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HIGHLIGHTS 

• Podocytes are insulin-responsive cells that can become insulin-resistant, causing kidney 

disease with features of diabetic nephropathy.  

• Information theory-derived statistics can measure information flow in cells, providing a 

novel approach to insulin sensing.  

• Using this approach in human podocytes, we show that insulin acts via noisy 

communication channels with most information lost through signaling.  

• This loss is mitigated by sensing multiple effectors and response trajectories, and the 

system is robust to manipulating feedforward signaling but sensitive to inhibition of 

negative feedback. 

• Understanding how system features influence information transfer via insulin receptors 

may help understanding of kidney disease and inform its treatment. 
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ABSTRACT 

Podocytes are key components of the glomerular filtration barrier (GFB). They are insulin-

responsive but can become insulin-resistant, causing features of the leading global cause of 

kidney failure, diabetic nephropathy. Insulin acts via insulin receptors to control activities 

fundamental to GFB integrity, but the amount of information transferred is unknown. Here we 

measure this in human podocytes, using information theory-derived statistics that take into 

account cell-cell variability. High content imaging was used to measure insulin effects on Akt, 

FOXO and ERK. Mutual Information (MI) and Channel Capacity (CC) were calculated as 

measures of information transfer. We find that insulin acts via noisy communication channels 

with more information flow to Akt than to ERK. Information flow estimates were increased by 

consideration of joint sensing (ERK and Akt) and response trajectory (live cell imaging of 

FOXO1-clover translocation). Nevertheless, MI values were always <1Bit as most information 

was lost through signaling. Constitutive PI3K activity is a predominant feature of the system that 

restricts the proportion of CC engaged by insulin. Negative feedback from Akt supressed this 

activity and thereby improved insulin sensing, whereas sensing was robust to manipulation of 

feedforward signaling by inhibiting PI3K, PTEN or PTP1B. The decisions made by individual 

podocytes dictate GFB integrity, so we suggest that understanding the information on which the 

decisions are based will improve understanding of diabetic kidney disease and its treatment. 

 

KEYWORDS. 

insulin receptor, podocyte, diabetes, phosphatidyl-inositol 3 kinase (PI3K), mutual information, 

cell signaling. 

 



4 

 

GRAPHICAL ABSTRACT. 

 

 

 

 

 

  



5 

 

INTRODUCTION. 

Podocytes are a crucial component of the glomerular filtration barrier (GFB). They interdigitate 

with one-another to form a filter that is permeable to water and other small molecules from the 

blood, but not to proteins such as albumin. The appearance of albumin in the urine is a hallmark 

of kidney disease (1) and the essential role of podocytes in GFB integrity is illustrated by the fact 

that more than 60 human genetic mutations causing albuminuria all encode proteins with specific 

roles in podocytes (2). Diabetic nephropathy is the leading cause of kidney failure globally, 

accounting for approximately half of patients entering end stage renal failure in the USA (United 

States Renal Data System. 2013 Atlas of End-Stage Renal Disease,  

https://www.usrds.org/2013/pdf/v2_ch1_13.pdf (2013)). It is classically characterised by 

progressive albuminuria due to GFB damage that primarily reflects impaired podocyte function 

(3). It was attributed to hyperglycaemia but we have shown that podocytes are insulin-sensitive 

and that rendering the podocyte insulin resistant also causes nephropathy in normoglycaemic 

conditions (4-6), suggesting podocyte insulin resistance is important in this condition. This has 

focussed research onto direct insulin effects on podocytes, and the possible therapeutic benefit 

from modulating insulin receptor (IR) signaling in them. In podocytes, IR engage the canonical 

IR/phosphatidylinositol 3-kinase (PI3K)/Akt signaling network (7) to drive activities including 

glucose uptake and cytoskeletal remodelling, both of which are important for GFB integrity (8). 

 

Insulin sensitivity is a key concept in diabetology that initially related to the effectiveness of 

insulin at clearing glucose from the blood but also applies to insulin-stimulated responses in in 

vitro assays. Recent cell biology studies highlight an entirely different approach to assessment of 

hormone sensing based not on the size of the response, but on the reliability with which stimuli 

can be inferred from responses. Consider an experiment in which equal numbers of cells are 

exposed to one of 8 insulin concentrations and a response (i.e. Akt activation) is measured. If the 

insulin concentration can be inferred precisely from the response, insulin must have acted via a 

hi-fidelity channel with no information lost through signaling. Alternatively, it might only be 

possible to infer that the cells have or have not been exposed to insulin. In this case we would 

conclude that most information has been lost because the input was 3Bits (23=8 insulin 

concentrations) whereas at most 1Bit (with or without insulin) could be inferred from the 

response. Information transfer can be quantified more precisely with statistical measures 
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including Channel Capacity (CC), which represents the maximal number of environmental states 

that the receiver can discriminate, and Mutual Information (MI) that measures the quality of 

inference of stimulus from response. Both are measured in Bits, where a CC of 1Bit means that 

the receiver can unambiguously discriminate two different environmental states (9-16).  

 

This approach was developed for electronic communication systems but has more recently been 

applied to sensing of growth factors, cytokines and hormones (9-16). This involves measurement 

of responses in large numbers of individual cells, enabling information transferred through 

signaling pathways to be calculated, taking into account cell-cell variation (9-16). In essence, the 

reliability with which individual cells sense environment features is calculated taking into 

account not only the size of the response, but also the noise in the system. This has revealed that 

there is typically marked loss of information through cell signaling pathways, although such loss 

can be mitigated by sensing of multiple effectors (12,17,18) and by sensing response trajectories 

(13,14,19-21). More generally, this novel approach can be used to explore how system 

architecture influences information flow, but it has not been applied to podocytes. Here, we 

measure IR-mediated information transfer in hPod cells (a human podocyte cell line) and find 

that it is low but can be increased by joint sensing (of pAkt and ppERK) and by sensing 

responses over time. Surprisingly, IR-mediated information transfer was robust to manipulation 

of feedforward signaling and constitutive PI3K/Akt activity was identified as a prevalent feature 

that limits IR-mediated information transfer. Interestingly, we find that Akt-mediated negative 

feedback supresses this constitutive activity and thereby actually improves insulin sensing. We 

suggest that understanding how system features influence information transfer via IR will be of 

value in understanding diabetic kidney disease and its treatment. 

 

MATERIALS AND METHODS. 

Antibodies and reagents. Primary antibodies (Cell Signaling Technology) were mouse anti-Akt 

(#2920), rabbit anti-pAkt(S473) (#4060), rabbit anti-pAkt(T308) (#13038), mouse anti-ERK1/2 

(#4696) and rabbit or mouse anti-ppERK1/2 (#4370 and 5726). Secondary antibodies 

(Invitrogen) were goat anti-rabbit Alexa Fluor 488 or 647 (A11008 and A21245) and goat anti-

mouse 647 (A21236). EGF was from Sigma (E9644). Insulin, wortmannin, (PI3K inhibitor, 

#1232)), LY294002 (PI3K inhibitor, #1130)), GSK694002 (Akt inhibitor, #4144), PD184352 
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(MEK/ERK inhibitor, #PZ0181) GF109203X (PKC inhibitor, #0741), PP2 (Src inhibitor, 

#1407), SF1670 (PTEN inhibitor, #5020) and CX08005 (PTP1B inhibitor, #6144) were from 

R&D Systems. Culture reagents were from Sigma Aldrich. DAPI (D1306) and Hoechst 33342 

(H3570) were from Thermo Fisher Scientific. pLenti Foxo1 Clover was a gift from Peter 

Rotwein (Addgene plasmid #67759; http://n2t/addgene:67759 ; RRID:Addgene_67759). 

 

Culture and stimulation. Conditionally immortalised human podocytes expressing IR (hPods) 

were cultured, seeded into 96 well plates and differentiated for 10-14 days at 37oC as described 

(4,22,23). For treatments, they were serum starved for 4 hr in 100 µl RPMI-1640 at 37oC and 

then stimulated with insulin or EGF. hPod/FOXO1 cells are hPods transduced with recombinant 

lentivurus for expression of FOXO1-clover (24). Transduced cells were selected with puromycin 

(0.8 µg/ml) and transduction efficiency was >98%. 

 

Fluorescence staining and high content imaging. Cells were fixed and stained as described 

(23,25), using antibodies at 1:200 except anti-pAkt (T308) which was 1:800. For most 

experiments nuclei were stained with DAPI (25). Cells were imaged with an InCell Analyzer 

2200 (GE Healthcare) using a 10X objective and with LED/filter combinations for DAPI (blue 

channel), Alexa488 (green channel) or Alexa647 (red channel). For live cell experiments, 

hPod/FOXO1 cells were processed as above except that 30 min before imaging, the media was 

replaced with live cell imaging buffer (20,26) containing 2 μM Hoechst 33342 to stain nuclei. 

Treatments were added to wells (25 µl at 5X concentration added to 100 µl medium) before 

transferring plates to the (pre-heated) InCell stage for imaging at 37oC. 

 

Statistics. Treatments were in 2-4 wells with 1-4 fields per well, providing 2000-10000 imaged 

cells for each treatment in each experiment. Image analysis with InCell Analyzer Workstation 

Multi-Target Analysis algorithms provided fluorescence intensity (in arbitrary fluorescence 

units, AFU) in the nucleus and cytoplasm (20,25). For the FOXO1-clover translocation assays a 

cut-off was used, defining cells as +ve when cytoplasmic FOXO1-clover >20% higher than in 

the nucleus. Alternatively, the cytoplasmic fraction (FOXO1-CF) was calculated. For the live 

cell experiments, individual cells were tracked as described (20).  

 

http://n2t/addgene:67759
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For most experiments, individual cell measures from complete concentration-response curves 

were used to calculate MIs using MatLab (13,20,27) and the following formula: 

 

I(Z;S) = H (Z) – H(Z│S) 

 

where I is the MI between a signal (S) and a response (Z), H(Z) is the unconditional entropy of 

the response, and H(Z│S) is the conditional entropy, and for our analyses S had a uniform 

distribution (4). This analysis employs a K-Nearest Neighbours (K-NN) approach with K 

(number of nearest neighbours) set at 6-20 after preliminary estimates showed that it had little 

influence on calculated MI values within this range. 

 

Where two measures were available for the same cells, we also calculated joint MI between 

insulin and the paired outputs as above, but with response (Z) now interpreted as a two-

dimensional vector. 

 

For hPod/FOXO1 cell experiments, Statistical Learning-based Estimation of Mutual Information 

(SLEMI) software was used. This algorithm uses a logistic regression model to learn the discrete 

probability P(S|Z) of the signal (S) given the response (Z) and uses the following (alternative) 

formula to calculated MI and capacity: 

I(Z;S) = H (S) – H(S│Z). 

 

As SLEMI does not use K-NN or binning it is well-suited to highly dimensional outputs and 

multiple inputs (28) such as the multiple time points in live cell experiments. SLEMI was used to 

calculate Channel Capacity as well as MI.  

For most experiments we report population averaged signalling responses as well as MI and/or 

CC measures. In each case the values determined from replicate experiments were pooled and 

are reported as means±SEMs (n=3-6).  Statistical significance was then assessed by one- or two-

way ANOVA and post-hoc tests as outlined in figure legends.  
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RESULTS. 

Akt is activated by PDK1-mediated phosphorylation at T308 and mTORC2-mediated 

phosphorylation at S473 (Fig.1). In hPod cells insulin caused concentration-dependent increases 

in pAkt(T308) and pAkt (S473) (Fig.1, Supplemental Fig.1). Scatter plots revealed marked cell-

cell variability (Fig.1D) with this also evident in frequency-distribution plots revealing  

pAkt(S473) measures to be approximately log-normally distributed (fig.1B). CVs for log 

pAkt(S473) were 6.0%, 6.5%, 4.7%, 4.9% and 4.8% after 10 min with 0, 10-9, 10-8, 10-7 and 10-

6M insulin. MI values calculated from single cell measures were ~0.3Bits irrespective of Akt 

phospho-site (Fig.1F). Five insulin concentrations provide ~2.3Bits of information (22.3 ~ 5) so 

MIs of ~0.3 imply that most information has been lost because of noise (cell-cell variability) in 

the system. EGF acts on podocytes (29) and also caused concentration-dependent increases in 

pAkt(S473) and pAkt(T308) with MIs comparable to those for insulin (Fig.1, Supplemental 

Fig.1D). In cells stimulated 5, 10, 30 or 60 min, population average responses were maximal at 

5-10 min and MIs were similar between time-points (Supplemental Fig.2). ppERK and total 

ERK measurements revealed a modest insulin effect on ppERK, high cell-cell variability and low 

MIs for ERK activation (maximally ~0.1Bit, Supplemental Fig.2). Thus, although the population 

averaged data reveal clear concentration-dependent insulin effects, we find that a) individual 

podocytes are unreliable insulin sensors with most information lost through signaling, b) this is 

not specific for insulin as there is comparable information transfer via EGF receptors and c) we 

have not underestimated information flow by poor time-point selection. 
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Figure 1. Quantifying 

IR-mediated and 

EGFR-mediated 

information transfer 

in hPod cells. hPods 

were stimulated 10 min 

with the indicated 

concentrations of 

insulin (A) or EGF (E). 

They were then fixed 

and stained for nuclei 

(DAPI), pAkt(S473) 

and total Akt (tAkt) 

before image 

acquisition and 

analysis. Nuclear pAkt 

measures were 

normalised to nuclear 

tAkt and then to the 

control pAkt/tAkt value (0 insulin, A). Background values (image regions without cells) were not 

subtracted but gave pAkt/tAkt values of approximately 0.8. B and C show representative frequency 

distribution plots for individual cells treated with 0 or 10-7M insulin. Nuclear pAkt(S473) and tAkt 

measures (in arbitrary fluorescence units, AFU) were logged before binning and relative frequencies 

are plotted against bin centre. Panel D shows scatter plots of single cell log pAkt(S473) measures 

(1000 cells per treatment in a representative experiment). pAkt(T308) measurements made in parallel 

are in Supplemental figure 1. Individual cell measures from the complete concentration response 

curves were used to calculate MIs for insulin-stimulated Akt phosphorylation (I(pAkt;insulin) (E) and 

EGF-stimulated Akt phosphorylation (I(pAkt;EGF) (F) for the indicated phospho-site. The data in A, 

E, F and G are means±SEMs (n=4) and for F and G they are expressed in Bits. Lower left is a cartoon 

for canonical IR/PI3K/Akt and EGFR/Ras/Raf/MEK/ERK signaling as well as the IRS-mediated ERK 

activation pathway, with the pharmacological inhibitors used shown in blue. The lower right panel 

shows representative hPod cells treated 10 min with 0 or 10-7M insulin and imaged for pAkt(S473), 

tAkt or DAPI as indicated. 
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Information could be gained by sensing multiple effectors, so we measured pAkt and ppERK in 

the same cells. MIs for single responses were comparable to those above but were greater when 

both effectors were considered (0.4-0.5Bits) (Fig.2). The PI3K inhibitor LY294002 reduced 

population pAkt responses and the MEK inhibitor PD184352 reduced insulin effects on ppERK 

(Fig.2). LY294002 did not inhibit insulin effects on ppERK and PD184352 did not inhibit insulin 

effects on pAkt (not shown). PD1845352 had no effect on MIs under any condition and although 

LY294002 reduced I(pAkt(S473)) and joint sensing, the same tendencies were not significant for 

pAkt(T308) and ppERK. Thus, information is gained by joint sensing but the increase is modest.  

 

Figure 2. Loss of information is mitigated by joint sensing of pAkt and ppERK in insulin-

stimulated hPod cells. A-C: hPods were pre-treated 60 min with or without LY294002 (10-5M) or 

PD184352 (10-5M) before 10 min stimulation with the indicated concentration of insulin (in the continued 

presence of inhibitor). The data shown are nuclear pAkt(S473) (A), pAkt(T308) (B) or ppERK (C), 

normalised to control values from cells receiving no insulin or inhibitor (mean±SEM, n=3). Background 

values (fluorescence in regions without cells) have not been subtracted but were approximately 0.7 for 

both pAkt measures and 0.4 for ppERK. D and E: the individual cell measures underlying the 



12 

 

concentration response curves were used to calculate MI for insulin-stimulated Akt phosphorylation and 

ERK phosphorylation as well as the MI for joint sensing of both effectors in the same cells (i.e. for 

pAkt(S473) and ppERK in D and for pAkt(T308) and ppERK in E). The values shown are means±SEMs 

for I(response;insulin) in Bits. For D, two-way ANOVA revealed response measured and inhibitor as 

significant sources of variation and post-hoc tests (Dunnet’s multiple comparison) revealed significant 

differences between control and inhibitor treatment as indicated (**P<0.01). For E, two-way ANOVA 

revealed the response measured as a significant source of variation, whereas inhibitor was not. 

 

Akt exerts negative feedback on PI3K, but T308 and S473 phosphorylation are both needed for 

activation, and positive mTORC2-mediated feedback supports S473 phosphorylation (Fig.1G) 

(30-33). Akt inhibition (GSK690693) increased basal pAkt (Fig.3) revealing constitutive Akt-

mediated negative feedback. The GSK690693 effect on basal pAkt(T308) was greater than its 

effect on basal pAkt(S473) (Fig.3) which likely reflects inhibition of both negative and positive 

feedback for pAkt(S473). GSK690693 shifted the concentration-dependent effects of insulin on 

pAkt and also tended also to reduce the maximal insulin effect on pAkt(S473) (Fig.3). MIs for 

control pAkt responses were ~0.25Bits and both were significantly reduced by GSK690693 

whereas I(ppERK;insulin) was unaltered by GSK690693 (Fig.3C). Thus, we report a novel role 

for Akt-mediated negative feedback in protecting insulin sensing. 

Figure 3. Loss of information is mitigated by Akt-mediated negative feedback in insulin-stimulated 

hPods. A and B: hPods were pre-treated 60 min with or without the Akt inhibitor GSK690693 (2x10-7M) 

before stimulation for 10 min with insulin (as indicated and in the continued presence of inhibitor). The 

data are nuclear pAkt(S473) (A) and pAkt(T308) (B) normalised to control values with no insulin or 

inhibitor (mean±SEM, n=7). Background values have not been subtracted but were ~0.7. The data in A 

are offset +/- 0.05 log units on the x-axis to aid visualisation of the overlapping error bars. C: MIs for 
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insulin-stimulated Akt phosphorylation in control and GSK690693 treated cells as indicated. In parallel 

experiments cells treated in the same way were processed for measurement of ppERK and tERK so that 

MI values for insulin stimulated ERK phosphorylation could also be calculated. The values shown are 

either I(pAkt;insulin) or I(ppERK;insulin) and are means±SEMs (n=7) in Bits. For C, two-way ANOVA 

revealed inhibitor as significant source of variation and post-hoc tests revealed significant differences 

between control and inhibitor treatment as indicated (**P<0.01). 

 

Phosphatase and tensin homolog (PTEN) is a negative regulator of Akt (Fig.1) and PTEN knock-

down increases pAkt in mouse podocytes (34). PTEN inhibition (SF1670) increased basal 

pAkt(S473), but didn’t influence cell-cell variability as the CV for log pAkt(S473) (6.8±0.3%, 

n=3) was not significantly influenced by SF1670 (P>0.05 by one-way ANOVA). SF1670 

effectively shifted the insulin concentration-response curves upward but didn’t alter 

I(pAkt;insulin) (Fig.4). Protein tyrosine phosphatase 1B (PTP1B) also negatively regulates Akt 

(Fig.1) and PTP1B knockdown increases Akt activation in mouse podocytes (25). PTP1B 

inhibition (CX08005) also increased basal pAkt(S473) but did not influence cell-cell variability 

as the CV for log pAkt(S473) (6.5±0.4%, n=3) was not significantly influenced by CX08005 

(P>0.05 by one-way ANOVA). This inhibitor also effectively shifted the insulin concentration-

response curves upward without altering I(pAkt;insulin) (Supplemental Fig.3B). Similar data 

were obtained for pAkt(T308) (not shown). Thus, these two major negative regulators do not 

actually influence information transfer via IR to Akt in this system.  

 



14 

 

Figure 4. IR-mediated 

information transfer is 

not influenced by PTEN 

inhibition. A and B: 

hPods were pre-treated for 

60 min with or without the 

PTEN inhibitor SF1670 

before 10 min stimulation 

with insulin (as indicated 

and in the continued 

presence of inhibitor). The 

data shown are nuclear 

pAkt(S473) (A) or 

pAkt(T308) (B) 

normalised to control 

values in cells receiving no 

insulin or inhibitor 

(mean±SEM, n=3). Background values (not subtracted) were ~0.7. Data are offset +/- 0.05 log units on 

the x-axis to aid visualisation of the overlapping error bars. C and D:  individual cell measures were 

used to calculate MIs for insulin stimulated Akt phosphorylation at S473 (C) or T308 (D). These are 

plotted against SF1670 concentration (mean±SEM, n=3). Two-way ANOVAs for the data in A and B 

revealed insulin and inhibitor as significant sources of variation (P<0.01 for each) whereas the 

insulin/inhibitor interaction terms were not significant. One-way ANOVAs for the data in C and D 

revealed that inhibitor concentration was not a significant source of variation. 

 

Forkhead box binding protein 1 (FOXO1) translocates to the cytoplasm when phosphorylated by 

Akt so we expressed FOXO1-clover as a live cell reporter for Akt activation. In hPod/FOXO1 

cells insulin increased pAkt(S473) and pAkt(T308) levels and caused cytoplasmic translocation 

of FOXO1-clover (Fig.5D-F). PI3K inhibition reduced both responses whereas Akt inhibition 

increased pAkt(T308) in control cells and prevented FOXO1-clover translocation (Fig.5). 

Without insulin, LY294002 caused small reductions in pAkt(S473) and pAkt(T308) whereas 

GSK690693 increased both measures. Coefficients of variance for the log pAkt(S473) and 

pAkt(T308) measures were significantly increased by GSK690693 but were not altered by 
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LY6942002 (Fig.5 legend), and LY294002 caused a pronounced reduction in cytoplasmic 

FOXO1-clover (measured using a % +ve cut-off), whereas GSK690693 increased it (Fig.5). 

Thus, FOXO1-clover translocation is indeed dependent on Akt activity and is particularly 

sensitive to the low levels of constitutive Akt activity without insulin. MIs were ~0.2, 0.05 and 

0.3Bits for pAkt responses, FOXO1-clover translocation and joint sensing, respectively (Fig.5). 

CC values followed the same trends but were somewhat higher. GSK690693 reduced all these 

measures whereas LY294002 tended to increase them (Fig.5) reinforcing the conclusion that 

insulin sensing is relatively robust to PI3K inhibition in podocytes.  

 

Figure 5. Measuring IR-

mediated information transfer to 

Akt and FOXO1 in fixed cells. A-

F: hPod/FOXO1 cells were 

incubated 60 min with or without 

LY294002 (10-5M) or GSK690693 

(2x10-7M) and then stimulated 10 

min with insulin (as indicated and 

in the continued presence of 

inhibitor) . The % of cells where 

cytoplasmic FOXO1-clover was 

>20% greater than the nuclear 

FOXO1-clover was calculated and 

is shown as FOXO1 % +ve (C and 

F). A-C show control data with no 

insulin, whereas D-F show the full 

concentration-response curves. 

CVs calculated for control, 

LY294002 and GSK690693-

treated cells were 3.7±0.2%, 

3.2±0.1% and 4.5±0.2% for log-

pAkt(S473) and were 3.9±0.2%, 

3.9±0.2% and 5.1±0.2% for log-pAkt(T308). One-way ANOVAs and post-hoc Dunnet’s tests revealed 

the effects of GSK690693 on CV to be statistically significant (P<0.05) whereas those of LY294002 
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were not (P>0.05). The individual cell measures for the full concentration-response curves were used 

to calculate MI and CC values for each readout and for the joint measures. To enable the joint measure 

calculations, pAkt(S473) and FOXO1-clover were quantified in the same cells (panel G) and in 

parallel experiments, pAkt(T308) and FOXO1-clover were measured in the same cells (panel H). The 

data shown are means±SEMs (n=4). Two-way ANOVAs for data in G and H revealed insulin and 

inhibitor as significant sources of variation (irrespective of the Akt phosphorylation site quantified) 

and post-hoc Dunnett’s tests revealed significant differences to the appropriate control measure as 

indicated (*P<0.05, **P<0.01). 

 

Figure 6. Live cell imaging of FOXO1-clover translocation. A: hPod/FOXO1 cells were imaged at 

37oC during 60 min exposure to wortmannin (10-5M), LY294002 (10-5M) or control medium (starting 

at t=0) with images captured at 2 min intervals for the first 30 min and at 5 min intervals thereafter. B-

D: Cells were pre-treated for 60 min with wortmannin (10-5M, C), LY294002 (10-5M, D) or control 

medium (B) before 60 min stimulation with insulin at the indicated log M concentration (labels in B 

apply also to C and D) and in the continued presence of inhibitor. The FOXO1 (% +ve) measure was 

calculated as for figure 5. For all panels, the data shown are means of population average responses 

from 4 experiments with SEMs (mostly <10%) omitted for clarity. The horizontal dotted lines in C and 

D show the mean FOXO1 % +ve value in control cells with no insulin or inhibitor. 
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Using FOXO1-clover translocation as a live cell readout for Akt activation (Fig.6A), LY294002 

and wortmannin both reduced the % FOXO1 +ve cells (half-times 10-15 min). The % FOXO1 

+ve increased from ~55% to 75% in control cells, which may reflect mechanical stimulation with 

medium addition. In control cells ~50% of cells were FOXO1 +ve at time 0 and insulin caused 

cytoplasmic translocation that was rapid, sustained, and concentration-dependent (Fig.6B). PI3K 

inhibitor reduced cytoplasmic FOXO1-clover (10-20% FOXO1 +ve at time 0) but did not 

prevent insulin-stimulated translocation (Fig.6). Similarly, when FOXO1 cytoplasmic fraction 

(FOXO1 CF) was calculated for tracked cells there was a clear reduction on PI3K inhibition, and 

insulin stimulated translocation not only in control cells, but also with inhibitor (Fig.7). These 

data revealed marked cell-cell variability so unsurprisingly, MIs at single time-points were low 

(<0.1Bit). However, the MI calculated taking trajectories into account was approximately 

doubled (compare Fig.8A and C). PI3K inhibition increased MIs at most time-points and when 

trajectories were considered, MI was increased by wortmannin. Similar relationships were seen 

for CCs, although these were consistently higher than the corresponding MIs (Fig.8). We also 

explored the possibility that insulin--stimulated FOXO1-clover might reflect activation of PKC, 

Src or MEK (other kinases activated by IR) but inhibiting these enzymes had no effect on 

FOXO1-clover distribution whereas GSK690693 ablated the response to insulin with or without 

wortmannin (Supplemental Fig.4). This re-enforces the conclusion that the translocation assay is 

sensitive to low levels of Akt activity but most importantly, these data reveal that podocytes do 

indeed gain information by sensing over time (Fig.8). 
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Figure 7. Tracking FOXO1-clover in individual cells. A-I: For the experiments shown in Fig.6B-D, 

responses were tracked over time as described in the Materials and Methods. To visualise graded 

responses the nuclear and cytoplasmic FOXO1-clover measures were used to calculate the cytoplasmic 

fraction (CF), and for each cell the CF at time 0 was subtracted in order to follow changes caused by 

the treatments (FOXO1 ΔCF). Each panel shows traces for approximately 50 cells receiving the 

indicated pre-treatment with selected insulin concentrations (0, 10-9M and 10-7M). These are 

representative of many thousands of cells tracked and visualised in this way. J-L show raw FOXO1 CF 

values (population averaged data) for the same insulin concentrations, emphasising the fact that the 

cytoplasmic fraction of FOXO1 was reduced by pre-treatment with LY29402 or wortmannin (compare 

0 times in J, K and L). These data are means±SEMs (n=4) and are from the same experiments reported 

as % +ve in figure 6B-D but with responses to 10-11, 10-10 and 10-8M insulin omitted for clarity. 
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Figure 8. IR-mediated information transfer to FOXO1 in live cells. The tracked cell data (FOXO1-

clover ΔCF values from the experiments shown in Fig.6B-D) were analysed to determine MIs and CCs 

at each time point (A and B, respectively), as well as MI and CC taking the individual cell response 

trajectories into account (panel C) for control and inhibitor pre-treated cells, as indicated. The values 

shown are means±SEMs (n=4) in Bits. One-way ANOVA of the MI data ibn C revealed treatment as a 

significant source of variation and post-hoc Dunnett’s tests revealed a significant effect of wortmannin 

(*P<0.05, compared to control). Treatment was not a significant source of variation for the CC data. 

 

We next considered more complex environments, by varying insulin with or without EGF, PI3K 

inhibitor and MEK inhibitor, measuring pAkt(S473) and ppERK so that CCs could be calculated 

for sensing all 32 environments or any subset of them. Both stimuli activated both effectors and 

the pAkt responses were inhibited by LY294002 whereas the ppERK responses were inhibited 

by PD184352 (Supplemental Fig.5). For all 32 treatments, CCs were ~0.75Bit for pAkt(S473), 

~1.0Bit for ppERK and ~1.75Bit for joint sensing (Supplemental Fig.6). These values estimate 

the information about the multi-dimensional environment that can pass to Akt, to ERK or via the 

Akt/ERK network, respectively. Additional important observations were that only a proportion 

of this capacity was engaged by activators (CC with joint outputs and with insulin inputs was 

only ~0.6Bit and this increased to only ~0.8Bit for sensing insulin and EGF) and that the 

capacity for inhibitor sensing (~0.7Bit for joint outputs) was as high as for activator sensing.  

 

DISCUSSION 

Cell-cell variation is a fundamentally important feature of physiological systems as it is the 

decisions made by individual cells (i.e. whether to die or divide) that underlie the health and 

function of multicellular systems (9-16). This is certainly true for kidney function where death 

and detachment of individual podocytes reduces GFB integrity, and whether cells migrate or 
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expand into the space will influence repair. Moreover, cellular decision making is inherently 

linked with the amount of information cell transfer regarding their environment. Here we have 

calculated Mutual Information (MI) between inputs and outputs, and the related metric of 

Channel Capacity (CC), as statistical measures of information transfer via IR in podocytes (4-6). 

Our initial observation was that MI values for insulin-stimulated Akt phosphorylation in fixed 

cells were ~0.2Bits, implying that podocytes are unreliable insulin sensors with most information 

lost through signaling. This is consistent with other systems as MI and/or CC values of <1Bit 

have been reported for single time-point measures of EGF, NGF, GnRH, PACAP and TNFα 

signaling (12,13,18,26). MIs for stimulation of Akt phosphorylation by insulin and EGF were 

comparable, and values were similar at 5, 10, 30 and 60 min, allaying concern that our low MIs 

were specific for IR signaling or had been underestimated by routine 10 min stimulations.  

 

However, cells could gain information by sensing multiple responses and supporting this, we 

found that MIs for joint insulin sensing by pAkt and ppERK (Fig.2) or by pAkt and FOXO1 

(Fig.5) were greater than for either alone. Here it is important to recognise that we focus on the 

amount of information rather than the decisions informed by it. Consider a system in which 

insulin effects on pAkt and ppERK are perfectly correlated across individual cells such that there 

is no additional information from sensing both. In this scenario joint sensing would make the 

system robust to loss of information by selective pharmacological inhibition of either pathway. 

Nevertheless, the inhibition would still prevent decisions dependent on either the blocked 

pathway alone, or on concomitant activation of both. The latter scenario is particularly relevant 

to ERK and Akt signalling as these effectors can provide combinatorial control of cell fate (35). 

 

Another possible explanation for robustness of information transfer to pharmacological 

inhibition (12) is that changes in population average responses can scale directly with changes in 

cell-cell variability. This is seen in our data, where averaged insulin effects on pAkt were 

consistently reduced by PI3K inhibitors, whereas the inhibitors had little or no effect on MI 

measures (Figs.2 and 5). There was also no change in MI when PTEN or PTP1B were inhibited, 

in spite of the fact that both increased pAkt levels without insulin. Akt inhibition also increased 

pAkt without insulin but this effect was associated with reduced MI values (Figs.3 and 5). Akt 

inhibition also increased cell-cell heterogeneity in pAkt values (Fig.5) without insulin,  whereas 
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inhibition of PI3K, PTEN or PTP1B did not (Figs.4 and 5) so this is a system in which there is a 

high level of basal PI3K/Akt signaling and constitutive Akt-mediated negative feedback 

improves information transfer by opposing this constitutive activity and the associated cell-cell 

variability. High PIP3 levels exist in unstimulated cells (i.e. NIH3T3 cells, where PDGF 

increased PIP3 levels only 4.5-fold, from 0.1 to 0.45 mol %). It is therefore possible that the 

same holds true for podocytes, with constitutive Akt activity driven by basal PIP3 levels (36) and 

although the reasons for the heterogeneity in Akt responses reported here are unknown, cell-cell-

variability in PIP3 levels is an obvious possibility. In related work, we have shown that 

constitutive activity impairs information flow via EGF receptors to ERK and that ERK-mediated 

negative feedback supports EGF sensing by inhibiting it (13), and now show a similar 

relationship the IR/PI3K/Akt pathway, with Akt-mediated negative feedback protecting 

information flow by opposing constitutive activity (Fig.3). Most importantly, this novel finding, 

that IR-mediated information transfer is robust to manipulation of feed-forward signaling but 

sensitive to inhibition of feedback signaling, has potential translational relevance for podocytes, 

where insulin resistance promotes kidney disease (37). 

 

We also considered multidimensional inputs and outputs and obtained our highest CC estimates 

when insulin was varied with or without EGF, PI3K inhibitor and MEK inhibitor. With joint 

outputs and all 32 possible inputs, CC was 1.74Bits. Lower values were obtained for sensing 

insulin alone (0.57Bits) or for sensing insulin with or without EGF (0.80Bits) and these were 

comparable to the value obtained for inhibitor sensing (0.70Bits). These issues are likely related, 

as high constitutive activity in the Akt/ERK network limits the reliability of insulin sensing by 

ensuring that only ~50% of the network’s information carrying capacity is available to activators.    

 

Single time-point data underestimates information transfer where response trajectories are 

sensed. In the context of cell signaling this reflects the existence of integrative tracking systems 

with biochemical responses sensitive to input dynamics (11,13,14,20,38). Addressing this by live 

cell imaging we found that insulin rapidly increases FOXO1-CF and with snap-shot data, MIs 

were low (<0.1Bits) (Fig.8), whereas taking trajectory into account increased MI (~0.2Bits) and 

the same trends were seen with CC measures. The reporter was largely cytoplasmic before 

stimulation (Figs.5-7), and since FOXO1-CF was reduced by inhibition of PI3K or Akt (but not 
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by inhibition of PKC, Src or MEK), this could reflect basal PI3K/Akt activity and sensitivity of 

this assay to low pAkt levels. Consequently, partial PI3K inhibition markedly reduced FOXO1-

CF without insulin but did not reduce information flow via IR to FOXO1. Indeed, taking 

trajectory into account, IR-mediated information transfer to FOXO1 was increased by 

wortmannin (Fig.8). This again has potential translational relevance as many insulin effects 

reflect Akt-mediated inactivation of FOXO1 (7) and our data indicate the importance of basal, 

rather than hormone-stimulated, PI3K/Akt signaling in podocytes. Most importantly however, 

we find that podocytes gain considerable information by sensing responses to insulin over time.  

 

In summary,  using this novel information theoretic approach (9-16) we show that insulin acts 

via noisy communication channels with most information lost through signaling in podocytes 

although information transfer estimates were increased by joint sensing and by consideration of 

responses over time. Our data reveal a remarkable robustness of information flow to 

manipulation of feedforward signaling, but sensitivity to negative feedback. This contrast has 

potential translational relevance as the effectors and modules having most impact on information 

transfer may be most likely to cause disease when perturbed. We also identify constitutive PI3K 

activity as system characteristics important for insulin sensing. It ensures that the cells sense both 

activators and inhibitors but also impairs insulin sensing and explains why negative Akt-

mediated feedback protects insulin sensing. 
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