
Received September 19, 2019, accepted October 22, 2019, date of publication October 29, 2019,
date of current version November 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2950261

Stochastic Geometric Analysis in Cooperative
Vehicular Networks Under Weibull Fading
YANG WANG 1, FUQIANG LIU1, (Member, IEEE), CHAO WANG 1,2, (Member, IEEE),
PING WANG 1, (Member, IEEE), AND YUSHENG JI 3, (Senior Member, IEEE)
1Department of Information and Communication Engineering, Tongji University, Shanghai 201804, China
2Department of Computer Science, University of Exeter, Exeter EX4 4QJ, U.K.
3National Institute of Informatics, Tokyo 101-8430, Japan

Corresponding author: Chao Wang (chaowang@tongji.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61771343 and Grant 61331009, in part
by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant 752979, in part by
the Natural Science Foundation of Jiangsu Province of China under Grant BK20161165, and in part by the International Internship
Program of the National Institute of Informatics, Japan.

ABSTRACT We study the performance of a cooperative vehicular communication system in a highway
traffic scenario, where the locations of co-channel interfering vehicles are modeled by a one-dimensional
Poisson point process (PPP). Wireless channel modeling campaigns have shown that the statistical patterns
of vehicle-to-vehicle (V2V) channels can often be modeled by the Weibull distribution. Due to the complex
characteristics of random fading and interference, system performance analysis is involved. To address
this issue, we establish a framework for performance analysis in vehicular networks under Weibull fading
and one-dimensional Poisson field of interference, where the Weibull probability density function (PDF)
is approximated by a finite exponential mixture. By this means, the approximation expressions of the
successful/unsuccessful message transmission probabilities for both direct V2V communication and the
three-node cooperative vehicular communication are derived through stochastic geometry. Monte-Carlo
simulations verify the accuracy of our derivation, as well as the advantages of encouraging cooperation
among vehicles. Our methods and results can potentially be used to facilitate stochastic geometric analysis
in many other complex vehicular networks under Weibull fading.

INDEX TERMS Cooperative vehicular networks, random interference, stochastic geometry, Weibull fading.

I. INTRODUCTION
As one of the key components of intelligent transportation
systems (ITS), vehicular networking allows enhancing the
environment awareness level of drivers, and therefore leads
to great improvements in traffic safety and efficiency [1].
High-performance vehicular communications can also poten-
tially enable individual vehicles and roadside infrastructure
to share sensing, computing, and storage resources to realize
the concept of vehicle cloud networks and facilitate advanced
autonomous driving functions [2], [3].

Due to the rapid mobility and large number of vehicles on
the road, centralized coordination ofmessage transmissions is
difficult. By contrast, distributed transmission control is often
preferred. For instance, the IEEE 802.11p standard employs
the carrier sense multiple access with collision avoidance
(CSMA/CA) protocol for channel sharing [4]. This may lead
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to severe co-channel interference issues in dense scenar-
ios [5]–[7]. The fast movement and low antenna height of
vehicles also result in complicated signal propagation envi-
ronments [8]. The impact of interference and fading causes
reliable vehicular communications to be challenging.
Cooperative vehicular communication (CVC) is consid-

ered to be an effective solution to the above issue [9]. Allow-
ing other vehicles in the vicinity to serve as relays provides
spatial diversity [10]. Transmission coverage and reliability
can both be improved. However, the performance in a cooper-
ative communication network can be degraded by co-channel
interference [11]. If the interference exhibits complicated
random characteristics, the influence can be more severe and
hard to quantify. Analyzing the impact of random interference
on the performance in cooperative vehicular networks is of
importance for directing practical system design.

Stochastic geometry is a powerful tool for random inter-
ference modeling and performance analysis, with applica-
tions in many types of wireless networks. The randomness
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of interference in general comes from two major causes,
i.e., the random number and location of interferers, and the
random wireless fading phenomenon. Depending on appli-
cation scenarios, these two factors can be mathematically
modeled in different ways. For instance, vehicles driving
on highway roads are typically modeled as points in the
one-dimensional Cartesian coordinate system [6], [7], base
stations in cellular networks can be modeled to locate in
a two dimension space [12], and the random locations of
unmanned aerial vehicles (UAVs) can be considered in a finite
three-dimensional space [13]. The random (small-scale) fad-
ing characteristics can be modeled as Rayleigh fading [12],
Nakagami-m fading [14], or certain general forms such as
η − µ fading [15].

With such mathematical abstracts of random interference,
stochastic geometry allows performance analysis in a num-
ber of wireless networks to be tractable. Examples include
not only the conventional single-user point-to-point syst-
ems [12], [14], but also more sophisticated multi-antenna
systems [16], multicast transmission networks [17], and
cooperative communication networks [18]–[25]. The typical
form of a cooperative system has a three-node network struc-
ture, with a source-destination pair and one relay terminal.
The random co-channel interference is commonlymodeled as
Poisson field interference, where the locations of interfering
terminals follow a Poisson point process (PPP). For a three-
node decode-and-forward (DF) network, [18] quantifies the
spatial-contention diversity order, which measures the rela-
tionship between system error probability and the intensity
of interferers. [19] and [20] focus on the amplify-and-forward
(AF) relaying protocol, and show that employing maximum
ratio combining (MRC) and selection combining (SC) decod-
ing strategies at the destination may achieve different diver-
sity orders in the presence of random interference.

The single-relay two-hop network structure can be fur-
ther extended. A K -hop DF relaying network with K − 1
intermediate relays is considered in [21], in which the rela-
tionship between power allocation, relay placement, and the
number of hops is investigated. A closed-form expression
of outage probability for such a system is derived in [22].
Multiple relays can also be activated together to assist in
the transmission between the source and the destination.
Reference [23] investigates the performance in a DF relaying
network with MRC and SC at the destination. Reference [24]
studies the potential of combining DF with AF relaying, and
demonstrates the advantage of relay selection over multi-
relay transmission. Reference [25] derives the performance
gain of cooperative relaying with independently and ran-
domly distributed interferers at the relays and the destina-
tion, and reveals that increasing the number of relays may
not achieve extra diversity gain because of the performance
bottleneck in the second hop. All these results show that in
many conditions, seeking cooperation from other terminals
enhances communication performance.

However, in most existing works, signal propagation
between terminals is assumed to experience Rayleigh fading

(e.g., [18]–[24]). This assumption permits to establish direct
relationship between communication performance (normally
successful transmission probability or error probability) and
system parameters (such as transmission power and data
rate, and intensity of interferers) due to the simple form of
the channel gain distribution. But for vehicular networks,
it may not be able to correctly model the actual random
fading characteristics. Wireless channel modeling campaigns
have shown that the vehicle-to-vehicle (V2V) channels in
both urban and highway environments can often be better
modeled by the Nakagami-m (or cascaded Nakagami-m [26],
[27]) or Weibull fading [28]. The performance in cooper-
ative relaying systems under Nakagami-m fading (for only
integer parameter m) with randomly distributed interferers
has recently been investigated in [19], [20], [25]. However,
in Weibull fading environments, due to the complex density
function of Weibull distribution, system performance anal-
ysis even in small and interference-free networks is very
involved. Reference [29] studies the average error probability
in a dual-hop AF relaying system under Weibull fading.
Reference [30] analyzes the achievable effective rate over
multiple-input single-output (MISO) Weibull fading chan-
nels. But these works do not take the impact of random inter-
ference into account. In vehicular communication networks
with distributed transmission control, co-channel interference
may play the major role in determining the bottleneck of
system performance. Understanding how such interference
signals, generated from randomly distributed interferers and
altered by the random Weibull fading channel, influences
communication quality, especially when vehicle cooperation
is established, is important for system design and optimiza-
tion. But to the best of our knowledge, this has not been
reported in the existing literature.

In this paper, we provide such an investigation. Specifi-
cally, we consider a three-node cooperative vehicular network
in a highway traffic scenario. Message delivery from the
source vehicle to the destination vehicle suffers fromWeibull
fading and a one-dimensional Poisson field of co-channel
interference. We aim to analyze system performance in terms
successful decoding probability (and error probability) at
the destination. To this end, we first approximate the prob-
ability density function (PDF) of Weibull distribution by
a finite exponential mixture. The impact of random inter-
ference on message reception is then quantified through
stochastic geometry. By this means, approximation expres-
sions of the message recovery probabilities and error proba-
bilities at the destination can be attained, to link communica-
tion performance with system parameters. Extensive Monte-
Carlo simulations are conducted to verify the accuracy of
our approximations, and also demonstrate the advantages
of seeking cooperation in harsh vehicular communication
systems. The main contributions of our work are summarized
as follows:
• We establish a framework for performance analysis
in vehicular networks under Weibull fading and one-
dimensional Poisson field of interference. In particular,
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we consider using a finite exponential mixture to
approximate the Weibull PDF, which further enables a
tractable stochastic geometric analysis on the impacts of
Weibull fading and Poisson field of interference. Such
a method can potentially be applied to facilitate perfor-
mance evaluation and system design in many other types
of wireless networks experiencing Weibull fading and
random co-channel interference.

• Using the above method, we attain mathematical expres-
sions that can accurately approximate the probabilities
of successful/unsuccessful transmission for a direct V2V
communication system in a highway traffic scenario.
It is shown, through numerical results, that the Weibull
fading phenomenon leads to very different characteris-
tics of system performance compared with conventional
Rayleigh and Nakagami-m fading. Hence analytical
results reported in the existing literature are unable to
provide sufficient insights.

• We derive the approximation expressions of successful/
unsuccessful transmission probabilities for applying the
two-phase half-duplex DF relaying protocol in a three-
node cooperative vehicular network, when the destina-
tion experiences random interference and fading that
remain the same or change in the two transmission
phases. The relationships between system performance
and different network parameters such as power, rate,
channel access probability, intensity of potential inter-
ferers, are discussed in different operation regimes. The
results clearly demonstrate the advantages of seeking
cooperation to improve the performance in vehicular
communication networks, evenwith complex fading and
interference issues.

The remainder of the paper is organized as follows.
Section II describes system model. The main idea behind
approximating the Weibull PDF using a finite exponential
mixture is introduced in Section III. In Section IV, we analyze
the successful transmission probability and error probabil-
ity for the direct source-destination transmission scheme.
Section V elaborates the performance analysis for the CVC
scheme in the considered cooperative vehicular network.
We conclude our paper in Section VI.
Notation: Throughout the paper, we use EX [a(X )] =∫
fX (x)a(x)dx to denote the expectation of function a(X )

regarding random variable X with PDF fX (x). LX (s) =
EX [e−sX ] represents Laplace transform of non-negative ran-
dom variable X . 0(x) =

∫
∞

0 tx−1e−t dt is the Gamma func-
tion. The function (x)+ = max{x, 0}. Let g1(t) = O(g2(t))
if 0 ≤ limt→0 |g1(t)/g2(t)| < ∞, and g1(t) = 2(g2(t)) if
0 < limt→0 |g1(t)/g2(t)| < ∞ [31]. R denotes the set of all
real values. |A| denotes the cardinality of set A.

II. SYSTEM MODEL
We consider a V2V communication system in a highway
traffic scenario, as shown in Fig. 1. A source vehicle S
intends to transmit a message to a destination vehicle D.
To enhance transmission performance in harsh vehicular

FIGURE 1. A cooperative vehicular network with Poisson field of
interference.

communication environment, another nearby vehicle R can
be activated to serve as a cooperative DF relay terminal for
them, i.e., to realize CVC. The road width is assumed to be
sufficiently smaller than the road length. There is no other
road in the vicinity. Hence the road is modeled by an iso-
lated straight line with infinite length, as a one-dimensional
Cartesian coordinate system.1 Without loss of generality,
we consider the location and driving direction of D, when
the transmission occurs, to be the origin and orientation of
the coordinate system. The locations of S and R are xs and xr ,
respectively.

In addition to the considered cooperative vehicular net-
work, other vehicles driving on the highway also have
demands of information exchange with their own peers.
These transmitters may access the channel used by S, R, and
D, and hence cause interference to them. The intensity of
potential interfering vehicles is assumed to be λ vehicle/m.
The slotted-Aloha MAC protocol is employed for channel
sharing among these vehicles, such that at each time slot,
a potential interferer is independently activated to transmit
information using the channel with probability τ (0 ≤ τ ≤ 1).

All the potential interferer vehicles locate randomly on the
highway. Their positions, denoted by set 8 = {x1, x2, · · · }
with xi being the coordinate of the ith node, are modeled by a
one-dimensional homogeneous PPP, with intensity λ [6], [7].
This means, the number of potential interferers within any
closed and bounded set B ⊂ R is a Poisson random variable
with parameter λ|B|, and the numbers in disjoint sets are inde-
pendent. According to the thinning property [34], thinning
the parent PPP by probability τ , the locations of interferers
actually transmitting in a particular time slot also follow a
PPP, with intensity τλ vehicle/m. The transmission in the
considered cooperative vehicular network is thus affected by
a Poisson field of interference [18].

Signal propagation between vehicles is considered to expe-
rience narrow-band Weibull block fading [35]. The channel
coefficient between transmitter a and receiver b is represented
by g̃ab =

√
labgab, where lab = Ld−αab is path loss with

constant path loss coefficient L, distance dab = |xa− xb| and
path loss exponent α, and gab is the unit-power small-scale
Weibull fading coefficient. The square of a Weibull random
variable is also Weibull distributed. The PDF of the channel

1In an urban traffic scenario, the spatial layout of roads can be modeled
as a Poisson line process, and vehicles are considered to randomly locate on
each road [32]. If the road is sufficiently wide with many lanes, it can be
modeled as multiple parallel lines [33]. These situations are not considered
in our paper.
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fading power gain hab = |gab|2 is

fh(x; ρ, k) =
k
ρ

( x
ρ

)k−1
e−(x/ρ)

k
, x ≥ 0, (1)

where k and ρ = 1
0(1+ 1

k )
(since E[hab] = ρ0(1+ 1

k ) = 1) are

the shape and scale parameters, respectively. The special case
k = 1 represents the Rayleigh fading environment, since hab
follows an exponential distribution. The severity of fading is
indicated by the value of k . References [8] and [35] show that
signal propagation in V2V channels is in general worse than
that in Rayleigh fading channels, which means k < 1.

All vehicles transmit with power P. For CVC, the message
transmission between S and D is divided into two phases due
to the half-duplex operation of the relay. In the first phase, S
broadcasts its message to bothR andD. IfR correctly recovers
the sourcemessage, it repeats themessage in the second phase
and D performs MRC to recover the source message. If R
cannot correctly decode the source signal, it remains silent in
the second phase and D uses only the received signal from S
in the first phase for decoding.

In phase i (i ∈ {1, 2}), the signal-to-interference-plus-noise
ratio (SINR) between transmitter a (a ∈ {S,R}) and receiver
b (b ∈ {R,D}) is

SINR[i]
ab =

Phablab∑
8i
Phvjblvjb + N0

=
habd

−α
ab

I [i]b + η
−1
, (2)

where 8i denotes the set of locations of vehicles that are
activated to communicate with their own peers (i.e., inter-
ferers to the receiver b in the considered network), hvjb is
the channel fading power gain between the jth interferer
and the receiver b, I [i]b =

∑
8i
hvjbd

−α
vjb denotes normalized

interference power, N0 is noise power, and η = PL/N0.
In this paper, we consider two different scenarios regarding

the random characteristics of the interference terms I [i]b and
channel fading coefficients hab. Specifically, for the first sce-
nario, the two transmission phases in the considered network
occur in a same time slot (i.e., each phase consumes half
a slot). This means, the interferers in the two phases are
the same, i.e., 81 = 82, and all channels hab and hvjb
also remain unchanged. For the second scenario, however,
the two transmission phases span two individual time slots.
Each of the channel gains hab and hvjb becomes independent
in the two phases. 81 is different from 82, but they may
have overlap because a potential interfering vehicle can be
activated in both slots with probability τ 2.
At each receiver b, the source message can be successfully

recovered if the effective SINR is greater than a certain
value T , which is chosen according to the applied modula-
tion and coding schemes. Therefore, in the first transmission
phase, if SINR[1]

SR > T , R is activated to assist in the message
delivery between S and D. We further assume that the power
of the aggregate interference in each phase can be estimated.
Then the post-MRC SINR at D is [16]

SINRMRC = SINR[1]
SD + SINR[2]

RD. (3)

As long as SINRMRC > T , the source message can be
successfully recovered at D. Otherwise, if R is not activated,
D attains the source message only if SINR[1]

SD > T in the
first phase. As a result, the overall probability of successful
transmission can be expressed as:

Psuc = Pr
{
SINR[1]

SR > T ,SINRMRC > T
}

+Pr
{
SINR[1]

SR < T ,SINR[1]
SD > T

}
. (4)

The probability that D is unable to recover the source mes-
sage, i.e., the error probability, is thus

Perr = 1− Psuc. (5)

The derivations of Psuc and Perr are involved due to a
number of reasons. First, the PDF of Weibull distribution is
complicated. The joint impact of random interferers in 8i,
and random fading coefficients hab as well as hvjb causes

finding even the expression of Pr
{
SINR[i]

ab > T
}
for a single

V2V link to be difficult. Furthermore, in the first transmission
phase, the receivers R and D are interfered by the same set
of vehicles located in 81. At D, the experienced interference
in the two phases are also related since 81 and 82 may
have overlap. Hence the random terms SINR[1]

SR , SINR
[1]
SD,

SINRMRC in (4) are dependent. The joint probability cannot
be directly derived through analyzing individual events.

In the following sections, we will tackle these challenges
and present approximation expressions of Psuc and Perr.

III. APPROXIMATION OF WEIBULL PDF
Our approach to analyzing Psuc and Perr is based on first sim-
plifying Weibull PDF and then applying stochastic geometry
to quantify the impacts of random interference and fading.
In this section, we borrow the approach proposed in [36] and
explain how to approximate the Weibull PDF using a finite
exponential mixture.

The moment generating function (MGF) of a Weibull ran-
dom variable h is defined by substituting (1) into

M(t) =
∫
∞

0
fh(x; ρ, k)e−tx dx.

Taking Taylor expansion for e−tx at t = 0 leads to

M(t) =
∞∑
n=0

mn
(−t)n

n!
=

∞∑
n=0

cntn,

where mn =
∫
∞

0 fh(x; ρ, k)xn dx = ρn0(1+ n/k) is the n-th
order moment of h, and cn = (−1)nmn/n!. An approximated
but much simpler form of M(t) can be obtained by the Padé
approximation (PA) technique, which uses a rational function
to approximate power series. Hence we can truncate M(t)
and apply PA as∑N

l=0 al t
l∑M

m=0 bmt
m
≈

M+N∑
n=0

cntn + O(tM+N+1), (6)

where both N and M are integers, with N ≤ M . The
coefficient b0 in the rational function is set to b0 = 1.
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The remaining coefficients al and bm can be obtained by
matching the coefficients of the same powers on both sides
of (6). Specifically, moving the denominator on the left hand
side (LHS) to the right hand side (RHS) and ignoring all terms
with order higher than tM+N , one can formulate M + N + 1
linear equations

M∑
m=0

bmcN−m+j = 0, 1 ≤ j ≤ M , (7)

al = cl +
min(M ,l)∑
i=1

bicl−i, 0 ≤ l ≤ N . (8)

When N = M − 1, all al and bm can be obtained
uniquely [37]. If the poles of the rational function are pairwise
different, then the proper rational function on the LHS of
(6) can be decomposed into partial fractions

∑M
i=1

βi
t+pi

, for
Re{pi} > 0, where pi are the poles of the rational function and
βi are the corresponding residues. Therefore, for any t ≥ 0,
M(t) can be approximated as

M(t) ≈
M∑
i=1

βi

t + pi
. (9)

Applying the inverse Laplace transform to both sides yields

fh(x; ρ, k)
(a)
≈

M∑
i=1

L−1h

(
βi

t + pi

)
(b)
=

M∑
i=1

βie−pix , (10)

where (a) follows from the linearity of inverse Laplace trans-
form, and (b) follows from the equality L−1h ( βi

t+pi
) = βie−pix .

Furthermore, letting t = 0 in (9) leads to
∑M

i=1
βi
pi
= 1.

In other words, the PDF of h can be expressed as the weighted
sum ofM exponential PDFs, because (10) can be rewritten as
fh(x; ρ, k) ≈

∑M
i=1

βi
pi
pie−pix . By this means, the cumulative

distribution function (CDF) of the Weibull random variable h
can be approximated by

Fh(x; ρ, k) ≈ 1−
M∑
i=1

βi

pi
e−pix . (11)

The accuracy of PA is determined by the choice of M .
Large M results in a better approximation result. However,
the convergence becomes slower as M increases [36]. An
alternative approach based on data fitting can be adopted for
this issue. In general, the MGF M(t) of Weibull distribution
does not have a closed-form expression. However, If k is a
rational number2 and can be expressed as k = n1/n2 with
the minimum integers n1 and n2, then a simplified expression
using the Meijer’s G function can be obtained as [38]

M(t) =
k

1
2 ( n1
ρt )

k

(2π )
n1+n2−2

2

Gn2,n1n1,n2

(
1(n1, 1− k)
1(n2, 0)

∣∣∣∣ nn11
nn22 (ρt)n1

)
,

where vector 1(n, ζ ) =
[
ζ
n ,

ζ+1
n , · · · ,

ζ+n−1
n

]
. Since the

Meijer’sG function can be computed efficiently using general

2If k is an irrational number, thenM(t) can be numerically approximated
by its empirical Laplace transform [36].

numerical software such as MATLAB and Python,M(t) can
be easily attained for any non-negative t .

Now, for someM and N , we findM(t) atM +N properly

chosen values of t , and then use a rational function
∑N

l=0 al t
l∑M

m=0 bmt
m

to fit these realizations ofMGF. It is simple to see that a0 = 1,
sinceM(0) = 1. Hence we can obtainM+N linear equations
with M + N unknown coefficients al and bm. The unique
solution exists. If we further assume that N = M −1, and the
poles of the rational function are pairwise different, then the
proper rational function (6) can be decomposed into partial
fractions

∑M
i=1

βi
t+pi

, for Re{pi} > 0. Therefore, again we can
approximate the Weibull PDF using an exponential mixture
fh(x; ρ, k) ≈

∑M
i=1 βie

−pix , i.e., (10). The corresponding
approximation of CDF can be expressed as the same form
of (11). In fact, for relatively small M and carefully selected
numerical samples of M(t), this method can achieve better
accuracy than PA.

The approximation forms of Weibull PDF (10) and CDF
(11) can facilitate tractable performance analysis in the con-
sidered cooperative vehicular network. It is shown in [39] that
the exponential mixture can reach arbitrary accuracy to fit
the PDF of a non-negative random variable when M goes
to infinity. However, using a large value of M may cause
high calculation complexity of the analytical results to be
presented in the next two sections. Therefore, we consider rel-
atively smallM and adopt the second approximation method
to derive the coefficients in the exponential mixture (10).
Through simulations it can be seen that for the considered
system with Weibull fading, finite values of M can already
lead to reasonably accurate performance expressions.

IV. PERFORMANCE ANALYSIS FOR DIRECT V2V LINKS
Using the above results, we now elaborate our analysis on
Psuc andPerr in the considered cooperative vehicular network.
Our presentation starts from the performance of the direct
V2V transmission between any transmitter vehicle a ∈ {S,R}
and receiver vehicle b ∈ {R,D}.

A. MATHEMATICAL ANALYSIS
We first intend to identify the probability that b can correctly
recover the message of a, i.e., the SINR (2) is larger than
the threshold T . Using the exact expression of Weibull CDF
Fh(x) = 1− e−(x/ρ)

k
, the probability can be written as

Pr{SINR[i]
ab > T } = EI [i]b

[
Pr{hab > Tdαab(I

[i]
b + η

−1)|I [i]b }
]

= EI [i]b
[
exp

(
− T kρ−kdαkab (I

[i]
b + η

−1)k
)]
.

When k = 1 (i.e., Rayleigh fading), for any non-negative

value s, the expectation EI [i]b
[e−s(I

[i]
b +η

−1)] can be expressed

explicitly as e−sη
−1LI [i]b (s) = e−sη

−1
−

2λτ s1/α
sinc(1/α) [34], with

sinc(x) = sin(πx)/(πx). However, for the general Weibull
fading phenomenon, i.e., k 6= 1, the exact form of
EI [i]b

[e−s(I
[i]
b +η

−1)k ] is hard to derive and currently unknown.
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To reach an acceptable approximation of Pr{SINR[i]
ab > T },

we resort to the exponential mixture (10) for a certain M .
Define a constant Cα,k = 0(1 − 1

α
)0(1 + 1

αk ), for path
loss exponent α and Weibull shape parameter k . The result
is summarized in the following proposition.
Proposition 1: Consider V2V communication between

transmitter a and receiver b, under Weibull fading and one-
dimensional Poisson field of interference. With integer M ,
the successful transmission probability is approximated by

Pr
{
SINR[i]

ab > T
}
≈

M∑
j=1

βj

pj
e−pjTd

α
abη
−1
LI [i]b (pjTdαab), (12)

where LI [i]b (s) = EI [i]b
[e−sI

[i]
b ] = e−2λτ (sρ)

1/αCα,k is the

Laplace transform of random interference I [i]b , and pi and βi
are derived in (10).

Proof: The appearance of set 8i and fading coefficients
are independent. To separate their impacts, we first fix the
set of interferers 8i and derive the conditional probability
Pr
{
SINR[i]

ab > T
∣∣8i

}
using (11). Afterwards, the uncondi-

tional probability Pr{SINR[i]
ab > T } can be found through

averaging out the influence of 8i.
Specifically, conditioning on any particular 8i, we have

Pr
{
SINR[i]

ab > T
∣∣8i

}
= Pr

{
hab > Tdαab(I

[i]
b + η

−1)
∣∣8i
}

(a)
= Eh[i]b

[ ∫ ∞
Tdαab(I+η

−1)
fhab (x; ρ, k) dx

∣∣∣8i

]
(b)
≈

M∑
j=1

βj

pj
Ehhh[i]b

[
e−pjTd

α
ab(I

[i]
b +η

−1)∣∣8i
]
, (13)

where hhh[i]b = [hv1b, hv2b, · · · ] is the small-scale interfer-
ence (generated by interferers within 8i) channel vector,
the expectation in step (a) is taken over hhh[i]b , and (b) follows
from (11). Therefore, the unconditional probability

Pr
{
SINR[i]

ab > T
}
= E8i

[
Pr
{
SINR[i]

ab > T
∣∣8i

} ]
≈

M∑
j=1

βj

pj
exp(−pjTη−1dαab)LI [i]b (pjTdαab).

(14)

The Laplace transform of interference, i.e., LI [i]b (s), can be
obtained by borrowing the result given in [34, pp. 103] as

LI [i]b (s)
(a)
= E8i

[ ∏
vj∈8i

Eh
[
e
−shd−αvjb

]]
(b)
= exp

(
− λτ

∫
R

(
1− Eh[e−sh|x|

−α

]
)
dx
)

= exp
(
− 2λτ s1/αEh[h1/α]0(1− 1/α)

)
, (15)

where (a) follows from the fact that the small-scale fading
gains of different links are independent, (b) follows from

the probability generating functional (PGFL) of PPP (i.e.,
E9 [

∏
xi∈9 f (xi)] = e−λ0

∫
R(1−f (x)) dx for one-dimensional

PPP 9 with intensity λ0 and any function f (x) such that 0 ≤
f (x) ≤ 1 and 1− f (x) is integrable on R), and h is a Weibull
distributed random variable with the same parameters as hab.
The fractional moment of h is

E[h1/α] =
∫
∞

0
x1/αfh(x; ρ, k) dx = ρ1/α0(1+

1
αk

). (16)

Substituting (15) and (16) into (14) proves the proposition.�
Proposition 1 provides a closed-form expression of the

approximated successful transmission probability for a V2V
link when signal propagation experiences Weibull fading.
The accuracy of the approximation depends on the choice of
the parameterM . LargerM leads to better approximation, but
potentially higher calculation complexity when we derive the
performance of the CVC scheme in the next section.

In addition to enabling system performance analysis in the
considered cooperative vehicular network, setting a to be S
and b to be D yields the successful transmission probability
for the direct transmission (DT) between S and D without
relaying. Equation (12) establishes an explicit relationship
between performance (successful/unsuccessful transmission
probabilities) and system parameters (transmission power,
data rate, activation probability, etc.). Hence it can be used
for facilitating more complex performance analysis such as
quantifying the average number of vehicles that can correctly
receive a transmitting vehicle’s broadcast heartbeat mes-
sages [40]. System design including power and rate control
can also be potentially conducted.

If τλ = 0 (i.e., the intensity of interferers is zero), the set
of interferers 8i is an empty set. In such an interference-free
environment, it is straightforward to attain, from the CDF of

Weibull distribution, that Pr{SINR[i]
ab < T } ∝

(
P
N0

)−k
for

sufficiently large signal-to-noise ratio (SNR) P
N0
. The achiev-

able diversity gain is k , which is smaller than 1, the diversity
gain for the Rayleigh fading environment, when k < 1. In this
case, signal propagation in V2V channels experiences severer
fading phenomenon than Rayleigh fading.

Furthermore, in the case k < 1, if τλ→ 0 and P
N0
→ ∞,

then by taking Taylor expansion e−x → 1 − x in (12)
and letting M → ∞ to achieve equivalence, we can see
that Pr{SINR[i]

ab < T } = 2(τλ), i.e., the spatial-contention

diversity order [18] limτλ→0
log Pr{SINR[i]

ab<T }
log(τλ) = 1. If a proper

scheduling strategy is conducted to manage the transmissions
of vehicles driving on the highway road such that the intensity
of random interferers is sufficiently small, the high-SNR error
probability of a direct V2V communication link would scale
with the intensity τλ.

B. NUMERICAL RESULTS
The accuracy of our approximation approach can be validated
through simulations. To this end, we consider DT between S
and D, using the capacity-achieving Gaussian random code
with rate r bit/codeword. (In this case, the error probability
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FIGURE 2. Error probability of DT in different fading environments, with
r = 1 bit/codeword, and λ = 0.01 vehicle/m. Solid lines and dash lines
represent τ = 0 (i.e. interference-free) and τ = 4× 10−3, respectively.

equals channel outage probability.) The transmission pro-
cess consumes one time slot, so that the SINR threshold
T = 2r − 1. The noise power is set to be N0 = −99 dBm.
The distance between S and D is |xs| = 100 m. The path loss
exponent α = 2 and path loss coefficient L = 650−2 [41].
In Fig. 2, we plot the error probability Pr

{
SINR[i]

ab < T
}

versus transmission power P, for two differentWeibull fading
characteristics. Specifically, we set k = 0.8 and k = 0.6, for
whichM = 4 andM = 6 are used respectively in the approx-
imations. For comparison, we also illustrate the performance
in Rayleigh and Nakagami-m fading environments.

From the figure, it can be seen that the error probabil-
ity approximation expression presented in Proposition 1 is
closely in line with simulation results, even with finite val-
ues of M . From the interference-free condition, i.e., when
τλ = 0, we can observe that the V2V transmission under
Weibull fading has lower achievable diversity gain than that
under Rayleigh fading. Even though we can properly choose
the parameter m for Nakagami-m fading so that transmis-
sion in both cases achieve the same diversity gain (for the
case k = 0.6) in the interference-free environment, when
complicated interference generated by random interferers is
taken into consideration, the error performances in different
fading environments exhibit very different patterns. Thus the
stochastic geometric analysis in existing works cannot be
directly applied when signal propagation in V2V channels
experiences Weibull fading. A smaller value of k leads to
worse performance and when P increases, the error proba-
bility starts to reach an error floor because of interference.

In Fig. 3, we plot the relationship between the prob-
ability of successful transmission and transmission data
rate r . Again, the approximation presented in Proposition 1
well matches the simulation results. The simple closed-
form approximation expression establishes the relationship
between communication performance and system parame-
ters, and thus can be potentially used for both performance
analysis and further system design such as rate adaptation

FIGURE 3. Successful transmission probability of DT with
λ = 0.1 vehicle/m, τ = 4× 10−3, and P = 20 dBm.

or power allocation. In general, message delivery in Weibull
fading channels with k < 1 has worse performance than that
in a Rayleigh fading environment. For the same system setup,
a smaller value of k leads to a lower probability of successful
transmission. Having a larger distance between the source
and destination also degrades system performance. Seeking
cooperation from nearby vehicles can be an effective solution
to this issue, which will be shown in the following section.

V. PERFORMANCE ANALYSIS FOR CVC
Now we present the approximation expressions of the suc-
cessful transmission probability (4) (and also the error prob-
ability (5)) for the CVC scheme. As mentioned in Section II,
in the first phase, the receptions of R and D are affected
by the same set of interfering vehicles in 81. This causes
SINR[1]

SR , SINR
[1]
SD, and SINRMRC to be correlated. The inter-

ferer sets 81 and 82 may have possible overlap. One cannot
directly attainPsuc by individually deriving Pr{SINR

[1]
SR > T },

Pr{SINR[1]
SD > T } and Pr{SINRMRC > T }.

Two different cases regarding the random interference and
fading are investigated. The first case refers to that the two
transmission phases of CVC occur in the same time slot,
so that 81 = 82 and all small-scale fading coefficients
remain unchanged. In the second scenario, each transmis-
sion phase consumes one time slot. Interferers may not be
identical and the fading coefficients change independently
and randomly. In what follows, we first elaborate mathemat-
ical analysis on (4), and then provide simulation results and
discussions.

A. MATHEMATICAL ANALYSIS
To facilitate presentation, let us define a number of functions
as follows. First, with the distance between R and D, dRD =
|xr |, and path loss component α, a function of non-negative
arguments σ1 ≥ 0 and σ2 ≥ 0 is defined as

I0(σ1, σ2) =
∫
R

(
1+ σ1|x|α

)−1(1+ σ2|x − dRD|α)−1dx.
(17)
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For any σ1 and σ2, the integration can be easily attained by
numerical methods. When α = 2, by using the residues
theorem [42], a closed-form expression can be obtained as

I0(σ1, σ2) =
π
(
σ
1/2
1 + σ

1/2
2

)
σ1σ2d2RD +

(
σ
1/2
1 + σ

1/2
2

)2 . (18)

In addition, for any σ > 0, we have

I0(σ, 0) = I0(0, σ ) =
2σ−1/α

sinc(1/α)
. (19)

Based on I0(σ1, σ2), and using the Weibull fading coeffi-
cients k and ρ, the PDF approximation coefficients M , pi, βi
for i ∈ {1, 2, · · · ,M} in (10), and constant Cα,k = 0(1 −
1
α
)0(1+ 1

αk ), three other functions are defined as

I1(σ ′1, σ
′

2)

= 2
(
(ρσ ′1)

1/α
+ (ρσ ′2)

1/α)Cα,k
−

M∑
i=1

M∑
j=1

βiβj

pipj
I0
(
pi
σ ′1
,
pj
σ ′2

)
, (20)

I2(s1, s2, s3)

=

s1
(
I0(s−11 , 0)− I0(s−11 , s−13 )

)
s1 − s2

−
s2
(
I0(s−12 , 0)− I0(s−12 , s−13 )

)
s1 − s2

+ I0(0, s−13 ), (21)

I3(s′1, s
′

2, s
′

3)

= τ (1− τ )
(
I1(s′1, s

′

3)+ 2(ρs′2)
1
αCα,k

)
+ τ 2

M∑
l=1

M∑
i=1

M∑
j=1

βlβiβj

plpipj
I2
(
s′1
pi
,
s′2
pj
,
s′3
pl

)
. (22)

In general, these three functions can be evaluated straightfor-
wardly using numerical methods. For the special case α = 2,
closed-form expressions are attainable based on (18). Now,
we present our results, starting from the first scenario.

1) CVC OCCURRING IN ONE TIME SLOT

Since both interferers and fading coefficients are the same in

the two transmission phases, I [1]D and I [2]D are identical. In this
case, the effective SINR at D after MRC is

SINRMRC =
hSDd

−α
SD + hRDd

−α
RD

I [1]D + η
−1

, (23)

where I [1]D =
∑
81
hvjDd

−α
vjD is the normalized interference

experienced by D in both phases. The expression of an

approximation of the overall decoding probability at the des-
tination is given in the following proposition.
Proposition 2: Consider a three-node half-duplex coop-

erative vehicular network, under Weibull fading and one-
dimensional Poisson field of interference. When the two
transmission phases occur in the same time slot, with integer
M , the probability of successful transmission can be approx-
imated by (24), as shown at the bottom of this page, where
LI [i]D (s) = e−2λτ (sρ)

1/αCα,k , ψ1 = dαSD(T − z)+, ψ2 = zdαRD,
and ψ3 = TdαSR.

Proof: Here we provide only a brief explanation of the
intuition of the proof. Details are elaborated in Appendix A.

Since Pr{SINR[1]
SR < T ,SINR[1]

SD > T } = Pr{SINR[1]
SD >

T }−Pr{SINR[1]
SR > T ,SINR[1]

SD > T }, we can further express
Psuc in (4) as Psuc = Pr{SINR[1]

SD > T } − Pr{SINR[1]
SR >

T ,SINR[1]
SD > T } + Pr{SINR[1]

SR > T ,SINRMRC > T }.
We can individually derive these three probabilities to reach
Psuc. From Proposition 1, we know Pr{SINR[1]

SD > T } =∑M
j=1

βj
pj
e−pjTd

α
SDη
−1LI [i]D (pjTdαSD). The key is then to derive

the remaining two probabilities.
Start from Pr{SINR[1]

SR > T ,SINR[1]
SD > T }. Because the

occurrence of set 81 and all fading coefficients are indepen-
dent, for a fixed set of interferers81, the events SINR

[1]
SR > T

and SINR[1]
SD > T are independent. This means Pr{SINR[1]

SR >

T ,SINR[1]
SD > T

∣∣81} = Pr{SINR[1]
SR > T

∣∣81}Pr{SINR
[1]
SD >

T
∣∣81}. By using (13), Pr{SINR[1]

SR > T
∣∣81} can

be approximated as
∑M

j=1
βj
pj
Ehhh[1]R

[
e−pjTd

α
SR(I

[i]
R +η

−1)
∣∣81

]
,

and similarly Pr{SINR[1]
SD > T

∣∣81} can be approxi-

mated as
∑M

j=1
βj
pj
Ehhh[1]D

[
e−pjTd

α
SR(I

[i]
D +η

−1)
∣∣81

]
. Consequently,

the original joint probability can be attained by taking
the expectation of the conditional probability regarding

81, i.e.,
∑M

l=1
∑M

j=1
βlβj
plpj

e−
plw1+pjw2

η E8i [e
−w1I

[i]
D −w2I

[i]
R ], with

w1 = TdαSD and w2 = TdαSR. The result can be obtained by
using the PGFL of PPP [34] and (10), which is the second
term in (24).

Similarly, for the term Pr{SINR[1]
SR > T ,SINRMRC >

T }, the two events SINR[1]
SR > T and SINRMRC > T are

conditionally independent given 81 (recall that 81 = 82).
The conditional probability Pr{SINR[1]

SR > T |81} can be
found following the proof of Proposition 1. Regarding the
conditional probability Pr{SINRMRC > T |81}, using (10) we
can attain this probability to be −

∑M
i=1

∑M
j=1

βiβj
pipj

∫
R

d
zds ×[

e−
piψ1+spjψ2

η
∏

xi∈81
Eh
[
e
−

(piψ1+spjψ2)h
|xi|
α

]]∣∣∣∣
s=1

dz, where h is a

Psuc ≈

M∑
j=1

βj

pj
e−pjTd

α
SDη
−1
LI [i]D (pjTdαSD)−

M∑
i=1

M∑
j=1

βiβj

pipj
exp

(
−
piTdαSR + pjTd

α
SD

η
− λτI1(piTdαSR, pjTd

α
SD)
)

−

M∑
l=1

M∑
i=1

M∑
j=1

βlβiβj

plpipj

∫
∞

0

d
zds

exp
(
−
piψ1 + spjψ2 + plψ3

η
− λτI1(piψ1 + spjψ2, plψ3)

)∣∣∣
s=1

dz (24)
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Weibull random variable with parameters k and ρ. Again,
the joint probability Pr{SINR[1]

SR > T ,SINRMRC > T } can
be found by taking the expectation regarding 81, using the
PGFL of PPP. This is the last term in (24). �
Although equation (24) contains integrals that in general do

not have simple closed-form expressions, these integrals can
be easily calculated using numerical methods, e.g., the Gauss-
Chebyshev quadrature, through common mathematical soft-
ware such asMATLAB and Python. As wementioned earlier,
if α = 2, a closed-form expression of I0(s1, s2) given in
(17) can be explicitly found as (18). Then the expression
of Psuc can be further simplified, which only contains a
number of definite integrals. Hence the relationship between
system performance and parameters, with Weibull fading
and random interferers, is also established mathematically.
In an interference-free environment, i.e., when τλ = 0,
for P → ∞ we can obtain that Pr{SINRMRC < T } ∝
( PN0

)−2k from [43, eq. (30)]. Together with the fact that

Pr{SINR[i]
ab < T } ∝ ( PN0

)−k , we can prove that Perr ∝

( PN0
)−2k . Therefore, the achievable diversity gain doubles that

of DT. Encouraging cooperation among vehicles is clearly
advantageous.

As shown in Fig. 2, in the high SNR regime the random
interference causes error floor, which would also occur in
the CVC scheme. A proper transmission scheduling strategy
should be able to manage the interference level experienced
by each vehicle so that high-quality message delivery can
be realized. In the considered system, the interference can
be limited by adapting the activation rate τ according to the
intensity λ of vehicles on the road. Following Proposition 2,
we can further attain a relationship between high-SNR error
probability Perr (i.e., the error floor) and the intensity of
interfering vehicles, i.e., τλ. The result is summarized in the
following corollary.
Corollary 1: In the considered cooperative vehicular net-

work under Weibull fading with k < 1 and one-dimensional
Poisson field of interference, when the CVC consumes one
time slot, the system’s decoding error probability scales lin-
early with τλ, i.e., Perr = 2(τλ), for τλ→ 0 and P→∞.

Proof: The proof can be found in Appendix B. �
This result means that the spatial-contention diversity order

limλτ→0
logPerr
log(λτ ) = 1, same as the case in DT. It helps

understand the impact of potential interference management
solutions on system performance in the high-SNR weak-
interference regime. Its accuracy will be shown through sim-
ulations in Section V-B.

2) CVC OCCURRING IN TWO TIME SLOTS
Now we focus on the case that the two interferer sets 81
and 82 are not identical, and all channel fading coefficients
change independently in the two CVC phases. This situa-
tion can happen if the source’s broadcasting and relay’s for-
warding phases are separated by a sufficiently large interval
(compared to the coherence time of the wireless channel)
and thus span two individual time slots. Note that 81 and
82 may still have overlap because every vehicle on the road
has probability τ 2 to be activated in both slots. The effective
SINR at D after MRC is now

SINRMRC =
hSDd

−α
SD

I [1]D + η
−1
+

hRDd
−α
RD

I [2]D + η
−1
. (25)

The expression of Psuc is different from that presented in

Proposition 2, and is provided as follows.
Proposition 3: Consider a three-node half-duplex coop-

erative vehicular network, under Weibull fading and one-
dimensional Poisson field of interference. When the two
transmission phases occur in two different time slots, with
integer M , the probability of successful transmission can be
approximated by (26), whereLI [i]D (s) = e−2λτ (sρ)

1/αCα,k ,ψ1 =

dαSD(T − z)
+, ψ2 = zdαRD, and ψ3 = TdαSR.

Proof: The basic proof process is similar to that for
Proposition 2. The probability Psuc in (4) can be expressed
as the sum of three probabilities: Psuc = Pr{SINR[1]

SD >

T } − Pr{SINR[1]
SR > T ,SINR[1]

SD > T } + Pr{SINR[1]
SR >

T ,SINRMRC > T }. Approximations of the first two can be
found by following the proof of Proposition 2.
Regarding the term Pr{SINR[1]

SR > T ,SINRMRC > T },
the two events SINR[1]

SR > T and SINRMRC > T are con-
ditionally independent given 81 and 82. By identifying the
approximations of the conditional probabilities Pr{SINR[1]

SR >

T |81} and Pr {SINRMRC > T |81,82}, the original uncon-
ditional joint probability can be obtained by taking the
expectation of their product, with respect to both 81
and 82, using the PGFL of PPP. All the results are
summarized by (26). The detailed proof is presented in
Appendix C. �
Similar to the case presented in Proposition 2, for given

system parameters, the approximated successful transmission
probability (26), as shown below, can be evaluated by numer-
ical methods. When α = 2, a closed-form of I0(s1, s2) can
be found as (18). Thus the overall successful transmission
probability Psuc can be computed more efficiently. For the

Psuc ≈

M∑
j=1

βj

pj
e−pjTd

α
SDη
−1
LI [i]D (pjTdαSD)−

M∑
i=1

M∑
j=1

βiβj

pipj
exp

(
−
piTdαSR + pjTd

α
SD

η
− λτI1(piTdαSR, pjTd

α
SD)
)

−

M∑
l=1

M∑
i=1

M∑
j=1

βlβiβj

plpipj

∫
∞

0

d
zds

exp
(
−
piψ1 + spjψ2 + plψ3

η
− λτI3(piψ1, spjψ2, plψ3)

)∣∣∣
s=1

dz (26)
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interference-free environment τλ = 0, since the error
probability is the same as that in the previous scenario,
the diversity gain is also 2k .
In addition, the relationship between high-SNR error prob-

abilityPerr and the intensity of interfering vehicles on the road
τλ can also quantified for the weak-interference scenario.
The following corollary presents the result.
Corollary 2: In the considered cooperative vehicular net-

work under Weibull fading with k < 1 and one-dimensional
Poisson field of interference, when the CVC consumes two
separate time slots, τλ→ 0 and P→∞, the decoding error
probability scales linearly with τλ, i.e., Perr = 2(τλ), except
for the case dSR → 0 in which Perr scales linearly with λτ 2

as Perr = 2(λτ 2).
Proof: The proof is provided in Appendix D. �

This result is not the same as that in Corollary 1, in which
the high-SNR error probability is proportional to τλ irre-
spective of the position of the relay. By contrast, when the
interferer set and fading coefficients change independently
in the two transmission phases, the error probability would
scale with λτ 2 if the relay is extremely close to the source.
This means that requiring S itself to retransmit its message
in the second phase would lead to better performance than
seeking cooperation. However, this is valid for only the high
SNR regime, where the impact of large-scale fading is lim-
ited. If τλ is reasonably large and P is finite, relaying through
vehicular cooperation is still advantageous. System design
can be guided by the result shown in Proposition 3.

B. NUMERICAL RESULTS
Now we validate the effectiveness of our analytical results
given in the above two subsections through simulations. The
simulation parameters are chosen to be the same as those in
Section IV: α = 2, N0 = −99 dBm, L = 650−2 [41]. We set
k = 0.6, and the corresponding value ofM in (10) asM = 6.
For fair comparisons with DT, we require the transmission
rate of S and R to be 2r bit/codeword, so that the threshold
T = 22r−1. By this means, the average transmission rate
remains to be r bit/slot, same as that of DT.

Fig. 4 displays the error probability comparison, when
the transmission power of different vehicles changes. The
distance between S and D is set to be dSD = 200 m, and
R is assumed to locate in the middle, i.e., dSR = dRD =
100 m. From the figure we can see that our approximation
expressions well match simulation results, which verifies
the accuracy of the results shown in Propositions 2 and 3.
In the interference-free environment, vehicular cooperation
(the two scenarios have the same error probability, and
thus only one curve is plotted) leads to higher diversity
gain compared with DT. When the receptions suffer from
random co-channel interference, cooperation also provides
smaller error probability. Hence seeking assistance from
nearby vehicles can improve the performance of vehicular
communications even in environments with complex fading
and interference issues. For high SNR, inevitably error floor
occurs due to strong interference. In addition, we display the

FIGURE 4. Error probability of CVC, with λ = 0.01 vehicle/m, and
r = 1 bit/codeword. Solid lines and dashed lines represent τ = 0 (i.e.,
interference-free environment), and τ = 4× 10−3, respectively.

FIGURE 5. Successful transmission probability of CVC with τ = 4× 10−3,
and P = 20 dBm.

impact of the transmission rate r on the successful trans-
mission probability Psuc in Fig. 5. Again, our approxima-
tion expressions are closely in line with simulation results.
Cooperation leads to higher transmission reliability than DT.
As expected, higher vehicle density λ leads to smaller achiev-
able Psuc, because of increased interference. In these situa-
tions, proper user scheduling and resource allocation (e.g.,
power and rate control, relay selection) strategies should
be conducted to improve performance. Such system design
and optimization can potentially be guided by our analytical
results.

Finally, we consider the high-SNR weak-interference sce-
nario, i.e., when τλ → 0, and verify the results shown in
Corollary 1 and Corollary 2. We set dSD = 100 m, and
display the relationship between error probability Perr and
channel access probability τ , for a sufficiently large power
level P and different positions of relay (controlled by the
ratio dSR

dSD
), in Fig. 6. Clearly, for scenario 1, in which both

the set of interferers and channel fading environments remain
unchanged in the whole transmission process, logPerr always
scales linearly with log τ (since λ is fixed). The slopes are
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FIGURE 6. Error probability of CVC in high-SNR weak-interference
environment, with r = 1 bit/codeword, P = 40 dBm, λ = 0.1 vehicle/m.
Dashed lines and solid lines represent scenario 1 and scenario 2,
respectively.

not affected by the position of the relay. On the other hand,
for the second scenario, in which interfering vehicles and
channel gains both change in the two transmission phases,
having a relay very close to the source would lead to a larger
slope, i.e., a larger spatial-contention diversity. Such results
are in line with the Corollaries presented in the previous
subsections. All the observations shown in this section clearly
exhibit the advantages of seeking cooperation in vehicular
communication networks, under Weibull fading and random
interference, and also provide explicit connections between
the performance of CVC and system parameters.

VI. CONCLUSION
We have investigated the performance in a three-node relay-
assisted V2V communication network driving on a highway
road, under Weibull block fading and one-dimensional Pois-
son field of interference. We have exploited Weibull PDF
approximation and stochastic geometry to analyze the com-
plex impacts of random interference and fading phenomenon.
By this means, approximation expressions of the successful
transmission probability and error probability of both direct
source-destination transmission and cooperative vehicular
communication have been attained. Extensive Monte-Carlo
simulations have been conducted to validate the accuracy
of our results, and demonstrated the strength of cooperative
vehicular networking. Our methods and results can poten-
tially be applied to facilitate stochastic geometric analysis in
other complex wireless networks under Weibull fading.

APENDIX A
PROOF OF PROPOSITION 2
Since Psuc = Pr{SINR[1]

SD > T } − Pr{SINR[1]
SD >

T ,SINR[1]
SR > T } + Pr{SINR[1]

SR > T ,SINRMRC > T },
we derive the three terms individually.

First, setting a = S and b = D in (12) leads to
Pr{SINR[1]

SD > T } ≈
∑M

j=1
βj
pj
e−pjTd

α
SDη
−1LI [i]D (pjTdαSD).

Because the events SINR[1]
SR > T and SINR[1]

SD > T
are conditionally independent for any given 8i, we have
Pr{SINR[1]

SR > T ,SINR[1]
SD > T

∣∣81} = Pr{SINR[1]
SR >

T
∣∣81} · Pr{SINR

[1]
SD > T

∣∣81}. From (13), we can obtain

Pr{SINR[1]
SR > T

∣∣81}

≈

M∑
j=1

βj

pj
Ehhh[1]R

[
e−pjψ3(I

[i]
R +η

−1)∣∣81
]

=

M∑
j=1

βj

pj
e−

pjψ3
η

∏
xi∈81

Eh
[
e−pjψ3h|xi−xr |−α

]
, (27)

where h is a Weibull distributed random variable with param-
eters k and ρ, and ψ3 = TdαSR. Similarly,

Pr{SINR[1]
SD > T

∣∣81}

≈

M∑
j=1

βj

pj
e−

pjTd
α
SD
η

∏
xi∈81

Eh
[
e−pjTd

α
SDh|xi|

−α ]
.

From the above two expressions, we can have

Pr{SINR[1]
SR > T ,SINR[1]

SD > T }

= E81

[
Pr{SINR[1]

SR > T |81} · Pr{SINR
[1]
SD > T |81}

]
≈

M∑
l=1

M∑
j=1

βlβj

plpj
e−plTd

α
SRη
−1
−pjTdαSDη

−1

×E81

[ ∏
xi∈81

Eh
[
e
−

pl Td
α
SRh

|xi−xr |
α
]
Eh
[
e
−
pjTd

α
SDh
|xi|
α
]]
, (28)

with

E81

[ ∏
xi∈81

Eh
[
e
−

v2h
|xi−xr |

α
]
Eh
[
e
−

v1h
|xi|
α
]]

(a)
= exp

(
− λτ

∫
R

(
1− Eh

[
e−

v2h
|x−xr |α

]
Eh
[
e−

v1h
|x|α
])

dx︸ ︷︷ ︸
I

)
,

where (a) follows from applying the PGFL of PPP [34].
Clearly, the integral I = G1 + G2 − G3, where

G1 =
∫
R

(
1− Eh

[
e−

v1h
|x|α
])
dx

(a)
= 2(ρv1)1/αCα,k ,

G2 =
∫
R

(
1− Eh

[
e−

v2h
|x−xr |α

])
dx = 2(ρv2)1/αCα,k ,

G3 =
∫
R

(
1− Eh

[
e−

v1h
|x|α
])(

1− Eh
[
e−

v2h
|x−xr |α

])
dx

(b)
≈

M∑
i=1

M∑
j=1

βiβj

pipj
I0
( pi
v1
,
pj
v2

)
,

step (a) follows from using the same approach in [34,
pp. 103], and step (b) follows from (10) and the fact∑M

i=1 βi/pi = 1. Hence, with the definition (20) we obtain

E81

[ ∏
xi∈81

Eh
[
e
−

v2h
|xi−xr |

α
]
Eh
[
e
−

v1h
|xi|
α
]]
≈ e−λτI1(v1,v2).

(29)
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Combining (28) and (29) leads to the expression of
Pr{SINR[1]

SR > T ,SINR[1]
SD > T } as the second term of (24).

Finally, regarding Pr{SINR[1]
SR > T ,SINRMRC > T }, since

the events SINR[1]
SR > T and SINRMRC > T are condi-

tionally independent for given 81, we have Pr{SINR[1]
SR >

T ,SINRMRC > T
∣∣81} = Pr{SINR[1]

SR > T
∣∣81} ·

Pr{SINRMRC > T
∣∣81}. In order to compute Pr

{
SINRMRC ≥

T |81
}
, let Z = SINR[2]

RD and Y [1]
D = I [1]D + η

−1. We have

Pr
{
SINR[1]

SD > T − Z
∣∣81,Z

}
= Ehhh[1]D

[
Pr
{
hSD > (T − Z )Y [1]

D

∣∣81,Z
}]

(a)
≈

M∑
i=1

βi

pi
Ehhh[1]D

[
exp

(
− pidαSD(T − Z )

+Y [1]
D

)]
,

where (a) follows from (11). In addition,

d
dz

Pr
{
Z < z|81

}
=

d
dz

Ehhh[1]D

[
Pr
{
hRD < zdαRDY

[1]
D

∣∣81
}]

(a)
≈

d
dz

(
1−

M∑
i=1

βi

pi
Ehhh[1]D

[
exp

(
− zpidαRDY

[1]
D

)])
=

M∑
i=1

βi

pi
Ehhh[1]D

[
pidαRDY

[1]
D exp

(
− zpidαRDY

[1]
D

)]
= −

M∑
i=1

βi

pi
z−1Ehhh[1]D

[ d
ds
e−szpid

α
RDY

[1]
D

∣∣∣
s=1

]
,

where (a) also follows from (11). Now we have

Pr
{
SINRMRC > T |81

}
=

∫
∞

0
Pr
{
SINR[1]

SD > T − z
∣∣81

}
·
d
dz

Pr
{
Z < z|81

}
dz

(a)
≈ −

M∑
i=1

M∑
j=1

βiβj

pipj

∫
R

d
zds

[
exp

(
−
piψ1 + spjψ2

η

)
×

∏
xi∈81

Eh
[
e
−

(piψ1+spjψ2)h
|xi|
α

]]∣∣∣∣
s=1

dz. (30)

where in (a) we substitute ψ1 = dαSD(T − z)+, ψ2 = zdαRD.
Combining (27) and (30), we can obtain

Pr{SINR[1]
SR > T ,SINRMRC > T }

= E81

[
Pr
{
SINR[1]

SR > T |81
}
· Pr

{
SINRMRC > T |81

}]
≈ −

M∑
l=1

M∑
i=1

M∑
j=1

βlβiβj

plpipj

∫
R

d
zds

[
e−

piψ1+spjψ2+plψ3
η

×E81

[ ∏
xi∈81

Eh
[
e
−

(piψ1+spjψ2)h
|xi|
α

]
Eh
[
e
−

plψ3h
|xi−xr |

α
]]]∣∣∣∣

s=1
dz.

Applying (29) yields the third term of (24).
The proof of Proposition 2 now completes.

APENDIX B
PROOF OF COROLLARY 1
Weibull PDF fh(x; ρ, k) for k < 1 is completely monotone,
since (−1)n dn

dxn fh(x; ρ, k) ≥ 0 for all x > 0 and n ≥ 1.
Such a characteristic of PDF yields positive βi and pi in (10)
for all i ∈ {1, 2, · · · ,M} [44]. For presentation simplicity,
define P2 = Pr{SINR[1]

SR > T ,SINR[1]
SD > T }, and P3 =

Pr{SINR[1]
SR > T ,SINRMRC > T }. Then the system error

probability Perr = 1− Pr{SINR[1]
SD > T } +P2−P3. Because

SINRMRC ≥ SINR[1]
SD, the following inequality holds

P2 ≤ P3 ≤ Pr
{
SINR[1]

SR > T
}
.

Therefore, we have

$1(λτ ) ≤ Perr ≤ $2(λτ ),

where $1(λτ ) = 1 − Pr{SINR[1]
SD > T } − Pr{SINR[1]

SR >

T } + P2, and $2(λτ ) = 1 − Pr{SINR[1]
SD > T }. As λτ → 0,

η→∞, and M →∞, Proposition 1 results in

Pr{SINR[1]
SD > T } → 1− A1λτ,

where A1 = 2 Cα,k (ρTdαSD)
1/α∑∞

j=1
βj

p1−1/αj

> 0. Hence

$2(λτ )→ A1λτ . Similarly, we have

Pr
{
SINR[1]

SR > T
}
→ 1− A2λτ,

where A2 = 2 Cα,k (ρTdαSR)
1/α∑∞

j=1
βj

p1−1/αj

. And

P2 → 1− λτ
∞∑
i=1

∞∑
j=1

βiβj

pipj
I1
(
piTdαSR, pjTd

α
SD
)

(a)
= 1− (A1 + A2 − A3)λτ,

where in step (a) we use (20), with

A3 =
∞∑
i=1

∞∑
j=1

∞∑
l=1

∞∑
m=1

βiβjβlβm

pipjplpm
I0
( pl
piTdαSR

,
pm

pjTdαSD

)
.

Obviously, A3 > 0, because βi > 0, pi > 0 for all i, and
I0(σ1, σ2) > 0 for positive σ1 and σ2. As a result,$1(λτ )→
A3λτ . If dSR does not tend to 0, then A3 does not tend to 0.
Recall that$2(λτ )→ A1λτ . Thus Perr = 2(λτ ).
On the other hand, when dSR → 0, we have A3 →

0 because I0(σ1, σ2) → 0 when σ1 → ∞. In this
case, we resort to (24) by setting dSR → 0. Now R can
recover the source message with probability 1. Then P2 →

Pr{SINR[1]
SD > T }, and P3→ Pr{SINRMRC > T }. Hence

Perr = 1− Pr{SINR[1]
SD > T } + P2 − P3

→ 1− Pr {SINRMRC > T }

(a)
→ 1+

∞∑
i=1

∞∑
j=1

βiβj

pipj

∫
∞

0

d
zds

e−λτI1(0,piψ1+spjψ2)
∣∣∣
s=1

dz,

where in step (a) we take η → 0, ψ3 = TdαSR → 0 for
the third term of (24), and use the fact that

∑
∞

l=1
βl
pl
= 1.
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The integral in the last line can be decomposed into the sum
of two integrals. The first integral is expressed as∫ T

0

d
zds

e−λτI1(0,piψ1+spjψ2)
∣∣∣
s=1

dz

(a)
→

∫ T

0

d
zds

(
1− λτI1(0, piψ1 + spjψ2)

)∣∣∣
s=1

dz

(b)
=

∫ T

0

d
zds

(
1− 2λτρ

1
αCα,k (piψ1 + spjψ2)

1
α
)∣∣∣
s=1

dz

(c)
→ −

A4pjλτ
αT 1/α

∫ T

0
(pi(T − z)+ pjz)−1+1/αdz,

where in (a), we apply the Taylor expansion e−x → 1 − x
for x → 0, in (b) we use (20), and step (c) follows from
dRD → dSD, with A4 = 2(ρT )1/αCα,kdSD > 0. The second
integral is given by∫

∞

T

d
zds

e−λτI1(0,piψ1+spjψ2)
∣∣∣
s=1

dz

(a)
=

∫
∞

T

d
zds

e−λτI1(0,spjψ2)
∣∣∣
s=1

dz

=

∫
∞

T

d
zds

e−2λτCα,kdRD(pjρsz)
1/α
∣∣∣
s=1

dz

= −e−2λτCα,kdRD(pjρT )
1/α

(b)
→ −1+ A4p

1/α
j λτ,

where in step (a) we use the fact that ψ2 = zdαRD = 0, and in
step (b) we use the Taylor expansion and take dRD → dSD.
Therefore, we have Perr→ A4 A5λτ when dSR→ 0, with

A5 =
M∑
i=1

M∑
j=1

βiβj

pipj

(
p

1
α

j −
pj
∫ T
0 (pi(T − z)+ pjz)−1+

1
α dz

αT 1/α

)

>

M∑
i=1

M∑
j=1

βiβj

pipj

(
p

1
α

j −
pj
∫ T
0 (pjz)−1+

1
α dz

αT 1/α

)
= 0.

Hence Perr = 2(λτ ) when dSR→ 0.
From the above results, we can conclude Perr = 2(λτ ).

APENDIX C
PROOF OF PROPOSITION 3
The proof process is similar to that for Proposition 2. The
probability Psuc in (4) can be expressed as the summation of
three probabilities: Psuc = Pr{SINRSD > T }−Pr{SINR[1]

SR >

T ,SINR[1]
SD > T } + Pr{SINR[1]

SR > T ,SINRMRC > T }.
Approximation expressions of the first two can be found
follow the proofs of Propositions 1 and 2. Hence we focus
only on the last term.

Conditioning on 81 and 82, the events SINR[1]
SR > T

and SINRMRC > T are independent, i.e., Pr{SINR[1]
SR >

T ,SINRMRC > T
∣∣81,82} = Pr{SINR[1]

SR > T
∣∣81} ·

Pr{SINRMRC > T
∣∣81,82}. The approximation to

Pr{SINR[1]
SR > T |81} is given in (27). Similar to Appendix A,

Pr
{
SINRMRC > T |81,82

}
can be expressed as

Pr
{
SINRMRC ≥ T |81,82

}
=

∫
∞

0
Pr
{
SINR[1]

SD ≥ T − z
∣∣8} · d

dz
Pr
{
Z < z|8

}
dz

(a)
= −

M∑
i=1

M∑
j=1

βiβj

pipj

∫
R

d
zds

[
exp

(
−
piψ1 + spjψ2

η

)
×

∏
xi∈81

Eh
[
e
−
piψ1h
|xi|
α
] ∏
xi∈82

Eh
[
e
−
spjψ2h
|xi|
α
]]∣∣∣∣

s=1
dz. (31)

where we substitute ψ1 = dαSD(T − z)
+, ψ2 = zdαRD in step

(a). The original unconditional joint probability therefore is

Pr{SINR[1]
SR > T ,SINRMRC > T }

= E
[
Pr
{
SINR[1]

SR > T |81
}
· Pr

{
SINRMRC > T |81,82

}]
≈ −

M∑
l=1

M∑
i=1

M∑
j=1

βlβiβj

plpipj

∫
R

d
zds

[
e−

piψ1+spjψ2+plψ3
η

× E
{ ∏
xi∈81

Eh
[
e
−
piψ1h
|xi|
α
]
Eh
[
e
−

plψ3h
|xi−xr |

α
]

×

∏
xi∈82

Eh
[
e
−
spjψ2h
|xi|
α
]}]∣∣∣∣

s=1
dz, (32)

where

E
[ ∏
xi∈81

Eh
[
e
−

v1h
|xi|
α
]
Eh
[
e
−

v3h
|xi−xr |

α
] ∏
xi∈82

Eh
[
e
−

v2h
|xi|
α
]]

(a)
= exp

(
− λ

∫
R

(
1− ε1(x)ε2(x) dx︸ ︷︷ ︸

I ′

)
, (33)

with step (a) following from the PGFL of PPP [34], ε1(x) =

1 − τ + τEh
[
e−

v1h
|x|α
]
Eh
[
e−

v3h
|x−xr |α

]
, and ε2(x) = 1 − τ +

τEh
[
e−

v2h
|x|α
]
. The integral I ′ can be written as I ′ = τ (1 −

τ )G′1 + τ (1− τ )G
′

2 + τ
2G′3, with

G′1 =
∫
R

(
1− Eh

[
e−
−v1h
|x|α

]
Eh
[
e−

−v3h
|x−xr |α

])
dx

(a)
= I1(v1, v3),

G′2 =
∫
R

(
1− Eh

[
e−
−v2h
|x|α

])
dx = 2(ρv2)1/αCα,k ,

G′3 =
∫
R

(
1− Eh[e

−
−v1h
|x|α ]Eh[e

−
−v2h
|x|α ]Eh[e

−
−v3h
|x−xr |α ]

)
dx

(b)
≈

M∑
l=1

M∑
i=1

M∑
j=1

βlβiβj

plpipj

∫
R

(
1−

1

1+ p−1i v1|x|−α

·
1

1+ p−1j v2|x|−α
·

1

1+ p−1l v3|x − xr |−α

)
dx,

where step (a) follows from (29), and in step (b) we use (10)
three times as well as the fact that

∑M
i=1

βi
pi
= 1. The integral
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contained in G′3 can be obtained as∫
R

(
1−

1
(1+ s1

|x|α )(1+
s2
|x|α )(1+

s3
|x−xr |α

)

)
dx

=
s1

s1 − s2

∫
R

(
1−

1
(1+ s1

|x|α )(1+
s3

|x−xr |α
)

)
dx

−
s2

s1 − s2

∫
R

(
1−

1
(1+ s2

|x|α )(1+
s3

|x−xr |α
)

)
dx

(a)
= I2(s1, s2, s3),

where in step (a) we use (22). Therefore, we have I ′ ≈
I3(v1, v2, v3). Substituting these results into (32) results in
the approximation for Pr{SINR[1]

SR > T ,SINRMRC > T }. All
the above approximations are summarized in (26). The proof
of Proposition 3 now completes.

APENDIX D
PROOF OF COROLLARY 2
The proof follows the similar procedure as Appendix B.
We can also distinguish the two cases: whether dSR → 0
holds or not. For the latter case, the method presented in
Appendix B can be directly applied to reach Perr = 2(λτ ).
Hence we focus only on the situation dSR→ 0.
When λτ → 0, and η→∞, using (26) we can have

Perr = 1− Pr {SINRMRC > T }
(a)
→ 1+

∞∑
i=1

∞∑
j=1

βiβj

pipj

∫
∞

0

d
zds

e−λI3(piψ1,spjψ2,0)
∣∣∣
s=1

dz.

where in step (a) we take ψ3 = TdαSR → 0, and use the
fact that

∑
∞

l=1
βl
pl
= 1. The integral in the last line can be

decomposed into the sum of two integrals. The first is∫ T

0

d
zds

e−λI3(piψ1,spjψ2,0)
∣∣∣
s=1

dz

(a)
→

∫ T

0

d
zds

(
1− λI3(piψ1, spjψ2, 0)+

(A4λτ )2(sz)
2
α

2(p−1j T )
2
α

)∣∣∣
s=1

dz

(b)
→ −A4p

1
α

j λτ + (A4p
1
α

j λτ )
2/2+ Bλτ 2,

where in (a), we use the Taylor expansion e−x → 1−x+x2/2
for x → 0, and ignore the terms which are higher than λτ 2

and (λτ )2, and in (b) we use the definition of I ′ in (33) and
the fact that I ′ = I3(v1, v2, v3) as M →∞, with

B =
∫ T

0

∫
R

dEh
[
e−
−spjψ2h
|x|α

]
zds

∣∣∣∣
s=1

(
Eh
[
e−
−piψ1h
|x|α

]
− 1

)
dxdz

being a positive number. The second integral is given by∫
∞

T

d
zds

e−λI3(piψ1,spjψ2,0)
∣∣∣
s=1

dz

=

∫
∞

T

d
zds

e−λI3(0,spjψ2,0)
∣∣∣
s=1

dz

(a)
→

∫
∞

T

d
zds

e−(sz)
1/α
(
A4p

1/α
j T−1/αλτ

)∣∣∣
s=1

dz

(b)
= −e−A4p

1/α
j λτ

(c)
→ −1+ A4p

1/α
j λτ − (A4p

1/α
j λτ )2/2,

where in (a) we use (33), in (b) we evaluate the integral
directly, and in (c) we use the Taylor expansion. Therefore,
Perr = 2(λτ 2) when dSR→ 0. These complete the proof.
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