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Abstract

We propose a framework for incorporating public opinion into policy making in
situations where values are in conflict. This framework advocates creating vi-
gnettes representing value choices, eliciting the public’s opinion on these choices,
and using machine learning to extract principles that can serve as succinct state-
ments of the policies implied by these choices and rules to guide the behavior of
autonomous systems.
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1. Introduction

Recent advances in artificial intelligence (AI) systems and the rise of au-
tonomous machines have sounded the alarm for the potential negative conse-
quences of deploying machines and algorithms taking positions with high respon-
sibilities. In the last few years, studies that uncover the problematic societal and
ethical aspects of deployed and commercialized machines and algorithms have
come to the forefront [1, 2, 3, 4, 5, 6]. Concurrently, various efforts focused
on tackling these problems through projects that propose approaches to diminish
bias or to increase fairness, equity, and transparency [7, 8, 9, 10, 11]. At the pol-
icy level, notable events have been organized and committees of experts gathered
around the world to design ethical frameworks for a responsible AI [12, 13].

Most of the efforts at the policy level so far have been concerned with creating
broad ethical codes. For example, the Asilomar AI Principles [13] laid down a list
of values to be sought such as safety, transparency, and responsibility. Similarly,
a document by AI4People forum [12] categorized the 47 principles proposed by
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six different initiatives into five main categories: beneficence, non-maleficence,
autonomy, justice, and explainability. These are all values to be promoted and,
if possible, maximized. Such ethical codes can help guide industry when creat-
ing AI-based products, helping ensure that manufacturers understand that these
artifacts should promote the values they advocate (for a comprehensive list and
analysis of ethical codes for AI see [14, 15]).

Broad ethical codes, however, focus on promoting or demoting values and
principles, each taken independently, and abstractly. So far, little specification has
been provided for what should be done when two values come in conflict. For
example, how should a robot caregiver balance safety, privacy, and respect for
patient autonomy? How would this change if the person in question is a child or
an Alzheimer’s patient? Even when considering each value independently, ethical
codes do not specify how to resolve trade-offs within one value. For example, how
should an autonomous vehicle distribute the risk it creates between the various
parties affected by its decisions?

Balancing ethical values is indeed a hard problem, and using the same tools
mentioned above to resolve these tradeoffs will likely face challenges. Consider
the German committee formed in 2016 to draft a set of guidelines for automated
vehicles (AVs) [16, 17]. While the guidelines contained specific details that go
beyond a broad code of ethics, the guidelines were rarely controversial. For ex-
ample, it is difficult to argue against the statement “any distinction based on per-
sonal features (age, gender, physical, or mental constitution) is strictly prohibited.”
However, when the committee moved to more contested elements, the statements
became rather inconclusive. For example, when it comes to the minimization
of lost lives, rule No.9 states that “General programming to reduce the number of
personal injuries may be justifiable” directly after stating that “It is also prohibited
to offset victims against one another”. Another example is noted in [18], pointing
to another sentence in the same rule: “Those parties involved in the generation
of mobility risks must not sacrifice non-involved parties.” A detailed explanation
of the German guidelines [17] clarified that this rule regards evaluating how AVs
should balance the risk between passengers and pedestrians, but the explanation
is also inconclusive: “Not allowing non-involved parties to be sacrificed implies
that it cannot be a general rule for a software code to unconditionally save the
driver. However, the driver’s wellbeing cannot be put last, either.” The incon-
clusiveness of the German guidelines on these ethical tradeoffs is understandable,
especially given that no matter what the collectively chosen outcome is, some
members of the committee will have to reconcile their disagreement with the col-
lective outcome and stand behind it. In such cases, where all sides of the tradeoff
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are defensible (but none is ideal on its own), committing to one over the others is
a large responsibility for a single expert or a group of experts to undertake.

This raises some important questions: How should ethical tradeoffs be re-
solved? And who should decide? A large part of the literature in moral and
political philosophy is dedicated to tackling these two questions. As for the for-
mer question, some favor the Utilitarian approach, which maximizes the subtrac-
tion of likely harms from likely benefits resulting from possible actions, taking
all those affected into account; others, who take a Deontological approach, em-
phasize rights and what people deserve in light of past behavior; and still others,
like W.D. Ross [19], weigh several prima facie duties, including those that are
Utilitarian and Deontological. As for the latter question, while Plato famously ar-
gued for leaving these decisions to experts [20], others argued for the importance
of engaging the public [21] (for a more in-depth discussion on this question, see
[22, 23, 24]). Currently, policymakers seek the public’s feedback when they have
a new policy draft, using tools like public comment or public opinion polling.

However, engaging the public poses its own challenges. First, the public can
be biased, or influenced by irrelevant factors [25, 26, 27]. Second, some cases
can result in what is known as “the tyranny of the majority”; the majority of
constituents enforcing their interests above the others, resulting in systematically
disadvantaging the minority [28]. Another challenge is that the public may not be
informed enough to form a sensible opinion, and may not be able to grasp all the
complications relevant to the problem. Communicating this knowledge in simple
understandable way is a challenge on its own.

Despite these concerns, the public may still have a role to play in the discus-
sion, if the right tools are designed to enable it to play its proper role. In The Public
and its Problems [21], John Dewey argued that it is possible to be optimistic about
the ability of the public to fruitfully contribute to the democratic process, if com-
munication about political issues is clear and accessible. Recently, in their ethical
framework, AI4People [12], suggested that more effort should be dedicated to the
elicitation of public opinion through scientifically designed experiments which
can both provide a fair estimate of public preferences, and communicate ques-
tions in an understandable manner (for example, by providing examples of ethical
dilemmas faced by AI systems). Furthermore, their suggestion emphasized that
the elicitation of public opinion should be used for the co-creation of policies.

In this paper, we propose a framework (see Figure 1) that promotes public
participation as an essential tool for creating a policy that specifies ethical deci-
sion making for machines and algorithms in situations where ethical values are in
conflict. In so doing, we use existing tools like randomized controlled trials with
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Start with  
Conflicting Features

Create Dilemma Vignettes 
[factorial design]

Collect Data 
[answers to vignettes]

Extract Principles 
[using ILP]

Rules 
[machine-understandable]

Policy 
[human-understandable]

Figure 1: A conceptual representation of the proposed framework.

multifactorial design [29]) and inductive logic programming (ILP) [30] to collect
data from the public and abstract from it the preferable course of action in situa-
tions where values conflict. To facilitate this, we create vignettes representing the
abstract values in order to better elicit the public’s opinion. Then, we use an ILP
technique to extract principles. These principles are then used to produce two out-
comes: rules that can be embedded in algorithms to guide their decisions, and an
equivalent human-readable policy. To present the functionality of this proposal,
we borrow vignettes from the Moral Machine website [31, 32]. First, we use syn-
thetic data to showcase the functionality of the proposed framework. Then, we use
data collected via the Moral Machine in order to create a rule for a case involving
an ethical tradeoff.

In the next section, we introduce the concepts needed to represent action pref-
erences. In Section 3, we provide a formal representation of the value driven
agent. This formalization serves as the foundation for the development and use
of principles. In Section 4, we show how we create dilemmas given a set of du-
ties. Section 5 provides a detailed walk-through for extracting principles given
synthetic and collected data. We finally conclude with discussion in Section 6.
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2. Representing Action Preference

Crucial to our proposed approach is the use of an inductive logic program-
ming (ILP) [30] method to extract machine-understandable rules and human-
understandable policy. Given a set of positive and negative examples, ILP is a
set of techniques and approaches that use logic programming (programs written
using sentences of logical form) in order to reach a hypothesis that entails all
positive examples and none of the negative examples.

In order to exploit ILP techniques, we first must choose a representation scheme
for values and the preference rules that resolves conflicts among them. To this end,
we advocate a case-supported, principle based approach (CPB) [33, 34].

CPB uses a representation scheme that includes relevant features (e.g. harm,
good, etc.) and their incumbent prima facie duties to either minimize or maximize
them (e.g. minimize harm, maximize good), actions characterized by integer de-
grees of presence or absence of relevant features (and so, indirectly, the duties it
satisfies or violates), and cases comprised of the differences of the corresponding
duty satisfaction/violation of two actions.

Example 1 (Robot caregiver). A robot is being prepared to serve as a caregiver
working with patients. Its role includes a set of helping tasks like reminding the
patient to take his/her medicine at the appropriate times. If the patient refuses to
take the medication when reminded to do so, the robot is faced with the choice of
whether to accept the patient’s decision or contact the doctor.

The relevant features include harm, benefit, and autonomy. The correspond-
ing duties are to minimize harm, maximize benefit, and maximize autonomy. The
robot faces multiple cases where it has to make a decision as to fulfill these duties.
Consider the following case:
Case1: the medication is only designed to be symptom relieving, that is, it only
provides benefit. actions:

• Action 1: accept the patient’s decision.

• Action 2: contact the doctor.

Action 1 satisfies the duty to maximize patient autonomy, while violating the
duty to maximize benefit. Action 2 satisfies the duty to maximize benefit, but vio-
lates the duty to maximize patient autonomy.

Now consider the following case:
Case 2: the robot reminds the patient to take a medication that would prevent
harm to the patient, but (s)he refuses. actions:
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• Action 1: accept the patient’s decision.

• Action 2: contact the doctor.

Action 1 satisfies the duty to respect patient autonomy, but violates the duty to
minimize harm. Action 2, on the other hand, satisfies the duty to minimize harm,
while violating the duty to maximize patient autonomy.

CPB represents preference rules as binary relations over actions, termed prin-
ciples, that are abstracted from sets of representative cases using machine learning.

A principle of preference is defined as a disjunctive normal form predicate in
terms of lower bounds for duty differentials of a case:

p(a1, a2)←−
∆d1 >= v1,1 ∧ · · · ∧∆dn >= vn,1

∨
...
∨
∆d1 >= v1,m ∧ · · · ∧∆dn >= vn,m

where ∆di denotes the difference of a corresponding values of duty i in actions a1
and a2 (the actions of the case in question) and vi,j denotes the lower bound of
duty i in disjunct j such that p(a1, a2) returns true if action a1 is preferable to
action a2.

Such principles can serve both as a means of guiding the actions of autonomous
machines and as a description of the policies implied by the set of training cases.

Example 2 (Robot caregiver - principles). Recall Example 1. Suppose upon ap-
plying an ILP approach to a number of such cases relating various degrees of duty
satisfaction and violation, we end up with the following principle:

p(notify, accept)←−
∆min harm >= 1

∨
∆max benefit >= 2 ∧∆max autonomy >= −1

6



A policy description can be inferred from this as follows: A robot caregiver
should notify a doctor if accepting the patient’s decision would cause the patient
any harm or there is substantial benefit to be lost in respecting the patient’s au-
tonomous decison to refuse medication.

ILP techniques are used to abstract principles from specific cases where a con-
sensus exists as to the relevant features involved, the relative levels of satisfaction
or violation of their correlative duties, and the preferable action. Resulting from
this process is a set of sets of lower bounds for which principle p will return true
for all positive cases presented to it (i.e. where the first action is preferable to the
second) and false for all negative cases (i.e. where the first action is not preferable
to the second). That is, for every positive case, there is a clause of the principle
that is true for the differential of the actions of the case and, for every negative
case, no clause of the principle returns true for the differential of the actions of
the case. The principle is thus complete and consistent with respect to its training
cases.

3. Representing a value driven agent

In a CPB approach, an autonomous machine, like the robot caregiver exam-
ple mentioned above, makes decisions in each situation according to a principle
learned from a set of cases. Since this principle reflects the ethical values of ethi-
cists and the public who participate in the option polling, we call a machine whose
actions are determined by such principles a value driven agent (VDA) [34]. In this
section, we use a formal language to represent a VDA. The language of a VDA is
composed of atoms of perceptions, actions and duties, where an atom is an atomic
proposition, whose value can be truth or false. When the value of an atom is true,
we use it to represent a true perception. Otherwise, we use the negation of an
atom to represent a false perception. Furthermore, each action and each duty is
represented by a distinct signature, i.e., a symbol to denote the name of an action
or a duty. The definitions in this section were originally presented in [35].

Definition 1 (Language of a VDA). Let Atom be a set of atoms of perceptions,
and Sig be a set of signatures. Let L = (Atom,A, D) be a language consisting
of

• a set of atoms Atom,

• a set of actions A ⊆ Sig, and
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• a set of duties D ⊆ Sig,

such that Atom,A and D are pairwise disjoint.

Example 3 (Language of a VDA). In terms of Examples 1 and 2, there is a set
of 3 atoms of perceptions (denoted Atom1): medication reminder time (mrt; in-
dicating whether current time is a reminder time or not), reminded (r), refused
medication (rm); a set of 2 actions (denotedA1): accept and notify; and a set of 3
duties (denoted D1): maximize benefit (MB), minimize harm (mH), and maximize
autonomy (MA). The language of this VDA is then denoted L1 = (Atom1, A1,
D1).

Let Lit = Atom ∪ {¬p | p ∈ Atom} be a set of literals. For l1, l2 ∈ L, we
write l1 = −l2 just in case l1 = ¬l2 or l2 = ¬l1. Let P ⊆ Atom be a set of true
perceptions. Then, the state of the world can be defined in terms of P , termed a
situation.

Definition 2 (Situation). A situation S is a subset of Lit, such that S = P∪{¬p |
p ∈ Atom \ P}. The set of situations is denoted as SIT .

Example 4 (Situation). Let Lit1 = Atom1 ∪ {¬p | p ∈ Atom1} be a set of
literals. Let P1 = {mrt, r} be a set of true perceptions. An example of the state
of the world: S1 = {mrt, r, ¬rm}.

Situation S determines the satisfaction and/or violation degree of duties D by
actions A. A set of vectors of duty satisfaction/violation values of all actions in a
situation is termed an action matrix.

Definition 3 (Action matrix of a situation). A duty satisfaction value is a posi-
tive integer, while a duty violation value is a negative integer. In addition, if a duty
is neither satisfied nor violated by the action, the value is zero. Given an action
α ∈ A and a situation S ∈ SIT , a vector of duty satisfaction/violation values for
α, denoted as vS(α), is a vector vS(α) = (d1 : vS,α(d1), . . . , dn : vS,α(dn)) where
vS,α(di) is the satisfaction/violation value of di ∈ D w.r.t α in S. Then, an action
matrix of a situation S is defined as MS = {vS(α) | α ∈ A}. The set of action
matrices of all situations SIT is denoted as MSIT = {MS | S ∈ SIT}.

In this definition, a vector of duty satisfaction/violation values represents the
ethical consequences of its corresponding action in a given situation. An action’s
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ethical consequences are denoted by how much its execution will satisfy or vio-
late each duty. Conflicts arising between actions will be resolved by a principle
abstracted from cases.

For brevity, when the order of duties is clear, vS(α) = (d1 : vS,α(d1), . . . , dn :
vS,α(dn)) is also written as vS(α) = (vS,α(d1) . . . vS,α(dn)).

Given a situation and its corresponding action matrix, actions can be sorted
in order of ethical preference using a principle abstracted from a set of cases by
applying ILP techniques. Clauses of the principle specify learned lower bounds
of the differentials between corresponding duties of any two actions that must be
met or exceeded to satisfy the clause.

Let vS(α1) = (d1 : vS,α1(d1), . . . , dn : vS,α1(dn)) and vS(α2) = (d1 :
vS,α2(d1), . . . , dn : vS,α2(dn)) be vectors of duty satisfaction/violation values. In
the following definitions, we use w = vS(α1) − vS(α2) = (d1 : w(d1), . . . , dn :
w(dn)) to denote a vector of the differentials of vS(α1) and vS(α2), wherew(d1) =
vS,α1(d1)− vS,α2(d1), . . . , w(dn) = vS,α1(dn)− vS,α2(dn).

A case is composed of the following: two actions, two vectors of duty satisfac-
tion/violation degrees of the actions, and an assignment of the ethically preferable
action made by an expert or a member of the public. Here, by saying ‘preferable’,
we mean that the action is presumingly preferable according to the opinion of the
experts or the member of the public. Formally, we have the following definition.

Definition 4 (Case). Given two actions α1 and α2, let vS(α1) and vS(α2) be the
vectors of duty satisfaction/violation values for them, and α0 be the preferable
action assigned by an expert or a member of the public such that α0 = α1 or
α0 = α2. A case is a tuple c = (α1, α2, vS(α1), vS(α2), α0).

By considering a set of cases, we may obtain a set of vectors of acceptable
lower bounds of satisfaction/violation degree differentials such that all positive
cases meet or exceed the lower bounds of some vector, while no negative case
does.

Definition 5 (Principle). A principle is defined as π = {u1, . . . , uk}, where ui =
(d1 : ui(d1), ..., dn : ui(dn)), where dj is a duty, and ui(dj) is the acceptable lower
bound of the differentials between corresponding duties of two actions in A.

Intuitively, each ui of a principle is a collection of values denoting how much
more an action must, at least, satisfy each duty (or how much, at most, it can vio-
late each duty) than another action for it to be considered the ethically preferable
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of the pair. As duties are not necessarily equally weighted nor form a weighted
hierarchy, principle π is required to determine which duty (or set of duties) is (are)
paramount in the current context. For brevity, when the order of duties is clear,
in a principle the lower bounds of the differentials between duties is also written
as ui = (ui(d1)...ui(dn)). Given a principle and two vectors of duty satisfac-
tion/violation values, we may define a notion of ethical preference over actions.

Definition 6 (Ethical preference over actions). Given a principle π, a situation
S, and two actions α1 and α2, let w be the differentials of vS(α1) and vS(α2)
as mentioned above. We say that α1 is ethically preferable (or equal) to α2 with
respect to some u ∈ π, written as vS(α1) ≥u vS(α2), if and only if for each
di : w(di) in w and di : u(di) in u, it holds that w(di) ≥ u(di).

In this definition, we make explicit the disjuncts (u) in the clause of the prin-
ciple that are used to order two actions.

Given two actions α1 and α2, there might exist two different clauses of π, say
u1, u2 ∈ π, such that vS(α1) ≥u vS(α2) and vS(α2) ≥u′ vS(α1) where u, u′ ∈ π
and u 6= u′. In this case, we say that neither action α1 nor action α2 is ethically
preferable to the other. In other words, according to the principle, there is no
ethical justification to choose one over the other. On the contrary, if vS(α1) ≥u
vS(α2) and there exists no u′ ∈ π such that vS(α2) ≥u′ vS(α1), we say that α1 is
strictly more preferable than α2.

Based on the above notions, a value driven agent (VDA) is formally defined
as follows.

Definition 7 (Value driven agent). Let L = (Atom, A,D) be the language of a
VDA, SIT be the set of situations, MSIT be the set of action matrices of SIT , and
π be a principle. A value driven agent is a tuple Ag = (L, SIT , MSIT , π).

In a VDA, given a situation and an action matrix, the set of actions can be
sorted in terms of the principle. We say that an action α1 is a solution if and only
if there is no action α2 such that α2 is strictly more preferable than α1. Formally,
we have the following definition.

Definition 8 (Solution). Let Ag = (L, SIT,MSIT , π) be a value driven agent,
where L = (Atom,A,D). Given a situation S ∈ SIT and an action matrix
MS ∈MSIT , a solution of Ag with respect to S is α ∈ A if and only if there is no
action α′ such that α′ is strictly more preferable than α.

Note that the ordering induced by ethical preference defined in Definition 6
allows for multiple non-dominated actions as solutions of a given situation.
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4. Creating Dilemma Vignettes

In this step, we start from factors of conflicting features. For each factor, we
define the conflicting features of interest, and create the corresponding dilemma.
Consider the following example.

Example 5 (Automated Vehicles - Simple). An Automated Vehicle (AV) is being
prepared to deal with a set of moral tradeoffs. Suppose we have the following
factor:

• Factor 1 (Relation to AV): passengers vs. pedestrians

This factor contains two conflicting features: sparing the passengers and sparing
the pedestrians. We create one corresponding dilemma with two decisions:

1. Decision that spares passengers versus decision that spares pedestrians.

And the corresponding duties are:

• Maximize the number of passengers spared

• Maximize the number of pedestrians spared

That would be the end of this step for this simple example. However, once we
prepare this example for use, we note that the details of other factors may need
to be worked out. For example, if we think that whether the AV should prioritize
sparing passengers or sparing pedestrians is dependent on whether the AV has to
take an action as to swerve off or to stay on road, then we can expand the list of
dilemmas from the previous example as the following.

Example 6 (Automated Vehicles - Modified). Extending the previous example,
we consider two factors:

• Factor 1 (Relation to AV): passengers vs. pedestrians

• Factor 2 (Interventionism): intervene (that is, to swerve off-road), or not
intervene.

Now we have two pairs of conflicting features of interest: 1) passengers vs.
pedestrians, and 2) intervention vs. no intervention. We create the corresponding
two dilemmas with two decisions:
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1. Decision that involves intervention and spares passengers versus decision
that involves non-intervention and spares pedestrians.

2. Decision that involves non-intervention and spares passengers versus deci-
sion that involves intervention and spares pedestrians.

And the corresponding duties are:

• Maximize the number of passengers spared

• Maximize the number of pedestrians spared

• Minimize intervention

• Minimize non-intervention

In this case, it does not make sense to consider cases where both decisions in
1 and 2 are non-intervention (omission), or where neither of the two decisions is
non-intervention (there’s always the possibility to do nothing).

The possibility for including other factors as a fixed value on both sides is
implicit even if the factor is deemed irrelevant. For example, even if we decide
that the age and the gender of people in the scenario are both irrelevant, we may
still have to make some assumptions about these characters. In the above two
dilemmas, all characters may be assumed to be male adults or female adults. It
would be more informative to include cases where all characters are male adults
and another with all female adults.

The inclusion of gender here is not necessarily because we believe that this
factor should make a difference. There are other reasons to include different de-
mographics in such vignettes. One reason is to provide a better representation of
the vignettes of real-life cases where not only male adults or only female adults
ride in AVs and walk in the streets.

We can extend the previous example to include gender.

Example 7 (Automated Vehicles - Extended). We extend the last example to in-
clude two levels of gender as a fixed assignment on both sides. For example, each
of the two dilemmas above can be presented with characters on both sides of the
dilemmas are males. Then, the same two dilemmas are presented again with all
characters being females:

1. Decision that involves non-intervention and spares male passengers versus
decision that involves intervention and spares male pedestrians.
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2. Decision that involves intervention and spares male passengers versus de-
cision that involves non-intervention and spares male pedestrians.

3. Decision that involves non-intervention and spares female passengers ver-
sus decision that involves intervention and spares female pedestrians.

4. Decision that involves intervention and spares female passengers versus de-
cision that involves non-intervention and spares female pedestrians.

And the corresponding duties are:

• Maximize the number of passengers spared

• Maximize the number of pedestrians spared

• Minimize intervention

• Minimize non-intervention

• Maximize the number of males spared

• Maximize the number of females spared

Instead, we may decide to include gender as a factor (like the other two fac-
tors) by pitting males vs. females. However, this choice would be conditional on
experts approving of the inclusion of gender as a factor.

In the previous examples, we used factors with two levels each. The same can
be done for more levels for each factor. However, it becomes less meaningful to
talk about e.g., ten factors, and the number of dilemmas you construct would grow
exponentially.

We end this section with the following more complex example.

Example 8 (Automated Vehicles - Complex). Suppose now that we consider the
following factors:1

• Number of lives: sparing more lives vs. sparing fewer lives

1We note here that we do not specifically defend the use of these factors to guide policy. Addi-
tionally, many would argue that the current technology of automated vehicles (AVs) is not capable
of reliably recognizing the physical features (e.g., age, weight, gender, and sexual preferences) of
road users. However, these features are still relevant for the public. When an AV crash happens,
the physical features of the victims will be recognizable in the public eye, and their reaction will
happen accordingly.
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• Abiding by the law: sparing legally crossing vs. sparing illegally crossing

• Gender: sparing females vs. sparing males

Furthermore, we would like to use the following fixed assignment:

• age: sparing adults vs. adults, or sparing young vs. young.

And the corresponding duties are:

• Maximize the number of persons spared

• Maximize the number of females spared

• Maximize the number of adults spared

• Maximize the number of law-abiding entities spared

• Maximize the number of males spared

• Maximize the number of young spared

We construct scenarios that cover all possible variations of such conflicts. We
have 16 possible outcomes. We pair the outcomes that are maximally different,
resulting in eight dilemmas. Each of these eight dilemmas is repeated for adults
and for young, resulting in 16 dilemmas. For example, one dilemma (see Figure
2) includes two males legally crossing in front of the car vs. one female illegally
crossing in the other lane. The two sides in this example are characterized by:
number (one vs. two), gender (male vs. females), legality (illegally crossing vs.
legally crossing), and interventionism (staying vs. swerving).

As a visual representation of these scenarios, we use 16 scenarios from those
used on the Moral Machine website [32]. The 16 dilemmas are represented in
Figures 3 and 4.

5. Extracting Principles

The scenarios (i.e. dilemmas) we have created in the previous step involve
only two mutually exclusive actions, namely continue and swerve, each with a
varying slate of consequences depending upon the scenario. As such, each sce-
nario and its consequences lends itself to representation as case in CPB, permitting
ILP abstraction of principles that encapsulate the preferences they exhibit.
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(P F A L M Y) = (1 1 1 -1 -2 0) (P F A L M Y) = (2 -1 2 2 2 0)

Figure 2: A pictorial representation of one of the dilemmas constructed from Example 8. The
dilemma has two outcomes: the one on the left results when the AV decides to continue, while the
one on the right results when the AV decides to swerve. The continue decision results in sparing
one person (P=1), that is an adult (A=1) female (F=1), who is illegally crossing (L=-1), but it also
results in the death of two males (M=-2), while the swerve decision results in sparing two people
(P=2), that are adults (A=2) males (M=2), who are legally crossing (L=2), but it also results in
the death of one female (F=-1). Neither of the two decisions has an influence on young characters
(Y=0). See Figures 3 and 4 for the 16) dilemmas constructed from Example 8.

15



Case 1

(1 1 1 -1 -2 0) (2 -1 2 2 2 0)

Case 2

(1 1 0 -1 -2 1) (2 -1 0 2 2 2)

Case 3

(1 -2 1 1 1 0) (2 2 2 -2 -1 0)

Case 4

(1 -2 0 1 1 1) (2 2 0 -2 -1 2)

Case 5

(2 -1 2 -1 2 0) (1 1 1 2 -2 0)

Case 6

(2 -1 0 -1 2 2) (1 1 0 2 -2 1)

Case 7

(2 2 2 2 -1 0) (1 -2 1 -1 1 0)

Case 8

(2 2 0 2 -1 2) (1 -2 0 -1 1 1)

Figure 3: Pictorial representation of the first eight (out of 16) dilemma cases considered for
this paper. Scenarios are ordered (Case 1, Case 2, etc.) as to correspond to the order in Table 1.
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Case 9

(2 2 2 -2 -1 0) (1 -2 1 1 1 0)

Case 10

(2 2 0 -2 -1 2) (1 -2 0 1 1 1)

Case 11

(1 -2 1 -1 1 0) (2 2 2 2 -1 0)

Case 12

(1 -2 0 -1 1 1) (2 2 0 2 -1 2)

Case 13

(1 1 1 1 -2 0) (2 -1 2 -2 2 0)

Case 14

(1 1 0 1 -2 1) (2 -1 0 -2 2 2)

Case 15

(2 -1 2 2 2 0) (1 1 1 -1 -2 0)

Case 16

(2 -1 0 2 2 2) (1 1 0 -1 -2 1)

Figure 4: Continued – Pictorial representation of the last eight (out of 16) dilemma cases
considered for this paper. Scenarios are ordered (Case 1, Case 2, etc.) as to correspond to the
order in Table 1.
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For example, Figure 2 (also Figure 3 Case 1) shows a scenario where choosing
to continue results in the death of two law-abiding male adults and choosing to
swerve results in the death of one law-flouting female adult. There are a number
of factors that present themselves in this scenario including the number of persons
involved, their maturity and gender, and the legality of their actions.

Assuming that no one would intentionally wish to harm someone, when cre-
ating a case we take the perspective of which entities would be spared by an
action– in this scenario choosing continue would spare one law-flouting female
adult where choosing swerve would spare two law-abiding male adults. Given
this perspective and factor set, a number of conflicting duties present themselves
in this scenario including:

• P: maximize the number of persons spared

• F: maximize the number of females spared

• A: maximize the number of adults spared

• L: maximize the number of law-abiding entities spared

• M: maximize the number of males spared

In terms of CPB, then, a case can be constructed where each action is rep-
resented as an ordered collection of integers that denote the level of satisfaction
(positive) or violation (negative) of each preference, in this case corresponding to
the number of entities of the specified type spared. Continue can be represented as
(1 1 1 -1 -2), signifying that this action spares one person, one female, one adult,
and one law-flouting person while sacrificing two males. Swerve, conversely, can
be represented as (2 -1 2 2 2) as it spares two persons, sacrifices one female, spares
two adults, spares two law-abiding entities, and spares two males.

To complete the representation of this case, a determination as to which of the
two actions is preferable needs to be supplied. Once such a determination is made,
the satisfaction/violation values of the less preferable action are subtracted from
those of the preferable action giving a collection of differences that specifies for
the current situation how much more the preferable action satisfies (or violates)
each preference than the less preferable action. For example, if swerve is the
preferable action, the values for continue are subtracted from the values of swerve,
(2 -1 2 2 2) - (1 1 1 -1 -2), and the resulting collection of values is the differential
derived from the case, (1 -2 1 3 4).
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In terms of formalism defined in Section 3, case c = (α1, α2, vS(α1), vS(α2), α0),
where α1 = continue, α2 = swerve, vS(α1) = (1 1 1 -1 -2), vS(α2) =
(2 -1 2 2 2), and α0 = swerve.

When given a collection of such cases, ILP can be used to abstract a principle
that captures the preferences they exhibit. To this end, sixteen cases were drawn
from the scenarios that exhibited the features previously described with the addi-
tion of the dimension of age– half of the cases involve children. This new factor
required the addition of a new duty:

• Y: maximize the number of young spared

As CPB requires all actions to share the same representation scheme, all previ-
ously described actions must be updated to include it: continue is now represented
as (1 1 1 -1 -2 0), the zero signifying that no young are involved in the case; simi-
larly Swerve is now represented as (2 -1 2 2 2 0).

5.1. Synthetic Data
To create cases that can be used to determine a principle of preference, deter-

minations as to which is the preferable action must be supplied for the scenarios.
Consider, for example, which actions in each instance would be preferable given
the following policy:

Spare legal adults and most children

In Cases 3, 7, 13 and 15 that involve adults, as well as Cases 6, 8, 10, and 16 that
involve children depicted in Figure 3 and 4, continue would be preferable while
in all other cases swerve would be. Given these determinations, case differentials
can be constructed (where the values of the less preferable action are subtracted
from the values of the more preferable one), as shown in Table 1.

In addition, sixteen negative case differentials are generated from these pos-
itive cases by reversing the preferred action– if continue is the preferred action
in a case then it follows that swerve is not preferred and vice-versa. The result-
ing cases mirror the positive cases with each value’s sign flipped, positive values
becoming negative values and vice versa.

We use Inductive Concept Learning algorithm (ICL), an ILP-based approach
(see Figure 5), to infer a principle of action preference from cases that is complete
and consistent with respect to these cases. ICL starts from the most general prin-
ciple, and then it incrementally specializes so that it no longer returns true for any
negative cases while still returning true for all positive ones.
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Case Action: Continue Action: Swerve Decision Case Negative Case
Number (P F A L M Y) (P F A L M Y) (P F A L M Y) (P F A L M Y)

1 (1 1 1 -1 -2 0) (2 -1 2 2 2 0) Swerve (1 -2 1 3 4 0) (-1 2 -1 -3 -4 0)
2 (1 1 0 -1 -2 1) (2 -1 0 2 2 2) Swerve (1 -2 0 3 4 1) (-1 2 0 -3 -4 -1)
3 (1 -2 1 1 1 0) (2 2 2 -2 -1 0) Continue (-1 -4 -1 3 2 0) (1 4 1 -3 -2 0)
4 (1 -2 0 1 1 1) (2 2 0 -2 -1 2) Swerve (1 4 0 -3 -2 1) (-1 -4 0 3 2 -1)
5 (2 -1 2 -1 2 0) (1 1 1 2 -2 0) Swerve (-1 2 -1 3 -4 0) (1 -2 1 -3 4 0)
6 (2 -1 0 -1 2 2) (1 1 0 2 -2 1) Continue (1 -2 0 -3 4 1) (-1 2 0 3 -4 -1)
7 (2 2 2 2 -1 0) (1 -2 1 -1 1 0) Continue (1 4 1 3 -2 0) (-1 -4 -1 -3 2 0)
8 (2 2 0 2 -1 2) (1 -2 0 -1 1 1) Continue (1 4 0 3 -2 1) (-1 -4 0 -3 2 -1)
9 (2 2 2 -2 -1 0) (1 -2 1 1 1 0) Swerve (-1 -4 -1 3 2 0) (1 4 1 -3 -2 0)

10 (2 2 0 -2 -1 2) (1 -2 0 1 1 1) Continue (1 4 0 -3 -2 1) (-1 -4 0 3 2 -1)
11 (1 -2 1 -1 1 0) (2 2 2 2 -1 0) Swerve (1 4 1 3 -2 0) (-1 -4 -1 -3 2 0)
12 (1 -2 0 -1 1 1) (2 2 0 2 -1 2) Swerve (1 4 0 3 -2 1) (-1 -4 0 -3 2 -1)
13 (1 1 1 1 -2 0) (2 -1 2 -2 2 0) Continue (-1 2 -1 3 -4 0) (1 -2 1 -3 4 0)
14 (1 1 0 1 -2 1) (2 -1 0 -2 2 2) Swerve (1 -2 0 -3 4 1) (-1 2 0 3 -4 -1)
15 (2 -1 2 2 2 0) (1 1 1 -1 -2 0) Continue (1 -2 1 3 4 0) (-1 2 -1 -3 -4 0)
16 (2 -1 0 2 2 2) (1 1 0 -1 -2 1) Continue (1 -2 0 3 4 1) (-1 2 0 -3 -4 -1)

Table 1: Full representation of the 16 cases (recall Definition 4 of a case) presented in Example 8,
and illustrated in Figures 2–4. Each case has a number (Case Number); a vector of duty satisfac-
tion/violation v(α) for each of the two actions: α1 : Continue and α2 : Swerve; the preferable
decision α0 ∈ {α1, α2}; and the result of subtraction of the two vectors for the preferable decision
and for the other decision i.e. column Case (and its converse Negative Case). The vector repre-
sentation (P F A L M Y) refers to the principles laid down in Figure 2: maximizing the number of
persons, females, adults, law-abiding entities, males, and young spared, respectively.
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Inductive Concept Learning

Initialize principle p to (), most general clause mgc to (u1 . . . uk) where
each ui is minimal, pos to the list of positive cases, and neg to the list of
negative cases

while pos is not empty:

disj = mgc

while disj satisfies any member of neg:

systematically increment values of disj

while disj satisfies any member c of pos:

pos = remove(pos, c)

p = p ∨ disj

Figure 5: A high-level description of the Inductive Concept Learning algorithm
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We specialize disjuncts of a principle of ethical preference p(a1, a2) by incre-
mentally raising selected lower bounds v (all initially set at their lowest possible
value) in such a way that no disjunct returns true for any negative cases (cases in
which a2 is preferable to a1). Collectively, the conjunction of disjuncts returns
true for all positive cases (cases in which a1 is preferable to a2). The principles so
abstracted are most general specifications, covering more cases than those used
in their development and, therefore, useful in making and justifying provisional
determinations about untested cases.

For example, given the current collection of cases and their negatives, this
process would begin with the single most general clause: (-4 -4 -4 -4 -4 -4). Being
“most general”, this clause covers all positive and negative cases, that is each value
in every case is greater than or equal to the corresponding lower bounds expressed
in this clause. As the goal of the algorithm is a principle that returns true for all
positive cases while returning false for all negative cases, this most general clause
must be specialized in such a way as to not cover any negative cases. The first such
negative case that must be uncovered would be the negation of the first positive
case: (-1 2 -1 -3 -4 0).

Specialization of the most general clause entails systematically incrementing
its lower bounds. For instance, (-3 -4 -4 -4 -4 -4) is generated and found to still
cover this negative case so it is followed by (-4 -3 -4 -4 -4 -4) which in turn still
covers this case. This process continues until a clause that does not cover this
negative case is found, in this case (-4 -4 -4 -2 -4 -4) where the -3 in the negative
case is not greater than or equal to the corresponding lower bound -2 in the clause.
Consideration of all the negative cases finally leads to the specialization of the
most general clause corresponding to the first clause in the principle (-4 -4 -4 -2
2 0), a clause that does not cover any of the negative cases. It is then determined
which of the positive cases are covered by this clause. If they are all covered,
then the process is complete but, in this case, this clause only covers the positive
Cases 1, 2, 3, 5, 14, and 16. In order to provide coverage for the rest of the cases,
these covered cases are removed from further consideration, a new most general
clause is constructed and the search continues for a clause that does not cover any
negative cases but does cover at least one of the remaining positive cases. The
process is complete when there are no remaining uncovered positive cases.

The complete and consistent principle abstracted by this process from the ex-
ample cases is

(-4 -4 -4 -2 2 0)
(-4 -3 -4 -2 -4 0)
(-4 -3 -4 -4 -4 1)
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These are the lower bounds v described previously in defining the principle. In
terms of formalism defined in Section 3, principle π = (u1, u2, u3), where u1 =
(-4 -4 -4 -2 2 0), u2 = (-4 -3 -4 -2 -4 0), and u3 = (-4 -3 -4 -4 -4 1).

The principle denoted by these lower bounds can be represented in FOL as:

p(a1, a2)←−
∆legal >= −2 ∧ ∆male >= 2 ∧∆young >= 0

∨
∆female >= −3 ∧ ∆legal >= −2 ∧∆young >= 0

∨
∆female >= −3 ∧ ∆young >= 1

A duty with the lowest possible bound (in this case -4) in a clause has no
bearing on the truth-value of the principle as any value for that duty will be greater
or equal to it. Only values greater than these lowest bounds play a role, hence the
logical form of the principle only needs to include duties with such values. In the
current example, neither the number of persons spared nor the number of adults
spared have any bearing on the value of the principle and so are not represented
in the principle. A positive (or zero) lower bound can be interpreted as how much
more an action has to satisfy a particular preference than another action in order
for it to be considered a candidate preferable action. A negative lower bound can
be interpreted as the maximum amount that an action can violate a preference
than another action and still be a candidate preferable action. All such bounds
of at least one clause must be met for an action to be considered preferable over
another.

Being comprised of most general clauses specialized just enough to not cover
negative cases, this principle is not a succinct description of the chosen policy but
rather it is the least specific logic that covers the positive training cases provided
that conform to that policy without covering any of their negatives.

5.2. Application of Principle to More Actions
If principles are to be used to guide the behavior of autonomous systems, they

will need to choose among the full compliment of possible actions. Compellingly,
principles in CPB can be used to determine the preferable action among any num-
ber of actions by serving as the pairwise comparison function in a sorting routine.
Consider, for example, a case where there are three possible actions– swerveLeft,
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continue, and swerveRight– where swerveLeft will run over two law-flouting adult
males, continue will run over one law-flouting young female, and swerveRight
will run over two law-flouting adult females. Now consider all possible two ac-
tion comparisons:

swerveLeft vs continue
(1 1 -2 0 -2 1) - (2 -1 2 0 2 -1) = (-1 2 -4 0 -4 2)
swerveRight vs continue
(1 1 -2 0 0 1) - (2 2 2 0 0 -1) = (-1 -1 -4 0 0 2)
continue vs swerveLeft
( 2 -1 2 0 2 -1) - (1 1 -2 0 -2 1) = (1 -2 4 0 4 -2)
continue vs swerveRight
(2 2 2 0 0 -1) - (1 1 -2 0 0 1) = (1 1 4 0 0 -2)
swerveLeft vs swerveRight
(2 2 2 0 -2 0) - (2 -2 2 0 2 0) = (0 4 0 0 -4 0)
swerveRight vs swerveLeft
(2 -2 2 0 2 0) - (2 2 2 0 -2 0) = (0 -4 0 0 4 0)
Only two of these cases are not covered by the current principle (i.e., are

false), those where the first action is continue, so it is clear that either swerveLeft
or swerveRight are preferable to continue in this situation. As swerveLeft and
swerveRight both return true when compared against each other, they are con-
sidered equally preferable. These results are in concert with the policy from
which the cases are derived: since all parties involved are acting illegally, the
child should be spared. Never choosing to continue spares the child as expected.

It should be noted that this policy is entirely synthetic, chosen to help elucidate
the methods of principle abstraction and use we are advocating. These methods,
though, are independent of whatever policy is used to decide which actions are
preferable in a given set of examples. Further, there is no requirement that the
policy be succinctly stated a priori, all that is required are determinations specify-
ing the preferable action in each case.

5.3. Moral Machine Data
In accordance with our stated goal to provide a framework able to foster public

participation in policy making, we now consider determinations for the previously
described set of examples drawn from data generated by the Moral Machine.

This data is a small subset of the data collected from the Moral Machine web-
site between June 2016 and December 2018, which was presented in [32]. The
data we use here is the answer of all participants for the 16 dilemmas presented
in Figures 3 and 4. The number of responses to all 16 scenarios is about 15,500

24



responses, each scenario received between 400 and 1800 responses. The number
of respondents who contributed to these responses was about 1200.

The total number of responses collected from Moral Machine website during
the same period was around 40 million responses unevenly distributed on over
than 26 million distinct dilemmas. The demographics of the respondent for the
16 scenarios is similar to the users of the Moral Machine website [32], which are
mostly male, went through college, and are in their 20s or 30s, from different
places in the world. While this indicates that the users of Moral Machine are
not a representative sample of the whole population, it is important to note that
this sample at least covers broad demographics. Having said that, the proposed
approach would better be applied with a nationally representative sample.

Given that the 16 scenarios we chose for this example make for a special subset
of the data, we don’t necessarily expect that the results here will match those
presented in [32]. Part of this is due to the premise of the proposed framework in
which experts decide on what features should be included or excluded from the
final set of vignettes.

We have tallied the Moral Machine responses to the examples cases and have
used the majority view to supply the needed determinations for each case (dilemma).2,3

As it turns out, these determinations are the same as the determinations made for
the synthetic policy except in versions of cases depicted in Figure 3 and 4 that
involve children, namely Cases 4, 6, 10, and 14. In these cases, the action that is
preferable in the Moral Machine data is the opposite of that which is preferable
using the synthetic policy.

The clauses of lower bounds that are generated from this new set of determi-
nations are

(-4 -3 -4 -2 -4 -1)
(-4 -4 -4 -2 2 -1)

2Note that by using majority here, we are only advocating that it is allowed to decide how
driverless cars should behave in a tiny number of possible circumstances that might arise (which
should not be overstated).

3We chose the majority voting for its simplicity, its ease of interpretability and for the desirable
properties it has when applied on a binary choice model. Nevertheless, majority voting has its own
limitations in certain situations. In such cases, one may opt in for using an alternative aggregation
rule, with appropriate precaution, as long as it results in a fair/representative collective preference
for each scenario.
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which can be expressed in FOL as:

p(a1, a2)←−
∆female >= −3 ∧ ∆legal >= −2 ∧∆young >= −1

∨
∆legal >= −2 ∧ ∆male >= 2 ∧∆young >= −1

Applying this principle to the previously described three action case modified
such that continue will run over one law-abiding adult female, the following two
action comparisons are possible:

swerveLeft vs continue
(1 1 1 1 -2 0) - (2 -1 2 -2 2 0) = (-1 2 -1 3 -4 0)
swerveRight vs continue
(1 1 1 1 0 0) - (2 2 2 -2 0 0) = (-1 -1 -1 3 0 0)
continue vs swerveLeft
( 2 -1 2 -2 2 0) - (1 1 1 1 -2 0) = (1 -2 1 -3 4 0)
continue vs swerveRight
(2 2 2 -2 0 0) - (1 1 1 1 0 0) = (1 1 1 -3 0 0)
swerveLeft vs swerveRight
(2 2 2 -2 -2 0) - (2 -2 2 -2 2 0) = (0 4 0 0 -4 0)
swerveRight vs swerveLeft
(2 -2 2 -2 2 0) - (2 2 2 -2 -2 0) = (0 -4 0 0 4 0)
As in the previous example, the only two cases that are not covered by the

principle derived from Moral Machine data are those where the first action is
continue, so it is clear that either swerveLeft or swerveRight are preferable to
continue in this situation as well. As swerveLeft and swerveRight both return true
when compared against each other, they are again considered equally preferable.
But in this situation, swerving in either direction spares a single law abiding entity
over two law-flouting entities. These results are in concert with the policy which
can be gleaned from the Moral Machine data by inspection: spare the legal over
the illegal. So, as all parties involved in either swerve action are acting illegally,
the legal acting entity should be spared. Never choosing to continue spares the
law-abiding adult female as expected.

5.4. Discovering the Policy
Again, as this principle is abstracted from cases in such a way that it may cover

more cases than those used in its training, the policy that it is implementing is not
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Find-S

Initialize p to the most specific clause (u1 . . . uk) where each ui is maximal

For each positive case c = (v1 . . . vk):

For each duty i in 1 : k:

If vi is less than ui,

then replace the value of ui in p with the value of vi.

Figure 6: A high-level description of the Find-S algorithm

as pointed as it might be. A more perspicuous principle may be forthcoming
if, instead of specifying most general clauses, we take the tack of generalizing
most specific clauses at the cost of covering fewer non-training cases. This is the
strategy of the Find-S algorithm in [36] that determines the maximally specific
hypothesis consistent with the positive training examples. Unlike ICL, Find-S
(see Figure 6) starts from the most specific principle, and then it incrementally
generalizes it using positive examples only, until it returns true for all positive
cases.

For example, given the current collection of cases, this process would begin
with the single most specific clause: (4 4 4 4 4 4). Being ”most specific”, this
clause currently covers no positive or negative cases, that is at least one value in
every case is less than the corresponding lower bounds expressed in this clause.
This most specific clause must be generalized in such a way as to cover all positive
cases. The first such positive case that must be covered would be the first positive
case: (1 -2 1 3 4 0).

Generalization of the most specific clause could proceed similarly to the spec-
ification process previously described, in this case systematically decrementing
lower bounds until all positive cases are covered. That said, there is a less com-
putationally intensive method that could be employed that simply inspects each
value in each positive case in turn, replacing values in the most specific clause
with corresponding values that are lower (i.e. more general).

For instance, (3 4 4 4 4 4) is generated and found to still not cover this positive
case so it is followed by (4 3 4 4 4 4) which in turn still does not cover this case.
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Case Action: Continue Action: Swerve Decision Case Current Principle
Order (P F A L M Y) (P F A L M Y) (P F A L M Y) (P F A L M Y)

0 ——— ——— ——— ——— (4 4 4 4 4 4)
1 (1 1 1 -1 -2 0) (2 -1 2 2 2 0) Swerve (1 -2 1 3 4 0) (1 -2 1 3 4 0)
2 (1 1 0 -1 -2 1) (2 -1 0 2 2 2) Swerve (1 -2 0 3 4 1) (1 -2 0 3 4 0)
3 (1 -2 1 1 1 0) (2 2 2 -2 -1 0) Continue (-1 -4 -1 3 2 0) (-1 -4 -1 3 2 0)
4 (1 -2 0 1 1 1) (2 2 0 -2 -1 2) Swerve (1 4 0 -3 -2 1) (-1 -4 -1 -3 -2 0)
5 (2 -1 2 -1 2 0) (1 1 1 2 -2 0) Swerve (-1 2 -1 3 -4 0) (-1 -4 -1 -3 -4 0)
6 (2 -1 0 -1 2 2) (1 1 0 2 -2 1) Continue (1 -2 0 -3 4 1) (-1 -4 -1 -3 -4 0)
7 (2 2 2 2 -1 0) (1 -2 1 -1 1 0) Continue (1 4 1 3 -2 0) (-1 -4 -1 -3 -4 0)
8 (2 2 0 2 -1 2) (1 -2 0 -1 1 1) Continue (1 4 0 3 -2 1) (-1 -4 -1 -3 -4 0)
9 (2 2 2 -2 -1 0) (1 -2 1 1 1 0) Swerve (-1 -4 -1 3 2 0) (-1 -4 -1 -3 -4 0)

10 (2 2 0 -2 -1 2) (1 -2 0 1 1 1) Continue (1 4 0 -3 -2 1) (-1 -4 -1 -3 -4 0)
11 (1 -2 1 -1 1 0) (2 2 2 2 -1 0) Swerve (1 4 1 3 -2 0) (-1 -4 -1 -3 -4 0)
12 (1 -2 0 -1 1 1) (2 2 0 2 -1 2) Swerve (1 4 0 3 -2 1) (-1 -4 -1 -3 -4 0)
13 (1 1 1 1 -2 0) (2 -1 2 -2 2 0) Continue (-1 2 -1 3 -4 0) (-1 -4 -1 -3 -4 0)
14 (1 1 0 1 -2 1) (2 -1 0 -2 2 2) Swerve (1 -2 0 -3 4 1) (-1 -4 -1 -3 -4 0)
15 (2 -1 2 2 2 0) (1 1 1 -1 -2 0) Continue (1 -2 1 3 4 0) (-1 -4 -1 -3 -4 0)
16 (2 -1 0 2 2 2) (1 1 0 -1 -2 1) Continue (1 -2 0 3 4 1) (-1 -4 -1 -3 -4 0)

Table 2: A walk-through example of the Find-S algorithm when applied on the same 16 cases
from Example 8 (illustrated in Figures 2–4). Column “Case Number” here represents the order in
which the case is used. The first five columns are similar to Table 1. The last column “Current
Principle” refers to the principle that covers current and all previous cases. First line starts from
the most specific principle, before encountering any case.
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This process continues until a clause that covers this positive case is found, in
this case (1 -2 1 3 4 0) which is simply the values of the positive case itself. So,
instead, we simply begin with this case as the most specific clause and check the
next positive case, (1 -2 0 3 4 1), for any lower values. The first two values are
the same but the third value, 0, is lower so the most specific clause has its third
value set to 0. The next two values remain the same but the last value in the
new positive case differs. Because it is greater than the value already in the most
specific clause, there is no need to update this value of the clause– the clause is
already general enough in this value to cover the new case. So, after the first two
cases, the most specific clause that covers them both is (1 -2 0 3 4 0). This process
continues until the most specific clause has been sufficiently generalized to cover
all the positive cases (see Table 2 for the full process). Given the current collection
of positive cases, the most specific clause becomes (-1 -4 -1 -3 -4 0). It is shown in
[36] that, even without considering them, this clause will never cover any negative
cases and so it is complete and consistent with all training cases. The result can
be expressed in FOL as:

p(a1, a2)←−
∆persons >= −1 ∧ ∆adults >= −1 ∧∆legal >= −3 ∧∆young >= 0

A broad interpretation of this principle might be ”as long as an action satisfies
legality more than another, it can sacrifice more”, which seems to speak more to
the point of the previously gleaned policy of the Moral Machine data than the more
general principle previously described. Specific principles are only as general
as required to cover all positive cases and so may be more likely to be succinct
statements of policy implied by the training cases. As such, they are likely to
be the most helpful in policy determination. More general principles, on the other
hand, are only as specific as required to uncover negative cases, covering cases not
in their training. As such, they are more likely to be useful in guiding the behavior
of autonomous systems. An example of such a system guided by a principle,
specifically an eldercare robot, is detailed in [34].

6. Discussion

In the general case, we would strongly recommend input from experts (includ-
ing ethicists, legal scholars, policymakers among others). Still, two facts remain:
(1) views on life and death are emotionally driven, so its hard for people to accept
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some authority figure telling them how they should behave; (2) Even from an eth-
ical perspective, its not always clear which view is the correct one. In such cases,
when policy experts cannot reach a consensus, they may use citizens’ preferences
as a tie-breaker. Doing so, helps reach a conclusive decision, it promotes values
of democracy, it increases public acceptance of this technology (especially when
it provides much better safety), and it promotes their sense of involvement and
citizenship. On the other hand, a full dependence on public input would always
have the possibility for tyranny of the majority, among other issues raised above.
This is why our proposed method provides a suitable approach that combines the
utilization of citizens input with the responsible oversight by experts.

In this paper, we propose a framework that can help resolve conflicting moral
values. In so doing, we exploit two decades of research in the representation and
abstraction of values from cases in the service of abstracting and representing the
values expressed in crowd-sourced data to the end of informing public policy. As
a results, the resolution of competing values is produced in two forms: one that
can be implemented in autonomous systems to guide their behavior, and a human-
readable representation (policy) of these rules. At the core of this framework, is
the collection of data from the public.

We have detailed a representation scheme for ethical dilemmas and prefer-
ence principles and have shown how inductive logic programming can be used to
abstract principles from instances of such dilemmas involving two actions. Fur-
ther, we have shown how these principles can be used to determine the preferable
action from any number of appropriately represented possibilities by serving as
the pairwise comparison function for sorting these actions in order of decreas-
ing preference. We have applied these techniques to synthetic and actual data
and demonstrated how the principles of preference abstracted from each data set
encapsulates the policies each embodies.

Returning to the German committee’s guideline clarification that states “Not
allowing non-involved parties to be sacrificed implies that it cannot be a general
rule for a software code to unconditionally save the driver. However, the driver’s
well-being cannot be put last, either.”, it remains to be seen precisely in what
situations the driver’s well-being might override that of non-involved parties. We
submit that the policy abstracted from Moral Machine data, spare the legal, may
help resolve this conflict in some instances by lending support to sparing the driver
when non-involved parties who would come to harm are acting illegally.

We chose ILP for both its ability to handle non-linear relationships and its
explanatory power. In a previous work [37], we formally showed that simply
assigning linear weights to duties is not sufficient to capture the non-linear rela-
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tionships between duties. The explanatory power of the principle discovered using
ILP is compelling: As an action is chosen for execution by a system, clauses of
the principle that were instrumental in its selection can be determined and used to
formulate an explanation of why that particular action was chosen over the others.
Further, as clauses of principles can be traced to the cases from which they were
abstracted, these cases and their origin can provide support for a selected action
through analogy.

ILP also seems better suited than statistical methods to domains in this respect.
For example, although support vector machines (SVM) are known to handle non-
linear data, the explanatory power of the models generated is next to nil [38, 39].
To mitigate this weakness, rule extraction techniques must be applied but, for tech-
niques that work on non-linear relationships, it may be the case that the extracted
rules are neither exclusive nor exhaustive [38, 39]. While decision tree induction
[40] seems to offer a more rigorous methodology than ILP, we have shown in pre-
vious work [41] that the rule extracted from a decision tree induced from a set of
example cases (using any splitting function) covers fewer non-training examples
and is less perspicuous than the most general specification produced by ILP.

Others have advocated a deontic logic approach or an argumentation-based
approach [42, 43] as a representation scheme but we maintain that the generality
of such an approach, and the extra logical constructs such generality entails, is
not required and unnecessarily complicates the use of principles to drive systems.
Further, the CPB approach we are advocating includes the capability of learning
policies of preference from cases.

In a similar direction, a recent work uses argumentation to resolve ethical
tradeoffs in terms of a set of norms provided by different stakeholders [44], but it
is not about how to exploit data to extract principles.

There have also been calls to exploit data on the internet in service of deter-
mining universal values. Rzepka and Araki [45], for example, have used simple
web-mining techniques on other’s opinions on some given behavior to achieve a
set of values that they claim to be in 85 percent agreement with the judgements
of human subjects. Although this technique may bear some passing resemblance
to the Moral Machine, it remains unclear whether the results garnered from such
unstructured data would be suitable as the basis for policy that we are advocating.

There has also been some recent work focusing on the elicitation of moral
judgments from humans (experts and non-experts). Some of this work focused on
proposing frameworks that employ tools from social choice theory and computa-
tional social choice [46] to reach collective moral decision making [47, 48, 49, 50].
For example, in [49], Noothigattu et al. proposed a multi-step approach in which
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they assumed the input of participants’ binary preferences over a small subset of
alternatives, and they used that to learn participants’ rankings over all alternatives.
These rankings where then summarized and used along with a swap-dominance
efficient voting rule to create a collective moral decision maker that can make de-
cisions on new dilemmas. In another approach, Freedman et al. [50], introduced
a framework to tackle a kidney exchange problem. They collected participants’
preferences over different attributes of patients, and used them to learn weights for
all types of patients. These weights were then used to break ties among multiple
maximum-cardinality matchings between patients and donors. Our work differs
from the above work in a number of ways. First, the learning process in our ap-
proach happens at the group level after aggregation. Second, our approach clearly
specifies the role of expert in this process. Third, our approach combines the
benefit of both learning and interpretability.

One may argue that inverse reinforcement learning (IRL) [51] might be helpful
in providing a solution to the task we are investigating. IRL refers to the problem
of characterizing a reward function given an observed (optimized) behavior. Re-
inforcement learning (RL) and IRL has been used for ethical decision making and
as a means for value alignment [52, 53]. We would argue that IRL’s requirement
for a reward function to drive the learning is problematic in preference elicita-
tion. Clearly, the only viable reward would be some measure of how much more
preferable an action is over another. The circuituity of this constraint is vivid– in
attempting to generate a principle of preference, IRL requires such a principle to
assign rewards.

Our proposed approach does not provide a mechanism for choosing the fac-
tors/features used in the dilemmas, or the values to be promoted/demoted. It as-
sumes that factors, features and values are already chosen by a group of experts.
However, in many cases, such choices can be also debatable and are often biased.
This can have a big influence on the final outcome. A potential approach that is
democratic and inclusive would be one that combines 1) a participatory design-
like process involving citizens with 2) a screening process by experts. How to
properly design this stage is a topic for future work.

We see our proposed framework as a one way of tackling a very difficult prob-
lem: the resolution of conflicting values. As such, we hope that this work might
mature to serve as a means to resolve satisfactorily open public policy question
and as an inspiration for other approaches.
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