 

3. bent spine, 4. lower jaw deformity, 5. reduced pigmentation and 6. small eyes. Scale 

bar=100 μm.  



 

37 

 

 



 

38 

 

Figure 5. Transcript profile of genes in the HPT axis of zebrafish embryo-larvae following exposure to T3. Changes in (A) thyroid 

receptor alpha (thraa), (B) thyroid receptor beta (thrb), (C) transthyretin (ttr), (D) deiodinase type I (dio1), (E) deiodinase type II (dio2), 

(F) deiodinase type III (dio3b), (G) corticotropin-releasing hormone (crhb), (H) thyroid-stimulating hormone beta (tshb), (I) paired box 

8 (pax8) and (J) uridine diphosphate-glucuronosyltransferase (ugt1ab) in zebrafish embryo-larvae following exposure to T3 (0, 30 

and 100 μg L-1) for 48, 96 and 120 hours post fertilisation (hpf).  Transcript profiles were determined using qRT-PCR and the 

relationship between transcript expression and T3 concentration was assessed using general linear mixed models.  Plotted data are 

presented as fold changes (normalised against the expression of the control gene rpl8) ± SEM compared to the corresponding control 

group. Outliers, identified as described in the text, were excluded from the analysis, resulting in a replication of n=8-9 homogenised 

sample per treatment group. Significance codes: *p<0.05, **p<0.01, ***p<0.001.  
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Figure 6. WISH images of thyroid receptor alpha (thraa), thyroid receptor beta (thrb) 

and transthyretin (ttr) mRNA expression patterns in zebrafish embryo-larvae following 
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exposure to T3. Representative images of (A-F) thraa, (G-L) thrb and (M-O) ttr 

expression patterns in 48 hpf and 120 hpf zebrafish embryo-larvae treated with T3 (0, 

30 and 100 μg L-1). Lateral (A-O) and dorsal (Ai-Ci) views of whole embryo-larvae are 

shown with anterior orientated to the left and focal areas of expression are indicated 

by black arrowheads. b=brain, ba=branchial arch, i=intestine, jc=jaw cartilage, l=liver, 

ov=otic vesicle, p=pronephros, pd=pronephric ducts, pf=pectoral fins, pg=pineal 

gland, s=somites. Scale bar=100 μm.  
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Figure 7. WISH images of deiodinase type I (dio1), type II (dio2) and type III (dio3b) 

mRNA expression patterns in zebrafish embryo-larvae following exposure to T3.  

Representative images of (A-C) dio1, (D-I) dio2 and (J-O) dio3b expression patterns 

in 48 hpf and/or 96 hpf zebrafish embryo-larvae treated with T3 (0, 30 and 100 μg L-

1). Lateral (A-C; G-O; Ai-Ci; Mi-Oi), ventral (Di-Fi; Gi-Ii) and dorsal (Ji-Li) views of 

whole embryo-larvae are shown with anterior orientated to the left and focal areas of 

expression indicated by black arrowheads. b=brain, cf=caudal fin, i=intestine, 

ib=intestinal bulb, jc=jaw cartilage, l=liver, pd=pronephric ducts, pf=pectoral fins, 

pi=pituitary gland, sb=swim bladder, ysl= yolk syncytial layer. Scale bar=100 μm.  
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Supplemental Tables and Figures 

Table S1. Forward and reverse primer sequences for target genes in the HPT axis of zebrafish used in qRT-PCR analysis, with 

annealing temperatures (Ta), product size (base pairs), efficiency values and accession numbers. 

Gene Name 
Gene 

Symbol 
Primer Sequence (5’ – 3’) 
(F: forward; R: reverse) 

Product Size 
(bp) 

Ta (°C) 

PCR 
Efficiency  Accession Number Reference 

(%) 

thyroid receptor alpha thraa 
F: GGC GTC CTG TAA CTG CTG 

142 61 101 NM_131396.1 [1] 
R: GGT TGT GCT CCT GCT CTG 

thyroid receptor beta thrb 
F: TGG GTG TCT CGC TGT CCTC 

119 60 93 NM_131340.1 [1] 
R: ACA ACG CTC TAT CCG CTC AAC 

transthyretin ttr 
F: CGC ACA CCT TTC CAC CAG 

122 60.5 109 NM_001005598.2 [1] 
R: TTG ACG ACC ACA GCA GTT G 

deiodinase enzymes 
type I 

dio1 
F: GTA ATC GTC CAC TGG TTC TGA G 

114 60.5 107 NM_001007283.1 [1] 
R: TGA GGA AAT CTG CGA CAT TGC 

deiodinase enzymes 
type II 

dio2 
F: TCT GGA GGA GAG GAT GTT TGC 

124 59.5 105 NM_212789.3 [1] 
R: CTC GTA GGA CAC ACC GTA GG 

deiodinase enzymes 
type III 

dio3b 
F: AGG GCT CCG CAG GTG TG 

106 63 98 NM_001177935.2 [1] 
R: AGG AAG TCC AGC AGG CAG AG 

corticotropin-releasing 
hormone 

crhb 
F: TTC GGG AAG TAA CCA CAA GC 

163 59.5 110 NM_001007379.1 [1]  
R: CTG CAC TCT ATT CGC CTT CC 

thyroid-stimulating 
hormone 

tshb 
F: CAG GGA CAG TAA CAT AAA GGA G 

R: CTG GGT AGG TGA AGT GAG G 
137 60.5 112 NM_181494.2 [1] 

paired box 8 pax8 
F: CCG TCA CTC CTC CTG AAT CTC 
 R: GCT CTC CTG GTC ACT GTC ATC 

128 62.5 106 AF072549.1 [1] 

uridine diphosphate-
glucuronosyltransferase 

ugt1ab 
F: CCA CCA AGT CTT TCC GTG TT  
R: GCA GTC CTT CAC AGG CTT TC 

168 62.5 105 NM_213422.2 [1] 

ribosomal protein l8 rpl8 
F: CCG AGA CCA AGA AAT CCA GAG 
R: CCA GCA ACA ACA CCA ACA AC 

91 59.5 102 NM_200713.1 [2] 
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Table S2: Whole mount in situ hybridisation staining times (h) for the target genes in 

zebrafish embryo-larvae studied at various stages of development; 24, 48, 72, 96 and 

120 hpf. Staining times are shown for the following genes: thyroid receptors (thraa and 

thrb), deiodinases (dio1, dio2 and dio3b) and transthyretin (ttr). 

Gene 

hpf 

24 48 72 96 120 

thraa 8.5 7.5 7.5 7.5 7.5 

thrb 8.5 8.5 8.5 8.5 8.5 

ttr 6.5 6.5 5.0 5.0 5.0 

dio1 8.5 8.5 8.5 7.5 7.5 

dio2 8.5 5.0 7.0 8.5 8.5 

dio3b 5.0 5.0 6.5 5.0 3.5 
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Table S3: Whole mount in situ hybridisation staining times (h) for target genes in 

zebrafish embryo-larvae following exposures to T3. Embryo-larvae were sampled at 

various developmental stages; 48, 96 and/or 120 hpf. Staining times are shown for the 

following genes: thyroid receptors (thraa and thrb), deiodinases (dio1, dio2 and dio3b) 

and transthyretin (ttr).  

Gene 

hpf 

48 96 120 

thraa 2.0 - 3.0 

thrb 3.5 - 3.5 

ttr 4.5 3.5 - 

dio1 4.5 10.0 - 

dio2 3.5 10.0 - 

dio3b 2.0 2.0 - 
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Table S4. Output of maximum likelihood tests performed to assess differences in gene 

transcript levels between zebrafish developmental stages. Developmental stage was 

incorporated as a fixed effect into the GLMM model and each experiment were 

incorporated as a random effect. 

 

Gene df Χ2 
p 

value 

thraa 4 68.9 <0.001 

thrb 4 50.0 <0.001 

ttr 4 125.1 <0.001 

dio1 4 119.5 <0.001 

dio2 4 77.6 <0.001 

dio3b 4 80.7 <0.001 

crhb 4 74.7 <0.001 

tshb 4 40.1 <0.001 

pax8 4 40.2 <0.001 

ugt1ab 4 110.6 <0.001 
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Table S5. Output of pairwise comparison analyses used to compare differences in the transcript levels of each gene between the 

zebrafish developmental stages examined (24-120 hpf). 

Gene 
Stage 

Comparison 
Estimate SE 

z 
value 

p value Gene 
Stage 

Comparison 
Estimate SE z value p value 

thraa 24-48 0.02 0.00 9.56 <0.001 dio3b 24-48 -0.06 0.07 -0.94 0.880 
 24-72 0.02 0.00 12.37 <0.001  24-72 0.40 0.07 5.87 <0.001 
 24-96 0.01 0.00 5.48 <0.001  24-96 0.67 0.07 9.65 <0.001 
 24-120 0.01 0.00 5.41 <0.001  24-120 0.68 0.07 9.74 <0.001 
 48-72 0.00 0.00 2.41 0.111  48-72 0.46 0.07 6.82 <0.001 
 48-96 -0.01 0.00 -3.98 <0.001  48-96 0.74 0.07 10.57 <0.001 
 48-120 -0.01 0.00 -3.64 0.003  48-120 0.75 0.07 10.66 <0.001 
 72-96 -0.01 0.00 -6.50 <0.001  72-96 0.28 0.07 3.95 0.001 
 72-120 -0.01 0.00 -6.07 <0.001  72-120 0.28 0.07 4.05 0.001 
 96-120 0.00 0.00 0.16 0.999  96-120 0.01 0.07 0.09 0.999 

thrb 24-48 0.01 0.01 2.97 0.025 crhb 24-48 0.02 0.01 3.02 0.022 
 24-72 0.04 0.01 7.48 <0.001  24-72 0.04 0.01 7.51 <0.001 
 24-96 0.04 0.01 8.11 <0.001  24-96 0.07 0.01 11.39 <0.001 
 24-120 0.03 0.01 4.89 <0.001  24-120 0.06 0.01 10.19 <0.001 
 48-72 0.02 0.01 4.51 <0.001  48-72 0.03 0.01 4.49 <0.001 
 48-96 0.03 0.01 5.14 <0.001  48-96 0.05 0.01 8.38 <0.001 
 48-120 0.01 0.01 2.14 0.204  48-120 0.04 0.01 7.27 <0.001 
 72-96 0.00 0.01 0.63 0.970  72-96 0.02 0.01 3.89 <0.001 
 72-120 -0.01 0.01 -2.06 0.239  72-120 0.02 0.01 2.92 0.029 
 96-120 -0.01 0.01 -2.64 0.063  96-120 -0.01 0.01 -0.85 0.914 

ttr 24-48 -0.49 0.16 -3.09 0.017 tshb 24-48 0.00 0.00 6.97 <0.001 
 24-72 1.40 0.16 8.76 <0.001  24-72 0.00 0.00 6.74 <0.001 
 24-96 2.85 0.17 17.23 <0.001  24-96 0.00 0.00 4.51 <0.001 
 24-120 3.14 0.17 18.98 <0.001  24-120 0.00 0.00 3.71 0.002 
 48-72 1.90 0.16 11.85 <0.001  48-72 0.00 0.00 -0.05 1 
 48-96 3.34 0.17 20.22 <0.001  48-96 0.00 0.00 -2.34 0.132 
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 48-120 3.63 0.17 21.98 <0.001  48-120 0.00 0.00 -3.14 0.015 
 72-96 1.44 0.17 8.74 <0.001  72-96 0.00 0.00 -2.23 0.168 
 72-120 1.73 0.17 10.50 <0.001  72-120 0.00 0.00 -3.00 0.023 
 96-120 0.29 0.17 1.71 0.429  96-120 0.00 0.00 -0.77 0.938 

dio1 24-48 0.36 0.06 6.29 <0.001 pax8 24-48 0.37 0.07 5.51 <0.001 
 24-72 0.66 0.06 11.71 <0.001  24-72 0.23 0.07 3.47 0.005 
 24-96 1.12 0.06 20.01 <0.001  24-96 -0.02 0.07 -0.28 0.999 
 24-120 1.27 0.06 21.85 <0.001  24-120 -0.05 0.07 -0.67 0.962 
 48-72 0.29 0.06 5.05 <0.001  48-72 -0.14 0.06 -2.11 0.218 
 48-96 0.76 0.06 13.10 <0.001  48-96 -0.39 0.06 -5.98 <0.001 
 48-120 0.90 0.06 15.08 <0.001  48-120 -0.41 0.07 -6.20 <0.001 
 72-96 0.47 0.06 8.30 <0.001  72-96 -0.25 0.06 -3.87 0.001 
 72-120 0.61 0.06 10.51 <0.001  72-120 -0.28 0.07 -4.16 <0.001 
 96-120 0.14 0.06 2.47 0.098  96-120 -0.03 0.07 -0.41 0.994 

dio2 24-48 0.00 0.00 3.97 <0.001 ugt1ab 24-48 0.31 0.12 2.57 0.075 
 24-72 0.00 0.00 8.85 <0.001  24-72 1.37 0.12 11.47 <0.001 
 24-96 0.00 0.00 9.48 <0.001  24-96 2.12 0.12 17.14 <0.001 
 24-120 0.00 0.00 13.10 <0.001  24-120 2.07 0.12 16.79 <0.001 
 48-72 0.00 0.00 4.88 <0.001  48-72 1.07 0.12 8.90 <0.001 
 48-96 0.00 0.00 5.64 <0.001  48-96 1.81 0.12 14.65 <0.001 
 48-120 0.00 0.00 9.25 <0.001  48-120 1.77 0.12 14.29 <0.001 
 72-96 0.00 0.00 0.91 0.895  72-96 0.75 0.12 6.03 <0.001 
 72-120 0.00 0.00 4.52 <0.001  72-120 0.70 0.12 5.68 <0.001 
 96-120 0.00 0.00 3.50 0.004  96-120 -0.04 0.13 -0.35 0.997 

 

 

 



 

170 

 

Table S6. Output of pairwise comparison analyses used to compare differences in the 

transcript levels of (A) thyroid receptors thraa and thrb and (B) deiodinases dio1, dio2 

and dio3 at each of the zebrafish developmental stages examined (24-120 hpf). 
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A) Comparison of thyroid receptor transcript levels 

Gene 
comparison HPF Estimate SE z value p value 

thraa-thrb 

24 0.04 0.003 10.8 <0.001 

48 0.02 0.004 4.7 <0.001 

72 0.04 0.004 10.1 <0.001 

96 0.06 0.005 11.2 <0.001 

120 0.04 0.005 8.7 <0.001 

B) Comparison of deiodinase transcript levels 

Gene 
comparison HPF Estimate SE z value p value 

dio1-dio2 24 -0.62 0.07 -8.49 <0.001 

dio1-dio3b 24 1.64 0.07 22.56 <0.001 

dio2-dio3b 24 2.26 0.07 31.04 <0.001 

dio1-dio2 48 70.98 65.1 1.09 0.52 

dio1-dio3b 48 -581.65 65.10 -8.94 <0.001 

dio2-dio3b 48 -652.62 63.15 -10.33 <0.001 

dio1-dio2 72 -10.28 54.13 -0.19 0.98 

dio1-dio3b 72 -330.92 54.13 -6.11 <0.001 

dio2-dio3b 72 -320.64 54.13 -5.92 <0.001 

dio1-dio2 96 186.88 20.81 8.98 <0.001 

dio1-dio3b 96 -100.95 20.81 -4.851 <0.001 

dio2-dio3b 96 -287.83 21.40 -13.45 <0.001 

dio1-dio2 120 128.46 18.18 7.07 <0.001 
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dio1-dio3b 120 -75.01 18.18 -4.13 <0.001 

dio2-dio3b 120 -203.47 18.18 -11.19 <0.001 
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Table S7. Mean fractional mortality, hatching success, deformities and swim bladder 

(SB) inflation success (± SEM) following exposure of zebrafish to a range of T3 

concentrations over the period to 96 h post fertilisation. 

T3 (µg L
-1

) N 
Mean 

 Mortality 
Mean Hatching 

Success 
Mean Deformities 

Mean SB Inflation 
Success 

0 9 0.04 (± 0.01) 0.98 (± 0.02) 0.03 (± 0.02) 0.97 (± 0.02) 

10 9 0.02 (± 0.01) 0.99 (± 0.01) 0.16 (± 0.06) 0.85 (± 0.06) 

30 9 0.04 (± 0.02) 1.00 (± 0.00) 0.62 (± 0.09) 0.44 (± 0.10) 

100 9 0.02 (± 0.01) 1.00 (± 0.00) 0.74 (± 0.08) 0.36 (± 0.10) 

300 9 0.00 (± 0.00) 1.00 (± 0.00) 0.93 (± 0.03) 0.11 (± 0.03) 
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Table S8. Output of (A) maximum likelihood tests and the subsequent (B) pairwise 

comparison analyses performed to assess the effect of T3 treatment on mortality, 

hatching success, deformities and swim bladder inflation in zebrafish larvae following 

a 96-h exposure. NS=Not significant. 

(A) Output of maximum likelihood tests   

Measured Endpoints Χ2 df p value   

Mortality  10.1 4 0.05   

Hatching Success 5.9 4 0.21   

Deformities 513.4 4 <0.001   

Swim Bladder Inflation 469.8 4 <0.001   

(B) Output of pairwise comparisons   

Measured Endpoints 
Treatment 

Comparison 
Estimate SE z value p value 

Mortality 

0-10 NS NS NS NS 

0-30 NS NS NS NS 

0-100 NS NS NS NS 

0-300 NS NS NS NS 

Hatching Success 
 
 
 

0-10 NS NS NS NS 

0-30 NS NS NS NS 

0-100 NS NS NS NS 

0-300 NS NS NS NS 

Deformities 
 
 
 

0-10 2.01 0.52 3.84 0.001 

0-30 5.10 0.57 9.02 <0.001 

0-100 5.77 0.58 10.00 <0.001 



 

172 

 

0-300 7.55 0.64 11.85 <0.001 

Swim Bladder Inflation 

0-10 -1.99 0.53 -3.77 0.002 

0-30 -5.10 0.58 -8.84 <0.001 

0-100 -5.52 0.58 -9.46 <0.001 

0-300 -7.38 0.63 -11.80 <0.001 
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Table S9. Output of maximum likelihood tests performed to assess differences in gene 

transcript levels and T3 exposure conditions in 48, 96 and 120 hpf zebrafish larvae. 

T3 concentration was incorporated as a fixed effect into the GLMM model and each 

experiment were incorporated as a random effect.  

Gene hpf Χ2 df p value Gene hpf Χ2 df p value 

thraa 

48 31.6 2 <0.001 

dio3b 

48 41.6 2 <0.001 

96 30.0 2 <0.001 96 38.6 2 <0.001 

120 40.3 2 <0.001 120 44.1 2 <0.001 

thrb 

48 14.2 2 <0.001 

crhb 

48 3.9 2 0.144 

96 46.5 2 <0.001 96 6.6 2 0.037 

120 52.2 2 <0.001 120 0.6 2 0.748 

ttr 

48 2.2 2 0.355 

tshb 

48 29.5 2 <0.001 

96 8.5 2 0.014 96 8.1 2 0.018 

120 0.2 2 0.920 120 0.1 2 0.965 

dio1 

48 1.4 2 0.491 

pax8 

48 9.8 2 0.007 

96 23.7 2 <0.001 96 2.0 2 0.368 

120 23.7 2 <0.001 120 4.5 2 0.104 

dio2 

48 1.1 2 0.588 

ugt1ab 

48 3.6 2 0.163 

96 13.1 2 0.001 96 4.3 2 0.117 

120 0.8 2 0.668 120 6.7 2 0.035 
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Table S10. Output of pairwise comparison analyses used to compare differences in gene transcript levels between T3 treatment 

groups (30 and 100 µg L-1 versus control) at different zebrafish developmental stages (48, 96 and 120 hpf). NS=Not significant. 

Gene hpf 
Treatment 

Comparison 
Estimate SE z value p value Gene hpf 

Treatment 
Comparison 

Estimate SE z value p value 

thraa  

48 

0-30 0.03 0.00 7.20 <0.001 

dio3b 

48 

0-30 0.08 0.01 9.28 <0.001 

0-100 0.03 0.01 6.17 <0.001 0-100 0.07 0.01 8.77 <0.001 

96 

0-30 0.04 0.01 5.52 <0.001 

96 

0-30 0.88 0.11 7.79 <0.001 

0-100 0.05 0.01 7.31 <0.001 0-100 0.87 0.12 7.49 <0.001 

120 

0-30 0.03 0.00 7.13 <0.001 

120 

0-30 0.58 0.08 7.52 <0.001 

0-100 0.04 0.00 8.88 <0.001 0-100 0.90 0.08 11.22 <0.001 

thrb  

48 

0-30 0.05 0.02 3.20 0.004 

crhb 

48 

0-30 NS NS NS NS 

0-100 0.06 0.00 4.02 <0.001 0-100 NS NS NS NS 

96 

0-30 0.20 0.02 8.84 <0.001 

96 

0-30 0.11 0.07 1.51 0.286 

0-100 0.24 0.02 11.05 <0.001 0-100 0.18 0.07 2.56 0.028 

120  0-30 0.20 0.02 9.80 <0.001 120 0-30 NS NS NS NS 
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0-100 0.25 0.02 12.35 <0.001 0-100 NS NS NS NS 

ttr  

48 

0-30 NS NS NS NS 

tshb 

48 

0-30 -4.65E-04 9.22E-05 -5.04 <0.001 

0-100 NS NS NS NS 0-100 -6.77E-04 9.53E-05 -7.11 <0.001 

96 

0-30 -0.02 0.01 -1.86 0.150 

96 

0-30 -6.41E-05 1.95E-04 -0.33 0.942 

0-100 -0.03 0.01 -3.10 0.006 0-100 4.96E-04 2.02E-04 2.46 0.037 

120 

0-30 NS NS NS NS 

120 

0-30 NS NS NS NS 

0-100 NS NS NS NS 0-100 NS NS NS NS 

dio1  

48 

0-30 NS NS NS NS 

pax8 

48 

0-30 0.003 0.00 3.22 0.004 

0-100 NS NS NS NS 0-100 0.002 0.00 2.38 0.046 

96 

0-30 -0.003 0.001 -4.40 <0.001 

96 

0-30 NS NS NS NS 

0-100 -0.003 0.001 -5.64 <0.001 0-100 NS NS NS NS 

120 

0-30 -0.002 0.001 -4.43 <0.001 

120 

0-30 NS NS NS NS 

0-100 -0.003 0.001 -5.68 <0.001 0-100 NS NS NS NS 

dio2  48 

0-30 NS NS NS NS 

ugt1ab 48 

0-30 NS NS NS NS 

0-100 NS NS NS NS 0-100 NS NS NS NS 
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96 

0-30 -0.001 0.000 -3.53 0.001** 

96 

0-30 NS NS NS NS 

0-100 -0.001 0.000 -3.21 0.004** 0-100 NS NS NS NS 

120 

0-30 NS NS NS NS 

120 

0-30 -0.11 0.07 -1.66 0.223 

0-100 NS NS NS NS 0-100 -0.18 0.07 -2.66 0.021* 
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Figure S1: Mean rpl8 mRNA levels expressed as Ct values (threshold cycle) in 

zebrafish embryo-larvae at 24, 48, 72, 96 and 120 hpf (n=9). There were no significant 

differences in Ct values between developmental stages (GLM). Error bars represent 

standard error. 
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Figure S2: Mean levels of rpl8 mRNA expressed as Ct values (threshold cycle) in 

zebrafish embryo-larvae exposed to T3 (0, 30 and 100 µg L-1) for 48, 96 and 120 hpf 

(n=9). There were no significant differences in Ct values between treatment groups 

(GLM). Error bars represent standard error. 
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Figure S3. Comparative transcript profiles of (A) thraa and thrb and (B) dio1, dio2 and 

dio3b in zebrafish embryo-larvae at 24, 48, 72, 96 and 120 h post fertilisation (hpf). 

Transcript profiles were determined using qRT-PCR and differences in transcript 

levels were assessed using general linear mixed models. Plotted data are presented 

as mean relative expression (normalised against the expression of the reference gene, 

rpl8) ± SEM. Outliers, as identified in the text, were excluded from the analysis, 

resulting in a replication of n=7-9 samples per developmental stage. Significance 

codes: *p<0.05, **p<0.01, ***p<0.001. 
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Figure S4. Representative images of the mRNA expression patterns for (A-C) 

transthyretin (ttr) and (D-F) deiodinase type I (dio1) in zebrafish embryos treated with 

T3 (0, 30 and 100 μg L-1) for 48 h post fertilisation. Lateral (A-F) and dorsal (Di-Fi) 

views of whole embryos are shown with anterior to the left. Scale bar=100 μm.   
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