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Data Augmentation based Cellular Traffic
Prediction in Edge Computing Enabled Smart City

Zi Wang, Jia Hu*, Geyong Min*, Zhiwei Zhao, and Jin Wang

Abstract—With the massive deployment of 5G cellular infras-
tructures, traffic prediction has become an indispensable part of
the cellular resource management system in order to provide
reliable and fast communication services that can meet the
increasing Quality-of-Service (QoS) requirements of smart city.
A promising approach for handling this problem is to introduce
intelligent methods to implement a highly effective and efficient
cellular traffic prediction model. Meanwhile, integrating the
multi-access edge computing framework in 5G cellular networks
facilitates the application of intelligent traffic prediction models
by enabling their implementation at the network edge. However,
the data shortage and privacy issues may still be obstacles for
training a robust and accurate prediction model at the edge.
To address these issues, we propose a data augmentation based
cellular traffic prediction model (ctGAN-S2S) where an effective
data augmentation sub-model based on generative adversarial
networks is proposed to improve the prediction performance
while protecting data privacy, and a long short-term memory
based sequence-to-sequence sub-model is used to achieve the
flexible multi-step cellular traffic prediction. The experimental
results on a real-world city-scale cellular traffic dataset reveal
that our ctGAN-S2S model achieves up to 48.49% improvement
of the prediction accuracy compared to four typical reference
models.

Index Terms—Data Augmentation, Time-Series Prediction,
Neural Networks, Cellular Networks, Smart City.

I. INTRODUCTION

THE tremendous advance in modern technologies, many
cities have recently introduced emerging infrastructures

and applications for smart city development. For example,
smart transportation systems, unmanned aerial vehicle deliv-
ery, augmented and virtual reality and industry 4.0 applications
[1] bring great benefits for making our cities more convenient
and efficient, which significantly improve the quality of life
for city residents.

To speed up the development of smart city, smart technolo-
gies should be introduced in our daily life and also need to be
constantly upgraded to meet the increasing requirements on
Quality-of-Services (QoS). Therefore, a reliable communica-
tion system is essential to meet the demanding requirements
from smart city applications on high speed transmission and
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short delay. The fifth generation of wireless communications
for digital cellular networks (5G) enters a fast development
period in recent years and becomes an ideal and practical
solution. 5G cellular networks are assumed to be the key
enabler and infrastructure provider of smart city by offering
the enhanced mobile broadband (eMBB), ultra-reliable low
latency service (URLLC) and massive machine-type commu-
nications (mMTC) [2]. 5G is also the first cellular standard
that explicitly targets industrial use cases [3].

All these visions highly depend on the proactive resource
allocation from the 5G cellular management systems and the
prediction model plays a critical role therein. The cellular
traffic usage data not only can be used in billing but also
be regarded as an important and rich data source [4] for
developing other utilities such as traffic prediction models.
A traffic prediction model monitors real-time traffic data and
provides future state predictions. By referring the short term or
long term prediction results, the cellular management system
can be more efficient to allocate resources to meet different
requirements and improve the reliability and QoS of smart city
applications.

However, there are many challenges on implementing a
reliable traffic prediction model for cellular networks. First,
the prediction model needs to have capabilities to handle
dynamics in terms of different scenarios and time periods.
Second, not all models can own a sufficient amount of data
to train and build an effective prediction model. Third, the
privacy concern is raised when the cooperation and data
sharing among base stations (BSs) is needed for improving
the accuracy of prediction models. The conventional statistical
prediction models with the assistance of expert knowledge
were usually applied for cellular resource allocation under a
specific scenario. These models have limited capabilities to
efficiently adapt to the dynamic changes and handle increasing
complex network conditions. Deep learning has experienced
tremendous success in recent years. For example, a sequence-
to-sequence (S2S) [5] model can give a reliable and satisfying
prediction result for time-series data and a generative adversar-
ial network (GAN) [6] achieves great progress in generating
new data with the similar distribution as the targeting dataset.
Thus, deep learning not only can help to build a reliable
prediction module but provide a way to alleviate the data
shortage problem by using the GAN based data augmentation
method.

Implementing these intelligent methods requires many com-
puting resources for the model training. Conventional hard-
ware on cellular BSs does not have enough capability to
efficiently handle such requirements. To mitigate this problem,
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multi-access edge computing (MEC) has been proposed as a
key part of 5G networks. Different from cloud computing that
provides scalable and high-performance computing resources
at a centralised data centre, MEC equips cellular BSs with
edge servers that have communicating and computing capa-
bilities to provide services in close proximity to users to cut
down the service delay and network traffic. Thus, all the model
training and data augmentation work can be handed over to
edge servers.

In this work, we propose a data augmentation based cellular
traffic prediction model (ctGAN-S2S) that can be deployed
on the edge servers in 5G cellular networks. This model
consists of two sub-models: 1) the data augmentation model
(ctGAN) and 2) the cellular traffic prediction model. The main
contributions of this paper are:
• We propose the ctGAN-S2S model to effectively achieve

data augmentation and improve the cellular traffic pre-
diction performance. This new model can protect privacy
by using the data augmentation model to generate close-
to-real cellular traffic data, which is used to reduce
direct data sharing between base stations for training the
prediction model.

• We propose a cellular traffic data augmentation sub-
model ctGAN, where the potential time-series samples
of target cellular traffic can be generated for data aug-
mentation through the generative adversarial process.

• We design a long short-term memory (LSTM) based
S2S prediction sub-model, which can achieve flexible
multistep prediction on time-series cellular traffic data.

• We evaluate the proposed ctGAN-S2S model on real-
world cellular traffic dataset, and the results show that
this new model achieves up to 48.49% improvement
of prediction accuracy compared with four reference
models.

The rest of this paper is organised as follows. Section II
presents the preliminaries of our work. Section III summarises
the related works. Section IV introduces the system frame-
work. Section V presents the details of the data augmentation
based cellular traffic prediction model. Section VI evaluates
the proposed work. Section VII concludes this work.

II. PRELIMINARIES

A. Recurrent Neural Network

A recurrent neural network (RNN) consists of the input,
hidden and output layers. The RNN provides an internal mem-
ory mechanism which can jointly consider the current input
and previous information in hidden states before producing its
output. The RNN can well support in describing the dynamic
sequential data with strong temporal features. Let xt denote
the input traffic information vector at time step t. The hidden
state vector ht and output vector yt can be calculated as

ht = σh(Whxt + Uhht−1 + bh) (1)
yt = σy(Wyht + by) (2)

where W , U and b are the connecting parameters and bias
term; σ(·) is the activation function.

B. Long Short-term Memory

The long short-term memory network (LSTM) is an im-
proved RNN. LSTM was proposed to solve the gradient
vanishing and explosion problem during training for long-term
dependencies in RNN [7]. LSTM cell receives its current input
xt as well as its previous cell state ct−1 and hidden state ht−1

and then uses three controllers called the input gate it, the
forget gate ft and the output gate ot to determine what extent
of information to be added, removed and presented. Formally,
the current cell state ct, hidden state ht and three gates can
be calculated as

it = σ(Wixt + Uiht−1 + bi) (3)
ft = σ(Wfxt + Ufht−1 + bf ) (4)
ot = σ(Woxt + Uoht−1 + bo) (5)
gt = φ(Wgxt + Ught−1 + bg) (6)

ct = ft � ct−1 + it � gt (7)
ht = ot � φ(ct) (8)

where gt is the intermediate state, and W , U and b are the
connecting parameters and bias term; σ(·) and φ(·) are the
activation functions such as sigmoid and tanh.

III. RELATED WORK

In this section, we investigate the state-of-the-art research in
5G cellular networks, the MEC framework and learning-based
augmentation and prediction models.

Caragliu et al. [8] proposed a comprehensive survey and
investigation on the impact of smart city policies through infor-
mation and communication technologies. A detailed discussion
about smart city applications enabled by 5G communication
technologies with unprecedented reliability, very low latency
and massive connections was given by Rao et al. [9]. Multi-
access edge computing, also named as mobile edge computing,
is an emerging framework in recent years. In the ETSI white
paper, the MEC is expected to play an important role and is
specifically designed to be deployed and integrated into the
5G cellular system. Various applications will benefit from the
MEC-based 5G cellular services [10]. Recent research proved
that MEC has capabilities to facilitate smart city applications
such as IoT networks [11] [12], VANETs [13] and healthcare
systems [14] [15].

Li et al. [2] proposed the 5G cellular network architecture
enabled by artificial intelligence. In their work, they described
that resource management systems can be proactively notified
to save cost by taking advantage of the embedded predic-
tion module. Several works (e.g. [4] [16]) made efforts for
promoting intelligent methods in 5G. Their work proved that
the knowledge behind the cellular usage data is sufficient and
useful, and worth exploiting. It also has the potential to make
great contributions in developing smart technologies for both
in smart city development and 5G communications.

The data is critical to train a robust and reliable learning
model. However, the amount of data may be a bottleneck
for those small and micro businesses. Therefore, data aug-
mentation is an important method to alleviate the negative
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impact of data shortage. GAN [6] is the first and the most
successful neural network model that is designed for data
generation via an adversarial process. Recently, Zhang et al.
[17] proposed GAN-based model to solve the insufficiency of
training data and infer the fine-grained mobile traffic patterns.
They regarded the mobile traffic patterns as images or videos
and were inspired by the resolution enhance in image process
that used GAN to achieve their goals. In their work, the
generative model of GAN can generate the high-resolution
approximations of the real traffic distribution. Their work
proved the effectiveness of using GAN for data augmenta-
tion. Moreover, applications of GAN have been scaled from
the image processing to the sequential data such as music
generation [18], medical ICU data generation [19] and time-
series anomaly detection [20]. However, to the best of our
knowledge, there has not been any work reported that adopted
GAN-based model in data augmentation for cellular traffic
usage data in 5G.

For the prediction model, RNN is a very effective and
popular network for time-series data processing, and LSTM is
an evolution of RNN. Yuan et al. [21] proposed a LSTM-based
model in the soft sensor industrial application to learn the
dynamic hidden states which makes contributions for quality
prediction. Recently, sequence-to-sequence (S2S) model [22]
was investigated and applied to process time-series data. The
S2S has capabilities of reading and inferring sequences of
arbitrary length, which provides flexible temporal sequential
data processing ability for applications such as the trajectory
prediction [23] and voice conversion [24].

IV. SYSTEM FRAMEWORK

In the various application scenarios of the smart city such
as smart transportation systems, IoT devices and industrial
applications, many related management works not only need
a high-speed and low-latency network connection but also re-
quire extra computing assistance to cope with complex models.
With the emerging 5G technologies, these requirements can
be easily fulfilled by directly connecting to cellular networks.
MEC is an important framework of the 5G cellular networks
to enhance 5G advantages. MEC provides computation and
communication services in close proximity to subscribers to
meet the high-workload and low-latency requirements.

As described in Fig. 1, the multi-access edge cellular BS is
considered as the basic local communication and processing
unit that provides adequate communicating and computing
resources for edge users and service providers to assist their
work. Various devices and applications directly connect to the
BS to request and receive MEC services. The local BS com-
municates with other MEC BSs and connects to the Internet
with the reliable backhaul link. Meanwhile, BS records the
device connectivity and traffic usage data when it provides
services. These records naturally can be exploited to help
BS management system to improve the utilisation of cellular
resources. Therefore, the data augmentation based cellular
traffic prediction model is deployed at the BS in our system
framework. This model collects cellular network traffic data
from its connected ends, and shares the collected records with
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Fig. 1. The Framework for a 5G Multi-access Edge Computing System in
Smart City

other BSs only for the purpose of the augmentation model
training. By using this shared information, the data augmenta-
tion model at the local BS can train its data generation module
and generate time-series data which is close to the real cellular
traffic. Then, the model can fuse the real collected cellular
traffic and the generative data together to train the prediction
module. After finishing the training process, this model can
provide a reliable short term or long term traffic prediction
for cellular management.

The benefits of this framework can be explained in three
aspects. 1) MEC deployed in the 5G cellular network can
provide ultra-reliable low latency communication and compu-
tation services which explicitly target at the use cases of smart
city. It not only fulfils the increased QoS requirements for
smart city applications but also reduces the traffic workload in
the backbone networks. 2) For some service providers that do
not have sufficient data to train an accurate prediction model,
this data augmentation based cellular traffic prediction model
can help them to acquire more accurate prediction results. 3)
For privacy concerns, the cellular network traffic data will only
be kept within the cellular edge servers and will not be shared
to other service providers. Using the generative data instead of
shared real data for the prediction model training can reduce
privacy issues for involved users.

V. DATA AUGMENTATION BASED CELLULAR TRAFFIC
PREDICTION MODEL

In this section, the details of the data augmentation based
cellular traffic prediction model are presented. This model
consists of two sub-models, the data augmentation model and
the prediction model.

A. Data Augmentation Model

The cellular traffic data augmentation model is the
generative adversarial networks with LSTM core (ctGAN).
As illustrated in Fig. 2, ctGAN consists of two networks:
a generator (G) and a discriminator (D), which are two
different deep LSTM networks. During the training process,
the discriminator receives cellular traffic time-series data as



4

the input to learn the experience from real data and then to
identify the generative data. The generator aims to produce
time-series data which is closed to the real one and makes the
discriminator cannot tell the difference between the generative
time-series and the real time-series traffic data. Given a random
sequence z and cellular traffic time-series data x as inputs, for
a batch of m samples the loss functions of the generator LG

and discriminator LD can be calculated as

LG =
1

m

m∑
i=1

log(1−D(G(z))) (9)

LD =
1

m

m∑
i=1

−(logD(x) + (log(1−D(G(z))))) (10)

The iterative training process of these two networks be-
comes a zero-sum game and stop until their loss functions
converge. After the training of ctGAN finished, the generator
is able to produce the generative cellular traffic usage data
which is closed to the one the exists in the real situation.
Compared to the data generated by specific distributions, our
proposed data augmentation model can generate complex but
strong likeness to the real cellular traffic usage data which
brings better augmentation for training the prediction model.

B. Prediction Model

According to the requirement for the flexible configuration
from service users, we use the S2S model to achieve the
multi-step prediction. As shown in Fig. 2, our S2S prediction
model is implemented by two LSTM networks. One of them
works as an encoder and the other works as a decoder.
Benefiting from this separate architecture, the S2S model in
our proposed model has the capability of learning from the
cellular traffic usage history data with an arbitrary length time-
window denoted by T while outputting the prediction for the
future usage with another length time-window denoted by T ′.
When T ′ > 1, the S2S prediction model can easily achieve
the multi-step prediction.

Given the cellular traffic history time-series data xT with
the length of T , at each time step t ∈ T the encoder receives
the inputs of xt as well as the previous network output the
hidden state het−1 and cell state cet−1. After T steps recursively
updates, the encoder produces the final hidden and cell states
heT and ceT through Eqs (8) and (7) respectively. Then, the
decoder receives heT and ceT as the initial states from the
encoder. The decoder starts its calculation by using a trigger
input (e.g. 0). During the training process, the decoder receives
the sample target y′t′−1 as the input xt′ thus assuming that
it makes a perfect prediction at the previous time step. The
decoder recursively produces the values until the output time-
series reaches the required length of T ′. The loss function is
defined as

L(y′, y) =
1

T ′

T ′∑
t=T+1

(y′ − y)2 (11)

where y′ is the target time-series observations and y is the
corresponding predicted value. The objective is to minimise

the loss and get corresponding parameters Θ of S2S model,
Θ = arg minΘ L(y′, y), which can be trained by a stochastic
gradient-based optimiser. During the prediction process, the
decoder does not know the actual value for near-future time
instances when proceeding the multi-step prediction, so it
feeds back the previous output yt′−1 as the input xt′ for the
next time step prediction.

To enhance the capability of a better representation of traffic
history, we use a bidirectional LSTM network for the encoder.
The Bi-LSTM consists of forward and backward LSTMs. The
forward LSTM reads the input xt from x0 to xT and calculates
the forward hidden states as (

−→
h 1, ...,

−→
h T ). The backward

LSTM reads the input xt from xT to x0 and calculates
the backward hidden states as (

←−
h 1, ...,

←−
h T ). Then, the final

hidden state for the input xt can be obtained by concatenating
the forward and backward hidden states as ht = [

−→
h t;
←−
h t]. In

this way, the final hidden state ht contains the summaries of
both the preceding usage state and the following usage state.

For the prediction model, mean square error (MSE) and
mean absolute error (MAE) are two popular metrics for per-
formance judgement, so we adopt them to evaluate prediction
results in this work. Let x̂t represent the target time-series
observations and xt denote the prediction result of our model.
These two metrics can be described as

MSE =
1

N

1

W

1

T

N∑
i=1

W∑
w=1

T∑
t=1

(x̂w,i
t − xw,i

t )2 (12)

MAE =
1

N

1

W

1

T

N∑
i=1

W∑
w=1

T∑
t=1

|x̂w,i
t − xw,i

t | (13)

where N,W and T denote the number of BSs, time window
and time steps respectively. They are used to measure the
accuracy of time-series traffic between the prediction result
and true value while linear metric MAE treats all differences
with equal weight.

C. Overall Procedure

Fig. 2 illustrates the overall procedures for the data augmen-
tation based cellular traffic prediction model and Algorithm 1
shows the pseudocode. First, two steps are executed at the
same time 1 : the ctGAN generator receives the random
vectors as input and tries to generate the time-series traffic
data that the discriminator cannot differentiate from the real.
The ctGAN discriminator works as a binary classifier and
receives the data from both the generator and the real data
samples as fake and real instances respectively to train itself.

2 After training, the generator enables to produce the time-
series data that looks very close to the real traffic usage data,
which means the same traffic usage may exist in the future.
Therefore, the data augmentation for the training set of the
prediction model is achieved by fusing the generative data
with the real traffic data from local users. In this work, the
real traffic dataset and generative dataset are concatenated to
finish this fusion process. 3 Then, the S2S prediction model
takes the fusion data to train the encoder and decoder module.
The S2S can achieve flexible multi-step prediction by slicing
different lengths of time-window. 4 When a S2S model is



5

Data Fusion

+

Generative Traffic Data Real Traffic Data

Random 
Generator

LSTM

LSTM

LSTM

Dense

Dense

Dense

ctGAN-Generator

LSTM Dense

ctGAN-Discriminator

Data Augmentation

LSTMLSTMLSTM

S2S Encoder

LSTMLSTMLSTM

S2S Decoder

Hidden&Cell 
States

Data Prediction

Traffic Prediction

LSTM Dense

LSTM Dense

)LQDO ,QLWLDO

1

1

2

3

4

Fig. 2. Data Augmentation based Cellular Traffic Prediction Model. 1©- 4©
show the overall procedures of the model.

trained, it can provide a more accurate prediction within the
local community that the MEC services cover.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate
the effectiveness of the proposed model.

A. Dataset Description

Our proposed model is evaluated based on the city-scale
cellular traffic dataset [25]. This traffic dataset consists of
five dimensions information including BS identity, hourly time
stamp, the number of active users, transferred packets and
transferred bytes. The time span of this dataset is a continuous
8 days from 19 August to 26 August 2012 and each individual
is detected by the hashed International Mobile Subscriber
Identity (IMSI).

Due to the system issues during the recording process, not
all BSs hold a full record for 192 continuous hours in the
dataset. Therefore, in our experiments, we used the package
information of a subset of nearly 2K BSs which hold the
complete record within this period. This effective dataset
contains 1983 BSs information out of 13269 BSs, which is
nearly 15% of the total BSs. This effective rate also supports
our previous viewpoint that not all businesses can acquire
sufficient data and the data augmentation is an important
method to help improve the training of the prediction model.

The cellular traffic data from the first 96 hours are used as
the training set and the rest is used as the test set. The length of

Algorithm 1 ctGAN-S2S
Input:

z, x, T , T ′;
Output:

The predicted time-series, y;
1: Initialise parameters;
2: while Not converged do
3: The generator G produces the generative sequences

G(z);
4: The discriminator D discriminates the generative se-

quences D(G(z)) and real data x;
5: Compute losses of LG and LD;
6: Update parameters via Stochastic Gradient Descent

(SGD)-based optimiser;
7: end while
8: The generator produces the generative sequences;
9: Concatenate the generative sequences and real local time-

series as an augmentative fusion dataset;
10: Sample (xT , yT ′) from the augmentative fusion dataset;
11: while Not converged do
12: (

−→
het ,
−→
cet ) = encoder(xT );

13: (
←−
het ,
←−
cet ) = encoder(xT );

14: y = decoder(xt′ , (
−→
het ,
←−
het ), (

−→
cet ,
←−
cet ));

15: Compute losses L(y′, y);
16: Update parameters Θ via SGD-based optimiser;
17: end while
18: Input target cellular traffic to well-trained S2S;
19: S2S predicts the results of future T ′ steps.

the time window for these two sub-datasets is set as 30 hours
which includes the 24-hour data for the encoder and 6-hour
data for the decoder in the S2S network. All of our proposed
model and comparing methods will be evaluated on these two
sub-datasets. We use the min-max normalisation method to
scale the traffic usage data into [0, 1] for the training process.

B. Experiment Settings

1) Reference Models: We compare our model with three
reference models, which are described below:
• Autoregressive Integrated Moving Average (ARIMA):

ARIMA is a widely adopted model to predict the future
value of a time-series, which converts the relations among
the original time-series to reflect the relations among
the difference between the time-series. ARIMA is im-
plemented by using the default out of box tools provided
in the statsmodels [26].

• Nonlinear autoregressive neural network (NARNN): The
NARNN is a basic fully connected artificial neural net-
work that can be used in cellular traffic prediction.
NARNN regards the time steps within a time window
as a whole part and learns from this time window. [27]

• LSTM: The standard LSTM is used to directly learn and
predict future time-series from the cellular traffic usage
data. The standard LSTM uses the memory cell to store
useful long-term status information and it is widely used
in single-step sequence prediction. [28]
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Fig. 3. The losses with the same learning rate and different learning rates for
the generator and discriminator

• Sequence to sequence model (S2S): The standard S2S
model without data augmentation model ctGAN.

2) Model Training: We implement the ARIMA model
using the ‘statsmodels’ python package, and empirically set
the lag value to 10 for autoregression, use a difference order
of 1 to make the time series stationary and use a moving
average model of 0. We implement the NARNN model and
set 256 hidden units for first two fully connected layers and
6 neurons for the output layer with the rectified linear unit
(ReLU) activation function. We implement the two layers
LSTM model and choose 256 hidden units for each layer with
a ReLU activation function. In the training settings of the
ctGAN, a bidirectional LSTM is used for the discriminator
and a unidirectional LSTM is used for the generator. Each
LSTM cell has 256 hidden units. For the discriminator and
generator, the outputs are followed by a fully-connected layer
with sigmoid and tanh activations respectively. All parameters
are learned and updated through stochastic gradient-based
optimiser, Adam [29], with the mini-batch size 128 and back-
propagation through time. In the training of ctGAN, the
separate learning rates are set as 10−4 for the discriminator
and 2 ∗ 10−4 for the generator. The training of the ctGAN
is an adversarial process, so it is hard to find an optimal
learning rate. Therefore, the learning rate that we chose is
the best based on the empirical results. Normally, the learning
rates of generator and discriminator are the same. We set the
learning rate of generator to be larger than discriminator in
order to make the generator receive more training than the
discriminator, which can avoid the discriminator becoming
too strong and effectively help to improve the generator. The
results of losses with the same learning rate and our rates
shown in Fig. 3 also indicate that our setting can help the
ctGAN converge faster than the conventional one.

In the training settings of the S2S, a bidirectional LSTM is
used for the encoder and a unidirectional LSTM is used for
the decoder. 256 hidden units are set in each LSTM cell. The
optimiser for S2S is the same as ctGAN but the mini-batch
size is set to 256. More hidden units can provide more details
and better representations of time-series data but also bring
higher computation and time consumption and the potential
over-fitting problem during the training phase. These models
are implemented by using the Keras with TensorFlow backend
and run on a platform with 16GB of memory, 4-core Intel CPU

TABLE I
COMPARISONS OF PREDICTION PERFORMANCE ON DIFFERENT

EVALUATION METRICS
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i5@3.40GHz and GTX1070 GPU.
For the prediction performance evaluation, two metrics MSE

and MAE that we mentioned in Section V are employed. Re-
call that MSE denotes the average squared difference between
the predicted values and the actual values and MAE denotes
the arithmetic average between the predicted values and the ac-
tual values as a scale-dependent accuracy measure. A smaller
value of MSE and MAE indicates a better performance of the
model.

C. Performance Evaluation

The numeric results of evaluation metrics on different
methods are presented in Table I. As can be seen from the
results, our proposed augmentation based prediction model for
the cellular traffics (ctGAN-S2S) outperforms other models
on the MSE and MAE metrics. It achieves up to 44.74%,
36.36%, 34.38% and 26.32% performance improvement com-
pared to the reference models, respectively. The reasons can
be attributed to the following aspects.

First, as the cellular traffic data is considered to be com-
posed of the linear autocorrelation and nonlinear time-series,
ARIMA is mainly used to model the linear relations in time-
series so it fails to capture the nonlinear component, which
affects the prediction performance on our real cellular traffic
dataset. This shortage can be solved in the artificial neural
networks which have capabilities of handling nonlinear time-
series. Therefore, the results in Table I reveal that all neural
network based model outperforms the ARIMA model.

Second, benefiting from the internal memory of the recur-
rent mechanism, RNN-based models have natural advantages
in learning from sequential data. For time-series of the cellular
traffic, the LSTM can learn more from it and show better
performance than the NARNN, which regards each time-
window-length fragment of time-series as a whole block and
fails to capture the temporal within it.

Third, S2S model can train its encoder and decoder sepa-
rately, which provides better performance on flexible multi-
step prediction capability.

Our proposed ctGAN-S2S model integrates all the ad-
vantages mentioned above. Besides, with the close-to-real
generative data generated by a well-trained ctGAN model,
the S2S model can even learn from those time-series data
that may reflect the future cellular traffic usage. The numeric
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Fig. 4. Comparisons of the prediction performance on base station No.4324
for different models
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result proves the effectiveness of the ctGAN model in data
augmentation.

To further illustrate the prediction performance of our
proposed model, we randomly select one BS (No. 4324)
to show the comparison between the prediction results and
ground truth for different models. As we can see from the case
in Fig. 4(a), the prediction results of ARIMA exist several
obvious faults (e.g. Arrow I.a-d) and miss nearly all peaks.
These obviously inaccurate predictions result in the worst
performances among other methods in both MSE and MAE
metrics. The results of NARNN and LSTM presented in Fig.
4(b) and Fig. 4(c) are better than ARIMA’s in terms of the
trend and seasonality, but non-negligible number of data points
present inaccuracy such as delayed phenomenon (e.g. Arrow
II.a-d and Arrow III.a-c) compared to the ground truth. The
S2S model captures the trend and seasonality changes much
better than the previous models. This ability is proved by the
results shown in Fig. 4(d). It indicates that S2S model remains
the capabilities in trend and seasonality learning and then gives
correct predictions of them. Most peaks (e.g. Arrow IV.a-
c) are correctly predicted without delayed phenomena, which
are major contributions for the improvement of performance
metrics. Furthermore, these capabilities of S2S model are
enhanced by fusing the generative data from ctGAN. Fig. 4(e)
shows the best results from our proposed model among all
reference models. It indicates that ctGAN-S2S well captures
the trend and seasonality without obvious fault points and
missed peaks and provides a more compact reflection (e.g.
Arrow V.a-c) for the ground truth among others.

Similarly, in the above evaluation experiment, we still fuse
5% of the original training amount generative data into the
training set. To further explore the performance improvement
of our proposed model, we evaluate the ctGAN-S2S with
different data augmentation rates.

Table II depicts the prediction performance against the
generative rate of data fused into the training set. When we
raise the augmentation rate from 5% to 10%, it is shown that
the performance increases on both MSE and MAE metrics.
However, when we further increase the amount of generative
data the effect of performance improvement halts and it
becomes worse when fusing 15% and 20% generative data into
the training set. The performance keeps decreasing when more
than 20% generative data is fused into the real cellular dataset.
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The reason is that the prediction model will learn more from
them and the impact of real data on model weights will be
reduced when the proportion of the generative data increases.
Then the prediction model will focus more on the generative
data rather than the real one and the prediction results will
lose the accuracy.

Another important issue that needs to be analysed is the
trade-off between prediction accuracy and computation re-
sources. Fig. 5 shows the time consumption in the training and
prediction process based on different augmentation rates. The
results indicate that the time consumption of both training and
prediction increases with the augmentation rate. Specifically,
the average incremental rates of time consumption in training
and prediction process are only 3.1% and 5.78% with 2.5%
incremental augmentation rate, respectively. Combined with
the prediction performance improvement we analysed above,
the extra time consumption is an affordable cost that MEC
servers can provide.

VII. CONCLUSION

In this paper, we first introduced how 5G technologies
can bring benefits for smart city development and identified
the related challenges. In order to solve these challenges,
we investigated the state-of-the-art research and discussed the
feasibility of using 5G cellular traffic data, promising neural
network-based models and MEC framework. We made efforts
on exploring the problem of jointly considering predicting
accurate cellular traffic with limited real data and protecting
data privacy. To this end, we proposed a data augmenta-
tion based cellular traffic prediction model called ctGAN-
S2S which consists of a cellular traffic generative adversarial
network and a sequence-to-sequence neural network to provide
an improved traffic prediction. We then evaluated our proposed
model using a real city-scale cellular traffic dataset. The
numerical results showed that our proposed model achieves the
best prediction accuracy which was improved by 26.32% ∼ up
to 48.49% among all reference models. The proposed method
can be used to provide accurate cellular traffic prediction and
alleviate the negative impact of data insufficiency for smart
city development. For our future work, we will consider the

geographic information of the cellular base stations and exploit
the spatial-temporal dependencies of corresponding cellular
traffic to further improve the accuracy of traffic prediction.
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