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Abstract—We study the maximum likelihood estimator in a
setting where the dependent variable is a random graph and
covariates are available on a graph-level. The model generalizes
the well-known β-model for random graphs by replacing the
constant model parameters with regression functions. Cramér-
Rao bounds are derived for special cases of the undirected β-
model, the directed β-model, and the covariate-based β-model.
The corresponding maximum likelihood estimators are compared
to the bounds by means of simulations. Moreover, examples are
given on how to use the presented maximum likelihood estimators
to test for directionality and significance. Last, the applicability
of the model is demonstrated using temporal social network data
describing communication among healthcare workers.

Index Terms—The β-model, Cramér-Rao bounds, hypothesis
testing, random graphs, dynamic social networks.

I. INTRODUCTION

A random graph is a random variable whose realizations
are graphs. Typically, the number of nodes is considered to be
fixed. Random graphs have been used to model e.g., interac-
tome networks, with nodes and edges representing molecules
and their biological interaction, respectively [1]; brain net-
works, with nodes and edges representing brain regions and
their structural or functional connectivity, respectively [2],
[3]; and social networks, with nodes and edges representing
social actors (such as individuals or organizations) and their
interaction, respectively [4]. In many of these applications,
variations in the observed graphs correlate with variations in
external covariates. For example, properties of the interactome
relate to human disease and the function of specific proteins
[5], brain connectivity is closely related to demographic and
psychometric measures [6], and social interaction is related
to both external events and the demographics and spatial
distribution of the studied population [7]. Despite numerous
examples of phenomena that can be modeled as dynamic
or temporal networks [8], there is still a need to extend or
generalize existing statistical methods for static graphs to
enable the incorporation of dynamic side information.

The aim of the present study is to develop methods for point
estimation, uncertainty estimation, and hypothesis testing, in
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a setting where the considered observations are graphs, and
where covariate information is available on a graph-level. This
is done by generalizing the already established β-model for
random graphs. In the remainder of this section, we describe
the considered graph models, and review previously employed
methods for incorporating covariate information into random
graphs.

The β-model belongs to the class of exponential random
graphs models (ERGMs), also known as p∗ models, which
is the subset of the exponential family that describes random
graphs [9]–[13]. Among the ERGMs studied in the literature,
the sufficient statistics defining a specific ERGM have included
reciprocity measures (describing the tendency of mutual con-
nection between two nodes in a directed graph) [9], the number
of k-stars (formations with one node connected to k other
nodes but with no additional edges between these k nodes),
and the number of triangles (three mutually connected nodes)
[10]. The main appeal of ERGMs is that their probability
distribution can be specified in terms of any graph attribute
that may have relevance for the modeled network.

One of the most simple ERGMs is obtained by letting the
sufficient statistics be the vector specifying the degree of each
node in the graph [14]. This is a special case of the model
for logistic regression, known as the β-model [15], [16]1. The
popularity of the β-model can be attributed to its flexibility
in adjusting to observed degree sequences. Specifically, in a
β-model (ERGM) where the model (canonical) parameters
are obtained by using the method of maximum likelihood
(ML), the degree of each node (the sufficient statistics) has
an expectation value equal to the observed degree of the
same node (the observed sufficient statistics) [16]. Since the
ML estimates of the parameters in the β-model cannot be
written in closed form, several iterative or Monte Carlo-based
estimation procedures have been proposed [17]. These have
included iterative scaling, Newton’s method, Fisher’s method
of scoring, iteratively reweighted least squares [9], [18], and
other fixed-point iteration schemes [16].

Information from exogenous variables are often incorpo-
rated into random graphs by using nodal (associated with a
node) or dyadic (associated with a pair of nodes) covariates.
For example, in a social network, a nodal covariate could
represent gender or status, whereas a dyadic covariate could
represent absolute age difference or spatial distance. Ran-
dom graphs with nodal covariates are commonly modeled
as stochastic block models (SBMs) [19]–[22]. In a SBM,

1The p1 model discussed in [9] is equivalent to the directed β-model but
with the number of reciprocated edges as an added sufficient statistic.
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the nodes are divided into groups (blocks), with each group
collecting all nodes with some given covariate values. The
distribution of the random variable describing the relation
between two nodes is then constrained to only depend on the
groups to which the two nodes belong. ERGMs with nodal
and dyadic covariates have previously been studied in [23]
and [24].

In this article, we generalize the β-model by incorporat-
ing covariates on a graph-level. This allows us to perform
regression with a random graph as the dependent variable.
ML estimates are obtained by generalizing the fixed-point
iteration scheme that was proposed for the β-model in [16].
To characterize the considered estimation problems, Cramér-
Rao bounds (CRBs) are derived for special cases of the
undirected, directed, and covariate-based β-models, and the
performance of the ML estimator is illustrated by means of
simulations. Further, examples are given on how to use the
presented ML estimators to perform significance tests and tests
of directionality. The applicability of the estimation framework
is demonstrated in a case study where we use real-world data
describing the interaction among ten healthcare workers. The
resulting social network is regressed on categorical covariates
representing the time of day and the day of the week.

II. ESTIMATION FRAMEWORK

To prepare for the covariate-based β-model and the results
in later sections, we review the undirected and directed β-
models in Section II-A and Section II-B, respectively. The
covariate-based β-model is then introduced in Section II-C.
The notation is defined independently in each subsection, and
all graphs are assumed to be unweighted and without self-
loops. Generalizations of the β-model to weighted random
graphs have previously been considered in [25] and [26].

A. The Undirected β-model
Consider a graph with n nodes. In the undirected β-model,

the probability of having an edge between the ith node and
the jth node is

pij =
eβi+βj

1 + eβi+βj
(1)

for any i 6= j. Hence, the n(n − 1)/2 edge probabilities are
parameterized by the n parameters β1, . . . , βn. As may be
realized from (1), βi signifies the tendency of the ith node
to form edges with other nodes, i.e., its so called differential
attractiveness [9]. Specifically, the ith node can be expected to
have a large (small) number of ties if βi is positive (negative)
and of large magnitude.

Now, let Yij = Yji denote the number of times that an
edge between node i and node j is present in N independent
measurements. It then follows that for any i 6= j

Yij ∼ Bin(N, pij) (2)

where Bin(· , ·) denotes the binomial distribution with the first
and second parameter indicating the number of observations
and the probability of success, respectively2. Examples of

2The model can easily be extended to the case where the number of
measurements N depends on the considered nodes i and j [14], [27].

applications where one might be able to repeatedly sample a
given network include studies of resting-state brain networks,
as well as temporal social networks (see Section V).

The likelihood function of θ ∆= [β1 . . . βn ]ᵀ, conditioned
on N observations associated with each unordered pair of
nodes (i, j), is proportional to [16]

L(θ|Y) =
e
∑n
i=1 Nβid̄i∏n

i=1, j=i+1(1 + eβi+βj )N
. (3)

Here, Y ∆= {Yij}ni=1, j=i+1, while the degree of node i,
averaged over all observations, has been defined as d̄i

∆=∑
j 6=i Yij/N . Since the Hessian of L(θ|Y) with respect

to θ can easily be shown to be negative semidefinite, the
ML estimates θ̂ ∆= [β̂1 . . . β̂n ]ᵀ must necessarily satisfy
∂L(θ̂|Y)/∂βi = 0 for i = 1, . . . , n. This is equivalent to
saying that [16]

d̄i =
∑
j 6=i

eβ̂i+β̂j

1 + eβ̂i+β̂j
(4)

for i = 1, . . . , n. The interpretation of (4) is that the observed
average degree of each node must be equal to the expectation
value of the corresponding average degree under the model
that is implied by the ML estimates. This interpretation makes
use of the fact that expected value of Yij is Npij . To find the
ML estimates, [16] introduced the function ϕ : Rn → Rn
(when N = 1), whose outputs are defined according to

ϕi(z) ∆= log(d̄i)− log
∑
j 6=i

1

e−zj + ezi
(5)

for i = 1, . . . , n, where log denotes the natural logarithm, and
we have used that z ∆= [z1 . . . zn ]ᵀ. Rearranging the terms
in (5) and comparing with (4) it can be seen that θ̂ is a fixed
point of ϕ. Hence, the ML estimates may be found by iterating

z(m+1) = ϕ(z(m)) (6)

until convergence, starting from some initial value z(0). As-
suming that a unique ML solution exists, geometrically fast
convergence to the fixed point was shown in [16] and [28].
Conditions for the asymptotic normality of the ML estimator
when n tends to infinity were presented in [29]. Necessary and
sufficient conditions for the existence of a finite ML estimate
were presented in [14], [28], and [30]. As an example, it
should be clear that there is no finite θ̂ satisfying (4) whenever
d̄i = n− 1 or d̄i = 0 for some i ∈ {1, . . . , n}.

B. The Directed β-model

In the directed β-model [9], the probability of having an
edge directed from the ith node to the jth node is

pij =
eαi+βj

1 + eαi+βj
(7)

for any i 6= j. Assuming n nodes, this means that the n(n−
1) edge probabilities are parameterized by the 2n parameters
α1, . . . , αn, β1, . . . , βn. As should be obvious, αi affects the
probability of having an edge directed from the ith node, while
βi affects the probability of having an edge directed to the
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ith node. The parameters αi and βi are called productivity
and attractiveness parameters, respectively [9]. To resolve the
additive ambiguity of the parameters (pij is not altered when
adding a constant to αi for i = 1, . . . , n and simultaneously
subtracting the same constant from βi for i = 1, . . . , n), we
will without loss of generality assume that βn is known to be
zero [31]. The directed β-model has been called the p0 model
[32], and is also closely related to the Rasch model [33], [34].

Now, let Yij denote the number of times that an edge
directed from node i to node j is present in N independent
measurements. It then follows that for any i 6= j

Yij ∼ Bin(N, pij). (8)

Further, assuming that we have N observations associated with
each ordered pair of nodes (i, j), the likelihood function of
θ ∆= [α1 . . . αn β1 . . . βn−1 ]ᵀ is proportional to

L(θ|Y) =
e
∑n
i=1 Nαid̄

α
i +Nβid̄

β
i∏

i 6=j(1 + eαi+βj )N
. (9)

Here, Y ∆= {Yij}i 6=j , while the outdegree and indegree of
node i, averaged over all observations, have been defined
as d̄αi

∆=
∑
j 6=i Yij/N and d̄βi

∆=
∑
j 6=i Yji/N , respectively.

The ML estimates θ̂ ∆= [α̂1 . . . α̂n β̂1 . . . β̂n−1 ]ᵀ must
necessarily satisfy ∂L(θ̂|Y)/∂αi = 0 for i = 1, . . . , n and
∂L(θ̂|Y)/∂βi = 0 for i = 1, . . . , n− 1. This is equivalent to
saying that

d̄αi =
∑
j 6=i

eα̂i+β̂j

1 + eα̂i+β̂j
, (10a)

for i = 1, . . . , n, where we have used that β̂n = 0, and

d̄βi =
∑
j 6=i

eα̂j+β̂i

1 + eα̂j+β̂i
, (10b)

for i = 1, . . . , n− 1. In similarity with (4), equation (10) can
be interpreted as saying that the observed average outdegree
and indegree of each node must be equal to the expectation
values of the corresponding average degrees under the model
that is implied by the ML estimates. To find the ML estimates,
we introduce the function ϕ : R2n−1 → R2n−1 whose outputs
are defined according to

ϕi(z) ∆= log(d̄αi )− log
∑
j 6=i

1

e−zj+n + ezi
, (11a)

for i = 1, . . . , n, and

ϕi+n(z) ∆= log(d̄βi )− log
∑
j 6=i

1

e−zj + ezi+n
, (11b)

for i = 1, . . . , n − 1. Here, we have used that z ∆=
[z1 . . . z2n−1 ]ᵀ and z2n

∆= 0. Rearranging the terms in (11)
and comparing with (10) it can be seen that θ̂ is a fixed point
of ϕ(z). Hence, we may, just as for the undirected model, find
the ML estimates by iterating

z(m+1) = ϕ(z(m)) (12)

until convergence, starting from some initial value z(0). A
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Fig. 1. Illustration of the covariate-based β-model with n = 3 nodes. Here,
the circles and dashed lines represent nodes and dyads, respectively, with the
probability of there being a link in between two nodes specified along the
dyads. Ω is the sample space for the covariates x.

similar iteration was proposed in [34]. Asymptotic normality
of the ML estimates as n tends to infinity was established in
[31].

C. The Covariate-based β-model

We will now demonstrate how to generalize the β-model for
the purpose of including covariates. Using this generalization,
the estimated model parameters will not only provide us with
a static description of the random graph, but also reveal how
the random graph varies with the chosen covariates. The core
idea is to replace the parameters αi and βj with the regression
functions αᵀ

i x and βᵀ
j x, respectively. Hence, the probability

of having an edge directed from the ith node to the jth node
becomes

pij(x) =
eα

ᵀ
i x+βᵀ

j x

1 + eα
ᵀ
i x+βᵀ

j x
(13)

for any i 6= j. The probability depends on both the 2K
regression coefficients αi

∆= [αi,1 . . . αi,K ]ᵀ and βj
∆=

[βj,1 . . . βj,K ]ᵀ, and the K covariates x = [x1 . . . xK ]ᵀ ∈
Ω, representing e.g., time, space, or other variables describing
the state of the network. Here, αi,k and βi,k describe the effect
that the kth covariate has on the tendency of the ith node to
form edges with other nodes. For example, if αi,k is positive
(negative), the probability of having an edge directed from the
ith node increases (decreases) as xk increases. In analogy with
the preceding subsection, we let βn = 0K,1 where 0`1, `2 is
the zero matrix of dimension `1× `2. The model is illustrated
in Fig. 1, where S(β) ∆= 1/(1 + e−β) denotes the sigmoid
function. Although this model bears some similarity to the
model discussed in [35] and [36], the fundamental difference
is that the model in [35] and [36] uses covariates that are
unique to each edge, and associated model parameters that
are constant over the graph.

Now, assume that we know the covariate values {x`}L`=1 and
have made the associated observations Y ∆= {{Yij,`}i 6=j}L`=1

from a set of L random graphs, each with n nodes. Here,
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Yij,` is the number of times that an edge directed from node
i to node j is present in N` independent measurements from
random graph `. It then holds that for any i 6= j

Yij,` ∼ Bin(N`, pij(x`)). (14)

Furthermore, it can be seen that the likelihood function of
θ ∆= [αᵀ

1 . . . αᵀ
n β

ᵀ
1 . . . βᵀ

n−1 ]ᵀ is proportional to

L(θ|Y) =
∏L
`=1

e
∑n
i=1 αᵀ

i x`N`d̄
α
i,`+βᵀ

i x`N`d̄
β
i,`∏

i 6=j(1 + eα
ᵀ
i x`+βᵀ

j x`)N`
(15)

where the average outdegree and indegree of node i in random
graph ` have been defined as d̄αi,`

∆=
∑
j 6=i Yij,`/N` and d̄βi,`

∆=∑
j 6=i Yji,`/N`, respectively. In analogy with the derivation of

(10), the ML estimates θ̂ ∆= [α̂ᵀ
1 . . . α̂ᵀ

n β̂
ᵀ
1 . . . β̂ᵀ

n−1 ]ᵀ

must satisfy ∂L(θ̂|Y)/∂αi,k = 0 for i = 1, . . . , n and k =
1, . . . ,K, and ∂L(θ̂|Y)/∂βi,k = 0 for i = 1, . . . , n − 1 and
k = 1, . . . ,K. This further means that

L∑
`=1

x`,kN`d̄
α
i,` =

L∑
`=1

∑
j 6=i

x`,kN`
eα̂

ᵀ
i x`+β̂ᵀ

j x`

1 + eα̂
ᵀ
i x`+β̂ᵀ

j x`
, (16a)

for i = 1, . . . , n and k = 1, . . . ,K, where we have used that
x`

∆= [x`,1 . . . x`,K ]ᵀ and β̂n
∆= 0K,1, while

L∑
`=1

x`,kN`d̄
β
i,` =

L∑
`=1

∑
j 6=i

x`,kN`
eα̂

ᵀ
j x`+β̂ᵀ

i x`

1 + eα̂
ᵀ
j x`+β̂ᵀ

i x`
, (16b)

for i = 1, . . . , n− 1 and k = 1, . . . ,K.
We now introduce the function ψ : R(2n−1)K×R(2n−1)K →

R(2n−1)K , whose outputs are defined according to

ψK(i−1)+k(z,γ)

∆=

L∑
`=1

x`,kN`

(
d̄αi,` −

∑
j 6=i

ez
ᵀ
i x`+x`,k(γi,k−zi,k)

e−z
ᵀ
j+nx` + ez

ᵀ
i x`

)
,

(17a)

for i = 1, . . . , n and k = 1, . . . ,K, and

ψK(i+n−1)+k(z,γ) (17b)

∆=

L∑
`=1

x`,kN`

(
d̄βi,` −

∑
j 6=i

ez
ᵀ
i+nx`+x`,k(γi+n,k−zi+n,k)

e−z
ᵀ
j x` + ez

ᵀ
i+nx`

)
,

for i = 1, . . . , n−1 and k = 1, . . . ,K. Here, we have used that
z ∆= [zᵀ1 . . . zᵀ2n−1 ]ᵀ, z2n

∆= 0K,1, and γ ∆= [γᵀ
1 . . . γᵀ

2n−1 ]ᵀ,
while zi

∆= [zi,1 . . . zi,K ]ᵀ and γi
∆= [γi,1 . . . γi,K ]ᵀ for i =

1, . . . , 2n − 1. Finally, we define ϕ : R(2n−1)K → R(2n−1)K

as
ϕ(z) ∆= {γ : ψ(z,γ) = 0(2n−1)K,1}. (18)

In the degenerate case of L = 1, K = 1, and x1 = 1, ϕ(z)
reduces to the form given in equation (11).

Rearranging the terms in (17) and comparing with (16) it
can be seen that θ̂ is a fixed point of ϕ(z). Hence, we will
attempt to find the ML estimates by iterating

z(m+1) = ϕ(z(m)) (19)

until convergence, starting from some initial value z(0). In
general, there is no closed-form expression for the elements
in ϕ(z(m)). The exceptions are the elements providing updates

of eventual intercepts αi,1 and βi,1, i.e., when x`,1 = x1 for
` = 1, . . . , L. For these parameters, closed-form expressions
similar to those in (11) are always available. For the remaining
parameters, we can use that each individual element of ψ(z,γ)
only depends on one matching element in γ. Therefore, it is
easy to numerically find the corresponding elements of ϕ(z)
by applying some one-dimensional root-finding algorithm.

D. Implementation
The initial parameter estimate z(0) was defined as the zero

vector in all three models. The estimates were then iteratively
updated as z(m+1) = ϕ(z(m)) until ‖z(m+1) − z(m)‖ < ε,
where the threshold was set to ε = 10−4. Here, ‖ · ‖ denotes
the Euclidean norm.

Several alternative methods, including Newton’s method,
may be used to find the ML estimates. However, as was
hinted in [9], a standard implementation of Newton’s method
will often lead to divergence in low signal-to-noise ratio
environments, i.e., where the edge probabilities are close to 0
or 1 and the number of observations is small. According to the
authors’ experience, the fixed-point method presented in this
section has more favorable convergence properties. This could
also have been expected given the convergence theorems,
earlier mentioned in Section II-A, that were presented for
iteration (5) in [16] and [28].

III. CRAMÉR-RAO BOUNDS

A common way to assess the performance of an estimator is
to compare its mean square error (MSE) to the CRB. The CRB
provides a lower bound on the MSE of any unbiased estimator,
and can be computed directly from the likelihood function.
What is more, the CRB can often be used to characterize the
estimation problem in terms of its underlying parameters. We
write the bound as [37]

Cov(θ̂) � P (20)

where P is the inverse of the Fisher information matrix (FIM),
and we have used A � B to denote that A − B is positive
semidefinite. The FIM is defined as I ∆= E[ssᵀ ] where s is
the gradient of the log-likelihood function (the score function)
with respect to θ. In this section, we will derive FIMs for the
three models discussed in Section II, CRBs for special cases of
these models, and use simulations to compare the performance
of the ML estimators to the CRBs. Each subsection uses the
same notation as the corresponding subsection in Section II.
Similarly, the notation for FIMs and inverse FIMs is defined
independently in each subsection. Although the CRBs are only
derived for special cases of the considered β-models, our hope
is that the derived bounds will provide practitioners with some
intuition for how the accuracy of the ML estimates varies with
the studied parameters also in the general cases.

A. The Undirected β-model
In the undirected β-model, the element in the ith row and

jth column of the FIM takes the form

Iij =

{∑
q 6=iNpiq(1− piq), i = j

Npij(1− pij), i 6= j.
(21)
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Fig. 2. Estimation performance with n = 10 as dependent on the edge
probability p.

Expressed in words, the Fisher information for βi is
the sum of variances of the associated edge observations
Yi1, . . . , Yii−1, Yii+1, . . . , Yin. Similarly, the Fisher informa-
tion shared between βi and βj is equal to the variance of Yij .
A derivation of (21) is provided in Appendix A.

To demonstrate the effect that the parameters have on the
estimation performance, let us consider the special case of
n > 2, βi = β for i = 1, . . . , n, and hence also pij = p ∆=
e2β/(1 + e2β) for all i 6= j. As shown in Appendix A, the
inverse FIM then becomes

P =
1

Np(1− p)
1

(n− 2)

(
In −

1

2(n− 1)
1n

)
. (22)

Here, In denotes the identity matrix of dimension n, while
1n denotes the n × n-dimensional matrix with all elements
equal to one. Studying the diagonal elements of P, it can be
seen that the variance of the individual parameter estimates
are bounded from below according to

Var(β̂i) ≥
1

Np(1− p)
2n− 3

2(n− 1)(n− 2)

' 1

Np(1− p)
1

n

(23)

where ' denotes asymptotic equality in the limit of n→∞.
Hence, we see that the CRB is, in the limit of n → ∞,
inversely proportional to both the number of observations N
and the number of nodes n. Further, the CRB attains its
minimum for p = 1/2 (β = 0), and approaches infinity both
as p→ 1 (β →∞) and p→ 0 (β → −∞).

Now, continuing with the same the parameter restrictions,
Fig. 2 shows how the root-mean-square error (RMSE) of the
ML estimator compares to the CRB for N = 5 and N = 10.
Here, the RMSE was computed from 104 simulations3 with
n = 10, and CRB(βi) is used to denote the square root of
the right-hand side of equation (23). Due to symmetry, we
only considered p ≥ 0.5. As can be seen from Fig. 2, the ML
estimator slightly exceeds the CRB when N = 5, and closely
follows the CRB when N = 10. In both cases, the discrepancy
between the RMSE and the CRB increases as p approaches 1.

It should be stressed that we do not assume knowledge of
the fact that all parameters β1, . . . , βn have the same value.
When assuming that this is known, the model reduces to the

3To avoid non-existence of finite ML estimates, we disregarded any
simulation where some node degree was equal to zero or equal to its maximum
possible value.

Erdős-Rényi model [38]. In this case, the CRB for βER, where
the edge probability is pER

∆= e2βER/(1 + e2βER), becomes

Var(β̂ER) ≥ 1

Np(1− p)
1

2n(n− 1)
. (24)

For a derivation of (24), see Appendix A. Since we here
only have to estimate one parameter using Nn(n − 1)/2
measurements, it should come as no surprise that the bound
is, in the limit of n→∞, inversely proportional to the square
of the number of nodes n (rather than inversely proportional
to n as in the undirected β-model).

B. The Directed β-model

As shown in Appendix B, the FIM for the directed β-model
is

I =

[
Iα Iα,β
Iᵀ
α,β Iβ

]
(25)

where Iα is the diagonal matrix of dimension n whose ith
diagonal element is

∑n
j=1Npij(1 − pij), Iα,β is the matrix

of dimension n × n − 1 whose element in the ith row and
jth column is Npij(1−pij), and Iβ is the diagonal matrix of
dimension n−1 whose ith diagonal element is

∑n
j=1Npji(1−

pji).
Now, consider the special case when n > 2, αi = α for

i = 1, . . . , n, and βi = β for i = 1, . . . , n − 1. Without
loss of generality, we assume that β = 0, so that pij = p ∆=
eα/(1 + eα) for all i 6= j. The inverse FIM then becomes

P =
1

Np(1− p)

[
Pα Pα,β
Pᵀ
α,β Pβ

]
(26)

where
Pα

∆=

[
Pα,1 Pα,2
Pᵀ
α,2 Pα,3

]
(27)

with

Pα,1
∆=

n− 1

n(n− 2)

(
In−1 +

n2 − 3n+ 1

(n− 1)2
1n−1

)
, (28a)

Pα,2
∆=

1

n− 1
1n−1,1, (28b)

Pα,3
∆=

2n− 3

(n− 1)(n− 2)
, (28c)

and

Pα,β
∆= − 1

n(n− 2)

[
(n− 1)1n−1 − In−1

n11,n−1

]
, (29a)

Pβ
∆=

n− 1

n(n− 2)
(In−1 + 1n−1). (29b)

Here, we have used 1n,m to denote the n × m dimensional
matrix with all elements equal to one. Further, studying the
diagonal elements of P we arrive at

Var(α̂i) ≥
1

Np(1− p)
2n− 1

n(n− 1)
, (30a)

for i = 1, . . . , n− 1,

Var(α̂n) ≥ 1

Np(1− p)
2n− 3

(n− 1)(n− 2)
, (30b)
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Fig. 3. Estimation performance with n = 10 and i 6= n as dependent on the
edge probability p.

and

Var(β̂i) ≥
1

Np(1− p)
2(n− 1)

n(n− 2)
, (30c)

for i = 1, . . . , n − 1. Just as for the undirected model, the
CRB is, in the limit of n→∞, inversely proportional to both
N and n, while reaching its minimum for p = 1/2 (β = 0).
Noting that the CRBs in (30) are asymptotically equivalent
to 2/(Np(1 − p)n) and comparing with (23), the asymptotic
CRBs on the variance can be seen to be twice as large in the
directed β-model as in the undirected β-model (assuming the
same N , n, and p).

Given the considered parameter restrictions, Fig. 3 shows
how the ML estimator of αi with i 6= n compares to the CRB
in (30a) for N = 5 and N = 10. The RMSE was computed
from 104 simulations and the number of nodes was n = 10.
Overall, the estimator displays the same qualitative behavior
as for the undirected model in Fig. 2.

C. The Covariate-based β-model

For the covariate-based β-model, we consider the special
case when n > 2, αi = α for i = 1, . . . , n, and βi = β for
i = 1, . . . , n − 1. Without loss of generality, we assume that
β = 0K,1. Further, this also means that pij(x) = p(x) ∆=
eα

ᵀx/(1 + eα
ᵀx) for all i 6= j. Using ⊗ to denote the

Kronecker product, the inverse FIM becomes

P =
1

N

[
Pα Pα,β
Pᵀ
α,β Pβ

]
⊗ I−1

x (31)

where Ix ∆=
∑L
`=1 p(x`)(1 − p(x`))x`x

ᵀ
` , while Pα, Pα,β ,

and Pβ are as defined in equations (27), (28), and (29).
Hence, the CRBs for the regression coefficients pertaining
to a given node are subject to the same dependence on n
as the regression coefficients pertaining to the corresponding
node in the special case of the directed β-model considered in
the preceding subsection. (As a side note, we remark that the
analogous statement can be made regarding the CRB for the
undirected model presented in Section III-A and the CRB for
the undirected covariate-based model, i.e., the model where
αi,k = βi,k for i = 1, . . . , n and k = 1, . . . ,K, while
discarding the assumption βn = 0K,1.) The CRB for the
different regression coefficients associated with a given node
are then weighted based on I−1

x . Since the rank of Ix is
rank(Ix) ≤ ∑L

`=1 rank
(
p(x`)(1 − p(x`))x`x

ᵀ
`

)
≤ L, we

must have L ≥ K for Ix to be invertible (this requirement
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Performance of the ML estimator in the covariate-based β-model
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Fig. 4. Estimation performance with n = 5, L = 2, x1 = [1 0]ᵀ, x2 =
[1 1]ᵀ, α = α [1 1]ᵀ, β = 02,1, and i 6= n, as dependent on the average
edge probability p̄.

could have been expected since the dimension of the obser-
vations {{d̄αi,`, d̄βi,`}ni=1}L`=1 is 2nL and the dimension of θ is
2nK). Appendix C first presents the FIM in the general case
and then derives the inverse FIM in the special case considered
here.

Now, to illustrate the performance of the ML estimator, we
set n = 5, L = 2, x1 = [1 0]ᵀ, x2 = [1 1]ᵀ, and α = α [1 1]ᵀ.
Fig. 4 then shows how the ML estimator of αi1 with i 6= n
compares to the CRB as α varies. Here, the average edge
probability has been defined as p̄ = (p(x1) + p(x2))/2. Both
the cases N = 5 and N = 10 were considered, and the RMSE
was computed from 104 simulations. Once again, the RMSE
exceeds the CRB for small N and then approaches the CRB
as N is modestly increased.

To summarize, this section has presented CRBs for special
cases of all three studied β-models. The dependence of the
CRBs on the model parameters (number of observations,
number of nodes in the graph, and edge probabilities) was
shown to be similar across the models. Further, simulations
indicated that the ML estimators presented in Section II have
a RMSE in the vicinity of the CRB already for a comparatively
small number of measurements (the ML estimator approaches
the CRB as N →∞ [37]).

IV. HYPOTHESIS TESTING

The problem of choosing between two simple hypotheses
is often approached by performing a likelihood ratio test
(LRT). This means that the decision is taken based on whether
the ratio of the likelihoods of the two hypotheses exceed or
fall below some given threshold. As stated in the Neyman-
Pearson lemma, the LRT is the most powerful test for a given
significance level [39]. Put differently, the LRT minimizes the
probability of a missed detection (type II error) for a given
probability of a false alarm (type I error). When the likelihoods
of the hypotheses are dependent on some unknown parameters,
it is common to apply the LRT with the parameter values
that maximize the respective likelihoods. This is referred to as
the generalized likelihood ratio test (GLRT) [40]. If the two
hypotheses can be expressed asH0 : θ ∈ Ω0 andH1 : θ ∈ Ω1,
the generalized likelihood ratio becomes

Λ(Y) =
supθ∈Ω0

L(θ|Y)

supθ∈Ω1
L(θ|Y)

(32)

and we decide on H0 whenever Λ(Y) > η for some chosen
threshold η.
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The threshold η is often chosen so that the decision
boundary becomes the set of measurements giving some pre-
determined p-value. However, to be able to compute p-values,
we need to know the distribution of Λ(Y) underH0. While the
exact distribution is seldom known, approximate p-values can
often be obtained from Wilks’ theorem. Specifically, assume
that Ω0 is a subset of Ω1 and that Ω1 has κ more free
parameters than Ω0. Then, given certain mild regularity condi-
tions4, Wilks’ theorem states that the asymptotic distribution of
−2 log Λ(Y) under H0, is the χ2-distribution with κ degrees
of freedom [41]. The asymptotic considered in this article is
when n is held fixed while N tends to infinity. The opposite
case, i.e., when N = 1 while n tends to infinity, considered in
e.g., [29] and [42], is more delicate and will not be pursued
here.

Next, we demonstrate how to use the ML estimates pre-
sented in Section II to perform GLRTs for two simple null
hypotheses of practical importance. Goodness-of-fit tests are
omitted from the discussion, and we instead refer the reader to
earlier studies on ERGMs [43], the undirected β-model [27],
and the directed β-model [9], [44].

A. Significance Tests

First, we consider the problem of testing whether a specific
covariate has any significant impact on the studied graph. To
this end, we use the covariate-based model from Section II-C,
assuming knowledge of {x`}L`=1 and Y = {{Yij,`}i 6=j}L`=1.
Now, to test the significance of the kth covariate xk, we
formulate the null hypothesis

H0 : αi,k = βi,k = 0 for i = 1, . . . , n. (33)

Assuming that the alternative hypothesis H1 does not im-
pose any constraints on the parameters θ, it follows that
the maximizing parameter in the denominator of (32) is
the ML estimate for the covariate-based β-model. Simi-
larly, the maximizing parameter in the numerator of (32)
is the ML estimate for the covariate-based β-model where
the employed regression coefficients can be written as
αi

∆= [αi,1 . . . αi,k−1 αi,k+1 . . . αi,K ]ᵀ and βi
∆=

[βi,1 . . . βi,k−1 βi,k+1 . . . βi,K ]ᵀ for i = 1, . . . , n, while
the covariates are x`

∆= [x`,1 . . . x`,k−1 x`,k+1 . . . x`,K ]ᵀ

for ` = 1, . . . , L.

B. Testing for Directionality

Second, we consider the problem of deciding whether some
given set of directed network data {Yij}i 6=j has originated
from a directed or undirected (symmetric) random graph5.
Using the notation of the directed model presented in Section
II-B, we can write the null hypothesis, indicating that the data
originates from an undirected graph (the undirected β-model),
as

H0 : αi = βi for i = 1, . . . , n− 1. (34)

4The regularity conditions relate to 1) the existence of the first and second-
order derivatives of the log-likelihood function; and 2) that the expectation of
the score function is the zero vector [37] and [41]. It can easily be verified
that both of these conditions hold for the models discussed in Section II.

5A nonparametric test for this problem was developed in [45].

Assuming that the alternative hypothesis H1 does not impose
any constraints on the parameters θ, it follows that the
maximizing parameter in the denominator of (32) is the ML
estimate for the directed β-model. Similarly, the maximizing
parameter in the numerator of (32) is the ML estimate for
the undirected β-model, where Yij + Yji is considered to
be the number of times that an edge between node i and
node j is present in 2N independent measurements. To extend
the test to the covariate-based β-model considered in Section
II-C, one would simply test the hypothesis that αi = βi for
i = 1, . . . , n− 1.

C. Testing for Directionality - Numerical Example

We now study the receiver operating characteristics (ROC)
of the GLRT detector, for the problem of testing for direc-
tionality, by means of simulations. For the computation of the
true positive rate (the probability of correctly rejecting H0)
we independently simulated αi for i = 1, . . . , n and βi for
i = 1, . . . , n−1 from the uniform distribution over the interval
(−ρ, ρ). These parameters were in turn used to simulate Yij
for all i 6= j, which then enabled us to compute Λ(Y) and,
for any given η, make the decision to reject or accept H0.
Finally, the true positive rate was obtained as the percentage
of rejections. To compute the false positive rate (the probability
of incorrectly rejecting H0), we simulated αi for i = 1, . . . , n
from the uniform distribution over the interval (−ρ, ρ), while
letting βi = αi for i = 1, . . . , n. After simulating Yij for all
i 6= j (although the distribution of Yij and Yji is the same,
their simulated values need not be) and computing Λ(Y), the
false positive rate was obtained as the percentage of rejections
of H0. Fig. 5 displays the ROC curve for ρ = 0.1, 0.2, 0.3, 0.4,
with N = 10, n = 10, when computing each true positive rate
and false positive rate from 104 simulations. As expected,
the classification performance improves as the simulations
of α1, . . . , αn, β1, . . . , βn−1 are drawn from larger intervals,
thereby making the sequences {α1, . . . , αn} and {β1, . . . , βn}
less alike under the alternative hypothesis H1.

Fig. 6 displays the histogram of −2 log Λ(Y) under H0

when testing for directionality with N = 10, n = 10, and
ρ = 0.4, using 104 simulations. The histogram is overlaid with
the probability density function (pdf) of the χ2-distribution
with n−1 degrees of freedom (note that H0 is specified by n
parameters while H1 is specified by 2n − 1 parameters). As
can be seen from Fig. 6, the test statistic seems to follow
the χ2-distribution closely, thereby indicating that Wilks’
theorem can be of use when performing hypothesis tests under
conditions similar to those in the given example. To numer-
ically test whether −2 log Λ(Y) follows a χ2-distribution,
the Kolmogorov-Smirnov test was separately applied to 10
disjoint sets, each with 103 samples of −2 log Λ(Y) [46].
Using χ2(n − 1) as the null distribution, we obtained the
(ordered) p-values 0.0267, 0.0858, 0.1225, 0.3481 0.3971,
0.4158, 0.4645, 0.5319, 0.8278, and 0.8649. Evidently, only
one of the ten sets would have been rejected at a significance
level of 0.05.
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V. A CASE STUDY USING SOCIAL NETWORK DATA

We now apply the theory presented in the preceding sections
to data describing an undirected social network of healthcare
workers. Similar data sets have previously been studied using
the β-model in [9] and [24]. As noted in [9], the β-model
captures the elementary social tendency of differential attrac-
tion, while retaining tractability. The data consists of a list
of contacts, i.e., events where two individuals were facing
each other at a distance less than 1 − 1.5 [m], and specifies
both the time point (a 20 second interval) at which each
contact took place, and the two individuals that were in contact
[47]. All in all, contacts among 75 individuals were recorded
over a period of 97 hours. However, to ensure the existence
of all ML estimates, we chose to study the contacts of ten
individuals (one administrator, six nurses, and three medical
doctors) as registered between 10.00 and 13.00 during three
consecutive days. Fig. 7 displays the contacts (made within
the smaller group of ten individuals) of a given individual on
a specific day along a horizontal line. As can be seen, the
studied individuals were all active during the considered time
periods. To construct the graph observations, we divided each
day into three one-hour periods, with each period generating
one observation of each dyad, i.e., each pair of individuals.
An edge was considered to be present if and only if there was
a contact between the corresponding individuals during the
associated time period. Based on the analysis in Section III,
a rule of thumb may be to design the model so that roughly

Time of day
10.00 11.00 12.00 13.00

Day 1

Day 2

Day 3

Illustration of social network data

Fig. 7. Illustration of the studied social network data. Each dot represents a
contact made between two individuals.

half of the observations indicate that a link is present (here,
we had

∑
i<j,` Yij,`/

∑
i<j,`N` = 0.484).

Next, we will test how well the studied graphs can be
explained by covariates representing the time of day and
the day of the week. This is done by incorporating these
features as categorical covariates in the covariate-based β-
model. Specifically, the GLRT is used to test a null hypothesis,
under which the distributions of the observations are not
dependent on any external covariates, against an alternative
hypothesis with one binary covariate indicating whether a
given observation is made during a specific day or time of day.
This test is then performed for each of the six (the three days
and the three time periods) possible covariates. For example,
when focusing on the period between 10.00 and 11.00, the
ML estimates under the alternative hypothesis are computed
by using the undirected version of the covariate-based β-model
with x1 = [1 1]ᵀ and x2 = [1 0]ᵀ. The contacts displayed
in the three leftmost boxes in Fig. 7 are used to obtain the
measurements of the first graph, while the contacts in the
remaining boxes provide the measurements of the second
graph. Obviously, this means that N` = 3` for ` = 1, 2. The
ML estimates under the null hypothesis are obtained by using
the undirected β-model and merging all graph data so that
N = 9. The p-value of the GLRT can then be estimated in two
ways. Firstly, we can study the distribution of the generalized
likelihood ratios obtained by simulating measurements from
the undirected β-model. The simulations are made using the
ML estimates of the undirected β-parameters obtained from
the real-world data. Secondly, we can employ Wilks’ theorem
and assume that −2 log Λ(Y) is χ2-distributed with n = 10
degrees of freedom. Now, Tables I and II display the simulated
and theoretical (as estimated using Wilks’ theorem) p-values
obtained when testing the significance of each of the three
time periods (one at a time) and each of the three days (one
at a time), respectively. The simulated p-values where obtained
from 104 simulations. As can be seen, the networks seem to
vary considerably with the time of day (two out of three time
intervals have a p-value smaller than 0.01), while the day-to-
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TABLE I
p-VALUES FOR SOCIAL NETWORK DATA.

Time of day
10.00 – 11.00 11.00 – 12.00 12.00 – 13.00

Simulated p-value 0.0051 0.2950 0.0001
Theoretical p-value 0.0037 0.2557 5.7 · 10−6

TABLE II
p-VALUES FOR SOCIAL NETWORK DATA.

Day
1 2 3

Simulated p-value 0.9361 0.1121 0.3125
Theoretical p-value 0.9238 0.0943 0.2693

day variations are minor (no day has a p-value smaller than
0.05).

To further investigate how the network depends on the
studied time intervals, the network was regressed on all three
time-of-day categories simultaneously. Hence, we used the
contacts gathered between 10.00 and 11.00, between 11.00
and 12.00, and between 12.00 and 13.00, to obtain measure-
ments of the first, second, and third graph, respectively. The
associated covariates where x1 = [1 0 0]ᵀ, x2 = [1 1 0]ᵀ,
and x3 = [1 0 1]ᵀ. The resulting estimates are illustrated in
Fig. 8, where the vertical lines represent uncertainty intervals
[β̂i,k−CRB(βi,k), β̂i,k+CRB(βi,k)], and CRB(βi,k) denotes
the lower bound on the standard deviation of β̂i,k as estimated
from the undirected version of the FIM presented in (57) and
(58). Here, β̂i,1 describes the attractiveness of node i in the
first time period, while β̂i,1 + β̂i,2 and β̂i,1 + β̂i,3 describe the
attractiveness of node i in the second and third time periods,
respectively. Averaging β̂i,2 and β̂i,3 over the ten individuals
we obtain −0.19 and −0.94, respectively. In other words,
the overall attractiveness is lower in the second time period
than in the first, and is lower in the third time period than in
the second. This is also what one would have guessed given
the distribution of contacts in Fig. 7 (the total number of
observed links in the networks were 81, 71, and 44, in the
three respective time periods).

VI. SUMMARY

In this paper, the β-model was generalized to enable studies
of how a random graph depends on a given set of covariates.
Further, ML estimates and CRBs were derived for special
cases of the undirected, directed, and covariate-based β-
models. In the limit where the number of nodes approaches
infinity, the CRB on the variance of the β-parameters was
shown to be inversely proportional to both the number of nodes
and the number of observations. Moreover, it was demon-
strated how to use the ML estimators to perform statistical
tests, with simulations indicating that Wilks’ theorem can be
of use for the computation of p-values. A case study where the
covariate-based β-model was applied to social network data
describing contacts among healthcare workers was worked out

1 2 3 4 5 6 7 8 9 10
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Fig. 8. ML estimates obtained when regressing social network data on time
of day. The vertical lines represent uncertainty intervals of ± one standard
deviation as estimated from the CRB.

in detail. In summary, the article presented tractable methods
for point estimation, model design, and hypothesis testing for
networks that depend on external covariates. Future research
may focus on deriving estimation bounds or approximate
estimation bounds for the general β-models.

APPENDIX A

This appendix derives the FIM in (21), given for the
undirected β-model. Further, we derive the inverse FIM in
the special case considered in (22).

Let us denote the score function as s ∆= [s1 . . . sn ]ᵀ. As
follows directly from the likelihood function in (3), it holds
that

si =
∑
j 6=i

(Yij −Npij). (35)

Further, using (2) and that the measurements from different
edges are independent yields

E[(si)
2] =

∑
j 6=i

Npij(1− pij) (36a)

and

E[sisj ] = E[(
∑
q 6=i Yiq −Npiq)(

∑
r 6=j Yrj −Nprj)]

= E[(Yij −Npij +
∑
q 6=i,q 6=j Yiq −Npiq)

· (Yij −Npij +
∑
r 6=j,r 6=i Yrj −Nprj)]

= Npij(1− pij) (36b)

for any i 6= j. The FIM in (21) can now be obtained from
(36).

Under the assumptions preceding (22), it follows that

I = Np(1− p)
(
(n− 2)In + 1n

)
. (37)

Moreover, the Sherman-Morrison formula gives that [48]

(aIn + b1n)−1 =
1

a
In −

b

a

1

a+ bn
1n (38)
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for any constants a 6= 0 and b 6= −a/n. Now, applying the
special case of the Sherman-Morrison formula in (38) to the
FIM in (37) while assuming n > 2 immediately gives the
inverse FIM in (22).

To derive the CRB in (24), we apply the chain rule
∂ logL(θ)/∂βER = (∂ logL(θ)/∂θ) · ∂θ/∂βER. Since the
Erdős-Rényi model is equivalent to the undirected β-model
with βER = β1 = · · · = βn (and where this is known a
priori), it holds that ∂θ/∂βER = 1n,1, and hence, the Fisher
information for βER is

IER = 11,nI1n,1
= 2Np(1− p)(n− 1)11,n1n,1

= 2Np(1− p)n(n− 1).

(39)

The same result can be derived by noting that the likelihood
function for the Erdős-Rényi model is

L(θ|Y) = p
∑n
i=1

∑n
j=i+1 Yij

ER (1− pER)
∑n
i=1

∑n
j=i+1(N−Yij).

(40)

APPENDIX B

Here, we derive the FIM in (25), given for the directed
β-model. In addition, we also derive the inverse FIM in the
special case considered in (26).

Let us denote the score function as s ∆= [(sα)ᵀ (sβ )ᵀ]ᵀ,
where sα ∆= [sα1 . . . sαn ]ᵀ and sβ ∆= [sβ1 . . . sβn−1 ]ᵀ. It then
follows from (9) that

sαi =
∑
j 6=i

(Yij −Npij), (41a)

for i = 1, . . . , n, and

sβi =
∑
j 6=i

(Yji −Npji). (41b)

for i = 1, . . . , n−1. Further, we use (8) and the independence
of measurements from different edges to obtain

E[(sαi )2] =
∑
j 6=i

Npij(1− pij), (42a)

for i = 1, . . . , n, and

E[(sβi )2] =
∑
j 6=i

Npji(1− pji), (42b)

E[sαi s
β
i ] = 0, (42c)

for i = 1, . . . , n− 1, while

E[sαi s
α
j ] = 0, (43a)

E[sβi s
β
j ] = 0, (43b)

and

E[sαi s
β
j ] = Npij(1− pij), (43c)

for any i 6= j. The FIM in (25) now follows directly from (42)
and (43). Approximations of the inverse FIM has previously
been discussed in [36].

Given the assumptions preceding (26), it follows that the
submatrices in (25) are

Iα = Np(1− p)(n− 1) In, (44a)
Iβ = Np(1− p)(n− 1) In−1, (44b)

Iα,β = Np(1− p)[1n−1 − In−1 1n−1,1 ]ᵀ. (44c)

Further, applying the formula for block matrix inversion [49]
and assuming n > 2, we have that

Pα = Np(1− p)(Iα − Iα,βI
−1
β Iᵀ

α,β)−1

= Np(1− p)
([

Iα,1 Iα,2
Iᵀ
α,2 Iα,3

])−1 (45)

where

Iα,1 ∆= c
(
n(n− 2)In−1 − (n− 3)1n−1

)
, (46a)

Iα,2 ∆= −c(n− 2)1n−1,1, (46b)

Iα,3 ∆= c(n− 1)(n− 2), (46c)

with c ∆= Np(1− p)/(n− 1). Here, we have used that

Iα,βI
−1
β Iᵀ

α,β

= c

[
1n−1 − In−1

11,n−1

][
1n−1 − In−1

11,n−1

]ᵀ
= c

[
(1n−1 − In−1)2 (1n−1 − In−1)1n−1,1

11,n−1(1n−1 − In−1) 11,n−11n−1,1

]
= c

[
In−1 + (n− 3)1n−1 (n− 2)1n−1,1

(n− 2)11,n−1 n− 1

]
.

(47)

Using the block matrix inversion formula, it can be seen that

Pα
∆=

[
Pα,1 Pα,2
Pᵀ
α,2 Pα,3

]
(48)

where

Pα,1

= Np(1− p)(Iα,1 − Iα,2I−1
α,3I

ᵀ
α,2)−1

= (n− 1)
(
n(n− 2)In−1 − (n− 3)1n−1

− (n− 2)/(n− 1)1n−1

)−1
(49)

= (n− 1)
(
n(n− 2)In−1 − (n2 − 3n+ 1)/(n− 1)1n−1

)−1

=
n− 1

n(n− 2)

(
In−1 +

n2 − 3n+ 1

(n− 1)2
1n−1

)
.

Here, the last equality follows from (38). Further, we have

Pα,3 = Np(1− p)(Iα,3 − Iᵀ
α,2I

−1
α,1Iα,2)−1

=
n− 1

n− 2

(
(n− 1)− 1

n
11,n−1In−11n−1,1

− (n− 3)

n(2n− 3)
11,n−11n−11n−1,1

)−1

(50)

=
2n− 3

(n− 1)(n− 2)

where we have used (38) to arrive at

I−1
α,1 =

1

cn(n− 2)

(
In−1 +

n− 3

2n− 3
1n−1

)
. (51)
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Finally, it holds that

Pα,2 = −I−1
α,1Iα,2Pα,3 (52)

=
1

n

(
In−1 +

n− 3

2n− 3
1n−1

)
1n−1,1Pα,3

=
1

n− 1
1n−1,1

which concludes the derivation of Pα as given in equations
(27) and (28).

To derive (29), we begin by showing that

Pβ = Np(1− p)(Iβ − Iᵀ
α,βI

−1
α Iα,β)−1

=
(
(n− 1)In−1 − 1/(n− 1)(In−1 + (n− 2)1n−1)

)−1

=
n− 1

n− 2

(
nIn−1 − 1n−1

)−1
(53)

=
n− 1

n(n− 2)
(In−1 + 1n−1)

where the second equality uses that

Iᵀ
α,βI

−1
α Iα,β = c

[
1n−1 − In−1

11,n−1

]ᵀ[
1n−1 − In−1

11,n−1

]
= c((1n−1 − In−1)2 + 1n−1,111,n−1)

= c(In−1 + (n− 2)1n−1)

(54)

and the last equality follows from (38). Finally, we have

Pα,β = −I−1
α Iα,βPβ (55)

= − 1

n(n− 2)

[
1n−1 − In−1

11,n−1

]
(In−1 + 1n−1)

= − 1

n(n− 2)

[
(n− 1)1n−1 − In−1

n11,n−1

]
and we are done.

APPENDIX C

We now show how to obtain the FIM for the covariate-
based β-model, and then go on to derive the inverse FIM for
the special case considered in (31).

To begin with, let us denote the score function as s ∆=
[(sα1 )ᵀ . . . (sαn)ᵀ (sβ1 )ᵀ . . . (sβn−1)ᵀ ]ᵀ where sαi

∆=

[sαi,1 . . . sαi,K ]ᵀ for i = 1, . . . , n and sβi
∆= [sβi,1 . . . sβi,K ]ᵀ

for i = 1, . . . , n− 1. It then follows from (15) that

sαi,k =

L∑
`=1

∑
j 6=i

x`,k(Yij,` −N`pij(x`)) (56a)

for i = 1, . . . , n and k = 1, . . . ,K, while

sβi,k =

L∑
`=1

∑
j 6=i

x`,k(Yji,` −N`pji(x`)) (56b)

for i = 1, . . . , n − 1 and k = 1, . . . ,K. Further, using (14)
and the independence of measurements from different edges
and different graphs we have that

E[sαi,ks
α
i,k′ ] =

L∑
`=1

∑
j 6=i

x`,kx`,k′N`pij(x`)(1− pij(x`))

(57a)

for i = 1, . . . , n, k = 1, . . . ,K, and k′ = 1, . . . ,K, while

E[sβi,ks
β
i,k′ ] =

L∑
`=1

∑
j 6=i

x`,kx`,k′N`pji(x`)(1− pji(x`)),

(57b)

and
E[sαi,ks

β
i,k′ ] = 0, (57c)

for i = 1, . . . , n − 1, k = 1, . . . ,K, and k′ = 1, . . . ,K.
Moreover, we have that

E[sαi,ks
α
j,k′ ] = 0, (58a)

E[sβi,ks
β
j,k′ ] = 0, (58b)

and

E[sαi,ks
β
j,k′ ] =

L∑
`=1

x`,kx`,k′N`pij(x`)(1− pij(x`)), (58c)

for any i 6= j, k = 1, . . . ,K, and k′ = 1, . . . ,K. The FIM
for the covariate-based β-model can now be obtained from
equations (57) and (58).

For the special case considered in Section III-C, it is easily
shown that the FIM reduces to

I =

[
Iα Iα,β
Iᵀ
α,β Iβ

]
⊗ Ix (59)

where

Iα ∆= N(n− 1) In, (60a)

Iβ ∆= N(n− 1) In−1, (60b)

Iα,β ∆= N [1n−1 − In−1 1n−1,1 ]ᵀ, (60c)

and Ix ∆=
∑L
`=1 p(x`)(1− p(x`))x`x

ᵀ
` . Noting the similarity

of equations (44) and (60), while using that (A ⊗ B)−1 =
A−1 ⊗B−1 for any invertible matrices A and B, the FIM in
(31) follows immediately when assuming that Ix is invertible
and that n > 2.
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