
University of Exeter

Department of Computer Science

Training-ValueNet: A new approach for label

cleaning on weakly-supervised datasets

Submitted by Luka Smyth to the University of Exeter

as a thesis for the degree of

Masters by Research in Computer Science

In September 2019

This thesis is available for Library use on the understanding that it is

copyright material and that no quotation from the thesis may be

published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has

been identified and that no material has previously been submitted and

approved for the award of a degree by this or any other University.

Signature: ..

Abstract

Manually labelling training data for machine learning has always been incredibly time-

consuming and expensive. For those who seek to apply modern deep learning algorithms

however, the cost of acquiring enough accurately labelled data is quickly becoming the

single greatest obstacle impeding progress. Weakly-supervised learning offers a promis-

ing alternative by enabling practitioners to rapidly apply weak sources of supervision

to large amounts of data. Unfortunately, the presence of label noise in these datasets

remains a critical issue as it can severely impair the performance of a machine learning

model. In this thesis, we investigate a new approach for performing label cleaning on

weakly-supervised data without human supervision. We propose that the boundary

between correctly labelled and mislabelled examples might best be described in terms

of the impact that an individual training example has on performance. Specifically,

we hypothesise that mislabelled training examples will reliably detriment the gener-

alization performance of a classifier and can be identified as such. To this end, we

present the Training-Value approximation network (Training-ValueNet) which learns

to estimate the training-value of each example - an objective measure of its impact

on performance. In a series of three key experiments, we demonstrate that by simply

discarding examples with a negative training-value, Training-ValueNet can significantly

reduce the proportion of label noise in weakly-supervised datasets and improve the fi-

nal performance of an image classification model as a result. In a label noise detection

task, our method achieves a substantial 39% lower detection error than the current

state-of-the-art outlier detection method for label cleaning. Furthermore, we demon-

strate that when our method is used for label cleaning, weakly-supervised learning can

achieve comparable performance with the fully-supervised paradigm. This highlights

the potential for data-driven approaches like ours to eradicate the need for manual label

cleaning all-together. We have released an easy-to-use, open-sourced implementation1

of Training-ValueNet in the hope that researchers and practitioners can benefit from it.

1https://github.com/lukasmyth96/Training-ValueNet

1

https://github.com/lukasmyth96/Training-ValueNet

Acknowledgements

First and foremost I must express my sincere gratitude to my supervisor Dr Nicolas

Pugeault for all his guidance over the past two years. I shall forever be grateful for the

freedom he afforded me to pursue my ideas and for his invaluable knowledge.

I would also like to thank Dr Dmitry Kangin for always being so generous with his time

and advice, and Dr David Walker for his part in inspiring me to pursue this degree

in the first place. I am grateful for my colleagues at nate who inspire me each day to

continue learning and improving myself.

Last, by not least, I would like to thank my parents for always supporting me in what-

ever I do, and Rebecca, without whom this may not have been finished any time soon.

2

Contents

List of Figures 5

List of Tables 6

Summary of Notation 7

List of Publications 8

1 Introduction 9

1.1 The new bottleneck in Deep Learning 9

1.2 Weak-supervision and the need for Label Cleaning 11

1.3 Outline of Existing Approaches to Label Cleaning 13

1.4 A new approach to label cleaning . 16

1.5 Outline of Subsequent Chapters . 18

2 Background and Related Work 20

2.1 Weakly-Supervised Learning . 20

2.2 The impact of Label Noise . 23

2.3 Approaches to Label Cleaning . 25

2.3.1 Semi-supervised Label Cleaning 26

2.3.2 Outlier Detection . 27

2.4 Robust Learning in the Presence of Label Noise 32

2.4.1 Curriculum Learning . 32

2.5 Summary of the state-of-the-art . 34

3 Training-ValueNet 35

3.1 Overview of Proposed Approach . 36

3.2 Clarifications . 37

3.3 Definition of Training-Value . 39

3.4 Monte-Carlo Estimation of Training-Value 41

3.5 Training-Value Approximation Network 42

3

4 Experiments 44

4.1 Datasets . 44

4.1.1 Clothing 1M . 44

4.1.2 Aircraft-7 . 45

4.2 Experimental Setup . 46

4.2.1 Experiment 1 - Label Noise Detection 46

4.2.2 Experiment 2 - Image Classification 47

4.2.3 Experiment 3 - Comparison with Fully-Supervised Learning . . 48

4.3 Training Details and Hyperparameters 49

4.3.1 Baseline Image Classifier . 49

4.3.2 Monte-Carlo Estimation of Training-Value 50

4.3.3 Training-ValueNet . 51

4.4 Experimental Results . 53

4.4.1 Experiment 1 Results - Label Noise Detection 53

4.4.2 Experiment 2 Results - Image Classification 54

4.4.3 Experiment 3 Results - Comparison with Fully-Supervised Learning 55

5 Conclusion 58

6 Future Work 61

6.1 Beyond Image Classification . 61

6.2 Improving Computational Efficiency . 61

6.3 Dynamic Training-Value . 62

6.4 Cross-category vs. Cross-domain Label Noise 63

6.5 Training-ValueNet for Domain Shift . 67

4

List of Figures

1.1 A simple example demonstrating how heuristic labelling functions can act as a useful

source of weak-supervision. 12

1.2 Illustration of the trade-off between scalability and effectiveness among existing ap-

proaches to label cleaning. 15

1.3 High level illustration of our approach to label cleaning. 18

2.1 T-sne visualization of images from the Aircraft-7 dataset with weak label ‘propeller

plane’. Mislabelled images (shown in red) are mostly clustered in dense regions which

is contrary to the assumptions of outlier detection. 30

2.2 The 50 most outlying ‘propeller plane’ examples. Contrary to the assumptions of

outlier detection, 34 of these outliers are in fact correctly labelled (green border)

examples. 31

6.1 Examples of cross-domain and cross-category label noise from the ‘propeller plane’

class of the Aircraft-7 dataset. 64

6.2 Box plot showing the mean training-value for 500 correctly labelled training exam-

ples from the Aircraft-7 dataset as well for 500 examples of cross-domain and cross-

category noise respectively. 65

6.3 Plot showing how classification performance decreases when different types of label

noise are added to the training set. 66

6.4 Examples of domain shift from the Helicopter class of the Aircraft-7 dataset. . . . 67

6.5 Examples of each sub-domain and class from the Celeb-A dataset. 69

6.6 Plot showing mean training-value for examples in each sub-domain vs the accuracy

achieved when training on that sub-domain and evaluating on the ‘young-blonde’

sub-domain. 70

5

List of Tables

4.1 Statistics for the Aircraft-7 dataset. 46

4.2 List of hyperparameters used for our experiments. 52

4.3 Label noise detection results on Clothing 1M. 53

4.4 Image classification results on Clothing 1M. Results achieved using the additional

50K cleanly labelled images are segregated to avoid confusion with weakly-supervised

learning. 55

4.5 Image classification results on Aircraft-7 dataset. 56

4.6 Label accuracy for each class of the Aircraft-7 dataset before and after label cleaning. 57

6.1 Pairwise performance (accuracy (%)) obtained by training a classifier on one sub-

domain and evaluating on another. Colours indicate the performance relative to the

maximum achieved on that sub-domain. 69

6

Summary of Notation

x Single data point (example) for a machine learning task

xmeta Meta-data for example x for example an image caption

X Set (dataset) of data points

y True label for a single data point x

ŷ Weak label for a single data point x

l(x, xmeta) Labelling function

Y Set of labels for a corresponding dataset X

T A machine learning classification task

K Number of classes in a classification task

XW Set of weakly labelled examples

XT Set of training examples

XV Set of validation examples

f(x) Set of features for example x extracted by f

h(x; θ) Machine learning model with parameters θ

L(X) Loss (error) of a machine learning model over set X

V (x) True training-value of example x

V̄ (x) Monte-Carlo estimation of training-value for example x

V̂ C Training-ValueNet for a single class C ∈ 1, .., K

V̂ (x) Predicted training-value for example x

7

List of Publications

A paper 2 [1] based on the work in this thesis was published at the 2019 Joint IEEE

International Conference on Development and Learning and on Epigenetic Robotics.

This paper was co-authored with my supervisor Dr Nicolas Pugeault and Dr Dmitry

Kangin of the Computer Science department at the University of Exeter.

2http://empslocal.ex.ac.uk/people/staff/np331/publications/SmythEtAl2019.pdf

8

http://empslocal.ex.ac.uk/people/staff/np331/publications/SmythEtAl2019.pdf

1 Introduction

1.1 The new bottleneck in Deep Learning

Data has always played a crucial role in scientific discovery and progress. If it wasn’t

for the painstaking astronomical observations of Tycho Brahe for example, Johannes

Kepler would never have discovered the laws of planetary motion and Newton would

not have had the foundations for his law of universal gravitation. In recent decades,

humanity has experienced an explosion in the amount of data that is available to us.

The computer and later the internet have enabled us to generate, store, and share data

in a way that was previously impossible. A natural consequence of this newfound abun-

dance of data has been an increasing interest in techniques that allow us to make sense

or use of it.

Machine learning is one such field that has advanced tremendously in the era of big

data. An abundance of data provides not only the motivation for pursuing machine

learning, however, it is a prerequisite for machine learning to work well in the first place.

The power of machine learning algorithms lies primarily in the fact that, given enough

labelled examples, they can learn incredibly complex functions between two domains

that we humans could never write ourselves. Classifying the contents of an image, for

example, is a task that young children accomplish with ease and yet we would have

little hope of expressing this ability as a function of pixel values.

Prior to 2010, machine learning practitioners still had a significant role to play in ex-

tracting a useful set of features from their data which a machine learning algorithm

could feasibly learn from. This all changed at the turn of the decade however when

major improvements in parallel computing in conjunction with the introduction of huge

labelled datasets such as ImageNet [2] sparked a re-birth of a sub-field of machine learn-

ing called deep learning. At their foundation, deep neural-networks learn a series of

non-linear transformations that are applied to the input data via a series of hierarchical

layers. In this way, deep neural networks are able to build up an increasingly abstract

and composite representation of the input space without the need for manual feature

9

engineering.

In recent years, deep learning models have achieved astonishing performance in several

domains and are set to have a significant impact on our daily lives. The power of deep

learning comes at a cost however. The same characteristics which enable deep neural

networks to learn such complex functions also makes them susceptible to overfit to

spurious patterns in the data they are trained on, resulting in a model that generalises

poorly to unseen examples. By far the most effective solution to the problem of over-

fitting is to simply expand the size of the training set. The more examples included

in the training set, the better it will reflect the diversity and complexity of the target

domain.

Unfortunately, however, additional training data is generally only beneficial provided

we can obtain accurate labels for each new example - a task that is typically carried

out by humans. And herein lies the problem that motivates this work. The manual

labelling of large datasets is incredibly time-consuming and expensive. As a concrete

example, the construction of the ImageNet dataset [2] took three years and required

the services of 49,000 remote workers to label the 3.2 million images. Whilst the cost of

the project was never revealed, it is clear that large scale data labelling is a significant

financial investment.

Given this, it should be clear that the majority of small companies, charities, and re-

search groups simply do not possess the time nor finances required to label data at

this scale. What we risk as a society is a situation in which the power to leverage

this technology will be concentrated in the hands of a small number of large, private

organizations that have the means to acquire and label huge amounts of data. It is

therefore imperative that we, as a research community, should seek alternative means

of acquiring accurate labels for training data without the need for extensive human

supervision.

10

1.2 Weak-supervision and the need for Label Cleaning

Given all the talk in recent years of artificially intelligent systems replacing skilled

workers, it is certainly ironic that the majority of machine learning algorithms in use

today rely so heavily on tiresome human labour. When one considers the task of

automating the process of data labelling however, it soon becomes apparent that this

reliance on human supervision is not without good reason. After all, any system that

is capable of accurately labelling our data is already able to performing the desired

task. This chicken and egg dilemma can only be resolved if we temporarily lower our

expectations on the accuracy of labels. If we afford ourselves this concession, then

we come to realise that it is often feasible to assign reasonably accurate, weak labels

using some simple heuristic. This process is commonly referred to as weakly-supervised

learning. In this case, rather than a human labelling each example individually, we use

our prior knowledge to define a suitable labelling function that assigns a weak label ŷi

to each example xi in our dataset.

ŷi = l(xi,meta(xi)) (1)

Consider the labelling function illustrated in Fig. 1.1 for example. Here we have images

of animals and their captions that have been scraped from news articles about pets.

We can define a labelling function that simply returns ‘dog’ if the caption contains the

word dog and likewise for cats. Whilst this type of heuristic labelling function will not

be suitable in all situations, there are many problems for which they do offer a very

quick and intuitive way to label large amounts of data.

In certain circumstances, we may observe that the dramatic increase in the size of

dataset that can be obtained using weak supervision outweighs the detrimental impact

of unreliable labels and leads to an acceptable level of performance. Unfortunately,

however, this is not true in the majority of cases. Instead, the presence of label noise

typically detriments the final performance of a model to such an extent that peo-

ple either feel compelled to clean their data manually or are dissuaded from pursuing

weakly-supervised learning altogether.

11

Figure 1.1: A simple example demonstrating how heuristic labelling functions can act as a useful

source of weak-supervision.

This could be a very different story, however, if we could develop a method capable of

reliably cleaning these weak labels without human supervision. Whilst it might be near

impossible to automatically label examples with high accuracy the first time round, the

task of automatically identifying mislabelled examples seems a more manageable task.

And so this is to be the goal which we set out with in this project. Specifically, we seek

to develop a general purpose method that, given some weakly-labelled training set XW

can identify and remove mislabelled examples without need for human supervision. We

hold the following three criteria for such a method:

1. The method should be effective in the sense that it is capable of distinguishing

mislabelled examples from correctly labelled ones with high precision and recall.

2. The method should require no manual labelling or verification of the weakly-

labelled training set XW .

3. The method should be general purpose in the sense that that it can be applied

to any classification problem.

12

1.3 Outline of Existing Approaches to Label Cleaning

Now that we have established a clear motivation and objective for this work, the only

question that remains is how to develop such a system for automated label cleaning

that meets our criteria. Naturally, we are not the first to set out with such a goal and

so before we present our proposal, it would seem prudent to provide the reader with a

brief overview of the main approaches which others have taken. We reserve a thorough

and detailed discussion of the literate for section 2 and instead focus here on the general

characteristics of existing approaches, why we feel they are unsatisfactory and what we

might learn from their limitations. Our job is made easier here by the fact that the

overwhelming majority of existing work on this subject can be placed into one of two

general categories of approach. These are semi-supervised label cleaning and outlier

detection. Let us now briefly examine each approach in turn.

Semi-supervised label cleaning is the term we use to describe any method that, as the

name suggests, allows for partial automation of the label cleaning process. The way

such methods typically work is that a human will be required to verify the weak labels

for some subset of the training examples. This can either happen all at once or peri-

odically during the cleaning process. The verification labels supplied by the human are

then used to train some secondary machine learning model that learns to identify and

remove further mislabelled examples in the dataset. The utility of such methods lies in

their ability to amplify the effect of any human effort made. They allow a user to trade

off some (hopefully small) amount of label accuracy in exchange for no longer having

to manually clean all training examples.

In general, semi-supervised approaches have proven to be rather effective, with popular

large scale datasets such as LSUN [3] being created in this way. The downside of such

approaches, however, is that they fall short of a fully-automated solution. If we needed

to create a very large scale dataset, labelling even a small proportion of training exam-

ples would remain a formidable task. Furthermore, the effectiveness of semi-supervised

methods is inevitably tied to the number of examples that the stakeholder is willing

and able to label. This creates a clear to continue investing time and energy into man-

13

ual label cleaning. This is the antithesis of what we have set out to achieve in this work.

The second type of approach that is commonly proposed for label cleaning is outlier

detection. In contrast to the semi-supervised approach, outlier detection offers the clear

advantage of requiring no human supervision. Whilst individual methods differ sub-

stantially in their definition of what constitutes an outlier, they all work on the same

fundamental assumption that mislabelled examples and outliers are equivalent. Under

this assumption, any number of outlier detection methods have been applied to identify

and remove outliers in the hope of reducing label noise.

With its rich history and seemingly rational premise, it is understandable why many

have pursued outlier detection as a potential solution for label noise. Unfortunately,

however, recent studies [4] [5] have shown that even state-of-the-art outlier detection

methods typically fail to achieve good performance on ‘real-world’ 3 label noise. In this

work, we would like to offer a possible explanation as to why this poor performance

has been observed. Whilst we defer a complete analysis to section 2, the essence of our

argument is that outlier detection will fail because the fundamental assumption that

mislabelled examples and outliers are equivalent is inherently flawed.

The reason for this is that the presence of a mislabelled example in our weakly labelled

dataset suggests that an error has been made by our labelling function. Such an er-

ror is deterministic not random and so, assuming there exists similar examples in the

dataset, it is highly likely that they too will be mislabelled. As a result of this, we find

that the majority of mislabelled examples in real weakly-supervised datasets tend to

exist in dense clusters. As a result, outlier detection methods will fail to detect a signifi-

cant proportion of mislabelled examples for the simple reason that they are not outliers.

Furthermore, we also contest the converse assumption that genuine outliers are gen-

erally mislabelled. In reality we have found that many outliers tend to be correctly

3By ‘real world’ label noise we mean mislabeled examples that are naturally occurring in a dataset

due to errors made by one or more weak labelling functions. This is in contrast to the artificial,

randomly generated label noise that many researchers have used as a proxy in their experiments.

14

labelled corner cases that are in some way atypical but no less valid. By mistakenly

removing these examples, outlier detection methods will reduce the diversity in the

examples that remain which can easily lead to a model that generalises poorly.

There exists a clear tradeoff between the effectiveness and scalability offered by exist-

ing approaches for label cleaning as we have illustrate in Fig. 1.2. On one end of the

spectrum, there are semi-supervised methods which offer reasonable effectiveness but

are limited in terms of scalability due to their continued reliance on human supervision.

Alternatively, outlier detection methods are highly scalable but mostly ineffective. It

is clear to us that no method which follows one of these two paths will simultaneously

achieve the level of scalability and effectiveness that we desire. The limitations of each

approach are simply too ingrained in the way they operate. If we are to achieve what

we have set out to achieve, we must develop an entirely new approach to label cleaning,

one that is free of the limitations of these two existing approaches.

Semi-supervised

Outlier Detection

Scalability −→

E
ff

ec
ti

ve
n
es

s
−→

Figure 1.2: Illustration of the trade-off between scalability and effectiveness among existing ap-

proaches to label cleaning.

15

1.4 A new approach to label cleaning

If we are to successfully reconcile the existing trade-off between effectiveness and scal-

ability, it is helpful to first observe that outlier detection and semi-supervised methods

both fail for the same fundamental reason. They fail because of their continued over-

reliance on human knowledge. It is clear how this is the case for semi-supervised label

cleaning which leverages human knowledge explicitly in the form of verification labels.

Whilst less obvious, the statement is equally true for outlier detection. As we have es-

tablished, outlier detection performs poorly due to the misguided assumptions it makes

about the distribution of label noise. Such assumptions, however, are of course merely

a distillation of current human understanding. A useful starting point in developing a

new approach to label cleaning, therefore, is to acknowledge the danger of relying on

human knowledge which can be so costly and misguided.

It is clear that any label cleaning system which does not leverage human knowledge

must instead learn for itself which examples are mislabelled. Furthermore, if a system

is to learn in this way, it must surely do so by learning to approximate some interme-

diary measure which is so highly correlated with the probability that an example is

mislabelled that it can be used to reliably detect label noise. Finally, in the absence

of human intervention, there must be some principled manner in which we can deter-

mine a threshold on this measure which defines the boundary point between correctly

labelled and mislabelled examples.

What we have just described is, of course, how all existing methods for label cleaning

work internally. Outlier detection, for example, assumes that some measure of how

outlying a particular example is will be sufficiently correlated with the probability of

it being mislabelled that if they can only determine a suitable threshold on this mea-

sure, they can identify and remove mislabelled examples. An automated label cleaning

method will therefore only succeed if the measure it uses is sufficiently well correlated

with the probability of an example being mislabelled and if there is a principled way

to determine a suitable threshold on that measure.

16

With this understanding in place, we are now ready to describe the theoretical frame-

work upon which our new approach is built. Once again, we will defer a thorough

description of the finer details of our method for section 3 and instead focus here on

the essence of what we are proposing. Our theory comprises of one observation and one

assumption.

Our primary observation is that for any classification task T for which we have a training

set XT and an evaluation set XV , every training example xi ∈ XT with label yi possess

some unique training-value which we denote V (xi). Whilst we leave a formal definition

of training-value for section 3.3, it will suffice for now to say that the training-value of

an example is a measure of the expected overall impact that training on that example

will have on the generalization performance of the classifier. In relation to what we

have discussed in the preceding paragraphs, it is the training-value of an example that

we propose is sufficiently well correlated with the probability of it being mislabelled

that it can be used as a basis for label cleaning.

The primary assumption of our theory is that whilst there are several factors that

determine the magnitude of an example’s training-value, the correctness of its class

label is what primarily determines the sign of that value. Specifically, we assume that

correctly labelled examples always offer at least some positive value to the training pro-

cess whereas mislabelled examples will reliably detriment performance and therefore

possess a negative training-value. In relation to what we discussed in the preceding

paragraphs, this is equivalent to saying that the principled threshold on the measure of

training-value is simply zero.

We have now established that training-value will be the intermediary measure we use

to identify label noise and that we will use a threshold of zero to perform label noise

detection. If we can learn to accurately estimate the value of each example in our

training set then we will be able to effectively reduce label noise by simply discarding

any examples that we have a negative value. Fig. 1.2 illustrates the proposed approach.

17

Figure 1.3: High level illustration of our approach to label cleaning.

1.5 Outline of Subsequent Chapters

The remainder of this thesis will be organised as follows. In section 2, we will conduct

a thorough analysis of the existing literature surrounding weakly-supervised learning

(section 2.1), the impact of label noise (section 2.2) and a number of different ap-

proaches for dealing with label noise (sections 2.3-2.4) which includes but is not limited

to the two label cleaning approaches we have discussed so far. We conclude section

2 by clearly establishing which existing methods comprise the state-of-the-art in each

category of approach. These methods will form a key point of comparison four our

proposed method.

In section 3 we proceed to provide a detailed description of our proposed method. We

provide a formal definition of Training-Value in section 3.3 and describe how we ob-

tain an unbiased Monte-Carlo estimation of an example’s training-value directly from

episodes of experience. In section 3.5 we present the Training-Value approximation

network (Training-ValueNet), a regression network that learns to predict the training-

value of an example directly from its feature vector. The benefit of using the Training-

ValueNet is that it allows us to efficiently estimate the training-values of very large

18

numbers of training examples.

We conduct a thorough evaluation of our proposed method in section 4 through a series

of three key experiments:

1. Experiment 1 is a label noise detection task in which assess how accurate our

method is in detecting which examples in a weakly-supervised dataset are mis-

labelled. We compare our results in this experiment with the state-of-the-art

methods from semi-supervised label cleaning and outlier detection.

2. In experiment 2, we go on to evaluate how successful our label cleaning has been

in terms of the resulting improvement in classification performance. Again we

compare our results with the state-of-the-art semi-supervised method as well as

weakly-supervised and fully-supervised baselines.

3. Finally, in experiment 3 we conduct a full comparison of weakly-supervised learn-

ing using our method with the fully-supervised paradigm. We are interested here

not only in the final performance that each approach yields but also in comparing

the entire pipeline of collecting, labelling, cleaning, and training.

We present our conclusions on this work in section 5, along with a summary of the

contributions it has made to the label cleaning literature. We conclude the thesis

in section 6 where we present several ideas for future work. In some cases, we have

conducted some preliminary investigations to demonstrate why we think the direction

is interesting.

19

2 Background and Related Work

2.1 Weakly-Supervised Learning

Weakly-supervised learning is a machine learning problem that belongs to the broader

supervised learning paradigm. The goal of supervised learning is to learn a mapping

between input and output domains by training a machine learning model on a set

of labelled examples. Weakly-supervised learning differs from the traditional fully-

supervised paradigm in that rather than training examples being accurately labelled

by human subject matter experts (SME), we have:

• A dataset X = x1, ..., xN with unknown true labels y1, ..., yN .

• We may have some meta-data 4 xmeta for each data point.

• One or more sources of weak supervision (labelling functions) li(x, x
meta), i = 1:M

such that each one has:

– A coverage set Ci ⊂ X, which is the subset of the data points for which it is

defined.

– Some unknown accuracy over its coverage set which we assume to be < 1.

We refer to each individual source of weak supervision as a labelling function. There

are several kinds of labelling function we might want to use, including but not limited

to:

• Heuristic rules defined by a subject matter expert (SME). These allow an expert

to distil their knowledge into a set of rules that mirror the intuition they would

use when labelling the data themselves (see Fig. 1.1 for an example).

4We use the term meta-data here to refer to any additional information about a data-point which

we may wish to utilise when assigning weak labels but will not be available when the model is used

for inference. For example, the caption of an image offers information about its contents but is not

something our final image classifier will be able to use.

20

• Inaccurate labels from non-experts may also be considered as a form of

weak-supervision provided there is no reason to expect that the people doing the

labelling will be generally correct.

• Existing resources such as knowledge-bases or predictive models can generate

labels that are helpful but not perfectly accurate for this given task.

The power of these labelling functions is that they allow us to avoid requiring SMEs

to label each individual example, something which is expensive and time-consuming.

Instead, we can distil their knowledge and other resources we may have at our disposal

into a small set of one or more labelling functions which provide a higher-level source

of supervision. These functions can then be used to quickly obtain weak labels for huge

amounts of data.

One of the major challenges facing weakly-supervised learning, however, is that as soon

as we have more than one labelling function at our disposal it can become difficult

to know how to weight the predictions of each when determining the final label for

an example. One approach would be to simply average the predictions of all of our

labelling functions. Unfortunately this is not ideal because the accuracy of labelling

functions may vary significantly. Furthermore, it is quite possible that two or more of

our labelling functions will be highly correlated in their predictions. In this case, giv-

ing equal weighting to each labelling function would lead to a double-counting problem.

In 2017, researchers at Stanford offered a solution to this problem. They proposed a

new paradigm for the programmatic creation of training data which they termed data

programming [6]. Data programming allows users to express several weak-supervision

strategies simply in the form of a set of labelling functions. The primary contribution

of this work, however, was that by modelling the labelling of training examples as a

generative model, the authors were able to automatically infer the accuracy of each

labelling function and analyse the correlations between them without access to any

ground truth labels. This model is then able to learn a weighted combination of the

labelling functions that leads to more accurate final labels.

21

More recently, the same research group released Snorkel [7], an open-source and easy-

to-use implementation of their data programming paradigm. For the first time, Snorkel

has made it quick and easy to apply multiple sources of weak-supervision to unlabelled

data without having to worry about the varying reliability of, and interactions between

labelling functions. Snorkel has been very well received by practitioners. Several exper-

imental results have demonstrated that, provided a sufficiently large pool of unlabelled

data is available, Snorkel is able to generate a weakly-labelled dataset in a matter of

minutes that yields performance comparable with fully-supervised learning.

A follow-up study [8] conducted by researchers at Stanford and Google analysed this

trade-off between weak supervision and hand-labelled data in more detail. In two text

classification tasks, they trained a model on increasingly large, hand-labelled training

sets until they reached the same level of performance that was achieved using weak su-

pervision and Snorkel. On the first task, they found that they required approximately

12K hand-labelled examples to match the accuracy of their weakly-supervised classifier

that was trained on 6.5M examples labelled using Snorkel. In the second task, they

required 80K hand-labelled examples to match the performance achieved using 684K

weakly-supervised examples.

The results of this study can be interpreted in two ways. On the one hand, hand-

labelling even 12K examples is no small feat and it is therefore clear that Snorkel

holds real potential to save its users a significant amount of time and money. On the

other hand, to match the performance of fully-supervised learning Snorkel requires a

significantly larger number of examples. In the first of these two tasks it took 540 times

more data to match the performance obtained on a fully-supervised dataset. To borrow

a term from reinforcement learning, we can say that the sample efficiency of weakly-

supervised learning remains incredibly poo. Even when we start with a suitable set of

labelling functions and use Snorkel to combine them, the presence of label noise in the

resulting weakly-supervised dataset remains a significant issue. As such, despite the

benefits that Snorkel and the data programming paradigm in general offer, we remain

motivated to pursue our goal of automated label cleaning. Indeed, a general-purpose

method for label cleaning might be an ideal additional to a tool such as Snorkel.

22

2.2 The impact of Label Noise

In the context of a classification task, label noise describes the phenomena whereby

some proportion of the available dataset is mislabelled. In this instance, we might also

refer to the labels themselves as being noisy. Whilst a small amount of label noise is

likely to be present in even the most carefully labelled datasets, it is widely understood

that this is largely unavoidable and generally unproblematic. Issues inevitably begin to

arise, however, when the proportion of label noise in a dataset becomes non-negligible.

The effects of label noise on traditional machine learning algorithms have been well

studied with the clear consensus being that classification performance will be negatively

affected by the presence of label noise (see [9] for a comprehensive survey). Further-

more, it has been observed that label noise can also lead to an unwanted increase in

model complexity making linear models more difficult to interpret. For example, Quin-

lan [10] warns that the size of decision trees may increase when there is label noise in

the dataset, making them unnecessarily complicated. A similar phenomena was also

shown for SVMs [11, 12].

Whilst there may be a clear consensus on the impacts of label noise on traditional ma-

chine learning models, the same can hardly be said of modern deep learning models. In

a recent study, Rolnick et. al. [13] make the bold claim that deep convolutional neural

networks (CNN) for image classification are robust to an arbitrary proportion of label

noise provided that a minimum number of correctly labelled examples is maintained.

They demonstrated this behaviour to differing extents on Cifar-10 [14], ImageNet [2]

and finally Mnist [15] where remarkably, the CNN managed to maintain 90% perfor-

mance when just one in every one-hundred examples were correctly labelled. Further

support for the surprising robustness of CNNs to label noise comes from Flatow and

Penner [16]. They showed that randomly permuting up to 70% of image labels on

Cifar-10 caused less than a 50% decrease in performance.

Curiously, however, the remarkable robustness observed in these studies comes in stark

contrast to what we see when deep learning models are trained on real world label noise

23

that is present naturally in a weakly-supervised dataset. The WebVision dataset [17],

for example, was introduced as a noisy equivalent of ImageNet, sharing the same 1K

classes that were used for the ILSVRC 2012 challenge. It was reported however that

an image classifier trained on the WebVision training set achieved a substantial 9.4%

lower top-1 accuracy on the ILSVRC 2012 test set than the same model trained on

the fully-supervised ImageNet training set [17]. This is despite WebVision containing

roughly twice as many training examples. Likewise, on the clothing 1M dataset [18],

Patrini et. al.observed a 6.2% lower accuracy when they trained a classifier on 1M noisy

images than with just 50K cleanly labelled examples [19].

The blatant disconnect between these two sets of results can be understood, however, if

we consider the recent findings of Drory et. al. [5]. They demonstrated that robustness

to label noise is heavily dependent upon the distribution of mislabelled examples in a

dataset. When mislabelled examples were distributed uniformly among the correctly

labelled examples for a particular class they observed almost no detriment to model

performance. If, however, the same number of mislabelled examples were clustered into

dense regions then the model’s performance became substantially worse. The reason

this result can help us make sense of the conflicting sets of findings is that it demon-

strates that the process by which label noise is generated (and therefore distributed)

will have a significant impact on how detrimental that label noise is likely to be. In the

first two studies we discussed by Rolnick et. al. [13], and Flatow and Penner [16], label

noise was artificially generated by randomly reassigning or permuting labels for some

proportion of a cleanly labelled training set. Label noise that is generated in this fash-

ion will follow a uniform distribution and therefore, as Drory et. al. [5] demonstrated,

is unlikely to detriment performance.

This distinction between randomly-generated and real-world label noise is a crucial

one that seems to have been largely overlooked by many researchers. Whilst there is

nothing inherently wrong with studying the impact of stochastic label noise, it is very

wrong to assume that these findings will generalise to the case of real-world label noise.

The reason for this (as we discussed previously in section 1.3) is that label noise in a

real weakly-supervised dataset exists as a result of errors made by the label functions

24

that were used to assign weak labels. These labelling functions are deterministic and

therefore the errors they make are systematic, not stochastic. For each training example

that gets labelled incorrectly by these functions, it is likely that there will be similar

examples that are also mislabelled for the same reason. It is therefore the rule, not the

exception, for label noise in weakly-supervised datasets to exist within dense clusters.

As Drory et. al. [5] demonstrated, dense clusters of mislabelled examples can signifi-

cantly detriment a model’s performance which helps to explain the poor performance

that has typically been observed when training on real weakly-supervised datasets.

We have made full and careful consideration of this distinction when designing the ex-

periments to evaluate our proposed method. Whilst artificially generated label noise

can be convenient to work with, we purposely restrict ourselves in this work to using

real weakly-supervised datasets that contain naturally occurring label noise.

2.3 Approaches to Label Cleaning

Several approaches have been proposed for mitigating the negative impact of label noise.

These approaches can first be divided into two categories based on their objective. The

first type is label cleaning which we shall discuss in detail in this chapter. The objective

of label cleaning methods is to identify and then remove or relabel any mislabelled ex-

amples in a dataset. Label cleaning can be partially or fully automated (as is the focus

of our work) but can also be carried out manually by humans. Much of what we refer

to as manual data ‘labelling’ is in actual fact label cleaning where a human is asked to

confirm or correct a pre-existing weak label. In this work we are interested in methods

that allow for partial or complete automation of the label cleaning process. As we dis-

cussed in the introduction, existing label cleaning methods can generally be placed into

two categories. These are; semi-supervised label cleaning and outlier detection. Let us

now consider each of them in detail.

25

2.3.1 Semi-supervised Label Cleaning

Semi-supervised label cleaning is the term we shall use to describe any method that

allows for partial automation of the label cleaning process. The way such methods

typically work is that a human will be required to either verify or correct the weak

labels for some subset of the training examples. (The distinction here is that methods

requiring verification of weak labels want to know whether each example is correctly

labelled or mislabelled whereas other methods simply require some correctly labelled

subset.) This manual labelling can either happen all at once or periodically throughout

the label cleaning process. These labels are then used to train some secondary model

that learns to identify and remove further mislabelled examples from the dataset. In

doing so, the hope is that we can obtain an accurately labelled dataset whilst only

having to label a small number of examples.

Semi-supervised approaches have proven their utility with several large scale datasets

having being created using them. One example of this is the method proposed by Yu

et. al. [3]. In this method, a small randomly selected subset of the training data is

manually cleaned and then used to train an image classifier. The trained classifier is

then used to predict the probability that each of the remaining images in the train-

ing set truly belongs to its recorded class. Images are then divided into three distinct

groups based upon these predictions. Images with a high probability are immediately

added to the final training set whilst those with a low score are assumed mislabelled and

removed. Images that receive a predicted probability in-between the upper and lower

thresholds are treated as an unknown and form a new subset for human labelling. This

process is repeated until all images have been categorised as correctly or incorrectly

labelled. This method was used to create the large scale LSUN dataset with 10M and

59M labelled images belonging to 10 scene and 20 object categories respectively [3]. The

authors were able to achieve an estimated label accuracy of 90% whilst requiring only

2.5% images to be manually labelled. Despite such a major improvement in labelling ef-

ficiency, it is important to note that this still equates to 1.7M manually labelled images.

A major limitation of the majority of semi-supervised methods is that they require

26

images to be labelled in every class. As we look to scale up the number of objects we

can classify, labelling even a small proportion of images from each class can quickly

become unfeasible. A recently proposed method that addresses this issue is CleanNet

[4]. Here an autoencoder is first trained on a representative sample of images from

each class to create a class prototype embedding. A second encoder is then used to em-

bed each weakly-labelled candidate image. This encoder is trained on a small seed of

manually provided verification labels using a matching constraint such that an images

embedding will be similar to its class prototype embedding only if it is correctly labelled.

The cosine similarity between the image and its class level embedding provides a rele-

vance score for each image in the training set. Because the same prototype and query

encoder is learnt for all images, information is able to be transferred to classes that

contain no verification labels. CleanNet is demonstrated to achieve excellent perfor-

mance on several challenging benchmarks including Food 101N [4], Clothing 1M [18]

and Webvision [17]. Whilst the baseline version of CleanNet still requires 250 manually

verified images per class, the authors were able to maintain reasonable label cleaning

performance with up to 50% of classes receiving no manual labels. CleanNet represents

a clear state of the art among the semi-supervised approaches to label cleaning and as

such will act as our point of comparison for this group of methods.

2.3.2 Outlier Detection

Outlier detection methods take a very different approach to label cleaning. As we dis-

cussed in the introduction, outlier detection methods all share the same fundamental

assumption which is that mislabelled examples are equivalent to outliers and can be

identified as such. The main difference between the various outlier detection methods

is precisely how they define an outlier. This will have a substantial impact on how

effective the method is for performing label cleaning.

One of the simplest and most widely studied forms of outlier detection is nearest-

neighbour methods which measure the relative proximity of each example to its neigh-

27

bours in feature space. Examples that are found to be further away on average from

their neighbours are identified as outliers. Commonly used measures include isolation

forest [20] and the local outlier factor [21], the latter of which was recently implemented

in the context label cleaning for image classification by Xia et. al. [22].

An alternative is so-called probability density methods that treat outlier detection as a

probabilistic modelling process. They attempt to estimate the probability density func-

tion of the training data to identify outliers as those examples which exist in regions

of low probability. Non-parametric estimators are likely more suitable for this task as

the generating distribution of weakly-supervised label noise is unknown and potentially

very complex. Among this class of method, Robust-KDE [23] has been proposed as

a variant of the classical Parzen-Rosenblatt kernel density estimator (KDE) [24, 25]

that is more robust to label contamination. Specifically, RKDE learns separate density

estimations for the nominal (inlying) and contaminating (outlying) examples.

The most promising class of outlier detection methods for label cleaning, however, are

those which utilise the reconstruction error of an autoencoder to separate inliers from

outliers. DRAE [22] is one such method that uses an autoencoder to compress an

image into a lower-dimensional representation before mapping this back to a recon-

structed copy of itself. The low dimensional intermediate representation acts as an

informational bottleneck which effectively limits the autoencoder from accurately re-

constructing mislabelled images that do not reflect the statistical regularities of the

dataset. As a result of this, a large reconstruction error acts a strong indication that

an image is outlying and thus mislabelled. Empirically, DRAE achieves consistently

better performance than the prior state-of-the-art UOCL [26] and other outlier removal

methods for label cleaning on weakly-supervised image data and therefore we consider

it to be the state-of-the-art in outlier detection.

28

Whilst DRAE and other outlier detection tasks have demonstrated promising perfor-

mance in a controlled setting, recent studies have shown just how poorly they can

perform when tested on real-world label noise. On the weakly-supervised clothing 1M

dataset, for example, it has been shown that DRAE performs no better than a naive

baseline that simply classifies all examples as correctly labelled [4]. We would suggest

that this disconnect between the results obtained on randomly generated vs real-world

label noise can be explained by the different distributions of mislabelled examples in

each case. In the case of randomly generated label noise, it is a perfectly reasonable

assumption that mislabelled examples will be outliers. This is because each example

is mislabelled with some probability that is independent of every other example. As

a result, there is no reason to suspect that a mislabelled example will be particularly

similar either to the correctly labelled examples in its class nor the other mislabelled

examples.

As we discussed in the introduction, however, this is typically not the case for real-

world label noise. The reason for this is that mislabelled examples are present in

weakly-supervised datasets due to errors made by the labelling functions used. These

labelling functions are deterministic and therefore the errors they make are systematic,

not stochastic. For each example that ends up being mislabelled by these labelling

functions, there will likely be several similar examples that are also mislabelled for the

same reasons. As a result, many mislabelled examples in weakly-supervised are simply

not outliers which can explain why outlier detection methods seem to perform so poorly

on these datasets.

29

To illustrate this phenomenon to the reader we offer a concrete example. Fig. 2.1

depicts a T-SNE [27] visualization of the final layer convolutional features 5 of one-

thousand weakly-labelled images of propeller planes. These images were taken from

the Aircraft-7 dataset which we construct ourselves by searching Flickr for the names

of several different classes of aircraft and scraping the most relevant results. Each of

these images has been manually categorised as being correctly labelled (shown in blue)

or mislabelled (show in red). We can clearly see from this visualization that the vast

majority of mislabelled examples are not outlying but densely clustered with among

other mislabelled examples.

Figure 2.1: T-sne visualization of images from the Aircraft-7 dataset with weak label ‘propeller

plane’. Mislabelled images (shown in red) are mostly clustered in dense regions which is contrary to

the assumptions of outlier detection.

5These features were extracted from a ResNet-50 image classifier that was pre-trained on ImageNet.

30

When we look more closely at the images which make up these clusters, we find that

they typically contain images of other types of aircraft or scenes that are related to

flying such as an airport or cockpit. This is quite understandable considering that

these images were returned to us by Flickr based on the tags that people had assigned

to their images. It is not difficult to imagine how the same tags that are assigned to

images of propeller planes might also be included for a variety of related images. In

this example, as well as several others that we have explored, outlier detection would

fail to detect large numbers of mislabelled examples for the simple reason that they are

not outliers.

In addition, we have found that the converse assumption that true outliers will be mis-

labelled is also questionable. To demonstrate this, we calculate the mean proximity of

each image to its ten nearest neighbours in our 2D visualisation and use this distance

as a rudimentary measure for outlier detection. What we find in this case is that of the

50 most outlying examples (shown in Fig. 2.2), only 16 were truly mislabelled. The

remaining 34 examples are what we might consider corner cases - correctly labelled

but visually atypical in some way. By mistakenly removing these corner cases, outlier

detection actually risks damaging the generalisation performance of a classifier by re-

ducing the diversity in the training set.

Figure 2.2: The 50 most outlying ‘propeller plane’ examples. Contrary to the assumptions of outlier

detection, 34 of these outliers are in fact correctly labelled (green border) examples.

31

2.4 Robust Learning in the Presence of Label Noise

In this chapter, we will discuss methods that attempt to mitigate the negative impact

of label noise by altering the learning process in a way that makes it more robust to its

presence. As these methods do not attempt to remove or relabel mislabelled examples,

they would not be considered to be performing label cleaning and will, therefore, form

less of a point of comparison to our work. Nevertheless, several effective methods have

been proposed.

2.4.1 Curriculum Learning

The first and most notable of these approaches is curriculum learning (CL). First in-

troduced by Bengio et. al. [28], curriculum learning was initially conceived as a way of

reducing the convergence time and improving the final performance of machine learning

models. The idea behind CL is that machines, like humans, might learn more efficiently

if we introduce training examples in some meaningful order. The natural way to do this

would be to begin training on simple examples and gradually introduce more complex

cases throughout training. This is, of course, how we design our educational curriculum

for children.

Whilst CL methods achieved some promising results with simple machine learning mod-

els, they have so far failed to demonstrate significant benefit when used in conjunction

with more complex neural networks [?]. It seems that heuristic measures of sample

difficulty such as training loss are overly simplistic in this case. Recently, however,

CL inspired approaches have seen a resurgence for dealing with label noise in weakly-

supervised datasets. Rather than removing mislabelled images, these approaches aim

to order the training examples in a way that mitigates their negative impact. Two

methods in particular have been published in the past year which both achieved state-

of-the-art performances on the Webvision dataset [17].

MentorNet [29] uses a secondary mentor network which provides a curriculum for its

student image classifier in the form of a sample weighting scheme. The curriculum is

32

learnt dynamically using feedback from the StudentNet during training. At the time

the paper was published, MentorNet achieved state-of-the-art performance on Web-

vision, narrowly beating CleanNet [4] which is the state-of-the-art in semi-supervised

label cleaning.

Just a few months later, however, CurriculumNet [30] was published which furthered

the state-of-the-art on Webvision by 1.3% - a fair margin for such a challenging and

widely used dataset. CurriculumNet uses a simple yet surprisingly effective strategy. A

measure of the relative density of each image in feature space is used to separate exam-

ples into three disjoint subsets of progressively noisier examples. The image classifier

is initially trained only on the cleanest subset with images from the remaining groups

being added gradually during the later stages of training.

Whilst we cannot deny the apparent effectiveness of these curriculum learning methods

for label cleaning, we would like to express some level of concern about the idea of

deploying machine learning models that were willingly trained on mislabelled data.

The issue as we find it is that whilst curriculum learning may be able to preserve

the accuracy of a classifier, training on mislabelled examples can lead to many other

unexpected and undesirable results. A good example of this comes from one of the

earliest experiments we carried out for this work. In this case, we were training a

classifier to perform gender classification on a dataset of weakly labelled images we

scraped from Flickr. We discovered that whilst the accuracy of the model was good,

it would consistently classify images of lorries as being men with high confidence. The

reason for this, as it turned out, was that our training set contained several images of

‘MAN’ branded lorries.

33

2.5 Summary of the state-of-the-art

To conclude this section on existing work we provide a summary of the state-of-the-art

methods form each of the three main categories of approach we have discussed. We

have designed our experiments to provide a clear comparison with these three methods.

• Semi-supervised label cleaning. CleanNet [4] is the clear state-of-the-art

in the category of semi-supervised label cleaning. CleanNet has been shown

to outperform other semi-supervised approaches on several benchmark weakly-

supervised datasets and achieved state-of-the-art performance on Webvision at

the time. Additionally, CleanNet has been shown to perform well even when

manual supervision is unavailable for a subset of classes making it the most scal-

able semi-supervised approach we are aware of.

• Outlier Detection. DRAE [22] represents the state-of-the-art in outlier detec-

tion for the task of label cleaning. Empirically DRAE was shown to outperform

alternative outlier detection methods including UOCL [26] which was the prior

state-of-the-art. Crucially, DRAE was also shown to be robust to high proportions

of label noise which is commonplace in many weakly-supervised datasets.

• Curriculum Learning for Label Noise. CurriculumNet [30] is considered to

be the state-of-the-art curriculum learning method for dealing with label noise as

it convincingly outperformed MentorNet [29] and achieved state-of-the-art per-

formance on the Webvision dataset [17].

34

3 Training-ValueNet

In this section of the thesis, we introduce Training-ValueNet, our proposed method for

automated label cleaning and the primary contribution of this work. Whilst we already

explained the underlying rationale of our approach in the introduction (section 1.4), we

begin here in section 3.1 by providing an overview of the proposed method. In addition

to this, we make a number of important clarifications regarding our approach in section

3.2.

We then proceed in sections 3.3 - 3.5 to describe the full details of our proposed method.

Specifically, we begin in section 3.3 by providing a formal definition of training-value.

In section 3.4 we go on to describe how it is possible to obtain an unbiased, Monte-

Carlo estimation for the training-value of each training example directly from episodes

of training. Finally, in section 3.5 we introduce the Training-Value approximation

network (Training-ValueNet) which learns a mapping between an individual training

example (feature vector) and its training-value. The utility of the Training-ValueNet

is that once it has been trained, it allows us to estimate the training-values of huge

numbers of examples very quickly.

35

3.1 Overview of Proposed Approach

As we described in section 1.4, our proposed approach for automated label cleaning can

be summarised at a high level as follows:

• For any classification task T for which we have a training set XT and an evalu-

ation set XV , each training example xi∈XT with label yi possesses some unique

training-value for the learning process which we denote V (xi). The training-

value is an objective measure of the expected impact that an individual example

xi ∈ XT will have on the final performance of our classification model on the

evaluation set XV .

• The fundamental assumption of our approach is that whilst there will naturally be

many factors that determine the magnitude of an examples training-value, it is the

correctness of its class label that primarily determines the sign the training-value.

Specifically, we assume that correctly labelled examples always offer at least some

positive value to the learning process whereas mislabelled examples will reliably

detriment performance and will, therefore, possess a negative training-value.

• Provided the above assumption proves reasonable, it follows that we can effectively

reduce the proportion of label noise in a weakly-supervised dataset by:

1. Estimating the training-value for all training examples xi∈XT .

2. Discarding examples which have a negative estimated training-value from

our training set.

36

3.2 Clarifications

Before we describe the finer details of our method, we feel it is important to briefly

clarify some important points regarding what we have proposed so far.

First, please note that the assumption which we made regarding the relationship be-

tween training-value and label noise is subject to certain common sense qualifications.

The most important of these is that the evaluation set must be accurately labelled for

our assumption to be reasonable. If there is instead some non-negligible amount of label

noise present in the evaluation set then there is no longer any reason to believe that

mislabelled images will necessarily detriment performance on that set. A mislabelled

training example that is sufficiently similar to mislabelled examples in the evaluation

set could quite easily have a positive impact on performance. The practical implication

here is that for our approach to work, we require access to at least a small, cleanly

labelled evaluation set. For this reason, we cannot refer to our method as being entirely

unsupervised - rather it is unsupervised on the training set.

We wish to stress however that there is no need for this validation set to be particularly

large for our method to work well. In fact, we have found that one-hundred labelled

examples per class is typically more than sufficient. Labelling such a small number of

examples is unlikely to present a practical issue and therefore we do not feel this re-

quirement detracts from our goal of automated label cleaning. Additionally, we would

point out that no method for automated label cleaning will ever be perfectly reliable

and as such we should always be prepared to provide a cleanly labelled evaluation set

upon which to assess the performance of our models. For this reason, we would consider

our approach to be minimally supervised.

Another reasonable requirement is that when estimating training-value, we must not

continue to train the classifier once it begins to overfit on the training examples. This

is because once overfitting begins, correctly labelled examples may start to detriment

performance for reasons unrelated to the correctness of its class label. Once again,

however, this does not present a real issue for our approach as we can simply set a

37

conservative early stopping criteria when estimating training-value.

Finally, we would like to acknowledge our apparent hypocrisy in simultaneously criti-

cizing outlier detection for its reliance on unsubstantiated assumptions whilst we now

propose an approach that makes an equally uncertain assumption. We would argue

however that the assumption we have made here, at least that mislabelled examples

reliably detriment performance is in some way the most minimal assumption one can

make when devising a method for automated label cleaning. After all, if one does not

assume that mislabelled examples are detrimental to performance then it is unclear

what the motivation would be for removing these examples in the first place.

We concede that the converse assumption, which is that correctly labelled examples will

always possess a positive training-value is more uncertain. It is not difficult to imagine

an image for example, that despite being correctly labelled is so distorted or unusual

that it would be detrimental to classification performance. We suppose the necessary

distinction here is that a correctly labelled example will benefit performance only if

it is sufficiently representative of the target domain (which is itself represented by the

evaluation set). As we shall see in section 6.4, there are situations in which this is not

the case for the majority of examples in the training set. At this point, we could easily

fall into the rabbit hole of debating what exactly constitutes a correctly labelled exam-

ple, as this itself is rarely well defined. What we can say about our approach, however,

is that provided we have made a reasonably accurate estimation of the training-value,

then any ‘correctly labelled’ examples that we remove in error should at least tend to

be those that offer little to no benefit to performance anyway.

This last point can be developed further. Whilst the error in our estimation of training-

value will inevitably lead us to make some false-positive and false-negative classifica-

tions, we can at least say that the likelihood of this happening for a particular example

is negatively correlated with the magnitude of its true training-value. What we mean

by this is that the more beneficial or detrimental an example is to performance, the less

likely we will be to remove or retain it erroneously.

38

3.3 Definition of Training-Value

Training-value is a function that is well defined for any classification task T with K

classes for which we have some set of training examples XT=
{
xi, .., xn

}
with (poten-

tially weak) labels Y T=
{
yi, .., yn : y∈[1 : K]

}
and an accurately labelled validation set

XV which represents our target domain.

The training-value of each training example xi∈XT is a function of xi itself, its label

yi and the validation set XV . It is crucial to note that a training example in isolation

does not possess a training-value. It is only with respect to an assigned class label

and the validation set that the training-value is defined. Moreover, if either of these

changes then so too will the training-value of that example. For brevity however, we

will henceforth denote the training-value of example xi as V (xi) instead of V (xi, yi, X
V).

Let h(x; θ) be our classification model with weights θ and let L be the loss function

which we seek to minimise on XT using some iterative gradient descent algorithm. We

define the training-value V (xi) of each example xi∈XT as the expected immediate im-

provement in validation loss that is obtained as a direct result of training our classifier

on example xi at a single time-step t. Whilst this is a valid definition, in theory, in

practice it would incredibly difficult to assign the appropriate credit to an individual

example if the updates to the weights of the classifier at each time-step depend on more

than one example. For this reason, we append to our definition the constraint that at

each time-step, updates to the classifier must only depend on a single training example.

What this constraint means in practice is that when we estimate the training-value of

examples in our dataset, training must be carried out using ‘vanilla’ stochastic gradi-

ent descent 6 i.e. with a batch size of one, no momentum and a fixed learning rate.

Under these constraints, the immediate change in validation loss at every time-step t

is determined solely by a combination of the following three factors:

6We stress that these restrictions on the learning algorithm only apply when we estimate training-

values. There are no such restrictions when we conduct final training on the cleaned dataset.

39

• The training example x(t) which we train on at time t.

• The current model weights θ(t) .

• Stochastic factors such as dropout regularization [31].

Given this, we can express the immediate improvement in validation loss ∆L(XV)

obtained by training on example x(t)=xi at time-step t, as an expectation over the

updated network weights θ(t+1) denoted by the random variable θ
′
,

∆L(XV |x(t), θ(t)) = Eθ′
[
L(XV | θ(t))− L(XV | θ′

)
]

(2)

Finally, we arrive at our definition of the training-value V (xi) of example xi by taking

the expectation of this immediate change in loss over all possible values for the current

weights θ(t) which we will denote by the random variable θ,

V (xi) = E θ

[
∆L(XV |x(t)=xi, θ(t)=θ)

]
(3)

40

3.4 Monte-Carlo Estimation of Training-Value

Whilst explicit evaluation of equation 3 (i.e. of the training-value) would be intractable

for any non-trivial problem, we can obtain an unbiased estimate of the training-value

for each example using a straightforward process which we will describe here. This

process is what we shall refer to moving forward simply as the Monte-Carlo estimation

phase. It is perhaps most easily described by detailing the individual steps it requires:

1. Extract a suitable set of features f(x) for all examples x ∈ XT∪XV in the dataset.

For an image classification task, we might pass each image x through a CNN and

extract the final layer features f(x) as a representation of the image.

2. Initialise a simple feed-forward neural network h(f(x)) to act as our classifier.

3. Train the classifier on the training set XT using the vanilla stochastic gradient

descent algorithm as per the constraints laid out in the previous section. Train for

M repeated episodes of e epochs each, randomly shuffling the training examples

at the start of each epoch.

4. At each iteration n, compute the immediate improvement in validation loss 7

∆L(XV)(n) and store this alongside the example x(n) that was trained on at that

iteration in a cache
〈

(x(1),∆L(XV)(1)), ..., (x(M ·e),∆L(XV)(M ·e))
〉

. Note here that

the iteration n is not reset to zero at the start of each new episode which is why

it ranges from 1 to M · e.

5. Once all episodes of training are complete, the estimated training-value V̄ (x)

for each training example x∈XT is simply the mean immediate improvement in

validation loss that was observed when example x was trained on. That is,

V̄ (xi) =
1

M ·e

M ·e∑
n=1

{
∆L(n)(XV) | x(n)=xi

}
. (4)

7Note that in practice we typically compute changes in loss on a subset of nv examples per class

from the validation set. This is simply to reduce the computational overhead of this step.

41

3.5 Training-Value Approximation Network

In the previous section we described a simple process which can be used to obtain

unbiased, Monte-Carlo estimations of training-value directly from episodes of training.

The issue with this process, however, is that for very large datasets it can become pro-

hibitively expensive to obtain reliable estimates in this manner for all training examples.

It is for precisely this reason that we introduce the Training-Value approximation net-

work (Training-ValueNet) which we shall describe in this section.

The Training-ValueNet is simply a multilayer perceptron (MLP) regression network

that will be trained to predict the training-value of an example directly from its feature

vector. We must bear in mind however, that the training-value of a particular example

is also conditional on its assigned class label. This means that we cannot accurately

predict the training-value of an example without knowledge of its class label. Perhaps

the most natural way of introducing this dependency into the Training-ValueNet would

include an additional input which conveys the class label of the example. In this

work, however, we have opted to use a different approach which is to simply learn

a separate Training-ValueNet for each class. Whilst this may seem wasteful, each

Training-ValueNet is such a small network that it is incredibly fast to train and it

requires little memory to store their weights after training. In this case, we will, in fact,

be training a separate Training-Value-Net V̂ C for each class C ∈ 1:K,

V̂ C : {f(x) : x∈XT , y = C} 7→ R

Training each Training-ValueNet is a simple process. We first select a random subset

of nt training examples per class. We then obtain Monte-Carlo estimations of training-

value V̄ (x) for all examples in this subset. Finally, we train the Training-ValueNet

for each class using the estimates of training-value for examples from that class as the

training targets. Once we have trained the Training-ValueNet for each class, we use it

to predict the training-value for all training examples which have that corresponding

class label.

42

The Training-ValueNet allows us to learn a general mapping between the feature space

of our training data and the training-value. As such, it enables us to estimate the

training-values of huge numbers of examples within a reasonable amount of time 8.

8We provide a detailed account of the computational complexity of the algorithm in section 6.2.

43

4 Experiments

4.1 Datasets

In order to empirically evaluate the effectiveness of our proposed approach we will, of

course, require some datasets containing label noise. As previously stated in section

2.2, we have chosen not to conduct any of our experiments using label noise that is

artificially generated. Despite this being a convenient and frequently used approach,

we strongly feel that this type of noise poorly reflects the patterns of label noise we see

in real weakly-supervised data and as such, can lead to invalid conclusions. Instead,

we have conducted our experiments on the following two weakly-supervised datasets in

which any label noise is naturally occurring as the result of errors made by the sources

of weak supervision.

4.1.1 Clothing 1M

The clothing 1M dataset [18] contains precisely 1M weakly labelled training examples

belonging to 14 categories of clothing. These images were scraped from several shop-

ping websites including eBay and Amazon and their labels were assigned according to

the presence of key-words in the surrounding text. A further 50K/14K/10K manu-

ally labelled images are included for train/validation/test purposes. Of these images,

25K/7K/5K have both their weak and ground-truth labels provided. By comparing

these two sets of labels, we obtain the ground truth correctness of each of the weak

labels. These ‘verification’ labels allow us explicitly evaluate the ability of Training-

ValueNet to identify mislabelled examples.

Experimental results on Clothing 1M Clothing 1M [18] have been reported for each of

the three state-of-the-art methods we wished to compare our method with; CleanNet

[4], DRAE [22] and CurriculumNet [30]. This made it a natural choice of dataset for us.

44

4.1.2 Aircraft-7

In order to perform a comparison between weakly-supervised learning using our method

with the fully-supervised paradigm, we decided to create a new large scale, weakly-

supervised dataset from scratch. The resulting dataset which we call Aircraft-7 con-

tains 75K images of 7 types of aircraft. These classes were picked because they were

also available synsets in ImageNet. This ensured that we had a plentiful supply of

cleanly labelled data with which we used to form validation and test sets as well a

fully-supervised training set for the purposes of our comparison.

To obtain the training examples for the Aircraft-7 dataset we searched Flickr for the

name of each class in turn and ordered the search results by relevance. We used pub-

licly available bulk image downloader software [32] to quickly scrape as many images

as possible for each class. In order to overcome a restriction on the number of images

that can be downloaded at one time, we searched for images uploaded in each year for

the past 20 years. In the end, we were able to collect a total of 75K images for this

dataset. A breakdown of the number of examples obtained per class dataset is shown

in Table 4.1. We also list an estimate for the mean label accuracy in each class which

was calculated by manually verifying 250 images from each. The mean estimated label

accuracy across all images in the dataset is 70%.

To obtain accurately labelled evaluation sets we set aside 100 images per class from the

corresponding ImageNet synset to form a validation set and a further 100 per class for a

held-out test set. All remaining ImageNet images for these classes were then combined

to form our fully-supervised training set which we used for the purposes of comparison

only.

45

Aircraft Dataset Statistics

Class num images est. label accuracy (%)

Airliner 10,968 87

Fighter Jet 8,882 88

Glider 13,175 54

Helicopter 10,795 75

Prop Plane 11,309 85

Sea Plane 14,891 55

Stealth Bomber 4,597 46

Overall 74,617 70

Table 4.1: Statistics for the Aircraft-7 dataset.

4.2 Experimental Setup

We evaluate our proposed method via a series of three experiments, each of which as-

sesses a slightly different aspect of the approach. In this section, we will explain the

motivation behind each experiment and describe the experimental setup we use. To

avoid repeating ourselves here, we shall defer a thorough description of the finer train-

ing details and hyperparameters we used for the following section (4.3) as the same

settings were used for each experiment. Results for each experiment are then provided

in section 4.4.

4.2.1 Experiment 1 - Label Noise Detection

In our first experiment, we evaluate our method on a label noise detection task. We

wish to know simply how effective our method is at identifying mislabelled examples

and how this performance compares with existing label cleaning methods. Accurate

label noise detection is perhaps the single most important criteria for our method as

this is the means by which we propose to reduce label noise and subsequently improve

final classification performance.

We use the Clothing 1M dataset for this experiment. Specifically, we use the 25K images

46

we described in section 4.1.1 for which we have obtained the ground-truth correctness

of their weak labels. We assign each of these 25K examples their weak label and use

this as the training set. For the validation set, we use the designated manually labelled

set of 14K examples.

We first train our baseline CNN image classifier on the entire weakly-labelled dataset

from which we extract the final convolutional layer features for each image. We then

apply our method, learning a Training-ValueNet for each class which we then use to

predict the training-values of all 25K examples. We classify any example that has a

predicted value of less that zero as mislabelled and the rest as correctly labelled. We

compare our predictions for the correctness of each label with its ground-truth correct-

ness and compute our mean detection error across the 25K examples. We compare our

method with a number of existing label cleaning methods including CleanNet [4] and

DRAE [22] which you will recall are the state-of-the-art methods for the semi-supervised

and outlier detection approaches respectively. Results for all methods we compare with

were reported in [4].

4.2.2 Experiment 2 - Image Classification

For our second experiment, we assess the extent to which our method improves the

performance of an image classification model trained on weakly-supervised data. To do

this, we take the already trained Training-ValueNets from experiment 1 and use them

to predict the training-value of all 1M weakly-labelled training examples in the Cloth-

ing 1M dataset. We discard any examples with a negative predicted training-value and

proceed to fine-tune our baseline image classifier on this cleaned training set.

We compute the accuracy of this final model on the test set of 10K examples. We

compare this with the baseline model (trained on all 1M weakly-labelled images), a

fully-supervised baseline (trained on the 50K manually labelled training images) as

well as that achieved using several other methods for label noise.

47

4.2.3 Experiment 3 - Comparison with Fully-Supervised Learning

In this final experiment, we compare weakly-supervised learning using our method for

label cleaning with the fully-supervised learning paradigm. We are interested not only

in the level of performance that each achieves but also what the entire pipeline looks

like for each. It is for this reason that we opted to create our own weakly-supervised

dataset, Aircraft-7, from scratch (see section 4.1.2 for details).

As per our method, we begin by training a baseline image classifier on the entire weakly-

labelled training set and extract the final convolutional layer features for each image.

We also record the performance of this baseline on our held-out test set. We then apply

our method and obtain Training-ValueNets for each of the 7 classes. These are then

used to predict the training-value of all 75K training examples in our weakly-supervised

training set. After discarding any examples with a negative predicted training-value,

we proceed to fine-tune our baseline model on the cleaned training set. Again we record

the accuracy this model achieves on the held-out test set.

For the fully-supervised comparison, we train the same image classification model on

the fully-supervised training set that we took from ImageNet. We record the final

accuracy of this classifier on the held-out test set. We then compare the results of

each condition; weakly-supervised learning, weakly-supervised learning with our label

cleaning and fully-supervised learning.

48

4.3 Training Details and Hyperparameters

In this section, we describe in detail the specific training details and hyperparameters

settings we used for our experiments. The setup described here was used for all three

of the experiments we conducted. All models were implemented in Python using Keras

[33] with a TensorFlow backend [34]. Training was carried out using NVIDIA Tesla

K80 GPUs on Amazon web-services. It is worth mentioning here that the Monte-Carlo

estimation phase of our algorithm can be easily distributed across multiple machines

as each episode of training is independent of every other episode. We took advantage

of this and distributed the computation during this phase across eight GPUs. This

substantially reduced the absolute run time for our experiments.

4.3.1 Baseline Image Classifier

Our experiments require that we choose an image classification model. To provide the

closest comparison with recent works [4], we follow in their steps by using ResNet-50

[35] as our baseline model. Rather than training from a random initialization, we fol-

low the common practice of fine-tuning a model that has already been pre-trained on

ImageNet. Specifically, we use the pre-trained model provided within Keras [33]. In

each experiment, we simply replaced the final dense layer with one that has the same

number of units as there were classes in the dataset.

Each time we trained the ResNet-50 classifier on a cleaned training set, we opted to fine-

tune the baseline model that had already been trained on the entire weakly-supervised

training set rather than starting from the ImageNet pre-trained weights. Empirically

both approaches achieved very similar performance however fine-tuning was far quicker

to carry out. We follow the fine-tuning procedure described in [19], changing only the

batch size from 32 to 64, again for more efficient GPU usage.

49

4.3.2 Monte-Carlo Estimation of Training-Value

The next stage in our method is the Monte-Carlo estimation phase in which we obtain

direct estimates for the training-values of a random subset of examples. You will recall

that the purpose of this stage is to obtain estimates that can be used as regression

targets to train a Training-ValueNet for each class.

We select a random sample of nT training examples from each of the K classes in the

dataset. For each image, we use the final convolutional layer features that we extracted

from our baseline model as the input to a small, fully-connected neural network clas-

sifier with no hidden layers. We train this classifier on the subset for M episodes of e

epochs. As per the constraints described in section 3.3, we train this classifier using the

‘vanilla’ stochastic gradient descent (SGD) algorithm i.e. with a batch size of one, no

momentum and a constant learning rate.

At each time-step during the training process, we compute the immediate improvement

in the loss on a subset of the validation set. Using only a subset of validation examples

simply reduces computational overhead. This subset contains a random sample of nv

examples per class. As with the training subset, the same subset of the validation data

is used throughout all M episodes.

In all three of our experiments we use the following setting for these hyperparameters:

• M = 100 episodes of training.

• e = 1 epochs per episode 9.

• nT = 1000 training examples per class.

• nV = 100 validation examples per class.

An exhaustive list of other miscellaneous training details is provided in Table 4.2.

9The reason for using just one epoch of training per episode is that the small classifier converges very

quickly when trained on pre-extracted convolutional features and we wanted to avoid any overfitting

which could lead to invalid point estimates of training-value.

50

4.3.3 Training-ValueNet

Once we have obtained Monte-Carlo estimates for the training value of these nT im-

ages in each class we use them to train the TrainingValue-Network for that class. The

Training-ValueNet is simply a multilayer perceptron (MLP) regression network. It

takes as input, the pre-extracted final convolutional layer features for a single image

in a particular class and returns a real-valued prediction of the training-value for that

image.

In all three experiments, we use a single hidden layer of 1024 neurons. Empirically,

we find that a single hidden layer improves performance but that adding further layers

provides no additional benefit. We add dropout regularization [31] at a rate of d=0.7

immediately after this hidden layer which helps prevent the network overfitting on what

is a relatively small training set of nT examples. All other relevant hyper-parameters

are listed in Table 4.2.

51

Parameter Name Monte-Carlo Estimation Model Training-Value Network

Network Parameters

Input Dimension 2048 2048

Hidden Layers None Single layer (1024 units)

Dropout [31] None After hidden layer (d=0.7)

Output Activation Softmax Linear

Output Dimension K (# classes) 1

Training Parameters

Training Examples 1000 per class 800

Validation Examples 100 per class 200

Episodes of Training M = 100 1

Epochs per Episode 1 100

Optimization Parameters

Optimization algorithm SGD SGD

Loss Function Categorical-Crossentropy Mean Absolute Error

Batch Size 1 32

Momentum None 0.9 (Nesterov [36])

Learning Rate 0.01 0.01

Decay Rate 0 1e-3

Early Stopping N/A
After 10 epochs of no

improvement in val. loss

Table 4.2: List of hyperparameters used for our experiments.

52

4.4 Experimental Results

4.4.1 Experiment 1 Results - Label Noise Detection

The full set of results for this label noise detection task are shown in Table 4.3. Training-

ValueNet achieved an average error rate of 23.66% across the 25K examples used in this

experiment. As the first point of comparison, this is 14.8 percentage points (pp) better

than the 38.46% error obtained using a naive baseline which simply classifies all exam-

ples as correctly labelled.

Training-ValueNet outperforms DRAE [22], the state-of-the-art outlier detection method

by a substantial 15.3pp. This demonstrates the superior effectiveness of our approach

over outlier detection whilst providing support for our suggestion that outlier detec-

tion is an inherently unsuitable approach for label cleaning. Our method also outper-

forms the best performing unsupervised method, the CleanNet unsupervised baseline

by 6.9pp. Unfortunately, we do not quite reach the performance of the semi-supervised

methods, of which CleanNet fared the best with a 15.77% detection error. We stress,

however, that each of these methods benefited from 250 hand-labelled examples per

class whereas our method required no manual supervision on the training data.

Label Noise Detection Results

Method Detection error (%)

Semi-supervised methods:

MLP 16.09

kNN 17.58

SVM 16.75

Label prop [37] 17.81

Label spread [38] 17.71

CleanNet [4] 15.77

Unsupervised methods:

Naive baseline 38.46

DRAE [22] 38.95

CleanNet - unsup. base [4] 30.56

Training-ValueNet 23.66

Table 4.3: Label noise detection results on Clothing 1M.

53

If we remove all training examples which we classify as mislabelled, then the mean ac-

curacy of labels for the remaining images increases from 61.7% to 78.7% (17% increase).

This is precisely the kind of improvement in label accuracy that we hope will lead to

improvements in the final performance of our classifier. This is what we evaluated in

experiment 2.

4.4.2 Experiment 2 Results - Image Classification

In this experiment, the baseline ResNet-50 image classifier that was trained on the en-

tire weakly-labelled training set achieves 68.88% accuracy on the test set. This is within

0.06% of the baseline performance reported in [19]. In comparison, training the same

ResNet-50 model on a separate set of just 50K hand-labelled yielded a substantially

higher 75.19% accuracy. This demonstrates the detrimental impact of the label noise

in this dataset.

We proceed to discard 323K training examples that received a negative predicted

training-value. We then fine-tuned our baseline ResNet-50 model on this cleaned dataset

and observed a 72.03% accuracy on the test set. This represents a +3.15 percentage

point increase over the baseline despite having discarded a third of the training exam-

ples. Our method outperforms [19] by 2.19pp despite their benefiting from the use of

hand-labelled examples which they use to estimate the confusion between classes. Once

again, however, we fall slightly short of the performance of CleanNet (2.66pp) but we

stress that CleanNet used 250 hand-labelled training examples per class whilst we used

none.

We report a further set of results in Table 4.4 for which we perform a final round of

fine-tuning on the 50K hand-labelled training examples. It has been shown in several

papers that this can yield additional improvements. Whilst this is not in the true

spirit of what we a trying to achieve in this work (training without human supervi-

sion) we follow suit to provide a full comparison with other methods. We observe a

further 6.03pp increase in test accuracy as a result of this fine-tuning. CurriculumNet

54

[30] achieves the highest performance overall at 81.50%. Unfortunately, the authors of

CurriculumNet never reported the performance that their model achieved without this

additional 50K images meaning we cannot provide a comparison with CurriculumNet

in the weakly-supervised setting.

These results clearly demonstrate the effectiveness of our method for improving image

classification performance through label cleaning. We have come within 2.19pp of the

state-of-the-art in semi-supervised label cleaning despite requiring no supervision.

4.4.3 Experiment 3 Results - Comparison with Fully-Supervised Learning

In this final experiment, we compare weakly-supervised learning (both with and with-

out our method for label cleaning) with the fully-supervised paradigm. Full results are

shown in Table 4.5. The baseline model that was trained on our Aircraft-7 dataset

achieved 82.4% accuracy on the held-out test set. In comparison, the fully-supervised

training set that was trained on the examples from ImageNet recorded a much higher

88.6% accuracy despite containing less training examples.

Image Classification on Clothing 1M

paper method for noise init. training set accuracy (%)

1 [19] noisy baseline ImageNet 1M 68.94

2 ours noisy baseline ImageNet 1M 68.88

3 [19] clean baseline ImageNet 50K 75.19

Training on noisy 1M only

4 [18] loss correct. ImageNet 1M 69.84

5 [4] CleanNet ImageNet 1M 74.69

6 ours Training-ValueNet #2 1M 72.03

Training on additional clean 50K

7 [18] None #4 50K 80.38

8 [4] None #5 50K 79.90

9 [30] CurriculumNet ImageNet 1M + 50K 81.50

10 ours None #6 50K 78.06

Table 4.4: Image classification results on Clothing 1M. Results achieved using the additional 50K

cleanly labelled images are segregated to avoid confusion with weakly-supervised learning.

55

We proceeded to discard approximately 20K training examples from the Aircraft-7

dataset that received a negative predicted training-value. We then fine-tuned the

weakly-supervised baseline model on the remaining images and observed an 87.0% test

accuracy, a significant 4.4pp increase. This final accuracy is just 1.6pp lower than that

achieved using several thousand manually labelled examples.

To directly assess the impact our method has had on the amount of label noise in the

Aircraft-7 dataset, we manually annotate the label correctness for a random sample

of 500 images per class from the cleaned training set. We find that the mean label

accuracy across all classes is 85.4% in this cleaned dataset, 15.3pp higher than it was

prior to label cleaning. The label accuracy is broken down by class in Table 4.6.

The results of this final experiment demonstrate that by using our proposed method for

automated label cleaning, weakly-supervised learning is able to achieve performance

comparable with fully-supervised learning. This is despite our method requiring no

human supervision on the training set. The entire process of creating the Aircraft-7

dataset, performing automated label cleaning and training the final classifier took only

a matter of hours during which our attention was scarcely required. This is in stark

contrast with the many hours of tedious labour it would have taken to label the 75K

images manually.

Image Classification on Aircraft-7

Method init. Training set accuracy (%)

1 Weakly supervised baseline ImageNet noisy 75K 82.4

2 Supervised baseline ImageNet clean ImageNet 88.6

3 Training-ValueNet #1 noisy 75K 87.0

Table 4.5: Image classification results on Aircraft-7 dataset.

56

One of the most beneficial aspects of our method which we have yet to mention is that

once a Training-ValueNet has been trained for each class they can be readily applied to

new example as and when they become available. We only scraped 75K examples for the

Aircraft-7 dataset because that was all the time we could afford to spend. If we were to

collect a million more images tomorrow, however, we could use our Training-ValueNets

to automatically clean these examples at no additional expense.

Aircraft-7 Dataset Statistics

Class Name Before Label Cleaning After Label Cleaning

Images Label acc. (%) # Images Label acc. (%)

Airliner 11.0k 87.3 8.7k 99.1

Fighter Jet 8.9k 88.3 7.1k 88.6

Glider 13.1k 53.5 7.6k 77.9

Helicopter 10.8k 74.6 9.5k 85.7

Prop Plane 11.3k 85.1 10.0k 82.9

Sea Plane 14.9k 55.3 8.2k 79.3

Stealth Bomber 4.6k 46.7 2.1k 78.8

Overall 74.6k 70.1 53.2k 85.4

Table 4.6: Label accuracy for each class of the Aircraft-7 dataset before and after label cleaning.

57

5 Conclusion

In May of this year, renowned reinforcement learning researcher Richard Sutton pub-

lished a short article entitled ‘The bitter lesson’ [39]. It begins as follows:

“The biggest lesson that we can learn from seventy years of AI research is that

general methods that leverage computation [and learning] are ultimately the most

effective, and by a large margin. ”

The article goes on to explain how progress within each area of AI research has followed

a similar pattern. At first, when data is scarce or computation limited, researchers seek

to improve their system by exploiting their own knowledge of the problem. Whilst this

almost always helps in the short term, performance inevitably plateaus as the system

becomes constrained by the knowledge of its creators. In the end, a breakthrough

eventually occurs using a more general-purpose method that scales with increased com-

putation and data.

In the present afterglow of the deep learning revolution, it certainly seems that we may

finally be learning this bitter lesson. From feature engineering and selection, to hyper-

parameter tuning and even model design, we are increasingly removing our knowledge

and intuition from the equation and accepting that in order to build intelligent systems,

we must enable machines to learn as we learn, not know what we know.

And yet, for all the incredible achievements of deep learning in recent years, the vast

majority of machine learning being done today still relies on a huge amount of human

knowledge in the form of data labelling. For the past year I have been working within

the machine learning industry and I have seen several perfectly viable projects grind to

a halt because of the time and financial cost of data labelling. The motivation for this

work stems from an overwhelming feeling that we can and must do more to remove this

barrier.

58

As we examined existing attempts to automate label cleaning, we discovered that they

too are limited by an over-reliance on human knowledge. Semi-supervised methods

are effective in reducing the amount of labelling required but this can only ever be a

partial solution. Outlier detection, on the other hand, requires no human intervention

but performs poorly due to the flawed assumptions that researchers have made about

the nature of label noise in weakly-supervised datasets. The work we have presented in

this thesis serves as a conscious move away from this reliance on human knowledge for

label cleaning.

The primary contribution of the work is Training-ValueNet, a simple yet effective

method which leverages computation and learning to remove label noise from weakly-

supervised datasets without human supervision. Our results clearly demonstrate that

Training-ValueNet is able to accurately identify and remove mislabelled examples and

improve the performance of state-of-the-art image classification algorithms as a result.

On the Clothing 1M and Aircraft-7 datasets, Training-ValueNet reduced the proportion

of mislabelled examples by 17.1 percentage points (pp) and 15.3pp respectively. This

led to improvements in test accuracy of 3.15pp for Clothing 1M and 4.4pp for Aircraft-7.

Of equal importance to us, however, is the fact that we have shown Training-ValueNet

to be a genuinely useful tool that can be easily integrated into the machine learning

pipeline. Using Training-ValueNet we collected and cleaned a weakly-supervised dataset

of 75K images in a matter of hours, during which our attention was scarcely required.

This is in stark contrast to the many hours of tedious work it would otherwise take

to clean these labels manually. What’s more, the final classification test accuracy that

was achieved using this dataset came within just 1.6pp of the accuracy achieved using

thousands of hand labelled images. We have released an easy-to-use implementation

10 of Training-ValueNet in the hope that researchers and practitioners in the field can

benefit from this tool.

10https://github.com/lukasmyth96/Training-ValueNet

59

https://github.com/lukasmyth96/Training-ValueNet

Training-ValueNet is not without its limitations. We shall spend the final chapter of

this thesis discussing some of the many ways in which our work could be improved and

extended in the future. What we like would draw the readers attention to, however,

is the performance we were able to achieve in spite of these limitations. We feel as

confident now as we did when beginning this project that a general purpose method

leveraging computation and learning will one day replace the need for burdensome data

labelling. We hope that this work may act as a small first step towards achieving this

important goal.

60

6 Future Work

In this final chapter, we present some ideas for how this line of work could be extended

in the future. The ideas put forward in sections 6.1 - 6.3 are merely ideas and sug-

gestions. In sections 6.4 and 6.5 however, we present findings from some preliminary

investigations that we have carried out in order to demonstrate to the reader why we

feel these directions are interesting.

6.1 Beyond Image Classification

Whilst the experiments carried out in this work have focused on image classification,

the method we have presented here is general purpose and can be readily applied to

any classification task. Therefore, a natural starting point for future work would be

to do just that. There are many classification tasks in the realm of natural language

processing (NLP) in particular for which we feel our method would be particularly

suitable. Our reasoning for this is twofold. First of all, textual data is so incredibly

abundant and accessible on the internet that it is often possible to scrape enormous

amounts of data for a text classification task. That being said, the process of labelling

these examples remains no less of an issue than it is for image classification. It can,

however, be very easy to write labelling functions for text data which makes it a prime

candidate for weak supervision. Both of these factors make text classification tasks a

prime candidate for our method. We have designed our open-source implementation of

Training-ValueNet with these possible applications in mind.

6.2 Improving Computational Efficiency

We do not shy away from the fact that our algorithm is rather computationally ex-

pensive. It was after all our intention to shift the burden of label cleaning away from

humans onto machines that will only become cheaper and more powerful over time.

Furthermore, in all the experiments we have conducted, the time and financial cost

required to perform label cleaning with Training-ValueNet remains substantially less

61

than it would have been if label cleaning was performed manually. In addition to this,

the absolute run time of our algorithm can be drastically reduced as each episode of

the Monte-Carlo estimation phase can be run independently on separate machines.

Nevertheless, there are cases in which Training-ValueNet would currently be prohibitively

expensive to run. This is due to the fact that during the Monte-Carlo estimation phase

we perform nt·K training iterations per epoch and compute the change in loss on nv·K
validation examples at each iteration. The complexity of the algorithm is therefore

O(K2) where K is the number of classes. This means that whilst the run time is in-

dependent of the number of examples per class (as nt can remain fixed), it scales very

poorly with the number of classes K. At the present time Training-ValueNet is there-

fore not well suited for tasks with many classes (e.g. > 100).

An important direction for future work is therefore to find ways of improving the com-

putational efficiency of the algorithm with respect to the number of classes. The most

promising way of doing this would be to increase the batch size from one during the

Monte-Carlo estimation phase. The difficulty with doing this, of course, is that you

encounter a credit assignment problem in trying to determine precisely how each train-

ing example in the batch contributed to the change in validation loss. This problem

is not insurmountable however and exploring ways to deal with this credit assignment

problem should be a top priority for future work.

6.3 Dynamic Training-Value

One of the main limitations of the method we have presented is that training-value, as

we have defined it here, provides only a static estimation of impact an example will

have on performance. In reality, however, it is likely that the value an example offers

will vary throughout the course of training. This is, of course, the entire premise be-

hind curriculum learning [28]. In traditional curriculum learning, however, the default

assumption is that we should train on easy examples first before progressing to more

difficult examples later in training. Whilst this seems reasonable in theory, it is likely

a gross over-simplification of how an example’s true value changes over time. Recent

62

works have indeed shown that traditional curriculum learning has very little impact on

deep learning models [40].

Taking all this into account, the single most interesting line of future work in our opin-

ion is the potential to introduce an additional dependency between the training-value of

an example and the state of the classifier during training. What this would do is allow

the training-value of an example to vary throughout the course of training in precise

accordance with how its impact on performance actually changes. It would then be

possible for the curriculum to adapt dynamically, with examples being selected for each

batch based on the value they offer at that exact point in time.

6.4 Cross-category vs. Cross-domain Label Noise

When reviewing the literature on label noise, we noticed that whilst there have been

many investigations into the impact of label noise in general, there has been little

attempt to consider how different types of label noise might impact performance dif-

ferently. One of the few mentions we have seen of sub-categories of label noise is from

[41]. In this paper, the authors briefly mention the difference between cross-category

and cross-domain label noise. They use the term cross-category noise to describe exam-

ples which are mislabelled but actually belong to another class within the classification

task. In contrast, cross-domain noise is used to describe examples for which no suitable

label exists among the set of classes used in the task. Fig. 6.1 shows a set of example

images for each type of noise taken from the ‘propeller plane’ class of the Aircraft-7

dataset.

Whilst weakly-supervised datasets will generally contain some amount of each type of

label noise, it is not necessarily the case that each type should be equally detrimen-

tal to performance. If it was to be demonstrated that one type is significantly more

detrimental than the other then the entire discussion surrounding the impact of label

noise would need to account for this factor. Unfortunately, we have found no existing

work where this possibility has been investigated. Therefore, since our entire method

63

Figure 6.1: Examples of cross-domain and cross-category label noise from the ‘propeller plane’ class

of the Aircraft-7 dataset.

revolves around estimating the impact that each training example has on performance

we felt we are well placed to conduct an initial investigation into this matter.

To do so we began by manually classifying a random sample of images from our Aircraft-

7 dataset as being either correctly labelled, cross-domain label noise or cross-category

label noise. We continued until we had precisely 500 images for each of the three cate-

gories. Using the training-values that we obtained for each image during experiment 3

we first calculated the mean training-value for each of the three groups. A box plot of

these averages is presented in Fig. 6.2.

64

As expected, the mean training-value for correctly labelled images is a small positive

value. When we compare the two types of label noise however, we find that cross-

category label noise is substantially more damaging to performance than cross-domain

noise (≈ 7× more). To confirm that this difference is reflected in the actual impact

that each type has on classification performance, we perform a small experiment. We

begin by training the classifier only on the correctly labelled 500 images. In each of

two separate conditions, we then proceed to add 100 mislabelled images at a time over

the course of five episodes from either the cross-domain or cross-category group. At

the end of each episode, we record the maximum accuracy obtained on the ImageNet

validation set. This maximum performance is plotted against the label noise ratio (i.e.

the ratio of mislabelled to correctly labelled images) in Fig. 6.3.

We can see from Fig. 6.3 that adding cross-domain label noise has a very small neg-

ative effect on performance. Cross-category label noise, on the other hand, causes a

substantial detriment to performance. By the time all 500 cross-category mislabelled

images are added to the training set the validation accuracy decreases from 82.7% (with

no label noise) to 67.3% (-15.5pp). This supports the finding that cross-category label

noise is substantially more detrimental than cross-domain label noise.

correct
ly labelle

d
cross-d

omain
cross-c

ategor
y

−8

−6

−4

−2

0

2

·10−2

m
ea

n
tr

ai
n
in

g
va

lu
e

Figure 6.2: Box plot showing the mean training-value for 500 correctly labelled training examples

from the Aircraft-7 dataset as well for 500 examples of cross-domain and cross-category noise respec-

tively.

65

0 0.2 0.4 0.6 0.8 1

70

75

80

85

noise ratio

A
cc

u
ra

cy
(%

)
cross-domain
cross-category

Figure 6.3: Plot showing how classification performance decreases when different types of label noise

are added to the training set.

The finding that cross-category noise is more detrimental is quite intuitive. It is un-

derstandable why an example that truly belongs to one class and has been mistakenly

labelled as another would be more confusing to the classifier than another mislabelled

example that truly belongs to no available class. What we have shown here, however,

is that the difference in impact between the two types can be quite substantial. This

suggests that we should perhaps be less concerned with the absolute amount of label

noise in our dataset than how that noise is divided between these types.

So far as this finding concerns our method, we can at least say that the more damaging

an example is (i.e. the lower its training-value) the more confident we can be that

Training-ValueNet will successfully identify and remove that example from the dataset.

We should, therefore, be particularly successful at removing the more damaging cross-

category label noise from a dataset.

66

6.5 Training-ValueNet for Domain Shift

In this thesis, we have focused on the issue of label noise in weakly-supervised datasets.

Unfortunately label noise is not the only difficulty that can be encountered when per-

forming weakly-supervised learning. In cases where we have a specific target domain

in mind for our model but then collect training data from a more general domain (e.g.

by scraping data from the web) we often find that there is a significant domain shift

between our training and target domains. This means that there is a difference between

the underlying statistical distribution of the two sets. Like label noise, domain shift

has also been shown to significantly hurt classification performance [42, 43].

Figure 6.4: Examples of domain shift from the Helicopter class of the Aircraft-7 dataset.

The most common approach for dealing with domain shift is so-called domain adaption

(DA) (see [44] for a comprehensive survey). These methods attempt to learn a latent

representation that is useful for the classifier but also domain invariant. A fundamental

assumption of DA, however, is that the training set represents a single homogeneous

domain. As noted in [43] however, this assumption is almost never true for images

datasets gathered from the web. Unless images are carefully selected with a clearly

identiable domain in mind, weakly-supervised datasets of this kind are more realisti-

67

cally an agglomeration of several distinct domains. Because of this, we often encounter

a situation whereby some images in the training set are representative of the target

domain whilst others are not. It is unclear whether traditional DA methods are appro-

priate in this setting.

When we began evaluating our method for label cleaning on weakly-supervised web

images, we soon discovered that it simultaneously tackles domain shift in a very nat-

ural way. We observed that the correctly labelled examples which Training-ValueNet

wrongly identified as being mislabelled were typically those that were not representative

of the target domain. Fig. 6.4 shows a selection of these training examples taken from

the helicopter class of the Aircraft-7 dataset. From columns left to right, these images

are highly zoomed out, zoomed in, artistic depictions, badly lit, unusual looking, and

blurry. It is not surprising that these examples did not benefit performance when they

are so different to the more standardised validation examples shown on the right of

Fig. 6.4. Whilst removing these examples from the training set will not eliminate the

domain shift entirely, it will at least get rid of the worst offending images which actually

hurt performance. In this way there is a clear potential here for Training-ValueNet to

tackle label noise and domain shift simultaneously.

A thorough investigation of the utility of our method for dealing with domain shift

is left to further work. We do however present an initial demonstration here of the

sensitivity of training value to domain shift. To do this we take the Celeb-A face facial

recognition dataset [45] and repurpose it for the task of gender classification. We use

the binary attributes provided for each image to then divide the images into five mutu-

ally exclusive sub-domains. These are; young with blonde hair, young with black hair,

old with grey hair, old with black hair, and wearing a hat. Fig. 6.5 shows an image

from each sub-domain and class. Each sub-domain is further divided into a training

and validation subset.

68

Figure 6.5: Examples of each sub-domain and class from the Celeb-A dataset.

We begin by computing the pairwise performance between all pairs of sub-domains,

that is, the performance obtained if we train on sub-domain X and evaluate on sub-

domain Y (for all pairs X,Y). These performances are listed in Table 6.1. We can clearly

see that the domain shift between sub-domains causes a degradation in performance

compared to when we train and test on images from the same domain.

In order to demonstrate the sensitivity of training value to domain shift, we re-combined

the sub-domains to form a unified training set. We then selected just one of the sub-

domains (‘young blonde’) to be our target domain (validation set). Under these con-

ditions, we carry out our method and obtain predictions for the training value of each

Table 6.1: Pairwise performance (accuracy (%)) obtained by training a classifier on one sub-domain

and evaluating on another. Colours indicate the performance relative to the maximum achieved on

that sub-domain.

69

−4 −2 0 2 4

·10−2

75

80

85

90

95

old-grey
wearing-hat

old-black

young-black

young-blonde

Mean Training-Value

A
cc

u
ra

cy
(%

)

Figure 6.6: Plot showing mean training-value for examples in each sub-domain vs the accuracy

achieved when training on that sub-domain and evaluating on the ‘young-blonde’ sub-domain.

training example. In Fig. 6.6 we plot the mean training value for images in each sub-

domain against the pairwise performance that obtained when we trained on examples

from that sub-domain and evaluated on ‘young blonde’. What we find is a near-perfect

correlation between the two demonstrating that the training value is sensitive to the

severity of the domain shift between that image and the target domain.

Whilst a more rigorous investigation is still needed, this initial investigation does suggest

that our method is capable of dealing with label noise and domain shift simultaneously.

Whilst an abundance of work has been carried out on each of these issues, we are

unaware of any existing method that tackles both simultaneously in this way.

70

References

[1] L. Smyth, D. Kangin, and N. Pugeault, “Training-valuenet: Data driven label noise

cleaning on weakly-supervised web images,” in Proceedings of the Joint IEEE In-

ternational Conference on Development and Learning and on Epigenetic Robotics,

IEEE, 2019.

[2] R. Socher, J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:

A large-scale hierarchical image database,” in 2009 IEEE Conf. Comput. Vis.

Pattern Recognit., pp. 248–255, 2009.

[3] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “LSUN: Con-

struction of a Large-scale Image Dataset using Deep Learning with Humans in the

Loop,” arXiv e-prints, p. arXiv:1506.03365, June 2015.

[4] K.-h. Lee, X. He, L. Zhang, and L. Yang, “CleanNet: Transfer Learning for Scalable

Image Classifier Training with Label Noise,” CVPR, 2016, 2016.

[5] A. Drory, S. Avidan, and R. Giryes, “On the Resistance of Neural Nets to Label

Noise,” CoRR, pp. 1–19, 2018.

[6] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré, “Data programming:

Creating large training sets, quickly,” in Advances in neural information processing

systems, pp. 3567–3575, 2016.

[7] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel: Rapid

training data creation with weak supervision,” Proceedings of the VLDB Endow-

ment, vol. 11, no. 3, pp. 269–282, 2017.

[8] S. H. Bach, D. Rodriguez, Y. Liu, C. Luo, H. Shao, C. Xia, S. Sen, A. Ratner,

B. Hancock, H. Alborzi, et al., “Snorkel drybell: A case study in deploying weak

supervision at industrial scale,” in Proceedings of the 2019 International Confer-

ence on Management of Data, pp. 362–375, ACM, 2019.

71

[9] B. Frénay and M. Verleysen, “Classification in the presence of label noise: A

survey,” IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 5, pp. 845–869,

2014.

[10] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, pp. 81–

106, 1986.

[11] C. E. Brodley and M. A. Friedl, “Identifying mislabeled training data,” Journal of

artificial intelligence research, vol. 11, pp. 131–167, 1999.

[12] G. L. Libralon, A. C. P. de Leon Ferreira, A. C. Lorena, et al., “Pre-processing

for noise detection in gene expression classification data,” Journal of the Brazilian

Computer Society, vol. 15, no. 1, pp. 3–11, 2009.

[13] D. Rolnick, A. Veit, S. Belongie, and N. Shavit, “Deep Learning is Robust to

Massive Label Noise,” arXiv e-prints, p. arXiv:1705.10694, May 2017.

[14] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny

images,” tech. rep., Citeseer, 2009.

[15] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based learning ap-

plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–

2324, 1998.

[16] D. Flatow and D. Penner, “On the robustness of convnets to training on noisy

labels,” tech. rep., Stanford University, 2017.

[17] W. Li, L. Wang, W. Li, E. Agustsson, and L. Van Gool, “WebVision

Database: Visual Learning and Understanding from Web Data,” arXiv e-prints,

p. arXiv:1708.02862, Aug. 2017.

[18] T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, “Learning from massive noisy

labeled data for image classification,” in Proc. IEEE Comput. Soc. Conf. Comput.

Vis. Pattern Recognit., vol. 07-12-June, pp. 2691–2699, 2015.

[19] G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu, “Making deep neural

networks robust to label noise: A loss correction approach,” in Proc. - 30th IEEE

72

Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2233–

2241, 2017.

[20] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth IEEE

International Conference on Data Mining, pp. 413–422, IEEE, 2008.

[21] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-

based local outliers,” in ACM sigmod record, vol. 29, pp. 93–104, ACM, 2000.

[22] Y. Xia, X. Cao, F. Wen, G. Hua, and J. Sun, “Learning discriminative reconstruc-

tions for unsupervised outlier removal,” in Proc. IEEE Int. Conf. Comput. Vis.,

vol. 2015 Inter, pp. 1511–1519, 2015.

[23] J. S. Kim and C. Scott, “Robust kernel density estimation,” in ICASSP, IEEE

Int. Conf. Acoust. Speech Signal Process. - Proc., pp. 3381–3384, 2008.

[24] E. Parzen, “On estimation of a probability density function and mode,” The annals

of mathematical statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

[25] M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,”

The Annals of Mathematical Statistics, pp. 832–837, 1956.

[26] W. Liu, G. Hua, and J. R. Smith, “Unsupervised one-class learning for automatic

outlier removal,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-

nit., pp. 3826–3833, 2014.

[27] L. Van Der Maaten and G. Hinton, “Visualizing Data using t-SNE,” J. Mach.

Learn. Res., vol. 9, pp. 2579–2605, 2008.

[28] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in

Proc. 26th Annu. Int. Conf. Mach. Learn. - ICML ’09, vol. 2, (New York, New

York, USA), pp. 1–8, ACM Press, 2009.

[29] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “MentorNet: Learning data-

driven curriculum for very deep neural networks on corrupted labels,” in Pro-

ceedings of the 35th International Conference on Machine Learning (J. Dy and

73

A. Krause, eds.), vol. 80 of Proceedings of Machine Learning Research, (Stock-

holmsmässan, Stockholm Sweden), pp. 2304–2313, PMLR, 10–15 Jul 2018.

[30] S. Guo, W. Huang, H. Zhang, C. Zhuang, D. Dong, M. R. Scott, and D. Huang,

“CurriculumNet: Weakly supervised learning from large-scale web images,” in

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 11214 LNCS, pp. 139–154, 2018.

[31] R. S. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, “Dropout: A Simple

Way to Prevent Neural Networks from Overfitting N,” J. Mach. Learn. Res., 2014.

[32] “Bulk Image Downloader.” https://bulkimagedownloader.com/. Accessed:

2019-09-30.

[33] F. Chollet, “keras.” https://github.com/fchollet/keras, 2015.

[34] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-

sorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Software

available from tensorflow.org.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-

nition,” CVPR, 2016, dec 2016.

[36] Nesterov, “A method for solving the convex programming problem with conver-

gence rate O(1/k2),” Dokl. Akad. Nauk SSSR, 1983.

[37] Z. G. X. Zhu, “Learning from labeled and un- labeled data with label propagation,”

C. CALD-02-107, 2002.

[38] D. Y. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf, “Learning with

local and global consistency,” Adv. Neural Inf. Process. Syst. 16, vol. 16, pp. 321–

328, 2004.

74

https://bulkimagedownloader.com/
https://github.com/fchollet/keras

[39] R. Sutton, “The Bitter Lesson.” http://www.incompleteideas.net/IncIdeas/

BitterLesson.html.

[40] V. Avramova, Curriculum Learning with Deep Convolutional Neural Networks.

PhD thesis, KTH Royal Institute of Technology Stockholm, 2015.

[41] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig, J. Philbin, and

L. Fei-Fei, “The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recog-

nition,” in Lect. Notes Comput. Sci., 2016.

[42] E. H. Pooch, P. L. Ballester, and R. C. Barros, “Can we trust deep learning models

diagnosis? the impact of domain shift in chest radiograph classification,” arXiv

preprint arXiv:1909.01940, 2019.

[43] L. T. Alessandro Bergamo, “Exploiting weakly-labeled Web images to improve

object classification: a domain adaptation approach,” in NIPS, pp. 1–9, 2010.

[44] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain adaptation:

A survey of recent advances,” IEEE signal processing magazine, vol. 32, no. 3,

pp. 53–69, 2015.

[45] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,”

in Proceedings of International Conference on Computer Vision (ICCV), December

2015.

75

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

	List of Figures
	List of Tables
	Summary of Notation
	List of Publications
	Introduction
	The new bottleneck in Deep Learning
	Weak-supervision and the need for Label Cleaning
	Outline of Existing Approaches to Label Cleaning
	A new approach to label cleaning
	Outline of Subsequent Chapters

	Background and Related Work
	Weakly-Supervised Learning
	The impact of Label Noise
	Approaches to Label Cleaning
	Semi-supervised Label Cleaning
	Outlier Detection

	Robust Learning in the Presence of Label Noise
	Curriculum Learning

	Summary of the state-of-the-art

	Training-ValueNet
	Overview of Proposed Approach
	Clarifications
	Definition of Training-Value
	Monte-Carlo Estimation of Training-Value
	Training-Value Approximation Network

	Experiments
	Datasets
	Clothing 1M
	Aircraft-7

	Experimental Setup
	Experiment 1 - Label Noise Detection
	Experiment 2 - Image Classification
	Experiment 3 - Comparison with Fully-Supervised Learning

	Training Details and Hyperparameters
	Baseline Image Classifier
	Monte-Carlo Estimation of Training-Value
	Training-ValueNet

	Experimental Results
	Experiment 1 Results - Label Noise Detection
	Experiment 2 Results - Image Classification
	Experiment 3 Results - Comparison with Fully-Supervised Learning

	Conclusion
	Future Work
	Beyond Image Classification
	Improving Computational Efficiency
	Dynamic Training-Value
	Cross-category vs. Cross-domain Label Noise
	Training-ValueNet for Domain Shift

