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Abstract 

Autism Spectrum Disorder has been characterised by atypicalities in how predictions and 

sensory information are processed in the brain. To shed light on this relationship in the context 

of sensorimotor control we assessed prediction-related measures of cognition, perception, gaze 

and motor functioning in a large general population (n = 92; experiment one) and in clinically-

diagnosed autistic people (n = 29; experiment two).  In both these experiments perception and 

action were strongly driven by prior expectations of object weight, with large items typically 

predicted to weigh more than equally-weighted smaller ones. Interestingly, these predictive 

action models were employed comparably at a sensorimotor level in both autistic and 

neurotypical individuals with varying levels of autistic-like traits. Specifically, initial fingertip 

force profiles and resulting action kinematics were both scaled according to participants’ pre-

lift heaviness estimates, and generic visual sampling behaviours were notably consistent across 

groups. These results suggest that the weighting of prior information is not chronically 

underweighted in autism, as proposed by simple Bayesian accounts of the disorder. Instead, 

our results cautiously implicate context-sensitive processing mechanisms, such as precision 

modulation and hierarchical volatility inference. Together, these findings present novel 

implications for both future scientific investigations and the applied autism community. 

Key Words: Prediction, sensory, object lifting, perception, action.  

 

 

 



3 
 

 
 

Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition which is diagnosed in 1-

2% of individuals on the basis of persistent difficulties within two distinct domains: i) social 

communication and interaction; and ii) restricted and repetitive patterns of behaviours, 

activities or interests (World Health Organisation, 2012; American Psychiatric Association, 

2013). In addition to these diagnostic criteria, sensorimotor impairments are considered as 

‘cardinal’ features of ASD that remain throughout the lifespan (Fournier et al., 2010; Gowen 

& Hamilton, 2013). Frequently reported sensorimotor issues in ASD include: clumsiness, 

postural instability, sensory disturbances and/or impaired visuomotor coordination (Fournier 

et al., 2010). These functional difficulties have been shown to co-vary with the disorder’s 

clinical symptomology (Sutera et al., 2007) and socio-behavioural traits (MacDonald et al., 

2013), suggesting that they may be underpinned by common neurobiological mechanisms. 

However, little is known about the aetiology of these movement-related atypicalities and their 

consequences for quality of life. Therefore, investigations into the mechanisms that contribute 

to impaired sensorimotor control in ASD could offer valuable implications for both the 

scientific and applied autism community (Gidley-Larson et al., 2008; Foster et al., 2019).  

It is established that sensorimotor functions depend on various, interlocking sensory 

inputs and neurobiological pathways, which are coordinated by  generative models about the 

world (see Friston, 2010). In order to optimally control and learn motor skills, predictions are 

computed from prior expectations and incoming sensory data, before being transmitted 

hierarchically across the cerebral cortex (Shipp et al., 2013). However, it is proposed that 

autistic people display chronic attenuations in this use of prior information (Pellicano & Burr, 

2012; Sinha et al., 2014; Van de Cruys et al., 2014), a processing atypicality which can explain 

various characteristics of the disorder, including sensorimotor impairments (e.g., see Van de 

Cruys et al., 2014). These ‘simple’ Bayesian hypotheses draw on empirical evidence from 

perception, action, and neurological research. For example, autistic individuals have been 

shown to display reduced anticipatory postural adjustments (Schmitz et al., 2003), atypical 

error-based gaze adaptation (Mosconi et al., 2013), and impaired motor learning capabilities 

(e.g., Gidley Larson & Mostofsky, 2006). Furthermore, anatomical and functional 

abnormalities are commonly displayed by autistic people in neural regions said to drive 

predictive control, such as the cerebellum (e.g., Fatemi et al., 2002; Allen & Courchesne, 

2003), anterior cingulate (Dichter et al., 2009) and basal ganglia (Hollander et al., 2005). 
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However, research has shown that various prediction-dependent processes are not 

chronically impaired in autistic individuals (e.g., Gidley-Larson et al., 2008; Tewolde et al., 

2018), and findings are often task- or context-sensitive (e.g., Palmer et al., 2017). For example, 

recent studies examining the fingertip forces used during object interaction (Buckingham et 

al., 2016; Arthur et al., 2019) have explored how sensorimotor prediction correlates with 

autistic-like traits in large neurotypical populations (e.g., behavioural characteristics relating to 

communication, social skills, imagination, attention to detail and attention switching; Baron-

Cohen et al., 2001), where such traits are continuous and normally-distributed (Ruzich et al., 

2015). These studies examined the degree to which participants predictively lift ‘heavy-

looking’ objects (e.g., large objects) with greater fingertip force rates than ‘lighter-looking’ 

ones (e.g., small objects; Buckingham et al., 2016) - a type of ‘sensorimotor prediction’ 

generated in the dorsal premotor cortex (Chouinard et al., 2005). Here, although participants 

with higher autistic-like traits showed reduced sensorimotor prediction when interacting with 

different-sized objects (Buckingham et al., 2016), such effects did not replicate when objects 

differed in material properties (Arthur et al., 2019). This suggests that predictive processing 

atypicalities in autism may be driven by task- or context-specific mechanisms. 

These task-specific findings are noteworthy, as sensorimotor control is underpinned by 

context-sensitive adjustments in predictive processing (Friston, 2005; Wolpert & Landy, 2012; 

Adams et al., 2013). For instance, expectation-driven signals are typically down-regulated 

when uncertainty about one’s prior beliefs is high to ensure that unbiased sensory cues can be 

processed (Yu & Dayan, 2003; Kwon & Knill, 2013). Notably, such context-sensitive 

neurobiological responses appear to be diminished in autistic individuals (Ewbank et al., 2014; 

Lawson et al., 2017), prompting suggestions that autism may be characterised by inflexibilities 

in how predictive processing is adjusted according to environmental statistics (Lawson et al., 

2017; Palmer et al., 2017). These arguments are supported by recent findings in the rubber-

hand illusion (Palmer et al., 2015) and object lifting (Arthur et al., 2019), where participants 

with higher autistic-like traits display a lower degree of uncertainty-driven adjustments in gaze 

and motor control. However, it remains unclear whether sensorimotor difficulties in ASD are 

underpinned by chronic attenuations in the use of prior information (e.g., as proposed in 

‘simple’ Bayesian theories), or context-sensitive mechanisms relating to how this prior 

information is integrated with environmental statistics (Palmer et al., 2017).   

The current study examined how predictive sensorimotor control differs in autistic 

people across two object lifting experiments. First, we examined actions in a large neurotypical 
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sample, exploring the correlations between autistic-like traits and various measures related to 

sensorimotor prediction (Experiment one). By adopting this initial trait-based approach, we 

were able to identify novel markers of sensorimotor prediction which are related to autism-like 

traits, whilst avoiding the potential confounds with differences in cognitive ability and co-

occurring disorders (Landry & Chouinard, 2016). We followed this initial experiment with a 

second study, analysing how these prediction-related sensorimotor variables differ between 

neurotypical individuals and participants with a clinical diagnosis of ASD (Experiment two).  

In both experiments, participants lifted objects which differed in physical size and mass 

(Figure 1), before reporting how heavy they felt on a numerical scale. To examine predictive 

processing at a perceptual level, we averaged these numerical heaviness ratings across each lift 

for each object. Here, prior expectancies bias perception in a non-veridical ‘anti-Bayesian’ 

manner (Brayanov & Smith, 2010), with small objects typically perceived to feel heavier than 

equally-weighted larger ones (Charpentier, 1891). To examine predictive processing at a 

sensorimotor level, we calculated peak grip (pGFR) and load (pLFR) force rate differences 

between the initial lifts of the large and smaller objects, alongside resulting action kinematics 

(as in Arthur et al., 2019). Here, tendencies to underestimate and overestimate lifting force can 

be derived from unexpectedly-heavy and unexpectedly-light object lifts. Such profiles are 

subject to distinct, situation-specific computations, and thus permit scrutiny into the use of 

predictions at both chronic (i.e., context-independent) and precise (i.e., context-sensitive) 

hierarchical levels. Specifically, underestimation and overestimation motor responses have 

divergent consequences on action and are accompanied by distinct error computations 

(Jenmalm et al., 2006). These potential ‘cost functions’ are said to be computed by the brain 

during sensorimotor control (see Wolpert & Landy, 2012), and can lead to non-linear action 

responses (e.g., Stevenson et al., 2009). For example, when lifting a mug of tea, prior 

uncertainty about the weight of the mug may have little effect on pGFR overestimation 

tendencies, as the consequence of prediction error is relatively minor (i.e., unnecessary energy 

expenditure, increased effort). Conversely though, as underestimation can lead to detrimental 

error effects (i.e., slips or drops), it would be expected that high grip force ‘safety margins’ are 

employed under uncertain conditions (Hadjiosif & Smith, 2015). Therefore, individuals may 

utilise the same overall prediction (e.g., that larger mugs will weigh more than smaller ones) 

in a distinct, context-sensitive manner.  

To further supplement this multi-modal analysis, we also monitored participants’ gaze 

patterns, with ‘Bayesian Brain’ hypotheses having direct implications for visual sampling 
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behaviours (see Palmer et al., 2017), and shorter, more frequent goal-directed fixations 

signalling inefficiencies and/or impairments in predictive sensorimotor control (e.g., Murray 

& Janelle, 2003; Wilson et al., 2013). Together, this multi-modal approach enabled us to 

directly test whether autism-related atypicalities reflect chronic, domain-general attenuations 

in predictive control, or context-sensitive patterns linked to specific sensorimotor pathways. 

Our working hypothesis, on the basis of previous findings (Buckingham et al., 2016), was that 

autistic participants, and neurotypical participants with higher levels of autistic-like traits, 

would show chronic attenuations in sensorimotor prediction across all sensorimotor levels.  

 

 

Materials and Methods 

Participants 

The experiments received approval from the School of Sport and Health Sciences Ethics 

Committee (University of Exeter) and informed consent was obtained from all participants in 

accordance with British Psychological Society guidelines. All participants were naïve to the 

study objectives and had normal or corrected-to-normal vision. 

In Experiment One, we tested a large general population (n = 89: 46 male, 43 female; 

23.10 ± 3.37 years; 90% right-handed), who did not report any cognitive disabilities or 

neurological disorders. Participants were excluded if they reported any conditions known to 

affect sensorimotor control, including ASD, meaning that one individual with developmental 

co-ordination disorder (DCD) and two with musculoskeletal injuries were excluded. As such, 

the study was robust to clinically-related confounds (Landry & Chouinard, 2016). 

In Experiment Two, we recruited 33 participants with a clinical diagnosis of ASD, 

recognised according to DSM-V or ICD-10 criteria (American Psychiatric Association, 2013; 

World Health Organisation, 2012). Data from four participants was removed from the study, 

after reporting co-occurring conditions known to affect sensorimotor control (DCD: n = 3; 

musculoskeletal injury n = 1). Remaining participants (n = 29: 19 male, 10 female; 21.28 ± 

3.63 years; 25 right-handed) demonstrated a broad range of autistic-like traits, as confirmed 

from Social Communication Questionnaire responses (SCQ; Berument et al., 1999; Total; 

Total Scores: 18.46 ± 5.91, Current scores: 8.65 ± 3.49) which correspond with previously 

reported clinical values (e.g., Schuwerk et al., 2016). Although all SRS-S scores exceeded the 
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clinical ‘cut-off’ of 11, three participants scored below the recently-recommended SCQ 

threshold of 12 (Schanding et al., 2012). However, since the presence of a formal ASD 

diagnosis was the criterion variable for group assignment, and none of our reported effects 

were altered by excluding these low-SCQ cases, we included all participants in our primary 

analysis (as in Schuwerk et al., 2016). Any trait-based effects were then examined using 

correlation analysis. To permit between-group comparisons, an individually-matched group of 

neurotypical participants (NT Group: 19 male, 10 female, 21.31 ± 3.30 years; 25 right-handed), 

selected based on age, gender and dominant hand, were also tested. These individuals did not 

report any conditions known to affect sensorimotor control, including ASD, and did not 

participate in Experiment one.  

Apparatus and Stimuli 

Participants lifted homogenous 7.5-cm tall black plastic cylinders using an aluminium and 

plastic lifting handle, which was fitted with an ATI Nano-17 Force transducer. Objects differed 

in physical diameter (small: 5 cm, large: 10 cm) and mass (light: 355 g, heavy: 490 g), 

presenting a total of four ‘test’ items (Figure 1B). An additional medium-sized ‘control’ object 

(diameter: 7.5 cm; mass: 490 g) also provided baseline comparisons for grip and load force 

outcomes, all of which were recorded at 500 Hz. During lifting, participants wore a Pupil Labs 

mobile eye gaze registration system (Pupil Labs, Sanderstrasse, Berlin, Germany; Kassner et 

al., 2014), which calculated gaze positions at 90 Hz. The eye-tracking system was calibrated 

using the manufacturer’s built-in screen marker routine prior to data collection, and following 

any displacement of the gaze registration cameras and/or loss of data quality during testing. A 

manual clapper board concealed objects and restricted visual feedback prior to the onset of 

each trial (see Arthur et al., 2019 for further details). To enable kinematic analysis in 

experiment one, the position of rigid bodies comprised of three reflective markers, attached to 

the lifting handle and to a worn glove, were tracked by an 8-camera optical motion capture 

camera system at 120 Hz (OptiTrack, NaturalPoint, Corvallis, Oregon). Conversely, in 

experiment two, these markers were replaced by coloured tape, which could be identified from 

the ‘world’ eye-tracking camera footage to segment the onset and offset of each trial. Such 

procedures were undertaken using a custom algorithm in MATLAB, with trial onset 

representing the first frame in which the lifting handle tape became visible.  

To index autistic-like traits in experiment one, participants completed the 50-item adult 

Autistic Quotient (AQ; Baron-Cohen et al., 2001). The AQ assesses five sub-traits associated 

with ASD, namely: attention to detail, attention switching, imagination, communication and 
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social skills. Participants self-reported whether they “definitely agree”, “slightly agree”, 

“slightly disagree” or “definitely disagree” with fifty itemised statements that assess each of 

these subscales. This method provides an overall score out of 50, whereby higher numbers 

reflect greater autistic-like traits.  

Conversely, in experiment two, participants completed the shortened version of the 

Social Responsiveness Scale (SRS-S), a 16-item questionnaire, designed for clinical 

populations (Sturm et al., 2017), which measures: use of language, social information 

processing, capacity for reciprocal responses, and stereotypic/repetitive behaviours. Items are 

rated from 0 (never true) to 3 (almost always true) so as to yield a total SRS-S score. To 

supplement this self-report data, and enable between-study comparisons, the Social 

Communication Questionnaire (SCQ; Berument et al., 1999) was completed by parents or 

guardians for the ASD group. The SCQ is a widely-used and validated clinical assessment tool, 

which indexes current (items 1-19) and lifetime (items: 20-40) aptitudes in social 

responsiveness, verbal communication, and restricted repetitive stereotyped behaviours.  

 

 Figure 1. The experimental set-up for object lifting trials (a), the four ‘test’ objects lifted by 

participants (b), and a schematic overview of the testing session (c). Objects were concealed 

by a manual clapper-board prior to each trial. Following an auditory tone (trial onset), 

participants reached and lifted objects with their thumb and forefinger to a comfortable height 

above the table. Objects were held steady until hearing a second auditory tone (trial offset), 

before being placed back on the platform. These procedures were repeated for ‘baseline’ and 

subsequent ‘test’ trials, where various prediction-related sensorimotor measures were obtained. 

See Supplementary Video 1 for illustration of this protocol (available at: https://osf.io/p52h8/). 
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Procedures 

All measures of autistic-like traits were completed before the lifting protocol. Thereafter, 

participants repeated a previously-described set of standardised lifting procedures, both for 

‘baseline’ and ‘test’ trials (Figure 1; see Arthur et al., 2019 for more detail). Specifically, during 

both conditions, participants lifted objects from a seated position with the thumb and forefinger 

of their dominant hand, and held them steady at a comfortable height above the table surface. 

The onset and offset of each trial were signalled by two computer-generated auditory tones, 

each separated by four seconds. Participants were instructed to lift objects in a ‘smooth, 

controlled and confident manner’, and to ‘gently place the object back on its starting platform’. 

Each session started with 5 ‘baseline’ trials, and was followed by 32 ‘test’ trials (Figure 1C), 

where each object was lifted 8 times in one of three pseudo-randomised orders. These pre-

determined trial sequences presented objects in an uncorrelated, entropic order, but guaranteed 

that each ‘heavy’ item was lifted at least once before any ‘light’ trials. Such precautions would 

minimise order effects (e.g., Maiello et al., 2018), while ensuring initial ‘test’ lifts were 

unexpectedly-heavy or light, relative to baseline trials. After each lift, participants verbally 

reported a numerical judgement about how heavy the object felt, with larger numbers instructed 

to represent heavier weights. Importantly, no constraints were placed on these values to 

minimise ratio scaling biases (as in Buckingham et al., 2016). Prior to the lifting protocol in 

experiment two, participants also verbally rated how heavy they predicted each object would 

be, based on their visual appearance (as in Buckingham & Goodale, 2013). 

Data Analysis 

Perceived Heaviness Scores: Heaviness ratings were normalised to a z-score distribution to 

permit inter-individual analyses. To quantify the magnitude of the Size-Weight Illusion (SWI), 

where small objects are erroneously perceived to weigh more than equally-weighted larger 

ones (Charpentier, 1891), average values for the larger objects were subtracted from those of 

the smaller ones (as in Buckingham et al., 2016). Conversely, to quantify detection of real-

weight changes, averages for the heavy objects were subtracted from lighter objects. 

Force Data: Extracted force data were smoothed using a 14-Hz Butterworth filter, with forces 

perpendicular to the surface of the handle defined as grip force and resultant vectors of the 

tangential forces interpreted as load force. To determine peak force rates, data were 

differentiated with a 5-point central difference equation. From here, broad size-related 

prediction errors were assessed for grip (pGFRdiff) and load (pLFRdiff) force rate outcomes, 
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through subtracting values from the first ‘test’ lift of the smaller objects from those of the larger 

objects (as in Buckingham et al., 2016). To isolate more context-specific mechanisms, we also 

assessed sensorimotor prediction for small and heavy objects separately. Here, tendencies to 

underestimate and overestimate an object’s weight are accompanied by contrasting error 

signals and movement consequences, meaning that the use of prior expectations will be 

distinctly influenced by context-sensitive processing mechanisms (e.g., expected uncertainty, 

volatility representations). Accordingly, to index underestimation of force, pGFR from the first 

test trial of the small-heavy object was subtracted from that of the final baseline lift. 

Conversely, to index overestimation, pGFR exhibited during this final baseline trial was 

subtracted from the first large-heavy test trial. This analysis was conducted on pGFR, and not 

pLFR, following inspection of trial-by-trial lifting profiles (Figure 2), which suggested that 

prediction-related differences were more context-sensitive for this measure. For all these 

outcomes, higher index values would indicate a greater degree of sensorimotor prediction (as 

in Buckingham et al., 2016). 

Gaze Data: Visual fixations were extracted from the gaze data using Pupil Player software 

(Kassner et al., 2014). Fixations were defined as gaze that remained on a location, within 1° of 

visual angle, for a minimum of 120 ms, with the total number and average duration of fixations 

recorded for baseline trials and for the first lift of each object. To monitor context-sensitive 

adjustments in visual sampling (Experiment two), the total number of fixations across a trial 

were divided by their average duration. This provided a search rate score (as in Arthur et al., 

2019), whereby higher values would highlight the occurrence of shorter, more frequent 

fixations (i.e., patterns associated with inefficient sensorimotor coordination). As most visual 

fixations are directed towards the object in our task (see Supplementary Video 2), higher values 

would likely signal greater sampling of uncertain goal-relevant sensory cues. Such visual 

sampling behaviours are highly sensitive to contextual statistics (e.g., environmental 

uncertainty; Tong et al., 2017; Hayhoe & Matthis, 2018) and appear atypical in autistic children 

(Sasson et al., 2008; Sasson et al., 2011). This search rate analysis was not conducted in 

experiment one, as a frequent loss of gaze tracking during ‘test’ trials would have led to 

exclusion of 14 additional participants. Nevertheless, correlations between AQ scores and 

search rate have been previously documented in object lifting (Arthur et al., 2019), and should 

be explored in future sensorimotor research (see main discussion). 
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Kinematic Data (Experiment one only): Raw positional data for each infrared marker were 

smoothed using a dual-pass, zero-phase lag 10-Hz Butterworth filter, with hand and object 

velocity then calculated from the average position of each rigid body. These signals were then 

combined into resultant 3-dimensional vectors and differentiated with a five-point central 

difference equation to yield velocity values. From here, Reach and Lift movement phases were 

segmented for each trial. Specifically, the reach phase began when hand velocity first exceeded 

50 mm/s for three consecutive frames and concluded upon the onset of grip force. The Lift 

phase was determined from the timepoint where both hand and object velocity first exceeded 

50 mm/s until the point where the object reached its maximum vertical position. The maximum 

velocity of the hand during reach (MRV) and lift (MLV) phases was then recorded, as were 

the timepoints where these events occurred (as a % of total movement time). Kinematic 

outcomes were not examined in experiment two. Instead, only force-based motor outcomes 

were analysed to facilitate a more-refined, iterative investigative approach (see results below). 

Statistical Analysis: Statistical analyses were performed using JASP (version 0.12.2), with 

significance accepted at p < 0.05 and data presented ± SD. Outliers were removed from their 

respected analysis, with univariate outliers identified as values > 3.29 SD above or below the 

mean (p < .001) and multivariate outliers ascertained by extreme Mahalanobis distances (p < 

.001). In both experiments, Pearson’s Correlation analysis explored relationships between 

sensorimotor outcomes and autistic-like trait scores (Experiment one: AQ scores; Experiment 

two: SCQ and SRS-scores), while independent t-tests were used to compare between groups. 

ANOVA’s assessed the effects of size and mass on perceived heaviness scores and fingertip 

lifting forces (pGFR and pLFR), with main effects of Group additionally examined in 

Experiment two. Here, any significant effects were examined with planned t-tests, and effect 

sizes were calculated using partial-eta squared (ηp2). Any non-spherical data were adjusted 

using the Greenhouse-Geisser correction, and Holm-Bonferroni corrections (Holm, 1979) were 

used to correct for multiple comparisons. Bayes Factors quantifying the strength of evidence 

for the alternative and null hypotheses were also obtained, using a symmetric Cauchy prior.  

Data Availability: Data from both experiments can be found at https://osf.io/p52h8/. 
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Results 

Experiment One: Associations between sensorimotor prediction and non-clinical 

autistic-like traits. 

The aim of Experiment one was to investigate the associations between sensorimotor prediction 

and autistic-like traits, using an exploratory non-clinical approach that would be minimally 

affected by co-occurring disorders and cognitive ability (Simonoff et al., 2008). To ensure that 

analyses were not influenced by “clinically significant” participant characteristics, participants 

were excluded if they exhibited total scores ≥ 32 (n = 4; as recommended by Baron-Cohen et 

al., 2001). Remaining participants (n = 82) exhibited AQ scores ranging from 5-31 (Mean: 

15.87 ± 6.39), values which are consistent with large, representative neurotypical populations 

(Baron-Cohen et al., 2001). There were no statistical violations relating to normality, 

homoscedasticity, or linearity. However, one participant’s heaviness ratings (remaining n = 

81), and five participants’ force data (remaining n = 77), were excluded following detection of 

univariate outliers in the associated outcome measures (p < .001). Additionally, eight 

participants were removed from kinematic analysis (remaining n = 74) and twenty-two from 

gaze analysis (remaining n = 60) due to poor data quality and/or outliers.  

First, to assess the influence of predictive processing at a perceptual level, a repeated 

measures ANOVA was conducted with average heaviness scores for each ‘test’ object (small-

light, small-heavy, large-light, large-heavy) entered as dependent variables. ANOVA revealed 

significant effects of size and mass on perceived heaviness (Size: F(1, 81) = 1150.86, p < .001, 

ηp2 = .93, BF10 = 3.22*1033; Mass: F(1, 81) = 1395.16, p < .001, ηp2 = .95, BF10 = 2.13*1048). 

Average scores for smaller ‘test’ objects were greater than those for larger ones (p < .001, BF10 

= 1.44*1045) and scores for heavier objects were greater than those for the lighter ones (p < 

.001, BF10 = 9.34*1048). Together, effects show that both illusory and physical differences in 

mass were detected. However, Correlation analysis showed that there were no significant 

associations between AQ scores and heaviness ratings (SWI: r = .13, p = .25, BF10 = 0.27; Real-

Weight: r = -.17, p = .14, BF10 = 0.40; Figure 2A).  
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Figure 2. Scatter plots highlighting associations between autistic-like traits (AQ scores) and 

the magnitude of the perceptual Size-Weight Illusion (SWI; A), prediction-related differences 

in peak Grip Force Rate (pGFR; B) and peak Load Force Rate (pLFR; C) in Experiment one. 

No significant relationships emerged (all p > 0.05). 

To then assess the prediction-related effects of size and weight on lifting forces, one-

way ANOVAs compared pGFR and pLFR from the initial lifts of ‘test’ objects. ANOVA 

revealed no significant effects for object mass on pLFR (F(1,77) = 1.03, p = .31; ηp2 = 0.01, 

BF10 = 0.18) and marginal effects on pGFR (F(1,77) = 4.03, p = .05, ηp2 = 0.05, BF10 = 1.01). 

However, as expected, strong effects for size emerged (pGFR: F(1,77) = 62.03, p < .001, ηp2 

= .45, BF10 = 1.10 *109; pLFR: F(1,77) = 9.24, p = .003, ηp2 = .11, BF10 = 12.96), with force 

rates lower when lifting the smaller compared to larger objects (pGFR: p < .001, BF10 = 

4.06*108; pLFR: p = .003, BF10 = 8.53). This indicates that the object lifting paradigm elicited 

size-related expectation biases on initial ‘test’ lifts. Interestingly though, the magnitude of these 

predictive biases was not significantly related to AQ values (p’s > .37; Figure 2B-C), with 
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Bayes factors reflecting strong evidence for null trait-based effects (pGFRdiff: r = .10, p = .37, 

BF10 = 0.21; pLFRdiff: r = .09, p = .43, BF10 = 0.19). Furthermore, no significant correlations 

emerged between AQ scores and lifting kinematics (Table 1; p’s > .24, all BF10 values < 0.30).  

Table 1. Bivariate Correlations between Autistic Quotient Scores and Sensorimotor 

Outcomes in Experiment One. 

 Mean (SD) R 
  

Force Measures  

     pGFRdiff (N/s) 18.70 (20.95) 0.10 

     pLFRdiff (N/s) 2.61 (7.26) 0.09 

     pGFR Underestimation (N/s) 21.49 (28.62) -0.25* 

     pGFR Overestimation (N/s) 6.25 (32.30) 0.20 
   

Gaze Measures  

     Fixation Number  3.93 (0.55) 0.03 

     Fixation Duration (ms) 427.03 (115.47) 0.14 
   

Kinematic Measures 

     MRV (mm/s) 917.34 (157.83) -0.11 

     MLV (mm/s) 341.70 (82.47) 0.14 

     Time to MRV (%) 37.56 (6.39) 0.03 

     Time to MLV (%) 35.30 (7.04) -0.05 
   

pGFRdiff: differences in peak Grip Force Rate between initial lifts of the large and 

small ‘test’ objects; pLFRdiff: differences in peak Load Force Rate between initial lifts 

of the large and small ‘test’ objects; MRV: maximum reach velocity; MLV: maximum 

lift velocity; * denotes significant relationship with AQ scores. 

 

Gaze patterns were markedly consistent both within- and across-subjects (see 

Supplementary Video II at https://osf.io/p52h8/ for illustration). Specifically, participants 

tended to fixate upon the stationary ‘test’ object throughout the reach and grasp phases, before 

employing pursuit and saccadic eye movements to track its in-flight lift trajectory. Upon 

reaching a stable ‘hold’ position, subsequent object-directed fixations were then maintained 

until the offset of the trial, when an anticipatory saccade would draw gaze back towards the 

starting platform (i.e., final object location). Such gaze patterns are consistent with previous 

studies (e.g., Johansson et al., 2001), and are said to be ‘supervised’ by predictive action models 
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(Land, 2009). Interestingly, our data provided strong evidence that AQ scores were unrelated 

to these fixation behaviours (Fixation number: r = .03, p = .85, BF10 = 0.16; Duration: r = .14, 

p = .28, BF10 = 0.28; Table 1). This reinforces null associations between autistic-like traits and 

prediction-controlled behaviour in this task. 

Nevertheless, as atypicalities in predictive control appear context-sensitive, autism-

related attenuations in the use of prior knowledge may be contingent on specific trial 

conditions. Recent Bayesian perspectives argue that it is this hierarchical, situation-dependent 

scaling of predictive processing that is atypical in ASD (e.g., Lawson et al., 2017; Palmer et 

al., 2017). Accordingly, we explored whether any context-sensitive relationships between 

autistic-like traits and sensorimotor prediction were present in our data. Specifically, we 

calculated baseline-subtracted fingertip force profiles for the ‘small-heavy’ (pGFR 

underestimation) and ‘large-heavy’ objects (pGFR overestimation), before examining 

correlations with AQ scores. Here, no significant relationships were found between pGFR 

overestimation and AQ scores (r = .20; p = .08, BF10 = 0.62), suggesting that participants 

comparably increased force rate for larger test objects. Results did, however, provide anecdotal 

support for an inverse relationship between AQ and pGFR underestimation values (r = -.25, 

BF10 = 1.47), although such effects were non-significant when accounting for multiple 

comparisons (p = .03, Table 1). Supplementary Analysis I suggests that inverse correlations 

between AQ and underestimation scores were evident in both our kinematic data and in pre-

existing SWI data (Buckingham et al., 2016; available at: https://osf.io/2cmdu/). Therefore, 

though evidence is clearly inconclusive, it would be premature to rule out any context-sensitive 

relationships between autistic-like traits and sensorimotor prediction at this point. 

Experiment Two: predictive sensorimotor control in autistic people. 

In Experiment two, we examined how predictive sensorimotor control manifests in individuals 

with a clinical diagnosis of ASD, using the same object lifting protocol as in Experiment one. 

As expected, the ASD group displayed significantly higher self-reported autistic-like traits than 

their NT counterparts on the shortened version of the Social Responsiveness Scale (SRS-S; 

Sturm et al., 2017; t(56) = 12.32, p < .001, BF10 = 2.33*1014), and there were no group 

differences for age or handedness (Table 2). As two autistic participants were unable to verbally 

report perceived heaviness, they and their matched NT controls were excluded from analyses 

of these outcomes (remaining n = 54). Furthermore, two participants displayed extreme PGFR 

and pLFR values (> 3.29 SD; remaining n = 54) and three participants showed poor quality 
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gaze data (remaining n = 52), leading to the subsequent exclusion of these cases, and their 

matched controls, from the separate analysis procedures. Remaining data showed no statistical 

violations relating to normality, homoscedasticity, or linearity. 

To firstly assess whether groups made similar cognitive predictions about object weight 

prior to their lifting trials, participants provided numerical ratings for how heavy they predicted 

each object would be, based on their visual appearance. A mixed-model ANOVA revealed a 

significant main effect of size for these scores, with larger objects predicted to be heavier than 

equally-weighted smaller ones F(1.69, 84.69) = 61.03, p < .001, ηp2 = .55, BF10 = 1.61*1021). 

Importantly, there was no significant ‘group-by-size’ interaction effects (F(1.69, 84.69) = .79, 

p = .46, ηp2 = .02, BF10 = 0.26), and ratings were unrelated to both SCQ (r = .23, p = .27, BF10 

= 0.44) and SRS-S scores (r = -.10, p = .49, BF10 = 0.22), suggesting that groups had equivalent 

prior expectations of object weight. To then assess whether these predictions influenced 

perception comparably across both groups, we analysed perceived heaviness ratings (as in 

Experiment one). As before, ANOVA revealed significant effects of size (F(1, 52) = 537.70, p 

< .001, ηp2 = .91, BF10 = 2.19*1026) and weight (F(1, 52) = 426.77, p < .001, ηp2 = .89, BF10 

= 8.59*1021). However, no ‘group-by-size’ interaction effects were observed (F(1, 52) = 0.17, 

p = .69, ηp2 = .003, BF10 = 0.18), with both groups rating small objects as heavier than larger 

ones (Figure 3A-B). Similarly, no ‘group-by-mass’ effects emerged (F(1, 52) = 1.73, p = .20, 

ηp2 = .03, BF10 = 0.26), and relationships between autistic-like traits and SWI scores were non-

significant (SRS-S: r = -0.10, p = .49, BF10 = 0.22; SCQ: r = -0.16, p = .47, BF10 = 0.33).  

To examine the use of these sensorimotor predictions, we compared pGFR and pLFR 

values between groups from the first lift of each test object. ANOVA showed significant effects 

for both size (pGFR: F(1,52) = 61.05, p < .001, ηp2 = .54, BF10 = 2.98*108; pLFR: F(1,52) = 

12.14, p = .001, ηp2 = .19, BF10 = 8.35) and mass (pGFR: F(1,52) = 6.07, p = .02, ηp2 = .11, 

BF10 = 1.30; pLFR: F(1,52) = 12.75, p < .001; ηp2 = .20, BF10 = 11.42). However, between-

group comparisons revealed that pGFRdiff (t(52) = 0.47; p = .64; BF10 = 0.30) and pLFRdiff 

(t(52) = 0.25; p = .80; BF10 = 0.28) were not significantly different (Table 2), suggesting that 

NT and ASD groups scale fingertip forces equivalently according to prior expectations of 

object mass (Figure 3C-F). Furthermore, analysis generally showed no significant associations 

between autistic-like traits and either pGFRdiff (SRS-S: r = -.14, p = .31, BF10 = 0.28; SCQ: r 

= -.33, p = .12, BF10 = 0.25) or pLFRdiff (SRS-S: r = -.002, p = .99, BF10 = 0.17). Similarly, 

though Bayes Factors provided moderate evidence for an inverse correlation between pLFRdiff 
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and SCQ scores (BF10 = 3.23; as in Buckingham et al., 2016), Pearson’s correlation coefficient 

was non-significant when accounting for multiple comparisons (r = -.47, p = .02).  

 

Figure 3. Trial-by-trial averages (± SEM) for normalised perceived heaviness ratings (A-B), 

peak grip force rate (pGFR; C-D), and peak load force rate (pLFR; E-F) in Experiment Two. 

Filled circles represent neurotypical (NT) values, empty circles represent autistic group (ASD).  
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Interestingly, there were no significant group differences in either pGFR overestimation (t(52) 

= 1.91, p = .06, BF10 = 1.20) or underestimation (t(52) = 1.38; p = .17; BF10 = 0.60; Table 2). 

These findings were unsurprising, given the inconclusive nature of our earlier analysis, and are 

reinforced by null correlations between pGFR underestimation and SRS-S scores (r = -.24; p 

= .23; BF10 = 0.48). However, analysis did provide moderate evidence for a correlation between 

pGFR underestimation and current SCQ scores (r = -.52, p = .01, BF10 = 6.62), and it is likely 

that the low NT group underestimation values (8.84 ± 18.93 N/s) are obscuring any autism-

related group differences that may exist in this dataset (see Jarrold & Brock, 2004 for discussion 

of “floor effects” in matched-group ASD research). Therefore, it remains unclear whether 

underestimation profiles differ from NT values in our clinically-diagnosed ASD sample, and 

further investigation is required.  

 

To initiate this enquiry, we probed the degree to which participants’ adjusted visual 

sampling behaviours under uncertain trial conditions. Under these conditions, NT observers 

tend to increase the frequency of gaze fixations towards uncertain, goal-related stimuli (Tong 

et al., 2017). Such uncertainty-driven adjustments in visual sampling are regulated by context-

sensitive processing mechanisms (e.g., precision modulation, volatility representations), and 

 
Table 4. Group Averages (SD) in Experiment Two. 

  
  

ASD Group 

  

NT Group 

Demographic Measures     

     Age 21.28 (3.63) 21.31 (3.30) 

     SRS-S Total  19.03 (6.24) 3.86 (0.24)* 

Perceptual Measures     

     Predicted Weight Score 1.31 (1.07) 1.52 (0.94) 

     SWI Score 1.24 (0.41) 1.18 (0.35) 

Sensorimotor Measures     

     pGFRdiff (N/s) 29.73 (29.18) 33.54 (30.31) 

     pLFRdiff (N/s) 7.19 (16.15) 6.22 (11.80) 

     pGFR Underestimation (N/s) 16.18 (20.00) 8.85 (18.93) 

     pGFR Overestimation (N/s) 4.88 (22.40) 16.71 (23.23) 

 SRS-S: Social Responsiveness Scale- shortened; SWI: Size-Weight Illusion; pGFR: 

peak Grip Force Rate; pLFR: peak Load Force Rate; *denotes significant between-

group difference. 



19 
 

 
 

are recently hypothesised to be atypical in ASD (Palmer et al., 2017). Therefore, we 

specifically compared changes in gaze search rate between the final four ‘baseline’ trials (i.e., 

where objects were familiar and unexpected outcomes were unlikely) and the first lifts of each 

‘test’ object (i.e., where such environmental statistics were more uncertain; as in Arthur et al., 

2019). ANOVA revealed a significant ‘group-by-uncertainty’ interaction (F(1,50) = 4.62, p = 

.04, ηp2 = .09, BF10 = 6.38). As expected, NT participants showed significant increases in 

search rate between ‘baseline’ and ‘test’ trials (t(25) = 3.42, p = .002, BF10 = 17.48), an effect 

primarily driven by an increase in the number of short, object-driven fixations (Supplementary 

Analysis II). Corresponding changes in the ASD group were not significantly different from 

zero (t(25) = .74, p = .47, BF10 = 0.27), and appeared minimal in these individuals (Figure 4). 

Nevertheless, these changes in search rate were only marginally related to self-reported 

autistic-like traits (SRS-S scores: r = -.30; p = .03, BF10 = 1.56) and did not significantly 

correlate with SCQ scores (r = .35, p = .11, BF10 = 0.89). Therefore, though data provides 

cautious, preliminary evidence for a reduced distinction between stable and uncertain 

environmental conditions in ASD, further empirical scrutiny is required. 

 

Figure 4. Changes in gaze search rate between stable (Baseline lifts 2–5) and uncertain (initial 

‘test’ lifts) trial conditions for Neurotypical (NT) and Autism (ASD) groups. Bars represent 

group averages, lines and circles represent individual cases. *denotes significant difference 

between conditions (p < 0.01). 
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Discussion 

We investigated the aetiology of sensorimotor difficulties in ASD using a multi-modal object 

lifting paradigm. We first explored associations between predictive sensorimotor control and 

autistic-like traits in a non-clinical population (Experiment one), before assessing how specific 

movement-related mechanisms differ in autistic individuals (Experiment two). In both 

experiments, participants’ actions were strongly driven by prior expectations, and the generic 

employment of these sensorimotor predictions did not appear implicated in ASD.  

Specifically, contrary to simple Bayesian theories of ASD (e.g., Pellicano & Burr, 2012; 

Sinha et al., 2014; Van de Cruys et al., 2014) and evidence of abnormal fronto-cerebellar 

functioning in the disorder (e.g., Fatemi et al., 2002; Allen & Courchesne, 2003), we did not 

find any chronic autism-related attenuations in the use of prior information. Instead, autistic 

participants appeared to both make typical predictions about an object’s likely mass, and then 

use these computations to control their actions. For example, when lifting heavy-looking 

objects, both autistic and neurotypical participants showed equivalent increases in fingertip 

force rates (Figure 2) and comparable movement kinematics (Table 2). These results align with 

the null trait-based effects observed in experiment one (Table 1) and in previous non-clinical 

object lifting research (Arthur et al., 2019). They also add to various studies which have 

highlighted typical, or even enhanced, prediction-related functions in autistic people (e.g., 

Mostofsky et al., 2004; Gidley-Larson et al., 2008; Tewolde et al., 2018).  

Such findings are noteworthy, from a conceptual perspective, as they suggest that 

autism is unlikely to be characterised by generic impairments in the ability to make and/or use 

‘predictive’ action models. These observations are clearly at odds with proposals of 

chronically-diminished priors (Pellicano & Burr, 2012) and inflexible weighting of prediction 

errors (Van de Cruys et al., 2014) in the disorder. Indeed, according to these ‘simple’ Bayesian 

perspectives, one would have expected autism-related atypicalities to emerge consistently 

across sensorimotor systems, since predictions about object weight are shown to influence 

perception, motor activity, visual sampling behaviours, and action kinematics (Johansson & 

Westling, 1988; Gordon et al., 1991; Johansson et al., 2001; Buckingham, 2014). However, it 

was clear that such effects did not occur in our study, where broad expectation-driven action 

and sampling behaviours were consistently displayed by autistic participants (e.g., see Figure 

3). These null findings may have significant applied implications, as various motor skill 

interventions rest on an individual’s ability to develop, refine, and automate self-generated 
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action models (Körding et al., 2007; Haker et al., 2016). Given the substantive impact that 

sensorimotor difficulties are likely to have on autistic people’s independence (Jasmin et al., 

2009), social activities (Brandwein et al., 2015), and health-related behaviours (e.g., Scharoun 

et al., 2017), our findings offer potentially fruitful avenues for both researchers and 

practitioners in the field. 

Conversely, though, results do correspond with wide-ranging clinical evidence that 

autism-related atypicalities in sensorimotor prediction are context-dependent (e.g., von Hofsten 

et al., 2009; Tewolde et al., 2018). Notably, although no broad processing impairments were 

displayed by autistic participants in our study, anticipatory motor atypicalities have previously 

been observed in various related object interaction tasks (e.g., bimanual lifting; Schmitz et al., 

2003). Such contextual irregularities have been the focus of recent Bayesian hypotheses, which 

argue that autism is characterised by atypicalities in how predictive processing is adjusted 

under different conditions (Lawson et al., 2017; Palmer et al., 2017). According to these 

perspectives, such between- and within-study inconsistencies would be expected, as any 

atypicalities are contingent upon highly-variable environmental statistics (e.g., uncertainty, 

volatility; Palmer et al., 2017). This is cautiously supported by our own data, where autism-

related tendencies to over- but not under-estimate pGFR were inconsistently displayed (see 

Supplementary Analysis I). However, given the inconclusive nature of these interpretations, 

further empirical scrutiny is required. 

Recent neurological evidence suggests that sensorimotor difficulties are caused by 

differences in the regulation, or ‘connectivity’, of neurobiological networks (Villalobos et al., 

2005; Mostofsky et al., 2009; Fournier et al., 2010; Gowen & Hamilton, 2013). From a 

computational perspective, this research supports context-sensitive, hierarchical models of 

autism, which posit that predictive atypicalities in the disorder may stem from aberrant 

neuromodulatory functioning (e.g., see Friston et al., 2013; Lawson et al., 2014). According to 

these perspectives, autism-related atypicalities will be more frequent under uncertain task 

conditions, where ambiguous prior information is typically down-regulated relative to more-

reliable sensory evidence (e.g., from visual feedback and proprioception; Maloney & Zhang, 

2010; Tong et al., 2017). Indeed, these ‘typical’ content-sensitive patterns of behaviour were 

apparent in Experiment two, where NT participants exhibited marked changes in gaze search 

rate (i.e., visual sampling) under more uncertain trials (Figure 4; Supplementary Analysis II). 

Interestingly, such distinctions were not displayed by the ASD group, suggesting that autistic 
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participants display reduced, uncertainty-related adjustments in sensorimotor control (see also 

Palmer et al., 2015).  

However, these preliminary findings must be interpreted with caution at this stage, as 

visual sampling atypicalities could implicate various interrelated cognitive and attentional 

mechanisms. Indeed, despite being a key tenet of predictive processing theories (e.g., Palmer 

et al., 2017), it is entirely possible that the precise, context-sensitive differences in gaze 

behaviour observed in Experiment two are indicative of wider autism-related atypicalities (e.g., 

in Executive Functioning: Ozonoff & McEvoy, 1994; Attentional styles: Happé & Frith, 2006; 

Anxiety: White et al., 2009). Therefore, it currently remains unclear how prior inputs are 

mechanistically integrated with sensory and environmental information in ASD. Though we 

consistently observed that the use of prior information does not appear to be chronically 

attenuated in autism, and we were able to qualitatively discern trials where prior uncertainty 

was relatively low or high in our task, future studies should aim to statistically-compute and/or 

experimentally manipulate the uncertainty and reliability of sensory cues (Maloney & Zhang, 

2010). To do this, researchers should focus on outcomes relating to sensorimotor integration, 

as context-sensitive representations of prior and sensory uncertainty are said to modulate the 

‘connectivity’ of neurobiological action systems (Friston et al., 2013). Specifically, studies 

could employ complex, multi-system movement tasks, such as interceptive motor skills, where 

prediction-related visuomotor patterns are both well-established (see Fiehler et al., 2019) and 

integral to successful performance (Fooken & Spering, 2019).  

In conclusion, we have provided evidence that autistic people typically control their 

lifting actions according to predictions about an object’s weight. These ‘predictive’ profiles are 

implemented across various sensorimotor systems (e.g., cognition, gaze patterns, motor 

control), and are shaped by an individual’s prior knowledge and experience. Future research is 

required to examine how these prediction-related mechanisms are integrated and altered under 

different probabilistic conditions, to help us better understand and manage sensorimotor 

difficulties in autism. 
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Supplementary Material 

Supplementary Analysis I 

Given the inconclusive, anecdotal relationships highlighted between AQ scores and pGFR 

underestimation (Table 1), we reanalysed Buckingham et al.’s (2016) existing force data 

(available online at: https://osf.io/2cmdu/). Specifically, we explored whether their previously-

observed associations between AQ scores and pGFRdiff were driven by chronic attenuations 

in the use of prior knowledge (as previously proposed), or context-specific processing 

atypicalities (i.e., attenuations in either pGFR underestimation or overestimation). Although 

there were no ‘baseline’ trials in this previous study, the authors included a 400g medium-sized 

object (diameter: 7.5 cm) in the SWI protocol which could be compared with equally-weighted 

small (diameter: 5 cm) and large (diameter: 10 cm) cylinders. As such, we extracted pGFR and 

pLFR data from initial trials of each object, and computed index scores for underestimation 

and overestimation profiles respectively. As in experiment one, underestimation scores were 

calculated by subtracting ‘small’ from ‘medium’ force rate values, while first-lift values from 

the ‘medium’ object were subtracted from those of the ‘large’ object to index overestimation. 

Again, higher values would signify greater tendencies to under- or overestimate forces.  

Notably, Bayesian correlation analysis provided only anecdotal support for the 

previously-reported relationships between high AQ scores and attenuated sensorimotor 

prediction (pGFRdiff: r = -0.24, BF10 = 1.23; pLFRdiff: r = -0.24, BF10 = 1.23). Furthermore, 

there was a lack of relationships between AQ and overestimation tendencies in this dataset 

(pGFR: R = 0.11, BF10 = 0.22; pLFR: R = 0.07, BF10 = 0.16). Interestingly, though, analyses 

highlighted strong, context-specific associations between AQ scores and pGFR 

underestimation tendencies (r = -.37, BF10 = 34.89), and moderate evidence in favour of trait-

based pLFR underestimation effects (r = -.32, BF10 = 8.73).  

To further scrutinise these context-specific effects, we next examined whether they 

were present in our kinematic data; since any underestimation of required lifting force tends to 

result in a marked ‘slowing’ of movement (Jenmalm et al., 2006). Here, using the same 

approach employed in our force analyses, MLV values from initial lifts of the ‘small-heavy’ 

object were subtracted from those in the final ‘baseline’ trial, to provide an underestimation 

score. As expected, participants generally displayed slower lifting movements in this initial, 

unexpectedly-heavy trial (Supplementary Figure 1A). Notably, these kinematic 
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underestimation profiles were inversely related to AQ scores (Supplementary Figure 1B), 

although support was only anecdotal in this data (r = -.24, p = .04, BF10 = 1.14).  

Together, this analysis lends support for the notion that autism-related atypicalities in 

sensorimotor prediction may be context-dependent (e.g., Lawson et al., 2017; Palmer et al., 

2017). Although participants with greater autistic-like traits display typical, prediction-related 

increases in force rate when lifting large (heavy-looking) objects, they appear less likely to 

decrease pGFR when lifting small (lighter-looking) ones. These associations are driving the 

weak effects that were previously observed by Buckingham and colleagues (2016), and appear 

to emerge in both our clinical and non-clinical datasets. Although the precise causes of these 

discrepancies can only be speculated at this point, it is likely that the persistently-elevated 

pGFR profiles shown by high-AQ participants represents a compensatory strategy, aimed at 

minimising the risk of error. Here, increased grip ‘safety margins’ can reduce the likelihood of 

performance-based errors (i.e., slips and drops; Cashaback et al., 2017), meaning that they are 

often deployed under high-uncertainty conditions (Hadjiosif & Smith, 2015).  Such an 

argument lends support for proposed associations between autism and volatility processing 

(Lawson et al., 2017), however further research is evidently required (see main discussion). 

 

Supplementary Figure 1. Changes in Maximum Lift Velocity (MLV; A) from the final 

‘Baseline’ trial to the initial ‘Heavy-Small’ trial, and scatter plot highlighting the relationship 

between Autistic Quotient scores and the magnitude of these changes (B). *Denotes significant 

difference between trials (t(73) = 6.30, p < .001, BF10 = 6.11*105). 
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Supplementary Analysis II 

In Experiment two, the ASD group appeared to display reduced uncertainty-related increases 

in gaze search rate compared to their matched NT counterparts (Figure 4). Such gaze 

adjustments also correlate with levels of autistic-like traits in both general (Arthur et al., 2019) 

and clinically-diagnosed populations (Experiment two). Therefore, although these context-

sensitive visual sampling effects should currently be interpreted with caution (see main 

discussion), they reinforce recent calls for future investigation (Palmer et al., 2017).   

To assist in future research development, we inspected the raw fixation data obtained 

in Experiment two, examining whether observed changes in search rate resulted from: a) an 

increase in fixation frequency and/or b) a shortening of fixation durations. Separate ANOVA’s 

were conducted, with both fixation number and duration entered as dependent variables. 

Significant group-by-condition interaction effects occurred for fixation number (F(1,50) = 

7.73; p = .01; ηp2 = = .13; BF10 = 4.03) but not duration (F(1,50) = 1.20; p = .28; ηp2 = = 0.02; 

BF10 = 0.61). As illustrated in Supplementary Figure 2, NT participants showed significant 

increases in the number of fixations between ‘stable’ and ‘uncertain’ trials (p = .003; BF10 = 

15.03), whereas minimal changes were displayed by ASD participants (p = .46; BF10 = 0.27).   

These increases in fixation frequency likely reflect an increased sampling of object-

specific information, as this represented a goal-relevant, uncertain stimuli in this task. This 

assumption was reinforced upon visual inspection of the gaze data, where almost all fixations 

were directed towards goal-relevant cues (i.e., the object and lifting platform; Supplementary 

Video II). However, to specifically test this hypothesis, we examined the proportion of fixations 

made to the object and platform in each trial. Such analysis was performed for the NT group 

only (using Pupil Player software; Kassner et al., 2014), with any task-irrelevant fixation trials 

(0.02%) excluded. As predicted, NT subjects showed greater object-directed fixations between 

stable and uncertain trials (t(25) = 3.32; p = .003, BF10 = 14.04), but non-significant differences 

for platform-directed fixations (t(25) = .23; p = .82, BF10 = 0.21).  
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Supplementary Figure 2. Changes in average gaze fixation number (A, B) and duration (C, 

D) between stable (Baseline lifts 2–5) and uncertain (initial ‘test’ lifts) trial conditions for 

Neurotypical (NT) and Autism (ASD) groups. Bars represent group averages, lines and circles 

represent individual cases. *denotes significant difference between conditions (p < 0.01). 

Together, this analysis illustrates the divergent visual sampling behaviours shown 

between NT and ASD participants in Experiment two. Specifically, while ASD participants 

did not distinguish between ‘stable’ and ‘uncertain’ trials in their gaze behaviours, NT 

participants showed an increase in the number of short, object-directed fixations. This 

adaptation may reflect an increased sampling of uncertain sensory information, and should thus 

be examined further in future investigations.  
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Figure Legends 

Figure 1. The experimental set-up for object lifting trials (a), the four ‘test’ objects lifted by 

participants (b), and a schematic overview of the testing session (c). Objects were concealed 

by a manual clapper-board prior to each trial. Following an auditory tone (trial onset), 

participants reached and lifted objects with their thumb and forefinger to a comfortable height 

above the table. Objects were held steady until hearing a second auditory tone (trial offset), 

before being placed back on the platform. These procedures were repeated for ‘baseline’ and 

subsequent ‘test’ trials, where various prediction-related sensorimotor measures were obtained. 

See Supplementary Video 1 for illustration of this protocol (available at: https://osf.io/p52h8/). 

Figure 2. Scatter plots highlighting associations between autistic-like traits (AQ scores) and 

the magnitude of the perceptual Size-Weight Illusion (SWI; A), prediction-related differences 

in peak Grip Force Rate (pGFR; B) and peak Load Force Rate (pLFR; C) in Experiment one. 

No significant relationships emerged (all p > 0.05). 

Figure 3. Trial-by-trial averages (± SEM) for normalised perceived heaviness ratings (A-B), 

peak grip force rate (pGFR; C-D), and peak load force rate (pLFR; E-F) in Experiment Two. 

Filled circles represent Neurotypical (NT) values, empty circles represent autistic group (ASD) 

values.  

Figure 4. Changes in gaze search rate between stable (Baseline lifts 2–5) and uncertain (initial 

‘test’ lifts) trial conditions for Neurotypical (NT) and Autism (ASD) groups. Bars represent 

group averages, lines and circles represent individual cases. *denotes significant difference 

between conditions (p < 0.01). 

 


