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Abstract—Inertial measurement units (IMUs) have emerged as an essential component in many of today’s indoor navigation solutions
due to their low cost and ease of use. However, despite many attempts for reducing the error growth of navigation systems based on
commercial-grade inertial sensors, there is still no satisfactory solution that produces navigation estimates with long-time stability in
widely differing conditions. This paper proposes to break the cycle of continuous integration used in traditional inertial algorithms,
formulate it as an optimization problem, and explore the use of deep recurrent neural networks for estimating the displacement of a
user over a specified time window. By training the deep neural network using inertial measurements and ground truth displacement
data, it is possible to learn both motion characteristics and systematic error drift. As opposed to established context-aided inertial
solutions, the proposed method is not dependent on either fixed sensor positions or periodic motion patterns. It can reconstruct
accurate trajectories directly from raw inertial measurements, and predict the corresponding uncertainty to show model confidence.
Extensive experimental evaluations demonstrate that the neural network produces position estimates with high accuracy for several
different attachments, users, sensors, and motion types. As a particular demonstration of its flexibility, our deep inertial solutions can
estimate trajectories for non-periodic motion, such as the shopping trolley tracking. Further more, it works in highly dynamic conditions,
such as running, remaining extremely challenging for current techniques.

Index Terms—Pedestrian Navigation, Inertial Indoor Localization, Deep Neural Network, Learning from Mobile Sensor Data, Inertial
Measurement Units.
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1 INTRODUCTION

F AST and accurate robust localization is a fundamental re-
quirement for human and mobile agents. Although global

navigation satellite system (GNSS) is an adequate solution to
most outdoor positioning problems, satellite signals are blocked
or suffer from serious attenuation and multi-path effects in and
around buildings, and therefore cannot be used for indoor posi-
tioning [1]. There is an emerging need to provide ubiquitous lo-
cation information indoors for applications such as health/activity
monitoring, smart retail, public places navigation, human-robot
interaction, and augmented/virtual reality. One of the most promis-
ing approaches is to perform dead reckoning using measurements
from inertial sensors. These methods have attracted great attention
from both academia and industry [2], thanks to their mobility
and flexibility. Unlike other commonly used sensor modalities,
such as GNSS, radio or vision, inertial measurements are entirely
egocentric and independent of both pre-deployed infrastructure as
well as factors such as line-of-sight and visibility.

Recent advances within micro-electro-mechanical systems
(MEMS) sensors have enabled inertial measurement units (IMUs)
small and cheap enough to be deployed on smartphones, robots
and drones. The physical models of inertial navigation system are
based on Newtonian mechanisms, which require the navigation
solution to triply integrate the inertial measurements with initial
states into the orientation, velocity, and location. However, low-
cost inertial sensors are plagued by high sensor noise that prop-
agate to the navigation solution, leading to rapid error growth
during stand-alone dead-reckoning.

To address the unbounded error drift problem, domain-specific
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Fig. 1: Overview of our proposed learning-based method: the
inertial measurements from mobile devices are directly feed into
deep neural networks to predict trajectory.

knowledge is incorporated to enhance the accuracy of the inertial
navigation system [3] in the context of pedestrian navigation. One
solution is to perform a so-called zero-velocity update (ZUPT)
whenever the foot is detected to be at standstill [4]. Essentially,
this means that the navigation system uses the fact that the foot
will be stationary at many sampling instances to mitigate the error
growth. Unfortunately, this approach relies on the assumption that
the IMU is attached to the foot and the pedestrian user adheres to a
standard periodic walking motion. Another solution is step-based
pedestrian dead reckoning (PDR), which infers positional and
rotational displacement quantities by detecting steps, estimating
step length and direction, and then updating the position estimates
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accordingly [5]. Generally, the models used for estimating step
length and step direction can be said to contain implicit motion
models. Consequently, a PDR system sometimes has slower error
growth than a standard inertial navigation system based on three-
fold integration of inertial measurements. However, the perfor-
mance of the dynamic step estimation may be degraded by sensor
noise, variations in the user’s walking habits, and changes in the
phone attachment [6]. Moreover, in many navigation situations
of interest, no steps can be detected. For example, if a phone is
placed on a baby stroller or a shopping trolley, the assumption
of periodicity, exploited by step-based PDR, breaks down. The
architecture of the two existing methods is illustrated in Figure 2.
In summary, both ZUPT-aided inertial navigation and step-based
PDR are limited by assumptions on motion dynamics and sensor
attachment that prevent widespread adoption in daily life [1].

The emerging deep neural networks have proved their im-
pressive performance in solving machine learning tasks, mainly
in the fields of images, audio and speech processing [7]. When
applied in tracking and localization, recent deep approaches [8],
[9] demonstrate that deep neural networks (DNNs) are capable of
extracting high-level motion representations from raw data, while
providing the state-of-art results compared with traditional model
based techniques in terms of accuracy and robustness. But little
prior research has exploited the raw sequential measurements from
low-cost noisy inertial sensors to learn deep tracking.

To constrain the unavoidable inertial system drift, we present
a general framework - Inertial Odometry Neural Network (IONet)
that reconstructs accurate and robust trajectories from raw inertial
measurements. Instead of directly integrating inertial data into
system states, we propose to break the cycle of continuous error
propagation, and reformulate inertial tracking as a sequential
learning problem. This work primarily considers the problem of
indoor localization, i.e. tracking objects and people in a planar
environment using low-cost inertial sensors only. It relies on a
common observation that there is normally no long-term change
in height for indoor users. This assumption can be relaxed through
the use of additional sensors such as a barometer for floor-
change detection. Our proposed model is able to predict motion
transformation and provide a 2D trajectory for indoor users from
raw data without the need of any hand-engineering, as shown in
Figure 1. Our contributions are as follows

• We cast the inertial tracking problem as a sequential
learning problem.

• We propose the first deep neural network (DNN) frame-
work that learns location transforms in polar coordinates
from raw IMU data, and constructs 2D inertial tracking
regardless of IMU attachment.

• Our framework is capable of estimating uncertainties
along with the pose prediction, providing a metric for the
model prediction confidence.

• We collected a large dataset for training and testing, and
conducted extensive experiments across different attach-
ments, motion modes, users/devices and new environment,
whose results outperform traditional SINS and PDR mech-
anisms.

• We demonstrate that our model can generalize to a more
general motion without regular periodicity, e.g. trolley or
other wheeled configurations, and work in highly dynamic
motion patterns, e.g. running and mixed velocity motion.

This paper extends the work presented in [10], with a new con-

tribution on estimating uncertainties for deep inertial navigation
framework, more details on proposed neural network framework,
a deeper analysis of model performance and significantly more
evaluations of new motion modes (running and walking slowly).

The paper is organized as follows: Section 2 provides an
overview of related work; Section 3.1 formulates the principals
and problems of classic inertial navigation systems; Section 3.2
presents a sequence-based physical model to reformulate the iner-
tial tracking as a learning approach; Section 4 and 5 proposes the
deep neural networks framework that reconstructs trajectory from
raw inertial data and estimates uncertainties; Section 6 assesses
the performance of our proposed model via extensive experiments;
Section 7 draws conclusions and discusses future work.

2 RELATED WORK

In this section, we provide a brief overview of some related
work in inertial navigation systems, step-based pedestrian dead-
reckoning, data-driven inertial motion tracking and deep learning
for localization.

2.1 Inertial Navigation Systems
Strapdown inertial navigation systems (SINS) have been stud-
ied for decades [11]. Early inertial navigation systems relied
on expensive, heavy, high-precision inertial measurement units.
Hence, their application was constrained to moving vehicles,
such as automobiles, ships, aircraft, submarines, and spacecraft.
However, recent advances within MEMS technology has enabled
the production of IMUs with significantly lower cost, size, and
energy consumption. As a result, MEMS IMUs are today deployed
within robotics, unmanned aerial vehicle navigation [12], and
mobile positioning [2]. However, the accuracy of a MEMS IMU
is very limited, and the sensor measurements typically have to
be integrated with other information sources when used over
an extended period, for example, as visual inertial odometry
(VIO). The effective fusion of inertial sensors and cameras can
be achieved via extended kalman filtering (EKF) [13], or graph
optimization [14] [15] [16], where the raw visual and inertial
measurements are tightly and jointly optimized. For pedestrian
tracking, attaching an IMU on the user’s foot can take advantage
of Zero-Velocity Updates (ZUPTs) to compensate for error drifts
of inertial systems [17]. ZUPTs make it possible to break the cubic
error growth of stand-alone SINS. Since the foot is stationary
at regular intervals during normal gait, the use of ZUPTs will
typically lead to a substantial reduction in the position error growth
[18]. However, the assumption of zero-velocity detection requires
the IMUs to be attached on the user’s foot, which makes this
approach unsuitable for everyday usage.

2.2 Step-based Pedestrian Dead-reckoning
Unlike the open-loop integration of inertial sensors within SINS,
PDR uses inertial measurements to detect steps, as well as to
estimate stride length and heading via empirical formulas [19].
However, system errors still quickly accumulate, because of
incorrect step segmentation and inaccurate stride estimation. In
addition, a large number of parameters have to be carefully tuned
according to the user’s gait characteristics. There are three primary
tasks of step-based pedestrian dead-reckoning: step count or step
segmentation, step length estimation, and step direction estima-
tion [20]. Step segmentation is normally based on accelerometer
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measurements and can be performed using thresholding or peak
detection, correlation-based algorithms, or spectral analysis. A
performance evaluation of algorithms for step segmentation is pre-
sented in [6]. The best performance was achieved with windowed
peak detection, a hidden Markov model, and a continuous wavelet
transform, which had median error rates in the order of 1.3 %.
Given its relative simplicity, the authors in [6] recommend the
windowed peak detection algorithm.

Recent research has mainly focused on fusing SINS and PDR
with external references, such as a map information [21], WiFi
fingerprinting [22], photodiode sensors [23], geomagnetic field
distortion [24], and power network electromagnetic field [25].
However, the fundamental problem associated with the rapid error
growth of pedestrian navigation systems only based on inertial
measurements still remains unsolved. In this paper, we abandon
previous approaches and present a new general framework for
inertial odometry. This allows us to handle more general tracking
problems, including trolley/wheeled configurations, which step-
based PDR cannot address.

2.3 Data-driven Inertial Motion Tracking
Data-driven methods have been explored in a variety of iner-
tial tracking tasks. Ahuja et al. adopted the supervised support
vector regression to enhance the knee angle estimation during
human walking with body-attached IMUs [26]. Inertial-based
gesture recognition has been achieved by extracting handcrafted
features via probabilistic parameter learning [27]. [28] proposed
to estimate human walking speed by a Hidden Markov Model
(HMM). Machine learning techniques were also explored in gait
and pose analysis with inertial sensors [29], [30], [31]. [32] used
multi-layer perceptrons (MLPs) to model sensor-displacement for
human motion reconstruction. These approaches mostly learn to
analyse human motion rather than human localization. They either
rely on hand-designed features or enhance existing models with
learnt parameter. Compared with previous work, our proposed
model is able to automatically learn motion representation from
raw data in an end-to-end manner and reconstruct an accurate
trajectory for large-scale long-term indoor localization using deep
neural networks.

2.4 Deep Neural Networks for Localization
Deep learning approaches have recently shown excellent perfor-
mance in handling sequential data, such as speech recognition
[33], machine translation [34], visual tracking and video descrip-
tion [35]. Previous learning-based work has tackled localization
problems, by predicting ego-motion from visual sensor measure-
ments using deep neural networks instead of applying geometric
theory. Deep learning methods are capable of extracting high-level
feature representation from large datasets, and provide an alterna-
tive to solve the visual odometry (VO) problem. [36] formulated
VO as a classification problem, and proposed a Convolutional
Neural Network (CNN) architecture to predict the discrete changes
of direction and velocity. PoseNet [8] tackled the 6-DOF camera
relocalization from a single RGB image with a CNN in an end-to-
end manner. Further, [37] presented a CNN-based unsupervised
framework to learn depth and camera ego-motion from video
sequences by adopting the synthesis as the supervisory signal,
showing competitive performance over the classic state-of-art
VO. Here, the CNNs serve as a mapping from the raw scene
image to the pose or the pose transformation. Only relying on
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CNNs, their models are easily overfit in scene geometry, limiting
their generalization ability in new environments [38]. In contrast,
DeepVO [9] and VidLoc [39] leveraged the combination of CNNs
and deep recurrent neural networks (RNNs) for sequential learning
to capture the temporary dependencies and motion dynamics of
image sequences, rather than processing a single image. In these
frameworks, the features extracted by CNNs are passed through
RNNs for sequential learning, and the CNN and RNN modules
are optimized jointly. They achieve excellent performance in pose
estimation even in new scenarios. Similarly, VINet [40] processes
both the image sequences and inertial measurements to realize
visual inertial odometry based on RCNNs. Inspired by their work,
we also exploit the ability of RNNs to model motion dynamics
and temporal dependencies of inertial readings.

To the best of our knowledge, IONet is the first neural network
framework to achieve inertial odometry using inertial data only.

3 BACKGROUND

This section introduces the background of inertial navigation
mechanisms, and a derivation of sequence based physical model.
We discuss the limitations of this model-based method, and
show how the sequence based formulation paves the way to our
proposed learning based approach.

3.1 The Principles Of Inertial Navigation

The principles of inertial navigation are based on Newtonian
mechanics. They allow tracking the position and orientation of
an object in a navigation frame given an initial pose and measure-
ments from accelerometers and gyroscopes.

Fig. 2 illustrates the basic mechanism of inertial navigation
algorithms. The three-axis gyroscope measures angular velocities
of the body frame with respect to the navigation frame, which are
integrated into pose attitudes in Equations (1-3). To represent the
orientation, the direction cosine Cn

b matrix is used to represent
the transformation from the body (b) frame to the navigation (n)
frame, and is updated with a relative rotation matrix Ω(t). The
3-axis accelerometer measures proper acceleration vectors in the
body frame, which are first transformed to the navigation frame
and then integrated into velocity, discarding the contribution of
the gravity force g in Equation (4). The locations are updated by
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integrating velocity in Equation (5). Equations (1-5) describe the
attitude, velocity and location updates at any time stamp t. In our
application scenarios, the effects of earth rotation and the Coriolis
accelerations are ignored.

The Attitude Update is given by

Cn
b (t) = Cn

b (t− 1) ∗Ω(t) (1)

r = ω(t)dt (2)

Ω(t) = C
bt−1

bt
= I +

sin(r)

r
[r×] +

1− cos(r)

r2
[r×]2, (3)

the Velocity Update is given by

v(t) = v(t− 1) + ((Cn
b (t− 1)) ∗ a(t)− gn)dt, (4)

and the Location Update is given by

L(t) = L(t− 1) + v(t− 1)dt, (5)

where a and ω are accelerations and angular velocities in body
frame measured by IMU, v and L are velocities and locations in
navigation frame, r is the norm of r, and g is gravity.

Under ideal condition, SINS sensors and algorithms can es-
timate system states for all future times. High-precision INS in
military applications (aviation and marine/submarine) uses highly
accurate and costly sensors to keep measurement errors very small.
They also require a time-consuming system initialization including
sensor calibration and orientation initialization. However, these
requirements are inappropriate for pedestrian tracking. Realizing
a SINS mechanism on low-cost MEMS IMU platform suffer from
the following two problems

• The measurements from IMUs embedded in consumer
phones are corrupted with various error sources, such as
scale factor, axis misalignment, thermo-mechanical white
noise and random walking noise [41]. From attitude update
to location update, the INS algorithm sees a triple integra-
tion from raw data to locations. Even a tiny noise will
be highly exaggerated through this open-loop integration,
causing the whole system to collapse within seconds.

• A time-consuming initialization process is not suitable for
everyday usage, especially for orientation initialization.
Even small orientation errors lead to the incorrect projec-
tion of the gravity vector. For example, a 1 degree attitude
error will cause an additional 0.1712 m/s2 acceleration on
the horizontal plane, leading to 1.7 m/s velocity error and
8.56 m location error within 10 seconds.

3.2 Sequence-based Physical Model
To address the problems of error propagation, our insight is to
break the cycle of continuous integration, and segment inertial
data into independent windows. This is analogous to resetting an
integrator to prevent windup in classical control theory [42].

However, windowed inertial data is not independent, as Equa-
tions (1-5) clearly demonstrate. This is because key states (namely
attitude, velocity and location) are hidden - they have to be de-
rived from previous system states and inertial measurements, and
propagated across time. Unfortunately, errors are also propagated
across time, cursing inertial odometry. It is clearly impossible
for windows to be truly independent. However, we can aim for
pseudo-independence, where we estimate the change in navigation
state over each window. Our problem then becomes how to
constrain or estimate these latent system states over a window.

Following this idea, we derive a sequence-based physical model
from basic Newtonian Laws of Motion, and reformulate it into a
learning model.

The unobservable or latent system states of an inertial sys-
tem consist of orientation Cn

b , velocity v and position L. In a
traditional model, the transformation of system states could be
expressed as a transfer function/state space model between two
time frames in Equation (6), and the system states are directly
coupled with each other

[Cn
b v L]t = f([Cn

b v L]t−1, [a ω]t). (6)

We first consider displacement. To separate the displacement
of a window from the prior window, we compute the change in
displacement ∆L over an independent window of n time samples,
which is simply

∆L =
n∑
t=0

v(t) · dt. (7)

We can separate this out into a contribution from the initial
velocity state, and the accelerations in the navigation frame

∆L = nv(0)dt+ [(n− 1)s1 + (n− 2)s2 +· · ·+ sn−1]dt2 (8)

where
s(t) = Cn

b (t− 1)a(t)− g (9)

is the acceleration in the navigation frame, comprising a dynamic
part and a constant part due to gravity.

Then, Equation (8) is further formulated as

∆L = nv(0)dt+ [(n− 1)Cn
b (0) ∗ a1 + (n− 2)Cn

b (0)Ω(1)

∗ a2 +· · ·+ Cn
b (0)

n−2∏
i=1

Ω(i) ∗ an−1]dt2

− n(n− 1)

2
gdt2

(10)

and simplified to become

∆L = nv(0)dt+ Cn
b (0)Tdt2 − n(n− 1)

2
gdt2 (11)

where

T = (n− 1)a1 + (n− 2)Ω(1)a2 +· · ·+
n−2∏
i=1

Ω(i)an−1. (12)

In our work, we consider the problem of indoor positioning i.e.
tracking objects and people on a horizontal plane. This introduces
a key observation: in the navigation frame, there is no long-term
change in height1. The mean displacement in the z axis over a
window is assumed to be zero and thus can be removed from
the formulation. We can compute the absolute change in distance
over a window as the L-2 norm i.e. ∆l = ‖∆L‖2, effectively
decoupling the distance traveled from the orientation (e.g. heading
angle) traveled, leading to

∆l = ‖nv(0)dt+ Cn
b (0)Tdt2 − n(n− 1)

2
gdt2‖2

= ‖Cn
b (0)(nvb(0)dt+ Tdt2 − n(n− 1)

2
gb0dt

2)‖2.
(13)

1. This assumption can be relaxed through the use of additional sensor
modalities such as a barometer to detect changes in floor level due to stairs or
elevator.
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Fig. 3: Overview of IONet framework. Inertial measurements are segmented into independent windows. A 2-layer bi-LSTM is used to
estimate the change in heading and displacement (polar vector) as well as the estimation uncertainties.

Because the rotation matrix Cn
b (0) is an orthogonal matrix

i.e. Cn
b (0)TCn

b (0) = I, the initial unknown orientation has been
successfully removed from, giving us

∆l = ‖∆L‖2

= ‖nvb(0)dt+ Tdt2 − n(n− 1)

2
gb0dt

2‖2.
(14)

Hence, over a window, the horizontal distance traveled can be
expressed as a function of the initial velocity, the gravity, and the
linear and angular acceleration, all in the body frame

∆l = f(vb(0),gb0,a1:n,ω1:n). (15)

To determine the change in the user’s heading, we consider
that a user’s proper accelerations and angular rates (a1:n,ω1:n)
are also latent variables of IMU raw measurements (â1:n, ω̂1:n),
and on the horizontal plane, only the heading attitude is essential in
our system. From Equations (2-3) the change in the heading ∆ψ
is expressed as a function of the raw data sequence. Therefore,
we succeed in reformulating traditional model as a polar vector
(∆l,∆ψ) based model, which is only dependent on inertial sensor
data, the initial velocity and gravity in the body frame

(∆l,∆ψ) = fθ(v
b(0),gb0, â1:n, ω̂1:n). (16)

To derive a global location, the starting location L = (Lx0 , L
y
0)

and heading ψ0 and the Cartesian projection of a number of
windows can be written as{

Lxn = Lx0 + ∆l cos(ψ0 + ∆ψ)

Lyn = Ly0 + ∆l sin(ψ0 + ∆ψ).
(17)

Our task now becomes how to implicitly estimate this initial
velocity and the gravity in body frame, by casting each window as
an estimation problem.

This section serves as an overview showing the transition
from the traditional model-based method to the proposed neural-
network-based method. It takes the traditional state-space-model

described in Equations (1-5), which converts raw data to poses in
a step-by-step manner, to a formulation where a window of raw
inertial data is processed in a batch to estimate a displacement and
an angle change. Note that in both formulations, the final output
depends on the initial attitude and velocity. As a result, in both
cases, the curse of error accumulation will not be avoided if using
the model-based integration approach. However, our sequence
based formulation paves the way to our proposed neural network
approach.

4 INERTIAL ODOMETRY NEURAL NETWORK

Estimating the initial velocity and orientation in the body frame
explicitly using traditional techniques is an extremely challenging
problem. Rather than trying to determine the two terms, we
instead treat Equation (16) as an estimation problem, where the
inputs are the observed sensor data and the output is the polar
vector. The unobservable terms simply become latent states of
the estimation. Intuitively, the motivation for this relies on the
regular and constrained nature of pedestrian motion. Over a
window, which could be a few seconds long, a person walking
at a certain rate induces a roughly sinusoidal acceleration pattern.
The frequency of this sinusoid relates to the walking speed. In
addition, biomechanical measurements of human motion show that
as people walk faster, their strides lengthen [43]. Similarly, vehicle
speed can also be estimated using only raw IMU measurements.
This was demonstrated in [44], which used an accelerometer to
track the vibrations of the vehicle chassis. The idea relies on
the fact that the vibrations have a fundamental frequency that is
proportional to the vehicle speed. Moreover, the gravity in body
frame is related to the initial yaw and roll angle, determined by
the attachment/placement of the device, which can be estimated
from the raw data [45]. In this paper, we propose the use of deep
neural networks to learn the relationship between raw acceleration
data and the polar delta vector, as illustrated in Fig. 3.
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Input data are independent windows of consecutive IMU
measurements, strongly temporal dependent, representing body
motion. To recover latent connections between motion character-
istics and data features, a deep recurrent neural network (RNN) is
capable of exploiting these temporal dependencies by maintaining
hidden states over the duration of a window. Note however that
latent states are not propagated between windows. Effectively, the
neural network acts as a function fθ that maps sensor measure-
ments to polar displacement over a window

(a,ω)200×6
fθ−→ (∆l,∆ψ)1×2, (18)

where a window length of 200 frames (2 seconds) is used here2.
In the physical model, orientation transformations impact

all subsequent outputs. We adopt a Long Short-Term Memory
(LSTM) to handle the exploding and vanishing problems of
vanilla RNN, as it has a much better ability to exploit the long-
term dependencies [46]. In addition, as both previous and future
frames are crucial in updating the current frame a bidirectional
architecture is adopted to exploit dynamic context.

Equation (16) shows that modeling the final polar vector
requires modeling some intermediate latent variables, e.g. initial
velocity and gravity. Therefore, to build up higher representation
of IMU data, it is reasonable to stack 2-layer LSTMs on top of
each other, with the output sequences of the first layer supplying
the input sequences of the second layer. The second LSTM
outputs one polar vector to represent the transformation relation
in the processed sequence. Each layer has 128 hidden nodes.
To increase the output data rate of polar vectors and locations,
IMU measurements are divided into independent windows of 200
frames (2s) with a stride of 10 frames (0.1s).

The optimal parameter θ∗ inside the proposed deep RNN
architecture can be recovered by minimizing a loss function on
the training dataset D = (X,Y) as

θ∗ = arg min
θ
L(fθ(X),Y). (19)

The loss function is defined as the sum of Euclidean dis-
tances between the ground truth (∆l,∆ψ) and estimated value
(∆l̃,∆ψ̃)

L =
∑
‖∆l −∆l̃‖22 + κ‖∆ψ −∆ψ̃‖22 (20)

where κ is a factor to regulate the weights of location displacement
∆l and heading change ∆ψ.

5 THE UNCERTAINTY ESTIMATION OF IONET

In this section, we aim to determine the uncertainty of deep iner-
tial navigation, which represents the confidence in IONet model
output. Since deep neural networks are hard to interpret [47],
uncertainty estimation allows us to understand to what extent to
trust the model prediction [48]. Moreover, quantifying uncertainty
is essential in enhancing inertial navigation with sensor fusion and
graph SLAM [49]. For example, the inertial sensor can be better
integrated with GPS to form a GPS/IMU systems [50], or with
a camera to form visual inertial odometry [14], with the aid of
uncertainty.

In our work, the uncertainty is first estimated on motion
transformation, e.g. polar vector transformation (∆l,∆ψ) defined

2. We experimented with a window size of 50, 100, 200 and 400 frames,
and selected 200 as an optimal parameter regarding the trade-off between
accumulative location error and predicted loss.

in Equation 16, and then we will show how to infer the uncertainty
of absolute heading attitude and the location. Unlike the polar
vector, which is trained using supervisory labels provided by high
precision optical motion tracking system, the hand-crafted labels
for uncertainty are impossible to obtain. This is because there is
no direct measurement method for the real uncertainty. Therefore,
we propose to estimate the uncertainty of inertial tracking in an
unsupervised manner by extending the framework in Section 4 to
a Bayesian model.

The uncertainty for the polar vector is assumed to be nor-
mally distribution. Our IONet architecture proposed in Section
4 is trained by minimizing the mean square loss between the
predicted polar vector fθ(x) and its corresponding labels y. Their
outputs can be regarded as the mean of conditional distribution:
N (fθ(x),σ2). The likelihood of predicting the real motion trans-
formation is defined as a Gaussian distribution with the model
prediction and its variance σ2

p(y|fθ(x)) = N (fθ(x),σ2)

=
1√

2πσ2
exp

(
− (y − fθ(x))2

2σ2

)
.

(21)

We alter the deep neural network framework to predict both
the motion transformation and its variance. The variance σ repre-
sents the probabilistic distribution over the model output, termed
Aleatoric uncertainty [51]. The aim is to optimize the neural
network weights θ by performing a MAP (maximum a posteriori
probability) inference. This is equivalent to finding an optimal
value θ∗ for the model parameters

θ∗ = arg max
θ

p(y|fθ(x))

= arg min
θ
− log p(y|fθ(x))

= arg min
θ

1

2σ2
‖y − fθ(x)‖2 +

1

2
logσ2.

(22)

The minimizing objective of loss is defined as

L =
1

2
σ−2‖y − ỹ‖2 +

1

2
logσ2 (23)

where ỹ and σ are the model predicted mean and variance. In
practice, our framework is designed to predict the log variance
si = logσ2, considering that regressing si is more stable than
directly predicting σ2 [51]

L =
1

2
exp(−si)‖y − ỹ‖2 +

1

2
si. (24)

Based on the propagation rules of uncertainty, the uncertainty
of absolute heading attitude and the location can be inferred.
As the absolute heading is the accumulation of the heading
displacement, its variance σ2

ψt
at t time step is the sum of the

previous variance σ2
ψt−1

and the variance of delta heading σ2
∆ψt

,
estimated by our deep neural network i.e.

σ2
ψt = σ2

ψt−1
+ σ2

∆ψt . (25)

From Equation (17), both variances of the delta location and
the absolute heading are considered in order to infer the variance
of delta location in the navigation frame - East (x) and North (y)
axes: {

σ2
∆Lx = cos(ψ)2 ∗ σ2

∆l + ∆l2[sin(ψ) ∗ σψ]2

σ2
∆Ly = sin(ψ)2 ∗ σ2

∆l + ∆l2[cos(ψ) ∗ σψ]2
. (26)
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Similar to the uncertainty of the absolute heading, the uncer-
tainty of the absolute location is the accumulation of the variance
of the location change

σ2
Lt = σ2

Lt−1
+ σ2

∆Lt . (27)

6 EXPERIMENTS

In this section, we evaluate our proposed model in terms of
accuracy and robustness. A large dataset was collected to train and
test our proposed model. We will first describe the data collection
and the training of the neural network. We then evaluate the
accuracy of IONet and test its ability to generalize across different
users, devices, motion modes, and environments, followed by
uncertainty estimation. Last, we further apply our model to trolley
tracking.

6.1 Training Details

Dataset: There are no public datasets for indoor localization using
phone-based IMU. We therefore developed our own dataset3 with
a pedestrian walking inside a room, where an optical motion
capture system (Vicon) is installed. Vicon is known for providing
high-precision full pose ground truth (0.01m for location, 0.1
degree for orientation) for object localization and tracking [52].
The training dataset is collected from the IMU sensor on an iPhone
7 Plus. The smartphone is attached at different positions with the
same pedestrian, including hand-held, in pocket and in handbag
and on trolley. We collect 2-hours of IMU data for each attachment
scenario. Note that, this phase of training data collection only
needs one pedestrian (User 1) to participate. The raw inertial
readings are segmented into sequences with a window size of 200
frames (2 seconds). The detailed description of the dataset is given
in Table 1.

In order to test our model’s ability to generalize across
different users, we invited 3 new participants and made further
evaluations on two additional phones: an iPhone 6 and an iPhone
5.

Training: We implemented our model on the Pytorch plat-
form, and train the model on a NVIDIA TITAN X GPU. During
training, we used Adam, a first-order gradient-based optimizer
[53] with a learning rate of 0.0001. On average, the training
converges after 100 iterations. To avoid overfitting, we gathered
data with abundant moving characteristics inside, and adopted
Dropout [54] in each LSTM layer, randomly dropping 25% units
from neural networks during training. This method significantly
reduces overfitting, and proves to perform well on new users,
devices and environments.

Testing: We also found that a separate training on every attach-
ment shows better performance in prediction than training jointly,
hence we implemented the prediction model of 2-layer Bi-LSTM
trained on separate attachments in our following experiments. In
a practical deployment, existing techniques can be adopted to
recognize different attachments from pure IMU measurements
[6], providing the ability to dynamically switch between trained
models.

Baselines: Two traditional methods are selected as baselines,
pedestrian dead reckoning (PDR) and strapdown inertial nav-
igation system (SINS) mechanism [11], to compare with our
prediction results. PDR algorithms are seldom made open-source,

3. Our Dataset can be found at http://deepio.cs.ox.ac.uk
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the training than all other neural networks.
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Fig. 5: The predicted polar vector are very close to the ground
truth with handheld phone no matter in (a) slowly walking (b)
normally walking and (c) running, showing the effectiveness of
our proposed framework on polar vector regression from raw
inertial data.
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Fig. 6: The performance of our proposed IONet is compared with SINS and PDR. In the experiments involving multiple users, our
learning model trained on User 1 is tested directly on other users without further fine-tuning in three attachments: handheld (a), pocket
(b) and bag (c), to show the generalization ability across different devices. In the experiments involving multiple devices, our model
trained on iPhone 7 is tested directly on other devices without further fine-tuning in three attachments: handheld (d), pocket (e) and bag
(f) to show its generalization ability across different devices.
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Fig. 7: Our proposed IONet can generate more accurate trajectories in large-scale localization experiments on two office floors - Floor
A (1650 m2) and Floor B (2475 m2) in three attachments - Handheld, In Pocket, and In Handbag, compared with SINS and PDR.
Note that our learning model is trained inside one room (Vicon Room), but generalize well to outside places without further training.
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Fig. 8: The performance of IONet is evaluated on an challenging experiment with varying motion modes including waking slowly,
halting, walking normally and running for estimating (a) trajectory and (b) heading and location displacement. IONet can learn an
extensive amount of information about the idiosyncratic motion behavior associated with different motion modes.

TABLE 1: Number of Sequences in Dataset

Dataset Domain Training Sequences Testing Sequences

Handheld (Normal) 45544 3812
Handheld (Slow) 36242 3095
Handheld (Run) 31161 3007

Pocket 53631 2385
Handbag 36410 4430
Trolley 29001 2718

especially a robust PDR used in different attachments, so we
implement code ourselves according to [6] for step detection and
[55] for heading and step length estimation.

6.2 Comparison with Other DNN Frameworks
To evaluate our assumption of adopting a 2-layer Bidirectional
LSTM for polar vector regression, we compare its validation
results with various other DNN frameworks, including frameworks
using vanilla RNN, vanilla Convolution Neural Network, 1-layer
LSTM and 2-layer LSTM without Bi-direction. The training data
are from all attachments. Fig. 4 shows their validation loss lines.
The dimension of hidden states is chosen the same for all recurrent
neural networks architectures (vanilla RNN, 1-layer LSTM, 2-
layer LSTM, and 2-layer Bi-directional LSTM). Our proposed
framework with 2-layer Bi-LSTM descends more steeply, and
stays lower and more smoothly during the training than all other
neural networks, supporting our assumption, while vanilla RNN
suffers from vanishing gradient problems, and CNN doesn’t seem
to capture the temporal dependencies well.

6.3 Tests Involving Multiple Users and Devices
A series of experiments were conducted inside a large room with
new users and phones to show our neural network’s ability to
generalize. The Vicon system provides a highly accurate reference
to measure the location errors.

The first group of tests include four participants, walking
randomly for two minutes with the phone in different attachments,
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Fig. 9: The maximum position error of IONet stayed around
2 meters within 90% of the testing time, seeing 30%- 40%
improvement compared with traditional PDR in multiple users (a)
and multiple phones (b).

0

5

10

15

20

25

50 100141 50 100141 50 100141

Er
ro

r 
(m

)

Distance (m)

IONet PDR

Handheld Pocket Handbag

(a) Floor A

0

2

4

6

8

10

12

14

16

18

50 100154 50 100154 50 100154

Er
ro

r 
(m

)

Distance (m)

IONet PDR

Handheld Pocket Handbag

(b) Floor B

Fig. 10: In large-scale indoor localization, absolute position
errors of IONet is calculated at a distance of 50m, 100m and
the end point on Floor A (a) and Floor B (b), showing competitive
performance over traditional PDR.

e.g. in hand, pocket and handbag respectively, covering everyday
behaviors. Note that the training dataset is taken from only one of
these participants. The performance of our model is measured as
cumulative error distribution function (CDF) against Vicon ground
truth and compared with conventional PDR and SINS. Fig. 6a, Fig.
6b and Fig. 6c illustrate that our proposed approach outperforms
the competing methods in every attachment. If raw data is directly
triply integrated by SINS, this results in cubic error growth. The
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(a) The uncertainty of the polar vector. (b) The uncertainty of heading and location

Fig. 11: The predicted mean values of IONet are shown together with their corresponding uncertainty and the ground truth for (a) polar
vector and (b) absolute heading and locations.
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Fig. 12: The correlation between uncertainties and errors for
global heading (a) and locations (b, c) demonstrates that the
uncertainties are in positive correlation with the errors. Note that
the small error does not always mean small uncertainty, because
the mean errors can cancel with each other.

maximum position error of IONet stayed around 2 meters within
90% of the testing time, seeing 30%- 40% improvement compared
with traditional PDR in Fig. 9a.

Another group of experiments is to test the performance across
different devices, shown in Fig. Fig. 6d, Fig. 6e and Fig. 6f. We
choose another two very common consumer phones, iPhone 6
and iPhone 5, whose IMU sensors, InvenSense MP67B and ST
L3G4200DH, are quite distinct from our training device, iPhone 7
(IMU: InvenSense ICM-20600). Although intrinsic properties of

different sensors influence the quality of inertial measurements,
our neural network shows good robustness.

6.4 Tests Involving Multiple Motion Modes
To evaluate the ability of IONet to generalize across different
motion modes, several experiments were conducted. Fig. 5 dis-
plays estimated and ground truth polar vectors when training and
testing individually with three different motion types: slow walk,
normal walk, and running. As can be seen from the figures, both
relative distance and heading can be estimated with great accuracy
over an extended period for all motion modes. This demonstrates
that the neural network can achieve excellent performance over a
broad range of motion types. By contrast, Fig. 8 illustrates the
performance on a more varied data set where all of the three
previously studied motion modes are used, and where the training
data included all of the three motion modes. As seen in Fig. 8 (b),
the heading and distance estimates are of good quality through
most of the data set. However, the overall error is higher than
when considering the different motion modes separately as in Fig.
5. Hence, taken together, Fig. 8 and Fig. 5 make it possible to
conclude that the neural network can learn an extensive amount
of information about the idiosyncratic motion behavior associated
with different motion modes. For practitioners, this means that
motion type classification and individual calibration for different
motion types potentially can lead to significant improvements
in performance. Despite the fact that quickly varying movement
characteristics may be more challenging for IONet, Fig. 8 (a) still
demonstrates good ability to reconstruct the overall motion pattern
of a trajectory with mixed motion modes.

6.5 Large-scale Indoor Localization
Here, we apply our model on a more challenging indoor localiza-
tion experiment to present its performance in a new environment.
Our model without training outside Vicon room, is directly applied
to six large-scale experiments conducted on two floors of an office
building. The new scenarios contained long straight lines and
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Fig. 13: The trolley tracking trajectories of our proposed (b) IONet are compared with (a) Ground Truth, and (c) Tango. Our proposed
IONet shows almost the same accuracy as Tango, and even better robustness, because our pure inertial solution suffers less from
environmental factors.
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slopes, which were not contained in the training dataset. Lacking
the high precision reference from Vicon, we take Google Tango
Tablet [56], a well-known visual-inertial device, as pseudo ground
truth.

The floor maps are illustrated in Fig. 7a (about 1650 m2

size) and Fig. 7d (about 2475 m2). Participants walked normally
along corridors with the phone in three attachments respectively.
The predicted trajectories from our proposal are closer to Tango
trajectories, compared with the two other approaches in Fig. 7. The
continuously propagating error of SINS mechanism caused trajec-
tories with cubic error growth. Impacted by wrong step detection
or inaccurate step stride and heading estimation, PDR accuracy
is limited. We calculate absolute position error against pseudo
ground truth from Tango at a distance of 50m, 100m and the end
point in Fig. 10. Our IONet shows competitive performance over
traditional PDR and has the advantage of generating a continuous
trajectory at 10 Hz, although its heading attitude deviates from
true values occasionally.

To summarize the generalizability of IONet, Section 6.1 stated
that IONet gives significantly better performance when applied
to different attachments separately. On the other hand, Sections
6.3 and 6.5 demonstrated that the neural network generalizes
well across different users, devices, and test environments. As
discussed in Section 6.4, IONet can perform well when simul-
taneously trained and evaluated on multiple motion modes, but
may give better performance if the network is trained individually
for each motion type.

6.6 Uncertainty Estimation

We tested the Bayesian model proposed in Section 5 to evaluate
its ability for uncertainty estimation. The handheld attachment in
normal walking was taken as an example. The model was trained
on the data collected by iPhone 7Plus, but tested on an Android
smartphone Nexus 5, whose IMU has distinct different properties
from the iPhone 7Plus, in order to show the model confidence in
a different input distribution.

The predicted polar vector (delta location and delta heading)
is shown together with its corresponding uncertainty (standard
deviation σ) and the ground truth in Fig. 11a. From the variance
of motion transformation, the uncertainties of absolute heading
and locations are inferred according to Equations 25 - 27, and
their results are presented in Fig. 11b. For heading estimation, the
uncertainty captures to what extent the predicted values deviate
from the real ones. Although we never provide any labels for
training the uncertainty, it automatically learns to represent the
likelihood of the predicted results, even with a new input distribu-
tion. The corresponding variances of the whole trajectory on the
North (y) and East (x) axes increase dramatically. This is because
the location sees an integration from the location change in two
axes, and it is inferred from both the variances of absolute heading
and the delta L. Fig. 12 illustrated the correlation between the
errors and uncertainties for the global heading and locations in
North and East axes. It demonstrates that the uncertainties are
positive correlated with the errors, and capable of reflecting the
belief in the model prediction. Note that the small error does not
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always mean small uncertainty, because the mean errors can cancel
each other out. For example, if the location transformation errors
are -3m and 3m at previous step and current step, the absolute
error would be 0 m, but the uncertainties have to accumulate to
reflect the belief drift in system.

6.7 Trolley Tracking

We consider a more general problem without periodic motion,
which is hard for traditional step-based PDR or SINS on a
limited quality IMU. Tracking wheel-based motion, such as a
shopping trolley/cart, robot or baby-stroller is highly challenging
and hence under-explored. Current approaches to track wheeled
objects are mainly based on visual odometry or visual-inertial
odometry (VIO) [12], [13]. However, they fail when the device is
occluded or operating in low light environments, such as placed in
a bag. Moreover, their high energy- and computation-consumption
also constrain further application. Here, we apply our model on
a trolley tracking problem using only inertial sensors. Due to a
lack of comparable techniques, our proposal is compared with the
state-of-art visual-inertial odometry Tango.

Our experiment devices, namely an iPhone 7 and the Google
Tango are attached on a trolley, pushed by a participant. Detailed
experiment setup and results could be found in supplementary
video 4. High-precision motion reference was provided by Vicon.
The VIO of Tango device is based on Kalman filtering to fuse
the inertial navigation system with the visual features extracted
from images. However, in VIO the image features are extracted
by hand-designed algorithms. In some scenarios, it is hard to
obtain enough visual features to estimate the geometry structure
of a scene, for example, when cameras are in front of a blank
wall, no useful features can be extracted. In our experiments, the
VIO collapsed due to the lost features in the structureless and
featureless wall of the experimental room, which further breaks
down the entire system. From the trajectories from Vicon, our
IONet and Tango in Fig. 13 our proposed approach shows almost
the same accuracy as Tango, and even better robustness, because
our pure inertial approach suffers less from environmental factors.
With the help of visual features, VIO (Tango) can constrain error
drift by fusing visual transformations and the inertial system, but
it will collapse when capturing erroneous features or no features,
especially in open spaces. This happened in our experiment, shown
in Fig. 14. Although VIO can recover from the collapse, it still left
a large distance error.

7 CONCLUSION AND FUTURE WORK

We have presented a novel method for using inertial sensors to
estimate displacements over a given time window. Specifically,
inertial measurements and ground truth data were input to a neural
network to learn the transformation between the raw measure-
ments and the movement of the sensors unit. The method makes
no assumption about either sensor placement or user motion and
is therefore able to circumvent fundamental limitations of existing
methods for inertial indoor navigation. The performance of the
method was evaluated through experiments including not only
typical pedestrian motions such as walking and running at different
speeds, but also trolley tracking. Performance evaluations demon-
strated the neural network outperformed competing algorithms

4. Video is available at: https://youtu.be/L5LtE-PQuHk

based on standard inertial navigation systems and model-based
step estimation in several scenarios.

Future work may focus on the estimation of positional and
rotational displacements in three dimensions. Another future re-
search direction is to combine the existing physical model of
inertial navigation mechanism with deep neural networks. For
example, IMUs can be calibrated before double integration by
modelling the error distribution of inertial measurements via deep
neural networks. Another alternative is to apply the neural network
after the double integration. This could be implemented using the
framework proposed in this paper, but by changing ground truth
data in the training of the neural network.
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