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Abstract 1 

Background: Mycoprotein is a fungal-derived sustainable protein-rich food source, and its 2 

ingestion results in systemic amino acid and leucine concentrations similar to that following 3 

milk protein ingestion.  4 

Objective: We assessed the mixed skeletal muscle protein synthetic response to the ingestion 5 

of a single bolus of mycoprotein compared with a leucine matched bolus of milk protein, in 6 

rested and exercised muscle of resistance-trained young men.  7 

Design: Twenty resistance-trained healthy young males (age: 22±1 y, body mass: 82±2 kg, 8 

BMI: 25±1 kg·m-2) took part in a randomized, double-blind, parallel-group study. Participants 9 

received primed, continuous infusions of L-[ring-2H5]phenylalanine and ingested either 31 g 10 

(26.2 g protein: 2.5 g leucine) milk protein (MILK) or 70 g (31.5 g protein: 2.5 g leucine) 11 

mycoprotein (MYCO) following a bout of unilateral resistance-type exercise (contralateral 12 

leg acting as resting control). Blood and m. vastus lateralis muscle samples were collected 13 

before exercise and protein ingestion, and following a 4 h postprandial period to assess mixed 14 

muscle fractional protein synthetic rates (FSR) and myocellular signalling in response to the 15 

protein beverages in resting and exercised muscle.  16 

Results: Mixed muscle FSR increased following MILK ingestion (from 0.036±0.008 to 17 

0.052±0.006%·h-1 in rested, and 0.035±0.008 to 0.056±0.005%·h-1 in exercised muscle; 18 

P<0.01) but to a greater extent following MYCO ingestion (from 0.025±0.006 to 19 

0.057±0.004%·h-1 in rested, and 0.024±0.007 to 0.072±0.005%·h-1 in exercised muscle; 20 

P<0.0001) (treatment × time interaction effect; P<0.05). Postprandial FSRs trended to be 21 

greater in MYCO compared with MILK (0.065±0.004 vs 0.054±0.004%·h-1, respectively; 22 

P=0.093) and the postprandial rise in FSR was greater in MYCO compared with MILK (Δ 23 

0.040±0.006 vs Δ 0.018±0.005%·h-1, respectively; P<0.01). 24 
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Conclusions: The ingestion of a single bolus of mycoprotein stimulates resting and post-25 

exercise muscle protein synthesis rates, and to a greater extent compared with a leucine 26 

matched bolus of milk protein, in resistance-trained young men.  27 

28 
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Introduction 29 

Adequate dietary protein intake is required to maintain skeletal muscle mass and to facilitate 30 

the remodelling and/or hypertrophy of muscle tissue in response to exercise training. 31 

Mechanistically, this is largely achieved by dietary protein ingestion transiently (2-5 h) 32 

stimulating muscle protein synthesis rates (1-3), primarily due to a postprandial elevation of 33 

plasma essential amino acid concentrations (4), particularly leucine (5, 6). A single bout of 34 

resistance exercise also stimulates muscle protein synthesis rates for up to (and at least) 48 h 35 

(7, 8), whilst sensitising muscle tissue to the anabolic effects of dietary protein for at least 24 36 

h (7, 8). Consequently, research has sought to identify aspects of protein nutrition (e.g. 37 

amount and timing) that can be manipulated to optimally support post-exercise muscle 38 

protein synthesis rates (1, 3, 9-12). However, information relating to the anabolic properties 39 

of non-animal derived dietary protein sources is lacking, which is concerning given the 40 

increasing emphasis on dietary sustainability.  41 

Animal-derived dietary protein sources, such as whey (1, 2, 11, 13, 14), casein (13, 15), milk 42 

(16, 17) beef (17-20) and egg (3, 21) have all been shown to stimulate post-exercise muscle 43 

protein synthesis rates. It is assumed that plant-based dietary protein sources are inferior in 44 

their capacity to stimulate muscle protein synthesis rates, due to their typically slower 45 

digestibility, lower bioavailability, and lower essential amino acid and leucine content (22). 46 

Indeed, whey protein stimulates muscle protein synthesis rates to a greater extent than soy in 47 

young men (1, 14) and, compared to wheat protein in older men (13). To date, however, these 48 

are the only non-animal derived protein sources to be studied with respect to their impact on 49 

muscle protein synthesis.  50 

Mycoprotein is a sustainably produced food source rich in protein (~45% of total mass) and 51 

essential amino acids (~44% of total protein) derived from the cultivation of the fungus 52 

Fusarium venenatum. We have reported that total postprandial essential amino acid (and 53 
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leucine) concentrations following mycoprotein ingestion are comparable to that seen 54 

following milk protein ingestion (23), a finding atypical of animal versus non-animal dietary 55 

protein comparisons (13, 24). Further, essential amino acid concentrations following 56 

mycoprotein ingestion increased in a dose-response fashion up to 60-80 g mycoprotein 57 

consumption (27-36 g protein, 2.1-2.9 g leucine) (23), suggesting mycoprotein would be 58 

capable of robustly stimulating muscle protein synthesis rates. 59 

In the present work, we tested the hypothesis that the ingestion of a 70 g bolus of 60 

mycoprotein (31.5 g protein, 2.5 g leucine) would stimulate mixed muscle protein synthesis 61 

rates over a four h postprandial period in both rested and exercised skeletal muscle of 62 

resistance-trained, healthy young men. We compared the muscle protein synthetic response 63 

of mycoprotein ingestion to a leucine-matched bolus of milk protein. Here, we hypothesised 64 

that, despite equivalent leucine contents, due to slower aminoacidemia (23), muscle protein 65 

synthesis rates would increase to a lesser extent following mycoprotein ingestion. We chose 66 

to match the two beverages on leucine content as various lines of enquiry suggest leucine 67 

content, rather than total protein, is the primary factor determining the postprandial muscle 68 

protein synthetic response when sufficient protein is consumed (6, 25, 26). 69 

70 
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Methods 71 

Participants 72 

Twenty young, healthy (age: 22±1 y, body mass: 82±2 kg, BMI: 25±1 kg·m-2) men 73 

volunteered to take part in the present study (Supplementary Figure 1). Participants’ 74 

characteristics are displayed in Table 1. Participants were recreationally active and 75 

experienced with resistance training (at least 3 times per week for at least 3 months prior to 76 

participation). Participants were deemed healthy based on their blood pressure 77 

(≤140/90mmHg), BMI (18-30 kg·m-2) and responses to a routine medical screening 78 

questionnaire (absence of any diagnosed metabolic impairment, cardiovascular disease, or 79 

motor disorders), and were informed of the experimental procedures, potential risks, and the 80 

purpose of the study prior to providing full written consent. Participants were all ‘tracer 81 

naïve’ having not undergone any previous stable isotope amino acid infusion protocols. The 82 

study was approved by the Sport and Health Sciences ethics committee of the University of 83 

Exeter (REF NO. 161026/B/05) in accordance with standards for human research as outlined 84 

in the declaration of Helsinki. Recruitment and data collection were completed between 85 

January 2017 and August 2017 at The University of Exeter. 86 

 87 

Pre-testing 88 

Following screening and acceptance onto the study, all participants underwent a single pre-89 

testing session, which took place at least 5 days prior to the experimental trial. Participants 90 

were familiarised with the exercise equipment and exercise protocol, and body fat and lean 91 

mass were determined by Air Displacement Plethysmography (BodPod, Life Measurement, 92 

Inc. Concord, CA, USA). Participants were familiarised with the unilateral resistance-type 93 

exercise that was employed in the experimental protocol. This consisted of 5 sets of 30 94 

repetitions of maximal concentric isokinetic leg extension and leg flexion contractions on a 95 
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Biodex System 3 isokinetic dynamometer (Biodex Medical Systems, Shirley, NY, USA) at a 96 

speed of 60° per second over a central 80° range of motion using their self-reported dominant 97 

leg. Verbal encouragement was provided throughout the familiarisation and experimental 98 

testing to engender maximal effort through every repetition. Work done (J) was recorded for 99 

each completed set, and fatigue was calculated as the percentage decrement in work done 100 

between the first and last set. Participants were instructed to report their habitual dietary 101 

intake by recording a weighted food diary for two weekdays, and one weekend day prior to 102 

partaking in the study (Table 1) (Nutritics LTD, Dublin, Ireland). 103 

 104 

Experimental protocol 105 

Participants were randomly assigned to two parallel-groups, A or B, by the lead investigator 106 

and completed a single trial in a double-blind fashion. An overview of the experimental 107 

protocol is shown in Figure 1. Participants were directed to abstain from vigorous physical 108 

activity and alcohol consumption in the 48 h preceding the trial. All participants were 109 

provided with and consumed a standardised meal ~10.5 h prior to the start of the 110 

experimental trial (744 kcal [3.1 MJ], 29% energy (%En) fat, 20%En protein, 51%En 111 

carbohydrate). On the day of the trial, participants arrived at the laboratory between 07:00 - 112 

08:00 after a 10 h overnight fast. A TeflonTM cannula was inserted into an antecubital vein of 113 

one arm in preparation for stable isotope infusion, a baseline venous blood sample was taken 114 

from this site to measure background isotope enrichments prior to infusion. Following 115 

baseline blood sampling (t = -210 min) the phenylalanine and tyrosine pools were primed 116 

with a single intravenous dose of L-[ring-2H5]phenylalanine (2.12 µmol/kg) and L-[3,3-117 

2H2]tyrosine (0.75 µmol/kg). Thereafter, continuous tracer infusion was initiated and 118 

maintained at a rate of 0.035 µmol·kg-1·min-1 for L-[ring-2H5]phenylalanine and 0.012 119 

µmol·kg-1·min-1 for L-[3,3-2H2]tyrosine for the duration of the protocol. Once the infusion 120 
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had begun, a second Teflon cannula was inserted into a dorsal hand vein of the contralateral 121 

arm and placed in a warmed air hand unit (55°C) for arterialized venous blood sampling (27). 122 

Arterialized venous blood samples were collected throughout the experimental protocol at the 123 

following time points: t = -180, -120, -60, 0 (drink consumption), 15, 30, 45, 60, 75, 90, 120, 124 

150, 180, 210 and 240 min. A baseline muscle sample was collected after 90 min of the 125 

infusion (t -120 min) from the non-dominant leg (designated as the ‘resting leg’). Muscle 126 

biopsies were collected from the mid-region of the m. vastus lateralis (approx. 15 cm above 127 

the patella) with a modified Bergström suction needle under local anaesthesia (2% lidocaine). 128 

All biopsy samples were immediately freed from any visible blood, adipose and connective 129 

tissue, frozen in liquid nitrogen (within 30 s), and stored at –80°C until subsequent analysis. 130 

Eighty-five min after the initial biopsy (t = -35 min), participants undertook the unilateral 131 

resistance-type exercise protocol, as previously described, which took 30 min. Immediately 132 

following exercise bilateral muscle biopsies were collected (i.e. from both the rested and 133 

exercised leg). Immediately post-biopsy (t = 0 min) participants consumed either a milk 134 

protein (MILK) or mycoprotein (MYCO) beverage, within an allotted 5 min period, with the 135 

experimental drinks administered in a double-blind manner. Thereafter, participants rested in 136 

a semi-supine position for 4 h, after which further bilateral biopsies were collected 1–2 cm 137 

proximal to the previous incisions (t = 240 min).  138 

 139 

Experimental beverage preparations 140 

Freeze-dried isolated milk protein concentrate was obtained from a commercial supplier 141 

(Bulk Powders, Colchester, UK) and freeze-dried mycoprotein was produced by and obtained 142 

from Marlow Foods Ltd, Quorn Foods, Stokesley, UK. Both protein sources were 143 

independently analysed by a third party company for energy, macronutrient content and 144 

amino acid composition (Premier Analytical Services, High Wycombe, UK). The powdered 145 
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protein sources were prepared the evening before the experimental trial. The protein sources 146 

were assimilated with 400 mL water and 10 g of artificial energy-free flavouring (Myprotein, 147 

Manchester, UK), blended for approximately 2 min, topped up with water to make a total 148 

final beverage volume of 600 mL and refrigerated overnight. Drinks were enriched (2.5%) 149 

with L-[ring-2H5]phenylalanine to account for postprandial tracer dilution by non-labelled 150 

phenylalanine and to maintain a systemic isotopic steady-state following protein ingestion (1, 151 

3). Following drink consumption by the participant, an additional 50 mL of water was then 152 

added to ‘wash’ the bottle and ensure that all protein had been consumed, making a total 153 

volume of 650 mL consumed by participants. All drinks were well tolerated, consumed 154 

within the allotted time (i.e. 5 min) and resulted in no adverse effects during or after the test 155 

day. Double blinding of the drinks was achieved by having a different researcher from the 156 

individual running the infusion trial prepare the drinks in an opaque bottle ready for 157 

consumption. Despite careful blinding, we cannot discount the possibility that participants 158 

allocated to MYCO may have perceived the unusual texture of mycoprotein. The milk protein 159 

beverage contained 31 g of milk protein powder which contained 26.2 g total protein 160 

(providing 2.5 g of leucine). The mycoprotein beverage contained 70 g of mycoprotein which 161 

contained 31.5 g total protein (providing 2.5 g of leucine). The detailed nutritional content 162 

and amino acid composition of the drinks are displayed in Table 2. 163 

 164 

Blood sample collection and analyses 165 

Ten mL of arterialised venous blood was collected into a syringe at each sampling point. For 166 

each blood sample, six mL was aliquoted into liquid heparin containing tubes (BD vacutainer 167 

LH; Becton, Dickinson and Company, Franklin Lakes, NJ, USA) and centrifuged 168 

immediately (3000 g, 4°C, 10 min). Blood plasma was aliquoted and frozen at –80°C for 169 

subsequent analysis. The remaining 4 mL of blood was aliquoted into additional vacutainers 170 
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(BD vacutainers SST II, Becton, Dickinson and Company) which were left to clot at room 171 

temperature for at least 30 min and then centrifuged (3000 g, 4°C, 10 min) to obtain blood 172 

serum. Serum was aliquoted before freezing at –80°C for subsequent analyses. Serum insulin 173 

concentrations were analysed using a commercially available kit (DRG Insulin ELISA, EIA-174 

2935, DRG International Inc, Springfield, IL, USA). Plasma branched chain amino acid 175 

(BCAA) (leucine, isoleucine and valine), phenylalanine and tyrosine concentrations, and L-176 

[ring-2H5]-phenylalanine, L-[ring-3,5-2H2]-tyrosine, and L-[ring-2H4]-tyrosine enrichments 177 

were determined by gas chromatography-mass spectrometry (GC-MS) as described 178 

previously (28). Briefly, 10 µL internal standards of leucine, valine, phenylalanine and 179 

tyrosine were added to the samples. The plasma was deproteinised on ice with 500 µL of 180 

15% 5-sulfosalicylic acid. Free amino acids were purified using acid-washed cation exchange 181 

columns (AG 50W-X8 resin; Bio-Rad Laboratories, Inc., CA, USA), with the amino acids 182 

being eluted from the column with 8 mL of 2N ammonium hydroxide. The eluate was then 183 

dried under vacuum with a Speed-Vac rotary dryer (Savant Instruments, Farmingdale, NY, 184 

USA). In order to derivatize the plasma sample, 40 μl MTBSTFA + 1% tert-butyl-185 

dimethylchlorosilane and 40 μl acetonitrile were added to the dry samples, vortexed and 186 

heated at 95 °C for 40 min (29).The samples were analyzed by GC-MS (7890 GC coupled 187 

with a 5975 inert MSD; Agilent Technologies, Santa Clara, CA, USA) in duplicates using 188 

electron impact ionization and selected ion monitoring for measurement of isotope ratios 189 

(30). One microliter of the sample was injected in splitless mode (injector temp. 280°C). 190 

Peaks were resolved using an HP5-MS 30m × 0.25mm ID × 0.25μm capillary column 191 

(Agilent). Helium was used as carrier gas at 1.2ml/min constant flow rate. The temperature 192 

ramp was set from 80 – 245 °C at 11°C/min, then to 280 °C at 40 °C/min (30). Selected ion 193 

recording conditions were used to monitor fragments m/z 336, 341 and 346 for 194 
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phenylalanine, m/z 288 and 296 for valine, m/z 274 and 280 for leucine and isoleucine, and 195 

m/z 466 and 475 for tyrosine.   196 

 197 

Skeletal muscle tissue analyses  198 

Muscle biopsy tissue samples were analysed for protein-bound and free intracellular L-[ring-199 

2H5]phenylalanine, as previously described (28). Briefly, 20-30 mg of frozen muscle tissue 200 

was weighed and precipitated in 600 µL 10% perchloric acid. The tissue was homogenized 201 

by a mechanical tissue grinder. The supernatant, for determination of intracellular L-[ring-202 

2H5]phenylalanine enrichment, was subsequently transferred following centrifugation (4000 203 

rpm, 20 min, 4 °C) and stored at −80 °C. This procedure was repeated with an additional 800 204 

µL wash with 10% perchloric acid. The remaining pellet of muscle tissue was washed three 205 

times in 2% perchloric acid, twice in ethanol, and then once in ethyl ether, before being oven-206 

dried overnight at 50 °C. The following day, the dried muscle pellet was hydrolysed in 6N 207 

hydrochloric acid at 110 °C for 24 h. The hydrolysate, representing the bound protein pool of 208 

amino acids, was subsequently used to determine the enrichment of bound L-[ring-209 

2H5]phenylalanine. The protein hydrolysate was deionized using ion-exchange columns as 210 

described for blood analyses. The supernatant, for determination of intracellular labelled 211 

phenylalanine enrichment, was prepared in the same manner as the protein-bound acid 212 

hydrolysates. In order to derivatize the muscle sample, 50 μl MTBSTFA + 1% tert-butyl-213 

dimethylchlorosilane and 50 μl acetonitrile were added to the dry samples, vortex mixed and 214 

heated at 95 °C for 45 min (29). The samples were analyzed by GC-MS (7890 GC coupled 215 

with a 5975 inert MSD; Agilent Technologies) in duplicates using electron impact ionization 216 

and selected ion monitoring for measurement of isotope ratios (30). One microliter of the 217 

sample was injected in splitless mode (injector temp. 280 °C). Peaks were resolved using an 218 

HP5-MS 30m × 0.25mm ID × 0.25μm capillary column (Agilent). Helium was used as 219 
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carrier gas at 1.2ml/min constant flow rate. The temperature ramp was set from 80 – 245 °C 220 

at 11 °C/min, then to 280 °C at 40 °C/min (30). Selected ion recording conditions were used 221 

to monitor fragments m/z 237 and 239 for the m+3 and m+5 fragments of phenylalanine 222 

bound protein and m/z 336 and 341 for phenylalanine free fraction. 223 

Muscle biopsy tissue samples were analysed for total and phosphorylated forms of 224 

mechanistic target of rapamycin (mTORSer2448 and pmTOR Ser2448). Briefly, ~10 mg of 225 

whole frozen muscle was mechanically homogenised using steel beads (Qiagen, Hilden, 226 

Germany) in 20 volumes of buffer (Tris-HCl 50 mM, Triton X-100 1%, EDTA 1 mM, EGTA 227 

1 mM, NaF 50 mM, β-glycerophosphate 10 mM, sodium pyrophosphate 5 mM, 2-228 

mercaptoethanol 0.1%, sodium orthovanadate 0.5 mM, okadaic acid 100 nM and complete 229 

Mini protease inhibitor cocktail (Roche Holding AG, Basel, Switzerland). Following 230 

centrifugation (10000 g, 4°C, 10 min) the supernatant protein content was determined by 231 

colorimetric assay (DC protein assay, Bio-Rad Laboratories, Inc.). Proteins were unfolded by 232 

incubating for 5 minutes at 95 °C in XT sample buffer (Bio-Rad Laboratories, Inc.). Twenty 233 

µg protein per lane were loaded onto 3-8% tris acetate polyacrylamide gels, and separated by 234 

electrophoresis in XT tricine running buffer for 65 min at 150 V. Proteins were transferred to 235 

0.2 µM nitrocellulose membranes using a Trans-blot turbo transfer system (Bio-Rad 236 

Laboratories, Inc.), at 2.5 A and 25 V for 10 min. Membranes were blocked in 5% BSA in 237 

TBST (pH 7.6) for 1 h, before overnight incubation at 4 °C with rabbit anti-phospho-mTOR 238 

Ser2448 monoclonal antibody (5536, Cell Signaling Technology, Inc., Danvers, Mass, USA; 239 

1:1000 in TBST) and rabbit anti-α-tubulin (11H10, Cell Signaling Technology, Inc.; 1:20000 240 

in TBST) loading control. Following 3 × 10 min washes in TBST, membranes were 241 

incubated for 1 h at room temperature in secondary HRP conjugated anti-rabbit IgG antibody 242 

(ab6721, Abcam PLC, Cambridge, UK; 1:3000 in TBST). Following 3 × 10 min washes in 243 

TBST, membranes were then exposed for 5 min in Clarity Western chemiluminescent 244 
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detector solution (Bio-Rad Laboratories, Inc.), visualised using a Chemidoc scanner (Bio-Rad 245 

Laboratories, Inc.), and band density quantified using Image Lab software (Bio-Rad 246 

Laboratories, Inc.). The expected migration of phospho-mTOR (~289 kDa) and α-tubulin 247 

(~52 kDa) was confirmed using a kaleidoscope protein ladder (Bio-Rad Laboratories, Inc.). 248 

For total mTOR, membranes were incubated for 15 min in Restore stripping buffer (Thermo 249 

Fisher Scientific, Waltham, MA, USA), blocked for 1 h in 5 % BSA in TBST and re-probed 250 

overnight with an anti-mTOR monoclonal primary antibody (2972, Cell Signaling 251 

Technology, Inc.; 1:1000 in TBST) plus anti-α-tubulin, and the above steps were repeated to 252 

obtain corresponding bands for total mTOR. The band density for phospho-mTOR was 253 

calculated as a ratio against the band density for α-tubulin, within each lane. This was divided 254 

by the ratio of mTOR against α-tubulin to give an overall ratio for ‘mTOR phosphorylation 255 

status’, which was finally expressed as a fold change from the rested, fasted, baseline.  256 

Skeletal muscle mRNA expression of 48 genes was analysed as previously described (31). In 257 

brief, total RNA was extracted from ∼20 mg frozen muscle tissue using TRIzolⓇ Reagent 258 

(Thermo Fisher Scientific) (32), according to the manufacturer's protocol. Total RNA 259 

quantification was carried out spectrophotometrically at 260 nm (NanoDrop ND-2000 260 

Spectrophotometer; Thermo Fisher Scientific) and RNA purity was determined as the ratio of 261 

readings at 260/280 nm. Reverse transcription of RNA was carried out using a commercially 262 

available kit (SuperScript™ III First-Strand Synthesis SuperMix, Thermo Fischer Scientific) 263 

(33). Taqman low-density custom-designed array cards (Thermo Fisher Scientific) were used 264 

for the relative quantification of the expression of genes involved in the regulation of cellular 265 

amino acid transport, protein synthesis and protein breakdown. Each card allowed for eight 266 

samples to be run in parallel against 48 Taqman gene expression assay targets that had been 267 

preloaded into each well on the card (Table 4). In short, 50 𝜇L Taqman Universal Master 268 

Mix II (Thermo Fisher Scientific) was added to 150 ng of RNA equivalent cDNA into an 269 
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RNAse-free Eppendorf tube, and RNAse-free water was added to make the total reaction 270 

volume up to 100 𝜇l. The reaction mixture was vortexed, centrifuged and loaded into one of 271 

the fill reservoirs of the Micro Fluidic card, after which the cards were centrifuged (Hereaus 3 272 

S-RMicrofuge, Thermo Fisher Scientific) and run on a 7900HT Fast Real-Time PCR System 273 

(Thermo Fisher Scientific). Relative quantification of the genes of interest was performed 274 

using the delta-delta Ct method, with the fold change in mRNA amplification expressed 275 

relative to the rested fasted leg and the geometric mean of the two housekeeping genes, for 276 

which purpose GAPDH and B2M were selected. 277 

 278 

Calculations 279 

The fractional synthetic rates (FSR) of mixed muscle proteins were calculated using the 280 

standard precursor-product equation (28): 281 

𝐹𝑆𝑅 (% ∙ ℎ-1) = [
∆𝐸p

𝐸precursor × 𝑡
] × 100 282 

Where ΔEp is the increment in L-[ring-2H5]phenylalanine enrichment in mixed muscle 283 

protein between two biopsies, Eprecursor is the average L-[ring-2H5]phenylalanine enrichment 284 

in the plasma or intracellular precursor pool over time, and t indicates the tracer incorporation 285 

time (h) between two muscle biopsies. 286 

 287 

Intravenous infusion of L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine and 288 

arterialized venous blood sampling were used to assess whole-body amino acid kinetics under 289 

non-steady state conditions (34). Whole-body total phenylalanine rates of appearance (Ra),  290 

rates of disappearance (Rd), and hydroxylation rates (the initial step in phenylalanine 291 

oxidation) were calculated using modified Steele’s equations (34), as follows: 292 
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𝑇𝑜𝑡𝑎𝑙 𝑅a =
𝐹iv − [𝑝𝑉 × 𝐶(𝑡) ×

𝑑𝐸iv

𝑑𝑡
]

𝐸iv(𝑡)
 293 

𝑇𝑜𝑡𝑎𝑙 𝑅d = 𝑅a − 𝑝𝑉 ×
𝑑𝑐

𝑑𝑡
 294 

Phe Hydroxylation = Tyr Ra ×
Etyr (t)

Ephe(t)
×

Phe Rd

Fphe + Phe Rd
 295 

Where Fiv is the intravenous tracer infusion rate (μmol∙kg-1∙min-1), pV (0.125 L∙kg-1) is the 296 

distribution volume for phenylalanine (34), C(t) is the mean plasma phenylalanine 297 

concentration between two consecutive time points, dEiv/dt represents the time-dependent 298 

variations of plasma phenylalanine enrichments derived from the intravenous tracer, and 299 

Eiv(t) is the mean plasma phenylalanine enrichment from the intravenous tracer between two 300 

consecutive time points. Tyr Ra is the total rate of appearance based on the L-[ring-3,5-2H2]-301 

tyrosine infusion and plasma enrichment of tyrosine. Etyr(t) and Ephe(t) are the mean plasma 302 

L-[ring-2H4]-tyrosine and L-[ring-2H5]-phenylalanine enrichments between 2 consecutive 303 

time points, respectively, and Fphe is the intravenous infusion rate of L-[ring-2H5]-304 

phenylalanine (μmol∙kg-1∙min-1).  305 

The absence of an additional (unique) tracer within the protein drinks precluded us being able 306 

to differentiate between endogenous and exogenous Ra. Furthermore, the necessity to enrich 307 

the experimental drinks with the same tracer as was intravenously infused, to minimize 308 

disturbance in precursor isotopic steady states, precluded the calculation of whole body 309 

protein synthesis and breakdown, and provides a degree of error which we presume to be 310 

equivalent across the two groups. 311 

 312 

Statistical analyses 313 
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A two-sided power analysis based on previous research (1) showed that n= 9 per condition was 314 

sufficient to detect expected differences in postprandial muscle protein synthesis rates between 315 

protein conditions (MILK vs MYCO) when using a repeated measures ANOVA (P < 0.05, 316 

90% power, f = 0.67; G*power version 3.1.9.2). Our primary measure was postprandial muscle 317 

protein synthesis rates. The delta change in muscle protein synthesis rates from fasted to fed, 318 

plasma amino acid concentrations (including Cmax and tmax), serum insulin concentrations, 319 

whole body amino acid kinetics, intracellular and mixed muscle protein-bound L-[ring-320 

2H5]phenylalanine represent secondary measures, and skeletal muscle cell signalling responses 321 

represent exploratory variables. Differences in participant characteristics and background 322 

mixed muscle protein-bound L-[ring-2H5]phenylalanine were analysed using independent t-323 

tests. Plasma amino acid and serum insulin concentrations, plasma L-[ring-2H5]-phenylalanine, 324 

L-[ring-3,5-2H2]-tyrosine, and L-[ring-2H4]-tyrosine enrichments, and muscle mTOR 325 

phosphorylation were tested by two-factor (treatment [milk protein vs mycoprotein] × time) 326 

repeated-measures analysis of variance (ANOVA). Mixed muscle FSRs, mixed muscle 327 

protein-bound L-[ring-2H5]phenylalanine enrichments, and muscle gene expression were 328 

analysed using a three-factor (treatment × time × exercise/rest) ANOVA. Data were tested for 329 

sphericity, and where violations occurred the Greenhouse-Geisser correction was automatically 330 

applied. Violations of normality were tested for using the Shapiro-Wilk test, and no 331 

considerable violations were found. When significant interaction effects were observed Sidak 332 

post hoc tests were performed to correct for multiple comparisons and locate individual 333 

differences. Total postprandial amino acid concentrations were calculated as incremental area 334 

under curve (iAUC), with baseline set as t = 0, and analysed using independent t-tests. 335 

Individual Cmax (peak concentration) and tmax (time to peak concentration) were analysed using 336 

independent t-tests. Where plasma time point data were absent, missing data analyses was 337 

performed using regression imputation. Statistical significance was set at P<0.05. Calculations 338 
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were performed using GraphPad Prism version 7.1 (GraphPad Software, San Diego, CA, 339 

USA). All data are expressed as mean ± SEM.340 

  341 
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Results 342 

 343 

Participant characteristics 344 

No differences in age, weight, height, BMI, body composition, or habitual nutritional intake 345 

were detected between groups (all P>0.05; Table 1). No differences in total work performed 346 

during the experimental resistance exercise bout (29540±1782 J in MILK vs 30722±2059 J in 347 

MYCO; P>0.05) or in fatigue (19±3% in MILK vs 26±4% in MYCO; P>0.05) were detected 348 

between groups. 349 

 350 

Plasma amino acid and serum insulin concentrations  351 

Plasma total and individual BCAA concentrations during the experimental period are shown 352 

in Figure 2. Plasma total BCAA concentrations and each of the individual BCAAs all 353 

showed similar kinetic responses. Specifically, from similar fasting values across conditions, 354 

all parameters increased with protein ingestion (time effect; P<0.0001) but to differing 355 

degrees between conditions (treatment × time interaction effect; P<0.0001). Plasma BCAA 356 

concentrations (A) peaked more rapidly and to a greater peak magnitude following the 357 

ingestion of MILK compared with MYCO. Plasma BCAA Cmax was significantly greater in 358 

MILK compared with MYCO (791±51 vs 646±25.9 μmol·L-1; P<0.05), mean tmax was 359 

82.5±15 min in MILK and 103±10 min in MYCO (P>0.05), and modal tmax was 90 min in 360 

MILK and 120 min in MYCO. Plasma leucine concentrations (C and D) were different 361 

between conditions (treatment effect; P<0.05), and were greater at 15, 30, and 45 min in 362 

MILK compared with MYCO (P<0.01). Plasma leucine concentrations peaked at 30 min in 363 

MILK at 299±36 μmol·L-1 and at 75 min in MYCO at 243±11 μmol·L-1. Plasma leucine Cmax 364 

was significantly greater in MILK compared with MYCO (340±27 vs 258±9 μmol·L-365 

1P<0.01), mean tmax was 80±16 min in MILK and 89±10 min in MYCO (P>0.05), and modal 366 
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tmax was 30 min in MILK and 75 min in MYCO. Total postprandial plasma leucine 367 

concentrations were 19±8% greater in MILK compared with MYCO (24420±2333 in MILK 368 

vs 20831±1279 μmol·L-1 × 4h in MYCO; P>0.05) (D), whereas isoleucine and valine 369 

postprandial concentrations did not differ between conditions (P>0.05) (F & H). Plasma 370 

phenylalanine and tyrosine concentrations increased with protein ingestion (time effect; 371 

P<0.0001) but also to differing degrees between conditions (treatment × time interaction 372 

effect; P<0.0001). Plasma phenylalanine concentrations (K and L) were greater in MILK 373 

compared with MYCO at 15 and 30 min (P<0.01). Plasma tyrosine concentrations (I and J) 374 

were different between conditions (treatment effect; P<0.001), and were greater in MILK 375 

compared with MYCO from 15-120 min (P<0.05).  376 

Serum insulin concentrations during the experimental period are displayed in Figure 3. From 377 

similar fasting concentrations (15±3 and 16±2 mU·L-1 in MILK and MYCO, respectively) 378 

serum insulin concentrations increased with protein ingestion (time effect; P<0.0001) and to 379 

differing degrees between conditions (treatment × time interaction effect; P<0.0001). Milk 380 

protein ingestion resulted in a more rapid and transient increase in serum insulin 381 

concentrations that peaked at 15 min (42±7 mU·L-1) and returned to fasting levels by 45 min 382 

(P<0.01). Mycoprotein ingestion induced a less rapid but more sustained increase in serum 383 

insulin concentrations that peaked at 30 min post-ingestion (36±4 mU·L-1) and returned to 384 

baseline more slowly (60 min; P<0.0001). Serum insulin concentrations in MILK were only 385 

greater than MYCO at 15 min post-ingestion (P<0.05) and postprandial serum insulin AUC 386 

was not different between conditions (P>0.05). Serum insulin Cmax was not different between 387 

conditions (45±6 vs 38±3 mU·L-1 in MILK and MYCO, respectively; P>0.05), mean tmax was 388 

28±5 min in MILK and 33±4 min in MYCO (P>0.05), and modal tmax was 15 min in MILK 389 

and 30 min in MYCO. 390 

 391 
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Whole-body phenylalanine kinetics 392 

The time-course of plasma L-[ring-2H5]phenylalanine, L-[3,3-2H2]tyrosine, and L-[ring-2H4]-393 

tyrosine enrichments are illustrated in Figure 4. During the postabsorptive period, plasma L-394 

[ring-2H5]phenylalanine remained in a steady state at ~4–5 MPE (mole percent excess) in 395 

both conditions. L-[ring-2H5] phenylalanine enrichments increased transiently after protein 396 

ingestion (time effect; P<0.001), with a greater increase in MYCO (treatment × time 397 

interaction effect, P<0.01). Specifically, plasma L-[ring-2H5]phenylalanine enrichments 398 

increased above postabsorptive levels for 30 min in MYCO only (P<0.01) before returning to 399 

baseline enrichments. This was presumably due to either the slower digestion of MYCO, or 400 

quicker entry of labelled L-[ring-2H5]phenylalanine into the circulation in the MYCO 401 

condition (Figure 4A). Two participants were excluded from the whole body kinetics analysis 402 

(final analysis therefore; MILK=9, MYCO=9) due to technical issues with the tyrosine tracer. 403 

L-[3,3-2H2]tyrosine decreased equivalently after the ingestion of protein (time effect; 404 

P<0.0001, treatment × time interaction effect; P>0.05) and remained below postabsorptive 405 

levels for 150 min following protein ingestion (P<0.05) (Figure 4B). Plasma L-[ring-2H4]-406 

tyrosine increased following protein ingestion (time effect; P<0.0001), with a greater increase 407 

in MYCO (treatment × time interaction effect; P<0.01) which was elevated above 408 

postabsorptive enrichments for 30 min (P<0.0001) (Figure 4C). Phenylalanine hydroxylation 409 

increased following protein ingestion (time effect; P<0.0001), and remained elevated 410 

throughout the postprandial period, with no differences between conditions (treatment × time 411 

effects; P>0.05) (Figure 5A). Plasma phenylalanine total Ra and Rd changed divergently over 412 

time in MILK and MYCO (time and treatment × time effects; P>0.001). In MILK 413 

phenylalanine total Ra and Rd were elevated above postabsorptive values at 90 min (P<0.05), 414 

whereas in MYCO phenylalanine total Ra and Rd were suppressed below postabsorptive 415 

values at 30 min (P<0.01) (Figure 5B-C). 416 
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 417 

Skeletal muscle tracer analyses 418 

One participants’ samples were excluded from the MYCO condition due to insufficient 419 

tissue. Intracellular L-[ring-2H5]phenylalanine enrichments increased over time (time effect; 420 

P<0.01) with no differences between conditions or interaction effects (both P>0.05) 421 

(Supplementary Figure 2). Mixed muscle protein-bound L-[ring-2H5]phenylalanine 422 

enrichments did not differ between conditions at baseline (0.0030±0.0007 and 0.0034±0.0006 423 

MPE in MYCO and MILK conditions, respectively; P>0.05). Mixed muscle protein L-[ring-424 

2H5]phenylalanine enrichments increased during the fasting period in the rested leg (from 425 

0.0030±0.0007 to 0.0065±0.0007 in MILK and 0.0034±0.0006 to 0.0058±0.0006 MPE in 426 

MYCO; time effect; P<0.0001) to the same extent in each condition (treatment and treatment 427 

× time effects; both P>0.05). Mixed muscle protein L-[ring-2H5]phenylalanine enrichments 428 

increased with protein ingestion (from 0.0065±0.0007 to  0.0161±0.001 MPE in rested, and 429 

0.0061±0.0008 to 0.0164±0.0012 MPE in exercised muscle in MILK, and from 430 

0.0058±0.0006 to 0.0167±0.0012 MPE in rested, and 0.0055±0.0006 to 0.0187±0.0011 MPE 431 

in exercised muscle in MYCO; P<0.0001) and to a greater extent in MYCO compared with 432 

MILK (treatment × time interaction effect; P<0.05) (Supplementary Figure 3).  433 

Mixed muscle FSRs calculated using the average plasma L-[ring-2H5]phenylalanine plasma 434 

enrichment as the precursor pool are displayed in Figure 6. Exercise did not affect mixed 435 

muscle FSR (exercise effect; P=0.0640), nor did exercise interact with protein ingestion 436 

(P=0.1251) or condition (P=0.2223). Protein ingestion increased mixed muscle FSRs in 437 

rested and exercised muscle in both conditions (time effect; P<0.0001). Mixed muscle FSR 438 

increased from 0.036±0.008 to 0.052±0.006%·h-1 and 0.035±0.008 to 0.056±0.005%·h-1 in 439 

rested and exercised muscle, respectively, in MILK, and from 0.025±0.006 to 440 

0.057±0.004%·h-1 and 0.024±0.007 to 0.072±0.005%·h-1 in rested and exercised muscle, 441 
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respectively, in MYCO. The increase in mixed muscle FSR was greater in the MYCO 442 

condition compared with MILK condition (treatment × time interaction effect; P=0.0199), 443 

with the divergence located as trends for a difference between conditions in the 444 

postabsorptive (P=0.0890) and postprandial FSRs (P=0.0930) (A). These trends resulted in 445 

the delta postabsorptive to postprandial rise in mixed muscle FSR being greater in MYCO 446 

compared with MILK (treatment effect; P=0.0084) (B). The group differences became more 447 

pronounced when comparing muscle FSRs derived from the L-[ring-2H5]phenylalanine 448 

intracellular precursor pool. While main effects of exercise or any exercise interactions were 449 

still absent (all P>0.05), protein ingestion increased FSR (time effect; P=0.0003) and to a 450 

greater extent in MYCO compared with MILK (treatment × time interaction effect; 451 

P=0.0225). Specifically, MYCO ingestion stimulated mixed muscle FSR (from to 452 

0.031±0.007 to 0.070±0.006%·h-1 in rested, and 0.028±0.008 to 0.082±0.008%·h-1 in 453 

exercised muscle; P<0.0001), whereas MILK ingestion only trended to stimulate FSR (from 454 

0.040±0.010 to 0.060±0.007%·h-1 in rested, and 0.050±0.012 to 0.058±0.007%·h-1 in 455 

exercised muscle; P=0.060). 456 

 457 

Skeletal muscle cell signalling responses 458 

Skeletal muscle mTOR phosphorylation status was determined in n=15 due to restrictions on 459 

remaining muscle tissue (final analysis therefore; MILK=7, MYCO=8) (Figure 7). Fold 460 

change with protein ingestion in muscle mTOR phosphorylation status did not differ between 461 

conditions (treatment effect; P>0.05), was unaffected by exercise (P>0.05), and did not show 462 

an interaction effect (P>0.05). 463 

Of the 46 genes analysed for their muscle mRNA expression (see Table 4), 19 genes showed 464 

no changes with exercise, protein ingestion, protein condition, or any interactions (all 465 

P>0.05; data not shown). Twenty seven genes responded to protein ingestion and/or exercise, 466 
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and the muscle mRNA expression of these genes are displayed in Figure 8. Specifically, 467 

protein ingestion either decreased (IRS1, TSC1, TSC2, CASTOR1, FOXO3, CAPN1, SRF, 468 

SLC7A8, SLC38A10, DDIT4, TRIM63 and SLC38A2) or increased (AKT1S1 and 469 

SLC38A9) muscle mRNA expression of some genes. Similarly, exercise decreased (SMAD2, 470 

PIK3R1, RPS6KB1, TFEB, MSTN, SLC38A2 and TRIM32) or increased (FBXO32, 471 

SLC7A1, and TRIM63) the muscle mRNA expression of some genes. Fifteen genes exhibited 472 

a time × exercise interaction (P<0.05) such that EIF4E and TGFb1 mRNA expression 473 

increased in exercised muscle only, and DDIT4L and MSTN mRNA expression increased in 474 

rested muscle only (P<0.05). FBXO32, MSTN, TRIM63 mRNA expression decreased in 475 

rested muscle only, and SLC38A10, DDIT4, SLC38A2, and TRIM32 mRNA expression 476 

decreased in exercised muscle only (P<0.05). Only a single gene, TRIM32, showed a 477 

differential response between nutritional conditions, with its muscle mRNA expression 478 

greater in MILK compared with MYCO (treatment effect; P<0.05), which was driven by a 479 

greater expression in MILK compared with MYCO in the postprandial state (P<0.01).  480 
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Discussion 481 

We assessed in vivo protein synthetic responses to the ingestion of leucine matched boluses 482 

of milk protein and mycoprotein within resting and exercised skeletal muscle, in healthy and 483 

trained, young men. In support of our initial hypothesis, mycoprotein ingestion robustly 484 

stimulated protein synthesis rates in resting and exercised muscle. Mycoprotein ingestion 485 

resulted in slower and lower rises in plasma amino acid (and leucine) concentrations 486 

compared with the ingestion of milk protein. Despite this, and contrary to our secondary 487 

hypothesis, we report that mycoprotein ingestion stimulated muscle protein synthesis rates to 488 

a greater extent when compared with milk protein.  489 

Previous work has suggested that the rate and/or magnitude of plasma essential 490 

aminoacidemia and leucinemia following dietary protein ingestion are the key determinants 491 

that modulate postprandial muscle protein synthesis rates (2, 6, 24, 35-37). As expected (23), 492 

we observed more rapid protein digestion and intestinal amino acid absorption rates 493 

following milk compared with mycoprotein ingestion, as evidenced by larger and more rapid 494 

postprandial aminoacidemia and leucinemia (Figures 2A-D). As a consequence, milk protein 495 

ingestion resulted in a quicker rise in circulating insulin concentrations (Figure 3A), also a 496 

postprandial systemic condition expected to facilitate muscle protein anabolism (38). In line 497 

with our hypothesis, we observed a robust stimulation of mixed muscle protein synthesis 498 

rates in response to both protein sources (Figure 6A). However, we report a greater 499 

stimulation of mixed muscle protein synthesis rates following mycoprotein compared with 500 

milk protein ingestion (Figure 6A). Moreover, when expressing these data as the change in 501 

muscle protein synthesis rates from postabsorptive to postprandial (Figure 6B), the response 502 

to mycoprotein ingestion was more than double that of milk protein ingestion. Given this 503 

response occurred despite ‘inferior’ postprandial plasma amino acid kinetics, it is of interest 504 

to consider why this was observed.  505 
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In studies where isolated protein sources are ingested (i.e. with little or no additional 506 

macronutrients), the rate and/or magnitude of leucinemia generally predicts subsequent rates 507 

of muscle protein synthesis (2, 24, 35, 36). However, in studies where protein was co-508 

ingested with carbohydrate or fat, plasma leucine concentrations were less predictive of the 509 

subsequent muscle protein synthetic response. For example, carbohydrate co-ingestion can 510 

markedly attenuate the peak (and total) magnitude of postprandial leucinemia, but does not 511 

inhibit the muscle protein synthetic response compared with protein ingestion alone (39-42). 512 

This suggests, within the context of a mixed meal, plasma leucine kinetics alone do not 513 

dictate the postprandial muscle protein synthetic response. Further, co-ingestion of additional 514 

macronutrients per se do not confer additional stimulation of muscle protein synthesis rates 515 

(39-42), and therefore neither the additional macronutrients nor energy content of the 516 

mycoprotein can (solely) explain its greater anabolic response in the present study. In line 517 

with our findings, a recent study reported that protein consumed within a ‘whole food’ matrix 518 

(i.e. whole eggs) led to a delayed and lower peak magnitude of postprandial leucinemia, but 519 

greater rates of postprandial muscle protein synthesis compared with the protein ingested 520 

within the egg white only (21). It is therefore possible that the present data, and those from 521 

van Vliet and colleagues (21), are a result of a potentiating effect of consuming protein within 522 

a more complete food matrix/whole food meal. Whether this is an effect of the food matrix 523 

per se (42), a combined effect of the presence of additional macronutrients (or their specific 524 

subclasses (43-45)), fibre (mycoprotein is high in fibre composed of a 2:1 ratio of β-glucan 525 

and chitin), higher energy content, or an effect of other (micronutrient) factors (46-48) is 526 

unclear but clearly warrants future investigation.  527 

To investigate how mycoprotein enabled such a potent muscle protein synthetic response, we 528 

used the remaining muscle tissue to probe various myocellular signalling responses (Figure 7 529 

and 8). Aside from amino acids, it has been suggested that systemic rises in non-protein 530 
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nutrients (e.g. specific lipids (43, 45)), micronutrients (46)) may also exert influence over 531 

mTOR, the central molecular signalling pathway controlling muscle protein synthesis (49). 532 

Despite the divergent amino acid (and presumably other nutrients) profiles across the two 533 

nutritional conditions we observed no differences between groups in postprandial mTOR 534 

phosphorylation. We cannot discount the possibility that mTOR phosphorylation may have 535 

differed during the early postprandial period (50-52), that the translocation and subcellular 536 

location of mTOR may have differed across conditions (44), that investigating different 537 

phosphorylation sites may have yielded different results (53), that downstream targets of 538 

mTOR may have differed independently, or that our data are not appropriately powered to 539 

detect small, but physiologically relevant differences in phosphorylation status (particularly 540 

given we did not have a complete dataset due to limited tissue availability). Moreover, it is 541 

possible that the translocation and/or subcellular location of mTOR may have differed across 542 

conditions (44). Indeed, recent data suggest the subcellular locality of mTOR is important in 543 

regulating the (postprandial) muscle protein synthetic response (54, 55), and that non-protein 544 

dietary components may influence translocation and the regulation of post-exercise mRNA 545 

translation (44).  546 

To gain insight into the potential adaptive response of the cell we examined the muscle 547 

postprandial and post-exercise transcriptional response. Exercise and protein ingestion 548 

resulted in a coordinated transcriptional response, demonstrated by the mRNA expression of 549 

27 of the 46 genes of interest changing 4 h post protein ingestion with/without exercise. The 550 

upregulation in expression of genes involved in amino acid transport (e.g. CAT1, LAT2, 551 

SNAT2) and protein synthesis (e.g. TSC1, TSC2, DDIT4) underline the rapid transcriptional 552 

responses that occur with nutrition and exercise (10, 56-60) which, at least in part, restore 553 

cellular homeostasis and direct the adaptive response. Additionally, the early inhibition of 554 

myostatin expression with exercise supports the concept that low myostatin expression 555 
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facilitates an anabolic environment (61). Only a single gene, the E3 ubiquitin ligase TRIM32, 556 

differentially responded to the different protein sources; being expressed to a lesser degree 557 

following mycoprotein ingestion. TRIM32 preferentially ubiquitinates actin and desmin 558 

filaments, with reduced levels of TRIM32 reducing the loss of these proteins (62, 63). This 559 

may be indicative of a more potent ability of mycoprotein to suppress excessive post-exercise 560 

muscle protein breakdown, although given the lack of a coordinated response of other 561 

proteolyctic genes (e.g. MAFBx, MuRF1 etc.) this remains conjectural. Clearly, the ability of 562 

prolonged mycoprotein consumption to support resistance training-induced hypertrophy 563 

warrants future investigation. Worthy of note is one caveat of interpreting our cell signalling 564 

data in the present work is the increased risk of making a type 1 error due to due to multiple 565 

testing outcomes. 566 

Two other factors that could have contributed to our findings are worthy of consideration. 567 

First, the mycoprotein drink contained ~20% more protein than the milk protein beverage 568 

(31.5 vs 26.2 g). In young men the muscle protein synthetic response to dietary protein 569 

ingestion plateaus at ~20 g protein (3, 11) (or 0.3 g·kg-1; (26)), which appears to be more due 570 

to leucine content, rather than total protein per se (64), at least when ample protein is 571 

provided (65). We therefore assume, since we fed in excess of 20 g / 0.3 g·kg-1 in both 572 

conditions, that ample protein was available to negate protein amount being a significant 573 

contributing factor. In agreement, systemic amino acid concentrations were lower following 574 

mycoprotein compared with milk protein ingestion, again indicating non-protein/amino acid 575 

factors are likely responsible for the greater muscle protein synthetic effect of mycoprotein. 576 

Second, whilst it is generally assumed that leucine (and the other BCAAs) is the primary 577 

nutritional anabolic trigger (6, 25, 64, 66), it is clear that other essential amino acids (50), 578 

such as arginine (67-69), may also play a role in initiating muscle protein synthesis rates. 579 

Therefore, it is also plausible that the amino acid profile of mycoprotein was simply more 580 
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anabolic than milk protein. This, however, would be contrary to the consensus of in vivo 581 

human data (22), and necessitate that specific amino acids, with a greater preponderance in 582 

the mycoprotein drink, possess anabolic signalling roles that are as yet undocumented in 583 

humans.     584 

To conclude, the bolus consumption of mycoprotein stimulated resting and post-exercise 585 

muscle protein synthesis rates in young men, and to a greater extent than a leucine-matched 586 

bolus of milk protein. These novel data show mycoprotein represents a viable, sustainably 587 

produced non-animal derived alternative dietary protein source to support acute tissue 588 

remodelling in response to exercise.  Our work implies that mycoprotein could be 589 

incorporated into the habitual diet of those undertaking prolonged resistance training to 590 

facilitate muscle hypertrophic responses.591 

  592 
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Tables 

Table 1. Participant characteristics. 

 MILK MYCO 

 (n = 10) (n = 10) 

Age (y) 22 ± 1 22 ± 1 

Body mass (kg) 84 ± 3 81 ± 3 

Height (cm) 178 ± 2 182 ± 3 

BMI (kg·m-2) 26 ± 1 25 ± 1 

Fat (% body mass) 12 ± 2 9 ± 2 

Lean mass (kg) 73 ± 3 73 ± 2 

Total work done (J) 29540 ± 1782 30722 ± 2059 

Energy (MJ·day-1) 9.5 ± 0.8 11.6 ± 0.9 

Protein (g·day-1) 150 ± 20 162 ± 17 

Protein (g·kg-1·day-1) 1.8 ± 0.2 2.1 ± 0.2 

 

Values represent mean ± SEM. MILK, Milk protein ingestion condition; MYCO, mycoprotein 

ingestion condition, BMI, body mass index. Total work represents the amount of work done 

(in J) during the experimental exercise protocol. No statistically significant differences were 

observed between conditions (P>0.05). 

  



 
 

Table 2. The nutritional content of the experimental drinks. 

 
MILK MYCO 

Macronutrients   

Protein (g) 26.2 31.5 

Fat (g) 0.3 9 

Carbohydrate (g) 1.7 7 

Fibre (g) <0.1 17.5 

Energy (kcal) 108 238 

Energy (kJ) 458 996 

Amino acid content (g) 
  

Alanine 0.8 2.0 

Arginine 0.9 2.2 

Aspartic acid 1.9 3.3 

Glutamic acid 5.8 3.9 

Glycine 0.5 1.5 

Histidine 0.8 0.8 

Isoleucine 1.3 1.5 

Leucine 2.5 2.5 

Lysine 2.1 2.6 

Phenylalanine 1.3 1.5 

Proline 2.7 1.6 

Serine 1.5 1.6 

Threonine 1.1 1.7 

Tryptophan - 1.2 

Tyrosine 1.3 1.2 

Valine 1.7 1.9 



 
 

Protein content (g) is calculated from the sum of amino acids measured after protein 

hydrolysis. The experimental drinks contained 31 g and 70 g of total product for MILK and 

MYCO, respectively.  

 

  



 
 

Table 3. Muscle protein synthesis rates (FSR) before and after protein ingestion, and 

resistance exercise. 

  Postabsorptive Postprandial 

MILK Rested 0.036 ± 0.008 0.052 ± 0.006 

(n = 10) Exercised 0.035 ± 0.008 0.056 ± 0.005 

MYCO Rested 0.025 ± 0.006 0.057 ± 0.004 

(n = 9) Exercised 0.024 ± 0.007 0.072 ± 0.005 

 

Values represent mean ± SEM. Mixed muscle protein fractional synthesis rates (FSRs; A) 

calculated from the plasma L-[ring-2H5]phenylalanine precursor pool in the postabsorptive 

(fasted) and postprandial (fed) state, in rested and exercised (single bout of unilateral 

concentric leg extensions) muscle in healthy young men. Postprandial state represents a 4 h 

period following the ingestion of 26.2g milk protein (MILK; n=10) or 31.5g mycoprotein 

(MYCO; n=9). Data were analysed with three-way ANOVA. Time effect, P<0.0001; 

treatment effect, P=0.99; exercise effect, P=0.06; treatment × time, P=0.02; treatment × 

exercise, P=0.22; exercise × time, P=0.13; treatment × time × exercise, P=0.42. 

  



 
 

Table 4. Names and symbols of gene expression assay targets that were preloaded on to the 

microfluidic cards. 

Gene name (human skeletal muscle) Symbol 

Insulin Receptor substrate 1 IRS1 

AKT serine/threonine kinase 1 AKT1 

AKT serine/threonine kinase 2 AKT2 

phosphoinositide-3-kinase regulatory subunit 1 PIK3R1 

mechanistic target of rapamycin MTOR 

ribosomal protein S6 kinase B1 RPS6KB1 

eukaryotic translation initiation factor 4E binding protein 1 EIF4EBP1 

eukaryotic translation initiation factor 4 gamma 1 EIF4G1 

eukaryotic translation initiation factor 4E EIF4E 

sestrin 2 SESN2 

GATS protein like 3 GATSL3 

leucyl-tRNA synthetase LARS 

MAP kinase interacting serine/threonine kinase 2 MKNK2 

transcription factor EB TFEB 

tuberous sclerosis 1 TSC1 

tuberous sclerosis 2 TSC2 

DNA damage inducible transcript 4 DDIT4 

DNA damage inducible transcript 4 like DDIT4L 

regulatory associated protein of MTOR complex 1 RPTOR 

NPR2-like, GATOR1 complex subunit NPRL2 

AKT1 substrate 1 AKT1S1 

forkhead box O1 FOXO1 

forkhead box O3 FOXO3 

forkhead box O4 FOXO4 

calpain 1 CAPN1 

calpain 3 CAPN3 

caspase 3 CASP3 



 
 

nuclear factor kappa B subunit 1 NFKB1 

F-box protein 32 FBXO32 

tripartite motif containing 63 TRIM63/MuRF1 

tripartite motif containing 32 TRIM32 

activating transcription factor 4 ATF4 

Myostatin MSTN 

growth differentiation factor 11 GDF11 

SMAD family member 2 SMAD2 

SMAD family member 3 SMAD3 

transforming growth factor beta 1 TGFB1 

inhibin beta A subunit INHBA 

solute carrier family 7 member 5 SLC7A5 

solute carrier family 7 member 8 SLC7A8/LAT2 

solute carrier family 36 member 1 SLC36A1 

solute carrier family 7 member 1 SLC7A1 

solute carrier family 38 member 2 SLC38A2 

solute carrier family 38 member 9 SLC38A9/SNAT9 

solute carrier family 38 member 10 SLC38A10 

serum response factor SRF 

glyceraldehyde-3-phosphate dehydrogenase GAPDH 

beta-2-microglobulin B2M 

 

 

  



 
 

Figure Legends 

 

Figure 1. Schematic representation of the experimental protocol. 

 

Figure 2. The timecourse and incremental AUC (iAUC) of plasma total branched chain amino 

acid (A and B), leucine (C and D), isoleucine (E and F), valine (G and H), tyrosine (I and J) 

and phenylalanine (K and L) concentrations during a 3 h postabsorptive period (time-course 

graphs only) and a 4 h postprandial period in healthy young men. iAUC graphs represent total 

4 h postprandial plasma concentrations above postabsorptive values. The vertical line on each 

graph indicates the transition from postabsorptive to postprandial conditions via the ingestion 

of 26.2g milk protein (MILK; n=10) or 31.5g mycoprotein (MYCO; n=10), where a single bout 

of unilateral leg extension exercise was also performed. Time-course and iAUC data were 

analysed with a repeated measures two-way ANOVA and independent t-tests, respectively, 

with Sidak’s post hoc tests applied to locate individual differences (P≤0.05). Values are means, 

with their standard errors represented by vertical bars. * indicates individual differences 

between conditions at these time points, and a difference between conditions on the bar graphs. 

Treatment × time interaction effect; all P<0.0001. 

 

Figure 3. The timecourse and incremental AUC (iAUC) of serum insulin concentrations during 

a 3 h postabsorptive period (time-course graph only) and a 4 h postprandial period in healthy 

young men, with iAUCs representing total 4 h postprandial plasma concentrations above 

postabsorptive values. The vertical line on each graph indicates the transition from 

postabsorptive to postprandial conditions via the ingestion of 26.2g milk protein (MILK; n=10) 

or 31.5g mycoprotein (MYCO; n=10), where a single bout of unilateral leg extension exercise 

was also performed.  Data were analysed with a repeated measures two-way ANOVA and 



 
 

independent t-tests, respectively, with Sidak’s post hoc tests applied to locate individual 

differences (P≤0.05). Values are means, with their standard errors represented by vertical bars. 

* indicates individual differences between conditions at these time points, and a difference 

between conditions on the bar graph.  Treatment × time interaction effect; P<0.0001.  

 

Figure 4. L-[ring-2H5]phenylalanine (A), L-[3,3-2H2]tyrosine (B), and L-[ring-2H4]-tyrosine 

(C) enrichments during a stable isotope experimental test day in healthy young men. The 

vertical line on each graph indicates the transition from postabsorptive to postprandial 

conditions via the ingestion of 26.2g milk protein (MILK; n=10) or 31.5g mycoprotein 

(MYCO; n=10), where a single bout of unilateral leg extension exercise was also performed. 

Data were analysed with a repeated measures two-way ANOVA, with Sidak’s post hoc tests 

applied to locate individual differences (P≤0.05). Values are means, with their standard errors 

represented by vertical bars. * indicates different from fasting (t = 0 min) for MYCO. 

Horizontal bar indicates a change from t=0 across conditions. Treatment × time interaction 

effect; A, P=0.0018; B, P=0.5357; C, P=0.0026. 

 

Figure 5. Total phenylalanine rate of appearance (Ra; A), total phenylalanine rate of 

disappearance (Rd; B), and phenylalanine hydroxylation (C) during a 3 h postabsorptive period 

and a 4 h postprandial period in healthy young men. The vertical line on each graph indicates 

the transition from postabsorptive to postprandial conditions via the ingestion of 26.2g milk 

protein (MILK; n=9) or 31.5g mycoprotein (MYCO; n=9), where a single bout of unilateral 

leg extension exercise was also performed. Data were analysed with a repeated measures two-

way ANOVA, with Sidak’s post hoc tests applied to locate individual differences (P≤0.05). 

Values are means, with their standard errors represented by vertical bars. Treatment × time 

interaction effect; A, P=0.2659; B, P=0.0003; C, P<0.0001. 



 
 

 

Figure 6. Mixed muscle protein fractional synthesis rates (FSRs; A) calculated from the plasma 

L-[ring-2H5]phenylalanine precursor pool in the postabsorptive (fasted) and postprandial (fed) 

state, in rested and exercised (single bout of unilateral concentric leg extensions) muscle in 

healthy young men. Postprandial state represents a 4 h period following the ingestion of 26.2g 

milk protein (MILK; n=10) or 31.5g mycoprotein (MYCO; n=9). Data were analysed with 

three-way ANOVA, with Sidak post hoc tests applied to locate individual differences. The 

delta change in FSR in response to protein ingestion (B), representing the transition from 

postabsorptive to postprandial conditions in both groups is also presented. Data were analysed 

with two-way ANOVA, with Sidak’s post hoc tests applied to locate individual differences 

(P≤0.05). Values are means, with their standard errors represented by vertical bars. † indicates 

a main effect of protein ingestion. There was a trend for a difference in postprandial muscle 

protein synthesis rates between protein conditions (P=0.093). # represents a main effect of 

condition. 

 

Figure 7. Skeletal muscle mechanistic target of rapamycin (mTOR) phosphorylation status, 

presented as a ratio of phosphorylated (p) to total protein, in the postabsorptive and postprandial 

state, in rested and exercised legs, after the ingestion of 26.2g milk protein (MILK; n=7) or 

31.5g mycoprotein (MYCO; n=8), in young men. Values are means, with their standard errors 

represented by vertical bars. Data were analysed with two-way ANOVA. No significant effects 

were detected. 

 

Figure 8. Skeletal muscle mRNA expression of genes involved in muscle protein synthesis, 

muscle protein breakdown, and amino acid transport in the postabsorptive and postprandial 

state, in rested and exercised legs, after the ingestion of 26.2g milk protein (MILK; n=10) or 



 
 

31.5g mycoprotein (MYCO; n=10), in young men. Data were analysed using three-way 

ANOVA, with Sidak’s post hoc tests used to detect differences (P≤0.05). Values are means, 

with their standard errors represented by vertical bars. There was a main effect of protein 

ingestion for IRS1, TSC1, TSC2, GATSL3, AKT1S1, CAPN1, FOXO3, SRF, LAT2, SNAT9, 

SLC38A10, DDIT4, TRIM63, and SLC38A2 (P<0.05). There was a time × exercise interaction 

effect for MSTN, DDIT4L, FBXO32, TRIM63, SLC38A10, DDIT4, SLC38A2, TRIM32, 

EIF4E, LARS, TGFB1, TFEB, PIK3R1, RPS6KB1, and SLC7A1 (P<0.05). SMAD2 showed 

a main effect of exercise (P<0.05). RPTOR and TSC1 showed a three way interaction (time × 

condition × exercise; P<0.05). 


