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Abstract

It is a well-established fact that �with an unknown number of nuisance parame-
ters at the boundary �testing a null hypothesis on the boundary of the parameter
space is infeasible in practice as the limiting distributions of standard test statis-
tics are non-pivotal. In particular, likelihood ratio statistics have limiting distri-
butions which can be characterized in terms of quadratic forms minimized over
cones, where the shape of the cones depends on the unknown location of the (pos-
sibly multiple) model parameters not restricted by the null hypothesis. We pro-
pose to solve this inference problem by a novel bootstrap, which we show to be
valid under general conditions, irrespective of the presence of (unknown) nuisance
parameters on the boundary. That is, the new bootstrap replicates the unknown
limiting distribution of the likelihood ratio statistic under the null hypothesis and
is bounded (in probability) under the alternative. The new bootstrap approach,
which is very simple to implement, is based on shrinkage of the parameter esti-
mates used to generate the bootstrap sample toward the boundary of the para-
meter space at an appropriate rate. As an application of our general theory, we
treat the problem of inference in �nite-order ARCH models with coe¢ cients sub-
ject to inequality constraints. Extensive Monte Carlo simulations illustrate that
the proposed bootstrap has attractive �nite sample properties both under the null
and under the alternative hypothesis.
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1 Introduction

We consider (likelihood ratio-based) testing the null hypothesis that some of the para-
meters of a statistical model lie on the boundary of the parameter space. This is a non-
standard testing problem which has been widely analyzed in the case where the para-
meters not restricted by the null hypothesis are in the interior of the parameter space,
see Andrews (2001) and the references therein. However, the assumption that the only
parameters which may lie on the boundary are those restricted by the null hypothesis
excludes several important cases in empirical applications. A classic example, which we
discuss in detail in the paper, is testing hypotheses in ARCH type models subject to
non-negativity parameter constraints; see Francq and Zakoïan (2009). In this case, the
practitioner may want to test whether some of the ARCH parameters are zero, but is
uncertain about the location of the remaining parameters.
This testing problem is particularly involved because the asymptotic distributions

depend on whether the parameters not restricted by the null hypothesis �henceforth,
�nuisance parameters�� lie on the boundary or not. More speci�cally, likelihood ra-
tio [LR] statistics have limiting distributions which can be characterized in terms of
quadratic forms minimized over cones, where the shape of the cones depends on the un-
known location of the nuisance parameters. The widely applied assumption that such
parameters are not on the boundary (which corresponds to the assumption that the lo-
cation of the parameters not restricted by the null hypothesis is known) is implausible
in most testing problems, such as the aforementioned ARCH case.
Attempts to deal with inference problems involving nuisance parameters potentially

on the boundary of the parameter space are given in the literature; see e.g. Andrews and
Guggenberger (2009), Elliott, Müller and Watson (2015), Lu (2016), McCloskey (2017),
Ketz (2018) and the reference therein. Here we take a di¤erent route and propose a
novel bootstrap-based testing approach.
Interestingly, the bootstrap is usually regarded as invalid when applied to testing

whether some parameters are on the boundary of the parameter space, see e.g. Horowitz
(2001). For instance, Andrews (2000) shows that in a simple location model with i.i.d.
Gaussian errors the asymptotic distribution of the bootstrap maximum likelihood [ML]
estimator of the location parameter is random in the limit, and hence fails to mimic
the asymptotic distribution of the original ML estimator. The bootstrap in Andrews
(2000) does not impose the null hypothesis on the bootstrap sample �that is, it is an
example of the so-called �unrestricted bootstrap��and this is crucial when interest is in
testing that a parameter is on the boundary. In contrast, Cavaliere, Nielsen and Rahbek
(2017) show that randomness of the limiting distribution can be avoided by applying
a bootstrap scheme which imposes the null hypothesis on the bootstrap sample, that
is, the �restricted bootstrap�, see also Davidson and MacKinnon (2006). However, the
approach of Cavaliere, Nielsen and Rahbek (2017) requires that all parameters not
restricted by the null hypothesis are in the interior of the parameter space and, when this
is not the case, also this bootstrap fails to replicate the correct asymptotic distribution,
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see the discussion in Section 3 below. An analog requirement is made in Francq and
Zakoïan (2009) for testing that some coe¢ cients in a general ARCH (GARCH) model
are equal to zero.
To overcome this drawback, we propose here a straightforward, bootstrap-based test-

ing approach, which is very simple to implement and moreover delivers asymptotically
correctly sized tests without losing the consistency property, irrespectively of the loca-
tion of the parameters not restricted by the null hypothesis (the nuisance parameters).
In particular, we show that a simple modi�cation of the restricted bootstrap delivers
correct inference in large samples. Such modi�cation is based on shrinkage of the origi-
nal estimates of the parameters not restricted by the null hypothesis toward the bound-
ary of the parameter space at an appropriate rate. A similar approach, which draws
back to Beran (1997), is advocated in Andrews (2000, p. 403) for a one-parameter lo-
cation model. As we demonstrate, this modi�cation of the bootstrap scheme is able
to eliminate the randomness in the limiting distribution of the bootstrap LR statistic.
Consequently, we are able to provide high-level conditions on the data and bootstrap
generating processes such that the bootstrap test allows control of the rejection prob-
ability under the null in large samples, irrespective of the presence of nuisance para-
meters on the boundary. We also discuss su¢ cient conditions for this novel modi�ed
bootstrap tests to be consistent under the alternative hypothesis.
As an application of our theory, we treat the problem of inference in �nite-order

ARCH models with coe¢ cients subject to inequality (i.e. non-negativity) constraints.
Using a �xed-volatility bootstrap scheme to illustrate, see Cavaliere, Pedersen and Rah-
bek (2018) and Beutner, Heinemann and Smeekes (2018), we show that our modi�ed
bootstrap LR test is asymptotically valid under the null and consistent under the al-
ternative under standard regularity conditions.
We complete the paper by providing an extensive Monte Carlo experiment based on

the ARCH model, where we show three important facts. First, we show that neglecting
the presence of parameters on the boundary a¤ects the size of asymptotic and bootstrap
tests which do not take into account the unknown location of the nuisance parameters.
These tests may in general be either undersized or oversized, depending on the location
of nuisance parameters and their implied correlation structure. Second, we show that
even in samples of moderate size our modi�ed bootstrap test has excellent properties
under the null, while its power is indistinguishable to the power of asymptotic LR test
based on the arti�cial assumption that all nuisance parameters are in the interior of
the parameter space. Third, our Monte Carlo simulations show that the small sample
properties of our modi�ed bootstrap are extremely good irrespective of the bootstrap
sample being based on restricted or unrestricted parameter estimates.
The paper is organized as follows. Section 2 describes the general framework and

introduces the main assumptions on the estimators, the parameter space, the null hy-
pothesis and the test statistics. The special case that will be considered throughout,
namely the ARCH(q) model, is detailed here in Section 2.1. Section 3 presents the new
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bootstrap tests and analyzes their large sample properties, in particular by showing va-
lidity of the tests under the null and under the alternative hypotheses. The theory is
applied to the ARCH(q) case in Section 4, while the small-sample properties are inves-
tigated by Monte Carlo simulation in Section 5. Section 6 concludes. All proofs are
placed in the Appendix.

Notation. We make use of the following notation and de�nitions throughout. With
R+ we denote the set of non-negative real numbers; with I(�) we denote the indicator
function, and �x := y� (�y =: x�) indicates that x is de�ned by y. We let f0gk :=
f0g � � � � � f0g (k times), while 0k = (0; :::; 0)0 (of dimension k), and for intervals
[a; b]k := [a; b]� � � � � [a; b]. We say that a set A � Rp is locally equal to a set B � Rp
if there exists C (0p; ") such that A \ C (0p; ") = B \ C (0p; "), with C (0p; ") an open
cube in Rp centered at 0p and with edge length 2", " > 0. For any vector or matrix,
x, kxk denotes the usual Euclidean norm, kxk := [tr(x0x)]1=2; moreover, the norm of a
vector x with respect to a (square) matrix M is de�ned as kxk2M := x0Mx, and M > 0

means the matrix M is positive de�nite.
Unless di¤erently speci�ed, limits are taken for n!1. We use P � and E� respec-

tively to denote probability and expectation, conditional on the original sample. With
w! and

p! we denote weak convergence and convergence in probability, respectively. For
a given sequence X�

n computed on the bootstrap data, X
�
n = o

�
p(1), in probability, and

X�
n

p�!p X mean that for any � > 0, P �(jjX�
njj > �)

p! 0 and P �(jjX�
n �Xjj > �)

p! 0,
respectively. Similarly, X�

n = O
�
p (1), in probability, means that, for every � > 0, there

exists a constant M > 0 such that, for n large, P (P �(jjX�
njj > M) < �) is arbitrarily

close to one. Finally, weak convergence (in probability) of X�
n to a random variable X

is denoted by X�
n
w�!p X.

2 The setting

We address inference and testing in statistical models with parameters � 2 � � Rd�
where some of the parameters in � are subject to an inequality constraint. Speci�cally,
we look at the case where such parameters are restricted to be greater than or equal to
zero, and test whether some of these parameters are indeed zero. Inference and testing
is infeasible in practice, in the sense that it is not known whether the parameters in �
which are not restricted by the null hypothesis lie on the boundary or not. That is, the
location of the nuisance parameters is unknown, and, as is detailed below, asymptotic
inference is non-pivotal.
To address the issue, it is useful to partition the d� � 1 parameter vector � as

� = (0; �0; �0)
0
;

where ; � and � are of dimension d; d� and d� respectively, with d + d� + d� = d�.
The true parameter value is denoted by �0 = (00; �

0
0; �

0
0)
0 and the null hypothesis H0 we
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consider testing is given by
H0 :  = 0d .

Thus, the parameters in � are for simplicity, and without any loss of generality, parti-
tioned into, or simply labelled as, (i) , the parameters of interest, which are the d para-
meters restricted to zero under the hypothesis H0, and; (ii) the remaining parameters �
and �. The parameters in � are the d� parameters which are known a priori to have true
values in the interior of the parameter space. The parameters in � �which we call �nui-
sance parameters�in the following �can attain true values which are zero or not, and it
is unknown a priori whether these are at the boundary or in the interior of the parameter
space. Re�ecting the partitioning of �, the parameter space � is assumed to be given by

� = � ��� ���, (1)

where  2 � := [0; U ]
d ; U > 0, � 2 �� := [0; �U ]

d� ; �U > 0, and � 2 �� � Rd�
with �� compact. We emphasize that for the true value of the nuisance parameters �0
and �0, the vector �0 is assumed to be an interior point in ��, and hence not on the
boundary, while for �0 it is not known whether parts of it are on the boundary (that
is, equal to zero) or not.
We assume in addition that the statistical model is given by the variables (xt)

n
t=1

together with a (quasi log-) likelihood function �or, more generally, an objective func-
tion �denoted here by Ln (�). In particular, the unrestricted and restricted estimators
of � are given by

�̂n = (̂
0
n; �̂

0
n; �̂

0
n)
0 := argmax

�2�
Ln (�) , ~�n = (~

0
n;
~�
0
n;
~�
0
n)
0 := arg max

�2�H0
Ln (�) , (2)

where the optimization set under the null hypothesis is given by

�H0 = f� 2 � :  = 0dg; (3)

such that ~n = 0d . The (quasi-) likelihood ratio statistic for the hypothesis H0 is given
by

LRn := �2(Ln(~�n)� Ln(�̂n)). (4)

Andrews (2001) derives the limiting distribution of the likelihood ratio statistic for
the null hypothesis H0 under a set of standard regularity conditions, in addition to
the conditions on the parameter space(s). The standard regularity conditions for the
asymptotic theory are as follows:

Assumption 1 Assume that, (i) for �0 2 �, the unrestricted estimator �̂n is consistent,
that is, �̂n = �0 + op (1), and likewise for the restricted estimator ~�n, ~�n = �0 + op (1)
under H0. Furthermore, for �0 2 �H0:

(ii) �n�1@2Ln (�0) =@�@�0
p! 
 > 0, 
�1n�1=2@Ln (�0) =@�

w! Z,
(iii) maxi;j;k=1;2;:::;d� sup�2� jn�1@3Ln (�) =@�i@�j@�kj � �n;

with �n = Op (1) and Z a d�-dimensional Gaussian random variable with covariance
matrix 
�1�
�1, � > 0.
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Remark 2.1 Note that, as is standard, Assumption 1(iii) can be replaced by the re-
quirement that a uniform law of large numbers applies to the second order deriva-
tive, n�1@2Ln (�) =@�@�

0, see also Andrews (1999) and Jensen and Rahbek (2004) for a
discussion. �

For the parameter space � in (1), we denote by k 2 f0; 1; ::; d�g the unknown
number of nuisance parameters which are (at their true value) on the boundary of the
parameter space and we make the following assumption.

Assumption 2 The shifted parameter space, ���0, is locally equal to the cone � given
by

� := � � �� � ��; (5)

where, under H0, � = R
d
+ , �� = Rd� and �� = �1� ::::��d� ; with k of the �i�s equal

to R+ and the remaining d� � k equal to R.

Remark 2.2 It is important to stress that the shape of the cone � in (5) varies de-
pending on the unknown value k of nuisance parameters at the boundary. The above
formulation of � allows, in particular, for any combination of nuisance parameters on
the boundary. �

From Andrews (1999, 2001), it follows that under Assumptions 1 and 2, the test sta-
tistic LRn in (4) converges in distribution to a non-standard, non-pivotal distribution,
say L. In general, L can be written as a di¤erence between two quadratic forms min-
imized separately over cones which depend on the unknown k, or equivalently on the
shape of the cone ��, de�ned in Assumption 2. Speci�cally, if �0 = (0; �0; �0) 2 �H0
with �0 2 int(��) then as in Andrews (2001) we have that

LRn
w! L := inf

�2f0gd���
k��HZk2(H
�1H0)�1 � inf

�2����
k��HZk2(H
�1H0)�1 ; (6)

with H a matrix of dimension (d + d�)� d� such that (0; �0)0 = H�.
Thus, the limiting distribution L depends on the unknown cone ��, as well as on

the covariances 
 and �, and we may write L = L (
;�;��). Hence, in general, the
distribution of L is non-pivotal and asymptotic inference is infeasible. We propose a
new bootstrap as detailed in Section 3 to circumvent this.
Before, we next brie�y discuss the just presented theory in terms of the well-known

ARCH(q) model.

2.1 The ARCH(q) model

Consider the �nite-order linear ARCH(q) model with q � 1,

xt = �t (�) �t; with �
2
t (�) = ! +

qX
i=1

�ix
2
t�i; (7)
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for t = 1; 2; :::; n, (x�q+1; :::; x0) �xed in the statistical analysis and �t i.i.d.(0,1), where
�t has a Lebesgue density that is strictly positive in a neighborhood of zero

1.
We assume ! 2 [!L; !U ], with !U > !L > 0, and (�1; :::; �q) 2 [0; �U ]q; �U > 0. The

true values of the parameters are denoted by !0; �1;0; :::; �q;0. The setting above covers
hypotheses such as any (non-empty) subset of f�1; :::; �qg are equal to zero. However,
to keep notation simple, we focus on the simple hypothesis H0 : �q = 0.
Notice that while we assume a priori that the true value !0 of the intercept term !

in the ARCH model is an interior point, it is unknown whether the true values of the
remaining ARCH nuisance parameters equal zero or not; that is, it is unknown whether
�i;0 = 0 or �i;0 > 0 for i = 1; :::; q � 1.
In terms of the notation introduced above, we make the following assumption on

the parameter space for � as well as on the true parameter �0.

Assumption 3 Consider the ARCH(q) model given by (7). With � = (; �0; �)0, where
 = �q, � = (�1; :::; �q�1)

0 and � = !, assume that

 2 � := [0; �U ]; � 2 �� := [0; �U ]q�1, and � 2 �� := [!L; !U ], (8)

with !U > !L > 0 and �U > 0. Moreover, assume that at the true parameter vector
�0, �0 2 � = � ��� ���, with �0 2 int��, the ARCH process fxtg is stationary and
ergodic with E [x6t ] <1.

With the Gaussian likelihood function given by

Ln (�) =
nX
t=1

lt (�) ; lt (�) = �1
2
(log �2t (�) +

x2t
�2t (�)

), (9)

we can de�ne the unrestricted estimator of �, �̂n = (̂n; �̂
0
n,�̂n)

0 where ̂n = �̂q;n, �̂n :=
(�̂1;n; ::::; �̂q�1;n)

0 and �̂n = !̂n, as the maximizer of (9) over �. Similarly, the restricted
estimator of �, denoted by ~�n = (0; ~�

0
n,~�n)

0 where ~�n := (~�1;n; ::::; ~�q�1;n)
0 and ~�n = ~!n,

is the maximizer of (9) over �H0 := f0g ��� ���.
It follows as in Andrews (2001), see also Francq and Zakoïan (2009), that under

Assumption 3, and with �0 2 �H0 de�ned in (3), LRn
w! L where L is given by (6),

with � = 1
2
E (1� �2t )

2

 and 
 de�ned in Lemma B.3.

As emphasized earlier, the limiting distribution L in (6) is non-pivotal and an
asymptotic test infeasible in practice, as it depends on the unknown number k 2
f0; 1; 2; :::; ; d� = q � 1g of nuisance parameters on the boundary of the parameter space.
When the null hypothesis restricts one parameter only, i.e. d = 1, some remarks can

be made about the distribution of L depending on the number k of nuisance parameters
at zero.

1As kindly pointed out by a referee, the ARCH(q) model is (second order) equivalent to a random
coe¢ cient autoregressive model of order q, see Tsay (1987).
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For the case of k = 0, where there are no nuisance parameters on the boundary, the
distribution of L reduces to the well-known mixture distributionM =1

2
�20 +

1
2
�21, i.e. a

mixture of a �21 and singular random variable with probability mass at zero, both with
weights 1

2
; see e.g. Andrews (2001), Francq and Zakoïan (2009) and Cavaliere et al.

(2017).
For the case of k = 1, where only one nuisance parameter is on the boundary, the

distribution L can be characterized by a correlation parameter � of a bivariate Gaussian
variable, Z�. This can be seen by combining our proof of Theorem 1 in Appendix
A.1 with the theory of Kopylev and Sinha (2010, 2011), de�ning Z� = H1Z, with
Hk de�ned in (A.2) in the Appendix. In particular, for � � 0, the distribution is a
mixture of independent �20, �

2
1, and �

2
2 variables with mixture weights (

1
2
�p; 1

2
; p), where

p := sin�1(�)=2�. This distribution is shifted to the right compared to the mixture
distribution M, in the sense that P (L = 0) = 1

2
� p � 1

2
= P (M = 0). For � < 0,

the distribution is not a mixture of �2-distributed random variables. Interestingly, the
distribution is shifted to the left compared to M. That is, for k = 1 and � < 0,
P (L = 0) = 1

2
+ sin�1(��)=2� > P (M = 0). Observe that for the ARCH(q) case,

with k = 1, the correlation � is negative. Hence, a test which neglects the presence
of the nuisance parameter on the boundary and hence uses M as the reference null
distribution may be undersized in large samples.
For the remaining cases, where 1 < k � d�, the distribution L cannot, to the best

of our knowledge, be characterized by a mixture of �2-distributed random variables.
However, we conjecture that it depends on the correlation structure of a Gaussian
(k + 1)-dimensional random vector, similarly to the k = 1 case.
Noticeably, for the ARCH(q) model where k = d�; that is, with all nuisance pa-

rameters in � on the boundary, L is distributed as the mixture M, since the matrix
H
�1H 0 in (6) is block-diagonal with respect to  and �, as demonstrated by Demos
and Sentana (1998, Appendix A); see also Francq and Zakoïan (2009, Section 7.1) and
Pedersen and Rahbek (2019).

3 A new bootstrap

As detailed in Section 2, the limiting distribution L is non-pivotal, hence rendering
asymptotic inference infeasible in general. As anticipated earlier, we propose here a
new bootstrap which is based on shrinking the parameter estimators used to generate
the bootstrap sample, see Andrews (2000) for a simple one-parameter location model.
In this respect, our bootstrap involves the use of Hodges-Le Cam super-e¢ cient type
estimators, see e.g. Beran (1997) and Bickel, Klaassen, Ritov and Wellner (1998) and
the references therein. We provide a full asymptotic theory for the validity of the new
bootstrap, and as a by-product we also discuss why conventional bootstrap methods
�such as the standard, restricted or unrestricted bootstrap �do not work in the case
where there are nuisance parameters possibly at the boundary.
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The setup of the bootstrap is as follows. As is standard, we consider bootstrap
data fx�tg

n
t=1 with x

�
t generated (possibly recursively) as a function of: (i) the original

data, fxtgnt=1; (ii) possibly lagged x�t�s or exogenous variables, X�
t , (iii) a bootstrap

true parameter value ��n, which is some function of fxtg
n
t=1; (iv) a random vector of

bootstrap shocks, independent of the original data, denoted here by ��n. That is,

x�t := f (�
�
n; fxtg

n
t=1 ; X

�
t ; �

�
n) ; t = 1; 2; :::; n: (10)

Remark 3.1 The bootstrap true parameter value ��n in (iii) is crucial in de�ning the
properties of the bootstrap. Usually ��n is set equal to �̂n, the unrestricted estimator
of �0, or to ~�n, the estimator of �0 obtained with the null hypothesis imposed (see
Davidson and MacKinnon, 2006), or a hybrid of the two (see e.g. Swensen, 2004, for
an application to co-integration). For standard testing problems, the associated (un-
)restricted bootstraps are often asymptotically valid, or consistent. For some non-
standard testing problems, such as for inference on the number of unit roots (Cavaliere,
Rahbek and Taylor, 2012) and in the presence of in�nite variance innovations (Davidson
and Flachaire, 2008), the restricted bootstrap based on ~�n is asymptotically valid even
when the bootstrap based on �̂n may fail. In the testing problem considered here, both
the unrestricted and the restricted bootstraps fail, making the bootstrap unable to
mimic the target distribution L under the null hypothesis, see Remark 3.4 below. The
bootstrap proposed in this section circumvents this drawback.

Remark 3.2 The role of ��n in (iv) is crucial, as it de�nes �along with the function f (�)
�the bootstrap resampling scheme. For instance, for the usual i.i.d. bootstrap, ��n :=
(��n1; :::; �

�
nn) is the (random) number of times each of the original observations (or some

residuals) are selected during the re-sampling process; for the wild bootstrap, ��n is the
vector of bootstrap i.i.d. innovations used to rescale the original data (or residuals). �

Corresponding to the bootstrap data fx�tg
n
t=1 we introduce a bootstrap likelihood,

or criterion function, L�n (�), and the associated bootstrap (unrestricted and restricted)
estimators,

�̂
�
n := argmax

�2�
L�n (�) , and ~�

�
n := arg max

�2�H0
L�n (�) . (11)

The bootstrap likelihood ratio statistic for the hypothesis H0 is given by

LR�n = �2(L�n(~�
�
n)� L�n(�̂

�
n)). (12)

Importantly, as discussed in Remark 3.1, the unrestricted bootstrap likelihood ra-
tio statistic, LR�n, based on setting �

�
n = �̂n, will not replicate the unknown non-pivotal

distribution L in (6), even asymptotically. The same happens for the restricted boot-
strap based on setting ��n = ~�n.
Instead of these classical bootstraps, we propose here to choose ��n di¤erently. First,

we impose the null hypothesis H0 on �
�
n, which corresponds to setting 

�
n equal to zero.
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Second, and crucially, we impose a requirement on the rate of convergence for ��n in �
�
n,

which we refer to as �shrinkage�, for the reasons explained below.
Formally, we make the following assumption about ��n.

Assumption 4 With ��n = (
�0
n ; �

�0
n ; �

�0
n )
0, let �n = 0d and assume that

��n
p! �y0 := (0

0
d ; �

y0
0 ; �

y0
0 ) 2 �H0 (13)

under H0 as well as the alternative, where �
y
0 = �0 under H0. Furthermore, for i =

1; :::d�, assume
p
n(��n;i � �

y
0;i) =

�
op (1) if �y0;i = 0
Op (1) if �y0;i > 0

, (14)

and
p
n(��n � �

y
0) = Op (1).

For comparison, consider the classical unrestricted and restricted bootstrap schemes.
The unrestricted bootstrap would set �̂n as the bootstrap true value �

�
n, and test the

auxiliary hypothesis,  = ̂n; cf. Hall (1992). The unrestricted bootstrap satis�es (13)
under H0, but not under the alternative. Moreover, the convergence rates in (14) do
not apply. The restricted bootstrap has ~�n as the bootstrap true value, and tests the
original null, H0, on the bootstrap sample. In this case, by de�nition �n = 0d , but as
for the unrestricted bootstrap, the convergence rates in (14) do not apply. As to (13),
this follows under H0, while under the alternative it is in general non-trivial to establish
if ��n = ~�n converges to some pseudo-true value �

y
0.

A particular bootstrap scheme satisfying Assumption 4 is given by choosing ��n = �̂n
and

��n;i = �̂n;iI(�̂n;i > cn) i = 1; :::; d�
with cn a scalar sequence converging to zero at an appropriate rate, as seen in the
following lemma.

Lemma 1 Under Assumption 1, and with the sequence fcngn=1;2;:::: satisfying

cn ! 0 and
p
ncn !1 as n!1, (15)

then ��n de�ned by

��n = (
�0
n ; �

�0
n ; �

�0
n )
0
= (00d ;f�̂n;iI(�̂n;i > cn)g

0
i=1;:::;d�

; �̂
0
n)
0; (16)

satis�es Assumption 4 with �y0 = (0
0
d
; �00; �

0
0)
0.

The proposed shrinkage in terms of the cn sequence, or more generally, the require-
ment on ��n in (14) ensures that the bootstrap replicates the unknown limiting distri-
bution L under the null, while being of order O�p (1), in probability, under the alterna-
tive. That is, as established in Theorem 1 below, the new bootstrap is consistent even
though it is unknown if any of the nuisance parameters are on the boundary or not.
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Remark 3.3 Alternatively, in (16) the unrestricted estimators �̂n and �̂n could be
replaced by the restricted estimators, ~�n and ~�n. However, as already mentioned, in that
case it may not be trivial to establish ��n

p! �y0 in Assumption 4 under the alternative.�

We make the following bootstrap versions of Assumptions 1 and 2.

Assumption 5 Assume that (i) �̂
�
n;
~�
�
n = �y0 + o

�
p (1), in probability, for some �

y
0 :=

(00d ; �
y0
0 ; �

y0
0 )
0 2 �H0. Furthermore,

(ii) �n�1@2L�n (��n) =@�@�0
p�!p 


� > 0, 
��1n�1=2@L�n (�
�
n) =@�

w�!p Z
�;

(iii) maxi;j;k=1;2;:::;d� sup�2� jn�1@3L�n (�) =@�i@�j@�kj � ��n;

where ��n = O
�
p (1), in probability, and Z

� is a d�-dimensional Gaussian random vari-
able with positive de�nite covariance 
��1��
��1, with 
� = 
 and Z� = Z (in distri-
bution) under H0.

Assumption 6 The shifted parameter space, � � �y0; is locally equal to the cone �y
given by

�y := � � �y� � ��; (17)

where � and �� are de�ned in Assumption 2, while �
y
� = �

y
1� ::::��

y
d�
, with ky of the

�yi�s equal to R+ and the remaining d� � ky equal to R.

Note that, as �y0 = �0 under H0, the cone �
y de�ned in Assumption 6 is identical to

� in (5) under H0.
We can then state the following general result:

Theorem 1 Suppose that, under H0, the likelihood ratio statistic based on the original
data, LRn, de�ned in (4), satis�es LRn

w! L with L de�ned in (6). With the bootstrap
data fx�tg

n
t=1 de�ned in (10) and the bootstrap likelihood ratio statistic LR

�
n in (12),

assume that Assumptions 4, 5 and 6 hold. Under H0,

LR�n
w�!p L,

while under the alternative, LR�n = O�p (1) in probability, with LR
�
n
w�!p Ly de�ned in

(A.3) in the Appendix.

Remark 3.4 If we replace ��n by the unrestricted estimator �̂n (or the restricted estima-
tor ~�n) in the construction of �

�
n, then LR

�
n does not converge weakly (in probability) to

L, hence invalidating the consistency of the classic unrestricted and restricted boot-
straps. To see this, note that in the proof of Theorem 1, it is used that by Assumption
4 the convergence rate of ��n should satisfy (14). With �

�
n = �̂n;

~�n, that is in the case
of no shrinkage, it only holds that

p
n(��n;i � �

y
0;i) = Op (1) for i = 1; :::d� and hence

(14) does not apply. Furthermore, with U the weak limit of
p
n(��n � �

y
0), it can be
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shown that the limiting distribution of LR�n in this case is given by (6), with HZ re-
placed by H (Z� + U), where Z� under H0 has the same distribution as Z. That is,
while in (6), Z has mean zero, Z� + U , conditional on U , has mean U . Alternatively,
the limiting distribution of LR�n is given by (6), with �� replaced by �� � HU , that
is �� shifted stochastically, corresponding to the appropriate limit of

p
n (H(�� ��n)).

This is in line with the results in Cavaliere, Nielsen and Rahbek (2015), where in the
context of co-integration, an Ornstein-Uhlenbeck process with stochastic di¤usion coef-
�cient characterizes the limiting distribution of the bootstrap LR statistics. Obviously,
when there are no nuisance parameters on the boundary, shrinkage is not required and
the classic unrestricted or restricted bootstraps are asymptotically valid. �

4 Bootstrap theory applied to ARCH(q)

We consider here in detail bootstrap-based inference for the ARCH(q) model of Section
2.1, and establish that the proposed bootstrap indeed satis�es the regularity conditions
for Theorem 1. Speci�cally, we show here that the proposed bootstrap is consistent in
the ARCH(q) model case, in the sense that under the null hypothesis it replicates the
limiting distribution L, while under the alternative the bootstrap LR statistic converges
in distribution to a random variable Ly and hence is bounded, in probability.
When testing the simple hypothesis H0 : �q = 0, the bootstrap ARCH(q) data are

generated as

x�t = f (�
�
n; fxtg

n
t=1 ; X

�
t ; �

�
n) = �t (�

�
n) �

�
t , for t = 1; :::; n, (18)

with ��n given as in (16):

��n = (
�
n; �

�0
n ; �

�
n)
0 = (0; f�̂i;nI (�̂i;n > cn)g0i=1;:::;q�1 ; !̂n)

0, (19)

where the �̂i;n�s and !̂n are unrestricted estimators of the ARCH parameters obtained
on the original data, see Section 2.1. Here the bootstrap conditional volatility �2t (�

�
n)

is given by

�2t (�
�
n) = �

�
n + (�

�0
n ; 

�
n)
0X�

t (20)

X�
t =

�
x2t�1; :::; x

2
t�q
�0
, (21)

hence corresponding to a non-recursive, �xed volatility bootstrap as in Cavaliere et al.
(2018) and Beutner et al. (2018), and X�

1 =
�
x20; :::x

2
�q+1

�
�xed.

As to the bootstrap resampling scheme ��n in (18), we let �
�
n = (�

�
1; :::; �

�
n) where the

��t�s are bootstrap innovations f��tg
n
t=1 obtained by re-sampling with replacement from

the normalized and re-scaled estimated residuals, f�̂tg
n
t=1, de�ned as �̂t := xt=�t(�̂n).

That is, ��t is re-sampled with replacement from

�̂st :=
�̂t���np

n�1
Pn
t=1(�̂t���n)2

, ��n := n
�1Pn

t=1 �̂t. (22)
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The Gaussian bootstrap criterion function is given by

L�n (�) =

nX
t=1

l�t (�) ; l�t (�) = �1
2
(log �2t (�) +

x�2t
�2t (�)

), (23)

where �̂
�
n (~�

�
n) maximizes L

�
n (�) (under H0). Finally, the bootstrap likelihood ratio

statistic LR�n for the hypothesis H0 : �q = 0, is given by (12).
We establish next that the regularity conditions in Assumption 5 hold for this boot-

strap, such that Theorem 1 holds, as formulated in the next proposition.

Proposition 1 Let Assumption 3 hold with E[x8t ] < 1, and consider the bootstrap
data fx�tg

n
t=1 as generated by (18). Then, under H0, the likelihood ratio statistic LR

�
n

satis�es LR�n
w�!p L, provided the sequence fcng satis�es (15). Under the alternative,

LR�n
w�!p Ly, with Ly de�ned in (A.3) in the Appendix.

The proof of Proposition 1 follows in two steps. First, the above choice of ��n, see
(19), implies by Lemma 1 that Assumption 4 holds. Second, Lemmas 2�4 below imply
that Assumption 5 holds, such that Theorem 1 applies and the desired result is obtained.

Remark 4.1 As previously mentioned, although we focus here on a simple hypothesis
such that d = 1, all results generalize to the case of d > 1.

Remark 4.2 While the asymptotic theory for the standard LR statistic requires exis-
tence of 6th order moments for xt, our implementation of the �xed regressor bootstrap
is based on the su¢ cient condition E[x8t ] < 1. This is needed to analyze the asymp-
totic behaviour of the third-order derivatives of the bootstrap likelihood. Our simula-
tion results, see Section 5 below, suggest that this requirement may not be necessary.�

Lemma 2 Under Assumption 3, and with fx�tg given by (18), it holds that the bootstrap
unrestricted and restricted estimators �̂

�
n;
~�
�
n satisfy Assumption 5(i); that is,

�̂
�
n;
~�
�
n

p�!p �
y
0 = (0; f�i;0g

q�1
i=1 ; !0).

Remark 4.3 To establish the result in Lemma 2 a non-standard asymptotic crite-
rion function is introduced in the arguments under the alternative, see (B.7) in the
Appendix. �

Lemma 3 Under Assumption 3, and with fx�tg given by (18), it holds that the bootstrap
score and information satisfy Assumption 5(ii); that is,

�n�1@2L�n (��n) =@�@�0
p�!p 


� > 0; and 
��1n�1=2@L�n (�
�
n) =@�

w�!p Z
�;

with Z� distributed as a N (0;
��1��
��1) random variable. Here 
� = 
 under H0,
while 
� = E[1

2
��4t (�

y
0)ztz

0
t] under the alternative, with zt as de�ned in (B.5) and �

� =

E[(@lt(�
y
0)=@�)(@lt(�

y
0)=@�

0)].
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Lemma 4 Under Assumption 3, with fx�tg given by (18), and the additional assumption
that E[x8t ] < 1, it holds that the bootstrap third order derivatives of the likelihood
function satisfy Assumption 5(iii); that is,

max
i;j;k=1;:::;q+1

sup
�2�

��n�1@3L�n (�) =@�i@�j@�k�� � ��n, with ��n = O�p (1) ,
in probability.

Remark 4.4 The �xed volatility bootstrap implemented in this section can be replaced
by a recursive bootstrap scheme, see e.g. Hidalgo and Za¤aroni (2007), Corradi and
Iglesias (2008) and Jeong (2017) for discussions on recursive bootstrap schemes in the
context of ARCH models. With X�

t in (21) replaced by X
�
t :=

�
x�2t�1; :::; x

�2
t�q
�0
, the

recursive bootstrap criterion function in this case changes to

L�n (�) =

nX
t=1

l�t (�) ; l�t (�) := �1
2
(log ��2t (�) +

x�2t
��2t (�)

); (24)

with ��2t (�) = !+
Pq

i=1 �ix
�2
t�i. As to the theory for a recursive bootstrap �while we do

not expect that the conditions for validity will change with respect to the conditions for
the �xed volatility bootstrap �the derivations will be more complex and are not pre-
sented here. A key step is to show uniform convergence of the bootstrap log-likelihood
function L�n (�) as in the proof of Lemma 2, which involves studying the structure of the
bootstrap log-likelihood contributions, l�t (�). For the �xed volatility bootstrap l

�
t (�) is

(conditional on the data) linear in x�2t and does not depend on lagged x
�
t , while this is not

the case for the recursive bootstrap, cf. (24), which leads to more complex derivations.�

Remark 4.5 As is well-known, extending the theory of testing from ARCH(q) models
to GARCH(q; p) models is non-trivial due to the potential lack of identi�cation of model
parameters, see Andrews (2001). As an example, consider the GARCH(q; 1) case where
�2t = !+�1x

2
t�1+ : : :+�qx

2
t�q+��

2
t�1; with the constraints ! > 0 and �1; : : : ; �q; � � 0,

and consider the hypothesis H0 : �q = 0. In this case the parameter � is not identi�ed
if the remaining ARCH parameters equal zero, which in particular violates Assumption
1. Motivated by Pedersen and Rahbek (2019) a solution may be to apply an initial
test for �1 = : : : = �q = 0 based on a so-called sup-LR test, or a bootstrap version.
If that hypothesis is rejected one may proceed with a modi�ed version of the proposed
shrinking-based bootstrap scheme under the maintained assumption that �i 6= 0 for
some i < q such that � is identi�ed.

Remark 4.6 The bootstrap method presented may be extended to multivariate ARCH
models as for example the extended constant conditional correlation ARCH (ECCC-
ARCH) model considered in Francq and Zakoïan (2012), Jeantheau (1998), and Ling
and McAleer (2003). In the bivariate case of order one, (x1t; x2t)

0 = 

1=2
t (�) �t with

i.i.d.(02; I2) innovations �t and conditional covariance matrix
t (�) = Dt (�)R (�)Dt (�).
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Here the (conditional) correlation matrix Rt (�) and the diagonal matrixDt (�) are given
by,

R (�) =

�
1 �

� 1

�
Dt (�) = diag

�
(
q
!i + �i1x21t�1 + �i2x

2
2t�1)i=1;2

�
.

As in Pedersen (2017) consider here testing the hypothesis of no volatility spillovers.
With parameter vector � de�ned as � = (0; �0; �0)0, where

 = (�12; �21)
0 , � = (�11; �22)

0 and � = (!1; !2; �)
0 ;

the parameter constraints are �ij � 0, !i > 0 for i; j = 1; 2 and j�j < 1, while the
hypothesis of no volatility spillovers is given by

H0 :  = 02.

We conjecture that the proposed bootstrap would apply under the regularity conditions
in Pedersen (2017) together with conditions on the ARCH process similar to Proposition
1. �

5 Numerical results

In this section we illustrate the �nite sample properties of the proposed bootstrap LR
tests using a detailed simulation study based on an ARCH(q) model with q = 5. First,
we aim at exploring the performance in terms of size and power of our new bootstrap test
across di¤erent choices of the bootstrap true values and di¤erent volatility resampling
schemes. Second, we aim at analyzing the robustness of the result over di¤erent choices
of the shrinkage sequence fcng, and in particular to show that the test behaviour is
not substantially a¤ected by such choices. Third, we aim at providing evidence about
the superiority of our bootstrap tests over existing techniques, such as the �m out of
n�bootstrap (see Hall and Yao, 2003, for some applications to ARCH-type models), a
�plain�restricted bootstrap and the asymptotic test based on the mixtureM = 1

2
�20+

1
2
�21

de�ned in Section 2.1. This section is organized as follows. In Section 5.1 we describe
the model, the null hypothesis, the bootstrap and non-bootstrap test statistics and the
design of the Monte Carlo experiments. In Section 5.2 we analyze the empirical rejection
probabilities [ERP] of the tests under the null hypothesis. In Section 5.3 we analyse the
behaviour of the test under the alternative hypothesis, in particular by discussing both
raw and (pointwise) size-adjusted ERPs when the null hypothesis does not hold. In
Section 5.4 we discuss the choice of the shrinkage sequence fcng on our tests and compare
with the choice of the length of the bootstrap samples for the �m out of n�bootstrap.
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5.1 Monte Carlo design

The data generating process (DGP) is

xt = �t�t; �2t := ! +

5X
i=1

�ix
2
t�i (t = 1; 2; :::; n)

with �t i.i.d. N(0; 1) and initialized at x1�q; :::; x0 = 0. The null hypothesis of interest
is univariate and of the form

H0 : �5 = 0.

The parameter vector can be written as � := (; �0; �0)0, where  := �5, � := (�1; �2;

�3; �4)
0, and � := !. Observe that the number of nuisance parameters in � �that is,

the parameters which may or may not be on the boundary of the parameter space �
is d� = 4. Hence, the number k of nuisance parameters on the boundary may take
any value in the set f0; 1; 2; 3; 4g. Accordingly, in order to investigate properties of the
proposed bootstrap test for di¤erent values of k, we consider �ve cases, denoted by
(Ck)

4
k=0, and de�ned as follows:

(!0; �1;0; �2;0; �3;0; �4;0; �5;0) =

8>>>><>>>>:
(1; 0:1; 0:1; 0:1; 0:1; �5;0) (C0)

(1; 0:133; 0:133; 0:133; 0; �5;0) (C1)

(1; 0:2; 0:2; 0; 0; �5;0) (C2)

(1; 0:4; 0; 0; 0; �5;0) (C3)

(1; 0; 0; 0; 0; �5;0) (C4)

Thus, for the case Ck there are k nuisance parameters on the boundary (that is, equal
to zero) and d� � k interior points. Notice that across cases we always have that
�1;0 + ::: + �4;0 = 0:4. As to the value of �5;0 we set �5;0 = 0 under H0, and �5;0 > 0
under the alternative.
We consider four di¤erent versions of the proposed bootstrap, depending on how the

vector ��n of bootstrap true values is chosen an on whether the �xed volatility bootstrap
or the recursive bootstrap are selected. Speci�cally, we have:

(i) The proposed bootstrap (denoted as �unrestricted, �xed vol.� in the following),
with ��n de�ned as

��n := (0; f�̂i;n1 (�̂i;n > cn)g
4
i=1 ; !̂n)

0,

see (19), and hence based on the unrestricted parameter estimates f�̂1;n; :::; �̂5;n; !̂ng;
moreover, �2t (�

�
n) is as de�ned in (20) (�xed volatility bootstrap);

(ii) A recursive volatility version of the proposed bootstrap (�unrestricted, recursive
vol.�), with ��n as in (i), X

�
t :=

�
x�2t�1; :::; x

�2
t�5
�0
and conditional variance de�ned

recursively, see Remark 4.4;
(iii) A restricted version of the proposed bootstrap (�restricted, �xed vol.�), see Remark

3.3, based on ��n := (0; f~�i;n1 (~�i;n > cn)g4i=1 ; ~!n)0, where ~!n and the ~�i;n�s are
parameter estimates obtained with the null hypothesis imposed;
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(iv) A recursive volatility version of (iii) (�restricted, recursive vol.�).

For comparison, results are reported for the classic restricted bootstrap (that is,
without shrinkage), based on ��n = ~�n, which is asymptotically valid only for k = 0

(no nuisance parameters on the boundary) or k = 4 (all nuisance parameters on the
boundary), see Remark 3.4. Along with the restricted bootstrap we further consider
the �m out of n�bootstrap.
We also report results for an �oracle�bootstrap and an �infeasible�asymptotic test,

both based on the unrealistic assumption that the practitioner knows how many (and
which) nuisance parameters are on the boundary. The �oracle�bootstrap (�oracle re-
stricted�) is similar to the classic restricted bootstrap but imposes the (possible) addi-
tional true zero values for the nuisance parameters on the bootstrap DGP. This way,
when comparing the �oracle�bootstrap to the proposed bootstrap, the e¤ects of shrink-
ing can be addressed. The �infeasible�asymptotic test (�infeasible asymptotic�) is based
on simulating the true limiting distribution2.
Finally, we report results for an asymptotic test (�M-based asymptotic�) based on

the quantiles of theM distribution discussed in Section 2.1, which is valid only for the
cases where k = 0 or k = q � 1 = 4.
As to the choice of the shrinkage sequence cn, we set cn = �n�", with " = 0:45 and

� = 1:60, such that c100 = 0:195, c500 = 0:093, and c1000 = 0:068. In this respect, we
note e.g. that in case C4 for n = 1000, cn corresponds to the approximate 98% quantile
of the simulated distribution of �̂i; for i = 1; 2; 3; 4. For the �m out of n� bootstrap
implementation, we set the size mn of the bootstrap sample to cn= log(n), with c = 1:5.
This implies that mn = 32 for n = 100 and mn = 217 for n = 1000. Di¤erent choices
of cn and mn are discussed in Section 5.4.
Throughout, we use 10; 000 Monte Carlo replications while we use B = 199 boot-

strap repetitions to approximate the distribution of the LR statistics3 ;4. Sample of size
n 2 f100; 500; 1000g are considered throughout. All tests are run at the nominal 10%
signi�cance level.

5.2 Empirical rejection probabilities under the null

Table 1 reports the empirical rejection probabilities (as estimated on the 10; 000 Monte
Carlo replications) under the null hypothesis, H0 : �5;0 = 0, for the �ve cases C0-
C4. As summary measures to compare the performance across cases and sample sizes,
we also report the mean absolute deviation [MAD] and the root mean square error
[RMSE] between the ERPs and the chosen 10% nominal level. In Table 1 we focus on

2Simulations are based on samples of size T = 20; 000.
3Unreported simulations show that varying the number B of bootstrap repetitions does not imply

any changes in the results.
4Computations have been performed using Ox 8.0, see Doornik (2007). Code is available upon

request.
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the preferred versions of the shrinkage-based bootstrap and the �m out of n�bootstrap,
while results for additional cases are presented in Section 5.4, Table 4.

[Table 1 about here]

The following points can be made out of the analysis.
First, the ERPs of the di¤erent implementations of the shrinkage-based bootstrap

are all remarkably close to the nominal level, even at the smaller sample sizes. Results do
not change across di¤erent numbers of nuisance parameters on the boundary, i.e. across
the �ve cases (Ci)

4
i=0. In particular, by comparing the performance of the shrinking

based bootstrap versions with the standard recursive bootstrap, it follows that the
e¤ect of shrinking is to improve (empirical) size properties even for the cases where
the standard recursive bootstrap is consistent. Moreover, even when compared to the
infeasible �oracle restricted�bootstrap, the shrinking based bootstraps are not far from
this in terms of rejection probabilities.
Second, recursive bootstrap implementations of our tests perform slightly better

than the corresponding �xed volatility bootstraps. This results is di¤erent from what
reported in Cavaliere et al. (2018), where however no nuisance parameters on the
boundary of the parameter space are allowed.
Third, there are no substantial di¤erences in terms of which estimator is chosen

in order to construct ��n; that is, (shrinkage) unrestricted and restricted bootstraps
have similar behaviour in terms of size control. While the choice of the bootstrap true
parameters is indeed crucial in other testing problems (see e.g. Cavaliere et al., 2012)
and, in particular, restricted estimators tend to deliver better size control, for the testing
problem considered here this is not the case.
Fourth, in terms of �nite-sample size control, the proposed bootstrap tests are clearly

superior to the �m out of n�bootstrap, which is oversized for small values of k and un-
dersized for larger values of k. Overall, the MAD and RMSE of the �m out of n�boot-
strap is approximately doubled compared to those of our shrinkage-based procedure.
Similarly, the proposed bootstrap tests substantially outperform the infeasible asymp-
totic test based on the assumption that the limiting null distribution of LRn is known
in advance. This is an important result, as it clearly show that not only the proposed
bootstrap estimates the correct limiting distribution LRn, but it also delivers signi�-
cant �nite-sample re�nements, even at the larger sample sizes.
Fifth, as expected, see the discussion in Remark 3.4, the standard restricted boot-

strap performs well in case C0, where there are no nuisance parameters on the bound-
ary. This is consistent with the theory in Cavaliere et al. (2017) and Cavaliere et al.
(2018), where the parameters not restricted by the null hypothesis are all in the interior
of the parameter space. Unfortunately, this bootstrap is not valid in the general case.
Sixth, for case C0, in terms of size our shrinkage bootstrap tests are again very

similar to the restricted bootstrap tests, despite shrinkage is not required here. This
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shows that cost of shrinkage �when it is not needed �is actually very low. For cases
C1-C4, the standard bootstrap is not mimicking the correct null distribution and its
implementation leads to undersized tests5.
Seventh, note that theM-based test is based on the least favorable con�guration of

the location of the nuisance parameters and hence is expected to be conservative, see
also Andrews and Guggenberger (2009) and McCloskey (2017). The results con�rm this:
theM-based test is indeed conservative in small samples for the two cases where the test
is asymptotically valid (case C0 and case C4). For case C1, with one nuisance parameter
on the boundary of the parameter space, the asymptotic test becomes undersized, even
for n = 1000, re�ecting that the true limiting distribution shifts to the left in the ARCH
case, see the discussion at the end of Section 2.1. In case C2 and case C3, the asymptotic
test gets increasingly undersized, suggesting that the true limiting distribution also
shifts to the left in these cases.
Overall, the proposed bootstrap procedure gives excellent size control, irrepectively

of how many (if any) nuisance parameters are on the boundary of the parameter space.

5.3 Empirical rejection probabilities under the
alternative

We now investigate the ERPs for tests of H0 : �5 = 0 under the alternative with �5;0 = ��
where

�� 2 (0:025; 0:05; 0:1; 0:2; 0:3) .

The corresponding ERPs are reported in Table 2 for the �ve cases C0�C4 and for samples
of size n = 500. In addition, in order to make the ERPs directly comparable, in Table
3 we report pointwise size-corrected rejection frequencies. These are constructed as
follows: for each case under the null, �5;0 = 0, we store the nominal level that would
have given an ERP of 10%, and then use this nominal level for parameter combinations
under the alternative, �5;0 > 0. This type of size-correction is obviously infeasible in
practice, but makes the ERP�s directly comparable, see also Davidson and MacKinnon
(2006) and Cavaliere et al. (2015). The last column in Table 3 corresponds to the (size-
adjusted) power of the (infeasible) asymptotic test.

[Table 2 about here]

[Table 3 about here]

5We conjecture that the fact that the standard bootstrap tests are undersized is a consequence of
the correlation structure in the ARCH case. For other models with positive correlations, the standard
bootstrap may be over-sized.
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The following points can be made out of these tables.
First, and as expected, for all tests, power is monotonically increasing as the true

�5;0 gets further away from the null hypothesis.
Second, the shrinkage device implemented in the proposed bootstrap tests does not

seem to a¤ect the power of the test. The behaviour in terms of (size-adjusted) ERPs of
our tests matches the (size-adjusted) ERPs of the (M-based and infeasible) asymptotic
test. In particular, this is true even for the cases where shrinkage is not necessary (for
instance, case C0).
Third, there are no substantial power di¤erences in terms of which estimator is

chosen in order to construct ��n: shrinkage with the unrestricted estimator and shrinkage
with the restricted estimator deliver bootstrap tests with similar behaviour in terms
of ERPs under the alternative hypothesis. While in other testing problems the use of
unrestricted estimators tend to deliver better power, this is not the case here. A possible
explanation is that for both our restricted and unrestricted bootstraps we set  = 0 in
the bootstrap DGP �that is, we impose the null hypothesis on the bootstrap sample.
Fourth, in terms of ERFs under the alternative, recursive bootstrap implementations

of our tests perform slightly better than the corresponding �xed volatility bootstraps.
The gap between recursive and �xed volatility bootstraps is, however, rather marginal.
In summary, the new tests show excellent power properties, with ERFs almost iden-

tical to those of the infeasible LR test based on the unrealistic assumption that the prac-
titioners knows which nuisance parameters are on the boundary of the parameter space.

5.4 Choice of the tuning parameters

We conclude this section with a brief analysis on the choice of the shrinkage sequence cn
used to construct the bootstrap true values. More speci�cally, in order to investigate the
e¤ect of the choice of cn we set, as done earlier in this section, cn := �n�", with " = 0:45.
The tuning parameter � is now chosen in the set V := f0:2; 0:4; 0:8; 1:2; 1:6; 2:0g (recall
that the results in sections 5.2 and 5.3 are based on � = 1:6). With this choice of V we
are able to cover quantiles of the distribution of �̂i for i = 1; 2; 3; 4 from approximately
60% to 99%.
We also consider the choice of the length of the bootstrap sample for the �m out of

n�bootstrap implementation. Here we set, as before, mn := cn= log(n) with the tuning
parameter c in the set C := f1; 1:5; 2; 2:5; 3; 3:5g (the results in sections 5.2 and 5.3 are
based on c = 1:5). With this choice, m100 ranges from 21 to 76 while m1000 ranges from
144 to 506.

[Table 4 about here]

The most important point that can be made out of Table 4 is that the �nite-sample
behaviour of the shrinkage-based bootstrap tests under the null hypothesis is quite
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robust with respect to the choice of tuning parameter �. In particular, for v � 0:8 we
�nd no substantial di¤erences, for all the sample sizes n considered. For n � 500, smaller
values of v implies that the cut-o¤ point is such that virtually all bootstrap parameter
values are not set to zero corresponding to no shrinkage. As a result, the tests tend to
behave as the standard restricted bootstrap and therefore can be slightly undersized.
In general, our bootstrap test tends to outperform the �m out of n�bootstrap across
di¤erent values of c and �.

6 Conclusions

Testing whether a subset of the parameters lie on the boundary of the parameter space
is a classic inference problem in statistics and econometrics. The �parameter on the
boundary problem�is particularly important for economics, where most models involve
parameters restricted by some inequality constraints; see e.g. Chernozhukov, Hong and
Tamer (2007). Cherno¤ (1954) was the �rst to notice that Wilks�classical result about
the �2-type asymptotic distribution of likelihood ratio statistics breaks down when the
true parameter is a boundary point. Andrews (1999, 2001) provides a comprehensive
framework for dealing with estimation with parameters on the boundary and testing
that a subset of the parameters is on the boundary. While dealing with very general
econometric models, parameter spaces and restrictions, a maintained assumption which
is required in order to obtain feasible tests is that the parameters not restricted by
the null hypothesis are indeed interior points (see Francq and Zakoïan, 2007, 2009).
When this is not the case �as it is in most empirical applications � the asymptotic
distributions of the test statistics depends on nuisance parameters which are unknown.
In this paper we have proposed a bootstrap-based approach to (LR) testing whether

a subset of the parameter vector lie on the boundary of the parameter set, here de�ned
thorough inequality constraints. The bootstrap just requires a simple, straightforward
to implement, adjustment of the parameter values used to generate the bootstrap data.
We have shown that our bootstrap consistently estimate the relevant asymptotic null
distribution, irrespective of the number (and location) of nuisance parameters on the
boundary. Under the alternative, the associated bootstrap statistics are bounded in
probability, hence making the bootstrap test consistent.
Validity of the bootstrap for �parameter on the boundary�problems is far from being

expected. In particular, even in simple econometric models the classic (unrestricted)
bootstrap fails to mimic the correct asymptotic distributions (Andrews, 2000). Other
bootstraps such as the restricted bootstrap works only in the special case where there
are no further parameters on the boundary (Cavaliere et al., 2017, 2018). In this respect,
our results unexpectedly show that the bootstrap may indeed be an extremely powerful
device in econometric models featuring parameters on the boundary.
In the paper we have also shown how our results can be applied to the classic problem

of inference in ARCH models subject to non-negativity parameter constraints; that is,
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testing signi�cance of one ARCH coe¢ cient when there is uncertainty about the nullity
of the remaining parameters. There are many further open problems in the literature
that may be analyzed in our framework.
In the application to ARCH we have focused on a single parameter constraint d,

but the analysis can be extended to tests on a general subvector of parameters. For
instance, consider the ARCH(22) for daily returns xt := (! +

P22
i=1 �ix

2
t�i)

1=2�t, �t
i.i.d.(0,1) and, in the spirit of the HARCH model of Corsi (2009), suppose that interest
is in the null hypothesis H0 :

S
i6=1;5;22 �i = 0, which implies that the only relevant ARCH

parameters are those corresponding to the daily (i = 1), weekly (i = 5) and monthly
(i = 22) frequencies. The asymptotic distribution of the LR test for H0 depends on �i;
i = 1; 5; 22 being on the boundary or not. The implementation of our bootstrap test
allow inference without prior knowledge of the location of these three parameters.
Another important application is within the PARX class of models of Agosto, Cav-

aliere, Kristensen and Rahbek (2016), which assumes that the behaviour of a count
variable yt over time can be described by a Poisson random variable, with intensity �t
measurable with respect to the past information set and given by

�t = ! +

pX
i=1

�iyt�i +

qX
j=1

�j�t�j +
rX
k=1

kxkt;

where the (exogenous) regressors xkt�s, as well as the �i�s, �j�s and k�s, are all non-
negative. The outcome of an asymptotic test on any of the parameters depends on the
location of the remaining parameters (and, in particular, on whether they are boundary
points or not). Our bootstrap approach circumvents this problem and allow inference
without making unrealistic assumption on the location of the unknown parameters.
There are obviously further extensions of our work which are left open for future re-

search. For instance, we have here focused on parameters spaces de�ned through non-
negativity constraints. The case of general linear and nonlinear restriction is indeed
important and deserves further investigations. We conjecture that versions of the boot-
strap de�ned here would apply to the general case.
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Appendix

This appendix is organized as follows. In Section A we present the proofs of our main
general results, Theorem 1 and the related Lemma 1. In Section B we provide the
proofs of the lemmas used to prove bootstrap validity for the ARCH model.

A Proofs of general results

A.1 Proof of Theorem 1

By de�nition, the bootstrap likelihood ratio statistic is given by

LR�n = 2(L
�
n(�̂

�
n)� L�n(~�

�
n)) = 2(L

�
n(�̂

�
n)� L�n (��n)� (L�n(~�

�
n)� L�n (��n)):

Next, as in Cherno¤ (1954) and Andrews (2001, eq.(3.3)) expand the bootstrap likeli-
hood function as

L�n(�)� L�n (��n) =
@L�n(�

�
n)

@�0
(� � ��n) +

1

2
(� � ��n)0

@2L�n(�
�
n)

@�@�0
(� � ��n) +R�n(�)

=
1

2
Z�0n J

�
nZ

�
n �

1

2
q�n[n

1=2(� � ��n)] +R�n(�);

with J�n := �n�1
@2L�n(�

�
n)

@�@�0 , Z
�
n := n

�1=2(J�n)
�1 @L�n(��n)

@�
and

q�n[�] := (�� Z�n)0J�n(�� Z�n) = k�� Z�nk
2
J�n
:

Due to Assumption 5, it holds as in Andrews (2001, Lemma 1), that
p
n(�̂

�
n � ��n)

and
p
n(~�

�
n���n) are O�p (1), in probability. This together with Assumption 5(iii), implies

that R�n (�) = o
�
p (1), in probability, for � = �̂

�
n;
~�
�
n.

By Assumption 5, it also follows by Andrews (2001, proof of Theorem 4(a)) that
the bootstrap likelihood ratio statistic satis�es,

LR�n = q
�
n[n

1=2(~�
�
n � ��n)]� q�n[n1=2(�̂

�
n � ��n)] + o�p(1);

in probability. Next,

q�n[n
1=2(�̂

�
n � ��n)] =

n1=2(�̂�n � ��n)� Z�n2
J�n
= inf

�2�

n1=2(� � ��n)� Z�n2J�n + o�p (1)
= n inf

�2�

� � ��n � Z�nn�1=22J�n + o�p (1)
= n inf

�2���y0

��W �
nn

�1=22
J�n
+ o�p (1) ;
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in probability, where
W �
n = n

1=2(��n � �
y
0) + Z

�
n. (A.1)

By Silvapulle and Sen (2005, Corollary 4.7.5), Assumption 6 and Lemma A.1(i), which
we give at the end of this section, as in Andrews (2001, Lemma 7),

inf
�2���y0

��W �
nn

�1=22
J�n
= inf

�2�y

��W �
nn

�1=22
J�n
+ o�p(n

�1);

in probability, where �y is de�ned in (17). We conclude that

q�n[n
1=2(�̂

�
n � ��n)] = inf

�2�y
k��W �

nk
2
J�n
+ o�p (1) ,

in probability.
For any given ky, without loss of generality consider the partition �y0 = (�

(ky)0
0 ; �

(d��ky)0
0 )0

with �(k
y)

0;i = 0 for i = 1; :::; ky and �(d��k
y)

0;i > 0 for i = ky + 1; :::; d�. Likewise, let

��yk
= Rky+ denote the part of the cone �

y
� corresponding to the boundary points �

(ky)
0 ,

and let Hky denote the selection matrix of dimension (d + ky)� d� such that

Hky� = (
0; �(k

y)0)0. (A.2)

Then, as in Andrews (2001, proof of Theorem 2(b)), it holds that, in probability,

q�n[n
1=2(�̂

�
n � ��n)] = inf

�2�y
k��W �

nk
2
J�n
+ o�p (1)

= inf
�2���

�
y
k

k��HkyW �
nk

2
(H

kyJ
��1
n H0

ky
)�1 + o

�
p (1) .

Analogously, for the restricted bootstrap estimator we have that

q�n[n
1=2(~�

�
n � ��n)] = inf

�2f0gd��
�
y
k

k��HkyW �
nk

2
(H

kyJ
��1
n H0

ky
)�1 + o

�
p (1) ,

in probatility.
Collecting terms, it holds by Lemma A.1(ii) that, in probability,

LR�n = q
�
n[n

1=2(~�
�
n � ��n)]� q�n[n1=2(�̂

�
n � ��n)] + o�p(1)
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�2f0gd��
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y
k

k��HkyW �
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��1
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k��HkyW �
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2
(H

kyJ
��1
n H0
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)�1 + o

�
p (1)

= inf
�2f0gd��

�
y
k

k��HkyZ�k2(H
ky


��1H0
ky
)�1 � inf

�2���
�
y
k

k��HkyZ�k2(H
ky


��1H0
ky
)�1 + o

�
p (1) .

Under H0, it follows that LR�n
w�!p L as claimed, since under H0, ky = k, �y = �,


� = 
;�� = � and, by an application of the just given arguments from Andrews
(2001, Theorem 2(b)),

L = inf
�2f0gd���

k��HZk2(H
�1H0)�1 � inf
�2����

k��HZk2(H
�1H0)�1
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= inf
�2f0gd���k

k��HkZk2(Hk
�1H0
k)

�1 � inf
�2����k

k��HkZk2(Hk
�1H0
k)

�1 .

Finally, under the alternative, LR�n
w�!p Ly, with

Ly = inf
�2f0gd��

�
y
k

k��HkyZ�k2(H
ky


��1H0
ky
)�1 � inf

�2���
�
y
k

k��HkyZ�k2(H
ky


��1H0
ky
)�1 .

(A.3)

This completes the proof. �

Lemma A.1 With W �
n de�ned in (A.1), and �

�
n satisfying Assumption 4, then under

Assumption 5, (i) W �
n = O

�
p (1), in probability, and (ii) HkyW

�
n
w�!p HkyZ

�, where Hky
is given in (A.2).

Proof: Recall thatW �
n = n

1=2(��n��
y
0)+Z

�
n. The result in (i) follows as, by Assumption

4, n1=2(��n� �
y
0) = Op (1) and, by Assumption 5, Z

�
n = O

�
p(1), in probability. Turning to

(ii), HkyW �
n = Hkyn

1=2(��n� �
y
0)+HkyZ

�
n, where by de�nition of Hky and Assumption 4,

it follows that Hkyn1=2(�
�
n � �

y
0) = op(1). By Assumption 5, HkyZ

�
n
w�!p HkyZ

�, and the
result holds by an application of a bootstrap version of Slutzky�s Lemma. �

A.2 Proof of Lemma 1

By Assumption 1, it follows by Andrews (2001, Lemma 1) that
p
n(�̂n � �0) = Op(1).

As in this case �y0 = (
y
0; �

y0
0 ; �

y0
0 )
0 = (00d ; �

0
0; �

0
0)
0, we have

p
n(��n � �

y
0) = Op(1), whilep

n(�̂n;i� �
y
0;i) = Op(1), for i = 1; :::; d�. It remains to show that (14) in Assumption 4

holds.
Suppose �rst that �y0;i = 0. By (15), �̂n;ic

�1
n = n1=2�̂n;i(n

1=2cn)
�1 = Op(1)o(1) = op(1).

Hence for any " > 0;

P (I(�̂n;i > cn) > ") � P (I(�̂n;i > cn) = 1) = P (�̂n;i > cn) = P (�̂n;i=cn > 1)! 0,

and we have that I(�̂n;i > cn) = op(1). Hence, for �
y
0;i = 0,

p
n(��n;i � �

y
0;i) =

p
n��n;i =

p
n�̂n;iI(�̂n;i > cn) = Op(1)op(1) = op(1).

Suppose next that �y0;i > 0, and note that

p
n(��n;i � �

y
0;i) =

p
n(�̂n;i � �

y
0;i)I(�̂n;i > cn)�

p
n�y0;iI(�̂n;i � cn). (A.4)

It holds that n1=2(�̂n;i��
y
0;i)=(n

1=2cn) = op(1) and �
y
0;i=cn !1, such that for any " > 0

P (n1=2(�̂n;i � �
y
0;i)(n

1=2cn)
�1 + �y0;i=cn > ")! 1,
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i.e. n1=2(�̂n;i � �
y
0;i)(n

1=2cn)
�1 + �y0;i=cn diverges to 1. Hence, for any " > 0
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and we have that I(�̂n;i > cn) � 1 = op(1). We conclude that
p
n(�̂n;i � �

y
0;i)I(�̂n;i >

cn) = Op(1), so in light of (A.4), it remains to show that
p
n�y0;iI(�̂n;i � cn) = Op(1).

Note that for any " > 0, by similar arguments as above,

P (
p
nI(�̂n;i � cn) > ") � P (I(�̂n;i � cn) = 1) = P (�̂n;i � cn)! 0;

and we have that
p
nI(�̂n;i � cn) = op(1). We conclude that for �

y
0;i > 0,

p
n(��n;i �

�y0;i) = Op(1). �

B Proofs of Lemmata 2-4

Throughout this section, we make use of the following notation and results. First, we let

zt := (x
2
t�q; x

2
t�1; :::; x

2
t�(q�1); 1)

0, (B.5)

such that with k > 0, E[kztkk] < 1 if E[jxtj2k] < 1. Second, with �2t (�) := �0zt, and
for any �; ~� 2 �, it holds that

�2t (�)

�2t (
~�)
� !�1L k�kkztk.

Finally, suppose that E[jxtj2k] <1 with k > 0. Then,

E
�
�2t (�)

�2t (
~�)

�k
<1

for any �; ~� 2 �.

B.1 Proof of Lemma 2

We initially consider the convergence of �̂
�
n. Recall that the bootstrap true value is

given by ��n = (0; f�̂i;nI (�̂i;n > cn)g
0
i=1;:::;q�1 ; !̂n)

0. Under Assumption 3 and the stated
condition on fcng, Lemma 1 applies such that

��n
p! �y0 = (0; f�i;0g

0
i=1;:::;q�1 ; !0)

0 (B.6)

under H0 and under the alternative, where, in particular, �
y
0 = �0 under H0.
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We now prove that the bootstrap unrestricted estimator is consistent for �y0; that

is, �̂
�
n

p�!p �
y
0. Consistency of the bootstrap restricted estimator ~�

�
n follows using similar

arguments but with � replaced by �H0 in (3) with d = 1. The proof consists of two
steps. First, we show the uniform convergence result

sup
�2�

jn�1L�n(�)�M(�)j
p�!p 0;

where M (�) is an asymptotic estimating function given by

M(�) = �1
2
E
h
log �2t (�) +

�2t (�
y
0)

�2t (�)

i
: (B.7)

Second, we show that identi�cation in terms of M (�) applies; that is, for any � 2 �, we
have that M(�y0) �M(�), with equality if and only if � = �

y
0.

Uniform convergence. Consider the following inequality
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with T �1;n,T2;n implicitly de�ned. We have
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t=1(�
�2
t �1)�2t (��n)��2t (�). In order to show that T �1;n

p�!p 0, we
apply Lemma B.4 of Cavaliere, Nielsen, and Rahbek (2017) which requires establishing
that, for all �; ~� 2 �,

G�n(�)
p�!p 0, jG�n(�)�G�n(~�)j � B�njj� � ~�jj; (B.8)

where B�n does not depend on � and ~� and satis�es E
�[B�n] = Op(1).

Consider the �rst term in (B.8). By Chebychev inequality and using that E�[(��2t �
1)(��2s � 1)] = 0 for t 6= s, for any � 2 �,

P � (jG�n(�)j > ") � Cn�2E�
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kztk2

= Cn�2Op(1)Op(1)Op(n) = Op(n
�1),

where the last equality holds by Lemma B.5 together with the fact that fxtg is ergodic
with E[x4t ] <1. Consider now the second term in (B.8). We have
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and it is straightforward to show that E�[B�n] = Op(1), using again Lemma B.5, �

�
n =

Op(1), and that fxtg is ergodic with E[x4t ] <1.
Next, consider T2;n. We have that
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where the �rst term tends to zero in probability by the ULLN (since E[x2t ] <1), and
the second term is bounded by

jj��n � �
y
0jj 1

2!L
n�1

nP
t=1

jjztjj = op(1).

We conclude that T2;n
p! 0, and hence the desired result holds.

Identification. First, note thatM(�y0)�M(�) is well-de�ned on � since E[x2t ] <1.
Then
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�2t (�
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�2t (�)
� 1
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with equality if and only if �2t (�
y
0) = �2t (�) with probability one, which by standard

arguments is true if and only if � = �y0. This completes the proof. �

B.2 Proof of Lemma 3

The proof follows by Lemmas B.2 and B.3 below together with an application of the
bootstrap version of Slutzky�s Lemma.

Lemma B.2 Suppose that Assumption 3 holds. Then
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nX
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o
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2
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Similar to Cavaliere et al. (2018) the result holds by verifying, with F�
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By Lemma B.5, E�[(1� ��2t )
2
] = Op (1). Moreover, asE[x6t ] <1, E
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Using (B.9), ��n
p! �y0, compactness of �, and continuity of E
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and hence that (ii) holds with �� > 0, since �0zt 6= 0 with probability one for any
� 2 Rq+1.
Turning to (iii), �0s�t (�
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where we have used Lemma B.5. Hence, (iii) holds as E[x6t ] <1. �

Lemma B.3 Suppose that Assumption 3 holds and, in addition, that E[x8t ] <1. Then,
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where the second term on the right hand side tends to zero in probability by standard
arguments using that E[x6t ] < 1 and ��n � �

y
0 = op(1). To see that �rst term tends to
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and by arguments similar to the ones given in Cavaliere et al. (2018, Proof of Lemma
A.8), using that E[x8t ] < 1, we have that kJ�n(��n)� 
�nk is o�p(1), in probability, and
hence kJ�n(��n)� 
�k = o�p(1), in probability. Finally, observe that under H0; �
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B.3 Proof of Lemma 4

It holds that for any i; j; k = 1; :::; q + 1,
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and it su¢ ces to show that K�
n = O

�
p(1), in probability. Given the the stated moment

conditions, this follows by an application of Markov�s inequality conditionally on the
original data.

B.4 Auxiliary lemmata

Lemma B.4 Suppose that Assumption 3 holds. If Ejxtjk < 1 for some k � 1, then
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i.i.d. processes, n�1
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and, for any � 2 �,
jgt(�)j � j�tjk + j�tjkj�

0

0ztjk=2!
�k=2
L .

Hence,
E sup

�2�
kgt(�)k � C + CE[jxtjk] <1;

with C denoting a generic positive constant. By the ULLN for ergodic processes,

sup
�2�

����n�1 nP
t=1

gt(�)� Egt(�)
���� = op(1)

and, using that k�̂n � �0k = op(1), � is compact, and E[gt(�)] is continuous at �0, we
have that n�1

Pn
t=1 gt(�̂n)� E[gt(�0)] = op(1), which implies (B.11). �

Lemma B.5 Suppose that Assumption 3 holds. Then, E�[��kt ]
p! E[�kt ]; for k 2 [1; 6].

Proof: The result follows by Lemma B.4 and the arguments given in the proof of
Lemma A.11 in Cavaliere, Pedersen, and Rahbek (2018). �
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Table 1: Empirical Size for the ARCH(5) Example.

Shrinking-based bootstrap Standard bootstrap Asymptotic
Unrestricted Restricted �m out of n� Oracle

�xed vol. recursive �xed vol. recursive bootstrap Restricted restricted M-based Infeasible

n C0: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:1; 0:1; 0:1; 0:1; 0)
100 10:0 11:4 9:7 11:2 11:4 9:5 9:5 6:7 7:2

500 11:0 11:3 10:7 11:3 12:1 10:1 10:1 8:4 9:0

1000 10:8 11:3 10:6 11:1 12:2 10:5 10:5 9:3 9:8

C1: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:133; 0:133; 0:133; 0; 0)
100 9:3 10:8 9:0 10:7 10:7 8:9 9:9 6:4 7:3

500 10:2 10:7 10:0 10:8 11:1 9:0 10:4 7:6 9:2

1000 10:1 10:5 9:9 10:4 11:0 9:1 10:3 8:2 9:7

C2: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:2; 0:2; 0; 0; 0)
100 8:2 9:7 8:1 9:6 9:4 7:7 9:7 5:2 7:5

500 9:1 10:1 9:1 10:0 9:2 7:2 10:1 6:2 8:9

1000 10:0 10:3 9:9 10:4 9:0 7:6 10:4 6:9 9:5

C3: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:4; 0; 0; 0; 0)
100 8:1 10:2 7:9 10:0 8:9 7:0 10:1 5:2 8:0

500 9:2 10:0 9:2 10:0 7:8 6:5 9:9 5:9 8:8

1000 10:1 10:4 10:2 10:4 8:2 6:8 10:4 6:6 9:5

C4: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0; 0; 0; 0; 0)
100 8:3 10:9 7:9 10:7 9:3 7:4 10:3 7:2 7:5

500 9:1 10:1 9:1 10:0 8:5 7:1 9:9 8:2 8:7

1000 10:0 10:3 9:9 10:3 8:2 7:7 10:3 9:2 9:7

MAD 0:73 0:57 0:78 0:52 1:32 1:94 0:26 2:85 1:31

RMSE 0:98 0:73 1:05 0:67 1:44 2:22 0:30 3:12 1:60

Notes: Empirical rejection frequencies under the null hypothesis, �5;0 = 0. The nominal level is 10%. Bootstrap p-values
are based on 199 bootstrap replications and the simulation is based on 10000 Monte Carlo replications. The shrinking-
based bootstrap uses cn = 1:6n�0:45 and the m-out-of-n bootstrap uses mn = 1:5n=log(n). The oracle bootstrap is based
on restricted estimates and imposes the correct zero coe¢ cients for each case. The feasible asymptotic test uses the
distribution M for all cases. The infeasible asymptotic test uses critical values simulated for each case with T = 20000.
MAD and RMSE measure the overall deviation from the nominal level across cases and sample sizes.
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Table 2: Empirical Unadjusted Power for the ARCH(5) Example.

Shrinking-based bootstrap Standard bootstrap Asymptotic
Unrestricted Restricted �m out of n� Restricted Oracle

�xed vol. recursive �xed vol. recursive bootstrap restricted M-based Infeasible

�5;0 C0: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:1; 0:1; 0:1; 0:1; 0)
0 11:0 11:3 10:7 11:3 12:1 10:1 10:1 8:4 9:0

0:025 25:1 25:6 24:3 25:6 26:8 23:8 23:8 20:8 21:8

0:05 41:9 42:6 41:2 42:7 44:2 40:6 40:6 37:1 38:2

0:1 73:3 73:9 72:8 73:8 74:9 72:1 72:1 69:6 70:5

0:2 97:0 97:3 97:0 97:3 97:6 97:1 97:1 96:5 96:7

0:3 99:8 99:9 99:8 99:8 99:9 99:8 99:8 99:7 99:8

C1: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:133; 0:133; 0:133; 0; 0)
0 10:2 10:7 10:0 10:8 11:1 9:0 10:4 7:6 9:2

0:025 24:0 25:2 23:6 25:2 25:8 21:9 24:5 20:1 22:6

0:05 41:6 43:0 41:1 43:0 43:5 39:4 42:0 36:9 40:1

0:1 73:5 74:5 73:1 74:4 75:0 71:9 74:2 70:0 72:3

0:2 97:3 97:5 97:3 97:5 97:7 97:2 97:5 96:7 97:1

0:3 99:8 99:9 99:8 99:9 99:9 99:8 99:9 99:8 99:8

C2: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:2; 0:2; 0; 0; 0)
0 9:1 10:1 9:1 10:0 9:2 7:2 10:1 6:2 8:9

0:025 25:3 26:5 25:3 26:4 25:1 21:2 26:6 19:5 24:6

0:05 44:7 46:6 44:5 46:7 44:9 40:5 46:9 38:0 44:2

0:1 77:4 78:5 77:3 78:4 77:5 74:4 78:5 72:6 77:3

0:2 98:2 98:3 98:2 98:3 98:3 97:7 98:4 97:5 98:2

0:3 99:9 99:9 99:9 99:9 99:9 99:9 99:9 99:9 99:9

C3: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:4; 0; 0; 0; 0)
0 9:2 10:0 9:2 10:0 7:8 6:5 9:9 5:9 8:8

0:025 29:0 30:2 28:8 30:3 26:7 23:0 30:3 21:8 28:1

0:05 51:6 52:7 51:4 52:9 49:2 44:4 52:9 43:5 50:7

0:1 82:5 83:7 82:5 83:6 81:4 78:3 83:8 78:0 82:5

0:2 98:9 99:0 98:8 99:0 98:8 98:4 99:0 98:4 98:9

0:3 99:9 99:9 99:9 99:9 99:9 99:9 99:9 99:9 99:9

C4: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0; 0; 0; 0; 0)
0 9:1 10:1 9:1 10:0 8:5 7:1 9:9 8:2 8:7

0:025 21:9 23:5 21:6 23:4 20:1 17:7 23:2 20:9 21:5

0:05 38:3 40:0 38:0 39:9 36:2 33:1 39:7 36:6 37:7

0:1 70:1 72:3 70:0 72:3 68:0 65:4 72:2 69:3 70:2

0:2 96:8 97:1 96:8 97:1 96:3 95:9 97:1 96:7 96:9

0:3 99:8 99:8 99:8 99:8 99:7 99:6 99:8 99:8 99:8

Notes: Empirical rejection frequencies under the alternative hypothesis, �5;0 > 0, for n = 500. The nominal level is
10%. Bootstrap p-values are based on 199 bootstrap replications and the simulation is based on 10000 Monte Carlo
replications. The shrinking-based bootstrap uses cn = 1:6n�0:45 and the m-out-of-n bootstrap uses mn = 1:5n=log(n).
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Table 3: Empirical Size-adjusted Power for the ARCH(5) Example.

Shrinking-based bootstrap Standard bootstrap Asymptotic
Unrestricted Restricted �m out of n� Restricted Oracle Infeasible/

�xed vol. recursive �xed vol. recursive bootstrap restricted M-based

�5;0 C0: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:1; 0:1; 0:1; 0:1; 0)
0 10:1 10:3 10:3 10:3 10:3 10:1 10:1 10:0

0:025 23:2 23:9 23:4 23:7 24:0 23:8 23:8 23:4

0:05 39:7 40:5 40:2 40:5 41:2 40:6 40:6 40:3

0:1 71:5 72:2 71:8 72:1 72:2 72:1 72:1 72:2

0:2 96:7 97:0 96:8 97:0 97:1 97:1 97:1 97:0

0:3 99:8 99:8 99:8 99:8 99:8 99:8 99:8 99:8

C1: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:133; 0:133; 0:133; 0; 0)
0 10:2 10:2 10:0 10:3 10:0 10:4 10:4 10:0

0:025 24:0 24:3 23:6 24:2 24:0 24:4 24:4 23:7

0:05 41:6 42:0 41:1 42:0 41:7 42:2 42:0 41:5

0:1 73:5 73:8 73:1 73:6 73:5 74:2 74:2 73:5

0:2 97:3 97:4 97:3 97:4 97:3 97:5 97:5 97:4

0:3 99:8 99:8 99:8 99:9 99:9 99:9 99:9 99:9

C2: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:2; 0:2; 0; 0; 0)
0 10:0 10:1 10:0 10:0 10:1 10:1 10:1 10:0

0:025 27:0 26:5 26:8 26:4 26:7 26:7 26:6 26:5

0:05 46:7 46:6 46:7 46:7 46:7 47:1 46:9 46:4

0:1 78:7 78:5 78:6 78:4 78:7 78:4 78:5 78:6

0:2 98:4 98:3 98:4 98:3 98:4 98:4 98:4 98:4

0:3 99:9 99:9 99:9 99:9 99:9 99:9 99:9 99:9

C3: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0:4; 0; 0; 0; 0)
0 10:2 10:5 10:2 10:0 10:1 10:1 10:5 10:0

0:025 30:9 31:3 30:7 30:3 30:6 30:7 31:3 30:4

0:05 53:3 53:8 53:0 52:9 53:4 53:0 53:6 53:2

0:1 83:6 84:2 83:5 83:6 83:7 83:6 84:2 83:8

0:2 99:0 99:0 98:9 99:0 99:0 99:0 99:0 99:1

0:3 99:9 99:9 99:9 99:9 100:0 100:0 99:9 100:0

C4: (!0; �1;0; �2;0; �3;0; �4;0; �5;0) = (1; 0; 0; 0; 0; 0)
0 10:2 10:1 10:1 10:0 10:0 10:1 10:4 10:0

0:025 23:4 23:5 23:2 23:4 22:9 23:2 24:1 23:8

0:05 40:1 40:0 40:1 39:9 39:7 39:4 40:8 40:4

0:1 71:8 72:3 71:8 72:3 71:3 71:3 73:0 72:4

0:2 97:1 97:1 97:1 97:1 96:9 97:0 97:3 97:1

0:3 99:8 99:8 99:8 99:8 99:8 99:8 99:8 99:8

Notes: Pointwise size-adjusted rejection frequencies under the alternative hypothesis, �5;0 > 0, for n = 500. The
nominal level is 10%. Bootstrap p-values are based on 199 bootstrap replications and the simulation is based on
10000 Monte Carlo replications. The shrinking-based bootstrap uses cn = 1:6n�0:45 and the m-out-of-n bootstrap uses
mn = 1:5n=log(n).
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