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Sensor Fusion for Magneto-Inductive Navigation
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Abstract—Magneto-inductive navigation is an inexpensive and
easily deployable solution to many of today’s navigation prob-
lems. By utilizing very low frequency magnetic fields, magneto-
inductive technology circumvents the problems with attenuation
and multipath that often plague competing modalities. Using
triaxial transmitter and receiver coils, it is possible to com-
pute position and orientation estimates in three dimensions.
However, in many situations, additional information is available
that constrains the set of possible solutions. For example, the
receiver may be known to be coplanar with the transmitter, or
orientation information may be available from inertial sensors.
We employ a maximum a posteriori estimator to fuse magneto-
inductive signals with such complementary information. Further,
we derive the Cramér-Rao bound for the position estimates and
investigate the problem of detecting distortions caused by ferrous
material. The performance of the estimator is compared to the
Cramér-Rao bound and a state-of-the-art estimator using both
simulations and real-world data. By fusing magneto-inductive
signals with accelerometer measurements, the median position
error is reduced almost by a factor of two.

I. INTRODUCTION

Indoor navigation technology based on very low frequency
(kHz) magneto-inductive (MI) fields has several attractive
characteristics. In particular, MI fields penetrate soil, concrete,
and rock with negligible attenuation, and are not subject to
multipath or shadow fading [1]–[3]. Moreover, the technology
is inexpensive, has low power consumption, and enables 3-D
position and orientation estimation using a single transmitter-
receiver pair [4]–[7]. Studied applications include structural
health monitoring [8], underground pipeline monitoring [9],
animal tracking [10], and emergency rescue [11]. The small
setup effort, combined with the favorable characteristics with
respect to attenuation and multipath, also makes magneto-
inductive navigation particularly suitable for firefighter posi-
tioning [12]. Recent studies within MI navigation have focused
on several overlapping categories of estimation and detection
problems. These include position and range estimation, orien-
tation estimation, detection and estimation of distortions, and
sensor fusion.
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Fig. 1. A magneto-inductive field is generated using a stationary transmitter.
Based on the transmitted signal, a mobile receiver can estimate its position r
and orientation ψ with respect to the transmitter.

A. Current Challenges within MI Navigation

As illustrated in Fig. 1, the position and orientation es-
timates are based on a modulated MI signal, sent from a
triaxial transmitter to a triaxial receiver. After demodulating
the signal [13], information on the navigation state can be
extracted based on the dipole field model. In [3], [14], [15], the
position and orientation estimates were computed using least
squares. In [16], the maximum likelihood estimates were found
by alternating between optimizing for position and orientation
(only the pitch and yaw angles were considered). In [4] and
[5], the channel matrix was estimated using least squares, and
the range was estimated based on the received signal strength
indicator (RSSI). After eliminating the orientation from the
dipole field model using algebraic manipulations, the model
was inverted to produce estimates of the position direction.
Finally, the orientation was estimated by using the estimated
position and channel matrix to invert the dipole field model.

The rapid path loss of the dipole field model is a double-
edged sword [17]–[21]. It enables highly accurate navigation
estimates at short distances, but also puts strict restrictions
on the practical navigation range. Another challenge imposed
by the dipole field model is the hemispherical ambiguity, i.e.,
that the sign of the position is not identifiable when using
measurements from one receiver-transmitter pair alone. This
ambiguity can be resolved by using multiple transmitters or by
considering additional information from e.g., maps or inertial
measurements [11].

The fact that the position and orientation may change whilst
receiving a transmission is an additional challenge. In [4], the
MI signal was rotated based on gyroscope measurements to
compensate for changes in the orientation during transmis-
sion. The same study proposed several tests for assessing
the reliability of position and orientation estimates. If the
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tests indicated that the estimates were unreliable (due to e.g.,
inadequate rotational compensation), the navigation system
reverted to estimating range alone based on the total received
power.

MI estimates may also be adversely affected by ferrous ma-
terials causing magnetic distortions in the environment. In [22]
and [23], image theory was used to model the magnetic field
above a floor with metallic reinforcement bars. Specifically,
the floor was modeled as a perfectly conducting half-space,
and the magnetic field model was obtained by placing an
image dipole underneath the floor (mirroring the position of
the transmitter).

Fusion of MI and inertial measurements have been studied
in several contexts. In [4], inertial sensors were used to not
only compensate for rotational changes during transmission,
but also to bridge gaps between MI updates and increase the
update rate of the navigation solution. Similarly, in [11], MI
and inertial measurements were fused by using a simultaneous
localization and mapping (SLAM) algorithm that exploited
local distortions in the magnetic field. Fusion of MI signals
from multiple transmitters has been studied in [5]. Although
the concept of MI navigation has been around for many
decades, no one has yet taken a hard look at the associated
general problem of low-level information fusion.

B. Related Navigation Technologies

There are several ways to utilize measurements of the am-
bient magnetic field for navigation purposes. If local magnetic
disturbances are negligible, a magnetometer triad can be used
to find the direction of the magnetic North [24]. In the presence
of stationary and non-uniform magnetic distortions, the mag-
netic field can instead be used for positioning or odometry.
Magnetic positioning requires a magnetic field map where
local anomalies are associated with a given set of positions
[25]. Although large spatial gradients enable a high positioning
accuracy, they also put higher demands on the resolution of the
map. Further, note that magnetic positioning is limited by the
fact that the fingerprint consists of at most three parameters.
In magnetic odometry, an array of magnetometers is used to
obtain a local approximation of the magnetic field [26]–[29].
By comparing the measurements at two sequential sampling
instances, it is possible to estimate the translational and
angular velocity. Thus, magnetic odometry does not require
a magnetic field map, and differs from magnetic positioning
both in terms of the required hardware and the produced
navigation estimates. However, the translational velocity can
only be estimated in the body frame, and therefore, knowledge
about the array orientation is needed to determine the velocity
in a fixed navigation frame. Comparing these technologies
with magneto-inductive navigation, we conclude that only the
latter can produce position and orientation estimates without
mapping the magnetic field. Further, by generating a magneto-
inductive field, it is possible to use the magnetic field for
localisation also in environments where the ambient magnetic
field is homogeneous and other magnetic localisation methods
would not work. Another way to compute position and orienta-
tion estimates from magnetic field measurements is by tracking

a permanent magnet [30]. However, this puts limitations on the
dipole moment, which, in turn, generally will lead to a reduced
estimation performance.

C. Contributions and Findings

In this paper, MI navigation is approached from a traditional
estimation perspective. In particular,
• We propose a maximum a posteriori (MAP) estimator

for the problem of fusing MI measurements and eventual
supplementary information to estimate position and ori-
entation. As opposed to previous estimators [4], [5], the
proposed estimator is derived based on a conventional
optimality criterion and simultaneously computes posi-
tion and orientation estimates in a one-stage procedure.
Moreover, the proposed estimator provides a general
framework for tight fusion (all available information is
fused before computing any navigation estimates) of
MI signals and additional information obtained from
e.g., previous MI estimates, motion models, maps, or
measurements from other sensors.

• We develop a method for detection of magnetic dis-
tortions and inadequate compensation for changes in
the navigation state during transmission. As opposed
to previous detectors [4], the proposed detector uses a
probabilistic model for the studied test statistic. This
enables straightforward computation of p-values.

• Assuming perfect knowledge of the orientation, we derive
closed-form Cramér-Rao bounds (CRBs) for the position
and range estimates.

Among our findings, we wish to highlight the following:
• Numerical comparison reveals that the position and orien-

tation estimator presented in [4] and [5] (and outlined in
Appendix A) is the MAP estimator with an uninformative
prior, i.e., the maximum likelihood (ML) estimator.

• The sum of the position Fisher information along all
spatial directions is independent of the direction of the
position vector and the orientation. However, given some
fixed range, the position Cramér-Rao bound is shown
to be lower in the spatial directions where the distance
between the transmitter and the receiver is large. In
practice, this means that when moving in an area where
the magnitude of the altitude is small in comparison to
the magnitude of the horizontal position (such as when
walking in a one-storey building), the position estimates
can be expected to be worse in the altitude direction
than in the horizontal plane. This aligns well with the
experimental results in this paper and in [4], where it was
stated that “in all indoor environments we have tested, the
dominant component of the positioning error is along the
z-axis”.

• Through simulations, it is established that prior informa-
tion on the orientation have the potential of reducing the
root-mean-square error (RMSE) of the position estimates
by more than a factor of two.

• In an experiment where magneto-inductive signals are
fused with measurements from low-cost accelerometers,
the median position error is reduced almost by a factor
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of two. Thus, this demonstrates that measurements from
inertial sensors can significantly improve the performance
of MI navigation, with negligible increases in cost and
setup complexity.

The data and the code used in the experiments are available
at https://www.cs.ox.ac.uk/people/johan.wahlstrom/.

II. ESTIMATION

This section describes the signal model and the MAP
estimator for one transmitter-receiver pair. In addition, we give
examples of position and orientation priors. The estimator is
derived under the assumption that satisfactory signal demod-
ulation has been performed and that the navigation state is
constant during the transmission of a frame (the method for
rotation stabilization presented in [4] is outlined in Appendix
A). The extension to the case with multiple transmitters is
straightforward.

A. Signal Model

The kth 3-D MI measurement obtained by the receiver in a
given transmission can be described as

yk = hmk
(x) + ek (1)

where the dipole field is

hm(x) ∆= c · R(ψ)

‖r‖3

(
3rrᵀ

‖r‖2
− I3

)
m. (2)

The navigation state x ∆= [rᵀ ψᵀ]ᵀ collects the position r and
orientation ψ (represented using Euler angles) of the receiver
with respect to the transmitter frame. Further, ek is zero-mean
Gaussian1 measurement noise with covariance P, c is a known
scale factor given by the properties of the receiver-transmitter
pair, R is the three-dimensional rotation matrix describing
rotations from the transmitter frame to the receiver frame, In is
the identity matrix of dimension n, mk is the known magnetic
moment transmitted at sampling instance k, and ‖ · ‖ is the
Euclidean norm. Refer to [4] for further details on the model.
Now, the problem at hand is to estimate the navigation state
x from the MI measurements y ∆= {yk}Nk=1.

B. Maximum-a-Posteriori Estimation

The MAP estimate of x is

x̂ = argmax
x

p(x|y)

= argmax
x

ln p(y|x) + ln p(x).
(3)

The posterior distribution p(x|y) includes information from
both the likelihood function p(y|x) and the prior p(x). The
likelihood function depends on the MI measurements (it is
a Gaussian distribution with a mean given by (2) and the
covariance P), while the prior p(x) can be based on eventual
side-information obtained from e.g., previous MI estimates,
motion models, maps, or measurements from other sensors.
Iterative estimation algorithms can be initialized by using

1The assumption of zero-mean Gaussian measurement noise has previously
been verified in [4].

the estimates produced by the estimation method outlined in
Appendix A.

C. The Uninformative Prior
With an uninformative prior p(x) ∝ 1, the MAP estimate

is equivalent to the ML estimate

x̂ = argmax
x

ln p(y|x)

= argmin
x

N∑
k=1

‖yk − hmk
(x)‖2P−1

(4)

where ‖u‖2A
∆= uᵀAu. This is a nonlinear least-squares

problem which can be solved by standard methods, such as the
Gauss-Newton algorithm, the Levenberg-Marquardt algorithm,
or trust-region methods [31]. The estimator presented in [4]
and [5] is equivalent to the ML estimator, and will therefore
not be presented as a separate estimator in the performance
evaluations.

D. Position Priors
Given the ubiquity of Gaussian distributions, we consider

a Gaussian position prior with mean µr and covariance Σr.
Assuming there is no prior orientation information, the MAP
estimate then becomes

x̂ = argmin
x

N∑
k=1

‖yk − hmk
(x)‖2P−1 (5)

+ ‖µr − gr(x)‖2Σ−1
r

where gr(x)
∆= r. Once again, the MAP estimate is found by

solving a nonlinear least-squares problem. More sophisticated
position priors may be obtained when using information from
e.g., WiFi fingerprinting or maps.

E. Orientation Priors
Orientation priors may also be based on Gaussian dis-

tributions. For example, consider a Gaussian prior on the
Euler angles2 with mean µψ and covariance Σψ . Defining
gψ(x)

∆= ψ and assuming an uninformative position prior
then gives the MAP estimate

x̂ = argmin
x

N∑
k=1

‖yk − hmk
(x)‖2P−1 (6)

+ ‖µψ − gψ(x)‖2Σ−1
ψ

which, yet again, defines a nonlinear least-squares problem.
Although there are many alternative orientation distribu-

tions, the Gaussian distribution considered above is practical
when the prior only provides information along some dimen-
sions of the orientation space. For example, at standstill3,

2The use of flat distributions (such as the Gaussian) to model the distribution
of circular parameters (such as the Euler angles) does typically not cause any
problems as long as the uncertainty is small in comparison to the range of
the parameter space [32].

3Another way of extracting orientation information from inertial sensors
is to use foot-mounted sensors. By using zero-velocity updates, foot-mounted
inertial sensors can provide highly accurate roll and pitch estimates also when
in motion [33].

https://www.cs.ox.ac.uk/people/johan.wahlstrom/
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accelerometers provide information on the roll and pitch
angles (but not the yaw angle) with respect to a tangent frame.
In addition, the considered prior enables straightforward com-
putations of the MAP estimate and the CRB. Refer to [34] for
a review of probabilistic orientation modeling.

III. FAULT DETECTION

Using standard probability theory, we have that

T (x) ∆=

N∑
k=1

‖yk − hmk
(x)‖2P−1 ∼ χ2

3N (7)

where χ2
κ denotes a chi-squared distribution with κ degrees of

freedom. Hence, a natural way to test the validity of the model
is to perform a chi-squared test with T (x̂) as the test statistic.
A rejection of the null hypothesis could be the result of
magnetic distortions or a deficient compensation for changes in
the navigation state during transmission. Note, however, that
the proposed chi-squared test cannot be used to detect any
given magnetic distortion. For example, consider distortions
that can be described as rotations of the measurements. Such
distortions will just rotate the orientation estimates, without
increasing the value of the test statistic.

IV. CRAMÉR-RAO BOUND

The CRB provides a lower bound on the mean square error
of an estimator. It is often used to characterize an estimation
problem in terms of its underlying parameters. Thus, by
studying the CRB, one may discover inherent limitations of
the problem at hand, or gain insight into how experiments can
be designed to increase estimation performance. Moreover,
the CRB can also be used to evaluate the performance of
estimators. If the mean-square error of an estimator is in the
vicinity of the bound, the estimator is typically considered to
be adequate.

For brevity and tractability, we will focus on the scenario
where we have perfect knowledge of the orientation. That
is, when we want to estimate the position r from the MI
measurements {yk}Nk=1 with the orientation ψ considered to
be known. Since we are merely adding information to the
original problem, this will still result in a lower bound for the
RMSE of the position estimates in the scenario with imperfect
knowledge of the orientation. CRBs for the case with multiple
transmitters can be computed by using the additive property
of the Fisher information.

A. Cramér-Rao Bound for Position Estimates

Consider the case when ψ is known, m1+3k = [m 0 0]ᵀ,
m2+3k = [0m 0]ᵀ, and m3+3k = [0 0m]ᵀ for all k, N is
equal to a multiple of 3, and P = σ2 · I3. The CRB for r̂ (not
considering prior information) then becomes

Var([r̂]i) ≥ I−1
ri (8)

where the Fisher information for [r]i is

Iri =
6Nc2m2

σ2‖r‖8

(
1 + 2

[r]2i
‖r‖2

)
. (9)

Here, [r]i is the ith element of the position vector. A derivation
of the Fisher information is provided in Appendix C.

The Fisher information in (9) is factorized as a product of
two factors. The first depends on the range ‖r‖, and the second
depends on the relative distance |[r]i|/‖r‖. Two noteworthy
observations can be made from this:
• Given some fixed direction of the position vector r, the

CRB increases with the 8th power of the range ‖r‖.
• The sum of the Fisher information along all three spatial

directions equals
3∑
i=1

Iri =
30Nc2m2

σ2‖r‖8
(10)

and is independent of the direction of the position vector.
According to (9), more Fisher information is allocated
to spatial directions where the position distance |[r]i| is
large. Given some fixed range ‖r‖, the Fisher information
for [r]i is maximized when |[r]i| = ‖r‖.

B. Cramér-Rao Bound for Range Estimates

Consider the same setting as in the previous subsection. As
shown in Appendix D, the CRB for ‖r̂‖ then is

Var(‖r̂‖) ≥ I−1
‖r‖ (11)

where
I‖r‖ =

18Nc2m2

σ2‖r‖8
. (12)

Comparing with (9), it can be seen that Iri ≤ I‖r‖. Thus,
the CRB for the range estimates is always equal to or smaller
than the CRB for the position estimates along any given spatial
direction.

V. SIMULATIONS

Next, simulations are used to evaluate the estimation and
detection algorithms proposed in Sections II and III, re-
spectively. Measurements were generated with r = [1 1 1]ᵀ,
ψ = [0 0 0]ᵀ, c = 1, m1+3k = [1 0 0]ᵀ, m2+3k = [0 1 0]ᵀ, and
m3+3k = [0 0 1]ᵀ for k = 0, . . . , 9, N = 30, and P = σ2 · I3

with σ = 0.1.

A. Position and Orientation Estimation

The MAP and ML estimators presented in Section II are
now compared to CRBs. For ease of illustration, the Cramér-
Rao inequality was reduced to the scalar form E[‖r̂− r‖2] ≥
Tr(Ir

−1), where Ir is the Fisher information matrix for r.
Hence, we compared the scalar RMSE

√
E[‖r̂− r‖2]/3 with√

Tr(Ir
−1)/3 (and likewise for the orientation estimates). The

hemispherical ambiguity was handled manually by switching
the sign of r̂ whenever this decreased the distance between r̂
and r.

Fig. 2 (a) shows the position RMSE of the ML and MAP
estimators as a function of σψ when using an orientation prior
with covariance Σψ = σ2

ψ I3. The mean of the orientation
prior was simulated from a Gaussian distribution with a mean
equal to the true orientation and the covariance Σψ . The RM-
SEs were computed from 104 such simulations. Further, Fig.
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Fig. 2. Accuracy of position and orientation estimates on simulated data.
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Fig. 3. Receiver operating characteristics on simulated data.

2 (b) presents the corresponding orientation RMSEs obtained
when using a position prior. As expected, the RMSE of the
MAP estimator draws closer to that of the ML estimator as the
amount of information in the prior diminishes. Moreover, the
RMSE of the MAP estimator approaches the CRB with perfect
prior information as the uncertainty of the prior decreases.
For both the position and orientation estimates, perfect prior
information on the orientation and position, respectively, gives
a RMSE that is less than half that of the ML estimator.

B. Detection of Distortions

In what follows, we benchmark two methods for fault
detection: the chi-squared test described in Section III and the
eigenvalue criterion presented in [4] and outlined in Appendix
B. The receiver operating characteristics (ROC) of the two
detectors are displayed in Fig. 3. Here, the false positive rate
was computed as the percentage of rejections of the null
hypothesis (i.e., that the dipole field model is correct and

Fig. 4. The transmitter (left) and receiver with an attached inertial measure-
ments unit (right).
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Fig. 5. Horizontal positions of receiver (relative to transmitter) in experiment.

that the measurement errors are zero-mean Gaussians with
covariance P) when performing 105 simulations based on
dipole field model (2). Similarly, the true positive rate was
computed as the percentage of null hypothesis rejections when
simulating measurements from the same model but with a
measurement error covariance of 2 · P (the added noise was
used to represent distortions). As can be seen from Fig. 3,
the chi-squared test consistently outperforms the eigenvalue
criterion.

VI. EXPERIMENTS

This section demonstrates the performance of the proposed
estimator and fault detector on experimental data. The setup
is illustrated in Fig. 4.

A. Position and Orientation Estimation

Data was collected outdoors from a receiver placed, in turn,
at the 80 different positions displayed in Fig. 5. Along the
vertical direction, the transmitter was placed 0.84 [m] above the
receiver. Both the receiver and the transmitter remained fixed
during all data collections, and the performance evaluation
used one packet (one set of MI measurements y ∆= {yk}Nk=1)
from each position. The roll and pitch angles were zero, while
the yaw angle took on eight discrete values depending on the
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Fig. 6. Accuracy of position and orientation estimates on experimental data.
The data was collected at the receiver positions shown in Fig. 5.

position of the receiver (the orientation of the receiver was
adjusted so that a specific axis on the receiver always pointed
towards the transmitter). The parameters c and σ were selected
to match the recorded experimental data and remained fixed
within each data set. Refer to [4], [5], and [13] for details on
the experimental setup and the communication layer.

Fig. 6 shows the results obtained with the same simulated
priors as in Fig. 2 but with experimental MI data and using
102 simulations. As can be seen, the accuracy of the position
estimates is clearly improved already with an orientation un-
certainty of 10 [◦], and the position error is about 0.15 [m] with
an orientation uncertainty of 1 [◦]. In real-world experiments,
the errors of the MI signals do not follow a perfect Gaussian
distribution, and hence, the MAP estimator may perform worse
than the ML estimator.

The position and orientation errors from an arbitrarily
chosen simulation are shown in Figs. 7 and 8, respectively.
Two observations can be made. First, in correspondence with
the analysis in Section IV, the ML position estimates are
better in the horizontal plane than in the vertical direction (the
RMSEs of the ML estimator were 0.16 [m] and 0.17 [m] in the
two horizontal directions and 0.86 [m] in the vertical direction).
As described in [23], this may also be a consequence of
distortions. Likewise, in similarity with the results presented
in [3] and [15], the ML orientation estimates are better for
the yaw angle than for the roll and pitch angles. Second,
the performance improvement resulting from using the prior
information is the greatest along those dimensions where the
ML estimator exhibits its worst performance, i.e., along the
vertical position dimension and for the roll and pitch angles.
The same tendency was observed in [23] when comparing
the ML estimator with an estimator that modeled distortions
caused by metallic reinforcement bars. Last, note that the
orientation errors are comparable to those presented in [3];
the ML estimator produced median absolute errors of 12.55 [◦]
and 2.58 [◦] for the pitch and yaw angles, respectively, whereas
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Fig. 7. Example of position errors when simulating an orientation prior with
an uncertainty of 5 [◦]. The data was collected at the receiver positions shown
in Fig. 5.

[3] reported median absolute errors of 8.68 [◦] and 4.08 [◦] for
the same angles.

B. Detection of Distortions

Next, the fault detection methods are evaluated on exper-
imental data. In addition to the outdoor data described in
the previous subsection, we made use of data collected in a
distorted indoor environment at the 60 positions illustrated in
Fig. 9. In total, we used 240 indoor packets (four packets per
position, collected at varying transmitter-receiver heights and
orientations) and one packet from each of the 80 outdoor po-
sitions. In similarity with [4], position estimation errors larger
than one meter were considered to be distorted. This corre-
sponded to 159 indoor estimates and 22 outdoor estimates. Fig.
10 displays the ROC curves obtained from experimental data.
In this case, the eigenvalue criterion performs better than the
χ2 test. One possible explanation for this is that the magnitude
of the measurement errors scale with the magnitude of the
signal (something which is not captured by the measurement
model (1)). To investigate this, we modified the chi-squared
test by normalizing the sum of squared residuals T (x). In this
way, we compensate for variations in T (x) that are associated
with variations in the magnitude of the signal. Specifically, the
detection was made based on the test statistic

T �(x)
∆
= T (x)/

∑N
k=1 ‖yk‖2. (13)
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Fig. 9. Horizontal positions of receiver (relative to transmitter) in experiment.

As illustrated in Fig. 10, the performance of this detector is
better than the chi-squared test and essentially equivalent to
that of the eigenvalue criterion. This supports the notion that
the failure of the chi-squared test on experimental data derives
from limitations of the measurement model (1).

C. Fusion with Accelerometer Data

MI and accelerometer data was collected outdoors at the
60 positions illustrated in Fig. 9. The performance evaluation
used one packet from each position. Point estimates of the
receiver’s roll and pitch angles were obtained in the following
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Fig. 10. Receiver operating characteristics on experimental data.
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Fig. 11. Empirical cumulative distribution functions of three-dimensional
position errors produced by the ML estimator, using only MI data, and the
MAP estimator, fusing MI and accelerometer data.

way. The accelerometer measurements collected during the
MI transmission were first averaged along each axis. Roll
and pitch estimates were then computed from these averages
based on standard formulas for accelerometer-based orienta-
tion estimation [24]. These estimates were then incorporated
into the MAP estimator as Gaussian priors with a standard
deviation of 0.1 [◦]. The estimator did not make use of any
prior information on the yaw angle.

Fig. 11 contrasts the performance of the ML estimator,
using only MI data, and the MAP estimator, fusing MI and
accelerometer data, by displaying the empirical cumulative
distribution functions (ECDFs) of the magnitude of the three-
dimensional position errors. The accelerometer measurements
employed by the MAP estimator can be seen to enable a
substantial performance enhancement, and reduce the median
error almost by a factor of two.

VII. SUMMARY

This paper has examined magneto-inductive navigation from
an estimation theoretical viewpoint. Specifically, we developed
a MAP estimator for fusing MI signals with complemen-
tary information such as inertial measurements or motion
constraints. Moreover, we proposed a chi-squared test for
the detection of magnetic distortions and other measurement
disturbances. Experimental results illustrated that the proposed
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MAP estimator can, by using prior information from example
inertial sensors, yield a substantial performance improvement
in comparison to a state-of-the-art ML estimator. Although
the proposed detector demonstrated excellent performance on
simulated data, distortion detection on field data remains a
big challenge. This motivates further research into the map-
ping of magneto-inductive distortions using e.g., simultaneous
localization and mapping algorithms.

APPENDIX A

This appendix outlines the method for 3-D MI position and
orientation estimation presented in [4] and [5].

A. Rotation Stabilization

Generally, the navigation state changes during transmission.
Hence, the measurement equation (1) can be modified as

yk = hmk
(xk) + ek (14)

where xk denotes the navigation state at sampling instance k.
Changes in the orientation ψ can be estimated using gyroscope
measurements. This gives us the orientations {φk}Nk=2, where
φk represents the change in orientation between sampling
instances k and k − 1. The estimated change in orientation
is used with the intention of eliminating the time-dependence
from the dipole model. Hence, we define

zk
∆
= R(φk)

ᵀyk. (15)

Assuming that the estimates {φk}Nk=2 are perfect and that the
position r remains constant during the transmission, we have

zk = hmk
(x1) + wk (16)

for k = 1, . . . , N , where wk
∆= R(φk)

ᵀek. Thus, in this
case, the time-dependence is eliminated from the measurement
function and we have obtained a measurement equation of the
same form as in (1). Changes in the position r during trans-
mission could potentially be compensated for by incorporating
accelerometers. However, as far as the authors know, this has
not been demonstrated in any published work.

B. Channel Matrix Estimation

The ML estimate Ŝ of the channel matrix S is computed
based on linear least-squares. The channel matrix is defined
as S ∆= [hm1

(x) hm2
(x) hm3

(x)] where m1 = [1 0 0]ᵀ,
m2 = [0 1 0]ᵀ, and m3 = [0 0 1]ᵀ. However, note that the
constraints on S imposed by the dipole model are not enforced
when computing Ŝ.

C. Position Estimation

The ML estimate of the range ‖r‖ is first computed as

‖r̂‖ = r010
(ρ0−ρ)/60 (17)

where the received signal strength indicator (RSSI) is ρ ∆=
20 log10 ‖Ŝ‖F, ‖‖F denotes the Frobenius norm, and ρ0 is the

RSSI measured at some reference distance r0
4. Further, the

position estimate is computed as

r̂ = ‖r̂‖umax (18)

where umax is the eigenvector associated with the maximal
eigenvalue of the Gramian matrix ŜᵀŜ. Refer to [4] for
motivating details.

D. Orientation Estimation
The orientation is estimated as

R(ψ̂) =
pf(UŜᵀ)

sign(det(pf(UŜᵀ)))
(19)

where U ∆= 3umaxu
ᵀ
max − I3 and pf(·) denotes the orthogonal

polar factor [35]. Refer to [5] for motivating details.

APPENDIX B

Since
SᵀS =

c2

‖r‖6

(
3rrᵀ

‖r‖2
+ I3

)
, (20)

the eigenvalues of SᵀS are c2/‖r‖6 ·[4 1 1]ᵀ. Further, after nor-
malizing the eigenvalues by dividing them with their average
value 2c2/‖r‖6, we obtain

λ ∆= [2 1/2 1/2]ᵀ. (21)

Thus, the presence of magnetic distortions may be detected by
thresholding the eigenvalue criterion [4]

J(λ) = ‖λ̂− λ‖. (22)

Here, λ̂ is the eigenvalue vector of ŜᵀŜ, with the elements
sorted in descending order and divided by their average value.

APPENDIX C

This appendix derives the Fisher information in (9). The
CRB for x̂ is5

Cov(x̂) � I−1
x (23)

where we have used A � B to denote that A−B is positive
semidefinite and where the Fisher information matrix is6 [38]

Ix =

N∑
k=1

(∂xhmk
(x))ᵀP−1∂xhmk

(x). (24)

Here, ∂xhmk
(x) is the Jacobian of hmk

(x) with respect to
x. The Fisher information Ix can easily be computed based
on the dipole field model. However, for our analytical results,
we will focus on the position CRB under the assumptions
specified in Section IV.

Consider the case when the orientation ψ is known. The
CRB for the position estimates can then be written as

Cov(r̂) � I−1
r (25)

4ρ0 could also be computed directly from the model if c is known.
5Generally, the use of CRBs (which apply to flat Euclidean spaces) to

analyze the errors of Euler angles (which are circular parameters) is sensible
when the bounds on the orientation angles are less than 10 [◦] [32].

6The information matrix associated with the corresponding Bayesian CRB
is Idata + Iprior where Idata is the expectation of Ix with respect to the
prior and Iprior is the information provided by the prior [36], [37].
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where the Fisher information matrix is

Ir =

N∑
k=1

(∂rhmk
(x))ᵀP−1∂rhmk

(x). (26)

Here, it holds that [39]

∂rhm(x) = c ·R(ψ)
3

‖r‖5
(
(r ·m) · I3 (27)

+ rmᵀ + mrᵀ − 5
(r ·m)

(r · r) rrᵀ
)
.

Further, using that R(ψ)ᵀR(ψ) = I3 and P = σ2 · I9,
straightforward but tedious calculations give that the FIM is

Ir =

N∑
k=1

g(r,mk) (28)

where

g(r,m) ∆=
9Nc2

σ2‖r‖10

(
(r ·m)2 · I3 + (r · r)mmᵀ

− 2(r ·m)(rmᵀ + mrᵀ) (29)

+
(
5
(r ·m)2

(r · r) + (m ·m)
)
rrᵀ
)
.

Now, assuming that N is equal to a multiple of 3 while
m1+3k = [m 0 0]ᵀ, m2+3k = [0m 0]ᵀ, and m3+3k =
[0 0m]ᵀ for all k, the (i, i)th element of Ir is

Iri =
6Nc2m2

σ2‖r‖8

(
1 + 2

[r]2i
‖r‖2

)
(30)

which completes the derivation of (9).

APPENDIX D

This appendix derives the Fisher information in (12). The
CRB for the range estimates is

Var(‖r̂‖) ≥ I−1
‖r‖ (31)

where the Fisher information matrix is [38]

I‖r‖ =
N∑
k=1

(∂‖r‖hmk
(x))ᵀP−1∂‖r‖hmk

(x). (32)

Further, noting that the term rrᵀ/‖r‖2 is range-independent,
we have that

∂‖r‖hm(x) ∆= −3c · R(ψ)

‖r‖4

(
3rrᵀ

‖r‖2
− I3

)
m. (33)

Now, we assume that N is equal to a multiple of 3 while
m1+3k = [m 0 0]ᵀ, m2+3k = [0m 0]ᵀ, and m3+3k =
[0 0m]ᵀ for all k, and use that R(ψ)ᵀR(ψ) = I3 and
P = σ2 · I9. Straightforward calculations then give that

I‖r‖ =
3Nc2m2

σ2‖r‖8
3∑
i=1

(
1 + 3

[r]2i
‖r‖2

)
=

18Nc2m2

σ2‖r‖8

(34)

which completes the derivation of (12).
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Syst., Zürich, Switzerland, 2010, pp. 281–294.

[11] B. Wei, N. Trigoni, and A. Markham, “iMag: Accurate and rapidly
deployable inertial magneto-inductive localisation,” in Proc. IEEE Int.
Conf. Robot. Autom., Brisbane, Australia, May 2018, pp. 99–106.

[12] A. F. G. Ferreira, D. M. A. Fernandes, A. P. Catarino, and J. L. Monteiro,
“Localization and positioning systems for emergency responders: A
survey,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2836–2870,
2017.

[13] A. Markham and N. Trigoni, “Magneto-inductive networked rescue
system (MINERS): Taking sensor networks underground,” in Proc. Int.
Conf. Inf. Process. Sensor Netw., Beijing, China, 2012, pp. 317–328.

[14] D. D. Arumugam, J. D. Griffin, D. D. Stancil, and D. S. Ricketts, “Error
reduction in magnetoquasistatic positioning using orthogonal emitter
measurements,” IEEE Antennas Wireless Propag. Lett, vol. 11, pp. 1462–
1465, 2012.

[15] D. D. Arumugam, J. D. Griffin, D. D. Stancil, and D. S. Ricketts, “Three-
dimensional position and orientation measurements using magneto-
quasistatic fields and complex image theory [measurements corner],”
IEEE Antennas Propag. Mag, vol. 56, no. 1, pp. 160–173, Feb. 2014.

[16] G. Dumphart, E. Slottke, and A. Wittneben, “Robust near-field 3D
localization of an unaligned single-coil agent using unobtrusive anchors,”
in Proc. IEEE Annu. Int. Symp. Personal, Indoor, and Mobile Radio
Commun., Montreal, QC, Oct. 2017.

[17] Z. Sun and I. F. Akyildiz, “Magnetic induction communications for
wireless underground sensor networks,” IEEE Trans. Antennas Propag.,
vol. 58, no. 7, pp. 2426–2435, Jul. 2010.

[18] V. Pasku, A. De Angelis, G. De Angelis, D. D. Arumugam, M. Dionigi,
P. Carbone, A. Moschitta, and D. S. Ricketts, “Magnetic field-based
positioning systems,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp.
2003–2017, Mar. 2017.

[19] V. Pasku, A. De Angelis, G. De Angelis, A. Moschitta, and P. Carbone,
“Magnetic field analysis for 3-D positioning applications,” IEEE Trans.
Instrum. Meas., vol. 66, no. 5, pp. 935–943, May 2017.

[20] H. Huang and Y. R. Zheng, “3-D localization of wireless sensor
nodes using near-field magnetic-induction communications,” Physical
Commun., vol. 30, pp. 97–106, Oct. 2018.

[21] M. Hehn, E. Sippel, C. Carlowitz, and M. Vossiek, “High-accuracy
localization and calibration for 5-DoF indoor magnetic positioning



10

systems,” IEEE Trans. Instrum. Meas., vol. 68, no. 10, pp. 4135–4145,
Oct. 2019.

[22] O. Kypris, T. E. Abrudan, and A. Markham, “Reducing magneto-
inductive positioning errors in a metal-rich indoor environment,” in IEEE
Sensors, Nov. 2015.

[23] O. Kypris, T. E. Abrudan, and A. Markham, “Magnetic induction-based
positioning in distorted environments,” IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 8, pp. 4605–4612, Aug. 2016.

[24] P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated
Navigation Systems. Artech House, 2008.

[25] M. Kok and A. Solin, “Scalable magnetic field SLAM in 3D using Gaus-
sian process maps,” in Proc. IEEE Int. Conf. Inf. Fusion, Cambridge,
UK, Jul. 2018, pp. 1353–1360.

[26] C. Chesneau, M. Hillion, and C. Prieur, “Motion estimation of a rigid
body with an EKF using magneto-inertial measurements,” in Proc. IEEE
Int. Conf. Indoor Positioning and Indoor Navigation, Alcala de Henares,
Spain, Oct. 2016.

[27] D. Caruso, A. Eudes, M. Sanfourche, D. Vissière, and G. le Besnerais,
“An inverse square root filter for robust indoor/outdoor magneto-visual-
inertial odometry,” in Proc. IEEE Int. Conf. Indoor Positioning and
Indoor Navigation, Sapporo, Japan, Sep. 2017.

[28] D. Caruso, A. Eudes, M. Sanfourche, D. Vissière, and G. Le Besnerais,
“A robust indoor/outdoor navigation filter fusing data from vision and
magneto-inertial measurement unit,” Sensors, vol. 17, no. 12, Dec. 2017.

[29] D. Caruso, “Improving visual-inertial navigation using stationary en-
vironmental magnetic disturbances,” Ph.D. dissertation, University of
Paris-Saclay, 2018.

[30] I. Skog, J. Jaldén, J. Nilsson, and F. Gustafsson, “Position and orientation
estimation of a permanent magnet using a small-scale sensor array,” in
Proc. IEEE Int. Conf. Instrum.Meas. Technol., Houston, TX, May 2018.

[31] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006.
[32] D. R. Gerwe and P. S. Idell, “Cramér-Rao analysis of orientation

estimation: viewing geometry influences on the information conveyed
by target features.” J. Opt. Soc. Am. A. Opt. Image Sci. Vis., vol. 20,
no. 5, pp. 797–816, May 2003.

[33] J. Wahlström, I. Skog, F. Gustafsson, A. Markham, and N. Trigoni,
“Zero-Velocity Detection – A Bayesian Approach to Adaptive Thresh-
olding,” IEEE Sensors Letters, vol. 3, no. 6, Jun. 2019.

[34] M. Kok, J. D. Hol, and T. B. Schön, “Using inertial sensors for position
and orientation estimation.” Foundations and Trends on Signal Process.,
vol. 11, no. 1-2, pp. 1–153, Nov 2017.

[35] N. J. Higham, Applications of Matrix Theory, 1989, ch. Matrix nearness
problems and applications, pp. 1–27.

[36] H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part I.
Wiley, 1968.
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