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Abstract  16 

 17 

Precipitation and atmospheric circulation are the coupled processes through which tropical 18 

ocean surface temperatures drive global weather and climate1–5.  Local ocean surface 19 

warming tends to increase precipitation, but this local control is hard to disentangle from 20 



remote effects of conditions elsewhere.  Such remote effects occur, for example, from El 21 

Niño Southern Oscillation (ENSO) events in the equatorial Pacific, which alter precipitation 22 

across the tropics.  Atmospheric circulations associated with tropical precipitation are 23 

predominantly deep, extending up to the tropopause.  Shallow atmospheric circulations6–8, 24 

impacting the lower troposphere, also occur, but the importance of their interaction with 25 

precipitation is unclear.  Uncertainty in precipitation observations9,10, and limited 26 

observations of shallow circulations11, further obstruct understanding of the ocean’s influence 27 

on weather and climate. Despite decades of research, persistent biases remain in many 28 

numerical model simulations12–18, including excessively-wide tropical rainbands14,18, the 29 

‘double-intertropical convergence zone (ITCZ) problem’12,16,17 and too-weak responses to 30 

ENSO15. These demonstrate stubborn gaps in our understanding, reducing confidence in 31 

forecasts and projections. Here we show that the real world has a high sensitivity of seasonal 32 

tropical precipitation to local sea-surface temperature.  Our best observational estimate is 33 

80% precipitation change per g/kg change in the saturation specific humidity (itself a 34 

function of the ocean surface temperature).  This observed sensitivity is higher than in 43 of 35 

the 47 climate models studied, and is associated with strong shallow circulations.  Models 36 

with more realistic sensitivity have smaller biases across a wide range of metrics.  Our results 37 

apply to both temporal and spatial variation, over regions where climatological precipitation 38 

is around 1 mm/day or greater. Novel analysis of multiple independent observations, physical 39 

constraints and model data, underpin these findings. The spread in model behaviour is further 40 

linked to differences in shallow convection, providing a focus for accelerated research, to 41 

improve seasonal forecasts through multidecadal climate projections. 42 

 43 

 44 



Main paper 45 
 46 

We first define a measure (kqsat) of the sensitivity of seasonal mean precipitation to variation 47 

in local sea surface temperature (SST).  We will show that kqsat is a key property of the 48 

atmosphere, using it to link diverse gaps in understanding to a limited subset of physical 49 

mechanisms.  Precipitation increases non-linearly with SST19. Since tropical precipitation 50 

increases roughly exponentially with column atmospheric water vapour20,21; and over 51 

seasonal or longer timescales, SST variation forces variation in column water vapour22, via 52 

differences in saturation specific humidity of the ocean surface (qsat, Methods), we define kqsat 53 

as follows: 54 

loge(P1/P0)  ≈  kqsat * (qsat,1 - qsat,0) +  <other processes>                   Equation 1. 55 

This describes the variation in precipitation (from P0 to P1) driven by local variation in qsat 56 

(from qsat,0 to qsat,1).  This approximation is validated within the calculation of kqsat (Methods).  57 

Moist static energy arguments19 also predict a roughly exponential relationship between qsat 58 

and P.  kqsat quantifies the combined effect of the physical processes by which local SST 59 

anomalies affect precipitation at the same location.  The `other processes’ term includes the 60 

effects of internal atmospheric variability independent of SST, and of remote forcing from 61 

land or SST elsewhere, which can be large at individual locations or times.  In order to 62 

estimate kqsat, we filter out these other processes, by combining information from multiple 63 

locations and times (see Methods).  We evaluate kqsat from interannual variability, with P0 64 

and qsat,0 taken as seasonal climatological means at each location for each season.  However,  65 

our estimates of kqsat are shown to be also informative about spatial variations in 66 

precipitation. 67 

 68 



kqsat relates most directly to the strength of percentage variations in precipitation.  Writing 69 

Equation 1 in exponential form, percentage precipitation differences are a function of kqsat 70 

and qsat: 71 

(P1 – P0)/P0 * 100  ≈  100 [exp(kqsat * (qsat - qsat,0)) – 1].   Equation 2 72 

Absolute differences depend also on the reference precipitation P0: 73 

P1 – P0  ≈  P0[(exp(kqsat * (qsat - qsat,0)) – 1],     Equation 3 74 

(in absolute terms, precipitation variations are largest in regions of large mean precipitation19.  75 

However, we will show that spatial variation in P0 itself also depends partly on kqsat. 76 

 77 

Validating satellite observations 78 

Given uncertainty in precipitation observations9,10, we perform a high-precision evaluation of 79 

log(precipitation) (as Equation 1) from two satellite datasets: TRMM23,24 (3B43, v7) and 80 

GPCP25 (v2.3), both for 1998-2015.  We do this (Methods) using in-situ raingauge data from 81 

89 buoys of the Global Tropical Moored Buoy Array (GTMBA)26–28.  Satellite-GTMBA 82 

validation is challenging: on top of satellite error9,10, the GTMBA point observations include 83 

noise from small-scale variability unresolved by satellite data, missing data, error in 84 

individual raingauges and wind undercatch29.  Our method reduces this noise considerably, 85 

giving a tight relationship between GTMBA and TRMM data (Figure 1a).  Critically, the best 86 

fit gradient ≈1, so TRMM accurately retrieves differences in log precipitation.  On the other 87 

hand, GPCP underestimates differences in log precipitation (Figure 1b, gradient > 1; 88 

differences between TRMM and GPCP emerge primarily at low precipitation9), although 89 

GPCP is more suitable over larger spatial scales (Extended data Figure 1).  Since TRMM 90 

captures differences in log(precipitation) more accurately than GPCP, TRMM is used below. 91 



 92 

Model precipitation simulations 93 

We first highlight precipitation biases in 28 atmospheric models from the fifth Coupled 94 

Model Intercomparison Project (Methods), each forced by observed SST (CMIP5 AMIP 95 

experiment; Figure 2a-f).  We quantify temporal, seasonal and spatial variation in 96 

precipitation: the 1997-98 El Niño divided by the mean of the 1998-2000 La Niñas; Aug-Oct 97 

divided by Feb-Mar seasons, and precipitation scaled by its latitudinal maximum.  Our 98 

metrics coincide with significant spatial or temporal differences in SST (Methods). Spatial 99 

variation across the west Pacific is excluded, for example, because spatial gradients in SST 100 

are weak there, so model differences in kqsat will be less important for spatial variation there. 101 

Given the form of Equation 1, precipitation is shown on log scales as ratios. Although some 102 

models are close to the observations, in others, biases exceed a factor of five in the El 103 

Niño/La Niña ratio, seasonal cycles over the Atlantic and West Pacific, and in the Atlantic 104 

spatial pattern for the Aug-Oct season (Figure 2a-d). Biases over a factor of two occur in the 105 

spatial patterns of the East Pacific annual mean (the long-standing ‘double-ITCZ’ 106 

problem12,17) and the Indian Ocean for November-April (Figure 2e-f).  Such biases are 107 

known, but their causes are not well understood. 108 

 109 

These biases (Figure 2a-f) all correspond to excessively weak spatial/temporal variations in 110 

precipitation (precipitation ratios too close to 1; including excessively-wide inter-tropical 111 

convergence zones14,18). This suggests a hypothesis (H0), that the sensitivity of seasonal 112 

precipitation to local SST (kqsat) may be too weak in many models. 113 

 114 



To test H0 objectively, we use a method independent of Figure 2 (Figure 2 was used to 115 

propose H0).  This involves estimating kqsat for each model using different data. 116 

 117 

Evaluating kqsat in models 118 

We evaluate kqsat using interannual variability in seasonal mean precipitation and SST (the 119 

AMIP SST dataset30 used to drive the model experiments; using years 1980-2005).  kqsat is 120 

calculated using gridpoint values of seasonal precipitation and qsat, from each location in the 121 

study region, and for each year.  With these data, Equation 1 becomes a model of the effect of 122 

local interannual SST variability on precipitation: 123 

loge( P(x,t)/P0(x) )  ≈  kqsat * ( qsat(x,t) - qsat,0(x) ) +  <other processes>, 124 

where (x,t) indicates values for each gridpoint and year; and here, P0 and qsat,0 are the 125 

corresponding climatological means for each gridpoint.  We estimate kqsat from these data 126 

using a modified regression approach (detailed in Methods), minimising the influence of 127 

other processes in Equation 1. 128 

 129 

To minimise observational error, we exclude the 30% of the tropical oceans with the lowest 130 

climatological mean SST (Figure 3b-e, area outside white contour).   131 

 132 

Taking logarithms means that all areas of our study region contribute relatively equally to our 133 

kqsat estimate (Methods).  Consequently, kqsat is relevant over most of the tropical oceans 134 

(Figure 3a, correlations are high except for the left bar).  kqsat is inapplicable over the coolest, 135 



driest ocean regions (Figure 3a, left bar; area masked in Figure 3b-e).  The applicable region 136 

corresponds to climatological precipitation > ~1 mm/day (Figure 3b-e, orange contour). 137 

 138 

kqsat is intended to be independent of large-scale SST spatial patterns.  To avoid bias from the 139 

large, recurrent ENSO pattern, our ‘sortav’ regression method first processes the data so all 140 

years contribute equally.  Linear regression is then applied to obtain kqsat.  Rankings of 141 

CMIP5 models by kqsat are robust: insensitive to season, to using fewer years of data, or to 142 

excluding ENSO years - Extended data Figure 2e-g.  Calculated this way, kqsat is less 143 

sensitive to the time period used than with simple least squares regression (Extended Data 144 

Figures 2h, 7). 145 

 146 

We find that the sensitivity of precipitation to local SST variability is much stronger in some 147 

models than in others: kqsat varies across CMIP5 models by a factor of 2.5 (0.26-0.66 kg/g; 148 

median = 0.46).  We group the models into ‘high-kqsat’ (the 6 models with the largest kqsat 149 

values), ‘low-kqsat’ (the lowest 6 kqsat values) and 'mid-range' subsets. 150 

 151 

In Equation 2, setting (qsat - qsat,0) to 1, expresses kqsat as the percentage precipitation change 152 

per g/kg change in saturation specific humidity (qsat):   153 

 154 

(P1 – P0)/P0 * 100  ≈  100 [exp(kqsat * 1) – 1]   =   100 [exp(kqsat) – 1].               Equation 4 155 

 156 



Expressed this way, the precipitation sensitivity in CMIP5 models spans 30-93% per g/kg 157 

(median = 58%).  For context, qsat can vary by a few g/kg, 10° either side of the East Pacific 158 

ITCZ during Aug-Oct, and anomalies during ENSO events have a similar magnitude.  159 

 160 

High sensitivity of precipitation to SST 161 

We hypothesised above (H0) that kqsat may be too low in most models.  To begin testing this, 162 

the results in Figure 2a-f are replotted, but with the 'high-kqsat' subset of models highlighted in 163 

magenta (Figure 2g-l).  The 'high-kqsat' subset shows much better agreement with TRMM than 164 

the full ensemble, in all six panels. Conversely, the 'low-kqsat' subset performs much worse 165 

(Extended data Figure 3).  Next, we calculate kqsat
(spatial) (Methods): as kqsat, but using spatial 166 

patterns in climate means, rather than internal variability (Figure 4b).  Again, models closest 167 

to the observations (Figure 4b, horizontal line) tend to be those with high kqsat. These results 168 

all imply that kqsat should be high in the real world (H0).  169 

 170 

These results also show that kqsat is relevant to both spatial and temporal variations in 171 

precipitation.  We emphasise this by quantifying the overall sensitivity of precipitation to 172 

local SST (𝑘 ), including both spatial and temporal variations (including spatial 173 

variation in P0, Methods).  𝑘  is well correlated with kqsat (Extended data Figure 2i).  174 

This confirms that kqsat is a useful measure of the underlying sensitivity of precipitation to 175 

local SST, relevant to spatial and temporal variations.  kqsat does not give information about 176 

tropical mean precipitation, which is governed by different processes31.  kqsat remains our 177 

primary measure of precipitation sensitivity to local SST, because it is insensitive to details of 178 

SST patterns.  In contrast, 𝑘   and kqsat
(spatial) may be sensitive to the specific spatial 179 



patterns in climatological SST (Methods), explaining some of the noise in Figure 4b and 180 

Extended data Figure 2i. 181 

 182 

We estimate a lower bound for kqsat, using observed interannual variability (independent of 183 

Figure 2; Methods).  Three values of kqsat are estimated, exactly as for the models, but using 184 

TRMM precipitation, and qsat from each of three different SST datasets (HadISST32 version 185 

1.1, ERSST33 version 4 and COBE34 version 2).  Uncertainties are estimated, from SST error 186 

(including regression dilution bias) and internal variability (the TRMM observational period 187 

only partly overlaps the model simulation period).  A lower observational bound (95% 188 

confidence) of 0.51 kg/g for kqsat is obtained. 189 

 190 

For a central observational estimate of kqsat (details in Methods), we return to Figure 2. We 191 

ask: if all CMIP5 models had the same value of kqsat, with what value would they best 192 

reproduce the observations in Figure 2?  We first find where, geographically, the models are 193 

most sensitive to kqsat. This reveals seven intervals (shaded in Figure 2g-l).  For each interval, 194 

model errors relative to TRMM are regressed against modelled kqsat (Extended data Figure 6). 195 

For each interval, kqsat is estimated as where the regression line intercepts the x-axis (the 196 

value for a theoretical model with zero precipitation error).  These seven estimates of kqsat 197 

range from 0.56 to 0.68 kg/g (Figure 4a, white dashed lines), all larger than our lower bound 198 

estimate.  The spread of estimates comes from uncertainty in processes not quantified by 199 

kqsat. The range of conditions used, covering spatial, seasonal and temporal variability across 200 

different locations, helps to quantify and mitigate this uncertainty.  Robustness is tested by 201 

plotting results from the sixth model intercomparison project (CMIP6, not used to select the 202 

seven intervals) on Extended data Figure 6.  The mean of the seven kqsat values (0.6 kg/g; or, 203 



using Equation 4, 80% per g/kg) is our central estimate (for 1980-2005; other periods would 204 

give slightly different values, from internal SST variability - Extended data Figure 2h). 205 

 206 

These results, from two independent methods, suggest that most models underestimate kqsat.  207 

Our central estimate (0.6 kg/g, Figure 4a, horizontal black line; Figure 4b, vertical line) is 208 

greater than 43 of the 47 model values from CMIP5 and CMIP6. This implies that models 209 

underestimating the sensitivity of precipitation to local SST underlies a range of model biases 210 

over tropical oceans.  CMIP5 and CMIP6 have similar ranges of kqsat values (Figure 4a), 211 

highlighting the need for accelerated model development.  212 

 213 

Other studies35 have found biases in a different aspect of the SST-precipitation relationship: 214 

model precipitation often tracks SST maxima more closely than in observations.  We quantify 215 

this in each CMIP5 model as the correlation coefficient between climatological spatial 216 

patterns of precipitation and SST, for each season, then average the four seasonal values.  217 

This ‘spatial-correlation index’ is uncorrelated with kqsat (r = 0.01; i.e. models with a high 218 

spatial-correlation index can have high, low or intermediate kqsat), so it involves different 219 

processes. 220 

 221 

Processes behind uncertainty in kqsat 222 

To guide model improvements, we explore what causes model differences in kqsat, revealing 223 

links to shallow atmospheric circulations.  We first note that kqsat involves processes 224 

unrelated to tropical mean precipitation: the correlation across CMIP5 models between the 225 



two measures is 0.03.  Energy budgets constrain tropical mean precipitation31, while the value 226 

of kqsat affects precipitation variation in both time and space. 227 

 228 

Beginning with interannual variability, we define kqsat
wap(p): the sensitivity of the vertical 229 

pressure velocity (wap) to local SST change, at each pressure level (p).  This is evaluated like 230 

kqsat, using data from all seasons across the tropical oceans, but using wap(p) instead of 231 

log(precipitation).  A deep mode dominates tropical variability36, so the CMIP5 mean profile 232 

of kqsat
wap peaks around 450 hPa (Figure 5a).  In contrast, model spread in kqsat is linked to 233 

shallow circulations: correlations between kqsat
wap(p) and kqsat (Figure 5b) peak near 700hPa (r 234 

= -0.9; correlations are small at 1000hPa, as wap approaches zero near the surface).  That is, 235 

in models with high kqsat (as in the real world), shallow circulations respond strongly to SST 236 

anomalies.  Although deep circulations are important36 in all models, and shallow circulations 237 

have been linked to mean precipitation, especially over the Eastern Pacific7, our novel finding 238 

is that shallow circulations are central to model uncertainty in SST-driven precipitation 239 

variability, across the tropics. 240 

 241 

Shallow circulations are further linked to model differences in climate means.  We study 242 

zonal, ocean-only means over 180W-10E (most of the Pacific, entire Atlantic), in Aug-Oct, 243 

when meridional SST gradients are strong.  CMIP5 results are used to define key regions 244 

(black and orange lines in Figure 5c-e), and CMIP6 used to test the conclusions.  As 245 

expected4,7, CMIP5 mean vertical velocity profiles are bottom heavy, but extend throughout 246 

the troposphere (Figure 5c, colours). Meridional wind (white contours) peaks near the 247 

tropopause, with a weaker shallow flow between 500-700hPa37.  Again, however, inter-model 248 

spread in kqsat is associated with shallow circulations: models with high kqsat have stronger 249 



shallow descent south of the ITCZ between 600-850hPa (Figure 5d, yellow; Extended Data 250 

Figure 8a, magenta line; Extended Data Figure 8d).  They also tend to have stronger shallow 251 

ascent in the ITCZ (Figure 5d, blue region; Extended Data Figure 8c, magenta line), stronger 252 

trade winds and stronger return flow between 500-700hPa (Figure 5d, white contours; 253 

Extended Data Figure 8b, magenta line).  This shallow circulation is weak in the low-kqsat 254 

mean (Extended Data Figure 8a-c, blue lines).   255 

 256 

The weak link between model differences in kqsat and deep circulations may arise partly from 257 

physical constraints.  In descending air, differences in vertical velocity are largest below 258 

about 600 hPa (Extended Data Figure 8a,i).  This is partly explained by the vertically-259 

integrated dry static energy (DSE) budget. This budget constrains vertical velocities, 260 

requiring balance between radiative, sensible and latent heating, and advection of DSE 261 

(Methods).  In descending air above 600 hPa, there are fewer uncertain processes affecting 262 

this budget, with negligible energy input from cloud and precipitation. Here, therefore, 263 

downward advection of DSE is balanced mostly by dry clear-sky radiative cooling (Extended 264 

Data Table 1).  Further, vertical temperature profiles are similar across CMIP5 models.  This 265 

constrains both radiative cooling and vertical gradients of DSE, limiting model differences in 266 

vertical velocity.  Model temperatures are constrained, near the surface by SST, and near the 267 

tropopause as modelling groups aim to reproduce observed outgoing longwave radiation.  268 

Below 600hPa, there are additional sources of uncertainty, from cloud and precipitation38, 269 

leading to larger model differences in shallow descent, and so stronger links to differences in 270 

kqsat.  271 

 272 



The depth of the meridional return flow (500-700hPa, Figure 5e, white contours) suggests a 273 

circulation driven by precipitating shallow convection37,39.  The alternative, sea-breeze 274 

mechanism reaches lower levels37.  Both circulation types may exist over the Galapagos 275 

(Extended Data Figure 8g): here, model meridional winds between 600-700hPa (shallow-276 

convection-type) are uncorrelated with those between 700-850hPa (sea-breeze-type), 277 

indicating different physical processes at these two levels.  The column dry static energy 278 

budget (Methods) also implicates precipitating shallow convection.  Model differences in this 279 

budget are predominantly a balance between vertical advection integrated over 600-1000 hPa, 280 

and precipitation latent heating (Extended Data Table 1, final column): in descending air 281 

below 600 hPa, high-kqsat models have stronger shallow advective warming from stronger 282 

shallow descent, balancing weaker warming from weaker precipitation.  As expected, the 283 

ensemble mean in descending air is mostly a balance between radiative cooling and advective 284 

warming.   285 

 286 

Causality is hard to fully establish, but the most likely explanation of our results is that model 287 

differences in kqsat mostly originate from model differences in the behaviour of shallow 288 

precipitating convection.  Such differences would affect the sensitivity of precipitation to 289 

SST directly.  The consequent differences in shallow latent heating also appear to lead to 290 

differences in shallow circulations.  This couples shallow vertical velocities in descending 291 

and ascending air (Extended Data Figure 8e), further modifying the sensitivity of 292 

precipitation to SST.   293 

 294 

Significant model differences in the physical representation of convection40,41, including its 295 

coupling to circulation5,42, are well established.  Improvements in kqsat in the CNRM model 296 



from CMIP5 (0.43 kg/g) to CMIP6 (0.54 kg/g) are largely associated with convection scheme 297 

changes.  Running CNRM-CM6 with the CNRM-CM5 convection scheme gives kqsat=0.36 298 

kg/g, even smaller than that of CNRM-CM5.  That is, the effect of changing the convection 299 

scheme is partly offset by changes in other schemes.  Changes from CM5 to CM6 include the 300 

shallow convection scheme and the transition from shallow to deep convection43.  These, and 301 

other physics schemes, including boundary layer, deep or mid-level convection, or 302 

microphysics, could all affect how shallow precipitating convection responds to SST. 303 

  304 

Other processes may have smaller contributions.  Dry shallow circulations44 are more 305 

important over hot, dry land.  A limited role for differences in radiation (Extended Data Table 306 

1, final column), suggests cloud parameterizations are not dominant. Differences in 307 

dynamical schemes are thought to be less likely to be important for tropical precipitation 308 

biases, although coupling of dynamics to physics is important45–47. 309 

 310 

Models with stronger shallow circulations can also import more moist static energy in 311 

ascending air, driving enhanced deep convection48.  Our results support this (Extended Data 312 

Figure 8h), showing that model differences in shallow ascent are strongly positively 313 

correlated with differences in deep ascent.  This is an indirect link to kqsat, which is more 314 

weakly associated with deep ascent rates (Figure 5d). 315 

 316 

Strong real-world shallow circulations 317 

Shallow circulations are challenging to observe11, but our results suggest they are stronger in 318 

the real world than in most models.  Models with high kqsat (as in the real world) tend to have 319 



strong shallow circulations (in both climate means and internal variability).  We test this 320 

further with two independent observations, in Aug-Oct.  In models, there is a strong (r=0.86) 321 

relationship between shallow descent, and northward trade winds (Figure 4c).  If the shallow 322 

descent is strong in the real world, we would expect strong northward trades – and this is 323 

confirmed by QuikSCAT satellite observations49 (SeaWinds scatterometer, Level 3 product, 324 

years 1999-2009 - horizontal line in Figure 4c).  There is, similarly, a strong (r=0.81) 325 

relationship (Figure 4d) between 500-700hPa meridional winds over our study region, and 326 

the mean 600-700hPa meridional wind over Galapagos and Christmas Islands (915 MHZ 327 

wind profiler8,50 observation sites, years 1994-2005 at Galapagos, 1990-2002 at Christmas 328 

Island; few observations reach above 600hPa).  If the large-scale 500-700hPa wind is strong 329 

in the real world, we would expect strong southward winds in the observations, and this is 330 

what the wind profilers show (horizontal line in Figure 4d). These results, using multiple 331 

observations, confirm a previous suggestion based on a single reanalysis product5. 332 

 333 

Conclusions 334 

Our results show that kqsat is linked to a range of model biases in precipitation and 335 

atmospheric circulation.  Improving kqsat should reduce those biases, giving greater 336 

confidence in seasonal through multi-decadal model projections.  kqsat affects the strength of 337 

precipitation variation in both time and space.  Other biases, in large-scale energy budgets, 338 

and teleconnections, also affect precipitation.  We show that kqsat can be constrained by 339 

observations, and give evidence that improving the representation of shallow tropical 340 

precipitating convection, and its coupling to SST and circulation, could improve kqsat.  This 341 

identifies specific model development goals and gives new ways of linking these to 342 

observable physical processes. 343 



  344 
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Figures 461 

 462 

Figure 1.  463 

Validating observations of log precipitation from satellites.  GTMBA in-situ raingauge 464 

observations versus satellite observations from a TRMM and b GPCP.  Each symbol 465 

represents the mean of all seasonal mean data within a given SST bin (Methods).  Green line: 466 

best fit line (gradient and its 95% confidence interval quoted in each figure); dotted line: 1:1 467 

line. 468 

 469 

  470 



 471 

Figure 2.  Model precipitation biases. (black) TRMM observations.  Horizontal dashed line 472 

marks precipitation ratio=1.  a-f all CMIP5 models are shown in grey lines; g-i magenta: 473 



‘high-kqsat’ subset; grey: other models.  Spatial patterns (bottom 3 rows) given by scaling 474 

zonal mean precipitation by its latitudinal maximum. Green shading marks the intervals used 475 

for the 7 estimates of kqsat. These examples were chosen as they feature large 476 

differences/gradients in SST. Precipitation ratios are plotted because of the form of Equation 477 

1. 478 

 479 

  480 



Figure 3.  The region of 481 

applicability of kqsat.  (a) each bar represents a climatological zone covering 20% of the 482 

tropical oceans, defined by the seasonal climatological SSTs (e.g. the left bar is the zone with 483 

the coolest 20% of SSTs – white masked ocean in the maps below).  Climatological zones are 484 

defined separately for each season.  Bar height: the correlation coefficient, across CMIP5 485 

models, between the standard calculation of kqsat, and that calculated only over the selected 486 

climatological zone.  Mean SST (°C) for each zone is also shown. (b-e) Colours: mean 487 

TRMM precipitation; orange line highlights 1 mm/day contour.  Data is masked over the 488 

20% of the oceans where kqsat is inapplicable (left-hand bar in panel a shows low 489 

correlation).  White contour shows the 30th percentile of SST: the standard calculation of 490 

kqsat uses data inside this contour. 491 

 492 



 493 

Figure 4.  High sensitivity of precipitation to SST, and strong shallow circulations, in the real 494 

world.  a horizontal lines mark (white dashes) the 7 estimates of kqsat (Extended data Figure 495 

6), and the central estimate (black solid); shading marks kqsat values above our lower-bound 496 

estimate; symbols mark sorted model kqsat values for (crosses) CMIP5 (blue and magenta 497 

denote low-kqsat and high-kqsat model subsets) and (circles) CMIP6. b kqsat
(spatial) versus kqsat, 498 

for each (black) CMIP5 and (red) CMIP6 model; horizontal line: kqsat
(spatial) from TRMM 499 

observations; vertical line: best estimate of kqsat. c,d each symbol represents one CMIP5 500 

(black) or CMIP6 (red) model; title gives Pearson correlation coefficient. c surface 501 

meridional wind averaged over the mid-region (180W-10E, 1-7N) versus shallow descent 502 

index (defined in Figure 5); horizontal line marks QuikSCAT observation. d meridional wind 503 

averaged over Galapagos & Christmas island, 600-700hPa (few observations above 600hPa) 504 

versus meridional wind averaged over the mid region (180W-10E, 1-7N), 500-700hPa; 505 

horizontal line marks wind profiler observation. 506 



 507 

Figure 5.  Linking kqsat to shallow circulations. a,b quantifies internal variability, and c-e 508 

climate means. a CMIP5 ensemble mean of kqsat
wap (Pa kg/g), at each pressure level. b inter-509 

model correlations (Pearson r) between kqsat, and kqsat
wap, at each pressure level.  Correlations 510 

are negative because of the definition of wap. c-e Aug-Oct, 180W-10E zonal means. c 511 

CMIP5 ensemble mean of (colours) vertical velocity (Pa/s) and (white contours) meridional 512 



wind.  d inter-model correlations between kqsat and mean vertical velocity (colours) and 513 

between kqsat and mean meridional wind (white contours).  e as d, but for correlations with 514 

the shallow descent index instead of kqsat (shallow descent index = vertical velocity averaged 515 

over left-hand orange-dashed box: 5S-1N, 850-600 hPa). 516 
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 520 

Methods 521 

 522 

Data domain, SST, precipitation and qsat 523 

Results are based on seasonal means of precipitation and SST, over the tropical oceans (20S-524 

20N).  qsat is calculated as the saturation specific humidity at the seasonal mean sea-surface 525 

temperature and 1000 hPa air pressure.  Use of seasonal mean SST here means that qsat will 526 

be lower than the seasonal mean of saturation specific humidity calculated from daily SST 527 

(due to sub-seasonal SST variability, and nonlinearity in the humidity calculation).  We use 528 

seasonal mean SST to minimise observational error: sub-seasonal SST variability is hard to 529 

observe accurately. 530 

Observations 531 

Satellite precipitation data are seasonal averages of monthly means from V7 of the 3B43 532 

Tropical Rainfall Measuring Mission (TRMM)23,24 dataset, covering 1998-2015.  Data from 533 

V2.3 of the Global Precipitation Climatology Project (GPCP25) retrieval are included in 534 

Figure 1 only.   535 

In-situ raingauge data from 89 buoys of the Global Tropical Moored Buoy Array (all buoys 536 

with more than 1 year of precipitation data), from the Tropical Ocean-Global Atmosphere 537 

(TOGA26) observing system, the Prediction and Research Moored Array in the Atlantic 538 

(PIRATA28) and the Research Moored Array for African-Asian-Australian Monsoon 539 

Analysis and Prediction (RAMA27), were retrieved as daily means.  Days with lower quality 540 

data (quality codes not equal to 1 or 2) were rejected.  Monthly means were then calculated 541 

only for months with 20 or more days with code 1 or 2 data (other months are marked as 542 



missing).  Seasonal means were taken only where three consecutive months had non-missing 543 

data. 544 

Monthly mean SSTs are taken from four different datasets.  The CMIP5 AMIP dataset30 (the 545 

dataset used to drive the AMIP SST-forced model runs) is available only for 1980-2005.  546 

This was used to calculate kqsat for each model.  For our observational estimate of a lower 547 

bound on kqsat (using TRMM precipitation), three SST datasets were used: HadISST32 version 548 

1.1, ERSST33 version 4 and COBE34 version 2 (the AMIP dataset used by the model 549 

simulations was not used, due to its limited temporal overlap with the TRMM operational 550 

period). 551 

Surface meridional wind observations are from SeaWinds on QuikSCAT Level 3, for the 552 

period Aug 1999-Oct 2009.  Wind profiler observations at San Cristóbal, Galápagos (0.9°S, 553 

89.7°W, 1994-2005) and Christmas Island (2.8°N, 157.5°W, 1990-2002) used 915 MHz in 554 

low mode, as used in other studies of shallow circulation8. 555 

Model data 556 

All model results are from atmosphere-only AMIP runs (one run per model version) forced 557 

by observed SST, corresponding to the period 1980-2005.  This includes 28 models from 558 

CMIP5 (ACCESS1-0, ACCESS1-3, BNU-ESM, CCSM4, CESM1-CAM5, CNRM-CM5, 559 

CSIRO-Mk3-6-0, CanAM4, GISS-E2-R, HadGEM2-A, IPSL-CM5A-LR, IPSL-CM5B-LR, 560 

MIROC-ESM, MIROC5, MRI-AGCM3-2H, MRI-AGCM3-2S, MRI-CGCM3, NorESM1-M, 561 

inmcm4, bcc-csm1-1-m, bcc-csm1-1, EC-EARTH, MPI-ESM-LR, MPI-ESM-MR, 562 

FGOALS-s2, FGOALS-g2, GFDL-CM3, GFDL-HIRAM-C180) and 19 from CMIP6 (BCC-563 

CSM2-MR, BCC-ESM1, CAMS-CSM1-0, CanESM5, CNRM-CM6-1, CNRM-ESM2-1, 564 

EC-Earth3-Veg, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, MIROC6, HadGEM3-GC31-565 



LL, UKESM1-0-LL, MRI-ESM2-0, GISS-E2-1-G, GFDL-AM4, GFDL-CM4, NESM3, 566 

SAM0-UNICON).   567 

Evaluation of satellite precipitation using GTMBA raingauge data 568 

First, seasonal mean satellite precipitation data (for all seasons) were interpolated linearly to 569 

the GTMBA locations.  Logarithms of seasonal mean precipitation were then taken, and all 570 

datasets masked at times and locations where any data (GTMBA or satellite) were missing.  571 

This resulted in 1723 observations of seasonal mean precipitation from each dataset, covering 572 

the period 1998-2015 (the overlap between TRMM and GTMBA operational periods).  For 573 

the remainder of the analysis, the observation location and time are ignored. 574 

To reduce noise effectively, while retaining the signal of interest, we use the fact that 575 

precipitation tends to increase with SST, but the noise (as defined here) is largely 576 

independent of SST.  For each dataset, the 1723 observations were grouped into 120 bins (14 577 

observations per bin).  This was done by ranking the observations by seasonal mean SST (the 578 

14 observations corresponding to the 14 lowest SST values were placed in the first bin, and 579 

so on).  The mean across each bin was then taken, giving 120 bin means of log(seasonal 580 

precipitation): giving 120 symbols in Figure 1.  120 bins were chosen, as a mean over 14 581 

observations is sufficient to reduce noise significantly, while retaining a large number of 582 

symbols in Figure 1 to assess the method visually.  Doubling the number of bins has 583 

negligible effect on the gradient in Figure 1.  Results are insensitive to which SST dataset is 584 

used to bin the data (compare Extended data Figure 4, bottom two rows, with Figure 1). 585 

We demonstrate that regression dilution bias is likely to be small in Figure 1a (method 586 

justification in Methods subsection ‘Estimating regression dilution bias’ below).  We do this 587 

by repeating the analysis in Figure 1a, but regressing first TRMM against GPCP (Extended 588 



data Figure 4, top left), then GPCP against TRMM (Extended data Figure 4, top right).  The 589 

product of the two regression gradients is 0.98 (close to 1), suggesting that this bias is small. 590 

We also tested sensitivity of the validation to potential undercatch by the GTMBA raingauges 591 

in windy conditions29.  This issue could only bias the gradients in Figures 1a,b if the 592 

percentage undercatch varied systematically from low to high precipitation (because Figure 1 593 

shows log precipitation).  To test this, we recalculated the gradients in Figures 1a,b, but after 594 

masking the data according to the seasonal mean wind speed (also observed by GTMBA 595 

buoys).  Gradients calculated for low wind (0-4 m/s; 22% of all data) and high wind (6-10 596 

m/s; 27% of all data) show no significant differences from Figure 1a,b (for TRMM, 597 

confidence intervals consistently spanning 1 and best estimate within 5% of 1; for GPCP, 598 

confidence intervals consistently excluding 1).  This suggests that the satellite validation is 599 

insensitive to wind undercatch. 600 

Figure 2 data preparation (regions, seasons, time periods) 601 

For Figure 2, all data is first regridded by area-averaging to a common grid (resolution: 1.25º 602 

latitude by 1.875º longitude).  603 

The El Niño/La Niña ratio is based on large ENSO episodes in years both simulated by the 604 

models and observed by TRMM: the 1997-1998 El Niño divided by the mean of 1998-1999 605 

and 1999-2000 La Niñas, for the El Niño peak season (November-January), averaged over 606 

10S-10N. 607 

Other data are zonal means over the following longitude bands (with land masked out): 608 

(Atlantic) 70W-25E; (East Pacific) 150-100W; (Indian Ocean) 50-100E. 609 

Seasonal cycles over Atlantic and Pacific are calculated as the zonal mean for August-610 

October divided by the zonal mean for February-April).  These seasons were chosen because 611 



they show large differences in SST, but small differences in solar zenith angle (the latter can 612 

affect precipitation by altering land temperature). 613 

Spatial patterns are calculated, for each model/observational dataset, as the zonal mean at 614 

each latitude, divided by the maximum, zonal mean for the same model/observational dataset.  615 

This was calculated for August-October (ASO) for the Atlantic, due to the large meridional 616 

SST gradient for this season.  November-April was used for the Indian Ocean, as this basin 617 

has a significant meridional SST gradient for this period.  618 

Estimating kqsat, part 1: data preparation 619 

kqsat is used here specifically to rank the models and compare with observations.  Therefore, 620 

the method of calculation needs to be consistent across models and observations, and to 621 

minimise the potential for observational error. 622 

For each year, for a given season, the logarithm of seasonal mean precipitation is calculated.  623 

The spatial pattern of climatological mean precipitation (Extended data Figure 2j) is 624 

dominated by a small area of large precipitation (occupying around 10% of the area).  Hence, 625 

if we evaluated kqsat without taking the logarithm, our result would be dominated by this 626 

small area of the tropics.  The spatial distribution of log(precipitation) is much more uniform 627 

(Extended data Figure 2k), except for the driest 10% of the tropics (which is eliminated from 628 

our analysis as we mask the region of coolest SST).  Hence, using log(precipitation) to 629 

calculate kqsat ensures that the result is influenced fairly equally by all parts of our analysis 630 

region (confirmed in Figure 3a).  Our results use seasonal mean precipitation.  Use of other 631 

timescales would alter kqsat, due to the (nonlinear) logarithm in Equation 1. 632 

For models, kqsat is calculated using data on each model’s native grid.  For observations, qsat 633 

is regridded linearly to the high resolution TRMM horizontal grid. 634 



Before estimating kqsat, to minimise observational error, we exclude the 30% of the tropical 635 

oceans with the lowest climatological mean SST.  An advantage of using a logarithm in 636 

equation 1 is that kqsat estimates are not dominated by the narrow ITCZ region.  However, it 637 

could mean that error in observing the very lowest rainfall rates could cause large error in our 638 

real-world estimate of kqsat.  Therefore we mask the regions with coolest SST on average.  639 

This masking is only done in calculating kqsat.  It is not done in Figure 2, as the climatological 640 

means reduce observational error there. 641 

At each location, anomalies relative to climatological means are calculated for each year, for 642 

both qsat and log(precipitation).  Locations that have missing data in any year are excluded.  643 

These data are used in the sortav method, described below. 644 

Estimating kqsat, part 2: sortav regression method 645 

Once the data is prepared as above, our regression method for estimating kqsat (denoted 646 

‘sortav’) is applied.  For python code for this method, and an illustrative example, see Code 647 

Availability Statement.  The sortav method is designed to prevent dominance from the SST 648 

spatial pattern associated with ENSO (an issue because ENSO features large SST anomalies 649 

in a consistent pattern).  In estimating kqsat from inter-annual variability, our aim is to reduce 650 

the ‘other-processes’ term in Equation 1, by averaging over different SST patterns, with 651 

different patterns of large-scale circulation anomalies.  If a single SST pattern (ENSO) was 652 

allowed to dominate, this would not be effective.  If standard linear regression was used, the 653 

ENSO pattern would dominate, because ENSO features large SST anomalies.  In addition, 654 

tropical means of precipitation and SST can vary over time, involving different processes 655 

than those represented by kqsat.  Our method avoids these issues.   656 

The first step sorts each year of data.  Say the data has n locations and y years.  For each year, 657 

the n anomalies in log(precipitation) are sorted in order of increasing qsat anomaly.  This 658 



produces, for each year, a vector of length n, with the first element corresponding to the 659 

location with the most negative qsat anomaly, and the last element being that with the most 660 

positive qsat anomaly.  If Equation 1 was exactly true, with zero noise, each vector would be 661 

sorted in order of increasing anomaly in log(precipitation).  Because of the noise (from large-662 

scale processes), this is not, in general, true.  This gives y sorted vectors, each of length n.   663 

We then average over the y years, to produce one mean vector of length n (e.g. the 1st 664 

element of this vector is the mean of the y precipitation anomalies found over the most 665 

negative qsat anomaly from each year).  This averaging removes much of the noise, because 666 

the noise is largely independent of qsat.  In this mean, years with large SST anomalies have 667 

the same weighting as other years, avoiding dominance by ENSO.   668 

The same process is repeated for qsat.  This gives two mean vectors, each of length n: for 669 

anomalies in log(precipitation) and in qsat.   670 

The relationship between the averaged anomalies in log(precipitation) and qsat is relatively 671 

linear in both models and observations (e.g. Extended data Figure 2a-d), suggesting that 672 

Equation 1 is a useful approximation in this context. kqsat is then estimated from these vectors, 673 

by ordinary least squares linear regression (e.g. the gradients of the best fit lines in Extended 674 

data Figure 2a-d). 675 

To compare with our sortav method, alternative estimates of kqsat (marked OLS in Extended 676 

Data Figures 2h,7) use standard linear regression between seasonal anomalies in 677 

log(precipitation) and qsat (without sort-averaging). 678 

 679 

Calculating kqsat(spatial) and 𝒌𝒒𝒔𝒂𝒕
𝒔𝒑𝒂𝒕𝒕𝒆𝒎𝒑 680 



kqsat
(spatial) is calculated using the same method as kqsat, except that it quantifies seasonal and 681 

spatial variation in time-mean climate (in contrast with kqsat, which quantifies interannual 682 

variability).  First, time means are taken for each dataset and season (giving 4 season means 683 

per grid point per dataset).  For each dataset and each season separately, precipitation is 684 

divided by the tropical mean, before taking logarithms.  This is done to scale out model 685 

variation in the tropical mean (which is controlled by the large-scale energy budget).  For qsat, 686 

for each dataset and season separately, anomalies are taken with respect to the tropical mean.  687 

Masking, to exclude regions with low qsat, is based on annual mean qsat. 688 

𝑘  is defined as follows: 689 

𝑃/𝑃  ≈  exp (𝑘  ∙ 𝑞 ′)      690 

This approximates variation in precipitation relative to the tropical mean, driven by variation 691 

in qsat relative to its tropical mean.  The overbar represents the tropical mean for the current 692 

season of the current year, and 𝑞 ′ is specifically the qsat anomaly with respect to the 693 

tropical mean: 694 

𝑞 ′ = 𝑞 − 𝑞  695 

Anomalies expressed this way capture temporal and spatial variability associated with 696 

variation in local SSTs, but exclude temporal variability in tropical mean precipitation (which 697 

is constrained by the large-scale atmospheric energy budget). 698 

 𝑘  is estimated using the same approach as kqsat, but anomalies of log(P) and qsat 699 

are taken relative to their tropical means for the corresponding season and year (kqsat is 700 

evaluated using anomalies with respect to local climatological means for each location). 701 



A disadvantage of both kqsat
(spatial) and 𝑘   is that they have some sensitivity to other 702 

processes (teleconnections) associated with the specific spatial patterns in climatological 703 

mean SST (these spatial patterns are filtered out less effectively as there are only 4 seasons, 704 

compared to the 25 years of internal variability used to estimate kqsat). 705 

 706 

A lower bound for kqsat, using observed interannual variability  707 

This method (estimated lower bound on kqsat) accounts for three forms of observational error, 708 

combined using Monte Carlo sampling.   709 

First, systematic error in the observed magnitudes of seasonal mean SST anomalies could 710 

bias kqsat.  To explore this, we first estimated kqsat (with the sortav method) using TRMM 711 

precipitation, and each of the three SST datasets (HadISST, ERSST, COBE) that cover the 712 

whole TRMM operational period, giving three direct, unscaled estimates of kqsat (Extended 713 

data Table 2a).   714 

Second, error in the SST spatial pattern will cause a low bias in kqsat (regression dilution 715 

bias).  Typical magnitudes of this bias are estimated (see more detail in Methods section 716 

‘Estimating regression dilution bias’).  This is done by regressing pairs of SST datasets 717 

against each other, with regression coefficients calculated using the sortav method (as used 718 

for kqsat).  Extended data Table 2b shows the results for each pair of SST datasets.  The final 719 

column of Extended data Table 2b gives the 6 different estimates of regression dilution bias. 720 

Third, the TRMM operational period does not fully overlap the AMIP SST-forced model 721 

simulation period.  Thus, kqsat estimated for the TRMM period will be different from that 722 

obtained if TRMM were operational throughout the AMIP period (due to a different set of 723 

SST patterns during the TRMM and AMIP period).  Estimates of typical magnitudes of this 724 



error were obtained using samples from coupled ocean-atmosphere simulations (Extended 725 

data Figure 7), giving 85 samples of percentage error. 726 

10000 estimates of kqsat were then generated using Monte Carlo sampling.  For each estimate, 727 

one of the three direct estimates (Extended data Table 2a) was selected at random, ‘corrected’ 728 

by a random selection from the 85 samples of percentage error (Extended data Figure 7), and 729 

further corrected using a random selection from the 6 estimates of regression dilution bias 730 

(Extended data Table 2b).   731 

The lower bound of the 95% confidence interval of these 10000 estimates is then taken. We 732 

only use the lower bound for the following reason: it seems unlikely that the true regression 733 

dilution bias is weaker than the minimum value estimated here (around 10%, Extended data 734 

Table 2b).  This is because we do not expect the SST datasets to be significantly closer to the 735 

real SST than they are to each other.  However, it is plausible that the regression dilution bias 736 

could be larger than estimated, so we do not quote an upper bound for kqsat. 737 

The appropriate lower bound for an atmosphere-only AMIP model may be even higher than 738 

our quoted result, as the observed kqsat value may be reduced by the effect of atmospheric 739 

internal variability on SST19.  kqsat values from AMIP models are similar to or higher than 740 

from the equivalent coupled models.  In contrast, this coupling issue should be small for our 741 

central estimate of kqsat (next section), as that is based on metrics where ocean dynamics (for 742 

ENSO) or forcing associated with the mean state/seasonal cycle dominate the SST 743 

differences/gradients. 744 

Central estimate of kqsat in the real world 745 

We start by finding where, geographically, the models are most sensitive to kqsat.  This is 746 

done using correlation coefficients (r) between kqsat and the log of precipitation ratios 747 



(Extended data Figure 5) for each latitude (or longitude for ENSO) in each panel in Figure 748 

2.  This reveals six discrete intervals (shaded in Figure 2) where |r| > 0.6 (about 50% variance 749 

explained), and a seventh, showing weaker correlations, over the Indian Ocean.  For each 750 

model, we average the log of precipitation ratios over each interval, and take the difference 751 

from the equivalent value for TRMM. This gives seven error indices for each model (y-axes 752 

in Extended data Figure 6).  For each interval, the 28 model error indices are regressed 753 

against kqsat (x-axes in Extended data Figure 6), and kqsat is estimated from where the line of 754 

best fit crosses zero error.  This gives seven estimates of kqsat; their mean is our central 755 

estimate. 756 

We did not use the coupled ocean-atmosphere models to estimate kqsat, due to the evident 757 

residual biases from SST error in these models, and because it isn’t possible to use the ENSO 758 

response for coupled models, due to model differences in simulations of ENSO SST 759 

responses. 760 

Estimating regression dilution bias 761 

Regression dilution bias51 arises when there is random error in the independent variable (e.g. 762 

qsat in estimating kqsat). This causes the regression gradient to be biased low.  This bias 763 

reduces the gradient by a factor (β) that depends only on the characteristics of the 764 

independent variable. We estimate typical magnitudes of this bias using different 765 

observations of the independent variable (e.g. different SST datasets), as follows. 766 

Say the vector of true values of the independent variable is x, and we have two different 767 

observational estimates, x1 and x2.  We first regress x1 against x2.  This regression uses the 768 

same methodology as when regressing the dependent variable against x: i.e. for estimating 769 

dilution bias in observations of kqsat, the sortav method is applied; and for the satellite 770 

precipitation validation, the SST binning is used.  The regression gradient (f12) obtained from 771 



regressing x1 against x2, will be biased low by a factor β2 (from error in x2).  We then 772 

regress x2 against x1.  This regression gradient (f21) will be biased low by a factor β1 (from 773 

error in x1). 774 

We then estimate the dilution bias as: 775 

 β ≈  sqrt(β2 ∙ β1) = sqrt( f12 ∙ f21 ) 776 

 (with no dilution bias, f12 ∙ f21 = 1, by definition). 777 

This method assumes that the errors in x1 and x2 are independent. 778 

Column dry static energy budget (DSE) 779 

Dry static energy (DSE) is given by s = cpT + gz, where cp is the specific heat at constant 780 

pressure, T is the temperature, g is the gravitational acceleration, and z is altitude).  DSE is 781 

affected by advection, precipitation, radiation and sensible heat: 782 

− 〈𝜔 〉 − 〈𝑣. ∇𝑠〉 + 𝐿𝑃 + 𝑅 + 𝑄 = 0, 783 

where ω is the vertical pressure velocity, p is pressure, v is horizontal wind.  Angle brackets 784 

represent the mass-weighted vertical integral from 1000-100hPa.  The first term represents 785 

import of DSE via column-integrated vertical advection; the second is horizontal advection.  786 

P is the total surface precipitation and L the latent heat of condensation; R is net radiation 787 

into the atmospheric column; and Qturb is the surface sensible heat flux. 788 

 789 
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 794 

Data availability 795 

Datafiles with estimates of kqsat for models and observations, along with sample plotting 796 

code, are available from http://doi.org/10.5281/zenodo.3878691.  Data from the integration of 797 

CNRM-CM6 with the CM5 convection scheme (denoted CNRM-CM6-conv5) are available 798 

from https://doi.org/10.5281/zenodo.3875005. Model and observational data is available at the 799 

following websites.  CMIP5: https://cmip.llnl.gov/cmip5/; CMIP6: https://esgf-800 

node.llnl.gov/projects/cmip6/; GTMBA: https://www.pmel.noaa.gov/gtmba/; TRMM: 801 

https://pmm.nasa.gov/data-access/downloads/trmm; GPCP and COBE: 802 

https://www.esrl.noaa.gov/psd/;  HadISST: https://www.metoffice.gov.uk/hadobs/hadisst; ERSST: 803 

http://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v4/netcdf/ . 804 

Code Availability  805 

Python code for calculating kqsat, including the sortav regression routine, is available from 806 

http://doi.org/10.5281/zenodo.3878691.   807 
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Extended Data Figures 844 
 845 

 846 

Extended data Figure 1.  Effect of low spatial resolution in GPCP satellite observations of 847 

log(seasonal precipitation).  y-axis: regression gradient in validation against GTMBA 848 

raingauge data (i.e. gradients in Figure 1 for light blue and red symbols).  x-axis: horizontal 849 

grid dimension relative to TRMM (e.g. the TRMM resolution is 0.25°, ten times smaller than 850 

the GPCP resolution of 2.5°, so the red symbol is placed at x=10).  Dark blue symbols: 851 

results when TRMM data is regridded (by area averaging) to coarser grids.  The coarser grids 852 

are chosen so the grid box edges overlap edges of the native TRMM grid.  To give the errors 853 

context, the dash-dot line marks the ratio between the largest and smallest model values of 854 

kqsat (2.5).  Solid black line is a quadratic least-squares best fit line through the TRMM-based 855 

data.  The intercept of the TRMM best-fit curve at x=0 (i.e. infinitely fine grid) is very close 856 

to the value estimated on the TRMM native grid (light blue symbol), indicating that the 857 

TRMM grid is sufficiently fine for comparison with the rangauge data on seasonal 858 

timescales. 859 
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 862 

Extended data Figure 2.   Testing the method of estimating kqsat.   a-d: example results of the 863 

sortav method for TRMM precipitation and HadISST SST, for different seasons: mean 864 

vectors of anomalies in (y-axis) log(precipitation) and (x-axis) qsat; kqsat is given by the 865 

gradient of the blue best-fit regression line.  e, y-axis: kqsat calculated after excluding the 9 866 



years with the largest absolute value of the nino3.4 index; x-axis: default kqsat (one symbol 867 

per model);  kqsat is on average 6% lower when ENSO years excluded, due to a small 868 

sensitivity to the ENSO characteristic spatial pattern; but the model ranking is largely 869 

unchanged (r = 0.99).  f, kqsat calculated for individual seasons versus the annual mean value; 870 

g kqsat using only years 1995-1999 versus the full 25-year estimate; h, estimating variability 871 

(due to internal variability in SST patterns) in kqsat estimated from 25 years of data: for each 872 

coupled ocean-atmosphere model, kqsat is estimated both for the full historical run, and for all 873 

25-year chunks.  Panel shows the cumulative distribution function of absolute percentage 874 

differences between the 25-year estimates and the full estimates (95% of samples are within 875 

8% of the long-term value from the full historical run). This panel shows results for two 876 

methods of estimating kqsat: our ‘sortav’ method (as used throughout the manuscript), and 877 

standard OLS regression between seasonal anomalies in log(precipitation) and qsat.  i 878 

comparing 𝑘  with kqsat; each cross represents one CMIP5 model. j,k Cumulative 879 

distribution functions of j climatological mean precipitation and k log(precipitation).  From 880 

HadGEM2-A, May-July season (same picture seen in other seasons). 881 
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 884 

Extended data Figure 3.  Model biases for the high, mid-range and low-kqsat models 885 

separately.  As Figure 2, for a-f high-kqsat models; g-l mid-kqsat models; m-r low-kqsat models. 886 



 887 

Extended data Figure 4.   Testing potential errors in the satellite validation against GTMBA.   888 

a,b testing for regression dilution bias from error in TRMM observations: as Figure 1, but for 889 

a TRMM versus GPCP (both interpolated to GTMBA sites and masked as in Figure 1) and b 890 

GPCP versus TRMM.  c-f testing for effects of SST uncertainty on the binning: as Figure 1, 891 

but using c,d ERSST and e,f COBE SST datasets to bin the data. 892 
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 895 

Extended data Figure 5.  Regions where models are most sensitive to kqsat.  For each latitude 896 

of each region: y-axis shows Pearson correlation coefficients (r)  between the 28 different 897 

CMIP5 model values kqsat, and the 28 CMIP5 model values of the logarithm of the 898 

precipitation ratio for that latitude and region (i.e. the logarithm of the grey lines in Figure 2a-899 

f).  Green bands mark the latitude intervals chosen to estimate the observational constraints 900 

on kqsat (a-e: intervals chosen where |r|> 0.6; f, a band of most negative r is chosen).  901 

Coefficients close to zero near 8N in the Atlantic and East Pacific spatial patterns correspond 902 



to the latitude of the precipitation peak in most models (the model spread in the precipitation 903 

peak is scaled out; coefficients are not exactly zero as there is a small model spread in the 904 

latitude of the precipitation peak). 905 
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 908 

Extended data Figure 6.  Scatter plots underpinning the central observational estimate of kqsat.  909 

a-g Precipitation error index versus kqsat for each of the 7 latitude intervals highlighted in 910 

Figure 2.  Y-axes: logarithm of precipitation ratio, averaged over each latitude band, minus 911 

the equivalent value for TRMM observations, for (black) CMIP5 and (red) CMIP6 models.   912 

Dotted lines: linear least-squares fits (using CMIP5 data only).  Vertical black line: kqsat 913 

estimate for each latitude interval, from the intercept of the green line with zero error index 914 

(dotted line).  h Mean precipitation error index versus kqsat: mean error index is averaged over 915 



the 7 indices in the other panels (after the signs of the 5 indices with negative best-fit slopes 916 

were changed, to ensure a positive correlation with kqsat).   917 
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 920 

Extended data Figure 7.  Supporting results for observational estimate of the kqsat lower 921 

bound. Estimating error, from internal variability, due to the fact that the TRMM operational 922 

period only partly overlaps the time period simulated by the AMIP SST-forced models.  Error 923 

magnitudes are estimated from the coupled ocean-atmosphere simulations, using differences 924 

between kqsat estimated from all possible overlapping 17-year (TRMM-like) and 25-year 925 

(AMIP-like) periods (with the same overlap as TRMM and the 25-year SST-forced model 926 

simulations).  Results are given for two methods of estimating kqsat: our ‘sortav’ method (as 927 

used throughout the manuscript), and standard OLS regression between seasonal anomalies in 928 

log(precipitation) and qsat. 929 
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 932 

Extended Data Figure 8.  Atmospheric circulation measures in CMIP5 and CMIP6 models.  933 

a-c thick lines are CMIP5 composite means, for (magenta) high kqsat subset; (blue) low kqsat 934 

subset and (gold) intermediate kqsat.   Thin grey lines are individual models (CMIP5 and 935 

CMIP6).  Descent (5S-1N), mid (1-7N) and ascent (7-13N) regions are marked by vertical 936 

dotted lines in Figure 5c-e.  d-h: each symbol represents one CMIP5 (black) or CMIP6 (red) 937 

model.  Title gives Pearson correlation coefficient. d shallow descent versus kqsat; vertical line 938 

marks our best estimate of kqsat. e shallow ascent versus shallow descent. f shallow 939 

meridional return flow versus shallow descent. g shallow versus very-shallow meridional 940 

wind, over Galapgos: the negligible correlation indicates different physical processes at these 941 

two levels. h deep versus shallow ascent.  i standard deviation, across models, of the pressure 942 

velocity (wap) at each pressure level. 943 
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Extended Data Tables 945 
 946 

 947 

Descent region, column integrals High kqsat 
mean 

Mid kqsat 
mean 

Low kqsat 
mean 

High kqsat – 
Low kqsat 

Net radiation + sensible heat flux -129.4 -125.9 -127.5 -1.8 

Latent heating by precipitation 14.4 22.9 35.5 -21.1 

Vertical advection by mean vertical 
velocity, integrated over 100-1000 
hPa 

130.1 110.0 95.5 34.6 

Vertical advection by mean vertical 
velocity, integrated over 600-1000 
hPa 

74.5   57.4   48.1     26.4 

Residual advection -15.1 -7.0 -3.5 -11.6 

 948 

Extended Data Table 1.  Column-integrated dry static energy budget for the descent region, 949 

Aug-Oct, averaged over the high-, mid- and low-kqsat groups of CMIP5 models.  Vertical 950 

advection by mean vertical velocity is calculated using seasonal mean vertical velocity.  The 951 

final row, calculated as a residual from the first three columns, includes horizontal advection, 952 

and vertical advection by transient eddies. 953 
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 956 

a   SST dataset Unscaled kqsat estimate (no bias correction) 

HadISST 0.58 

ERSST 0.49 

COBE 0.51 

 
b   SST1 SST2 K1 (X = SST1) K2 (X = SST2) SQRT(K1*K2) 

AMIP HadISST 0.77 1.01 0.89 

AMIP COBE 0.85 1.00 0.92 

AMIP ERSST 0.76 0.97 0.86 

HadISST COBE 0.76 0.79 0.78 

HadISST ERSST 0.83 0.55 0.68 

COBE ERSST 0.92 0.54 0.70 

 957 

Extended data Table 2.  Supporting results for observational estimate of the kqsat lower bound 958 

(see Methods for details).  a Unscaled estimates for kqsat directly estimated using TRMM 959 

precipitation and three different SST datasets (the AMIP SST dataset was not used due to 960 

limited temporal overlap with the TRMM operational period).  These values are 961 

contaminated by regression dilution bias so do not represent central estimates.  b Estimating 962 

typical values of regression dilution bias from each pair of SST datasets.  K1 is the gradient 963 

from linear regression when regressing SST1 against SST2 (using the sortav regression 964 

method).  K2 is the value obtained when regressing SST2 against SST1.   965 
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