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Abstract—Thanks to the advantages of zero carbon dioxide
emissions and low operation cost, the number of on-road electric
vehicles (EVs) is expected to keep increasing. They usually
get charged through charging stations powered by either the
grid or renewable plants. Due to the potential difference in
electricity price between the grid and the renewable plants,
an EV may purchase electricity at charging stations powered
by renewable plants, and then discharge the surplus energy
in the battery to the grid, to gain profits and enhance the
overall renewable energy utilization. In this work, we aim to
optimize the route selection and charging/discharging scheduling
to improve the overall economic profits of EVs, taking into
account the constraints, including the time-varying energy supply
caused by the intermittent generation of renewable energy, the
limited number of charging piles in a charging station, and the
traveling delay tolerance of EVs. Firstly, a time-expanded vehicle-
to-grid graph is designed to model the objective and related
constraints. Then, we apply an AI-based A* algorithm to find
K-shortest paths for each EV. Finally, a joint routing selection and
charging/discharging algorithm, namely, K-Shortest-Paths-Joint-
Routing-Scheduling (KSP-JRS), is proposed to minimize the total
cost of EVs by maximizing their revenue from energy discharging
under time constraints. The proposed approach is evaluated
using the real traffic map around Santa Clara, California. The
simulation, with different numbers of testing EVs, shows the
feasibility and superiority of the proposed algorithm.

Index Terms—Vehicle-to-grid, renewable energy, route selec-
tion, charging/discharging, vehicular energy network.

I. INTRODUCTION

CO untless vehicles powered by the fossil fuel are continu-
ously releasing greenhouse gases, causing environmental

pollution and climate change in this century. According to
statistics, oil demands will continue to rise by 54% by 2035.
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In order to cope with the pollution and exhausting of the
fossil fuel, clean energies, including electricity, have received
great supports from governments recently. A large number of
charging stations are built in cities to stimulate the utilization
of EVs [1]. However, with the rising number of EVs, high
penetration levels of EVs may cause the risk of overload of
the grid [2] [3].

Vehicle-to-grid (V2G) [4] [5] technology is proposed to
utilize the two-way energy transmission between a charging
station and an EV, where the EV can offload its surplus energy
to the grid. Thus, EVs which carry batteries with high storage
capacity can be regarded as energy transporters in the city, and
help alleviate the energy shortage at peak hours in the power
grid. Like charging, however, discharging of a large number
of EVs to the power grid can also bring challenges in terms
of load stability and energy supply quality since unmanaged
and self-determined EV discharging can cause burst power
injections, overloads, and voltage fluctuations [6].

New technologies have enabled efficiency improvement in
generating electricity from renewable sources, such as wind
power and solar power. By 2018, renewable energy consump-
tion had accounted for 26% of world energy consumption [7].
In some cities, both types of charging stations powered by
the renewables or the grid are built. Energy plants powered
by renewable energy have demonstrated better economical
efficiency on account of the integration of renewable energy
with traditional grids. Generally, EVs can enjoy less cost for
charging at charging stations powered by renewable energy
than those powered by the traditional grid [8]. Therefore,
EVs can trade energy for profit in stations powered by the
traditional grid because of the price difference. However, the
electricity price can vary [9] from place to place, which needs
to be taken into consideration. Moreover, with the continu-
ous advancement of charging technology, the time spent on
charging and discharging is dropping. Thus, the time cost of
charging is outweighed by the revenue that users get from
trading electricity.

Although the problem of minimizing the travel cost for
EVs has been discussed in many previous works, such as
minimizing the distance traveled or joint routing and charging
optimization [10] [11], they fail to consider the discharging
ability of EVs [4] which can bring profit. Some work utilizes
discharging behaviors of EVs, however, only at fixed loca-
tions [6] and ignoring waiting queue at stations [12]. Ref. [13]
uses HMM (Hidden-Markov-Model) to model queueing delays
at stations without taking the competition between scheduled
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EVs into account, which makes the method not practical.
Furthermore, this scenario is not similar to those on charger
deployment of wireless rechargeable networks with mobility
consideration, since the location of stations is arbitrarily given
and the decision variables are EV route selection and charg-
ing/discharging scheduling.

In this paper, we consider a vehicular energy network
consisting of two types of charging stations located at some
key traffic intersections in the urban area, i.e., charging stations
powered by renewable energy (denoted as R), and those
powered by the traditional grid (denoted as G). EVs inside the
network can be charged at R-type stations and sell residual
energy to G-type stations, so as to earn revenue. The goal
is achieved by choosing optimal routes and making optimal
charging/discharging decisions at each R-type/G-type station
(e.g., waiting, charging, discharging, passing) for EVs, under
the constraints of time-varying power supply, charging space
availability, as well as the individual delay tolerance. The
contributions of this paper are mainly three-fold:

1) To our best knowledge, this is the first work that jointly
optimizes EVs’ path selections and charging/discharging deci-
sions considering both renewable and grid stations with limited
charging spaces and supplied power. We aim to minimize the
total cost of EVs by maximizing the revenue of them while
satisfying the restrictions on their traveling time.

2) We first model the system using a time-expanded V2G
graph. A number of practical factors, such as travel time
constraints, limited spaces at charging stations, time-varying
energy supplies, detours and waiting behaviors of EVs are
captured in this time-expanded graph. Next, the large-scale
nonlinear mixed integer programming problem originated from
the constraints is solved by two steps based on new decision
variables we designed. The first step is to find the possible
routes for each EV, then the second step is to minimize the
cost of all EVs based on the possible routes.

3) To calculate routes more efficiently, we use the artificial
intelligence-based A* algorithm to solve the first sub-problem,
and then apply the integer linear programming on the second
sub-problem. We design an algorithm that can automatically
decide the manual parameter K, to decrease computational
cost. We evaluate the proposed algorithm based on the urban
traffic map of Santa Clara, California, to demonstrate the
actual performance of our algorithm.

The remainder of the paper is organized as follows: In
Section II, we review the related work. System model and
problem formulation are presented in Section III. The KSP-
JRS solution is proposed in Section IV. Then, in Section V,
simulations are concluded on the urban traffic map of Santa
Clara, California to evaluate the performance. Finally, Section
VI concludes this work.

II. RELATED WORK

Optimal routing and charging of vehicles has been studied
in many literatures [14]. Reference [15] aims to determine the
best route from the start point to the destination for each EV to
satisfy the welfare of passengers (in terms of travel time and
distance), while maximizing the energy efficiency (by reducing

charging cost), subject to some constraints (e.g., charging
station availability). The problem is solved as a mixed-integer
quadratically constrained programming problem. In another
literature [11], an en-route charging navigation resorting to
a joint charging and routing optimization is considered, which
is different from traditional route planning work tending to
find a shortest path. From another aspect, price control is
used to motivate drivers to follow the coordination of the
charging scheduling [16]. In [17], charging decisions are made
according to the current information in the grid.

Above works only consider the one-way charging from
stations to vehicles. As the vehicle-to-grid technology has
enabled energy transfer from vehicles to the grid, the energy
flow is becoming bidirectional. Together with the advancing
of the vehicle-to-vehicle energy exchange, a concept called
vehicular energy network (VEN) is proposed in [18] to im-
prove the efficiency of the energy delivery system. A more
extensive work considers vehicle-to-home, vehicle-to-vehicle
and vehicle-to-grid is further discussed in [19]. Since EVs have
energy storage and controllable loads, they can discharge to
the grid to help smooth the fluctuations [20]. In [21], authors
aim to schedule the elastic load in the time domain, such as
EVs, to minimize the power fluctuation in the power grid.
By exploiting both spatial and temporal coordinations, the
authors present an online EV charging/discharging strategy
considering range anxieties [3]. A complete solution method-
ology to multi-EVs pick up and delivery routing problem
that considers G2V charging and V2G discharging has been
discussed in [13].

As EVs can discharge electricity to the grid, they have been
employed as means of energy transporting in some works,
especially for charging stations enabled with renewable energy
harvesting capabilities, in order to improve the utilization
of renewable energy [22]. The work focuses on maximizing
energy delivery efficiency, and model the energy route problem
as network flow, as well as solving it using the bipartite
graph. Wang et.al. propose a blockchain based secure incentive
scheme for energy delivery in VEN. To improve the efficiency
of energy transmission, it may also apply a store-n-forward
strategy, such as an intermediate energy storage or throw-
box [23]. Under the uncertainty of EV arrivals rate, electricity
prices and renewable energy supply, the authors propose an
Lyapunov optimization-based online algorithm to fulfill the
charging demands of EVs with the minimal purchase of energy
from the grid [24]. Li et.al. aim to maximize the overall EV
charging energy in a power distribution system, given the
voltage drop and maximum charging power constraint. The
routing problem for EV charging coordination among charging
stations is also considered under the EV range of anxiety
constraints [25].

There are few works that have considered the scenario
where EVs can sell their additional energy for profit [26].
V2V trading is one of them and assures that an EV can
trade energy with another EV efficiently [27]. To trustfully
find a potential trading partner, the scheme in [28] can be
adopted. In [29], authors utilize EVs on the road to advertise
EV charging station. The objective is to maximize the profit
of recruited EV and charging stations. There is an interesting
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work [30], which uses user owned EV to charge at work and
then compensate to the household usage according to the time-
based electricity pricing where the price is predetermined. This
only reduces the energy cost of the user himself.

The major difference between this paper and existing works
is that we consider two types of charging stations and aim
to maximize revenue of EVs by selling redundant energy
purchased at renewable charging stations to the grid. The
action is optimized by choosing optimal routes and making
optimal decisions at each station under practical constraints.

III. SYSTEM MODEL AND PROBLEM FORMULATION

charging rate: 4kWh/min

charging/discharging 

rate: 4kWh/min

Fig. 1: An illustration of the V2G network for EVs.

In this section, a simple example is used to illustrate two
problems the paper aims to solve. As shown in Fig. 1, each
node represents a charging station. There is an EV which
travels from node 1 to node 4 and the maximal traveling
time allowance is 30 minutes. We set a weighted vector
on each directed edge to indicate cost (energy cost, time
cost, economic cost) of an EV passing through this road
segment. In this example, both charging rate and discharging
rate are 4kWh/min. Charging fee in node 2 is 0.1$/kWh,
and selling price in node 3 is 0.25$/kWh. The maximum
power supply of the charging station fluctuates with time
due to the uncertainty of renewable energy. E.g., node 2 can
provide (80, 120, 110, 90)kWh energy in time slot (1, 2, 3, 4)
respectively. If the car chooses the shortest path, the route is
[1, 2, 4]. Then, this journey will cost 1.5$ and 9 minutes. If
this EV chooses another route, it spends 14.4$ (12kWh/min·
12min · 0.1$/kWh) and 12 minutes on charging at node 2
and then spends 6 minutes on selling part of its own energy
at node 3 to earn 18$ (12kWh/min× 6min× 0.25$/kWh).
Finally it reaches the destination (node 4). The economic cost
of this route is −1.6$ (0.5$ + 0.5$ + 1$ + 14.4$ − 18$),
and the EV is still able to arrive at the destination within 30
minutes. Comparing these two driving schemes, we find that
only considering the shortest path for EVs in V2G network
is not the optimal choice, especially when those EVs have
sufficient travel time. EVs can purchase cheap electricity at
R-type charging stations and sell some at G-type charging
stations to earn profit, which can effectively reduce the final
travel cost.

A. System Model

As illustrated above, we consider a set of EVs traveling from
one location to another in the city, they will go through a few
charging stations, in which some are powered by renewable

energy, the others are connected with the grid. Along the
journey, each EV may choose when, where and how much
to charge/discharge from/to charging stations. Electricity from
renewable sources is cheaper because it costs less to produce,
whereas electricity from the grid is more expensive. EVs can
earn money by buying some electricity at renewable charging
stations and selling it to the grid. The price of selling one
unit of power to grid is lower than buying one unit of power
from the grid. Nowadays, vehicles are not only transportation
means, the connected vehicle paradigm is to empower vehicles
to be communication and computation means [31]. Therefore,
they definitely have some spare time during their trips. The
purpose of our paper is to find a strategy that minimizes the
total cost of EVs by maximizing the sum of revenue of all
EVs and ensure that each EV reaches its destination within its
maximum tolerance time.

Before starting to solve this problem, we define some
objects in the proposed V2G traffic network.

Charging Station: It can be divided into two types, one
powered by renewable energy (denoted as R-type), and others
connected to the traditional grid (denoted as G-type). EVs
can purchase electricity either from R-type or G-type, but
can only sell electricity to G-type. Therefore, there are three
kinds of behaviors at charging stations, i.e., charging at R-type,
charging at G-type and discharging at G-type. EVs can also
choose not to stay at the charging station, which is represent
by passing through waiting node of the charging station.

Charging Space: Each charging station i is accompanied
by a fixed number of charing spaces, denoted by Parki. When
the number of EVs arriving at the charging station exceeds the
upper limitation of parking spaces, some late arrival vehicles
have to wait outside until there are parking spaces available.

Power Supply: The amount of electricity supplied by the
charging station varies with time. We denote the maximum
electricity supplied by station i in the j time slot by Powi

j .
One of the reasons is that the source of the renewable energy
station itself is unstable, and because of the high and low peaks
of traffic in the city, the inventory power of the power station
will have obvious fluctuations.

Waiting Queue: If the charging station does not have
enough space or sufficient power in a period of time, some
EVs may be scheduled to wait outside or detour based on
the calculated decision. The waiting process do not increase
economic costs but time. In order to simplify the problem,
we do not limit the size of the waiting queue, because in this
scenario, the problem also concerns delay tolerance and the
algorithms consider load balancing of all charging stations.
Therefore, the vehicle will not stay in the waiting queue
indefinitely unless the power supply load of city grid reaches
the upper limitation.

EV: The vehicle car has an upper limit for energy storage,
and has initial energy Ecar

init at the beginning, and each vehicle
has the maximum tolerated travel time Delaycarmax. In this
paper, the charging rate of EVs at the charging station is fixed,
donated as Powcar, where subscript car represents different
EV.

Start point and destination: We denote the starting point
and destination by Start and T . EVs can buy and sell power
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Cost(kWh),Time(min),Cost($)

Fig. 2: An illustration of the time-expanded V2G network that
is generated by the time expansion of Fig. 1. Each row of
nodes is a different instance of the network at different time
slots. Start and V T are starting node and virtual destination of
an EV, respectively. Renewable and Grid represent renewable
charging stations and grid charging stations, respectively.

Fig. 3: The node expansion of charging station powered by
traditional power grid.

at Start and T , if they are charging stations.
Road: When an EV is running on the road, it consumes

power and accumulates the traveling time. Without loss of
generality, we assume the road is one-way only. After an EV
leaves one station, it will not be able to find a path back to
this point, so the road map is loop-free. We use a weighted
vector [Costenergy, Costt, Costdollar] with three elements to
describe the EV’s energy loss, time-consumption, and profit
changes on this road.

According to the above definition, we are going to abstract
the problem into a graph problem. Since the number of
available charging slots and the available energy of the power
station are related to time, we must expand the time in the
static image to establish a time-expanded graph.

B. Time Expanded V2G Network

Considering a large number of EVs in a city which have dif-
ferent start points and destinations, we want to optimize their
travel expenses, by developing a joint optimized travel plan
for them. Since the routing decisions of the EVs cross over a
period of time, we need to expand the static network topology
into a time expanded graph. In Fig. 2, we create an instance
of the expanded network graph on each time slot from Fig. 1.
nodei is expanded into a vector [node1i , node

2
i , ..., node

n
i ].

Fig. 4: The node expansion of charging station powered by
renewable energy.

Superscripts and subscripts represent different time slots and
node name, respectively. Each time slot is 3 minutes. The
yellow vertical directional edge presents duration of an EV
staying at the charging station. V T is a virtual node which is
created to facilitate the operation of the algorithm. Here we
can find several edges between node 4 and V T because node
4 is the actual destination for an EV. If another EV wants to
go to node 3 as destination, there will be several edges from
3 to V T instead. So the time-expanded graph can be used for
represent multiple pairs of start nodes and destinations.

In Fig. 2, we finally build the time-expanded network based
on the previously mentioned definition. Yellow directed edges
represent EVs staying at the station for one time slot. For
each edge, we use a weighted vector to describe the loss of
energy, time and money, i.e. [Costenergy, Costt, Costdollar].
Their values are fixed numbers. Here we use a simple example
to illustrate how an electric car can reduce traveling cost by
selling energy. If absolute energy loss of passing through an
edge is greater than the remaining energy of the EV, the EV
will not choose to pass through this edge.

In fact, the EV does not necessarily get charged when it
passes a charging station. It may be waiting or selling energy,
so the yellow directed edges in Fig. 2 represent the merger of
the three behaviors (charging, selling, waiting). The behavior
of detouring is represented by passing through node W . The
detailed explanation of the yellow line is shown in Fig. 3 and
Fig. 4.

Fig. 3(a) is a part taken from time-expanded graph Fig. 2.
Fig. 3(b) is a more specific model display of Fig. 3(a). In
Fig. 3(b), we can extend a grid station node into three node
instances namely S(selling), W (waiting) and G(charging).
When an EV enters a grid charging station, if there are
charging piles available, the EV will enter the child node S or
G. The green edge and red edge in Fig. 3(b) represent that an
EV is charging or selling energy in the time slot, respectively.
An EV sells redundant electricity to the grid at charging station
3 between the time slot 2 and the time slot 3. This EV will earn
3 dollars, consume 12kWh energy and 3 minutes. On the other
hand, if there is no charging pile available, the EV will wait at
child node W along the blue directed edge in Fig. 3(b) until
there are idle charging piles available, then it enters the G or S
from W . Similarly, the behaviors of EVs in renewable stations
can be extended into two sub-nodes named W (waiting) and
R(charging). In Fig. 4(b), the green edge and blue edge mean
that an EV is charging energy or waiting, respectively. By
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TABLE I: Useful Notations

Variables Description
V The set of all cars
Z The set of all nodes in the time-expanded graph
H The set of all directed edges between different time

instances of charging stations in the time-expanded
graph H ∈ Z

Start The start node of one EV
V T Virtual destination node of the time-expanded graph

of one EV
ωe Economic cost of passing through edge e
xcar
e The 0/1 variable that indicates whether an EV named

car passes edge e
in(j) The set of incoming edges of the node j
out(j) The set of outcoming edges of the node j
ycari The current remaining power when the EV named car

travels to node i
Elece The energy cost of passing through edge e
Parkemax The maximum number of charging piles of the charg-

ing station to which the edge e linked
Powcar

charge The charging rate of an EV named car

Powcar
discharge The discharging rate of an EV named car

Powe
supply The maximum power supply of charging stations to

which the edge e linked
Powe

cap The maximum power capacity of charging stations to
which the edge e linked

Emax
car The maximum battery capacity of an EV named car

wi Economic cost of path i
rcari The 0/1 variable that indicates whether EV named car

select route i
Acar The route set of an EV named car.
R(e) The route set that each route includes edge e.
E The set of all edges the in time-expanded graph.
tcari , ncari tcari and ncari are actual travel time and maximum

tolerance time of cari, respectively.

establishing such a time-expanded graph, the dynamics of the
entire network graph are accurately represented.

C. Problem Formulation
Given the time expanded V2G network graph, our objective

is to find a global route scheduling and charging/discharging
decisions for a set of EVs to minimize the total cost by trading
electricity. The objective subjects to charging space constraints
and energy supply constraints. For each selected route of any
EV, its traveling time should be within the tolerance time. The
variables used in this paper is shown in the Table I. Here we
describe the objective function as shown in Eq. (1):

Min: ∑
car∈Z

∑
e∈E

ωe · xcar
e (1)

where xcar
e indicates whether an edge e in the network is

selected for an EV’s route. xcar
e ∈ {0, 1}. ωe represents

the economic cost when an EV (car) passes through edge
e along its route. This objective function is constrained by the
following equations.

Route Continuity
For route continuity, the in-degree is equal to the out-degree

in intermediate nodes. This concept of routing is very common
in the graph theory.

∑
e∈in(j)

xcar
e −

∑
e′∈out(j)

xcar
e′

=

 −1 j = Start
0 ∀j ∈ {Z\Start, V T}
1 j = V T

(2)

where in(j) and out(j) are in-degree road set and out-degree
road set, respectively. The in-degree of node V T in the route
is one more than its out-degree. Similarly, the out-degree of
node V S in the route is one more than its in-degree.

Conservation of Energy
To describe the transmission of energy in the time-expanded

graph, we denote ycarj as the remaining power when the car
arrives at node j. i is one of the parent nodes connected to
j. The remaining energy of an EV at node j is equal to the
remaining energy when the EV is at parent node i (i.e. ycari )
plus the energy consumption Elece which can be negative
or positive. Equation (3) describes how the carried electricity
changes when an EV leaves node i for j,∑

e∈in(j)

ycari · xcar
e +

∑
e∈in(j)

Elece ·xcar
e = ycarj (3)

where xcar
e denotes whether or not we choose edge e for the

car, which has an integer value of 0 or 1.
We can only select one road e to pass between node i and j,

therefore, we introduce the following Equation (4) to represent
this constraint. ∑

e∈in(j)

xcar
e = 1 (4)

where in(j) is in-degree node set of j. We notice that there are
two variables multiplied by the other in Equation (3), i.e. xcar

e

and ycari , which makes the constraints nonlinear and tricky to
be solved by using the general solver.

Routing Feasibility∑
car∈V

xcar
e ≤ Parkemax ∀e ∈ H (5)

∑
car∈V

Powcar
charge ·xcar

e ≤ Powe
supply ∀e ∈ H (6)

∑
car∈V

Powcar
discharge ·xcar

e ≤ Powe
cap ∀e ∈ H (7)

0 ≤ ycari ≤ Emax
car ∀i ∈ Z ∀car ∈ V (8)

xcar
e ∈ {0, 1} ∀car ∈ V (9)

Time Constraint

tcari ≤ ncari , size(E) ∝ max{ncar1 , ncar2 , ..., ncarh} (10)

Here we define the upper and lower bounds of the variables
in routes. Eq. (10) represents that the actual travel time tcar

of the vehicle cannot exceed its maximum travel time ncar.
The maximum tolerance travel time determines the maximum
time slot and thus it determines the size of the time-expanded
map. Equations (5) and (6) indicate charging space limitation
and the maximum energy supply between two adjacent time
slots for each charging station. If a charging station does not
have available charging space or energy in a period of time,
which means the green edge is fully used, the proposed method
will not schedule other EVs to stay at this charging station.
Equation (7) represents that the power sold by EVs cannot
exceed the capacity of the charging stations. Equation (8)
describes carried electricity of each EV cannot be negative
or greater than its storage. Equation (9) represents that each
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decision variable xv
e is an integer variable. According to the

above definition, the problem has been completely abstracted,
we can find that this is an integer programming problem with
quadratic constraints. The number of quadratic constraints is
Z ∗ K ∗ Cars. This will cost a lot of time to calculate and
even fail to find out the optimal solution even if the network
scale is small.

Therefore, we try to change the way of the problem expres-
sion to find out a more suitable solution for this scene. In the
following part, we are going to propose a two-step method
to solve the joint optimal routing and charging/discharging
problem.

IV. ROUTING CALCULATING AND JOINT ROUTE
SCHEDULING

Considering again the formula description in the previous
section, we find that the combination of formulas except
Equation (3), actually describes the joint optimal shortest
path problem in the acyclic network with negative weights
and linear resource constraints (i.e. limited charging space
and energy supply of charging station). Inspired by the idea
of calculating co-flow in the data center network [32], we
find that using the complete set of paths as candidate so-
lution spaces can effectively solve joint routing scheduling
and charging/discharging decision problem. Then, we can
split the objective into two sub-problems, one for calculating
K shortest path set with energy conservation and resource
constraints, and the other for jointly solving optimal routing
for multi-EVs. As Artificial Intelligence has been applied in
many works [33], we also use it in calculating k-shortest
path set in Section IV-A and integer programming for joint
optimal routing selection in Section IV-B, respectively. Alg. 3
provides a comprehensive overview of how the two algorithms
work together. In order to decide suitable parameter K of
the k-shortest path algorithm, we design a search algorithm
Alg. 4 that automatically determines the parameter K in
Section IV-D.

Alg. 3 solves routing selection and charging/discharging
decision for each EV to maximize the overall revenue based on
each k-shortest path set of every EV we calculated in Alg. 1.
Alg. 3 first constructs a time-expanded graph to describe
the entire scenario in line 1. Then, in line 3, the multiple
constrained K-Shortest-Paths (KSP) problem combined Yen’s
algorithm (Alg. 1) with A* algorithm (Alg. 2) is solved. Next,
a simple integer programming problem is going to be solved
at line 6. Finally, the optimal joint route scheduling is accom-
plished. The full procedure is interpreted in Section IV-C.

A. K-shortest Constrained Path Algorithm

The algorithm proposed in this section is to solve the sub-
problem 1, that is, calculate the EV’s k-shortest paths which
satisfy the resource constraints and the time constraints.

Process to obtain a set of paths has been widely studied
in many literatures. The most classic algorithms are depth-
first search (DFS) and breadth-first search (BFS). However,
both of them cannot be applied to search all paths between
two points because of exponential time complexity. Actually,

Algorithm 1 K-shortest Constrained Path Algorithm(KSP)
Input: Powcar

supply , Powcar
cap Parkemax, Elece, ωe, cars number,

Map, Einitial, K, Start, Destination, Emax
i .

Output: The K-shortest routes of an EV from the start node
to destination.

1: Initial set A, B = ∅, graph = Map, l=1
2: Add the first shortest path calculated by A* algorithm to

set A.
3: Reset the graph and copy A[l] to path
4: for l = 2 : k do
5: for each node j in the route path do
6: rootpath← path(source, j)
7: for each route in A do
8: if route(source, supr)==rootpath then
9: delete graph(j, j + 1)

10: subpath ← A* search(j, sink)
11: if subpath meets the traveling time constraint and

energy conservation then
12: sp← rootpath+ subpath
13: else break
14: if sp does not exist in B then
15: Add sp to B

16: lth route← minsort(B)
17: add lth route to A
18: path← A[l]

19: return A

we do not really need to calculate all possible paths from
the starting point to destination. Users may not be satisfied
with one route that has low profit and high time consumption,
although traveling time may not exceed the tolerance time. In
other words, plenty of routes between Start and V T should
not be considered during the joint route scheduling. Inspired
by this idea, we use K-Shortest Path (KSP) algorithm to reduce
the size of the possible path set. Here we use Yen’s algorithm
(a kind of KSP algorithm) combined with A* algorithm to
calculate a more meaningful route set.

We first briefly introduce some of the two shortest path
algorithms as the background knowledge.

1) Yen’s Algorithm: Yen’s algorithm can compute K-
shortest loop-free paths between two nodes in an acyclic
graph [34]. Alg. 1 explains in detail how to calculate the K
optimal path set that meets resource constraints.

2) A* Search Algorithm: A* search algorithm is an intel-
ligent algorithm for calculating the shortest path between two
points in a weighted graph. It is widely used for path planning
problems in 2-D planes. The key of the algorithm is to set a
heuristic function, which is used to calculate the estimated
distance from the current location to the destination. In two-
dimensional planar scenes, the heuristic function is usually set
to Manhattan distance or Euclidean distance. In our scenario,
since we are using an abstract time-expanded map, we need
to use new heuristic function to estimate distance to the end
point for each charging station in advance, and their estimated
distance should not be overestimated in order to calculate the
appropriate shortest route. We assume that an EV initially has
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Algorithm 2 A* Search Algorithm (A*)
Input: Map, Start, Destination, heuristic.
Output: The shortest route of an EV from the start node to

destination.
1: Initialize the vector gscore and fscore with default value

of Infinity.
2: Put start node into openset.
3: Set gscore[start] and fscore[start] to zero.
4: while openset is not empty do
5: current ← the node with lowest fscore value in

openset.
6: if current == Destination then
7: return shortest route
8: remove the currrent in openset
9: for each neighbor of current do

10: tentativegscore ← gscore[currentnode] + dis-
tance(current, neighbor).

11: if tentative gscore < gscore[neighbor] then
12: gscore[neighbor] ← tentative gscore
13: fscore[neighbor]← tentative gscore + heuris-

tic[neighbor].
14: if neighbor is not in openset then
15: Put neighbor into openset
16: return the shortest route

Algorithm 3 K-shortest Constrained Path - Joint Route
Scheduling for Multi-EVs (KSP-JRS)
Input: Powcar

supply , Powcar
cap Parkemax, Elece, ωe, cars number,

Map, Einitial, K, Start, Destination, Emax
i .

Output: Route set of all EVs with total cost.
1: Build the time-expanded graph Graph based on the road

map.
2: for num of cars do
3: Use Alg. 1 (K-shortest Constrained Path Algorithm)

to calculate alternate route set Acar for each EV car.
4: Assign binary variable rcari for each element in Acar.
5: Combine all set Acar to A = {A1, A2, ..., An}
6: Solve the optimization problem in Equation (12) by solv-

ing the integer programming.
7: return [{R|r1, r2, ...rcars}, SumProfit]. Each element

ri in set R is the selected route for EV i. SumProfit is
the total economic cost of all EVs.

enough energy but not unlimited and do not consider charging
on-road. The estimated distance from a charging station to the
destination is the total economic cost, which the EV continues
to reach the destination along the shortest path based on the
current power and then sells all the remaining power in the
destination, as shown in Eq. 11:

heuristiccari = (ycari − spi,dst) ∗ (pricernew − pricegrid)
(11)

in which heuristic distance of station i of car is calculated.
ycari is the remaining power of an EV car in station i. spi,dest
is the minimum energy cost of driving from i to the destination
dst without considering power constraints. pricernew and

pricegrid are price of charging in renewable stations and grid
stations, respectively. In line 6 of Alg. 1, we use A* search
algorithm (Alg. 2) to calculate the shortest path between the
Start node and V T .

In Alg. 1, set A and B store all i-shortest routes and possible
routes, respectively. The i−th shortest route will be calculated
from line 4 to line 17. In line 11, the sub-path which is
obtained in line 10 will be judged whether the constraints are
satisfied. If the traveling time or carried energy exceeds the
bound of the constraints, this sub-path will be dropped.

B. Joint Route Scheduling

After Alg. 1 being executed, each EV has obtained its
k-shortest paths. In this section, we explain in detail the
operation performed in line 4− 7 in Alg. 3. We first let rcari

be the variable which indicates whether to choose the route i
in the route set Acar of EV car. Then we can obtain variable
vector R = {rcari , ∀car ∈ V, ∀i ∈ Acar}. The objective is to
minimize the total cost of all EVs that travel from the source
to destination. Now we rebuild the abstract formulation of this
problem based on the integer variable vector R. The new math
formulation of this problem is as follows:

Min: ∑
car∈V

∑
i∈Acar

wi · rcari (12)

Subject to: ∑
i∈Acar

rcari = 1 ∀car ∈ V (13)

∑
car∈V

∑
i∈R(e)

rcari ≤ Parkemax (14)

∑
car∈V

∑
i∈R(e)

Powcar · rcari ≤ Powe
max (15)

rcari ∈ {0, 1} (16)

This is an integer linear programming that has∑
car∈V |Acar| variables and |V |+ (2|R|+ 3|G|) ∗ Slots ∗ 2

linear constraints. R(e) in Equation (14), (15) is a subset of
the Acar that each route contains the edge e.

C. The Procedure of Joint Routing Scheduling and Charg-
ing/Discharging Algorithm

Fig. 5 shows the workflow of the proposed algorithm.
Firstly, each EV sends the start location, destination and delay
constraints to the central controller (server). Secondly, the
server uses Alg. 1 to calculate the feasible top K optimal
routes for each EV based on the time expanded graph which
is constructed inside the server. The route here in the time
expanded graph represents the real road mixed with charg-
ing/discharging decisions. At last, the server calculates an
appropriate route for EV through the integer programming
optimizer which is as line 6 in Alg. 3 based on the route
sets we get in the second step. In the next section, we are
going to explain the effect of parameter K and the way to
choose it.
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Fig. 5: Procedure of joint routing scheduling and charging/discharging decision algorithm.

D. The Parameter K of K-shortest Path

Since the vector Acar represents all possible paths that the
EV car will take from its starting point to the destination
within the time allowance, we will get a very large number
of vector collections. This makes the calculation of joint route
scheduling very difficult. However, the optimal route is often
among the top routes in the list. Therefore, regarding these K
paths, the time spent in the calculation will be greatly reduced.
KSP-JRS algorithm and the algorithm using the complete route
set can both calculate the total cost of all EVs and routing
scheme. However, the supported maximum number of EVs
by the two algorithms are different. We use the parameter gap
to represent this difference. The higher the K, the smaller
the gap, with the increasing in the calculating time, and vice
versa. In practice, some EVs may not be able to reach their
destinations on time due to insufficient route plans, if k is too
small. Once the K is calculated appropriately, we can reduce
the amount of calculation and get the optimal path scheduling
scheme simultaneously. Thus, we propose an algorithm Alg. 4
to determine the parameter K for each case.

If Alg. 4 is not possible to calculate a routing scheme for
all EVs (line 3), with the expansion of K (line 4), it will
succeed eventually. The result of the algorithm is equivalent
to the optimal solution calculated by the algorithm using the
complete route set. In order to obtain K more accurately, we
use a binary search between K in the (n− 1)th iteration and
the nth iteration.

V. EXPERIMENTS AND ANALYSIS

A. Experiment Setting

We test the algorithm on a traffic map near Santa Clara,
California, as shown in Fig. 6. The data is synthetic based
on the real highway data of the suburban area in California,
USA. In order to verify the correctness of the proposed KSP-
JRS algorithm, we set up 5 types of EVs and each has a
different start-destination pair, travel time constraint, battery
capacity and initial power, as given in Table II. These EVs are
randomly deployed in the map in each simulation. The traffic
volume is a parameter of the experiment, ranging from 50 to

Algorithm 4 KSP-JRS using auto-determined K

Input: Powcar
supply , Powcar

cap Parkemax, Elece, ωe, cars number,
Map, Einitial, K, S, T , Emax

i , kcarini

Output: Parameter K of each EV, Optimal routing scheme,
Optimal total economic cost

1: Input the time-expanded graph based on the map. kcar =
kcarini .

2: Calculate the joint routing scheme based kcarini ∗cars route
set using Alg. 3.

3: while Calculate the joint routing scheme by using Alg. 3
unsuccessfully do

4: newkcar = kcar ∗ 2
5: Expand the size of Acar from kcar to newkcar.
6: Use the binary search to find kcaropt between newkcar and

kcar, then all vehicles can be scheduled successfully by
Alg. 3 using the parameter kcaropt .

7: return kcaropt of each EV, routing scheme, total economic
cost.

250. In the traffic network diagram, we use a directed acyclic
graph, and randomly place 7 charging stations, among which
4 are renewable energy powered. We use black and green
nodes to represent grid charging stations and renewable energy
charging stations, respectively. The energy consumption due to
detour can be predicted using velocity, like the method in [35]
and [36]. Scheduling and decisions are conducted in a time
slot-based manner, and each time slot is 3 minutes long. The
duration of each simulation is 20 time slots in total, which
guarantees all EVs will finally reach their destinations.

In our experimental scenario, we consider that the total
energy supply of charging stations dynamically changes along
the time scale. Each charging station has a limited number
of charging piles and a waiting queue. Electric vehicles will
consume time and energy while driving, waiting, charging
and discharging. We set an upper energy supply limit that
fluctuates over time for each charging station. To highlight
the advantages of the proposed algorithm, three representative
strategies are used for comparison. In the first one, called unco-
ordinated, each EV selects its own optimal route independently
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Fig. 6: The traffic network graph near Santa Clara.

TABLE II: Parameters of the Types of EVs in the Simulation

Car
Type

Battery
Capacity
(kWh)

Initial
Energy
(kWh)

Max
Travel
Time
(min)

Start
Node

End
Node

1 100 100 48 B L
2 65 30 39 D I
3 110 75 42 C L
4 90 60 54 A H
5 100 75 36 D K

(may cause big queuing delay at some popular stations). The
second one crowd-sensing, proposed in [6], only allows EVs
discharge energy at destinations for profit. The last one, titled
no-selling, only focuses on minimizing traveling cost without
selling any of its energy.

B. Performance Evaluation

Our goal is to minimize the cost of EVs while complying
with their maximal travel time tolerance. We first compare the
total cost of our algorithm with other three strategies. Fig. 7a
shows that the cost of four strategies grows with the increasing
number of EVs in the network, and the total cost of KSP-
JRS algorithm is the lest. Fig. 7b shows the profit of the four
scheduling strategies against the number of EVs. The total
profit of EVs increases with the number of EVs, and the profit
gap between these algorithms grows wider until the overall
number of EVs reaches 170. This is because the charging
stations in the network are already running at full load. In
that case, newly coming EVs are not able to either get charged
nor discharged within their travel time allowance. In terms of
uncoordinated and crowd-sensing strategies, this moment will
come early, since without scheduling, many EVs may gather
at a few popular charging stations, spending a lot of time
in waiting. Therefore, their spare time is wasted. As shown
in the figure, increasing charging spaces can alleviate this
phenomenon. No-selling strategy shows ZERO profit because
energy is not traded for benefit. The proposed KSP-JRS
algorithm gets the highest revenue and almost 60% higher
than that of uncoordinated.

Fig. 8a shows the total cost for 150 EVs with the increasing
number of charging spaces in each station. No-Selling and
Crowd-Sensing are not sensitive to the change of charging
spaces because EVs do not sell electricity during the trip.
The proposed algorithm can achieve the lowest cost with
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Fig. 7: Cost and profit of EVs.
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Fig. 8: Cost and profit of 150 EVs with the increasing number
of charging spaces in each station.
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Fig. 9: Joint routing selections calculated by KSP-JRS.

the increasing number of charging spaces compared with
the others, which shows the effectiveness in improving the
utilization of the charging stations. Fig. 8b shows that more
charging spaces can meet the charging/discharging needs of
EVs and help EVs gain more profit. However, the profit of EVs
will be fixed when charging spaces are saturated. KSP-JRS
demonstrates the best performance that surpasses the runner-
up by over 30%.

In Fig. 9, each cross of a row (represented by letters) and
a column (represented by numbers) represents an instance
of a station in a given time slot in the city traffic network.
C,D,E, I are charging stations powered by renewable energy.
B is a crossroad and others are grid stations. Each route in
Fig. 9 is a mixture of black, pink, red and green lines. The
black line segment represents that the EV departs from one
node to another node. The red line segment represents that an
EV is selling electricity at a charging station powered by the
grid. The green line segment represents the charging behavior.
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Fig. 10: The maximum number of EVs that the network can
afford calculated by KSP-JRS using different values of the
parameter K.

And the pink line segment represents that an EV is waiting at
a charging station. For example, an EV wants to leave node A
for H in the network as shown in Fig. 6. Its maximal travel
time tolerance is 54 minutes. According to our joint optimal
route scheduling, this EV takes 3 minutes for passing through
road (A,D), then it gets charged at station D for 2 time
slots due to cheaper price of renewable energy. Afterwards,
it passes through J at 6th time slot and K at 9th time slot,
and sells redundant energy in station L between 12 and 14−th
time slot. Finally, it arrives at the destination H by traveling
through road segment (L,H), and the whole traveling time
consumption is 51 minutes. We can see that there are three cars
at station D between 2nd and 3rd time slot, among which one
EV has to wait for an available charging space, represented
by the pink line.

To reduce the overhead in route calculation, we use the KSP
algorithm obtained by the A* algorithm, and then search the
most suitable size of K to achieve the optimal scheduling.
In Fig. 10, we can see that when K is small, some EVs
cannot select the appropriate path in its own routing set to
complete their trip. Therefore, there is an upper bound for the
number of EVs that the system with parameter K can support.
However, as the parameter K is gradually increased, KSP-JRS
algorithm can support the same number of EVs which is the
actual maximal capacity of the traffic network.

VI. CONCLUSION

In this paper, we have proposed a joint route selection
and charging/discharging decision algorithm to minimize the
cost of all EVs in a vehicular energy network. A time-
expanded V2G network is constructed to model the behav-
ior of EVs, travel time constraints and limited resources of
charging stations. The problem is solved by two steps, i.e.,
route calculation and joint optimization. In order to reduce
the calculation time, we determine the parameter K auto-
matically through binary search in the proposed KSP-JRS
method. Simulation results show that joint route scheduling
and charging/discharging decision can significantly increase
the total revenue of EV groups. The proposed model can

effectively simplify the problem and provide a personalized
route decision for each EV, thus helping reduce the operation
cost of EVs and increase utility of renewable energy in real-
life applications. For the future work, we will study distributed
route selection and charging scheduling of EVs, where each
EV makes its own decision based on the estimation.
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