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Abstract—Multi-access edge computing (MEC) aims to extend cloud service to the network edge to reduce network traffic and service
latency. A fundamental problem in MEC is how to efficiently offload heterogeneous tasks of mobile applications from user equipment
(UE) to MEC hosts. Recently, many deep reinforcement learning (DRL) based methods have been proposed to learn offloading policies
through interacting with the MEC environment that consists of UE, wireless channels, and MEC hosts. However, these methods have
weak adaptability to new environments because they have low sample efficiency and need full retraining to learn updated policies for
new environments. To overcome this weakness, we propose a task offloading method based on meta reinforcement learning, which
can adapt fast to new environments with a small number of gradient updates and samples. We model mobile applications as Directed
Acyclic Graphs (DAGs) and the offloading policy by a custom sequence-to-sequence (seq2seq) neural network. To efficiently train the
seq2seq network, we propose a method that synergizes the first order approximation and clipped surrogate objective. The experimental
results demonstrate that this new offloading method can reduce the latency by up to 25% compared to three baselines while being able
to adapt fast to new environments.
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1 INTRODUCTION

R Ecent years have witnessed the rapid advance of new
computing and communication technologies, driving

the increasing emergence of innovative mobile applications
and services, such as augmented reality, virtual reality, face
recognition, and mobile healthcare. These mobile applica-
tions introduce a significant surge in demands for com-
puting and storage resources that are often provided by
cloud servers. This situation generates huge network traffic
between cloud and users, thus placing a heavy burden on
the backhaul links and causing high service latency. Multi-
access Edge Computing (MEC) [1] was recently introduced
as a key technology to address this problem. The underlying
principle of MEC is to extend cloud computing capabilities
to MEC host at the network edge close to users, which
can significantly alleviate network congestion and reduce
service latency.

One of the key functionalities of MEC is task offloading
(aka, computation offloading), which enables to offload
computation-intensive tasks of mobile applications from
user equipment (UE) to MEC host at the network edge.
In real-world scenarios, many mobile applications (e.g.,
face recognition [2], gesture recognition [2], and augmented
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reality [3]) are composed of dependent tasks, which can
be modelled as a Directed Acyclic Graph (DAG). Thus,
offloading dependent tasks in a DAG with the minimum
latency is a crucial problem in MEC. Since this problem is
NP-hard, many existing solutions are based on heuristic or
approximation algorithms [4]–[6]. However, these solutions
rely heavily on expert knowledge or accurate mathematical
models for the MEC system. Whenever the environment of
the MEC system changes, the expert knowledge or mathe-
matical models may need to be updated accordingly. There-
fore, it is difficult for one specific heuristic/approximation
algorithm to fully adapt to the dynamic MEC scenarios
arisen from the increasing complexity of applications and
architectures of MEC.

Deep Reinforcement Learning (DRL), which combines
reinforcement learning (RL) with Deep Neural Network
(DNN), provides a promising solution to the above chal-
lenge, because DRL can learn to solve complex problems
such as games [7], robotics [8], and traffic scheduling [9] by
trial and error without accurate models for the environment.
More recently, researchers studied the application of DRL
to various MEC task offloading problems [10]–[13]. They
considered the MEC system including UE, wireless chan-
nels, and MEC host as one stationary RL environment and
learn an offloading policy through interacting with the envi-
ronment. However, these methods have weak adaptability
for unexpected perturbations or unseen situations (i.e., new
environments) like changes of applications, task numbers,
or data rates. Because they have low sample efficiency and
need full retraining to learn an updated policy for the new
environment, they are time-consuming.

Meta learning [14] is a promising method to address the
aforementioned issues by leveraging previous experiences
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across a range of learning tasks to significantly accelerate
learning of new tasks. In the context of RL problems,
meta reinforcement learning (MRL) aims to learn policies
for new tasks within a small number of interactions with
the environment by building on previous experiences. In
general, MRL conducts two “loops” of learning, an “outer
loop” which uses its experiences over many task contexts to
gradually adjust parameters of the meta policy that governs
the operation of an “inner loop”. Based on the meta policy,
the “inner loop” can adapt fast to new tasks through a small
number of gradient updates [15].

There are significant benefits of adapting MRL to solving
the computation offloading problem. Firstly, specific policies
for new mobile users can be fast learned based on their local
data and the meta policy. Secondly, MRL training in the
MEC system can leverage resources from both the MEC host
and UE. More specifically, training for the meta policy (outer
loop) is run on the MEC host and training for the specific
offloading policy (inner loop) is processed on UE. Normally,
the “inner loop” training only needs several training steps
and a small amount of sampling data, thus the UE with
limited computation resources and data is able to complete
the training process. Finally, MRL can significantly improve
the training efficiency in learning new tasks and make the
offloading algorithm more adaptive to the dynamic MEC
environment.

In this paper, we propose an MRL-based method
that synergizes the first-order MRL algorithm with a
sequence-to-sequence (seq2seq) neural network. The pro-
posed method learns a meta offloading policy for all UE
and fast obtains the effective policy for each UE based on
the meta policy and local data. To evaluate the performance
of the MRLCO under dynamic scenarios, we consider the
following scenarios: 1) Heterogeneous users with personal
preferences of mobile applications which are represented as
DAGs with different heights, widths, and task numbers.
2) Varying transmission rates according to the distance
between the UE and the MEC host.

The major contributions of this paper can be summarized
as follows:

• This paper is the first of its kind to propose an MRL-
based method (MRLCO) to address the computation
offloading problem, achieving fast adaptation to dy-
namic offloading scenarios. MRLCO has high sample
efficiency towards new learning tasks, thus it enables
UE to run the training process by using its own data
even with limited computation resources.

• We propose a new idea to model the dynamic com-
putation offloading process as multiple MDPs, where
the learning of offloading policies is decomposed into
two parts: effectively learning a meta policy among
different MDPs, and fast learning a specific policy for
each MDP based on the meta policy.

• We convert the offloading decision process as a
sequence prediction process and design a custom
seq2seq neural network to represent the offloading
policy. An embedding method is also proposed to
embed the vertices of a DAG considering both its task
profiles and dependencies. In addition, we propose a
new training method which combines the first-order

approximation and clipped surrogate objective to
stabilize the training of the seq2seq neural network.

• We conduct simulation experiments using generated
synthetic DAGs according to real-world applications,
covering a wide range of topologies, task num-
bers, and transmission rates. The results show that
MRLCO achieves the lowest latency within a small
number of training steps compared to three baseline
algorithms including a fine-tuning DRL method, a
greedy algorithm, and a heterogeneous earliest finish
time (HEFT) based heuristic algorithm.

The rest of the paper is organised as follows. A brief
introduction to MEC, RL, and MRL is given in Section 2.
The problem formulation for task offloading is presented in
Section 3. The details of the MRLCO are described in Section
4. Evaluation results are presented and discussed in Section
5. The related work is reviewed in Section 6. We discuss the
MRLCO and its future work in Section 7. Finally, Section 8
concludes the paper.

2 BACKGROUND

This section briefly introduces the background related to
MEC, RL, and MRL.

2.1 Multi-access Edge Computing
Over recent years, MEC has been acknowledged as one of
the emerging network paradigms, which can release the
pressure introduced by an unprecedented increase in traffic
volume and computation demands nowadays through en-
abling cloud services to the network edge. Typically, MEC
hosts coupled with computation and storage resources are
deployed in the network edge, supporting intensive com-
putation and data processing. As such, MEC can alleviate
the burden of backhaul links and cut down the service
latency. MEC is beneficial to a wide variety of emerging
applications that require high volume data and low latency,
e.g., autonomous driving, augmented reality, and digital
healthcare.

In practice, many mobile applications are composed of
multiple tasks with inner dependencies among them, which
can be offloaded to MEC hosts for processing. Specifically,
the objective of task offloading is to find the optimal policy
to partition an application into two groups of computation
tasks with one executed on the UE and the other offloaded
to an MEC host so that the total running cost is minimal.

2.2 Reinforcement Learning
RL considers learning from environment so as to maxi-
mize the accumulated reward. Formally, a learning task,
T , is modelled as an MDP, which is defined by a tuple
(S,A,P,P0,R, γ). Here, S is the state space, A denotes the
action space, R is a reward function, P is the state-transition
probabilities matrix, P0 is the initial state distribution, and
γ ∈ [0,1] is the discount factor. A policy π(a|s), where
a ∈ A and s ∈ S, is a mapping from state s to the
probability of selecting action a. We define the trajectories
sampled from the environment according to the policy π as
τπ = (s0,a0,r0, s1,a1,r1, . . .), where s0 ∼ P0, at ∼ π(·|st ) and rt
is a reward at time step t.
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The state value function of a state st under a param-
eterized policy π(a|s; θ), denoted as vπ(st ), is the expected
return when starting in st and following π(a|s; θ) thereafter.
Here, θ is the vector of policy parameters and vπ(st ) can be
calculated by

vπ(st ) = Eτ∼PT (τ |θ)

[∑
k=t

γk−trk

]
(1)

, where PT (τ |θ) is the probability distribution of sampled
trajectories based on π(a|s; θ). The goal for RL is to find
an optimal parameterized policy π(a|s; θ∗) to maximize the
expected total rewards J =

∑
s0∼P0

vπ(s0).

2.3 Meta Reinforcement Learning

MRL enhances the conventional RL methods with meta
learning, which aims to learn a learning algorithm that can
quickly find the policy for a learning task Ti drawn from a
distribution of tasks ρ(T ). Each learning task Ti corresponds
to a different MDP, and these learning tasks typically share
the same state and action spaces but may differ in reward
functions or their dynamics (i.e., P and P0).

Recent years have brought a wealth of methods fo-
cused on different aspects of MRL. One typical example is
gradient-based MRL, which aims to learn the initial parame-
ters θ of a policy neural network, so that performing a single
or few steps of policy gradient over θ with a given new task
can lead to an effective policy for that task. We follow the
formulation of model-agnostic meta-learning (MAML) [16],
giving the target of gradient-based MRL as

J(θ) = ETi∼ρ(T)
[
JTi (θ

′)
]
,with θ ′ := U(θ,Ti), (2)

where JTi denotes the objective function of task Ti . For
example, when using vanilla policy gradient (VPG), JTi (θ) =
Eτ∼PTi (τ |θ)

∑
t=0

(
γtrt − b(st )

)
, where b(st ) denotes an arbitrary

baseline which does not vary with at . U denotes the up-
date function which depends on JTi and the optimization
method. For instance, if we conduct k-step gradient ascent
for Ti , then U(θ,Ti) = θ + α

∑k
t=1 gt , where gt denotes the

gradient of JTi at time step t and α is the learning rate.
Therefore, the optimal parameters of policy network and
update rules are

θ∗ = arg max
θ

ETi∼ρ(T)
[
JTi (U(θ,Ti)

]
,

θ ← θ + βETi∼ρ(T)
[
∇θ JTi (U(θ,Ti)

]
,

(3)

where β is the learning rate of “outer loop” training. The
gradient-based MRL has good generalization ability. How-
ever, the second-order derivative in MAML may bring huge
computation cost during training, which is inefficient. In
addition, when combining with a complex neural network
architecture, e.g., a seq2seq neural network, the implementa-
tion of second-order MAML becomes intractable. To address
these challenges, some algorithms [16], [17] use the first-
order approximation to MAML target. In this work, we
implement MRLCO based on the first-order MRL due to its
low computation cost, good performance, and easy imple-
mentation when combing with a seq2seq neural network.
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Fig. 1. An example of computation offloading in MEC.

3 PROBLEM FORMULATION

Fig. 1 gives an example of computation offloading in
MEC. This example considers a real-world application—
face recognition, which consists of dependent tasks such
as tiler, detection, or feature mergence [2]. The UE makes
offloading decisions for those tasks according to the system
status and task profiles, thus some tasks are run locally
on the UE while others are offloaded to the MEC host via
wireless channels. In general, each MEC host runs multiple
virtual machines (VMs) processing the tasks. In this work,
we consider that each UE is associated with a dedicated VM
providing private computing, communications and storage
resources to the UE, the same as in works [18], [19]. The
computation capacity (i.e., the number of CPU cores times
the clock speed of each core) of an MEC host is denoted
as fs . We consider an equal resource allocation for VMs,
i.e., all VMs evenly share the computing resource of the
MEC host. Therefore, assuming there are k users in the
MEC systems, the computation capacity for each VM is
fvm = fs/k. Formally, we model mobile applications as
DAGs, G = (T,E), where the vertex set T represents the tasks
and the directed edge set E represents the dependencies
among tasks, respectively. Each directed edge is denoted by
−→e = (ti, tj), corresponding to the dependency between task
ti and tj , where ti is an immediate parent task of tj , and
tj is an immediate child task of ti . With the constraint of
dependency, a child task cannot be executed until all of its
parent tasks are completed. In G = (T,E), we call a task
without any child task as an exit task.

In computation offloading, a computation task can either
be offloaded to the MEC host or executed locally on the UE.
If task ti is offloaded, there are three steps to execute ti . First,
the UE sends ti to an MEC host through a wireless channel.
Second, the MEC host runs the received task. Finally, the
running result of ti is returned to the UE. The latency at each
step is related to the task profile and the MEC system state.
Here, the task profile of ti includes required CPU cycles for
running the task, Ci , data sizes of the task sent, datasi , and
the result received, datari . Besides, the MEC system state
contains the transmission rate of wireless uplink channel,
Rul, and rate of downlink channel, Rdl. Therefore, the latency
for sending data, Tul

i , executing on the MEC host, T s
i , and
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receiving result, Tdl
i , of task ti can be calculated as:

Tul
i = datasi /Rul, T s

i = Ci/ fvm, Tdl
i = datari /Rdl. (4)

If task ti runs locally on the UE, there is only running
latency on the UE, which can be obtained by TUE

i = Ci/ fUE
where fUE denotes the computation capacity of the UE. The
end-to-end latency of a task offloading process includes
local processing, uplink, downlink, and remote processing
latency, as shown in Fig. 1.

The scheduling plan for a DAG, G = (T,E), is denoted
as A1:n = {a1,a2, . . . ,an}, where |T | = n and ai represents the
offloading decision of ti . Tasks are scheduled in a sequence
based on the scheduling plan, where all parent tasks are
scheduled before their child tasks. We denote FTul

i , FT s
i ,

FTdl
i , and FTUE

i as the finish time of task ti on the uplink
wireless channel, the MEC host, the downlink wireless chan-
nel, and the UE, respectively. We also denote the available
time of these resources when scheduling task ti asMul

i ,Ms
i ,

Mdl
i , andMUE

i . The resource available time depends on the
finish time of the task scheduled immediately before ti on
that resource. If the task scheduled immediately before ti
does not utilize the resource, we set the finish time on the
resource as 0.

If task ti is offloaded to the MEC host, ti can only start
to send its data when its parent tasks are all completed and
the uplink channel is available. Therefore, the finish time on
the uplink channel, FTul

i , can be defined by

FTul
i = max

{
Mul

i , max
j∈parent(ti )

{
FTUE

j ,FTdl
j

}}
+ Tul

i ,

Mul
i = max

{
Mul

i−1,FTul
i−1

}
.

(5)

Similarly, the finish time of ti on the MEC host, FT s
i , and

that on the downlink channel, FTdl
i , are given by

FT s
i = max

{
Ms

i ,max
{
FTul

i , max
j∈parent(ti )

FT s
j

}}
+ T s

i ,

FTdl
i = max

{
Mdl

i ,FT s
i

}
+ Tdl

i ,

Ms
i = max

{
Ms

i−1,FT s
i−1

}
,

Mdl
i = max

{
Mdl

i−1,FTdl
i−1

}
.

(6)

If ti is scheduled on the UE, the start time of ti depends
on the finish time of its parent tasks and the available time
of the UE. Formally, the finish time of ti on the UE, FTUE

i , is
defined as

FTUE
i =max

{
MUE

i , max
j∈parent(ti )

{
FTUE

j ,FTdl
j

}}
+ TUE

i ,

MUE
i =max

{
MUE

i−1,FTUE
i−1

}
.

(7)

Overall, the objective is to find an effective offloading
plan for the DAG to obtain the minimal total latency. For-
mally, the total latency of a DAG given a scheduling plan
A1:n, Tc

A1:n
, is given by

Tc
A1:n
= max

[
max
tk ∈K

(
FTUE

k ,FTdl
k

)]
, (8)

where K is the set of exit tasks. The problem in Eq. (8)
is NP-hard, so finding the optimal offloading plan can be
extremely challenging due to the highly dynamic DAG
topologies and MEC system states. In the next section, we
present the details of MRLCO for handling this problem.

TABLE 1
Summary of Main Notations

Notation Description
E Mean value

datas
i , datari Size of data sending to or receiving from a task ti

Rul, Rdl Transmission rate of uplink and downlink
fUE, fs, fvm Computation capacity of UE, MEC host and VM
Tul
i , T s

i , Tdl
i ,

TUE
i

Latency for task ti on uplink channel, MEC host,
downlink channel, and UE.

FTul
i , FT s

i ,
FTdl

i , FTUE
i

Finish time for task ti on uplink channel, MEC
host, downlink channel, and UE

Mul
i , Ms

i , M
dl
i ,

MUE
i

Resource available time for task ti on uplink chan-
nel, MEC host, downlink channel, and UE

A1:n Computational offloading plan for n tasks
Ti , ρ(T) A learning task and distribution of learning tasks
si , ai , ri State, action, and reward of an MDP at time step i

π(a |s; θ), v(s; θ) Parametrized policy and value function for com-
putation offloading.

τπ Trajectories sampled from the environment based
on the policy π.

fenc , fdec Functions of encoder and decoder
ei , di Output of encoder and decoder at time step i

ci Context vector at decoding step i

Ât Advantage function at time step t
U(θ, Ti ) Update function (e.g., Adam) for the learning task

4 MRLCO: AN MRL-BASED COMPUTATION OF-
FLOADING SOLUTION

In this section, we first give an overview of the architecture
of the MRLCO and explain how it works with the MEC
system. Next, we present the detailed MDP modelling for
the computation offloading problem. Finally, we describe
the implementation of the MRLCO algorithm.

4.1 The MRLCO Empowered MEC System Architecture
The MRLCO aims to leverage the computation resources
from both the UE and the MEC host for the training process.
There are two loops of training — “inner loop” training for
the task-specific policy and “outer loop” training for the
meta policy. The “inner loop” training is conducted on the
UE while the “outer loop” training on the MEC host.

Fig. 2 shows an architecture that integrates the MRLCO
into an emerging MEC system [1] composed of the user
level, edge level, and remote level. Here, the user level
includes heterogeneous UE, the edge level contains MEC
hosts that provide edge computing services, and the remote
level consists of cloud servers. Specifically, mobile users
communicate with an MEC host through the local Transmis-
sion unit. The MEC host incorporates an MEC platform and
a virtualization infrastructure that provides the computing,
storage, and network resources. The MEC platform provides
Traffic management (i.e., traffic rules control and domain
name handling) and offers edge services. The five key mod-
ules of MRLCO (parser, local trainer, offloading scheduler, global
training service, and remote execution service) can be deployed
at the user and edge levels of the MEC system separately, as
described below:

• At the user level, the parser aims to convert mobile
applications into DAGs. The local trainer is respon-
sible for the “inner loop” training, which receives
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the parsed DAGs from the parser as training data
and uploads/downloads parameters of the policy
network to/from the MEC host through local trans-
mission unit. Once the training process is finished,
the trained policy network will be deployed to the
offloading scheduler that is used to make offloading
decisions through policy network inference. After
making decisions for all tasks of a DAG, the locally
scheduled tasks will run on the local executor and
the offloaded tasks will be sent to the MEC host for
execution.

• At the edge level, the global training service and remote
execution service modules are deployed to the MEC
platform. The global training service is used to manage
the “outer loop” training, which sends/receives pa-
rameters of the policy network to/from the UE and
deploys the global training process on the virtual-
ization infrastructure in the MEC host. The remote
execution service is responsible for managing the tasks
offloaded from the UE, assigning these tasks to asso-
ciated VMs, and sending the results back to the UE.

Next, we describe the detailed training process of the
MRLCO in the MEC system, as shown in Fig. 3. The training
process for MRLCO includes four steps. First, the UE down-
loads the parameters of the meta policy from the MEC host.
Next, an “inner loop” training is run on every UE based on
the meta policy and the local data, in order to obtain the
task-specific policy. The UE then uploads the parameters
of the task-specific policy to the MEC host. Finally, the
MEC host conducts an “outer loop” training based on the
gathered parameters of task-specific policies, generates the
new meta policy, and starts a new round of training. Once
obtaining the stable meta policy, we can leverage it to fast
learn a task-specific policy for new UE through “inner loop”
training. Notice that the “inner loop” training only needs
few training steps and a small amount of data, thus can
be sufficiently supported by the UE. We will present the
algorithmic details of the “outer loop” and “inner loop”
training in Section 4.3.

4.2 Modelling the Computation Offloading Process as
Multiple MDPs
To adapt MRL to solve the computation offloading prob-
lem, we firstly model the process of computation offload-
ing under various MEC environments as multiple MDPs,
where learning an effective offloading policy for one MDP
is considered as a learning task. Formally, we consider a
distribution over all learning tasks in MEC as ρ(T ), where
each task Ti ∼ ρ(T ) is formulated as a different MDP,
Ti = (S,A,P,P0,R, γ). (Please refer to Section 2.2 for the
meaning of these notations.) In order to obtain the adap-
tive offloading policy for all learning tasks, we decompose
the learning process into two parts: effectively learning a
meta policy among all MDPs and fast learning a specific
offloading policy for one MDP based on the meta policy.
The definitions of the state, action, and reward for the MDP
are listed as follows:

• State: When scheduling a task ti , the latency of
running the task depends on the task profile (i.e.,
required CPU cycles, data sizes), DAG topologies,
the wireless transmission rate, and the state of MEC
resources. According to Eqs. (5), (6), and (7), the
state of MEC resources is related to the offloading
decisions of task scheduled before ti . Therefore, we
define the state as a combination of the encoded DAG
and the partial offloading plan:

S := {si |si = (G(T,E), A1:i)} where i ∈ [1, |T |] , (9)

where G(T,E) is comprised of a sequence of task
embeddings and A1:i is the partial offloading plan for
the first i tasks. To convert a DAG into a sequence
of task embeddings, we first sort and index tasks
according to the ascending order of the rank value
of each task, which is defined as

rank(ti) =


To
i if ti ∈ K,

To
i + max

tj ∈child(ti )

(
rank(tj)

)
if ti < K,

(10)

where To
i = Tul

i + T s
i + Tdl

i denotes the latency for
task i from starting offloading to finishing execution,
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child(ti) represents the set of immediate child tasks
of ti . Each task is converted into an embedding that
consists of three elements: 1) a vector that embeds the
current task index and the normalized task profile, 2)
a vector that contains the indices of the immediate
parent tasks, 3) a vector that contains the indices
of the immediate child tasks. The size of vectors
that embed parent/child task indices is limited to p.
We pad the vector with -1, in case the number of
child/parent tasks is less than p.

• Action: The scheduling for each task is a binary
choice, thus the action space is defined as A := {0,1},
where 0 stands for execution on the UE and 1 repre-
sents offloading.

• Reward: The objective is to minimize Tc
A1:n

given by
Eq. (8). In order to achieve this goal, we define the
reward function as the estimated negative increment
of the latency after making an offloading decision for
a task. Formally, when taking action for the task ti ,
the increment is defined as ∆Tc

i = Tc
A1:i
− Tc

A1:i−1
.

Based on the above MDP definition, we denote the policy
when scheduling ti as π(ai |G(T,E), A1:i−1). For a DAG with
n tasks, let π (A1:n |G(T,E)) denote the probability of having
the offloading plan A1:n given the graph G(T,E). Therefore,
π(A1:n |G(T,E)) can be obtained by applying chain rules of
probability on each π(ai |G(T,E), A1:i−1) as

π(A1:n |G(T,E)) =
n∏
i=1

π(ai |G(T,E), A1:i−1). (11)

A seq2seq neural network [20] is a natural choice to
represent the policy defined in Eq. (11). Fig. 4 shows our
design of a custom seq2seq neural network, which can be
divided into two parts: encoder and decoder. In our work,
both encoder and decoder are implemented by recurrent
neural networks (RNN). The input of the encoder is the
sequence of task embeddings, [t1, t2, ..., tn], while the output
of the decoder is the offloading decisions of each tasks,
[a1,a2, ...,an]. To improve the performance, we include the
attention mechanism [20] into our custom seq2seq neural
network. Attention mechanism allows the decoder to attend
to different parts of the source sequence (i.e., the input se-
quence of the encoder) at each step of the output generation,

𝒕𝟏 𝒕𝟐 𝒕𝒏

…
…

𝒅𝟏 𝒅𝟐 𝒅𝒏

𝒄

𝑣(𝑠*) 𝜋(𝑎*|𝑠*)

Task embeddings

Context
Vector

Encoder

Decoder

𝒆𝟏
𝒆𝟐

𝒆𝒏

…

𝒂𝟏 𝒂𝒏1𝟏

Fig. 4. Architecture of the seq2seq neural network in MRLCO. The
architecture consists of an encoder and a decoder, where the input of
the encoder is the sequence of task embeddings and the output of the
decoder is used to generate both policy and value function.

thus it can alleviate the issue of information loss caused by
the original seq2seq neural network that encodes the input
sequence into a vector with fixed dimensions.

Formally, we define the functions of the encoder and
decoder as fenc and fdec , respectively. In our work, we
use the Long Short-Term Memory (LSTM) as fenc and fdec .
At each step of encoding, the output of the encoder, ei , is
obtained by

ei = fenc(ti, ei−1). (12)

After encoding all the input task embeddings, we have the
output vector as e = [e1, e2, ..., en]. At each decoding step, we
define the output of the decoder, dj , as

dj = fdec(dj−1,aj−1, cj), (13)

where cj is the context vector at decoding step j and is
computed as a weighted sum of the outputs of the encoder:

cj =
n∑
i=0

αjiei . (14)

The weight αji of each output of encoder, ei , is computed by

αji =
exp

(
score(dj−1, ei)

)∑n
k=1 exp

(
score(dj−1, ek )

) , (15)
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where the score function, score(dj−1, ei), is used to measure
how well the input at position i and the output at position
j match. We define the score function as a trainable feedfor-
ward neural network according to the work [20]. We use the
seq2seq neural network to approximate both policy π(aj |sj)
and value function vπ(sj) by passing the output of decoder
d = [d1, d2, ..., dn] to two separate fully connected layers.
Notice that the policy and value function share most of the
parameters (i.e., the encoder and decoder) which are used to
extract common features of DAGs (e.g., the graph structure
and task profiles). Therefore, training the policy can accel-
erate the training of value function and vice versa. During
training for the seq2seq neural network, the action aj is gen-
erated through sampling from the policy π(aj |sj). Once the
training is finished, the offloading decisions for a DAG can
be made by inference through the seq2seq neural network,
where the action aj is generated by aj = arg maxa j

π(aj |sj).
Therefore, the time complexity for our algorithm is the
same as the inference of the seq2seq neural network with
attention, which is O(n2) [21]. Normally, the task number, n,
of a mobile application is less than 100 [4], [5], [22], thus the
time complexity of the MRLCO is feasible.

4.3 Implementation of MRLCO
MRLCO shares a similar algorithm structure with gradient-
based MRL algorithms, which consists of two loops for
training. Instead of using VPG as the policy gradient
method for the “inner loop” training [16], we define our
objective function based on Proximal Policy Optimization
(PPO) [23]. Compared to VPG, PPO achieves better explor-
ing ability and training stability. For one learning task Ti ,
PPO generates trajectories using the sample policy πθoi and
updates the target policy πθi for several epochs, where θi
equals θoi at the initial epoch. In order to avoid a large
update of the target policy, PPO uses a clipped surrogate
objective as

JC
Ti
(θi) = Eτ∼PTi (τ,θ

o
i )

[
n∑
t=1

min
(
Prt Ât,clip1+ε

1−ε (Prt ) Ât

)]
. (16)

Here, θoi is the vector of parameters of the sample policy
network. Prt is the probability ratio between the sample
policy and target policy, which is defined as

Prt =
πθi (at |G(T,E), A1:t )

πθoi (at |G(T,E), A1:t )
. (17)

The clip function clip1+ε
1−ε (Prt ) aims to limit the value of Prt ,

in order to remove the incentive for moving Prt outside of
the interval [1− ε,1+ ε]. Ât is the advantage function at time
step t. Specially, we use general advantage estimator (GAE)
[24] as our advantage function, which is defined by

Ât =

n−t+1∑
k=0

(γλ)k (rt+k + γvπ(st+k+1) − vπ(st+k )), (18)

where λ ∈ [0,1] is used to control the trade-off between bias
and variance. The value function loss is defined as

JVF
Ti
(θi) = Eτ∼PTi (τ,θ

o
i )

[
n∑
t=1

(vπ(st ) − v̂π(st ))2
]
, (19)

where v̂π(st ) =
∑n−t+1

k=0 γkrt+k .

Algorithm 1 : Meta Reinforcement Learning based Compu-
tation Offloading
Require: Task distribution ρ(T ),
1: Randomly initialize the parameters of meta policy, θ
2: for iterations k ∈ {1, ...,K} do
3: Sample n tasks {T0,T1, ...,Tn} from ρ(T )
4: for each task Ti ∈ {T0,T1, ...,Tn} do
5: Initialize θoi ← θ and θi ← θ
6: Sample trajectories set D = (τ1, τ2, . . .) from Ti

using sample policy πθoi
7: Compute the policy network parameters θ ′i ←

θi + α∇θi JPPO
Ti
(θi) via m steps of Adam with D

8: end for
9: Update θ ← θ + βgMRLCO via Adam

10: end for

Overall, we combine Eq. (16) and Eq. (19), defining the
objective function for each “inner loop” task learning as:

JPPO
Ti
(θi) = JC

Ti
(θi) − c1 JVF

Ti
(θi), (20)

where c1 is the coefficient of value function loss.
According to the target of gradient-based MRL defined

in Eq. (2) and our objective function given by Eq. (20), the
“outer loop” training target of MRLCO is expressed as

JMRLCO(θ) = ETi∼ρ(T),τ∼PTi (τ,θ
′
i )
[JPPO
Ti
(θ ′i)],

where θ ′i = Uτ∼PTi (τ,θi )
(θi,Ti), θi = θ.

(21)

Next, we can conduct gradient ascent to maximize the
JMRLCO(θ). However, optimizing this objective function in-
volves gradients of gradients, which introduces large com-
putation cost and implementation difficulties when combin-
ing a complex neural network such as the seq2seq neural
network. To address this challenge, we use the first-order
approximation to replace the second-order derivatives as
suggested in [17], which is defined as

gMRLCO :=
1
n

n∑
i=1

[
(θ ′i − θ)/α/m

]
, (22)

where n is the number of sampled learning tasks in the
“outer loop”, α is the learning rate of the “inner loop”
training, and m is the conducted gradient steps for the
“inner loop” training.

We present the overall design of the algorithm in Algo-
rithm 1. The parameters of the meta policy neural network
are denoted as θ. We firstly sample a batch of learning tasks
T with batch size n and conduct “inner loop” training for
each sampled learning task. After finishing the “inner loop”
training, we update the meta-policy parameters θ by using
gradient ascent θ ← θ + βgMRLCO via Adam [25]. Here, β is
the learning rate of “outer loop” training.

5 PERFORMANCE EVALUATION

This section presents the experimental results of the pro-
posed method. First, we introduce the algorithm hyperpa-
rameters of MRLCO and the simulation environment. Next,
we evaluate the performance of MRLCO by comparing it
with a fine-tuning DRL method and a heuristic algorithm.



8

TABLE 2
The Neural Network and Training Hyperparameters

Hyperparameter Value Hyperparameter Value
Encoder Layers 2 Encoder Layer Type LSTM

Encoder Hidden Units 256 Encoder Layer Norm. On
Decoder Layers 2 Decoder Layer Type LSTM

Decoder Hidden Units 256 Decoder Layer Norm. On
Learning Rate β 5 × 10−4 Learning Rate α 5 × 10−4

Optimization Method Adam Activation function Tanh
Discount Factor γ 0.99 Loss Coefficient c1 0.5

Adv. Discount Factor λ 0.95 Clipping Constant ε 0.2
Gradient Step m 3

Low fat and density High fat and density

Fig. 5. Examples of generated DAGs.

5.1 Algorithm Hyperparameters
The MRLCO is implemented via Tensorflow. The encoder
and decoder of the seq2seq neural network are both set as
two-layer dynamic Long Short-Term Memory (LSTM) with
256 hidden units at each layer. Moreover, the layer nor-
malization [26] is added in both the encoder and decoder.
For the training hyperparameters setting in MRLCO, the
learning rate of “inner loop” and “outer loop” are both set
as 5 × 10−4. The coefficient c1 is set as 0.5 and the clipping
constant ε is set as 0.2. The discount factors γ and λ are set as
0.99 and 0.95, respectively. The number of gradient steps for
“inner loop” training, m, is set as 3. Overall, we summarize
the hyperparameter setting in Table 2.

5.2 Simulation Environment
We consider a cellular network, where the data transmission
rate varies with the UE’s position. The CPU clock speed of
UE, fUE, is set to be 1 GHz. There are 4 cores in each VM of
the MEC host with the CPU clock speed of 2.5 GHz per core.
The offloaded tasks can run in parallel on all cores, thus the
CPU clock speed of a VM, fvm, is 4 × 2.5 = 10 GHz.

Many real-world applications can be modelled by DAGs,
with various topologies and task profiles. To simulate the
heterogeneous DAGs, we implement a synthetic DAG gen-
erator according to [27]. There are four parameters control-
ling topologies and task profiles of the generated DAGs: n,
fat, density, and ccr, where n represents the task number, fat
controls the width and height of the DAG, density decides
the number of edges between two levels of the DAG, and ccr
denotes the ratio between the communication and compu-
tation cost of tasks. Fig. 5 shows the generated DAGs from
low fat and density to high fat and density examples.

We design three experiments to evaluate the perfor-
mance of MRLCO under dynamic scenarios. The first two

experiments simulate the scenarios where UE has different
application preferences represented by various topologies
and task numbers. While the third experiment simulates
the scenarios where UE has varying dynamic transmission
rates. For all experiments, the data size of each task ranges
from 5 KB to 50 KB; the CPU cycles required by each task
ranges from 107 to 108 cycles [5]. The length of child/parent
task indices vector p is set as 12. We randomly select ccr
from 0.3 to 0.5 for each generated DAG, since most of mo-
bile applications are computation-intensive. The generated
datasets in each experiment are separated into “training
datasets” and “testing datasets”. We consider learning an
effective offloading policy for each dataset as a learning task.
The MRLCO firstly learns a meta policy based on “training
datasets” by using Algorithm 1. The learned meta policy
is then used as the initial policy to fast learn an effective
offloading policy for the “testing datasets”.

We compare MRLCO with three baseline algorithms:

• Fine-tuning DRL: It first pretrains one policy for all
“training datasets” using the DRL-based offloading
algorithm proposed in [12]. Next, it uses the param-
eters of the trained policy network as an initial value
of the task-specific policy network, which is then
updated on the “testing datasets”.

• HEFT-based: This algorithm is adapted from [4],
which firstly prioritizes tasks based on HEFT and
then schedules each task with earliest estimated fin-
ish time.

• Greedy: Each task is greedily assigned to the UE or
the MEC host based on its estimated finish time.

5.3 Results Analysis
In the first experiment, we generate DAG sets with differ-
ent topologies to simulate the scenario where users have
different preferences of mobile applications. Each dataset
contains 100 DAGs of similar topologies with the same
fat and density, which are two key parameters influencing
the DAG topology. We set the task number for each gen-
erated DAG as n = 20 and set fat ∈ {0.4,0.5,0.6,0.7,0.8},
density ∈ {0.4,0.5,0.6,0.7,0.8}. 25 DAG sets are generated
with different combinations of fat and density. Each DAG
set represents the application preference of one mobile user
and consider finding the effective offloading policy for a
DAG set as a learning task. We randomly select 22 DAG sets
as the training datasets and the other 3 as unseen testing
datasets. We train the MRLCO and the fine-tuning DRL
method on the training datasets and evaluate MRLCO and
baseline algorithms on the testing datasets.

During training of MRLCO, we set the meta batch size
as 10, thus 10 learning tasks are sampled from ρ(T ) in
the “outer loop” training stage. At each “inner loop”, we
sample 20 trajectories for a DAG and conduct m policy
gradient updates (m = 3) for the PPO target. After training,
we evaluate the MRLCO and fine-tuning DRL method by
running up to 20 policy gradient updates, each samples 20
trajectories for a DAG on the testing datasets. Fig. 6 shows
the performance of the MRLCO and baseline algorithms
with different DAG sets. Overall, the Greedy algorithm has
the highest latency, while the MRLCO obtains the lowest
latency. Fig. 6a demonstrates that the MRLCO is better than



9

0 2 4 6 8 10 12 14 16 18 20
number of gradient update steps

790

800

810

820

830

840

850
la

te
nc

y 
(m

s)

Fine-tuning DRL
MRLCO

HEFT-based Greedy

(a) Topology I

0 2 4 6 8 10 12 14 16 18 20
number of gradient update steps

650

675

700

725

750

775

800

825

850

la
te

nc
y 

(m
s)

Fine-tuning DRL
MRLCO

HEFT-based Greedy

(b) Topology II
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(c) Topology III

Fig. 6. Evaluation results with different DAG topologies.
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(a) n = 20
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(c) n = 40

Fig. 7. Evaluation results with different task numbers.
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(a) Rul = Rdl = 5.5 Mbps
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(b) Rul = Rdl = 8.5 Mbps
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(c) Rul = Rdl = 11.5 Mbps

Fig. 8. Evaluation results with different transmission rates.

the HEFT-based algorithm after 9 steps of gradient update,
while the fine-tuning DRL method consistently performs
worse than the HEFT-based algorithm. This indicates that
the MRLCO can adapt to new tasks much more quickly
than the fine-tuning DRL method. In Fig. 6b and Fig. 6c,
the MRLCO and the fine-tuning DRL method with 0 step
of gradient updates already beat the two heuristic-based al-
gorithms: HEFT-based and the Greedy algorithms, because
both the MRLCO and fine-turning DRL learn the updated
policy based on the pre-trained models instead of learning
from scratch. These heuristic-based algorithms use fixed
policies to obtain the offloading plan, which cannot adapt
well to different DAG topologies.

The second experiment aims to show the influence of
the task number n on the performance of different al-
gorithms. We randomly generate 6 training datasets with

n ∈ {10,15,25,35,45,50} and 3 testing datasets with n ∈
{20,30,40}. In each dataset, we generate DAGs by ran-
domly selecting fat from {0.4,0.5,0.6,0.7,0.8}, density from
{0.4,0.5,0.6,0.7,0.8}, and ccr from 0.3 to 0.5, thus the distri-
butions of DAG topologies of all datasets are similar. In this
experiment, we set the meta batch size as 5 and the rest of
the settings the same as the first experiment. Fig. 7 shows
that both the MRLCO and the fine-tuning DRL method
outperform the HEFT-based algorithms after a few gradient
updates, and are consistently better than the Greedy from
step 0 of gradient updates. Moreover, MRLCO adapts to
new learning tasks faster than the fine-tuning DRL method.
For example, Fig. 7b shows that, after one step gradient
update, the latency of MRLCO decreases sharply and is less
than both fine-tuning and HEFT-based algorithms. After
20 gradient updates, MRLCO obtains the lowest latency
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TABLE 3
The comparison of MRLCO and baseline algorithms in average latency (ms) on different testing datasets,

N/A denotes cases unable to find optimum.

Testing dataset Heuristic Algorithms Fine-tuning DRL MRLCO
Optimal HEFT-based Greedy update steps(20) update steps(100) update steps(20) update steps(100)

Toploogy I 679.31 800.75 847.73 812.32 789.92 791.03 722.63
Toploogy II 555.46 802.46 848.43 688.05 636.49 651.42 601.93
Toploogy III 605.05 814.39 859.03 778.52 712.79 729.63 641.92

n = 20 689.21 838.31 893.62 818.14 802.50 802.41 743.42
n = 30 N/A 1222.93 1276.70 1185.47 1152.07 1174.55 1098.43
n = 40 N/A 1527.47 1589.66 1493.11 1432.41 1472.53 1397.63

Rul = Rdl = 5.5 Mbps 770.10 929.79 990.58 945.82 901.36 897.73 831.58
Rul = Rdl = 8.5 Mbps 628.21 757.99 763.49 736.81 701.75 703.38 674.93
Rul = Rdl = 11.5 Mbps 524.14 649.15 684.97 589.33 570.19 567.88 548.26

compared to the baseline algorithms.
We conduct the third experiment to evaluate the per-

formance of MRLCO with different transmission rates.
Learning the offloading policy for each transmission rate
is considered as an individual learning task. We randomly
generate the DAG dataset by setting n = 20 and other
parameters the same as the second experiment. In addition,
we implement Optimal algorithm via exhaustively searching
the solution space to find the optimal offloading plan. We
conduct meta training process based on randomly selected
transmission rates from 4 Mbps to 22 Mbps with a step
size of 3 Mbps. We then evaluate the trained meta policy
among transmission rates from {5.5 Mbps, 8.5 Mbps, 11.5
Mbps}, which are unseen in the training procedure. Fig. 8
shows that the MRLCO again adapts to new learning tasks
much faster than the fine-tuning DRL method in all test sets
and achieves the lowest latency after 20 gradient updates.
In some cases (Fig. 8b and Fig. 8c), MRLCO even achieves
the lowest latency at the initial point.

Table 3 summarizes the average latency of all algorithms
on different testing datasets. Overall, the MRLCO outper-
forms all heuristic baseline algorithms after 20 gradient
update steps. The MRLTO and fine-tuning DRL method will
get better results with more update steps. Table 3 also shows
the performance of the fine-tuning and the MRLCO algo-
rithms after 100 update steps. Compared to the fine-tuning
algorithm, the MRLCO achieves better result after both 20
and 100 update steps. However, there are still gaps between
the results of MRLCO and the Optimal values. One possible
solution could be to integrate the seq2seq neural network
with another sample efficient off-policy MRL method [28],
which is a direction for future work.

6 RELATED WORK

The task offloading problem in MEC has attracted sig-
nificant research interests [5], [10], [11], [13], [29]–[40]. In
general, there are two task models used in the related
work: task model for binary offloading and that for partial
offloading [29]. In the task model for binary offloading, there
are no inner dependencies among computation tasks for
an application. Dinh et al. [5] aimed to find an offloading
plan for a set of tasks among different access points and
MEC hosts, in order to achieve the minimal joint target of
latency and energy. Chen et al. [30] focused on computation

offloading for independent tasks in a software-defined ultra-
dense network. They formulated the task offloading prob-
lem as a mixed integer non-linear program and solved it by
using decomposition and heuristic methods. Hong et al. [31]
proposed an approximate dynamic programming algorithm
for computation offloading to achieve the optimal quality
of experience. In the task model for partial offloading, ap-
plications were composed of tasks with inner dependencies,
which is able to achieve a fine granularity of computation
offloading, leading to better offloading performance. Wang
et al. [32] modelled both the applications and the computing
system as graphs and proposed an approximation algorithm
for finding the task offloading plan to obtain the lowest cost.
Neto et al. [33] implemented a user-level online offloading
framework for Android applications, aiming at minimizing
the remote execution overhead. Zanni et al. [34] proposed
an innovative task selection algorithm for Android applica-
tions, achieving method-level granularity of offloading.

In order to adapt the offloading strategies for dynamic
scenarios, over recent years, DRL has been widely applied
to solve task offloading problems in MEC systems. Dinh et
al. [10] focused on the multi-user multi-edge-node compu-
tation offloading problem by using deep Q-learning. Chen
et al. [11] considered an ultra-dense network, where multi-
ple base stations can be selected for offloading. They also
adopted deep Q-learning to obtain the offloading strategy.
Huang et al. [38] proposed a DRL-based offloading frame-
work which jointly considers both the offloading decisions
and resource allocations. Zhan et al. [36] proposed an effi-
cient task offloading method combining PPO and convolu-
tional neural networks. Tan et al. [37] proposed a deep Q-
learning based offloading method considering constraints of
limited resources, vehicle’s mobility and delay. Huang et al.
[13] proposed a DRL-based online offloading framework to
maximize the weighted sum of the computation rates of all
the UE. Ning et al. [39] proposed a deep Q-learning based
method for jointly optimising task offloading and resource
allocation in MEC. The existing studies mostly assume the
offloading problem as one learning task and apply conven-
tional DRL algorithms to solve the task. However, many
DRL algorithms suffer from poor sample efficiency — when
facing new scenarios, those DRL-based offloading methods
need long training time to find the effective policy, which
impedes their practical deployment. To address this issue,
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our offloading method adopts an MRL approach which can
efficiently solve new learning tasks with the requirement of
only few gradient update steps and a small amount of data.
As a result, our method can quickly adapt to the changes
of environments with the requirement of only few training
steps rather than fully retraining the offloading policy from
scratch. With the low demands of computation and data,
our method can efficiently run on the resource-constrained
UE using its own data.

7 DISCUSSION

MRLCO has many advantages over the existing RL-based
task offloading methods, such as learning to fast adapt in a
dynamic environment and high sample efficiency. Beyond
the scope of task offloading in MEC systems, the proposed
MRLCO framework has the potential to be applied to
solve more decision-making problems in MEC systems. For
instance, content caching in MEC aims to cache popular
contents at MEC hosts to achieve high Quality-of-Service
(QoS) for mobile users and reduce the network traffic.
While MEC hosts can have different caching policies to suit
the dynamic content preferences and network conditions
of users in different areas. The proposed MRL framework
can be adapted to solve this problem through executing
the “outer loop” training at cloud servers to learn a meta
caching policy and the “inner loop” training at MEC hosts
to learn a specific caching policy for each MEC host.

Even though MRLCO has many benefits to MEC sys-
tems, there are several challenges for further exploration.
In this paper, we consider stable wireless channels, reli-
able mobile devices, and sufficient computation resources.
Thus, the MRLCO will not break down when increasing
the number of users. However, when operating at large-
scale, some UE as stragglers may drop out due to broken
network connections or insufficient power. Considering the
synchronous process of “outer loop” training that updates
the meta policy after gathering parameters from all UE, the
stragglers might affect the training performance of MRLCO.
One way to solve this issue is to apply an adaptive client
selection algorithm which can automatically filter out strag-
glers and select reliable clients to join the training process
based on their running states.

8 CONCLUSION

This paper proposes an MRL-based approach, namely
MRLCO, to solve the computation offloading problem in
MEC. Distinguished from the existing works, the MRLCO
can quickly adapt to new MEC environments within a small
number of gradient updates and samples. In our proposed
method, the target mobile applications are modelled as
DAGs, the computation offloading process is converted to a
sequence prediction process, and a seq2seq neural network
is proposed to effectively represent the policy. Moreover, we
adopt the first-order approximation for the MRL objective
to reduce the training cost and add a surrogate clipping
to the objective so as to stabilize the training. We conduct
simulation experiments with different DAG topologies, task
numbers, and transmission rates. The results demonstrate
that, within a small number of training steps, MRLCO

achieves the lowest latency compared to three baseline
algorithms including a fine-tuning DRL method, a greedy
algorithm, and an HEFT-based algorithm.
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