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Abstract – The consequences of the Cretaceous-Paleogene (K-Pg) boundary (KPB) 

mass extinction for the evolution of plant diversity remain poorly understood, even 

though evolutionary turnover of plant lineages at the KPB is central to understanding 

assembly of the Cenozoic biota. The apparent concentration of whole genome 

duplication (WGD) events around the KPB may have played a role in survival and 

subsequent diversification of plant lineages. To gain new insights into the origins of 

Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse 

legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant 

across many vegetation types, and the fossil record suggests that they rose to such 

prominence after the KPB in parallel with several well-studied animal clades including 

Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have 

occurred early in legume evolution. Using a recently inferred phylogenomic framework, 

we investigate the placement of WGDs during early legume evolution using gene tree 

reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. 

Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 

36 nuclear genes selected as informative and evolving in an approximately clock-like 

fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. 

Results suggest either a pan-legume WGD event on the stem lineage of the family, or 

an allopolyploid event involving (some of) the earliest lineages within the crown group, 

with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. 

Gene tree reconciliation methods that do not account for allopolyploidy may be 
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misleading in inferring an earlier WGD event at the time of divergence of the two 

parental lineages of the polyploid, suggesting that the allopolyploid scenario is more 

likely. We show that the crown age of the legumes dates to the Maastrichtian or early 

Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close 

to the KPB. We conclude that the early evolution of the legumes followed a complex 

history, in which multiple auto- and/or allopolyploidy events coincided with rapid 

diversification and in association with the mass extinction event at the KPB, ultimately 

underpinning the evolutionary success of the Leguminosae in the Cenozoic.

Keywords: Cretaceous-Paleogene (K-Pg) boundary, Leguminosae, Fabaceae, Whole 

Genome Duplication events, paleopolyploidy, allopolyploidy, phylogenomics

The Cretaceous-Paleogene boundary (KPB) at 66 Ma, is defined by the mass 

extinction event that resulted in major turnover in the earth's biota, including the 

extinction of non-avian dinosaurs (Lyson et al., 2019). The KPB event determined in 

significant part the composition of the modern biota, because many lineages that were 

successful in the wake of the mass extinction event remained abundant and diverse 

throughout the Cenozoic until the present. Well-known examples of successful post-

KPB lineages are the mammals and birds, both inconspicuous elements of the 

Cretaceous fauna, while their core clades Placentalia and Neoaves became some of 

the most prominent and diverse groups of vertebrate fauna across the Cenozoic 
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(Phillips, 2015; Claramunt & Cracraft, 2015). Plants were also severely affected by the 

KPB (McElwain and Punyasena, 2007), with a clear shift in floristic composition evident 

from major turnover of dominant species and loss of diversity indicated by a 57 - 78% 

drop in macrofossil species richness across boundary-spanning fossil sites in North 

America (Wilf and Johnson, 2004) and disappearance of 15 - 30% of pollen and spore 

species in palynological assemblages in North America and New Zealand (Vajda and 

Bercovici, 2014). In addition, consecutive global spikes in spores of fungi and ferns in 

the palynological record (Vajda et al., 2001; Barreda et al., 2012) are consistent with 

sudden KPB ecosystem collapse and a recovery period characterized by low diversity 

vegetation dominated by ferns. Although the KPB is not considered a major extinction 

event for plants, with no plant families apparently lost (McElwain and Punyasena, 2007; 

Cascales-Miñana and Cleal, 2014), a sudden increase in net diversification rate in the 

Paleocene has been inferred from paleobotanical data (Silvestro et al., 2015), 

suggesting increased origination following the KPB.

Macro-evolutionary dynamics of plant clades across the KPB have received less 

attention than prominent vertebrate clades, even though plants are the main primary 

producers and structural components of terrestrial ecosystems. Therefore, the 

diversification of the Cenozoic biota cannot be fully understood without understanding 

the effect of the KPB on evolutionary turnover of plant diversity. A potentially important 

aspect of plant evolution during this period is the apparent concentration of whole 

genome duplication (WGD) events around the KPB (Fawcett et al., 2009; Vanneste et 
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al., 2014; Lohaus and Van de Peer, 2016; but see Cai et al., 2019). This is explained by 

the idea that polyploid lineages had enhanced survival and establishment across the 

KPB (Lohaus and Van de Peer, 2016) and greater potential to rapidly diversify 

thereafter compared to diploids (Levin and Soltis, 2018). Recent work is revealing the 

prevalence and significance of WGDs in shaping the evolution of the flowering plants 

(Wendel, 2015; Soltis et al., 2016; Yang et al., 2018; Cai et al., 2019; Conover et al., 

2019). Determining the phylogenetic placements and timing of WGDs is a central issue 

in plant evolution, but remains challenging, with often conflicting lines of evidence, such 

that many WGDs and their phylogenetic positions remain putative and poorly 

understood (e.g. Conover et al., 2019).

We examine the role of the KPB in shaping Cenozoic plant diversity by 

investigating the origin and early evolution of the legume family, including the placement 

and timing of WGDs. The legume family (Leguminosae or Fabaceae), perhaps more 

than any other plant clade, appears to parallel the example of Placentalia and Neoaves. 

No clearly identifiable legume fossils pre-date the KPB (Herendeen and Dilcher, 1992) – 

the oldest unequivocal legume fossil is 65.35 Ma (Lyson et al., 2019) – but the family 

was already abundant and diverse in the earliest modern type rainforests in the late 

Paleocene (Wing et al., 2009; Herrera et al., 2019). The oldest fossils clearly referable 

to (stem groups of) subfamilies are from close to the Paleocene-Eocene Thermal 

Maximum (PETM) – morphotype # CJ76 of c. 58 Ma (Wing et al., 2009) can be referred 

to Caesalpinioideae and Barnebyanthus buchananensis of c. 56 Ma to Papilionoideae 
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(Crepet and Herendeen, 1992) – and legumes are ubiquitous in Eocene, Oligocene and 

Neogene floras (Herendeen and Dilcher, 1992). Legumes range from gigantic rainforest 

canopy trees and lianas, to shrubs, herbs, geoxyles and (semi-)aquatics, arguably 

presenting the most spectacular evolutionary and ecological radiation of any 

angiosperm family (McKey, 1994). Legumes occur nearly everywhere except for 

Antarctica and exert considerable ecological dominance globally, especially in tropical 

rainforests, savannas and dry forests of the Americas, Africa and Australia as well as 

forming one of the most prominent components of the global (temperate) herbaceous 

flora. The characteristic “pod” or “legume” fruit provides a unique diagnostic 

synapomorphy for the clade, which contains many important crop species cultivated for 

their seeds and fruits (e.g. beans, (chick)peas, lentils, peanuts), and legumes are also 

well-known for their ability to fix atmospheric nitrogen via symbiosis with bacteria in root 

nodules which is shared by the majority of legume species. The six main lineages of 

legumes, recently recognized as subfamilies (LPWG, 2017), apparently diverged nearly 

simultaneously (Koenen et al., 2020), mirroring Placentalia (Teeling and Hedges, 2013) 

and Neoaves (Suh et al., 2015; Suh, 2016).

The apparent rapid diversification of the legumes soon after the KPB, and the 

occurrence of multiple WGDs during their early evolution (Cannon et al., 2015; Stai et 

al., 2019), make the family an excellent model to investigate the association of WGDs 

with the KPB. However, there is uncertainty about how many WGDs were involved in 

the early evolution of legumes and their phylogenetic placements. Several taxa in 
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subfamily Papilionoideae have been shown to share a WGD (Mudge et al., 2005; 

Cannon et al., 2006), that was subsequently shown to subtend the subfamily as a whole 

and is not shared with other subfamilies, in which three additional and independent 

WGDs were hypothesized (Cannon et al., 2015). More recently, WGDs were 

hypothesized to have occurred independently early in the evolution of each subfamily 

(except Duparquetioideae, for which there are no genomic or cytological data) based in 

part on haploid chromosome numbers, with the WGD in Cercidoideae excluding the 

genus Cercis, the sister group to the rest of that subfamily (Stai et al., 2019). While Stai 

et al. (2019) presented convincing evidence that Cercis lacks a polyploid history, their 

assertion that the genus retained ancestral genomic features including a haploid 

chromosome number of n = 7, was partly based on its phylogenetic position (as an 

“early-diverging” lineage), and lacked any explicit reconstruction of chromosomal 

evolution (Mayrose et al., 2009). However, the phylogenetic positions of Cercis and 

Cercidoideae alone cannot establish that these taxa retained ancestral traits (Crisp & 

Cook, 2005), while recent analyses of genome-scale nuclear gene data placed 

Cercidoideae as the sister-group of Detarioideae (Koenen et al., 2020), not as sister to 

the rest of the legumes as suggested by Stai et al (2019). Furthermore, haploid 

chromosome numbers of 6-8 are also found in subfamilies Detarioideae, 

Caesalpinioideae and commonly in Papilionoideae, even though paleopolyploidy in 

Detarioideae and Papilionoideae is well established (Cannon et al., 2015; Ren et al., 

2019). Moreover, rather than the five independent WGDs proposed by Stai et al. (2019), 
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alternative explanations of a single WGD shared across all legumes, or, given the likely 

non-polyploidy of Cercis, one or more WGDs shared across multiple subfamilies, would 

be more parsimonious. These alternative hypotheses remain to be tested using a 

representative set of gene trees with adequate taxon sampling.

Uncertainty also surrounds the age of the legume family. While legumes are not 

known with certainty from any Cretaceous fossil site, the family has a long stem lineage 

dating to c. 80 – 100 Ma (Wang et al., 2009; Magallón et al., 2015), which means that 

the timing of the initial radiation of the family and legume WGDs relative to the KPB are 

uncertain. In Placentalia and Neoaves, divergence time estimates also remain 

contentious; some molecular divergence time estimates suggest that these clades 

originated and diversified well before the KPB, implying that many lineages of both 

clades survived the end-Cretaceous event (Cooper and Penny, 1997; Jetz et al., 2012; 

Meredith et al., 2011). However, like legumes, both groups first appear in the Paleocene 

fossil record. A phylogenetic study of mammals combining molecular sequence data 

and morphological characters for extant and fossil taxa, found only a single placental 

ancestor crossing the KPB (O’Leary et al., 2013; but see Springer et al., 2013; dos Reis 

et al., 2014). Others have argued that diversification of Placentalia followed a “soft 

explosive” model, with a few lineages crossing the KPB followed by rapid ordinal level 

Paleocene radiation (Phillips, 2015; Phillips and Fruciano, 2018). Recent time-calibrated 

phylogenies for birds showed the age of Neoaves to also be close to the KPB (Jarvis et 

al., 2014; Claramunt and Cracraft, 2015; Prum et al., 2015), with rapid post-KPB 
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divergence represented by a hard polytomy (Suh, 2016). For legumes, it is similarly 

unlikely that the modern subfamilies have Cretaceous crown ages. These clades, 

especially Papilionoideae, Caesalpinioideae and Detarioideae, appear to have rapidly 

diversified following their origins, which would imply mass survival of many legume 

lineages across the KPB. Furthermore, diversification of the six legume subfamilies 

appears to have occurred rapidly (Lavin et al., 2005), indeed nearly simultaneously 

(Koenen et al., 2020), with long stem branches subtending each subfamily. Therefore, 

two hypotheses seem plausible: (1) legumes have a Cretaceous crown age and 

subfamily stem lineages diverged prior to the KPB, while subfamily crown radiations 

occurred (shortly) after the KPB, corresponding to a “soft explosive” model, or (2) a 

single legume ancestor crossed the KPB and rapidly diversified into six lineages in the 

wake of the mass extinction event, corresponding to a “hard explosive” model, with the 

subfamily radiations associated with the PETM and/or Eocene climatic optimum. 

Current molecular crown age estimates for legumes range from c. 59 to 64 Ma (Lavin et 

al., 2005; Bruneau et al., 2008; Simon et al., 2009). These studies, however, lacked 

extensive sampling of outgroup taxa relying instead on fixing the legume stem age, 

thereby compromising the ability to estimate the crown age. Furthermore, these studies 

used chloroplast sequences, whose evolutionary rates are known to vary strongly 

across legumes (Lavin et al., 2005; Koenen et al., 2020). Nuclear gene data are likely 

better suited for estimating divergence times (Christin et al., 2014).
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In this study, we evaluate the number of WGDs during early legume evolution 

and assess whether any of them are shared across multiple subfamilies. We use gene 

tree reconciliation methods to identify the most likely placement of WGDs among the 

earliest divergences within the legumes (i.e. those before the diversification of the 

subfamily crown groups; hereafter referred to as the “backbone”) and test their 

placement with a probabilistic method using gene count data. We also evaluate the 

possibility of allopolyploidy involving one or more lineages with phylogenetic 

supernetwork reconstruction and gene tree reconciliation with multi-labelled (MUL) 

trees. In addition, we evaluate whether the origin of legumes and WGDs are closely 

associated with the KPB by inferring a new legume chronogram based on 36 

informative and relatively clock-like nuclear genes and 20 fossil calibration points, and 

by assessing the timing of duplication nodes in gene trees. 

MATERIAL & METHODS

Gene Tree Inference

We used sets of homolog clusters generated prior to extracting orthologs for 

species tree inference using the Yang and Smith (2014) pipeline, derived from genomes 

and transcriptomes of representatives of five of the six legume subfamilies and an 

extensive eudicot outgroup (Table S1) assembled by Koenen et al. (2020). We do not 
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include the monospecific subfamily Duparquetioideae for which large-scale nuclear 

genomic data are presently unavailable. These homolog clusters include multiple 

sequences per taxon representing paralogs for non-terminal gene duplications; 

duplications restricted to a terminal taxon are not included. Amino acid sequences of 

these clusters were aligned with MAFFT v. 7.187 (Katoh and Standley, 2013) using the 

G-INSi algorithm. To avoid having multiple fragments of paralog copies present, which 

could inflate the number of gene duplications, sites with >5% missing data were 

removed with BMGE (Criscuolo and Gribaldo, 2010) after which all sequences with 

more than 75% gaps were removed. These data removal steps also eliminated clusters 

with significant missing data. Tree estimation was repeated on these clusters, using 

RAxML v. 8.2 (Stamatakis, 2014) with the WAG + G model and 100 rapid bootstrap 

replicates.

Mapping of Gene Duplications

 From the homolog trees, we extracted rooted clades as input gene trees for 

gene duplication mapping analysis with Phyparts (Smith et al., 2015). This method 

counts for each node the number of gene trees in which at least two descendent taxa 

are represented by at least two paralogous sequences. Aquilegia and Papaver were 

used as the outgroup to root and extract the paralog clades. Phyparts was run with and 

without a 50% bootstrap cut-off.
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In addition, we performed gene tree reconciliation with a model of gene 

duplication and loss (horizontal transfers not considered) using Notung v 2.9 (Stolzer et 

al., 2012) on the rosid portion of the species tree. Because Notung accounts for 

incomplete lineage sorting (ILS) when using non-binary trees (i.e. trees with 

polytomies), we introduced six polytomies for poorly supported, short internodes in the 

species tree (at the base of Fabales and within Caesalpinioideae and Papilionoideae). 

Additionally, an analysis was run with two additional polytomies within the legume 

backbone, since ILS likely occurred among the first divergences in the family (Koenen 

et al., 2020). All other internodes within the legume family are considered to be well-

supported (Koenen et al., 2020), suggesting that ILS will have less impact on these. 

Input gene trees were extracted from homolog clusters as for the Phyparts analysis, but 

with all non-rosid taxa as the outgroup, such that the older Pentapetalae 

hexaploidization is not included. First, we used the --rearrange option in Notung with an 

80% bootstrap threshold to rearrange poorly supported branches in gene trees 

according to relationships found in the species tree. This has the drawback that in the 

case of missing data or duplicate gene loss, some genuine gene duplications with lower 

support are reconciled to a more inclusive clade. However, without this rearrangement 

step, many more gene duplications are inferred across all nodes, presumably in part 

caused by gene tree estimation errors. Next, we ran the reconciliation analysis in --

phylogenomics mode and analysed the number of inferred duplications on each node, 

setting the cost of duplications at 1.5 (the default), and gene losses at 0.1 to avoid a 
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strong influence of missing data from transcriptomes on reconciliation scores. We 

explored other settings but the results did not change significantly.

Testing Placements of WGDs using Gene Count Data

We used the WGDgc package in R (Rabier et al., 2014) to test the placements of 

WGDs hypothesized by Phyparts and Notung. This probabilistic method models 

background gene duplication and loss rates using a birth and death process, while 

adding WGDs on specific branches of the species tree. Birth-death and duplicate gene 

retention rates for WGDs are estimated with maximum likelihood and the overall 

likelihood is compared across different configurations of WGDs on the species tree. We 

extracted gene count data from the rosid gene trees used in the Notung analysis, after 

removing several transcriptome accessions with relatively high levels of missing data. 

Furthermore, to use the “oneInBothClades” conditional likelihood option, Eucalyptus 

grandis and Punica granatum were removed to ensure there are two large clades at the 

root, the nitrogen-fixing clade of angiosperms (consisting of Cucurbitales, Rosales, 

Fagales and Fabales) and a clade consisting of the remaining sampled rosid orders. 

Accordingly, count data were filtered to remove all gene families that did not have at 

least one copy in both main clades at the root. Additionally, we removed all gene 

families that did not have at least one copy in each of the five sampled legume 

subfamilies to reduce possible negative impacts of missing data on the inferences. 
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Analyses were run with different models with two, three or four WGDs within legumes. 

The WGD shared by Salix purpurea and Populus trichocarpa is additionally modelled in 

all analyses. Likelihood ratio tests (LRTs) were used to compare the most likely (nested) 

models with different numbers of WGDs. P values for the LRTs at different confidence 

levels are given in Rabier et al. (2014).

Gene Tree Reconciliation with Allopolyploidy

To visualize potential reticulation we redrew the filtered supernetwork (Whitfield 

et al., 2008) of Koenen et al. (2020) with the Convex Hull method in SplitsTree4 (Huson 

and Bryant, 2005). Potential branches in the species tree that could be involved in 

allopolyploidy were identified for analysis with GRAMPA (Gregg et al., 2017). Because 

GRAMPA cannot infer multiple WGDs, we generated a filtered gene tree set excluding 

duplications associated with previously identified independent WGDs in Detarioideae 

and Papilionoideae so that these do not influence the reconciliation scores. To do this, 

we used the gene trees generated for the WGDgc analysis and reduced Cercidoideae, 

Detarioideae and Papilionoideae to single accessions (Bauhinia tomentosa, Anthonotha 

fragrans and Medicago truncatula, respectively), collapsing all duplications that are 

particular to these subfamilies. An independent autopolyploidy event is not well 

established for Caesalpinioideae even though this subfamily showed a polyploid signal 

in Ks plots (Cannon et al., 2015). Therefore, we retained the transcriptomes of Albizia 
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julibrissin, Entada abyssinica, Inga spectabilis and Microlobius foetidus since they were 

well-represented in gene trees. In this way we test whether polyploidy in 

Caesalpinioideae is likely derived from independent autopolyploidy or allopolyploidy, or 

instead from an earlier WGD shared with other subfamilies. For this analysis, gene trees 

with <50% average bootstrap support were excluded.

Divergence Time Analyses

The 20 fossils used to calibrate molecular clock analyses on the species tree are 

listed in Table 1 and discussed in detail in Supplementary Appendix S1.

Using SortaDate (Smith et al., 2018), we analysed the 1,103 gene trees from 

Koenen et al. (2020) to estimate total tree length (a proxy for sequence variation or 

informativeness), root-to-tip variance (a proxy for clock-likeness) and compatibility of 

bipartitions with the ML tree inferred using the full data set (the RAxML tree inferred with 

the LG4X model). We selected the best genes for dating based on arbitrary cut-off 

values: (1) total tree length greater than 5, (2) root-to-tip variance less than 0.005, and 

(3) at least 10% of bipartitions compatible with the ML tree. This yielded 36 genes, 

which were concatenated with an aligned length of 14,462 amino acid sites. We also 

used the ‘pxlstr’ program of the Phyx package (Brown et al., 2017) to calculate taxon-

specific root-to-tip lengths from the ML tree, after pruning Ranunculales, on which the 

tree was rooted. These values were used to define local clocks. Arabidopsis thaliana, 

http://mc.manuscriptcentral.com/systbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/doi/10.1093/sysbio/syaa041/5850071 by guest on 22 July 2020



KOENEN ET AL.

16

Linum usitatissimum and Polygala lutea were removed because of much higher root-to-

tip lengths relative to their closest relatives. Panax ginseng was also removed because 

of a low root-to-tip length relative to other sampled asterids, leaving a total of 72 taxa.

We used BEAST v.1.8.4 (Drummond et al., 2012) with various clock models to 

estimate divergence times based on the alignment of the selected 36 genes and the 20 

fossil calibrations (Supplementary Appendix S1). Analyses were run with the LG + G 

model of amino acid substitution using a birth-death tree prior, and the ML tree to fix the 

topology. Fossil calibrations were set as uniform priors between minimum ages 

specified in Table 1 and a maximum age of 126 Ma (oldest fossil evidence of eudicots) 

as listed in Table S2, with the exception of the root node, for which we used a normal 

prior at 126 Ma with a standard deviation of 1.0, truncated to minimum and maximum 

ages of 113 Ma (the Aptian-Albian boundary) and 136 Ma (the oldest crown angiosperm 

fossil, see Magallón et al. (2015)). We ran analyses under the uncorrelated lognormal 

(UCLN), strict (STRC), random (RLC) and 3 different fixed local clock (FLC) models 

(Supplementary Appendix S1).

Analyses sampling from the prior (without data) were run for 100 million 

generations, the strict clock, FLC3 and FLC6 analyses were run for 25 million 

generations and all other clock analyses for 50 million generations, confirming 

convergence with Tracer v1.7.1 (Rambaut et al., 2018). For the non-prior analyses, the 

first 10% of the total number of generations was discarded as burn-in before 
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summarizing median branch lengths and substitution rates with TreeAnnotator from the 

BEAST package.

To infer ages of gene duplication nodes, we made four new subsets of gene 

trees for time-scaling. The first includes all gene trees for which duplications were 

mapped on the collapsed legume backbone by Notung, but including only well-sampled 

taxa (see Table S1), and all other rosids as outgroup taxa. The other three sets were 

obtained by taking sequences of all non-legume taxa in the nitrogen-fixing clade of 

angiosperms as outgroup alongside sequences of selected, well-sampled accessions 

for each of the subfamilies Caesalpinioideae, Detarioideae and Papilionoideae, creating 

separate sets of gene trees for each of these subfamilies. We chose these three 

subfamilies because they are well-sampled and their paleopolyploidy is well 

established. In this way we could assess if the WGD events in different subfamilies 

occurred at different times or whether they are coincident as expected for shared 

WGDs, although this in itself does not constitute evidence for shared events. For 

Detarioideae all four sampled transcriptomes were included, for Caesalpinioideae we 

included only those of Entada abyssinica, Microlobius foetidus, Albizia julibrissin and 

Inga spectabilis, and for Papilionoideae the genomes of Medicago truncatula, Glycine 

max, Phaseolus vulgaris and Arachis ipaensis were included. For each set, sequences 

were realigned and new gene trees were inferred with RAxML, using the 

PROTGAMMAAUTO model. The resulting trees were rooted with Notung with respect 

to the species tree relationships. For the family-wide trees we further tested whether all 
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legume sequences formed a clade to make sure no gene duplications pre-dating the 

divergence of legumes (e.g. from the Pentapetalae gamma event) were included. For 

each subfamily gene tree set we ran a phyparts analysis and all gene trees with 

duplications mapping to the crown node of the subfamily were selected. All gene trees 

in the family-wide and subfamily-specific sets were individually time-scaled using 

penalized likelihood (Sanderson, 2002) in the R package ape (function ‘chronos’) 

(Paradis et al., 2004; Paradis, 2013). Based on simulations, it was shown that although 

the correlated clock model estimates more accurate substitution rates, the strict clock 

estimates more accurate branch lengths (Paradis, 2013). Since our purpose is to 

estimate ages, not rates, we used the strict clock in these analyses, and set the 

smoothing parameter to 1 as done by Paradis (2013). The root age was set at 110 Ma 

for the family-wide gene tree set and to 105 Ma for the subfamily-specific gene tree sets 

based on crown age estimates for rosids and the nitrogen-fixing clade of angiosperms 

from time-scaling analyses on the species tree (Figs. S6-S13). After time-calibration, 

ages of duplication nodes were extracted and histograms and density plots of these 

were made in R.

RESULTS

The removal of sites with >5% missing data and fragmentary sequences from the 9,282 

homolog clusters generated by Koenen et al. (2020), led to the removal of 640 clusters 
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with large amounts of missing data. From trees inferred from the remaining 8,642 

homologs, we extracted different sets of rooted gene trees for analysis: (1) 8,038 trees 

for the Phyparts analyses that include all sampled taxa except Ranunculales which 

were used for rooting, (2) 8,324 trees including only rosid taxa for the Notung and 

WGDgc analyses and (3) 4,371 pruned trees with only taxa from the nitrogen-fixing 

clade of angiosperms, including four Caesalpinioideae species and one species from 

each remaining subfamily, and average BS > 50%, for the GRAMPA analysis. Exemplar 

gene trees are included in Figure S1, showing evidence of several gene duplications 

within legumes. These also show that due to differential gene loss, the patterns in 

individual gene trees are not always clear and general patterns can only be inferred 

from analysing large numbers of gene trees. Because of the way these homolog sets 

were assembled, duplications restricted to terminal lineages are not included, therefore 

testing for WGDs postulated by Stai et al. (2019) specific to Dialioideae and within 

Cercidoideae (excluding Cercis), is not possible with this data set. For time-calibrating 

the species tree, 36 informative and relatively clock-like genes were selected from the 

1,103 orthologs of Koenen et al. (2020). To estimate the timing of gene duplication 

nodes, we analysed 863 gene trees extracted from the Notung analysis including taxa 

from multiple subfamilies and 246, 250 and 272 trees including only Caesalpinioideae, 

Detarioideae and Papilionoideae, respectively. Table S1 gives an overview of 

accessions included per analysis, and numbers of trees and sequences included per 
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taxon. Alignments, gene trees and gene count data are included in Supplementary Data 

S1-S7.

Inferring Phylogenetic Locations of WGDs

In the Phyparts analysis, we find significantly elevated numbers of gene 

duplications at several nodes where WGDs were previously hypothesized to have 

occurred, including the Salix/Populus clade (Tuskan et al., 2006) and one consistent 

with the known gamma hexaploidization subtending Pentapetalae (Jiao et al., 2012) 

(Figs. 1a and S2). For Pentapetalae, many homologs show more than one gene 

duplication at that node, with nearly twice as many duplications (1,901) as the number 

of homologs with duplications (1,105), as expected for two consecutive rounds of WGD. 

Some of these duplications may also stem from older events, since missing data and/or 

gene loss for the three non-Pentapetalae taxa in our dataset could mean that we do not 

find duplicates of older WGDs in these taxa. Within legumes, high numbers of gene 

duplications at particular nodes suggest that there were three early WGD events, one 

located on the stem lineage of the family and one each on the stem lineage of 

subfamilies Papilionoideae and Detarioideae (Figs. 1a and S2). When applying a 

bootstrap filter to the homolog trees (≥50% support), numbers of duplications are 

considerably lower, but the pattern is the same (Figs. 1a and S2). At the root of the 

family, the number of gene duplications drops from 1,646 to 99 when applying this 
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bootstrap filter, in line with the difficulty of resolving the deepest dichotomies of the 

legume phylogeny (Koenen et al., 2019). Notably, for the legume crown node we also 

find evidence for a significant fraction of homologs showing more than one gene 

duplication, with 1,646 duplications from only 1,229 homologs mapping to that node. 

This could suggest multiple rounds of WGD (e.g. Figs. S1E and F), although some of 

these can be attributed to duplications in both paralog copies of genes duplicated at the 

Pentapetalae gamma event, and for many others support values across gene trees are 

low. For other hypothesized WGDs, numbers of homologs with more than one 

duplication are much lower, suggesting they involved a single round of polyploidization.

Using gene tree reconciliation with Notung, we found similar results (Figs. 1b, S3 

and S4), although here the Pentapetalae node was not included. However, numbers of 

duplications particular to Detarioideae are higher than in the Phyparts analysis. The 

opposite is true for Papilionoideae, where Notung finds higher numbers of gene 

duplications on the node uniting Caesalpinioideae and Papilionoideae, and on several 

nodes within Papilionoideae relative to the Phyparts results. 

The likely phylogenetic locations of WGDs based on mapping of gene 

duplications were further tested with WGDgc (Rabier et al., 2014), using gene count 

data harvested from the rosid gene tree set. The best scoring model with two WGDs 

has one WGD specific to Detarioideae and one shared by Papilionoideae and 

Caesalpinioideae (Fig. 2a). This model received a higher likelihood than a model with 

two WGDs specific to Detarioideae and Papilionoideae (Fig. 2d), or other models with 
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two WGDs. When adding a third Papilionoideae-specific WGD, the LRT score of 25.76 

suggests that this three-WGD model is significantly better at the α = 0.001 confidence 

level (P value > 9.550, see Rabier et al., 2014) (Fig. 2b). Other models with three WGDs 

received lower likelihood scores (Fig. 2e). The second best scoring three-WGD model is 

that with independent WGDs in Caesalpinioideae, Detarioideae and Papilionoideae 

corresponding to the results of Cannon et al. (2015) and Stai et al. (2019). Adding a 

fourth WGD on the legume crown node (Fig. 2c) further improves the likelihood, but the 

LRT score of 7.94 is only significant at a lower confidence level of α = 0.01 (P value > 

5.412, see Rabier et al., 2014). Alternative placement of a fourth WGD within legumes 

(Fig. 2f) has a lower likelihood than placing it on the legume crown node and received 

an LRT score of 1.16 which is not significant even at α = 0.05 (P value > 2.706, see 

Rabier et al., 2014).

Distinguishing Between Auto- and Allopolyploidy Along the Legume Backbone

An allopolyploid event along the legume backbone could provide an alternative 

explanation for the high numbers of gene duplications mapping to the legume crown 

node. Only one or a few subfamilies need to be derived from such an event for duplicate 

gene copies to map to the legume crown node if the parental lineages of the polyploid 

diverged at the base of the family. Under this scenario no pan-legume WGD would be 

inferred and the subfamilies could each be subtended by independent WGDs and be 
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ancestrally non-polyploid as suggested by Cannon et al. (2015) and Stai et al. (2019). 

Alternatively, a WGD could be shared across two or more subfamilies. In the filtered 

supernetwork, complex tangles of ‘boxed’ relationships coincide with the putative 

placements of WGDs inferred with Phyparts, Notung and WGDgc: at the bases of 

Papilionoideae, Detarioideae and the family as a whole (Fig. 3). This suggests that at 

least three WGDs occurred early in the evolution of the legumes, one of which occurred 

along the backbone before or among the first divergences in the family. For most 

subfamilies, however, there is little reticulation involving the root edges, except in 

Caesalpinioideae, suggesting that (at least) this subfamily could have resulted from an 

allopolyploid event.

GRAMPA identified eight multi-labelled (MUL) trees representing allopolyploid 

events (Fig. 4a-f), that had lower (better) reconciliation scores than the singly labelled 

species tree (Fig. 4g). MUL trees with just autopolyploidy (Figs. 4h and i) received 

higher (worse) scores. The two best scoring MUL trees (Fig. 4a) included an 

allopolyploid event involving Cercidoideae or Detarioideae as the second parental 

lineage for the clade combining the other three sampled subfamilies. The same second 

parental lineages are implied in the fourth and fifth best-scoring trees, for the 

Caesalpinioideae + Papilionoideae clade (Fig. 4c). Given that strong gene tree conflict 

was observed among the orthologs analysed by Koenen et al. (2020), these MUL trees 

may receive better scores due to incomplete lineage sorting (ILS) and/or gene tree 

estimation errors. The only low scoring MUL tree with an independent allopolyploid 
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event restricted to Caesalpinioideae (Fig. 4f) scored only slightly better than the singly 

labelled tree (Fig. 4g). The remaining low scoring MUL trees involve a shared 

allopolyploidy event for Caesalpinioideae and Papilionoideae (Figs. 4b and e) or one in 

which it is shared with Dialioideae (Fig. 4d). The lowest scoring of these involves an 

allopolyploid event subtending Caesalpinioideae + Papilionoideae with the second 

parental lineage stemming from a divergence that occurred before the first legume 

dichotomy in the species tree (Fig. 4b), in line with the high number of duplications 

mapped onto the legume crown node in the Phyparts and Notung analyses (Fig. 1). An 

allopolyploid event shared by Caesalpinioideae and Papilionoideae is also in line with 

the high likelihood of a WGD on the node uniting these subfamilies obtained with 

WGDgc (Fig. 2).

Divergence Time Estimation

The oldest definitive fossil evidence of crown group legumes is from the Late 

Paleocene, consisting of bipinnate leaves from c. 58 Ma (Wing et al., 2009; Herrera et 

al., 2019) and papilionoid-like flowers from c. 56 Ma (Crepet and Herendeen, 1992), 

representing Caesalpinioideae and Papilionoideae respectively. The older fossil woods 

with vestured pits, from the Early Paleocene of Patagonia (Brea et al., 2008) and the 

Middle Paleocene of Mali (Crawley, 1988), could represent stem relatives of the family 

(vestured pits are found in Papilionoideae, Caesalpinioideae and Detarioideae, so this is 
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likely an ancestral legume trait). Similarly, early Paleocene (65.35 Ma) fossil fruits and 

leaflets from Colorado (described after our analyses were complete; Lyson et al., 2019) 

also represent ancestral legume characters and cannot be placed to subfamily. 

Therefore, based on fossil evidence, c. 58 Ma can be considered the minimum age of 

the legume crown node. Molecular age estimates (95% HPD intervals) for the crown 

node range from 65.47-86.45 Ma and 73.46-81.18 Ma under the UCLN and RLC 

models, respectively, to minima and maxima between 64.63 and 68.85 Ma under 

various FLC models (Table S3), the latter suggesting a close association of initial 

legume diversification with the KPB (Fig. 5). Time-scaled trees for all clock analyses, 

annotated with 95% HPD intervals, are in Supplementary Figures S6-S13; 95% HPD 

intervals for selected nodes are listed in Table S3.

Placement of Eocene fossils of Detarioideae and Cercidoideae within the crown 

groups of those clades (Bruneau et al., 2008; Simon et al., 2009; Estrella et al., 2017), 

yields older crown age estimates for these clades. However, with these calibrations 

(alternative prior 1, Table S2), a >10-fold higher substitution rate along the stem 

lineages of these two subfamilies relative to the rates within both crown clades is 

inferred (c. 8.82 × 10-3 vs 0.69 × 10-3 substitutions site-1 myr-1, with identical rates 

estimated independently for Cercidoideae and Detarioideae; Fig. S14a). This rate is 

also nearly five times higher than the mean rate across the tree as a whole (1.54 × 10-3 

substitutions site-1 myr-1), while the crown clades of these two subfamilies have 

estimated rates about half those of the mean. Analyses with the same clock partitioning 
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but calibrated with Late Eocene Cercis fossils and Mexican amber (Hymenaea) as the 

oldest crown group evidence for Cercidoideae and Detarioideae, respectively, do not 

infer such strong substitution rate shifts, with all clock partitions estimated to have 

substitution rates ranging from 0.96 × 10-3 to 2.53 × 10-3 substitutions site-1 myr-1 (Fig. 

S14b). Either way, different placements of these fossils have little effect on the crown 

age estimates for the family in the FLC analyses (Figs. S11 and S12, Table S3, Fig. 

S15h-j).

Age estimates for duplication nodes show that (at least) Caesalpinioideae and 

Papilionoideae are derived from one or more WGDs that occurred close to the KPB 

(Figs. 5c and S16). The WGD specific to Detarioideae appears to be more recent, in the 

Eocene (Figs. 5c and S16). The duplication nodes corresponding to the legume 

backbone inferred from the Notung analysis are likely a mixture of Detarioideae WGD 

duplications and older legume WGDs. This is surprising since it implies that 

Detarioideae paralogs do not always form sister clades in the gene trees, which could 

be caused by gene tree estimation errors or an allopolyploid origin for that subfamily. 

The large spread of ages for the duplication nodes (Fig. 5c) may be attributed to 

substitution rate variation across genes, which, in the absence of fossil calibrations, is 

unaccounted for. However, we note that in the case of allopolyploidy, the estimated 

ages of duplication nodes reflect the divergence time of the two parental lineages rather 

than the allopolyploid event itself, thereby overestimating the age of polyploidy.
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DISCUSSION

In this study we investigate possible links between WGDs, lack of phylogenetic 

resolution surrounding the earliest rapid successive divergences within the 

Leguminosae (Koenen et al., 2020) and the mass extinction event at the KPB. The key 

findings are that many gene duplications are reconciled on the crown node of the 

legumes (Fig. 1) suggesting a WGD event shared by all subfamilies, while gene count 

data support shared paleopolyploidy of Caesalpinioideae and Papilionoideae (Fig. 2). 

These contrasting results can be reconciled by the inference of an allopolyploidization 

event shared by two or more subfamilies (Figs. 3 and 4). Furthermore, we show that this 

event and a further independent WGD restricted to Papilionoideae, as well as the rapid 

initial diversification of the family, probably coincided with the major biotic turnover 

associated with the mass extinction event at the KPB (Fig. 5). In combination, this 

series of events has resulted in considerable phylogenomic complexity which likely 

contributes to the difficulty of resolving deep-branching relationships among the legume 

subfamilies (Koenen et al., 2020). These insights, from one of the most evolutionarily 

successful post-KPB plant clades, suggest that the KPB was a pivotal moment for the 

origins of Cenozoic flowering plant diversity.

Paleopolyploidy in the Leguminosae
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Our analyses provide evidence for at least three WGD events early in the 

evolution of legumes, one before or among the first divergences in the family, plus 

independent WGDs subtending subfamilies Detarioideae and Papilionoideae. Our 

results suggest two hypotheses for the oldest WGD event: (1) it is placed on the stem 

lineage, representing a pan-legume WGD or (2) it involved allopolyploidy between two 

lineages derived from the first divergence within the family. The first hypothesis is 

supported by results from the Phyparts and Notung analyses (Fig 1), while the WGDgc 

analysis only rejects a pan-legume WGD with the highest confidence interval in the LRT 

(Fig. 2). The second hypothesis is supported by the GRAMPA analysis (Fig. 4). Under 

the second hypothesis, duplicated genes would be reconciled onto the crown node of 

the family when using methods not accounting for allopolyploidy (Fig. 1). While this 

makes a pan-legume WGD less likely, all results show at least one WGD among the 

first divergences of the family (Figs. 1-4) shared across more than one subfamily, rather 

than restricted to a single subfamily. We show that it is unlikely that an independent 

WGD occurred in Caesalpinioideae (Figs. 1 and 2), including the case of allopolyploidy 

(Fig. 4). Most evidence instead suggests that Caesalpinioideae and Papilionoideae, 

perhaps together with Dialioideae, share a WGD (Figs. 1b, 2 a-c, 4a-e), and that this 

was likely an allopolyploid event (Fig. 4a-e). This implies that subfamily Papilionoideae 

as a whole underwent two successive rounds of WGD, which is overwhelmingly 

supported by the gene count method (Fig. 2b), with even some modest support for three 

rounds of WGD (Fig. 2c), but with lower confidence.
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It is possible that missing data due to inclusion of transcriptome data, rather than 

fully sampled genomes, influenced our analyses. In particular, for Dialioideae, where 

only a single transcriptome is sampled, it remains uncertain whether Dialioideae shares 

a WGD with Caesalpinioideae and Papilionoideae, or not. The gene count method is 

likely to be particularly sensitive to missing data, as it does not take gene tree topology 

into account, thereby potentially erroneously favouring a WGD shared by the better-

sampled Caesalpinioideae and Papilionoideae rather than a pan-legume WGD (Fig. 2a 

and b). Missing data could also affect identification of which parental lineages were 

involved in an ancient allopolyploid event and which subfamilies are derived from it. 

However, given that GRAMPA takes gene tree topology into account, the inference that 

allopolyploidy is more likely than autopolyploidy is likely robust, and moreover, none of 

the other results reject allopolyploidy. 

Apart from including more fully sequenced genomes, denser taxon sampling is 

also necessary to resolve the number and placement of WGDs with higher precision, 

accuracy and confidence. In particular, it will be desirable to include Poeppigia and 

Baudouinia or Eligmocarpus to span the first two divergences of Dialioideae 

(Zimmerman et al., 2017) and determine if a putative Dialioideae WGD was shared by 

all members of that subfamily, as well as Duparquetia orchidacea, the sole member of 

Duparquetioideae, for which nuclear genomic and cytogenetic data are lacking, its 

phylogenetic placement is based solely on chloroplast data (Koenen et al., 2020) and 

any potential history of polyploidy remains unknown.
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Our results contrast with those of Cannon et al. (2015) and Stai et al. (2019) who 

suggested that all WGDs are restricted to individual subfamilies. The hypothesis of a 

pan-legume WGD contrasts most strongly with their hypothesis of four or five 

independent WGDs each confined to a single subfamily. An allopolyploid event shared 

across two or three subfamilies that excludes at least Cercidoideae and Detarioideae is 

more in line with the idea that Cercis has not undergone a WGD since the origin of the 

legumes (Stai et al., 2019). However, none of our results support a separate WGD 

restricted to Caesalpinioideae (which is well-sampled in our data sets) as inferred by 

Cannon et al. (2015), as well as in the analysis of WGDs across Viridiplantae by the 

One Thousand Plant Transcriptomes Initiative (2019). While the former study relied on 

Ks plots for inference of this particular WGD, the latter also used a MAPS analysis of 

gene trees (Li et al., 2015). However, these analyses were performed for a total of 244 

putative WGDs across the green plant phylogeny, using a standardized approach and 

including only six to eight taxa in each MAPS analysis (three ingroup and three 

outgroup taxa for the analysis of the putative Caesalpinioideae WGD) and without the 

sort of extensive gene tree filtering we performed here. Re-analysis of the One 

Thousand Plant Transcriptomes (2019) gene trees with Notung and Phyparts suggests 

that their data also do not support a Caesalpinioideae-specific WGD (Supplementary 

Appendix S2).

Estimating the Timeline of Legume Evolution
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Our analyses suggest that the legume crown age dates back to the Maastrichtian 

or Early Paleocene, potentially within one or two million years before or after the KPB 

(Figs. 5, S6-S13, Table S3), although such high precision is unwarranted due to the 

idiosyncrasies of the molecular clock. These results update those of Lavin et al. (2005), 

Bruneau et al. (2008) and Simon et al. (2009), and provide the first age estimates for 

legumes based on nuclear genomic data. The FLC analyses (i.e. assuming 3, 6 or 8 

different clade-specific substitution rates) even suggest that potentially only a single 

legume ancestor crossed the KPB giving rise to the six subfamilies during the early 

Paleocene, conforming to a “hard explosive” model. However, across the different 

analyses, part of the posterior density of crown age estimates spans the late 

Maastrichtian (Fig. 5), suggesting a “soft explosive” model, with the six subfamily 

lineages diverging in the Late Cretaceous, crossing the KPB, and giving rise to the 

modern subfamily crown groups in the Cenozoic. These different explosive models have 

been used to describe the origin and early diversification of placental mammals 

(Phillips, 2015: Fig. 1). For birds, the timing of diversification relative to the KPB has 

also been controversial (Ksepka and Phillips, 2015), but it now appears likely that 

Neoaves underwent explosive radiation from a single ancestor that crossed the KPB 

(Suh, 2016). Apart from legumes, Placentalia and Neoaves, also frogs (Feng et al., 

2017), fishes (Alfaro et al., 2018), multiple lineages in Menispermaceae (Wang et al., 

2012) and lichen-forming fungi (Huang et al., 2019) apparently all diversified rapidly 
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following the KPB, suggesting this is a common pattern across organismal groups. We 

present here, to our knowledge, the first example of a major plant clade whose origin 

and initial diversification appears to be closely linked to the KPB (although we note that 

e.g. Rubiaceae (Antonelli et al., 2009) and Meliaceae (Koenen et al., 2015) have crown 

age estimates close to the KPB, but this does not appear to correlate with rapid initial 

diversification). Thus, even if extinction was less severe for plants than for animals at 

the KPB, the Paleocene was nevertheless a time of major origination of lineages across 

biota, and other examples of KPB-related accelerated plant diversification from larger 

angiosperm timetrees can be expected.

The FLC and strict clock models produce similar age estimates, but the RLC and 

UCLN models, which relax the clock assumption more, yield older divergence time 

estimates. By allowing independent substitution rates on all branches, the RLC and 

UCLN models are potentially overfitting the data to attempt to satisfy the marginal prior 

on node ages (Brown and Smith, 2017). As inferred from analyses run without data, the 

marginal prior constructed across all nodes can be considered “pseudo-data” (Brown 

and Smith, 2017) that are derived from interactions among the node calibration priors 

(based on fossil ages) and with the branching process prior (constant birth-death model 

in our case), and should therefore not overly inform node ages. FLC and strict clock 

models lend greater weight to the molecular data and can overrule marginal prior 

distributions on divergence times (Fig. S15) whilst still respecting hard maximum and 

minimum bounds of fossil constraints on calibrated nodes, as suggested by our results. 
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It is also clear from running analyses without data, that the marginal age prior on the 

(uncalibrated) legume crown node is poorly informed, with the 95% HPD interval 

between 80.03-109.70 Ma (Fig. 5b and Table S3), the minimum of which is much older 

than the oldest legume fossils, presumably caused by overly conservative maximum 

bounds on calibrated nodes (Phillips, 2015). UCLN and RLC analyses also inferred 

relatively high substitution rates for some deep branches in the outgroup during the 

Lower Cretaceous, relative to more derived and terminal branches (Figs. S6 and S8), 

presumably to satisfy the poorly informed marginal priors. Phillips (2015) suggested that 

setting less conservative maxima on priors could remedy this problem, but our analysis 

with such prior settings shows little effect (Fig. S7 & S16k), with some of the deepest 

branches still showing much higher substitution rates. Since there is no evidence for, 

nor any reason to assume that substitution rates along those branches should be 

elevated relative to terminal branches, we conclude that this is caused by overfitting rate 

heterogeneity across branches under the influence of the marginal prior. Furthermore, 

the RLC analyses fitted c. 45 local clocks across the phylogeny, a high number relative 

to the 142 branches in the tree (implying a separate clock for every ~3 branches on 

average), which is also indicative of overfitting. This could also be seen as evidence that 

the data are not the product of clock-like evolution, but it becomes difficult to estimate 

how much the clock deviates if the marginal prior on node ages is too influential. FLC 

analyses provide a more pragmatic approach by defining local clocks based on root-to-

tip length distributions across clades and pruning outlier taxa (see Methods and Fig. 
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S5). This approach largely accounts for the violation of the molecular clock but does not 

relax the clock such that the marginal prior on node ages is given excessive weight 

relative to the molecular signal. Furthermore, because the genes we selected are 

reasonably clock-like and highly informative, it is desirable that these data inform the 

node ages with sufficient weight. One drawback of using this approach is that the large 

amount of sequence data combined with the FLC model, results in unrealistically 

precise estimates.

Polyploidy (Senchina, et al., 2003) as well as the KPB itself (Berv and Field, 

2018), have been implicated as potentially causing transient substitution rate increases, 

raising the possibility that substitution rates during early legume evolution could have 

deviated temporarily but markedly from the "background" rate of Cretaceous rosids. 

This would render ages inferred for the first few dichotomies and those of the 

subfamilies less certain. The age estimates inferred for these nodes rely on the 

assumption that the substitution rate did not vary significantly within clock partitions, and 

most importantly within the rosid partition which includes most of the backbone of the 

family and the stem lineage subtending it. The WGD events along the legume backbone 

and subtending subfamilies Papilionoideae and Detarioideae could have affected 

substitution rates along those branches. By selecting for smaller stature and shorter 

generation times and reducing population sizes (Berv and Field, 2018), the KPB could 

additionally have prompted increased rates along some or all subfamily stem lineages, 

and, in the case of "hard" explosive diversification after the KPB, perhaps also along the 
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legume stem lineage. A third factor that could influence node age estimates involving 

the first few legume divergences is extensive gene tree incongruence (Koenen et al., 

2020), including among some of the 36 genes used for time-scaling. Divergence time 

analyses accommodate this incongruence within a single topology, meaning that 

additional substitutions are inferred for conflicting gene trees, which can inflate branch 

lengths between rapid speciation events (Mendes and Hahn, 2016). Taken together, 

these three factors could mean that the time frame for early legume evolution appears 

too long in our results, with (some of the) subfamily ages likely being slightly older than 

estimated here, and divergence of the subfamilies happening nearly simultaneously 

(Koenen et al., 2020), rather than spanning the c. 3 - 5 million years inferred here (Figs. 

5a and S6-13). On the other hand, the time-frame over which successive speciation 

events cause ILS depends primarily on the asymptotic effective population sizes (Ne) of 

the daughter species and their mean generation times, which can both be high for 

woody perennials, the most likely ancestral habit of Leguminosae. Reciprocal 

monophyly of sequences sampled from two species becomes highly likely when the 

number of generations since speciation is substantially larger than Ne (Rosenberg, 

2003), which could require millions of years if Ne ≥ 10 000 and the generation time ≥ 100 

years. Substantial ILS (c. 30% gene trees deviating from the species tree) is well 

documented among genera Homo, Pan and Gorilla (Scally et al., 2012) despite the 4 

million years separating the two speciation events. Similar observations in plant groups 

with long generation times and moderately large Ne (Copetti et al., 2017; Chen et al., 
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2019) suggests this is also common in long-lived woody plants. Hence, the substantial 

gene tree conflict for the main legume lineages (Koenen et al., 2020) could be due to 

ILS assuming that successive speciation events occurred within a few millions of years, 

as inferred here (Figs. 5a & S6-S13). 

The placement of Cercidoideae and Detarioideae fossils within the stem or crown 

groups of these subfamilies, and hence the timing of their origins remains uncertain 

(Supplementary Appendix S1). Nevertheless, the new timeline for legume evolution 

presented here confirms the rapid diversification of legume lineages during the early 

Cenozoic as inferred by Lavin et al. (2005). While stem age estimates of each subfamily 

are remarkably close to each other, crown age estimates are strikingly different (Table 

S3). Caesalpinioideae are found to have the oldest crown age (late Paleocene), 

followed by Papilionoideae with a crown age in the Early Eocene. Overall, the subfamily 

age estimates suggest that early diversification of the legume subfamilies coincided with 

Paleocene biotic recovery, the Eocene climatic optima and Oligocene turnover in 

response to global cooling. 

Angiosperm WGDs have been suggested to be non-randomly distributed through 

time and significantly clustered around the KPB (Fawcett et al., 2009; Vanneste et al., 

2014; Lohaus and Van de Peer, 2016). We show that two of the early legume WGDs 

are also temporally close to the KPB (Fig. 5), lending further support to the idea that 

polyploid survival and establishment were enhanced at or soon after the KPB with its 

associated rapid turnover of lineages (Lohaus and Van de Peer, 2016; Levin and Soltis, 
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2018). Polyploidy could have helped ancestral legumes and other plant lineages to both 

survive the mass extinction event and rapidly diversify owing to differential gene loss 

and other processes of diploidization (Adams and Wendel, 2005; Dodsworth et al., 

2016). On the other hand, many paleopolyploidy events significantly pre- and post-date 

the KPB and more extensive sampling of recently diversified groups may reveal a 

weaker pattern of KPB clustering, or a pattern of WGDs associated with episodes of 

rapid global change more generally (Cai et al., 2019; Levin, 2020). Nevertheless, the 

timings of two WGDs as well as the initial diversification of the legumes close to the 

KPB (Fig. 5) are in line with the boundary being a pivotal moment in the evolutionary 

history of life on earth, selecting for polyploid lineages in plants (Lohaus & Van de Peer, 

2016) and leading to biotic turnover which initiated rapid diversification of lineages that 

would become dominant throughout the Cenozoic (Phillips, 2015; Claramunt & Cracraft, 

2015; this study). Furthermore, the prevalence of WGDs across the plant tree of life 

(e.g. Wendel, 2015; Soltis et al., 2016; Yang et al., 2018; Cai et al., 2019; Conover et 

al., 2019; One Thousand Plant Transcriptomes Initiative, 2019), potentially in 

association with rapid environmental change more generally (Cai et al., 2019), as well 

as in relation to the diversification of several large clades (e.g. Jiao et al., 2012; Barker 

et al., 2016; this study), further emphasizes just how prevalent and important 

polyploidization has been for plant evolution.

The Added Complications of Paleopolyploidy on Evolutionary Inferences in Deep Time
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Alongside rapid diversification and consequent lack of phylogenetic signal 

(Koenen et al., 2020), WGD events are also likely to contribute to the difficulties of 

resolving the deep nodes in Papilionoideae (Cardoso et al., 2012 and 2013), 

Detarioideae (Estrella et al., 2018) and Leguminosae (Koenen et al., 2020). WGDs 

themselves may have promoted increased lineage diversification rates resulting in short 

internodes and ILS. If the polyploidy event happened some time before the first legume 

divergences, or in the case of allopolyploidy, divergence of gene copies happened prior 

to lineage splitting, orthology detection should be easier. However, if the polyploidy 

event happened immediately before rapid cladogenesis, a potentially large fraction of 

paralogous gene copies would not have diverged at this point, making orthology 

detection challenging. In either case, paralogous or homoeologous gene copies will 

have been differentially lost, pseudogenized or sub- or neo-functionalized, further 

complicating correct orthology detection (Wendel, 2015; Cheng F. et al., 2018). 

Together with ILS, this could explain the large fraction of gene trees supporting 

alternative topologies at the root of the legumes (Koenen et al., 2020). An allopolyploid 

event involving two or more early legume lineages (Fig. 4) offers an alternative 

explanation for gene tree discordance, but discriminating between these alternatives is 

not straightforward. It is notable that other large plant clades, such as Pentapetalae 

(Zeng et al., 2017), Asteraceae (Barker et al., 2016; Huang et al., 2016), Brassicaceae 

(Couvreur et al., 2010; Huang et al., 2015) and Malvaceae (Conover et al., 2019), also 
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show lack of resolution in clades subtended by WGDs similar to that revealed here for 

the legume family and subfamilies Papilionoideae and Detarioideae. This suggests that 

the association of polyploidy with rapid divergence, lack of phylogenetic signal and gene 

tree conflict, is a common feature in the evolution of angiosperms and origination of 

major plant clades.

A large number of homolog clusters do not show gene duplications along the 

legume backbone or within any of the subfamilies, suggesting that loss of paralog 

copies is widespread, as observed for ancient WGDs more generally (Adams and 

Wendel, 2005; Dehal and Boore, 2005; Brunet et al., 2006; Scannel et al., 2007; Tiley et 

al., 2016). If many of those losses occurred along the stem lineages of the six 

subfamilies after their divergence, different paralog copies could have been retained in 

different lineages, adding to gene tree conflict. Loss of paralog copies along subfamily 

stem lineages will also complicate distinguishing whether a gene duplication 

corresponds to a WGD shared among two or more subfamilies, or a subfamily-specific 

nested WGD. Lack of support in homolog trees showing gene duplications further 

complicates this issue, making it extremely challenging to accurately reconstruct 

phylogenetic relationships and the history of WGDs. Given these difficulties, sampling a 

wider range of complete genomes will be important, since with transcriptome data it is 

unknown whether duplicate gene copies are lost or simply not expressed in tissues from 

which RNA was extracted. Furthermore, increased taxon sampling will counteract 

negative impacts of missing data, because some duplicate gene copies may have been 
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lost in species sampled here, but not necessarily across the whole clade or subfamily 

which those species represent. Despite all these complications, our analyses allow us to 

reject some hypotheses such as an independent WGD subtending Caesalpinioideae, 

and to formulate a new hypothesis involving ancient allopolyploidy, potentially 

reconciling the large number of gene duplications inferred at the root of the legumes 

(Fig. 1) with the presumed non-polyploid history of Cercis within the legumes (Stai et al., 

2019). 

However, this hypothesis may well be an approximation of the full complexity of 

genome evolution and polyploidy that occurred in legumes in association with the KPB. 

These WGD events occurred c. 66 Ma and much evidence has been obscured by 

subsequent genome reorganization and loss of the large majority of duplicate gene 

copies. These issues limit the degree of complexity that can be reconstructed for such 

ancient events compared to more recently evolved polyploidy. For instance, many 

angiosperm polyploid complexes are known to have involved recurrent allo- and 

autopolyploidy yielding extremely complex genomic relationships and variable ploidy 

levels, e.g. such as in the well-studied perennial soybean polyploid complex (e.g. Doyle 

et al., 2004). If a similar polyploid complex gave rise to the six major legume lineages, 

these could have had different ploidy levels with differing ancestries of subgenomes in 

cases of allopolyploidy. 

Concluding Remarks

http://mc.manuscriptcentral.com/systbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/doi/10.1093/sysbio/syaa041/5850071 by guest on 22 July 2020



PHYLOGENOMIC COMPLEXITY AND POLYPLOIDY IN LEGUMES

41

We show that the early evolution of the legumes followed a complex scenario 

with multiple nested auto- and/or allopolyploidy events, and rapid divergence of the six 

main lineages against the background of a mass extinction event that involved major 

turnover in the Earth's biota and biomes. WGD likely contributed to the survival and 

evolutionary diversification of the legumes in the wake of the KPB, and to the rise to 

ecological dominance of legumes in early Cenozoic tropical forests. At the same time, 

these events make it difficult to reconstruct early legume evolutionary history, including 

evolutionary relationships, divergence times and the phylogenetic locations of WGD 

events themselves. The similarities between the origins of the legumes and those of 

other major Cenozoic clades such as mammals and birds are striking. All three of these 

prominent Cenozoic clades show recalcitrant basal polytomies and parallel trajectories 

of rapid early divergence closely associated with the KPB, further emphasizing the 

importance of the KPB mass extinction event and the earth system succession that 

followed in its aftermath (Hull, 2015) in shaping the modern biota.
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Figure captions

FIGURE 1. Numbers of gene duplications mapped over the species tree. a) Results from 

a phyparts analysis on the species tree topology of Koenen et al. (2020) and b) results 

from a Notung analysis on the rosids portion of the same tree. Relative sizes of circles 

on nodes indicate the number of duplications as per the legend. Actual numbers are 

indicated for nodes with relatively high numbers of duplications, in a) the two numbers 

are derived from ML topologies without and with a bootstrap filter of 50%, respectively.
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FIGURE 2. Possible placements of legume WGD events on the species tree, and their 

log-likelihoods based on the gene count method implemented in WGDgc. Top row: 

models with the highest likelihood scores for a) two WGDs, b) three WGDs and c) four 

WGDs, with likelihood ratio test (LRT) scores indicated above the arrows between each 

panel. Bottom row: d) The second most likely model with two WGDs, e) The three next 

most likely models with three WGDs, from left to right: the model corresponding to 

results from Cannon et al. (2015) and Stai et al. (2019); an alternative model to b) with a 

shared WGD for Caesalpinioideae, Dialioideae and Papilionoideae; and the model with 

a pan-legume WGD as suggested by the Phyparts and Notung analyses (Fig. 1), f) The 

second most likely model with four WGDs. The WGD subtending Populus and Salix in 

the outgroup taxa is not shown but was included in all analyses. Caes = 

Caesalpinioideae, Cerc = Cercidoideae, Detar = Detarioideae, Dial = Dialioideae and 

Pap = Papilionoideae. Circles represent WGDs, the numbers above them indicate the 

estimated retention rates.
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FIGURE 3. A filtered supernetwork drawn with the Convex Hull algorithm shows tangles 

of gene tree relationships at the bases of the legumes, and subfamilies Detarioideae 

and Papilionoideae, that correspond to WGDs, as well as possible reticulation at the 

base of Caesalpinioideae. The filtered supernetwork was inferred from the 1,103 1-to-1 

ortholog gene tree set, and only bipartitions that received more than 80% bootstrap 

support in gene tree analyses were included. Edge lengths and colours are by their 

weight, a measure of prevalence of the bipartition that the edge represents among the 

gene trees. Ellipses with dashed outlines indicate increased complexity at putative 

locations of WGDs.
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FIGURE 4. Hypotheses involving allopolyploidy derived from GRAMPA, and their 

reconciliation scores compared to hypotheses involving only autopolyploidy. (a - f) All 

eight allopolyploid hypotheses that gave lower (better) reconcilation scores than (g), 

which represents the null hypothesis with no allopolyploidy. Hypotheses involving an 

additional autopolyploid event in Caesalpinioideae (h), or at the legume crown node (i), 

lead to higher (worse) reconciliation scores. Large circles indicate putative allo- or 

autopolyploidy events accounted for in the analysis (as per the legend), small circles 

indicate autopolyploid events in Papilionoideae and Detarioideae that were not taken 

into account and removed from the input gene trees prior to the analysis. Solid lines 

represent the species tree topology; dashed lines connect to the putative second 

parental lineage of the allopolyploid, with hypothetical extinct lineages indicated with a 

†. Caes = Caesalpinioideae, Cerc = Cercidoideae, Detar = Detarioideae, Dial = 

Dialioideae and Pap = Papilionoideae.
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FIGURE 5. The origin of the legumes is closely associated with the KPB. (a) Chronogram 

estimated with 8 fixed local clocks (FLC8 model) in BEAST, with the clock partitions 

indicated by coloured branches, from an alignment of 36 genes selected as both clock-

like and highly informative and hence well-suited for dating analyses. Blue shading 

represents 500 post-burnin trees (‘densitree’ plot) indicating posterior distributions of 

node ages. Yellow stars indicate putative legume WGD events, the placement of a 

putative allopolyploid event is equivocal and is indicated by two stars labelled with 

question marks (one on the stem lineage of the family and one on the stem lineage of 

Caesalpinioideae because the time-scaling analysis of gene duplications presented in 

(c) is based on this subfamily). Labelled circles indicate placements and ages of fossil 

calibrations listed in Table 1. Note that fossil A is placed on the legume stem node but 

post-dates the median crown age estimates for the family and is therefore not plotted on 

the legume stem lineage (similar for fossils 27 and 38). (b) Prior and posterior 

distributions for the crown age of legumes under different clock models, as indicated in 

the legend. (c) Density plots of age estimates for duplication nodes in gene trees, for all 

duplications that mapped onto the legume crown node in the Notung analysis in grey 

and for duplications in the three well sampled subfamilies Papilionoideae, 

Caesalpinioideae and Detarioideae as indicated in the legend.
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Appendices

Supplementary Appendix S1. Description of fossils used in time-calibration analyses, 

custom a priori fixed local clocks and alternative prior settings, and discussion of effects 

of alternative fossil placement in Detarioideae and Cercidoideae.

Supplementary Appendix S2. Methods and results of the re-analysis of One 

Thousand Plant Transcriptomes Initiative (2019) gene trees for a putative 

Caesalpinioideae WGD.

Table S1. Taxon occupancy per analysis and number of sequences per gene tree set 

per taxon.

Table S2. Age intervals specified for the fossil calibration priors under different 

alternative priors.

Table S3. Crown node age estimates and priors (95% HPD intervals) for selected 

nodes in the different analyses.

Figure S1. Examples of homolog clusters with gene duplications in legumes that 

passed the bootstrap filter. Yellow stars behind nodes indicate locations of gene 
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duplications, numbers on nodes indicate bootstrap support. The plotted gene trees are 

extracted from (a) cluster3675_1rr_1rr, showing a duplication subtending Detarioideae, 

(b) cluster1032_1rr_1rr, showing a duplication subtending Papilionoideae, (c) 

cluster1248_1rr_1rr and (d) cluster2941_1rr_1rr, both with a duplication subtending the 

legume family. Trees for (e) cluster51_7rr_1rr and (f) cluster544_1rr_1rr show evidence 

of more than one duplication, including one specific to Papilionoideae in the former.

Figure S2. Numbers of gene duplications mapped across the species tree as estimated 

by Phyparts. The topology used is the ML topology of the nuclear concatenated 

alignment of 1,103 genes, duplications were counted from 8,038 homolog clusters. 

Numbers above branches (with blue background) and below branches (with yellow 

background) represent numbers of duplications and numbers of homolog trees with 

duplications without or with a bootstrap filter of 50%, respectively.

Figure S3. Numbers of gene duplications as estimated by Notung, mapped across the 

species tree with six polytomies that were introduced manually to account for 

incomplete lineage sorting. The topology used is the rosid portion of the ML topology of 

the nuclear concatenated alignment of 1,103 genes of Koenen et al. (2020), 

duplications were counted from 8,324 homolog clusters.
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Figure S4. Numbers of gene duplications as estimated by Notung, mapped across the 

species tree with eight polytomies, including two along the legume backbone, that were 

introduced manually to account for incomplete lineage sorting. The topology used is the 

rosid portion of the ML topology of the nuclear concatenated alignment of 1,103 genes 

of Koenen et al. (2020), duplications were counted from 8,324 homolog clusters.

Figure S5. Root-to-tip lengths per taxon with partitions of fixed local clocks indicated. 

Pruned taxa with outlier root-to-tip lengths are indicated with an X, partitions are 

indicated with colours. (a) FLC3, (b) FLC6, (c) FLC8.

Figure S6. Chronogram estimated under the UCLN clock model. Numbers behind 

nodes indicate 95% HPD intervals. Substitution rate is indicated by coloured branches, 

as indicated by the colour legend, in substitutions per site per million years. Fossil 

calibrations as listed in Table 1 are indicated by blue labelled circles.

Figure S7. Chronogram estimated under the UCLN clock model, with alternative prior 2. 

Numbers behind nodes indicate 95% HPD intervals. Substitution rate is indicated by 

coloured branches, as indicated by the colour legend, in substitutions per site per million 

years. Fossil calibrations as listed in Table 1 are indicated by blue labelled circles.
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Figure S8. Chronogram estimated under the RLC model. Numbers behind nodes 

indicate 95% HPD intervals. Substitution rate is indicated by coloured branches, as 

indicated by the colour legend, in substitutions per site per million years. Fossil 

calibrations as listed in Table 1 are indicated by blue labelled circles.

Figure S9. Chronogram estimated under the FLC3 model. Numbers behind nodes 

indicate 95% HPD intervals. Clock partitions are indicated by coloured branches. Fossil 

calibrations as listed in Table 1 are indicated by blue labelled circles.

Figure S10. Chronogram estimated under the FLC6 model. Numbers behind nodes 

indicate 95% HPD intervals. Cock partitions are indicated by coloured branches. Fossil 

calibrations as listed in Table 1 are indicated by blue labelled circles.

Figure S11. Chronogram estimated under the FLC8 model. Numbers behind nodes 

indicate 95% HPD intervals. Clock partitions are indicated by coloured branches. Fossil 

calibrations as listed in Table 1 are indicated by blue labelled circles.

Figure S12. Chronogram estimated under the FLC8 model, with alternative prior 1. 

Numbers behind nodes indicate 95% HPD intervals. Clock partitions are indicated by 

coloured branches. Fossil calibrations as listed in Table 1 are indicated by blue labelled 

circles, with alternative calibrations as red circles.
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Figure S13. Chronogram estimated under the STRC model. Numbers behind nodes 

indicate 95% HPD intervals. Fossil calibrations as listed in Table 1 are indicated by blue 

labelled circles.

Figure S14. Substitution rates as estimated in FLC8 analyses for the different clock 

partitions. Boxplots for each partition for (a) alternative prior 1 and (b) the “normal” prior 

setting. Colours correspond to the partitions as shown in Figures 5, S5c, S11 and S12.

Figure S15. Prior and posterior densities of age estimates of selected nodes under 

different clock models (a-g) and alternative priors (h-k). Density plots are drawn for 

crown groups of a) Eurosids, b) Fabales, c) Leguminosae, d) Cercidoideae , e) 

Detarioideae, f) Caesalpinioideae, g) Papilionoideae; and h) Leguminosae, i) 

Cercidoideae and j) Detarioideae under standard and alternative prior 1; and k) the 

legume crown node under standard and alternative prior 2. Colours used to indicate 

clock models or priors are as per the legend in the lower right corner. The vertical 

dashed line in c)-k) indicate the Cretaceous-Paleogene (K-Pg) boundary.

Figure S16. Histograms of age estimates of duplication nodes, for (a) the duplications 

mapped to the legume crown node in the Notung analysis and for duplication nodes in 
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gene trees with only (b) Detarioideae, (c) Caesalpinioideae and (d) Papilionoideae 

included.

Data S1. ZIP file containing amino acid alignments of 8,642 multi-labelled homologs in 

NEXUS format.

Data S2. Alignment of 36 nuclear genes used for time-scaling in NEXUS format.

Data S3. ZIP file containing 8,642 multi-labelled homolog trees in newick format, with 

bootstrap values and branch lengths.

Data S4. ZIP file containing 8,038 multi-labelled trees representing rooted clades 

extracted from the homolog clusters of Data S9 in newick format, with bootstrap values 

and branch lengths.

Data S5. ZIP file containing 8,324 multi-labelled trees representing rooted clades 

extracted from the homolog clusters of Data S3 in newick format, with bootstrap values 

and branch lengths.

Data S6. Tab-delimited text file with the filtered gene count data used in the WGDgc 

analyses.
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Data S7. ZIP file containing 7,006 multi-labelled trees representing rooted clades 

extracted from the homolog clusters of Data S3 in newick format, with bootstrap values 

and branch lengths.

Data S8. ZIP file containing 863 cleaned and filtered gene trees, derived from original 

data used by the One Thousand Plant Transcriptomes Initiative (2019).
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Table 1. Fossil calibrations used in the divergence time analyses. See Supplementary 
Appendix 1 for details and list of cited literature.

Calibration
a Definition Fossil Age (Ma)

eudicots

26 CG eudicots Tricolpate pollen; England and 
Gabonb 126c

27 CG Ranunculales Teixeiraea lusitanica – flower; 
Portugalb 113

38 CG Pentapetalae Pentamerous flower with distinct 
calyx and corolla; USAb 100

48 SG Ericales Pentapetalum trifasciculandricus – 
flowers; USAb 89.8

94 SG Myrtaceae “Flower number 3” from the Table 
Nunatak Formation, Antarcticab 83.6

105 SG Brassicales Dressiantha bicarpelata – flowers; 
USAb 89.8

112 CG Rosaceae Prunus wutuensis – fruits; Chinab 49.4

116 SG Cannabaceae Aphananthe cretacea and Gironniera 
gonnensis – fruits; Germanyb 66

122 SG Juglandaceae Polyptera manningi – fruits; USAb 64.4

133 SG Populus Populus wilmattae – leaves,
infructescences and fruits; USAb 37.8

X14 SG Fagales Protofagacea allonensis – flowers; 
USAd 83.6

legumes

A SG Leguminosae Paracacioxylon frenguellii – wood with 
vestured pits; Argentinae,f 63.5

C SG Cercis Cercis parvifolia – leaves and C. 
herbmeyeri – fruits; USAg 36

Ch SG Bauhinia cf. Bauhinia – simple leaf with 
bilobed lamina; Tanzaniai 46

F SG Resin-producing 
clade

Hymenaea mexicana – vegetative and 
floral remains in amber; Mexicoj 22.5

G SG Detarioideae Aulacoxylon sparnacense – wood and 
amber; Francek 53

Gh SG Resin-producing 
clade same as G 53
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Hh CG Amherstieae Aphanocalyx singidaensis – 
bifoliolate leaves; Tanzanial 46

I2 SG 
Styphnolobium/Cladrastis

Styphnolobium and Cladrastis – 
leaves and fruits; USAm 37.8

M2 SG Robinioid clade Robinia zirkelii – wood; USAn 33.9

Q SG Acacieae/Ingeae
Flattened polyads with 16 pollen grains; 

Brazil, Colombia, Cameroon and 
Egypto

33.9

Q2 SG Acacia s.s. Polyads with pseudocolpi; Australiap 23

Z SG Caesalpinioideae Bipinnate leaves; Colombiaq 58

CG = Crown group; SG = Stem group; Ma = Million years ago.

a numbers 26, 27, 38, 48, 94, 105, 112, 116, 122 and 133 refer to calibrations from Magallón et al. (2015) as 

listed in their Supplementary Information Methods S1; letters A, D, F, G, I2, M2 and Q refer to calibrations from 

Bruneau et al. (2008) and/or Simon et al. (2009)
b Magallón et al. (2015) and references therein
c prior set as normal with standard deviation of 1.0, and truncated between minimum and maximum bounds of 

113 and 136 Ma, respectively
d Xing et al. (2014) and reference therein
e Brea et al. (2008)
f Note that the new fossil discovered by Lyson et al. (2019) at c. 65.35 Ma is slightly older than the fossil listed 

here and is currently the oldest known fossil evidence of SG Leguminosae, however, since the currently used 

fossil does not constrain this node because of the long stem lineage of the family, substituting this calibration 

with the new Lyson et al. (2019) fossil would not influcence our results.
g Jia and Manchester (2014)
h alternative prior 1 as used in FLC analysis with 8 local clocks
i Jacobs and Herendeen (2004)
j Poinar and Brown (2002)
k De Franceschi and De Ploëg (2003)
l Herendeen and Jacobs (2000)
m Herendeen (1992)
n Lavin et al. (2003) and references therein
o Simon et al. (2009): Supplementary Information and references therein
p Miller et al. (2013)
q Wing et al. (2009)
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