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Abstract

             We have investi gate d the effects of land use on p ast climate cha nge by means

          of a new 15- membe r ense m ble of th e HadGE M3-A-N 216 mo del, us ually us ed

           for event att ributi on stud ies. This ens e mble runs fr om 1960 to 2013, and

          includ es natura l extern al climate forc ings wit h the addition of hum an land

         use change s. It supports prev ious ly-ex i sting ens emble s, either with onl y natu-

          ral forci ngs, or with all for cing s (bot h anthr opoge nic and natu ral, inc luding

            land us e chan ges), in dete rmini ng the co ntri buti on to the change in risk of

            extre me e vents made by l and use cha nge. We found a si gnific ant dif feren ce in

          near- surfa ce ai r tem perat ure trends ov er l and, attributa ble to the e ff ects of

              human land use . The main part of th e sig nal d eriv e s from a re lativ e cool ing in

         Arctic regio ns which closely match es that of deforesta tion. This cooling

            appea rs to spre ad b y pola r a mplif icati on . A simi lar patt ern of ch ange is see n

           in late nt hea t flux trend, but signifi c ant ra infa ll chang e is a lmost entirely

absent .

K E Y W O R D S

  climate, ensembles, land-atmosphere

  1 | I N T R O D U C T I O N

        Event attribution studies (Allen, 2003; Stott ., 2013)et al

        typically examine the change in the probability of an

         event due to human influenc es. They do this by compar-

        ing an ensemble of simulations with all known external

      climate forcings (both anthropogeni c and natural) to

      another ensemble with only natural forcings. However,

         there are cases where one might wish to compare the

         effect of atmospheric changes for a given land use. For

         example, for an analysis of an urban floo ding event in

         Oxford such as that discussed by Allen (2003), we may

          wish to determine the change in event risk with the city

       of Oxford present in both factual and counter-factual

      situations. Therefore, we need to consider simulations

      with only natural atmospheric forcings, while still

    retaining anthropogenic land use changes.

       To keep the simulations tied to real-world weather,

        observed SSTs have been used in the HadGEM3-A mo del

         (Christidis ., 2013b; Ciavarella ., 2018) to driveet al et al

       the all-forcings simulations, while an estimate of anthro-

       pogenic SST changes is subtracted from the obser vations

      when driving the natural-only simulations. We expand

        on this by running parallel simulations to those already

      performed, this time including human land-use changes

       alongside only natural forcings in the atmosphere, thus

        determining how much of the human component is due

          to land use change, and how much to emissions. In order
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             to do this, we must be able to estimate the size of the SST

           change due to land use change, so that this may be added

    onto the natural SST conditions.

   2 | E X I S T I N G L A N D - U S E - O N L Y
  S I M U L A T I O N S P R O D U C E D F O R

C M I P 5

        As with previous studies of the total anthropogenic compo-

           nent (Pall et al ., 2011; C hristidis et al., 2013b), we rely on

      existing simulations with coupled atmosphere and ocean

         processes in order to estimate the SST changes at the

       boundary of atmosphere-only si mulations. In this case, we

        require coupled simulations where land use is the only

        human forcing. As be fore (Ciavarella et al., 2018; Stone

          and Pall, 2020) , the CMIP5 archive (Taylor et al., 2011) pro-

        vides the data necessary (specifically a subset of submis-

       sions to the historicalMisc experiment which only include

      human land-use change), though climate modelling cen-

        tres contributed far fe wer such simulations than for natural

      forcings. This difference in availability produces an

     unavoidable inconsistency in model weightings between

         the human land use forci ngs and the natural forcings that

      can be estim ated by multi-model means. A cknowledging

       this, these simulations, plus four members of the

        HadGEM2-ES model produced at the time of CMIP5 but

         never submitted to the archive, are use d to e valuate the

         behaviour of SSTs with changing l and us e. T able 1 details

        the complete set of simulations used in this study.

       The SST pattern was produced for each simulation

         from the surface air temperature over grid boxes with a

         land fraction of 20% or less. Surface air temperatures were

        both more readily available than the reported skin temper-

         ature from the ocean simulation, and judged to be more

      consistently defined acros s m odels ( Jones, 2 020). T hese

        patterns w ere p roduced for the 1960–2013 period as per

     the initial natural-only simulations. Interannual variability

         was smoothed using a 5-year boxcar filter, and the spatial

       field was regridded to the 1 1×
     grid used in NOAA OISST

        version 2 (weighted by area with a missing-data tolerance

          of one third), all as defined by Stone and Pall (2020).

       To compute the magnitude of change caused entirely

          by land use, a baseline is required. This was established by

         using t he “pre-industrial (i.e., as free as possible of exter-”

         nal climate forcings) control runs of each model. Slices of

        the control of equivalent length to the land-use simula-

         tions (i.e., 53 years) were extracted by the method above.

         Five such slices could be extracted from the shortest avail-

         able control run (that of GISS-E2-H), so an equal number

         was extracted from each other model to ensure that the

        noise contribution of each model is equivalent. The mean

          of the five control slices of a given model was subtracted

        from each member of its ensemble of land-use-driven sim-

        ulations. A multi-model mean SST change was then com-

          puted for each month in the period by averaging all the

       land-use simulations, treating each member of the ensem-

       ble equally irrespective of the underlying climate model.

        This SST change field driven by human land use

        change may now be added to that of previously-used

      natural-only SST changes (Christidis ., 2013b;et al

        Ciavarella ., 2018) to form the boundary conditionset al

         of our anticipated experiments on the effect of land use

        on extreme events. However, we may also make some

      useful observations of the SST changes themselves.

   3 | M O D E L - D E R I V E D S P A T I A L
   P A T T E R N S O F S S T C H A N G E

        Initial examination of the effect of human land use

         changes on SST was made using the four members of

       HadGEM2-ES. These are illustrated in Figure 1 (bottom

        right) as the mean difference between the most recent

     complete decade (1996 2005) and the climatological–

      period 1961 1990, chosen to match observation datasets–

        such as HadCRUT4 (Morice ., 2012). A Kolmogorovet al –

        Smirnov test is used to compare the distribution of

        monthly SSTs in these two periods, and the regions

         whose differences are not significant at the 1% level are

         shaded out. Though the cooling in this plot might be

        expected, and has been particularly noted in this model

          (Andrews ., 2017), the strength in parts of the polaret al 

         regions and the global extent might be surprising. It has

          been argued (Brov kin ., 2013; Lo renz ., 2016) thatet al et al

       land use effects only have teleconnections of limited

        range. We might therefore only expect to see regional

          effects, and the strength of cooling at the poles would not

          seem to fit with this. However, one could argue that the

       polar amplification seen in other studies of climate

        change (Holland and Bitz, 2003) would also apply here.

        T A B L E 1 List of available CMIP5 simulations driven by

   human land use only

Model

     Number of members driven by human

  land use only

 CanESM2 5

 CCSM4 3

 GFDL-ESM2M 1

 GISS-E2-H 5

 GISS-E2-R 5

 HadGEM2-ES 4

 Total: 23
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        Thus once land use change cools SSTs relatively locally,

          we could then expect this cooling to be even strong er at

         the poles. Since the sea ice coverage for the atmosphere-

       only simula tion (detailed in the following s ection) is

         computed based on SST, this is of some relevance. By

         contrast, the pattern of temperature change in the re st of

         the world is still within the range encompassed by natu-

  ral internal variability.

         If we now examine the other models' SST change pat-

         terns (also shown in Figure 1, not including the single

       member of GFDL-ESM2M), it becomes clear that the

        strength of cooling particular to HadGEM2-ES is not fully

       reproduced by other mo dels. CanESM2 has a reduced

        strength of change globally, with no overall sign. The

          change still appears to be enhanced at the poles, but this

          seems to result in a mixture of strong heating and cooling

         in the Arctic, and only heating in the Antarctic . CCSM4

           has a similar lack of overall signal in the low latitudes to

        CanESM2, but has a strongly warming Arctic and both

     warming and cooling in the Antarctic.

       Both GISS models have a somewhat smaller polar

         change. This is broadly cooling in the Arcti c for GISS-

         E2-H and mixed in the Antarctic, with the usual weaker

      change in the lower latitudes. GISS-E2-R however,

         exhibits low latitude change which is near the level of

         that in the Arctic, with only the Antarctic being some-

 what stronger.

        It is clear that there is some disagreement between

        models in ocean areas, particularly at the poles. However,

        there are common factors, which can be clarified by

       examining the multi-model average SST change (Figure 1,

       top right). This was performed considering each member

        equally, irrespective of model, so that the internal vari-

       ability from the single member of GFDL-ESM2M would

  not be overweighted.

        The notable features, such as cooling in the Greenland-

       Iceland-Norway Sea or warming in the Southern Ocean,

          are only an average signal across models, and there is no

       common sign across all realizations. Nonetheless, this rep-

          resents our best estimate of the effect of human land use

       changes on sea surface temperatures. The SST changes

          illustrated by these plots will now be used to compute the

      boundary conditions for the event attribution simulations

 that follow.
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                   F I G U R E 1 Changes in sea surface temperature (SST, in Kelvin) due to human-induced land use change only, showing the difference

                     between the 1996 2005 average and the 1961 1990 average for each of the CMIP5 models in Table 1 consisting of multiple members, plus– –

                       the multi-model mean. Individual models have regions where change is not significant at the 1% level shaded out in white. The full field is

               shown for the multi-model mean, to illustrate the SST boundary conditions used for subsequent atmosphere-only simulations
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  4 | A T M O S P H E R E - O N L Y
 E X P E R I M E N T A L S E T U P

        The SST changes de rived ab ove were combined w ith those

        produced for the C20C+ proj ect (Stone and Pall, 2020)

        which estimate the d ifference between SST in an all-

        forcings world and one with o nly natural climate forci ngs.

           In turn, this was used to provide the SST and calculate the

       sea ice boundary conditions for an ensemble of

  HadGEM3-A-N216 atmosphere-only simulations

        (Ciavarella et al., 2018). Ne w s imulations were then cre ated

       using the atmos pheric setup from natural-only runs of

        HadGEM3-A-N216, b ut add ing in the variation in l and use

          from the all -forcings runs, as we ll as the SST change s c al-

          culated above. These are referred to hereafter as Nat + LU

        simulations. The land use varies in time according to

      values pre-computed by the ISAM-HYDE scheme, derived

       from harmonizing the HYDE3.1 datas et with sate llite data.

        It differs from HadGEM2-ES ( the Met Office model con-

       tributed to CMIP5), which us es TRIF FID interactive vege-

        tation in ad dition to HY DE3.1 data. For more details,

         compare Ciavarella et al. ( 2018) to Jones et al. (2011).

         The choice to produce a Nat + LU ensemble rather

         than, for exam ple, all forcings minus land use change, is

      to enable future impact-focussed event attribution studies

        to directly compare the distribution of events of interest

           in the Nat + LU ensemble to that with all forcings. Desir-

           able or not, this has the effect of combining all of our

      uncertainty (the difference between the all-forcings and

      natural worlds, plus the differenc e between pre-industria l

       and modern-day land use) into a single ensemble.

       To help understand which land use changes have

         resulted in changes in the climate, Figure 2 shows the

         changes from 1880 to 2010 for the nine different land

        uses identified in the model (the MOSES-II tile types

        described in Ciavarella . (2018)). This period waset al

        intended to represent the difference between Nat + LU

   and the natural-only ensemble.

    5 | L A N D T E M P E R A T U R E T I M E
S E R I E S

         As an initial compa rison, the t ime series of mean near-

       surface air temperature was computed over land, then

         smoothed using a 5-year moving average in order to remove

        major atmospheric modes of variability. In doing so, we

        choose to eliminate se asonal variations, and we leave evalu-

         ation of extremes for future attributio n studies using the rel-

       evant index. This series was compared between Natural-

            only and Nat + L U ensembles. As can be seen in Figure 3a,

        the two ensembles yield very similar time s eries, empha-

         sized by the shared phase o f internal variability and natural

           forcings. It is unclear from such a plot whether there is a

      significant differe nce between the two ensembles, though,

         from previous studies such as Andrews et al. (2017), we

         would expect a net cooling effect from human land use.

        This is remedied by examining the distribution of linear

       trends across the ensem bles, shown in Figure 3b.

          We can easily see by eye that the two trend distribu-

      tions are s ignificantly different . However, the globally-

         averaged land temperature is only one part of the story.
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                  F I G U R E 2 Fractional land use changes from 1880 to 2010 for each of the nine modelled uses in HadGEM3-A-N216
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       Consequently, the time series of Natural-only was sub-

           tracted from that of Nat + LU on a grid-box scale, then

       linear trends were computed. The map of temperature

        changes over land in Figure 3c was produced, excluding

          those grid boxes where the Natura l and Nat + LU trends

          were not found to be significantly different at the 1% level

   using a Kolmogorov Smirnov test.–

        The difference in temperature trend is significant in a

       number of regions, particularly in the northern polar

        regions. This explains the SST pattern cooling pattern seen

        in the Arctic, particularly in HadGEM2-ES (Figure 1) since

           it is of the same family of models, and supports the theory

      that polar amplification is spreading land-based cooling

         ov er t he sea . P re vi ous wor k ( Ch ri stid is et al., 2013a) has

       suggested that deforestation for the expansion of grassland

         appears to be the principal cause of climatic changes due

           to land use. Figure 2 would appear to support this to some

        degree, though this pattern is arguably most closely mat-

           ched by the rise in bare soil and shrubs, rather than the

       deforestation itself. Snow-covered bare soil and grasses in

       polar regions would certainly have the high reflectivity

     which could result in polar feedback.

         Note that we might expect skin te mperature to have a

          closer relationship with land use than does 1.5 m air tem-

      perature (Monteith, 1981). However, on examination of

        the simulations, the plots produced for the two variables

                     F I G U R E 3 (a, above left) Time series of mean near-surface air temperature (tas) anomaly (in Kelvin, relative to the 1961 to 1990

                  period) over land, smoothed using a 5-year moving average. Fifteen members of the natural-forcings-only ensemble are shown in green,

                       while the gold lines are the 15 natural plus land-use forcings members. (b, above right) Linear trends in the time series (in Kelvin per

                    decade) shown as vertical lines for each natural-only simulation (green) and Nat + LU simulations (gold). Gaussian fits to the distributions

                   are also shown. (c, below) Grid-box trend in mean near-surface air temperature (Kelvin per decade) difference between the Natural-only and

                        Nat + LU simulations. We only include those grid boxes where the difference in trends between Natural and Nat + LU are significant at the

      1% level according to a Kolmogorov Smirnov test–
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       were indistinguishable, and hence only air temperature is

shown.

   6 | P R E C I P I T A T I O N C H A N G E S

       Figure 4 compares the sim ulated precipitation with and

        without human land use chan ge. Neither t he time series

        nor the trend distributions appear to be s ignificantly diffe r-

          ent by eye, and this is borne out by quantitative s ignificance

         testing on the grid-box scale. The most extensive regions of

        significance are on the equatorial Atlantic coasts, both of

         which show a wetting trend. This is particularly large in

         Brazil. Be yond this, the very low fraction of significant grid

        points would sugg est that m ost are locally significant b y

         chance, which fits with the inhe rent noise in rainfall fields.

    7 | L A T E N T H E A T F L U X

         Since latent heat flux has a close link to evapotranspir a-

         tion (Monteith, 1981), we might expect this to be more

        closely linked to land use changes than precipitation. The

         time series in Figure 5 show little diff erence by eye

       between the two en sembles, but the trend distributions

       are far more obviously distinguishable. Note there is

           spin-up still visible in the first year of data in the time

        series. However, the presence of this featu re makes no

     appreciable difference to the trend distributions.

         Plotted by grid box, latent heat flux shows a similar

         decreasing trend pattern in the Arcti c that was seen in

       temperature, but other regions are now evident too.

         There is also a strong reducti on in Southern China and

        Southern Brazil, and a strong inc rease upstream of the

           Rio de la Plata. Since there is no single change in land

           use in Figure 2 where all these areas have the same sign

          to correspond with the change in latent heat flux, it is

        likely there is a combination of changes behind this,

         though the rise in bare soil and shrubbery would, once

   again, seem major components.

         It is notable that none of the variables examined here

       show any spatial correlation with the urbanization in

         Figure 2. This means that areas such as China, which

        have seen signific ant land use changes in recent years,
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        have seen relatively little change in their climat e by

        urbanization. This in turn will be dependent on the

       urban dataset (CCI LC) used to drive HadGEM3-A-N216.

        The spatial consistence of this dataset is discussed by

        Hua . (2018). A more interesting phenomenon foret al

          studies in Southern China is the drop in latent heat flux

         matching an increase in areas of bare soil. The depletion

          of broad-leaf forest and the rise of C3 grasse s in that

         region also appears to drive little or no climate change.

  8 | C O N C L U S I O N S

         We find many areas where there are changes in climate

         in the immediate area of land use change, though further

        research is required to clarify the mechanism s and spe-

       cific correl ation between land use and climate. Larger

        changes are found in temperature and latent heat flux

      trends, while precipitation shows little change. North ern

        polar regions see the largest change, particularly in tem-

        perature. This coincides with an increase in bare soil,

        which would suggest cooling from an increased albedo. A

       corresponding cooling found in Arctic SST changes would

        then produce a polar feedback effect, which could spread

          that cooling over a much larger region than seen in other

           parts of the world. In the case of this study, this causality

        is complicated by the SSTs deriving from coupled models,

            and thus it is pos sible for there to b e an e ffect on the

       HadGEM3-A-N216 atmosphere due to land use changes in

        a different model feeding through the SSTs. However, we

         believe that the technique we have used is consistent, since

           the land use is changed in both models, and thus this is

        valid for proceeding to use these simulations for future

       attributions studies incorporating the effect of land use.
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