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Abstract. The 2D Bin-Packing Problem (2DBPP) is an NP-Hard combinatorial 

optimisation problem with many real-world analogues. Fully deterministic 

methods such as the well-known Best Fit and First Fit heuristics, stochastic 

methods such as Evolutionary Algorithms (EAs), and hybrid EAs that combine 

the deterministic and stochastic approaches have all been applied to the prob-

lem. Combining derived human expertise with a hybrid EA offers another po-

tential approach. In this work, the moves of humans playing a gamified version 

of the 2DBPP were recorded and four different Human-Derived Heuristics 

(HDHs) were created by learning the underlying heuristics employed by those 

players. Each HDH used a decision tree in place of the mutation operator in the 

EA. To test their effectiveness, these were compared against hybrid EAs utilis-

ing Best Fit or First Fit heuristics as well as a standard EA using a random swap 

mutation modified with a Next Fit heuristic if the mutation was infeasible. The 

HDHs were shown to outperform the standard EA and were faster to converge 

than – but ultimately outperformed by – the First Fit and Best Fit heuristics. 

This shows that humans can create competitive heuristics through gameplay 

and helps to understand the role that heuristics can play in stochastic search. 
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1 Introduction 

1.1 Background 

There are many real-world cutting and packing problems that have been translated 

into operational research problems in order to find better solutions. One such problem 

is the two-dimensional finite bin-packing problem (2DBPP) [1]. This problem re-

quires that a selection of boxes of assorted size are fit into the least number of identi-

cally finite-sized bins. Boxes and bins are sized in two dimensions, the boxes may not 

be cut or overlapped, and the bin’s fixed capacity may not be exceeded. Most versions 

of the problem start with empty bins and the ability to add additional bins as needed. 

The simplest solution (but least efficient) would be to place every box in a new bin. 
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More effective heuristics have been developed from other deterministic approaches, 

such as First Fit, Next Fit, and Best Fit amongst many others [2].  

First Fit is perhaps the simplest of these heuristics, in which the selected box is 

simply placed into the first bin in which it fits. Both First Fit and First Fit Decreasing 

(in which the boxes are sorted by size before placement) have been found to be com-

petitive approaches to solving the problem [3]. Next Fit functions the same way as 

First Fit, except that the heuristic starts where the previous iteration finished i.e. if the 

heuristic places a box in the sixth bin, then the heuristic would start by looking in the 

seventh bin for a place to put the next box.  

The Best Fit heuristic is another competitive approach to the problem [4]. This 

heuristic searches through all bins to place the box in the bin where the space remain-

ing most closely matches the dimensions of the selected box without violating the bin 

capacity in either dimension. Other competitive heuristics have been developed by 

researchers such as the adaptive sequence-based heuristic of Oliveira & Gamboa [5] 

and the two-dimensional version of the Djang and Finch heuristic developed by 

López-Camacho et al. [6]. 

Stochastic methods such as Genetic Algorithms (GAs) have also been applied to 

the 2DBPP and other bin-packing problems. However, as general-purpose algorithms 

they struggle to be as competitive as the simpler deterministic heuristic techniques [7, 

8]. Grouping Genetic Algorithms [9] applied to the simpler one-dimensional bin-

packing problem outperformed the regular GA, while other researchers have used 

Multi-Objective techniques in a generalised framework to more easily compare 

against other heuristics and allow the possibility of combining techniques [10]. 

Combining the deterministic and stochastic approaches into a hybrid EA, hyper-

heuristic, or other hybrid heuristic has proven to be a very effective approach. The 

many different hybrid approaches taken to tackle the 2DBPP include combining the 

GRASP and VND algorithms [11], combining iterative simulated annealing with 

binary search [12], combining an improved heuristic with the Variable Neighbour-

hood Search algorithm [13], combining chaos search with a firefly algorithm [14], 

and using adversarial self-play for reinforcement learning making use of neural nets 

and Markov Decision Processes [15]. 

Hyper-heuristics offer another way of easily combining search-based methods, 

heuristics, algorithms, and metaheuristics [16]. The work of López-Camacho et al. 

[17] directly combines a selection of deterministic methods such as Best Fit and First 

Fit with a GA, while other researchers make use of multi-objective EAs [18] or use an 

automated approach to design hybrid metaheuristics with a GA [19]. 

A hybrid EA was formed in Blum & Schmid [20] by combining an EA with a ran-

domised one-pass heuristic, while hybrid GAs have been created by combining a GA 

with the Best Fit Decreasing heuristic [21], multiple local search heuristics [22], the 

Crow Search Algorithm [23], or Human-Derived Heuristics (HDHs) [24, 25], all with 

promising results. 

In Ross et al. [25], participants played a gamified version of the 2DBPP and their 

moves were recorded. Machine learning was then applied to this dataset to obtain 

decision tree regressor models which provided the HDH. While heuristics are normal-

ly either “rules of thumb” employed by those with domain-specific experience or 
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algorithms built from theory-backed research, HDH are created by learning from how 

a human interacts with a problem. 

 

 

Fig. 1. The bin-packing game being played 

1.2 Proposed Approach 

Several different HDHs were derived from experimental data and each of them com-

bined in turn to form a hybrid GA. These would be compared with a standard GA and 

hybrid GAs making use of either the Best Fit or First Fit heuristics. Each HDH would 

take the form of a decision tree obtained by machine learning on subsets of the data. 

Four different subsets of data were selected based on the moves made by the humans 

solving the problem during bin-packing gameplay. 

The first and most obvious move set to learn from consisted of All Moves in the 

data set (HDHALL). This heuristic learns from moves that improved, worsened, or left 

the solution unchanged, and it could reasonably be expected to help find good solu-

tions but might take more iterations to do so. 

Taking a greedy approach, the second move set to learn from consists of only 

moves that improved the solution. The Improving Moves heuristic (HDHIMP) should 

converge faster than the HDHALL heuristic, though there is a greater danger of getting 

stuck in a local optimum. 

To test the hypothesis that the selection of learning moves has an influence on the 

performance of the different hybrid GAs, the third set of moves that were learned 

from consists of only moves that make the solution worse. The Deteriorating Moves 

heuristic (HDHDET) is expected to be outperformed by the other HDHs, and possibly 

by the standard GA as well. 

The last approach is based on Composite Moves (HDHCOM), which are moves that 

make the solution worse followed by moves that improve the solution. This heuristic 
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should perform similarly to the HDHIMP heuristic, but with a reduced chance of get-

ting stuck in a local optimum. Each of these heuristics will take the place of the muta-

tion operator in the hybrid GA. 

These will be compared against hybrid GAs making use of First Fit heuristics or 

Best Fit heuristics in place of their mutation operators, and a standard GA that uses a 

feasible-only random swap mutation based on Next Fit. This latter mutation is neces-

sary to give the standard GA a fair chance when competing with the other heuristics, 

as all the others will only create feasible mutations. This mutation operates by initially 

attempting a random swap mutation, but if that would make the solution infeasible 

then it will try to fit the box into the next bin and repeat until it succeeds. 

In Ross et al. [25] it was found that better results were obtained by combining the 

standard mutation with the HDH mutation in the same algorithm. For this experiment 

several different proportions of the standard mutation are tested with the HDH, First 

Fit, and Best Fit heuristics. Each hybrid GA will be tested with proportions of 100%, 

99%, 40%, 10%, and 1% heuristic mutation with the balance made up of the standard 

mutation. 

2 Experimental and Computational Details 

2.1 Gamification 

The 2DBPP problem used in this paper has a fixed number of finite bins and begins 

with the boxes already randomly distributed between them. The problem contains 10 

bins and 20 boxes. The 20 boxes were created by splitting 5 bins, meaning the global 

optimum is reached by fitting all 20 boxes into just 5 bins. No new bins can be added, 

and empty bins are not removed. 

To achieve a finer detail of scoring than counting the number of used bins, the 

problem was instead scored by giving a maximum score for each completely empty or 

exactly full bin, and adding a score for each other bin based on its closeness to being 

full or empty. The score for each bin was calculated as follows: 

 

𝐼𝑓 𝐵𝑖𝑛 = 𝐸𝑚𝑝𝑡𝑦 𝑜𝑟 𝐵𝑖𝑛 = 𝐹𝑢𝑙𝑙, 𝑆𝑐𝑜𝑟𝑒 = 𝐷𝑖𝑚1𝑀𝑎𝑥 + 𝐷𝑖𝑚2𝑀𝑎𝑥 

𝐸𝑙𝑠𝑒, 𝑆𝑐𝑜𝑟𝑒 = |
𝐷𝑖𝑚1𝑀𝑎𝑥

2
− 𝐵𝑖𝑛𝐷𝑖𝑚1| + |

𝐷𝑖𝑚2𝑀𝑎𝑥

2
− 𝐵𝑖𝑛𝐷𝑖𝑚2|     (1) 

 

Where 𝐷𝑖𝑚1𝑀𝑎𝑥 and 𝐷𝑖𝑚2𝑀𝑎𝑥 are the maximum size respectively of the first and 

second dimensions of the bins, and 𝐵𝑖𝑛𝐷𝑖𝑚1 and 𝐵𝑖𝑛𝐷𝑖𝑚2 represent the current 

filled proportion of the bin in the first and second dimensions respectively. In the 

problem used both 𝐷𝑖𝑚1𝑀𝑎𝑥 and 𝐷𝑖𝑚2𝑀𝑎𝑥 were set to the same value of 500, 

meaning that each empty or full bin scored 1000 and the maximum score was equal to 

the number of bins in the problem multiplied by 1000. With 10 bins this gives a glob-

al optimum score of 10,000. Infeasible solutions were not scored, but their total ca-

pacity violation was recorded for the sake of the fitness function.  

The data used in this study was obtained through the gamification of a bin-packing 

problem. Gamification is the process of turning something into a game or making use 
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of game-like features such as scoring and victory conditions. It has been successfully 

used to keep player attention and focus on mundane or repetitive tasks [26, 27, 28]. 

In this case a game was created from a 2DBPP which participants played while 

their moves were recorded. The game is described in more detail in [25], but essen-

tially consisted of a simple problem with 4 bins and 8 boxes (Fig. 1).  

The players were told the objective and shown how the game worked and were 

then encouraged to compete against each other in solving the problem in the least 

number of moves. Each move would see the player select a single box in the problem 

and move it to whichever bin they chose, after which their score would be updated.  

Data was gathered from every player that finished the game and solved the prob-

lem, regardless of individual performance or the number of moves taken to do so. A 

total of 10 players completed the simple 4-bin problem. This game data was passed 

through a method that selected moves for each data set for the machine learning, 

based on which heuristic was being implemented. This created a data set for each of 

the four HDHs. 

Table 1. Inputs and output for the machine learning. The colour of each input and output 

matches the colours of their respective nodes in the decision trees. 

Inputs Output 

X[0]: Size 

of Selected 

Box 

X[1]: Maximum 

Remaining Bin 

Space  

X[2]: Minimum 

Remaining Bin 

Space  

X[3]: Mean 

Remaining Bin 

Space  

Target 

Remaining 

Bin Space  

2.2 Deriving Human Heuristics 

Every move that a human player made could be split into two parts; the selection of 

the box to move and the selection of the bin to place it in. As the First Fit and Best Fit 

heuristics have no set box selection method but do have a deterministic bin selection, 

the fairest comparison was to leave the box selection as random for all heuristics and 

just investigate the moves with regards to target bin selection. This fixed the machine 

learning output as a quality of the target bin, which was best represented by the 

amount of space remaining in that bin. 

A key step in the process is the determination of the input variables for use in the 

machine learning approach. The size of the selected box was an obvious variable, and 

then a number of more general inputs that described the problem space could be in-

cluded. These would allow the heuristics to be somewhat generalisable across differ-

ent bin-packing and related problems. The preliminary experimentation, a total of four 

inputs were selected, each as a sum of the two dimensions. 

The first input was the size of the box that the player had selected (X[0]). The sec-

ond input was the maximum available space remaining in any non-empty bin (X[1]). 

The third input was the minimum available space in any non-full bin (X[2]), and the 

last input was the mean space remaining across all partially full bins (X[3]). The out-

put was the available space remaining in the target bin (Table 1).  
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Machine learning was carried out in Python using Scikit-learn [29]. Decision trees 

were chosen as they give a human-readable insight into the workings of the heuristic. 

For each HDH a data set with the selected moves was loaded in and an sklearn deci-

sion tree regressor was trained. To aid readability, each tree was constrained to a min-

imum leaf node size of 5, a maximum of 12 leaf nodes, and a maximum depth of 6.  

The resultant decision trees are shown in Fig. 2. The HDHALL decision tree that 

learned from all the moves in the data set is unique in not using the box size (X[0]) 

input in any of its calculations. The HDHIMP decision tree makes less use of the mean 

space remaining input (X[3]) than HDHALL, while the HDHDET decision tree doesn’t 

use it at all. The HDHDET tree is also the only tree that will seek out completely empty 

bins. 

The last tree generated was that for the HDHCOM heuristic, which makes more use 

of the box size input (X[0]) and less use of the minimum bin space remaining input 

(X[2]) than the others. All four decision trees were exported into a program to be used 

as mutation operators in a GA. 

 

 
Fig. 2. The decision trees generated for the four different Human-Derived Heuristics. The box 

colours correspond to the inputs in Table 1. 

2.3 Experimental Setup 

The GA used for this experiment was a steady-state GA. The problem was represent-

ed using k-ary encoding with a k of 10 and a length equal to 20, the number of boxes 

in the problem. Each integer value in the encoding represented which bin the box at 

that index position was in. 
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The parameters and crossover type were tuned for the standard GA, without using 

the heuristics. From this initial testing a population size of 100 and a tournament se-

lection method with a tournament size of 2 was chosen. Uniform crossover performed 

the best, so it was selected, along with a mutation rate of 0.1. As the GA was steady-

state, two children would be created and added to the population each generation, and 

the two least fit members of the population would then be removed. 

The fitness function scored both feasible solutions and infeasible solutions. This 

worked by first checking if the selected solution exceeded bin capacity and was there-

fore infeasible; if it was infeasible it would be scored 0 for fitness and then each in-

feasible bin would be scored based on how much it exceeded the bin capacity limit 

and added to a violation score. If the solution was feasible it would be scored as men-

tioned in the introduction in Eq. 1 (with an optimum score of 10,000). 

The mutation selected boxes from the child problems of the crossover with a prob-

ability of 0.1. For the standard GA the mutation moved the selected box to a bin at 

random, but if that made that bin infeasible it would then attempt to place the box in 

the next bin along instead. This would be repeated as needed, looping back round to 

the start of the bins until the mutation found an appropriately sized bin. This approach 

was adopted to provide a fairer benchmark for standard mutation. The human players 

were not permitted to make moves that resulted in infeasible solutions and this muta-

tion operator performs the same function for the standard GA. 

For the HDH mutation the decision tree determines the bin into which the random-

ly selected box should be placed, based on the closest match to the determined space 

remaining. For First Fit and Best Fit mutations their respective heuristics were ap-

plied, with First Fit searching from the start until it found the first bin that could fit 

the selected box, and Best Fit searched the entire problem space for the bin that had 

the closest space remaining to match the box size. The hybrid GA mutation had a 

chance of implementing either the heuristic mutation or the standard mutation. 

The GA for each condition was run for 200,000 iterations on 30 different instances 

of the 10-bin problem, with each different problem instance being repeated 30 times 

for a total of 900 runs per condition. 

3 Results and Discussion 

The fittest result in the population at each iteration of the GA was recorded and then 

averaged across all 900 runs. These mean fittest values were then plotted for each 

HDH against the values from the standard GA (Fig. 3). 

3.1 Human-Derived Heuristics vs Standard GA 

3.1.1 HDHALL. 100% HDHALL converged early to a local optimum and failed to pro-

gress further, being quickly overtaken by the other percentages and the standard GA. 

99% HDHALL achieved the highest fitness by the end of the run and showed faster 

convergence than the standard GA, with 40% HDHALL following a similar pattern. 

10% HDHALL was slower to converge but ended close behind 40% HDHALL and still 
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ahead of the standard GA. 1% HDHALL outperformed the standard GA and ended at a 

similar level of fitness as the other percentages, though it converged slower. 

3.1.2 HDHIMP. The 100% HDHIMP condition quickly converged to a suboptimal solu-

tion and was outperformed by the other conditions including the standard GA while 

the 99% HDHIMP and 40% HDHIMP conditions converged fastest and ended with the 

fittest solutions. 10% HDHIMP and 1% HDHIMP performed similarly, though 10% 

HDHIMP converged the faster of the two. All HDHIMP heuristics except for 100% 

HDHIMP outperformed the standard GA. 

 

 
Fig. 3. Mean fittest solution per generation for each condition. 

3.1.3 HDHDET. Though the 100% HDHDET converged quickly it was still outper-

formed by the standard GA. All other HDHDET conditions managed to outperform the 

standard GA, with the 99% HDHDET heuristic performing best with 40% HDHDET a 

close second. The 10% HDHDET and 1% HDHDET conditions performed at an inter-

mediate level between the standard GA and the 40% and 99% HDHDET heuristics, 

with the 10% condition performing slightly better. 

3.1.4 HDHCOM. The 100% HDHCOM heuristic also converged very early to a local 

optimum and then failed to progress further. The 99% HDHCOM, 40% HDHCOM, and 

10% HDHCOM performed almost identically, except that the 40% HDHCOM heuristic 

converged faster and the 10% HDHCOM heuristic converged slightly slower. The 1% 

HDHCOM heuristic lagged slightly behind the others, but all HDHCOM percentages 

except for 100% outperformed the standard GA.  
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Table 2: Mean and maximum fittest scores attained over the 900 runs. The mean values that 

differ significantly from the standard GA are denoted by asterisks (*) and the highest value for 

mean and maximum fittest score are highlighted in bold and underlined. 

 
Mean 

Fittest Score 

Statistical Comparison  

vs Standard GA 

Maximum 

Fittest Score 

Standard GA 5683 N/A 7374 

HDHALL 100% 5102* t(1762)=24.0 p<.001 6516 

99% 5920* t(1774)=-11.2 p<.001  7362 

40% 5886* t(1789)=-9.4 p<.001 7718 

10% 5860* t(1788)=-8.2 p<.001 7724 

1% 5827* t(1792)=-6.6 p<.001 7310 

HDHIMP 100% 5129* t(1774)=23.2 p<.001 6640 

99% 5901* t(1792)=-10.0 p<.001 7574 

40% 5882* t(1788)=-9.2 p<.001 7392 

10% 5822* t(1792)=-6.4 p<.001 7186 

1% 5807* t(1798)=-5.7 p<.001 7124 

HDHCOM 100% 5130* t(1778)=23.3 p<.001 6572 

99% 5876* t(1798)=-8.8 p<.001 8208 

40% 5875* t(1788)=-8.9 p<.001 7824 

10% 5859* t(1785)=-8.2 p<.001 7238 

1% 5824* t(1798)=-6.5 p<.001 7504 

HDHDET 100% 5060* t(1775)=26.2 p<.001 6690 

99% 5876* t(1780)=-9.0 p<.001 7706 

40% 5864* t(1787)=-8.4 p<.001 7626 

10% 5788* t(1798)=-4.8 p<.001 7734 

1% 5786* t(1798)=-4.6 p<.001 7042 

 

The final fittest score results for all 900 runs of each HDH condition were then com-

pared statistically against the standard GA. For every HDH percentage condition an 

F-Test was performed comparing the variance with the standard GA results, followed 

by a two-factor t-Test. These results can be found in Table 2. 

Every condition differed significantly from the standard GA, with the 100% HDHALL, 

100% HDHIMP, 100% HDHDET, and 100% HDHCOM all performing significantly 

worse, and all other HDH percentages performing significantly better. 99% HDHALL 

achieved the highest mean fittest score and 99% HDHCOM found the highest maxi-

mum fittest score across all runs. Within each HDH condition the 99% heuristic 

reached the highest mean fittest score while the 100% heuristic performed the worst.  
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The 99% HDHALL result did not perform significantly better than 40% HDHALL 

(t(1798)=-1.6, p = .10), but did perform significantly better than 10% HDHALL 

(t(1798)=-3.0, p = .003) and 1% HDHALL (t(1792)=-4.5, p < .001). 

The 99% HDHIMP heuristic saw no significant difference compared against 40% 

HDHIMP (t(1798)=-0.9, p=.38), but significantly outperformed the 10% HDHIMP 

(t(1798)=-3.7, p<.001) and 1% HDHIMP heuristics (t(1798)=-4.4, p<.001). 

The 99% HDHDET heuristic saw no significant difference in performance against 

40% HDHDET (t(1798)=-0.6, p=.55) but performed significantly better than 10% 

HDHDET (t(1791)=-4.2, p<.001) and 1% HDHDET (t(1785)=-4.2, p<.001). 

The 99% HDHCOM heuristic did not significantly outperform either the 40% 

HDHCOM (t(1798)=0.04, p=.96) or 10% HDHCOM (t(1798)=0.83, p=0.41), but per-

formed significantly better than 1% HDHCOM (t(1798)=2.45 p=.01). 

Comparing the mean highest scoring heuristics from each condition against each 

other found the 99% HDHALL to perform significantly better than the 99% HDHDET 

(t(1798)=-2.2, p=0.03) and 99% HDHCOM (t(1787)=-2.1, p=0.04) heuristics but not 

the 99% HDHIMP (t(1792)=-0.9, p=.35) heuristic. 

Table 3: Mean and maximum fittest scores attained over the 900 runs. The mean values that 

differ significantly from the standard GA (*) and 99% HDHALL (†) are marked. Highest values 

for mean and maximum fittest score are highlighted in bold and underlined. 

Mean 

Fittest Score 

Statistical Comparison  Maximum 

Fittest 

Score 
vs Standard GA vs HDHALL 

Standard GA 5683 N/A  7374 

HDHALL 99% 5920* t(1774)=-11.2 p<.001  N/A 7362 

First 

Fit 

100% 5754*† t(1760)=-2.9 p=.003 t(1684)=-7.1, p<.001 8456 

99% 6011*† t(1729)=-16.1 p<.001 t(1785)=4.8, p<.001 7718 

40% 6022*† t(1782)=-15.8 p<.001 t(1798)=5.1, p<.001 8678 

10% 6004*† t(1784)=-15.0 p<.001 t(1798)=4.2, p<.001 8214 

1% 5961*† t(1789)=-12.8 p<.001 t(1798)=2.0, p=.04 7644 

Best 

Fit 

100% 6165*† t(1798)=-22.1 p<.001 t(1791)=11.9, p<.001 10000 

99% 6268*† t(1701)=-29.1 p<.001 t(1770)=18.5, p<.001 8218 

40% 6256*† t(1685)=-28.7 p<.001 t(1760)=18.1, p<.001 8208 

10% 6271*† t(1744)=-28.5 p<.001 t(1792)=18.1, p<.001 10000 

1% 6281*† t(1733)=-29.1 p<.001 t(1787)=18.8, p<.001 10000 

3.2  Human-Derived Heuristics vs First Fit 

The results for the First Fit heuristic can be seen in Fig. 3, plotted against the standard 

GA and 99% HDHALL heuristic. All percentage conditions of First Fit performed sig-
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nificantly better than the standard GA (see Table 3), though the 100% First Fit heuris-

tic did not perform as well as the others and was outperformed by 99% HDHALL. The 

First Fit heuristic converged slower than 99% HDHALL, but all except 100% First Fit 

eventually reached a higher fitness. 100% First Fit scored significantly less than 99% 

HDHALL, but the others all scored significantly higher than 99% HDHALL (Table 3). 

3.3  Human-Derived Heuristics vs Best Fit 

The results for the Best Fit heuristic can be seen in Fig. 3, with the standard GA and 

99% HDHALL heuristic for comparison. 100% Best Fit was the worst performing of 

them, though the Best Fit heuristics were faster to converge than the First Fit heuris-

tics, and highest scoring of all the heuristics tested. Every Best Fit heuristic signifi-

cantly outperformed both the standard GA and the 99% HDHAll condition as well (see 

Table 3), though the Human-Derived Heuristic was faster to converge than the others. 

3.4 Discussion 

Although there were minor differences in performance between them, each HDH, 

regardless of the dataset source appeared to perform in a similar manner. In terms of 

application level, 100% HDH rapidly converged to a local optimum and was overtak-

en by the others as expected, with the 99% and 40% conditions performing the best 

followed by the 10% condition and finally the 1% condition.  

The 99% condition showed that employing even a small amount of random muta-

tion was enough to prevent the HDH getting stuck in a local optimum. Conversely, 

and surprisingly, the 1% condition showed that employing only a small amount of 

deterministic mutation was enough to significantly improve the standard GA. 

The Deteriorating Moves (HDHDET) heuristic performed better than expected but 

still achieved the lowest mean fittest scores of the four HDHs. It is likely that amongst 

the moves that the decision tree learned were useful moves that made the solution 

temporarily worse but created an opening for better moves. 

The Composite Moves (HDHCOM) heuristic was the fastest to converge, but both 

the HDHALL and the HDHIMP heuristics achieved better results (although the Compo-

site Moves heuristic achieved the highest maximum score from any of the HDHs). 

The Composite Moves heuristic used in this paper was a single decision tree, but a 

true Composite Moves heuristic might be better represented by two trees; one tree to 

make the moves that make the solution temporarily worse and a second to improve it. 

The Improving Moves heuristic performed almost as well as the All Moves heuris-

tic, with very little difference between them except that the All Moves heuristic reach-

ing a higher mean fittest fitness score by the end of the run. 

When compared to the First Fit heuristic the HDHs performed competitively at the 

start of the run but were eventually outperformed by all but 100% First Fit. The 100% 

First Fit heuristic performed only a little better than the standard GA, and it was sur-

prising to see the other First Fit percentages performing significantly better than it. 
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The Best Fit heuristics performed very well against the HDHs, though again the 

100% Best Fit condition performed poorest. The Best Fit heuristics were the only 

ones to reach the global optimum, though on isolated runs and not for all conditions.  

The 1% Best Fit heuristic had both the highest mean fittest score of any of the heu-

ristics and found the global optimum. This result shows that just a small amount of a 

competitive deterministic heuristic can have a strong effect on a GA. 

The only advantage enjoyed by the HDHs when compared to the Best Fit heuristic 

is a slightly faster convergence rate. This fast convergence could be useful if the HDH 

was combined with another heuristic or was incorporated into a hyper-heuristic that 

could take advantage of the different capabilities at its disposal. 

Although HDHs were outperformed by the established heuristics, an area where 

HDHs would be useful is on problems that don’t have existing established heuristics 

such as Best Fit. Learning a heuristic from human interactions with a previously un-

seen problem is easier than attempting to create new rules of thumb. Furthermore, 

many real-world problems will not have accompanying heuristics and so the HDH 

methodology might be used to create them. 

Future work could see these heuristics tested on other problems, and other heuris-

tics developed from similar problems compared against these. Combining several 

Human-Derived Heuristics and more traditional heuristics into a hyper-heuristic 

might yield even more promising results. 

4 Conclusions 

In this study machine learning was used on four different data sets to create four dif-

ferent Human-Derived Heuristics (HDHs). Each of them was developed from human 

players solving a gamified version of a small 2D bin-packing problem. 

The four HDHs were then in turn combined with a hybrid GA as the mutation op-

erator, with the GA utilising the HDH either 100%, 99%, 40%, 10%, or 1% of the 

time during the run and the remainder of the time using a random swap mutation 

modified with a Next Fit heuristic. The First Fit and Best Fit heuristics were then 

executed in the same process and the results compared. 

For the HDHs the 100% heuristics performed poorly, but the other conditions all 

performed significantly better than the standard GA. Several of the HDHs also outper-

formed the 100% First Fit heuristic, but the other First Fit and all the Best Fit condi-

tions were able to outperform the HDHs. 

Surprisingly, using either 1% of a stochastic mutation or 1% of a deterministic mu-

tation with 99% of the other resulted in better results than 100% of either alone. 
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